TWI416730B - 多閘極電晶體 - Google Patents

多閘極電晶體 Download PDF

Info

Publication number
TWI416730B
TWI416730B TW099110083A TW99110083A TWI416730B TW I416730 B TWI416730 B TW I416730B TW 099110083 A TW099110083 A TW 099110083A TW 99110083 A TW99110083 A TW 99110083A TW I416730 B TWI416730 B TW I416730B
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
fin
semiconductor
gate transistor
gate
Prior art date
Application number
TW099110083A
Other languages
English (en)
Other versions
TW201114037A (en
Inventor
Chih Hsin Ko
Clement Hsingjen Wann
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Publication of TW201114037A publication Critical patent/TW201114037A/zh
Application granted granted Critical
Publication of TWI416730B publication Critical patent/TWI416730B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8124Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate with multiple gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66484Unipolar field-effect transistors with an insulated gate, i.e. MISFET with multiple gate, at least one gate being an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/66818Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the channel being thinned after patterning, e.g. sacrificial oxidation on fin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Description

多閘極電晶體
本發明係有關於積體電路裝置,且特別是有關於金氧半導體電晶體及其製造方法。
金氧半導體(MOS)電晶體之速度與金氧半導體電晶體之驅動電流密切相關,而驅動電流又與電荷遷移率有密切相關。例如,在N型金氧半導體電晶體之通道區域中之電子遷移率高時,N型金氧半導體電晶體即具有高驅動電流;在P型金氧半導體電晶體之通道區域中之電洞遷移率高時,P型金氧半導體電晶體即具有高驅動電流。
鍺係為常見的半導體材料,其電子遷移率及電洞遷移率皆較矽佳,矽為最常使用於積體電路製造之半導體材料。因此,鍺係為積體電路製造之絕佳材料。然而,過去矽卻較鍺更廣為使用,這是由於矽的氧化物(氧化矽)已可用於作為金氧半導體電晶體之閘極介電層,其可輕易的由矽基材加熱氧化形成。另一方面,鍺的氧化物溶於水,因此不適於形成閘極介電層。
然而,當金氧半導體電晶體之閘極介電層是使用高介電常數介電材料時,氧化矽所提供的便利性已不再是巨大的優勢,因此可重新檢視將鍺用於積體電路之可能。
除了鍺之外,由於第III族及第V族元素之化合物半導體材料(此後通稱為III-V化合物半導體)具有高電子遷移率,其也是製造金氧半導體裝置之良好選擇。
半導體工業所面臨之難題為,雖然由鍺及III-V化合物半導體所製造之金氧半導體電晶體具有高驅動電流,但同時也具有高漏電流(leakage current)。部分原因是由於鍺及III-V化合物半導體之高介電常數及較小的能帶間隙(bandgap)。例如,第1圖顯示為鍺及一些常用之III-V化合物半導體之能帶間隙及介電常數。第1圖顯示出鍺及常用之III-V化合物半導體之能帶間隙很小。因此,所對應之金氧半導體電晶體在其閘極及源/汲極之間會有能帶-能帶間的漏電流(band-to-band leakage currents),且這些材料之高介電常數更會使漏電流之情況惡化。因此,這些金氧半導體電晶體之開關電流比(on/off current ratios;Ion/Ioff)相對較低。
本發明係提供一種多閘極電晶體,包括:一基材;一半導體鰭(semiconductor fin)位於此基材上,其包含:一中心鰭,由一第一半導體材料形成;及一半導體層,包含一第一部分及一第二部分,分別位於此中心鰭之兩側側壁上,其中此半導體層包含一與此第一半導體材料相異之第二半導體材料;一閘極電極,圍繞(wrapping around)此半導體鰭之側壁;以及一源極區及一汲極區,分別位於此半導體鰭之相對兩側,其中每個此中心鰭及此半導體層自此源極區延伸至此汲極區。
本發明亦提供另一種多閘極電晶體,包括:一基材;一半導體鰭位於此基材上,其包含:一中心鰭,由一第一材料形成;一半導體層,包含一第一部分及一第二部分,分別位於此中心鰭之兩側側壁上並鄰接此中心鰭,其中此半導體層包含一不同於此第一半導體材料之第二半導體材料,且其中此中心鰭及此半導體層形成一量子井;一閘極介電層,包含一第一部分位於此半導體層之此第一部分之外部側壁上,及一第二部分位於此半導體層之此第二部分之外部側壁上;一閘極電極,位於此閘極介電層上;以及一源極區及一汲極區,分別位於此中心鰭之及此半導體層之相對兩側且鄰接此中心鰭及此半導體層,其中此源極區及此汲極區係為n型區域。
為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:
本發明接下來將會提供許多不同的實施例以實施本發明中不同的特徵。值得注意的是,這些實施例提供許多可行之發明概念並可實施於各種特定情況。然而,在此所討論之這些特定實施例僅用於舉例說明本發明之製造及使用方法,但非用於限定本發明之範圍。
本發明在此係揭示一種新穎的鰭式場效電晶體(fin field-effect transistor;FinFET)及其製造方法,並將舉例本發明實施例之製造中間過程,也將討論這些實施例之變化及操作。在本發明之各種舉例之圖示及實施例中,相似元件符號表示為類似的元件。
第2圖顯示為鰭式場效電晶體(FinFET)100形成於基底材料10上之透視圖。基底材料10可由介電材料形成,例如氧化矽。或者,基底材料10可由半導體材料形成,其包含但不限於矽、鍺、砷化鍺及其類似物。在其他實施例中,基底材料10可包含部分的半導體基材及半導體基材中之隔離結構。鰭式場效電晶體100包含源極區4、汲極區6及位於其間之鰭20。鰭式場效電晶體100可為N型場效電晶體,因此源極區4及汲極區6為n型摻雜區域,其可由例如佈植製程形成。閘極介電層12可形成在鰭20之頂部及兩側側壁上。閘極電極8更形成於閘極介電層12上。在一實施例中,可省略閘極介電層12。
隨後圖示將顯示更詳盡之剖面圖,除非特別聲明,其係顯示沿著第2圖中線段3A-3A之垂直剖面。第3A圖顯示為雙閘極鰭式場效電晶體之剖面圖。鰭20包含由第一半導體材料形成之中央鰭22及由第二半導體材料形成之半導體層24,且第二半導體材料不同於第一半導體材料。半導體層24形成於中央鰭22之兩側側壁上。閘極介電層12形成在半導體層24之側壁上。閘極電極8形成在閘極介電層12上。
閘極介電層12可由常用之介電材料形成,例如氧化矽、氮化矽、氮氧化物、前述之多層材料或前述之組合。閘極介電層12也可由高介電常數材料形成。高介電常數介電材料可具有大於4之介電常數值,或甚至大於7。高介電常數介電材料也可包含含鋁之介電材料,例如Al2 O3 、HfAlO、HfAlON、AlZrO;含鉿材料,例如HfO2 、HfSiOx、HfAlO、HfZrSiOx、HfSiON;及其他材料,例如LaAlO3 及ZrO2 。閘極電極8可由摻雜之多晶矽、金屬、金屬氮化物、金屬矽化物及其類似物形成。
第3B圖顯示為第3A圖所示之雙閘極鰭式場效電晶體之導帶圖。在一實施例中,中央鰭22具有能帶間隙EgA,半導體層24具有能帶間隙EgB,且能帶間隙EgB較能帶間隙EgA大。在一較佳實施例中,能帶間隙EgA較能帶間隙EgB小0.1eV,或也可為較大或較小之能帶間隙差距(bandgap differences)。中央鰭22之導帶EcA也可低於半導體層24之導帶EcB。在一實施例中,中心鰭之導帶EcA也可低於半導體層之導帶EcB約0.05eV,或也可為較大或較小之導帶差距(conduct band differences)。藉由比較高電子遷移率之半導體材料之能帶間隙可選擇適當的中央鰭22及半導體層24材料,其可包含但不限於矽、鍺、GaAs、InP、GaN、InGaAs、InAlAs、GaSb、AlSb、AlAs、AlP、GaP及其類似物。在一實施例中,中央鰭22包含InGaAs,且半導體層24包含GaAs。在其他實施例中,中央鰭22包含InAs,且半導體層24包含InAlAs。
請重新參見第3A圖,當中央鰭22之能帶間隙EgA小於半導體層24之能帶間隙EgB時,則鰭20(包含中央鰭22及半導體層24)形成量子井。當施予不為零之閘極電壓至閘極電極8時,由於量子侷限效應(quantum confinement effect),電子傾向於流經鰭20之中間部分,也就是中央鰭22。如此,由於中央鰭22之能帶間隙較小而具有高載子遷移率(carrier mobility),因而使所對應之鰭式場效電晶體100具有高開電流(on-current;Ion)。另一方面,當閘極電壓為零而關閉鰭式場效電晶體100時,電子傾向流經鰭20之表面層,也就是半導體層24。如此,由於能帶間隙EgB較高而具有低載子遷移率,因而使所對應之鰭式場效電晶體100具有低閉路電流(漏電流;Ioff)。因此,鰭式場效電晶體100具有高的開關電流比。
為了改善鰭式場效電晶體100之效能,需加強量子井。因此,中央半導體鰭20之厚度T1最好較薄。在一實施例中,厚度T1小於約50nm,且可甚至小於約10nm。半導體層24之厚度T2可小於約50nm。
第3A圖更包含硬罩幕26於半導體鰭20上,其中硬罩幕26可由常用之介電材料形成,例如氮化矽、氧化矽、氮氧化矽及其類似物。第3A圖所示之鰭式場效電晶體100係為雙閘極鰭式場效電晶體。
在另一實施例中,如第4圖所示,未有硬罩幕位於鰭20上。反之,半導體層24位於中央鰭22之兩側側壁上,並與位在中央鰭頂部22的部分連接形成連續層。閘極介電層12亦形成連續層。如第4圖所示之鰭式場效電晶體100係為三閘極鰭式場效電晶體。
第5至8圖顯示為第3A圖所示之實施例之製造中間階段之剖面圖。參見第5圖,其係為提供基材200。基材200可為半導體,其可由常用之半導體材料形成,例如矽、鍺、砷化鍺或其類似物。絕緣區,例如淺溝槽隔離(STI)區30,形成於基材200中。相鄰淺溝槽隔離區30之間可具有小的間距S,例如小於約50nm,此間距可等於或大於如第3A圖所示之中央鰭22之厚度T1。
接著,如第6圖所示,使基材中相鄰淺溝槽隔離區30之間的部分200以形成凹陷32。凹陷深度D1可實質上等於或小於淺溝槽隔離區30之厚度D2。在第7圖中,中央鰭22係為在凹陷32中磊晶成長。硬罩幕26可為毯覆式形成及圖案化以覆蓋中央鰭22,如第7圖所示。
在另一實施例中,基材200包含第III族及第V族元素之化合物半導體材料(在此之後通稱III-V化合物半導體),因此可省略凹陷32之形成及在凹陷32中之磊晶成長。如此,基材200中相鄰淺溝槽隔離區30之間的部分即為中央鰭22。
接著,如第8圖所示,選擇性蝕刻淺溝槽隔離區30之頂部部分,且底部部分則保留未受蝕刻。因此,中央鰭22具有一部份超出淺溝槽隔離區30。在形成硬罩幕26之後,進行等向性蝕刻,以使中央鰭22側向凹陷,而使硬罩幕26延伸超過剩餘的中央鰭22。接著,如第3A圖所示,磊晶成長半導體層24,並接著形成閘極介電層12。在隨後步驟中,形成閘極電極8,而形成如第3A圖所示之結構。
第9至11圖顯示為如第4圖所示之實施例之製造中間間段之剖面圖。初始步驟基本上如同第5至7圖,包含在基材200中形成淺溝槽隔離區30,並選擇性地使中央鰭22凹陷及磊晶成長。然而,如第9圖所示,其未有硬罩幕形成。第10圖顯示為經蝕刻之淺溝槽隔離區30,以使中央鰭22具有一突出部分超出淺溝槽隔離區30之剩餘部分。接著,如第11圖所示,磊晶成長半導體層24,接著形成閘極介電層12。在隨後步驟中,形成閘極電極8,因此形成如第4圖所示之結構。
第12A圖顯示另一種雙閘極鰭式場效電晶體。除未形成閘極介電層12外,此實施例近似於第3A圖所示之實施例。在此實施例中,可由金屬形成閘極電極8,因此形成肖特基(Schottky)屏障於閘極電極8及半導體層24之間,而形成空乏層40(depletion layer),其可作為閘極介電層而電性絕緣閘極電極8及半導體層24。第12B圖顯示為能帶圖。中心鰭22及半導體層24之材料已於先前討論,故在此不重複贅述。同樣地,中心鰭22之能帶間隙EgA小於半導體層24之能帶間隙EgB,且中心鰭22之導帶EcA可低於半導體層EcB之導帶。
第13圖顯示為另一個三閘極鰭式場效電晶體之實施例。此實施例近似於第4圖所示之實施例,除了因肖特基(Schottky)屏障形成於閘極電極8及半導體層24之間,而將第4圖所示之閘極介電層替換成空乏層40。
第14及第15圖中顯示為其他多閘極鰭式場效電晶體,其中量子井係由多於兩種之半導體材料形成。在一實施例中,半導體層44之能帶間隙EgB大於中心鰭22之能帶間隙EgA,且小於半導體層24之能帶間隙EgB(參見第3B及13圖)。同時,半導體層44之導帶高於中心鰭22之導帶EcA,且低於半導體層24之導帶EcB(參見第3B及13圖)。在第14圖中,形成硬罩幕26,但在第15圖中未有硬罩幕形成。
此外,本發明之範圍不限定於本說明書所述之特定程序、機器、製造、物質之組合、功能、方法或步驟。熟知本領域技藝人士將可依照本發明所揭示之現有或未來所發展之特定程序、機器、製造、物質之組合、功能、方法或步驟達成相同的功能或相同的結果。因此本發明之保護範圍包含這些程序、機器、製造、物質之組合、功能、方法或步驟。雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
4...源極
6...汲極
8...閘極電極
10...基材
12...閘極介電層
20...鰭
22...中央鰭
24...半導體層
26...硬罩幕
30...淺溝槽隔離區
32...凹陷
40...消耗層
44...半導體層
100...鰭式場效電晶體
200...基材
第1圖顯示為一些半導體材料之能帶間隙及介電常數;
第2圖顯示為本發明一實施例之透視圖;
第3A圖顯示為一雙閘極鰭式場效電晶體之剖面圖;
第3B圖顯示為第3A圖所示之實施例之能帶圖;
第4圖顯示為一三閘極鰭式場效電晶體之剖面圖;
第5至8圖顯示為第3A圖所示之雙閘極鰭式場效電晶體之製造中間階段之剖面圖;
第9至11圖顯示為第4圖所示之三閘極鰭式場效電晶體之製造中間階段之剖面圖;
第12A圖顯示為未有閘極介電層形成之雙閘極鰭式場效電晶體之剖面圖;
第12B圖顯示為第12A圖所示之實施例之能帶圖;
第13圖顯示為未有閘極介電層形成之三閘極鰭式場效電晶體之剖面圖;
第14圖顯示為含三種半導體材料於鰭中之雙閘極鰭式場效電晶體;
第15圖顯示為含三種半導體材料於鰭中之三閘極鰭式場效電晶體。
8...閘極電極
10...基材
12...閘極介電層
20...鰭
22...中央鰭
24...半導體層
26...硬罩幕
30...淺溝槽隔離區
200...基材

Claims (13)

  1. 一種多閘極電晶體,包括:一基材;一半導體鰭(semiconductor fin)位於該基材上,其包含:一中心鰭,由一第一半導體材料形成;以及一半導體層,包含一第一部分及一第二部分,分別位於該中心鰭之兩側側壁上,其中該半導體層包含一與該第一半導體材料相異之第二半導體材料,且該第一半導體材料之能帶間隙小於該第二半導體材料之能帶間隙;一閘極電極,圍繞(wrapping around)該半導體鰭之側壁;以及一源極區及一汲極區,分別位於該半導體鰭之相對兩側,其中每個該中心鰭及該半導體層自該源極區延伸至該汲極區。
  2. 如申請專利範圍第1項所述之多閘極電晶體,其中該中心鰭及該半導體層形成一量子井(quantum well)。
  3. 如申請專利範圍第1項所述之多閘極電晶體,其中該第一半導體材料之導帶(conduction band)低於該第二半導體材料之導帶。
  4. 如申請專利範圍第1項所述之多閘極電晶體,更包含一閘極介電層,其含有一第一部分及一第二部分,分別位於該半導體層之該第一部分之外部側壁上及該半導體層之該第二部分之外部側壁上。
  5. 如申請專利範圍第1項所述之多閘極電晶體,其中該閘極電極與該半導體層之該第一部分及該第二部分相接觸。
  6. 如申請專利範圍第1項所述之多閘極電晶體,其中該半導體層更包含一第三部分位於該中心鰭之頂部表面上,並連接該半導體層之該第一部分及該半導體層之該第二部分。
  7. 如申請專利範圍第1項所述之多閘極電晶體,更包含一硬罩幕,位於該中心鰭之頂部表面上,並阻斷該半導體層之該第一部分及該半導體層之該第二部分之間的連接。
  8. 如申請專利範圍第7項所述之多閘極電晶體,其中該硬罩幕層直接延伸超過該半導體層之該第一部分及該半導體層之該第二部分。
  9. 如申請專利範圍第1項所述之多閘極電晶體,更包括一額外之半導體層,包含:一第一部分,位於該半導體層之該第一部分及該中心鰭之間;以及一第二部分,位於該半導體層之該第二部分及該中心鰭之間,其中該額外之半導體層之能帶間隙大於該中心鰭之能帶間隙且小於該半導體層之能帶間隙。
  10. 一種多閘極電晶體,包括:一基材;一半導體鰭位於該基材上,其包含:一中心鰭,由一第一材料形成; 一半導體層,包含一第一部分及一第二部分,分別位於該中心鰭之兩側側壁上並鄰接該中心鰭,其中該半導體層包含一不同於該第一半導體材料之第二半導體材料,且該第一半導體材料之能帶間隙小於該第二半導體材料之能帶間隙,且其中該中心鰭及該半導體層形成一量子井;一閘極介電層,包含一第一部分位於該半導體層之該第一部分之外部側壁上,及一第二部分位於該半導體層之該第二部分之外部側壁上;一閘極電極,位於該閘極介電層上;以及一源極區及一汲極區,分別位於該中心鰭之及該半導體層之相對兩側且鄰接該中心鰭及該半導體層,其中該源極區及該汲極區係為n型區域。
  11. 如申請專利範圍第10項所述之多閘極電晶體,其中該中心鰭向下延伸至該基材中,其中該基材包含一絕緣區,該絕緣區之一側與該中心鰭之側壁相接觸,且該絕緣區域之一頂部表面與該半導體層之底端相接觸。
  12. 如申請專利範圍第10項所述之多閘極電晶體,其中該第一半導體材料之導帶低於該第二半導體材料之導帶。
  13. 如申請專利範圍第10項所述之多閘極電晶體,其中該半導體層更包含一第三部分,位於該中心鰭之頂部表面上,並連接該半導體層之第一部分及該半導體層之第二部分。
TW099110083A 2009-04-01 2010-04-01 多閘極電晶體 TWI416730B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16580309P 2009-04-01 2009-04-01
US12/639,653 US8674341B2 (en) 2009-04-01 2009-12-16 High-mobility multiple-gate transistor with improved on-to-off current ratio

Publications (2)

Publication Number Publication Date
TW201114037A TW201114037A (en) 2011-04-16
TWI416730B true TWI416730B (zh) 2013-11-21

Family

ID=42805239

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099110083A TWI416730B (zh) 2009-04-01 2010-04-01 多閘極電晶體

Country Status (5)

Country Link
US (4) US8674341B2 (zh)
JP (1) JP5452322B2 (zh)
KR (1) KR101145959B1 (zh)
CN (1) CN101853882B (zh)
TW (1) TWI416730B (zh)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008030853B4 (de) * 2008-06-30 2014-04-30 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Dreidimensionaler Transistor mit einer Doppelkanal-Konfiguration
US8816391B2 (en) 2009-04-01 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain engineering of devices with high-mobility channels
CN101853882B (zh) 2009-04-01 2016-03-23 台湾积体电路制造股份有限公司 具有改进的开关电流比的高迁移率多面栅晶体管
US8455860B2 (en) 2009-04-30 2013-06-04 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing source/drain resistance of III-V based transistors
US9768305B2 (en) 2009-05-29 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Gradient ternary or quaternary multiple-gate transistor
US8617976B2 (en) * 2009-06-01 2013-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain re-growth for manufacturing III-V based transistors
US8283653B2 (en) * 2009-12-23 2012-10-09 Intel Corporation Non-planar germanium quantum well devices
US8344425B2 (en) * 2009-12-30 2013-01-01 Intel Corporation Multi-gate III-V quantum well structures
US8455929B2 (en) 2010-06-30 2013-06-04 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of III-V based devices on semiconductor substrates
KR101160084B1 (ko) * 2011-02-01 2012-06-26 서울대학교산학협력단 낮은 누설전류를 갖는 반도체 메모리 소자
US8962400B2 (en) 2011-07-07 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. In-situ doping of arsenic for source and drain epitaxy
US8890207B2 (en) * 2011-09-06 2014-11-18 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET design controlling channel thickness
WO2013095474A1 (en) * 2011-12-21 2013-06-27 Intel Corporation Methods for forming fins for metal oxide semiconductor device structures
US20130200459A1 (en) * 2012-02-02 2013-08-08 International Business Machines Corporation Strained channel for depleted channel semiconductor devices
US8785285B2 (en) 2012-03-08 2014-07-22 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacture thereof
KR101823105B1 (ko) * 2012-03-19 2018-01-30 삼성전자주식회사 전계 효과 트랜지스터의 형성 방법
US8987835B2 (en) 2012-03-27 2015-03-24 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET with a buried semiconductor material between two fins
US9735239B2 (en) 2012-04-11 2017-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device channel system and method
US9748338B2 (en) * 2012-06-29 2017-08-29 Intel Corporation Preventing isolation leakage in III-V devices
TWI553858B (zh) * 2012-07-11 2016-10-11 聯華電子股份有限公司 多閘極場效電晶體及其製程
DE102012217073A1 (de) * 2012-09-21 2014-03-27 Robert Bosch Gmbh Vertikales mikroelektronisches Bauelement und entsprechendes Herstellungsverfahren
CN109216181A (zh) * 2012-11-30 2019-01-15 中国科学院微电子研究所 鳍结构制造方法
US8768271B1 (en) * 2012-12-19 2014-07-01 Intel Corporation Group III-N transistors on nanoscale template structures
US9780211B2 (en) 2012-12-31 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. Power cell and power cell circuit for a power amplifier
CN103915336B (zh) * 2013-01-08 2016-05-25 中芯国际集成电路制造(上海)有限公司 三维量子阱晶体管及其形成方法
US9385234B2 (en) 2013-02-27 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with strained well regions
US9159824B2 (en) * 2013-02-27 2015-10-13 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with strained well regions
US9087902B2 (en) 2013-02-27 2015-07-21 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with strained well regions
CN103187272B (zh) * 2013-02-28 2015-07-15 溧阳市宏达电机有限公司 一种鳍型pin二极管的制造方法
TWI644433B (zh) * 2013-03-13 2018-12-11 半導體能源研究所股份有限公司 半導體裝置
TWI620324B (zh) * 2013-04-12 2018-04-01 半導體能源研究所股份有限公司 半導體裝置
CN104217948B (zh) * 2013-05-31 2018-04-03 中国科学院微电子研究所 半导体制造方法
CN104218082B (zh) * 2013-06-04 2017-08-25 中芯国际集成电路制造(上海)有限公司 高迁移率鳍型场效应晶体管及其制造方法
CN104253044B (zh) * 2013-06-26 2017-03-29 中芯国际集成电路制造(上海)有限公司 晶体管及其形成方法
DE112013007072T5 (de) * 2013-06-28 2016-01-28 Intel Corporation Nano-Strukturen und Nano-Merkmale mit Si (111)-Ebenen auf Si (100)-Wafer für III-N Epitaxie
CN104347408B (zh) * 2013-07-31 2017-12-26 中芯国际集成电路制造(上海)有限公司 半导体装置及其制造方法
CN104347407B (zh) * 2013-07-31 2017-10-31 中芯国际集成电路制造(上海)有限公司 半导体装置及其制造方法
US9780212B2 (en) * 2013-09-18 2017-10-03 Globalfoundries Inc. Fin width measurement using quantum well structure
US9583590B2 (en) 2013-09-27 2017-02-28 Samsung Electronics Co., Ltd. Integrated circuit devices including FinFETs and methods of forming the same
US9178045B2 (en) * 2013-09-27 2015-11-03 Samsung Electronics Co., Ltd. Integrated circuit devices including FinFETS and methods of forming the same
EP3050092A4 (en) 2013-09-27 2017-05-03 Intel Corporation Non-silicon device heterolayers on patterned silicon substrate for cmos by combination of selective and conformal epitaxy
WO2015047341A1 (en) * 2013-09-27 2015-04-02 Intel Corporation Non-planar semiconductor devices having multi-layered compliant substrates
US20160172477A1 (en) * 2013-09-27 2016-06-16 Intel Corporation Methods to achieve high mobility in cladded iii-v channel materials
JP6438727B2 (ja) * 2013-10-11 2018-12-19 株式会社半導体エネルギー研究所 半導体装置および半導体装置の作製方法
CN104576385A (zh) * 2013-10-14 2015-04-29 中国科学院微电子研究所 一种FinFET结构及其制造方法
EP2887399B1 (en) * 2013-12-20 2017-08-30 Imec A method for manufacturing a transistor device and associated device
KR102175547B1 (ko) * 2013-12-23 2020-11-06 인텔 코포레이션 트랜지스터 채널 적용들을 위한 클래딩 이전의 Si 핀 엘리먼트들의 프리-스컬프팅
US9048303B1 (en) * 2014-01-30 2015-06-02 Infineon Technologies Austria Ag Group III-nitride-based enhancement mode transistor
US9236397B2 (en) * 2014-02-04 2016-01-12 Globalfoundries Inc. FinFET device containing a composite spacer structure
US9236483B2 (en) 2014-02-12 2016-01-12 Qualcomm Incorporated FinFET with backgate, without punchthrough, and with reduced fin height variation
US9337279B2 (en) 2014-03-03 2016-05-10 Infineon Technologies Austria Ag Group III-nitride-based enhancement mode transistor
MY186544A (en) 2014-03-24 2021-07-26 Intel Corp Fin sculpting and cladding during replacement gate process for transistor channel applications
US10153372B2 (en) 2014-03-27 2018-12-11 Intel Corporation High mobility strained channels for fin-based NMOS transistors
US9418903B2 (en) * 2014-05-21 2016-08-16 Globalfoundries Inc. Structure and method for effective device width adjustment in finFET devices using gate workfunction shift
US9263586B2 (en) * 2014-06-06 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum well fin-like field effect transistor (QWFinFET) having a two-section combo QW structure
US9524986B2 (en) * 2014-06-26 2016-12-20 Globalfoundries Inc. Trapping dislocations in high-mobility fins below isolation layer
US9263555B2 (en) * 2014-07-03 2016-02-16 Globalfoundries Inc. Methods of forming a channel region for a semiconductor device by performing a triple cladding process
US9461179B2 (en) * 2014-07-11 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor device (TFT) comprising stacked oxide semiconductor layers and having a surrounded channel structure
KR101611337B1 (ko) * 2014-11-14 2016-04-12 울산과학기술원 표면 거칠기 산란을 최소화 또는 없앤 고성능 저전력 전계효과 트랜지스터 소자의 제조방법
US9741811B2 (en) 2014-12-15 2017-08-22 Samsung Electronics Co., Ltd. Integrated circuit devices including source/drain extension regions and methods of forming the same
KR101668442B1 (ko) * 2015-02-17 2016-10-21 경북대학교 산학협력단 반도체 소자 제조방법
KR102326112B1 (ko) 2015-03-30 2021-11-15 삼성전자주식회사 반도체 소자
US10833175B2 (en) * 2015-06-04 2020-11-10 International Business Machines Corporation Formation of dislocation-free SiGe finFET using porous silicon
WO2016209284A1 (en) * 2015-06-26 2016-12-29 Intel Corporation High-mobility semiconductor source/drain spacer
WO2017052609A1 (en) 2015-09-25 2017-03-30 Intel Corporation High-electron-mobility transistors with heterojunction dopant diffusion barrier
WO2017052619A1 (en) 2015-09-25 2017-03-30 Intel Corporation High mobility field effect transistors with a retrograded semiconductor source/drain
CN108028281B (zh) 2015-09-25 2022-04-15 英特尔公司 具有带偏移半导体源极/漏极衬垫的高迁移率场效应晶体管
US10388764B2 (en) 2015-09-25 2019-08-20 Intel Corporation High-electron-mobility transistors with counter-doped dopant diffusion barrier
US9406566B1 (en) * 2015-12-04 2016-08-02 International Business Machines Corporation Integration of III-V compound materials on silicon
US20170236841A1 (en) * 2016-02-11 2017-08-17 Qualcomm Incorporated Fin with an epitaxial cladding layer
WO2017218015A1 (en) 2016-06-17 2017-12-21 Intel Corporation High-mobility field effect transistors with wide bandgap fin cladding
GB2556899B (en) 2016-11-24 2020-09-16 Cambridge Entpr Ltd A gallium nitride transistor
US9978872B1 (en) 2017-03-23 2018-05-22 International Business Machines Corporation Non-polar, III-nitride semiconductor fin field-effect transistor
EP3676873A4 (en) * 2017-08-29 2021-05-26 Micron Technology, Inc. DEVICES AND SYSTEMS INCLUDING STRING DRIVERS WITH HIGH GAP MATERIAL AND METHODS OF FORMING
US10720527B2 (en) * 2018-01-03 2020-07-21 International Business Machines Corporation Transistor having an oxide-isolated strained channel fin on a bulk substrate
US12068316B2 (en) * 2021-05-28 2024-08-20 Fujian Jinhua Integrated Circuit Co., Ltd. Semiconductor device and method of forming the same
US20230091260A1 (en) * 2021-09-23 2023-03-23 Texas Instruments Incorporated LOW RESISTIVE SOURCE/BACKGATE finFET
CN117337027A (zh) * 2022-06-23 2024-01-02 长鑫存储技术有限公司 半导体结构及其形成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070262353A1 (en) * 2006-04-28 2007-11-15 Nobuyasu Nishiyama Semiconductor device and method of fabricating the same
US7560784B2 (en) * 2007-02-01 2009-07-14 International Business Machines Corporation Fin PIN diode

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055890A (en) * 1990-01-25 1991-10-08 The United States Of America As Represented By The United States Department Of Energy Nonvolatile semiconductor memory having three dimension charge confinement
US5818078A (en) * 1994-08-29 1998-10-06 Fujitsu Limited Semiconductor device having a regrowth crystal region
US5621227A (en) * 1995-07-18 1997-04-15 Discovery Semiconductors, Inc. Method and apparatus for monolithic optoelectronic integrated circuit using selective epitaxy
US6399970B2 (en) * 1996-09-17 2002-06-04 Matsushita Electric Industrial Co., Ltd. FET having a Si/SiGeC heterojunction channel
JP3443343B2 (ja) 1997-12-03 2003-09-02 松下電器産業株式会社 半導体装置
JP3005938B2 (ja) * 1998-01-08 2000-02-07 松下電子工業株式会社 半導体装置及びその製造方法
JP3099880B2 (ja) 1998-08-12 2000-10-16 日本電気株式会社 半導体スイッチ及びスイッチ回路
US6350993B1 (en) * 1999-03-12 2002-02-26 International Business Machines Corporation High speed composite p-channel Si/SiGe heterostructure for field effect devices
DE60036594T2 (de) * 1999-11-15 2008-01-31 Matsushita Electric Industrial Co., Ltd., Kadoma Feldeffekt-Halbleiterbauelement
CN1254026C (zh) * 2000-11-21 2006-04-26 松下电器产业株式会社 通信系统用仪器
US6475890B1 (en) * 2001-02-12 2002-11-05 Advanced Micro Devices, Inc. Fabrication of a field effect transistor with an upside down T-shaped semiconductor pillar in SOI technology
US6475869B1 (en) * 2001-02-26 2002-11-05 Advanced Micro Devices, Inc. Method of forming a double gate transistor having an epitaxial silicon/germanium channel region
US6635909B2 (en) 2002-03-19 2003-10-21 International Business Machines Corporation Strained fin FETs structure and method
US6995430B2 (en) 2002-06-07 2006-02-07 Amberwave Systems Corporation Strained-semiconductor-on-insulator device structures
US7382021B2 (en) * 2002-08-12 2008-06-03 Acorn Technologies, Inc. Insulated gate field-effect transistor having III-VI source/drain layer(s)
US7358121B2 (en) * 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
US6706571B1 (en) * 2002-10-22 2004-03-16 Advanced Micro Devices, Inc. Method for forming multiple structures in a semiconductor device
JP2004179318A (ja) 2002-11-26 2004-06-24 Nec Compound Semiconductor Devices Ltd 接合型電界効果トランジスタ及びその製造方法
US6762483B1 (en) 2003-01-23 2004-07-13 Advanced Micro Devices, Inc. Narrow fin FinFET
CN100437970C (zh) * 2003-03-07 2008-11-26 琥珀波系统公司 一种结构及用于形成半导体结构的方法
US6867433B2 (en) * 2003-04-30 2005-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor-on-insulator chip incorporating strained-channel partially-depleted, fully-depleted, and multiple-gate transistors
JP2005005646A (ja) 2003-06-16 2005-01-06 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
JP4557508B2 (ja) * 2003-06-16 2010-10-06 パナソニック株式会社 半導体装置
US7045401B2 (en) * 2003-06-23 2006-05-16 Sharp Laboratories Of America, Inc. Strained silicon finFET device
US7202494B2 (en) * 2003-06-26 2007-04-10 Rj Mears, Llc FINFET including a superlattice
EP1519420A2 (en) * 2003-09-25 2005-03-30 Interuniversitaire Microelectronica Centrum vzw ( IMEC) Multiple gate semiconductor device and method for forming same
JP2005051241A (ja) 2003-07-25 2005-02-24 Interuniv Micro Electronica Centrum Vzw 多層ゲート半導体デバイス及びその製造方法
JP2005062219A (ja) 2003-08-08 2005-03-10 Nikon Corp 光学部材切替装置とこれを用いた顕微鏡
US7863674B2 (en) * 2003-09-24 2011-01-04 Taiwan Semiconductor Manufacturing Company, Ltd. Multiple-gate transistors formed on bulk substrates
KR100513405B1 (ko) * 2003-12-16 2005-09-09 삼성전자주식회사 핀 트랜지스터의 형성 방법
KR100598099B1 (ko) * 2004-02-24 2006-07-07 삼성전자주식회사 다마신 게이트를 갖는 수직 채널 핀 전계효과 트랜지스터 및 그 제조방법
US7154118B2 (en) 2004-03-31 2006-12-26 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
KR100642747B1 (ko) 2004-06-22 2006-11-10 삼성전자주식회사 Cmos 트랜지스터의 제조방법 및 그에 의해 제조된cmos 트랜지스터
US7042009B2 (en) * 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
US7598134B2 (en) * 2004-07-28 2009-10-06 Micron Technology, Inc. Memory device forming methods
JP2006080278A (ja) * 2004-09-09 2006-03-23 Toshiba Ceramics Co Ltd 歪みシリコンウエハおよびその製造方法
KR100674914B1 (ko) * 2004-09-25 2007-01-26 삼성전자주식회사 변형된 채널층을 갖는 모스 트랜지스터 및 그 제조방법
US20060148182A1 (en) * 2005-01-03 2006-07-06 Suman Datta Quantum well transistor using high dielectric constant dielectric layer
US7602006B2 (en) * 2005-04-20 2009-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor flash device
JP5063594B2 (ja) 2005-05-17 2012-10-31 台湾積體電路製造股▲ふん▼有限公司 転位欠陥密度の低い格子不整合半導体構造およびこれに関連するデバイス製造方法
JP4648096B2 (ja) * 2005-06-03 2011-03-09 株式会社東芝 半導体装置の製造方法
US7605449B2 (en) * 2005-07-01 2009-10-20 Synopsys, Inc. Enhanced segmented channel MOS transistor with high-permittivity dielectric isolation material
US8466490B2 (en) * 2005-07-01 2013-06-18 Synopsys, Inc. Enhanced segmented channel MOS transistor with multi layer regions
US7807523B2 (en) * 2005-07-01 2010-10-05 Synopsys, Inc. Sequential selective epitaxial growth
US7508031B2 (en) * 2005-07-01 2009-03-24 Synopsys, Inc. Enhanced segmented channel MOS transistor with narrowed base regions
US7265008B2 (en) * 2005-07-01 2007-09-04 Synopsys, Inc. Method of IC production using corrugated substrate
US7190050B2 (en) * 2005-07-01 2007-03-13 Synopsys, Inc. Integrated circuit on corrugated substrate
US7247887B2 (en) * 2005-07-01 2007-07-24 Synopsys, Inc. Segmented channel MOS transistor
JP4956776B2 (ja) 2005-09-08 2012-06-20 日産自動車株式会社 半導体装置の製造方法
WO2007046150A1 (ja) 2005-10-21 2007-04-26 Fujitsu Limited フィン型半導体装置及びその製造方法
US7348225B2 (en) * 2005-10-27 2008-03-25 International Business Machines Corporation Structure and method of fabricating FINFET with buried channel
US7485503B2 (en) * 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
US20070238281A1 (en) * 2006-03-28 2007-10-11 Hudait Mantu K Depositing polar materials on non-polar semiconductor substrates
US20070243703A1 (en) * 2006-04-14 2007-10-18 Aonex Technololgies, Inc. Processes and structures for epitaxial growth on laminate substrates
JP2008014104A (ja) 2006-07-10 2008-01-24 Hi-Lex Corporation ウインドレギュレータのキャリアプレートおよびそれを用いたウインドレギュレータ
KR100781549B1 (ko) 2006-11-03 2007-12-03 삼성전자주식회사 반도체 집적 회로 장치의 제조 방법 및 그에 의해 제조된반도체 집적 회로 장치
JP5217157B2 (ja) 2006-12-04 2013-06-19 日本電気株式会社 電界効果トランジスタおよびその製造方法
US8135135B2 (en) 2006-12-08 2012-03-13 Microsoft Corporation Secure data protection during disasters
EP1936696A1 (en) * 2006-12-22 2008-06-25 INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM vzw (IMEC) A field effect transistor device and methods of production thereof
US7928426B2 (en) * 2007-03-27 2011-04-19 Intel Corporation Forming a non-planar transistor having a quantum well channel
JP4406439B2 (ja) * 2007-03-29 2010-01-27 株式会社東芝 半導体装置の製造方法
US8421121B2 (en) 2007-04-18 2013-04-16 Northrop Grumman Systems Corporation Antimonide-based compound semiconductor with titanium tungsten stack
JP2008270521A (ja) * 2007-04-20 2008-11-06 Matsushita Electric Ind Co Ltd 電界効果トランジスタ
US7939862B2 (en) * 2007-05-30 2011-05-10 Synopsys, Inc. Stress-enhanced performance of a FinFet using surface/channel orientations and strained capping layers
US8174073B2 (en) * 2007-05-30 2012-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit structures with multiple FinFETs
US20080315310A1 (en) * 2007-06-19 2008-12-25 Willy Rachmady High k dielectric materials integrated into multi-gate transistor structures
US20090001415A1 (en) * 2007-06-30 2009-01-01 Nick Lindert Multi-gate transistor with strained body
US7768079B2 (en) * 2007-09-26 2010-08-03 Intel Corporation Transistors with high-k dielectric spacer liner to mitigate lateral oxide encroachement
JP2009105163A (ja) 2007-10-22 2009-05-14 Toshiba Corp 半導体装置
US9048302B2 (en) * 2008-01-11 2015-06-02 The Furukawa Electric Co., Ltd Field effect transistor having semiconductor operating layer formed with an inclined side wall
JP4575471B2 (ja) * 2008-03-28 2010-11-04 株式会社東芝 半導体装置および半導体装置の製造方法
US7670894B2 (en) * 2008-04-30 2010-03-02 Intel Corporation Selective high-k dielectric film deposition for semiconductor device
US7936040B2 (en) * 2008-10-26 2011-05-03 Koucheng Wu Schottky barrier quantum well resonant tunneling transistor
US8058692B2 (en) * 2008-12-29 2011-11-15 Taiwan Semiconductor Manufacturing Company, Ltd. Multiple-gate transistors with reverse T-shaped fins
CN101853882B (zh) 2009-04-01 2016-03-23 台湾积体电路制造股份有限公司 具有改进的开关电流比的高迁移率多面栅晶体管
US8816391B2 (en) * 2009-04-01 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain engineering of devices with high-mobility channels
US8455860B2 (en) 2009-04-30 2013-06-04 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing source/drain resistance of III-V based transistors
US9768305B2 (en) * 2009-05-29 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Gradient ternary or quaternary multiple-gate transistor
US8617976B2 (en) * 2009-06-01 2013-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain re-growth for manufacturing III-V based transistors
US8237152B2 (en) * 2009-06-02 2012-08-07 The United States Of America, As Represented By The Secretary Of The Navy White light emitting device based on polariton laser
US8283653B2 (en) * 2009-12-23 2012-10-09 Intel Corporation Non-planar germanium quantum well devices
KR101129930B1 (ko) * 2010-03-09 2012-03-27 주식회사 하이닉스반도체 반도체 소자 및 그의 형성 방법
US8314652B2 (en) 2010-05-11 2012-11-20 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for RC calibration using phase and frequency
US8455929B2 (en) * 2010-06-30 2013-06-04 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of III-V based devices on semiconductor substrates
US8114757B1 (en) * 2010-10-11 2012-02-14 Monolithic 3D Inc. Semiconductor device and structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070262353A1 (en) * 2006-04-28 2007-11-15 Nobuyasu Nishiyama Semiconductor device and method of fabricating the same
US7560784B2 (en) * 2007-02-01 2009-07-14 International Business Machines Corporation Fin PIN diode

Also Published As

Publication number Publication date
US20170170335A1 (en) 2017-06-15
KR20100111241A (ko) 2010-10-14
US20100252816A1 (en) 2010-10-07
US10109748B2 (en) 2018-10-23
US20140134815A1 (en) 2014-05-15
CN101853882A (zh) 2010-10-06
CN101853882B (zh) 2016-03-23
US8674341B2 (en) 2014-03-18
US9590068B2 (en) 2017-03-07
JP5452322B2 (ja) 2014-03-26
TW201114037A (en) 2011-04-16
US20150072495A1 (en) 2015-03-12
JP2010258443A (ja) 2010-11-11
KR101145959B1 (ko) 2012-05-15
US8927371B2 (en) 2015-01-06

Similar Documents

Publication Publication Date Title
TWI416730B (zh) 多閘極電晶體
US10269970B2 (en) Gradient ternary or quaternary multiple-gate transistor
US10629501B2 (en) Gate all-around semiconductor device including a first nanowire structure and a second nanowire structure
US11631768B2 (en) Semiconductor device and method of manufacturing thereof
US10020230B2 (en) FinFETs with multiple threshold voltages
US9153657B2 (en) Semiconductor devices comprising a fin
US8716156B1 (en) Methods of forming fins for a FinFET semiconductor device using a mandrel oxidation process
US8629478B2 (en) Fin structure for high mobility multiple-gate transistor
US20140065780A1 (en) Split-Channel Transistor and Methods for Forming the Same
KR20040094702A (ko) 응력변형된 핀 fet 구조물 및 방법
TWI668866B (zh) 半導體元件及其製作方法
TW201310647A (zh) 半導體裝置及半導體裝置之製造方法
KR101772278B1 (ko) 누설 전류 억제 방법 및 그 관련 구조물들
KR102131902B1 (ko) 터널링 전계효과 트랜지스터 및 이의 제조방법
TWI527228B (zh) 多閘極電晶體元件