TWI325428B - Protein a chromatography - Google Patents

Protein a chromatography Download PDF

Info

Publication number
TWI325428B
TWI325428B TW093106464A TW93106464A TWI325428B TW I325428 B TWI325428 B TW I325428B TW 093106464 A TW093106464 A TW 093106464A TW 93106464 A TW93106464 A TW 93106464A TW I325428 B TWI325428 B TW I325428B
Authority
TW
Taiwan
Prior art keywords
protein
antibody
column
buffer
sepharose
Prior art date
Application number
TW093106464A
Other languages
English (en)
Other versions
TW200530265A (en
Inventor
Julian Bonnerjea
Anna Preneta
Original Assignee
Lonza Biologics Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9953825&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI325428(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Lonza Biologics Plc filed Critical Lonza Biologics Plc
Publication of TW200530265A publication Critical patent/TW200530265A/zh
Application granted granted Critical
Publication of TWI325428B publication Critical patent/TWI325428B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/362Cation-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/363Anion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3804Affinity chromatography
    • B01D15/3809Affinity chromatography of the antigen-antibody type, e.g. protein A, G, L chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

1325428 玖、發明說明: 【發明所屬之技術領域】 本發明係關於生物技術生產中的抗體純化領域。本發 明的一項目標是要說明純化此種抗體的新穎方法。 【先前技術】 蛋白質A色層分析法廣泛用於抗體的工業製造,因為 它容許以單一步驟從細胞培養上澄液中將抗體亦即通常為 IgG幾近於完全純化。蛋白質A的親和性管柱無可避免的 在重複流洗時會有某種程度之配體從管柱流失。這有部分 可能是因為蛋白質A從管柱中被蛋白質分解作用修短;而 在工業製造用於醫藥應用的抗體中,卻不可能因為調節的 理由添加蛋白質抑制劑之混合物。不幸的是,這種蛋白質 A或蛋白質A的片段污染物保留了它們對lg(;的親和性, 並且因為形成複合物而難以從純化的抗體之"多除。移除 是絕對必須的,因;^蛋白# A s ' ' 兩蛋白貝A疋一種細菌蛋白質,它會誘 導一種不被希望的免痏及雍. „ , _ J兄/又夂應,而且,添加蛋白質A到單株 ¥所形成的模型複合物已被報導會在體外活化帶有的 白血球和輔助系統而產生氧化和過敏毒素活性⑽—等 人’《癌症研究》’第44期,第734頁,1 984年)。 把US6, 399, 750中所列之重組|白質 , 一曰負Α物種商品化能 仔到較高容量的蛋白質A4 文曰貝Λ S柱,4重組物種係藉由單一硫 醋鍵連接到管柱基質上β 1 本 ^ A ^ 八所伴匕的缺點是此種重組蛋白 質A基質的漏失速率經常會 霄矛。f夕傳統的、藉由CNBr偶合 所仔到的多點連接的天麸蛋 穴…、蛋白貝A基質相對比地激烈增加
Xi25428 。因此蛋白質A汙染物的移除應在沒有複合的IgG伴隨移 除的狀況下進行。
Balint等人(lbd.)證明此種IgG_蛋白質複合物可藉由 膠體色層分析法與未複合的IgG>開。低流出量與抗體產 率的減損是此方法的缺點。 US4’983’722教示藉著讓混合物吸附到陰離子交換劑 ::枓上並且連續在增加離子強度的條件下溶離抗體和蛋白 貝A以分開兩個成分’而使造成污染的蛋白質a從蛋白質 純化的抗體製備物中選擇性地分開。 依媚:f娜άΑ τ 解析方法向度 賴抗肢的Pi,ρΙ對於給定抗體 變性。而且,流。疋特'具高.度可 。 出Μ限於獲付分離所需的鹽梯度的斜率 【發明内容】 本發明的一項目的是要設計另—種 質Α片段盥枋雕处 ,蛋白貝A或蛋白 乃杈”抗體(較佳是IgG)分離 先前技藝的缺點。根據本發明,此種目二f方法要避免 請專利範圍第i項和楚q 肖目#疋根據獨立項申 和丄負和弟9項解決的。 根據本發明,五人执4 ^ 包括以下步驟:…。Γδ純化抗體的方法,該方法
4, ^ 百免,藉由蛋白質Α親和性色;S八;^ U 化抗體,其中蛋 征巴層为析法純 物。 貝的蛋白質Α或其功能性衍生 下,將純化的:二1:質A或其功能性衍生物結合的條件 抗幾,較佳是::離:到離子交換劑村料上,其三是收集 在切子交換劑的流出物中收集至少、70%, 1325428 更佳是收集至少80%,最佳是收集至少9〇%之裝載到離子交 換材料上之杬體量,而任何污染物蛋白質A或蛋白質A衍 生物係被結合至該離子交換材料上。 蛋白貝A疋一種在金黃色葡萄球菌(介即此 的細胞表面發現之蛋白質。它具有與哺乳動物的抗 體尤其疋分類為IgG的抗體之Fc區結合的性質。在一給定 類別之抗體中,親和性稍微因物種的起源和抗體亞系 (subclass)或同種異型性(all〇type)而異(在Sur〇Ha A.等 人,1982年,〈蛋白質A :自然的共同抗體〉,《丁丨於》 ,第7期,第74-76頁;Langone等人,1982年〈金黃色 葡萄球菌之蛋白質A及相關的免疫球蛋白受體〉,《免疫 學之進展》,第32期:第157-252頁有評論)。蛋白質a 可以直接從能分泌出蛋白質A的金黃色葡萄球菌培養物中 分離出來或更方便地重組表現於大腸桿菌之中(L〇fdahl等 人,1 983年,《美國國家科學院誌(pNAS)》,第8〇期: 第697-70 1頁)。其純化抗體尤其是單株IgG的用途被充分 地在先前技藝中說明過(例如:Lang〇ne等人,同前;
Hj elm等人’1972年,《FEBS通信》,第28期,第73-76 頁)°對在蛋白質A親和性色層分析法的用途而言,係將 蛋白質A與一種固態基質偶合’如與交聯、沒有電荷的瓊 脂(Sepharose ’不含天然瓊脂之有電荷的部分),參丙烯醯 基’父聯的葡聚糖、或以石夕為基礎的物質。這項用途的方 法在本技藝中是普遍已知的’例如經由將蛋白質的—級胺 基官能連接到一種CNBr活化的基質上。蛋白質a以高度親 1325428 和性和高度專-性結合i Ig“"c部分,也就是㈣的 Q2-Cy3介面區,如Lang〇ne等人,1982年,同上所說明 的尤,、其強力的結合至人類之同種異型性或亞系的 IgGl、 IgG2、IgG3和老鼠之同種異型性或亞系的igG2a、 IgG2b、IgG3。蛋白質A也展現對於免疫球蛋白之^區的 親和力’該區係由vH基因家族,νπ編碼(⑽。等人, 1991年,《免疫學期刊》,第61期:3〇26_3〇31頁; Hi Ison等人,《實驗醫學期刊》,第178期:33卜336頁 ( 1 993年))。編碼蛋白質a的基因序列透露兩種功能迴異 的區域(Uhlen等人,《生物化學期刊》,第259期: 1695-1702頁(1984年);Lofdahl等人,《美國國家科學 院誌(PNAS)》,第80期:697-701頁(1983年))。該胺基 立而區域包含五個咼度同源的I gG結合區位(稱之為e、d、a 、B和C ),且羧基端區使該蛋白質固定在細胞壁和細胞膜 上所有五個蛋白貝A的IgG結合區位藉由Fc區結合至
IgG ’其涉及例如人類的igG-Fc殘基252-254、433-435和 311 ’如在蛋白質A的B-區位的情形中於Deisenhofer等 人的晶體結構(1 9 81年,《生物化學期刊》,第2〇期: 2361-2370 頁)以及於 Sauer-Eriksson 等人(1995 年,《結 構》,第3期:265-278頁)所示。在Fc部分的兩個基本 上鄰接的主要結合位置已經在Gouda等人,1998年,《生 物化學期刊》,第37期:1 29-1 36頁的NMR解答研究中被 禮認。原則上,蛋白質A之IgG結合區位A到E的每一者 即足以與一個! gG的Fc部分結合。 中 纟人類VH3家族的某些對偶基因已被發現能視 :要錯由蛋白! A與人類的Ig結合(Ibrahim,i 993年, ,疫予期刊》’帛151期:咖卜36〇3胃;〈v_區調節 2的1§與蛋白質A結合>)。在本申請案的上下文中, 勒月的3項分開的目標中,每件被提到適用於抗體的 A人蛋白貝A結合的事物同樣適用於經由此種vh3家族 的蛋白質A-結合對偶基因之抗體結合—倘若此種抗體的 區不容許其本身達到高親和性的蛋白f a結合。其可視為 與亡發明之主要的、以Fc ^基礎之本發明方法的均等具 體貝例’後者將在緊接的部分中進一步做說明。 根據本發明的IgG抗體被吾人瞭解為屬於此種能與蛋 白質A以问親和性方式結合的同種異型體的一種抗體。而 且’除了抗體的Fc部分與結合至蛋白質“目關之外,此種 ㈣絕對不能相當於天然抗體。尤其是在其可變區域的部 伤中,其可為如同本技藝中例行設計之經改造的嵌合或 CDR-移植抗體。簡言之’根據本發明# igG抗體應被瞭解 為一種IgG型式的抗體。 據本毛明之蛋白負A的功能性衍生物經以結合係數 鑑認,對老鼠的igG2a或人的IgGi之Fc部分而言,至少 K = l〇 8M,較佳是K = 1〇-9M。具有此種結合係數值的交互作 用在本說明書的上下文中以「高親和性結合」稱之。較佳 疋此種蛋白質A的功能性衍生物至少包含野生型蛋白質a 的功此性1 gG結合區位的部分,該區位係選自天然區位E 、D A、β、c或其經改造仍保留I g(j結合功能性的變異體 對此之一項實施例為蛋白質A的區位B之具功能的59個 胺基酸之「7, H ea t 月奴,該區位如US601 3763所提出可用於純 化抗妝。然而,較佳是根據本發明的抗體結合片段包含至 少:個,本段所定義之完㈣Fc結合區位。關於此的一 項貫例是揭示在例% EP-282 308 * EP-284 368的重組蛋 貝A序歹j這兩項序列都出自Rep 1 igeil公司。 可單獨或與蛋白質A或功能性的蛋白質A片段或如以 上部分所定義的衍生物組合,更佳的是經修改而能單點連 接的蛋白質A片段。擔點接觸意指蛋白質分子部分經由單 一的共價鍵連接到蛋白質A親和性色層分析法之色層分析 擔體材料上。此種利用適當之反應性殘基進行的單點連接 進一步在理想的狀況下被放在一個暴露的胺基酸位置上, 即疋在個小環中,靠近N端或C端或在蛋白質摺疊之外 側環境上的他處。適當之反應性基團為例如巯基或胺基官 能。更較佳的是,此種重組蛋白質A或其功能性片段在其 胺基酸序列上包含了 一個半胱胺酸。最佳的是,該半胱胺 酸被包含在含有重組蛋白質A或其功能性片段之胺基酸序 列的C端表後3 0個胺基酸的小段上。在此種型式的更佳具 體貫例中,重組蛋白質A或其功能性片段至少50%經由硫 謎硫鍵連接到蛋白質A色層分析法基質的色層分析擔體或 基質材料上。此一具體實例的一項實施例描述於如 Pharmacia 公司的 US 6399750 中並且可以 StreamlineTM 或 品牌名稱購自Amersham-Biosciences公司, 視所使用擔體基質的本性而定。在本說明書的上下文中, 11 硫醚應被狹義地瞭解為一個 興化學結構無關的_s_鍵結圖形 ,在此方面偏離常用的化學狂+ 干DO 5,例如可能根據本發明的 -S-硫it橋接是一個較大官 土的一部份,如例如硫酯或混 合的縮醛’這方面在本申往 奉甲吻案的上下文中偏離化學家之以 反應活性為基礎的常用芦古。 β ,, ° 較佳疋,該硫謎橋接是其平 常使用的狹義的化學Μ。此種作為橋接的硫喊團可為 〗由蛋白貝I Α的半胱胺酸殘基之疏基與位在被活化的色 層分析擔體材料上的環氧基團反應所產生。用一個末端的 +胱胺酸殘基,此種反應可以在適合的條件下進行,該條 件只容許—種蛋白質之暴露的獨特疏基偶合以僅只和此種 蛋白質做單點的連接。 / —項尤佳的具體實例中,根據本發明之蛋白質A或 :此性的蛋白質A衍生物是揭示於US 6399750之重組蛋白 貝^,其包含一個末端並列之經改造的半胱胺酸殘基,並 且較=疋至少5〇%,更佳是至少7〇%經由該半胱胺酸的硫原 子以單點連接方式偶合到色層分析之擔體材料上。更佳的 疋這種偶口作用已經被環氧化物所調節的活化作用達成, f仏是利用1,4-雙-(2, 3-環氧丙氧基)丁烷活化例如一種 复月曰基貝如Sepharose Fast Flow(與氯甲代氧丙環交聯的 朱粒英國Amersham-Biosciences公司),或藉由氣 甲代氧丙環活化例如一種瓊脂基質如Sephar〇se 。更佳 疋/、根據本&落前述較佳具體實例結合的該第一離子交 換d為一種陰離子交換劑,特別是以四級胺為基礎之陰離 '、、釦1 例如 Sepharose QTM FF (Amersham- 12 1325428
Biosciences/Pharmacia公司),最佳是其為一種具有偶合 至基質擔體之官能性交換劑基團Q之陰離子交換劑,該基 團Q是N,N,N-三曱基胺-曱基,最佳是該陰離子交換劑為 蹲自 Pharmacia/Amersham-Biosciences 公司的 Sepharose QTMFF。該四級胺基是一種很強的交換劑,且其不易受裝載 /沖洗用緩衝液的pH值影響。快速流動的交換劑基質是以 高度交聯以求較高物理穩定性之45-1 65微米的璦脂珠粒; 而且sepharose不含天然瓊脂帶電荷的硫酸化分子部分且 不容許非專—性的基質吸附抗體,甚至是在高抗體裝載量 的條件下亦如此。此一具體實例的一項實施例可在實驗部 分中找到。 根據本發明的污染物蛋白質A是任何型式的功能性之 蛋白質A與IgG結合的子代或如以上所定義之其功能性衍 生物,其乃將結合之抗體從蛋白質A親和性色層分析管柱 溶離時所得。此種污染物蛋白f A物種可能得自例如狀鍵 7水解,這極可能藉由酵素作用,尤其是在工業製造當中 發生。當粗略純化的新鮮產物溶液仍存在有相當的蛋白酶 :性時’蛋白f A色層分析法在下游加卫過程中被應用為 -項早期步驟。細胞培.養肉汁中的死細胞或在最初離心或 過濾=驟中被破壞的細胞很容易有被釋放出的蛋白酶;為 二=:的目的,在下游加工過程之前或期間補充蛋白酶抑 =常未能達成目的,這與生物化學研究的實行相違。 苯基—甲[硫醯-氣瓣…'己酸。此種化學用劑 生物醫藥的生產上為不欲之添加劑。另有可能蛋白質a 13 丄奶428 之重組的功能性衍生物或片段要比野生型的蛋白質A較不 能對抗蛋白酶,視其蛋白質擅疊的三級結構而$…旦沾 合區位的總數減少時,與㈣IgG結合區位連接的胺基: 小段可能會被暴露出來。區位間的接觸可能會對區位指属 的穩定性有幫助。也有可能抗體被蛋白質A或其功能性: 生物結合會因為抗體結合時所誘導的構形變化而影響或輔 =蛋白酶作用易於進行。再說,野生型或完整長度的蛋白 質A或其具功能性之經修改片段可能表現不同。較佳是, 根據本發明之污染物蛋白質A仍然具有功能性之能:合 ¥的蛋白質,因此當被裝載到根據本發明之緊接的離子 交換分離基質上時,會與經蛋白f A純化的抗體結合。高 親和性為基礎的污染物蛋白冑A與經純化之抗體的結合就 是為什麼難以將污染物蛋白f A與純化的抗體分開的原因 車乂釭疋根據本發明之待純化的抗體在用蛋白質A親和 色層分析法純化抗體前,先從細胞培養物中收獲。更佳 是,該細胞培養物是哺乳動物的細胞培養物。哺乳動物細 有稱為浴小體的大空間,包含在細胞死亡或收穫時瓦 解之分'解㈣素。尤其’該細胞培養物可為骨髓瘤細胞培 =物,例如NSO細胞(Galfre G.和Milstein C.,《酵素 :方法期刊》,1981年,第73期,第3頁)。骨髓瘤細胞 疋種漿細胞瘤的細胞,亦即淋巴樣細胞譜系的細胞。一 種作為範例的NS〇細胞系是例如ecacc 8511〇5〇3號細胞系 可自由得自歐洲細胞培養收集(ECACC),應用微生物與研 1325428 究中心,Salisbury.,Wiltshire SP4 0JG ,英國。NS〇 已被 發現能造成非常高的產率,尤其是若用於生產重組抗體。 於是,NS0細胞已被發現具再現性地將污染物蛋白質a提 高至遠比其他宿主細胞型式為高的的濃度,至少用某種採 用重組修短的野生型蛋白質A而重組蛋白f A可能是單點 連接的蛋白質A之蛋白f A親和性色層分析系統是如此。 這樣的-項實例是StreainlineTM r蛋白質A親和性色層分 析樹脂umerSham-Bi〇science;本質上是如 us 6,399,75〇 中說明的硫醋單點連接的重組蛋白質A)。大約ι〇〇〇毫微 克污染物蛋白f A/毫克抗體或超過此量的濃度可以用 St—« r蛋白質a親和性管柱獲得。本發明的方法 得以與先前技藝區別之處在於能以單_快速得純化步驟將 污染物蛋白質A從此種高濃度有效率的降低f,j<ing/mg抗 體,亦即以大約1 000倍的純化係數進行之。 還有較佳的是’單獨或者與前段合併,待以蛋白質A 親和性色層分析法純化的抗體並未經處理以使蛋白酶在收 穫當時或收穫後失活,更佳的是不在收穫以後盘至少一種 外源補充的蛋白酶抑制劑混合。最佳是該蛋白酶抑制劑選 自包含腳-如Usk⑽skl等人,年〈蛋白酶的蛋白 負抑制劑〉所說明的特定蛋白酶抑⑽,《生物化 》,第49期’第593-626頁,以及ε_己酸,。 ^ 蛋白質Α親和性色層分折法沾4 析/去的插作已經被廣泛的說明 於技術文獻之中且不需要進一步說明。除了以上所引用的 之外另-個實施例是例…_等人在《免疫學方法期 15 刊》,第3!期(簡年),第21卜爪頁,〈 蛋白皙Acu ^ ^ ^ ^七咖贿對人類丨心⑽和㈣進行溶離 / ° 較佳是在第一離子交換劑的流出物中將污染物蛋白質 A T低到<l〇ng/mg抗體的濃度,更佳是<4叩/邶抗體,最 疋〈Ing/mg抗體,其中抗體較佳是被瞭解為指的是。 用於證實這些閾㈣EUSA分析法詳細說明在實驗部分; 尤左思到喊樣被酸化至啦4,較佳在溫和的清潔劑存在下 :行’對於正確測量漏失的蛋白f A量很重要。當然間值 ?被瞭解為其使蛋白質A結合的第一離子交換劑之裝載容 I決不能過量而不可避免的導致污染物蛋白質A通過。一 項適當之以ELISA為基礎的蛋白質A或蛋白質A片段的檢 ㈣法說明在⑽4,983, 722之中。適當的抗蛋白質A抗體 疋可商業賭得的’例如肖Sigma-Aldrich公司購買。尤直 是當使用蛋白質A的衍生物而該衍生物已經被改造以包2 其他的疏基時,適當地維持蛋白質標準是重要的。對於此 種用做為定量試驗樣品之標準物的純蛋白質A衍生物確認 其單體特徵可能很重要,因為共價的二聚體或經由ϋ橋 接所形成的多聚體可能會導致錯誤的結果。相可以很容 易的藉由還原和非還原條件下進行咖_隱分析來達成, 士本技蟄中十貝常使用的方式進行。因此利肖dtt或卜魏基 乙醇對此種蛋白λ A &生物標準溶液進行還原對於阻遏 ELISA技術中的測量誤差有所幫助。 更佳的是在根據本發明的方法中至少7〇%,更佳是至 16 交換劑的抗體可在 少m’最佳是至少嶋載到第一離 該離子交換劑的流出物中被回收。 r 發明的第一離子交換劑是一種陰離子交換劑樹 二 貝A與E卜289 1 29 Bi戶斤說明的兩種型式的樹腊 、二結合:第-離子交換劑或陰離子交換劑可以在一定的 :速下以“主的方式操作或以批次方式操作,藉著把離子 乂換樹月曰反到溫和授掉的試樣溶液中,並且藉著接著的過 j作用進-步交換液體介質。根據本發明並且考慮給定抗 體的π值’則可能定義出適當的pH值和離子強度條件以 裝載第离隹子父換劑,該條件能使抗體保留在流過的物質 中而蛋白貝A /亏染物則與之結合而從抗體中被移除。如之 月'J发過的根據本發明的方法容許較快速地將抗體與蛋白 質Α π染物分離。此種連接到基質擔體上的第一陰離子交 換劑的官能基實例為例如:一級、二級和尤其是三級或四 級的胺基,如胺基乙基、二乙基胺基乙基、三甲基胺基乙 基、二甲基月女基甲基和二曱基_(2_羥丙基胺基乙基。適 §的陰離子父換劑之色層分析擔體基質在本技藝中為已知 者。以瓊月曰為基礎的樹脂及珠粒、葡聚糖珠粒、聚苯乙烯 珠粒和聚苯乙烯/二乙烯苯樹脂。最佳是該離子交換劑是 四級胺為基礎的陰離子交換劑,裝設在一種瓊脂基質,例 如購自 Amersham-Biosciences/Pharmacia 公司的 SepharoseCL-6B 或 Sepharose Fast Flow (FF)上。此種 之實例為購自 Amersham-Biosciences/Pharmacia 公司的 Sephar〇seQTM。更佳而與第一離子交換劑之使用有關的是 17 根據本發明的抗體是一種單株抗體,其等電點(pi )至少高 於用於先前蛋白質A親和性色層分析步驟的蛋白質A的ρι 兩個pH單位,也就是較其更為鹼性;例如當天然蛋白質a 的Pi大約為5.0時,Streamline重組蛋白質A的pI大約 為4. 5。較佳是根據本發明的抗體是一種單株抗體,其等 ‘”MpI)至J/疋6.5或更高,更佳是7〇或更高,最佳其 ^ f少是7·5或更高。吾人應注意這是實際收獲和純化過 的抗體之pi值,而不是僅由胺基酸序列簡單預測的Η值 。確實純化過的抗體分子可進一步進行多肽骨架的修飾如 醣化作用,該修飾可添加帶電荷的分子部分從而可改變分 ▲ t PI在使用等電聚焦法(IEF )測定產物抗體的p I時, ^ k組蛋白吳(例如一種單株抗體蛋白質)的轉譯後加工的 :U不均質性會導致個別產物抗體醣蛋白分子有較寬的pI 2圍在IEF膠體中像是一片污跡而不是單—條帶和對於 ^少主要產物的特定數值。根據本發明,在這樣一個先前 ::過的較佳具體實例中,「抗體的pI」係指抗體產物分 的PI在以上指明的較佳範圍以内者之部分。所有於此 項纟兄明;佳^.十一 y 〇 進步疋義,如在某個純化步驟之後回收的抗體 之/ΰ比率僅係指該抗體之p I依從部分而已。 據本%明之第一離子交換劑的操作方式需要用一 离择 了 、- j 、、Μ的平衡緩衝液將酸的或中和的溶離液從蛋白質 Α中親和&色層分析步驟上緩衝交換下來。在本發明的方法 渦平衡緩衝液和裝載緩衝液是完全相同的。常被採用的超 慮裝置如Amicon或MiUip〇re公司所售者可以方便地用 18 丄 於達成該目的;那此护里 子量的多孔月71其 釋效應而使用例如低分 十里的多孔過慮基皙士 e s Sephadex G-25。根據本發明的平 衡緩衝液較佳是具有置換鹽例如氣化 150mM的範圍,較佳θ c , /辰度在1到 疋5到ii〇mM的範圍,最佳 l〇〇mM的鹽濃度範圍。 十衡緩衝液的pH值較佳是在H6 5
到PH9.0的範圍,更伟θ产U7 n . PH θ 更佳疋在ΡΗ7.〇到ΡΗ8.5的範圍,最佳 疋在ΡΗ7.9到ΡΗ8.4的範圍。五人續今尸恭占紐 基官能具有大約”5的κ / 付蛋白質的N-端胺 .5的PKs值,因而污染物蛋白質a和任 何其他已帶負電:孩的疋人μ μ 貝-、一種陰離子交換劑結合在較 Μ性的PH 了會變得較強;對於某項應用而言,裝載用 綾衝液的pH需要微調以對於某一對抗體和污染物蛋白質a 有最佳的結合與非結合性之區分,該污染物蛋白質A具有 不同的pi值和不同含量的半脱胺酸與組織胺酸側鍵,其 可月b在所挑選# pH範圍内造成電荷的改變。而且,一種 更為鹼性# PH會干擾蛋白質A-抗體的交互作用,而且會 成4何離子強度的增加;同樣的,離子強度需要微調以 使抗體結合的防止與阻制污染物蛋白f A結合的需求平衡 。對於热習本技藝者而言,不用說緩衝液的離子強度通常 與:Η值成反比關係、,蛋白質A結合到陰離子交換劑視汕 阳疋的私度愈強,則防止抗體結合和干擾可能的蛋白質A_ 抗體父互作用的鹽耐受之程度就愈大。因而,以上給定範 圍的PH和置換鹽應被瞭解與「愈低則發現在以上給 疋進行本發明的較佳範圍内能容許的鹽愈少」有關連。以 pH緩衝物被添加的鹽愈多,則溶液的離子強度愈增加。離 19 1325428 子強度可藉由測量平衡緩衝液的導電性來 a _ 、!疋》 導電性 二ί:在兩極!間水溶液傳導電流的能力,其係測量 離子的總i且將電荷與離子的移動性列入 L , ’愿。因此,拋 加水溶液中存在的離子量’該溶液會具有較高的曰 測量導電性的單位是mS/cm(毫西門斯/公 刀J ’且可利用古 售例如購自T〇pac公司(美國麻州 T, , ningham 市)肖
Honeywell公司的導電度計進行測量。在本申請案自 ' 文中,所有數值係關於25。(:的比導電度。較佳:第二: 離子交換步驟所使用的裝載用或平衡用緩衝液疋固陰 -/c…電度,更‘,最佳是"~ 2.—。理想上,其具有大約2mS/cm的導電度。適春' 緩衝鹽的實例可在Good n e (19 田 丁 \玍化期刊》,篦 :'HC…476頁)找到。舉例而言,慣常被採用的 Tns.HCl㈣液或伽氫納緩衝液即是適當的緩衝 該緩衝物質的濃度慣常是在例如叫㈣緩衝鹽的範圍。° 二:計一種緩衝液的可能陰離子物種當中,與氯化物 相比陰離子溶離的比強度較低者,其低溶離強度性質 與離子的電荷密度成反比且大約與離子大小成正比者為較 佳。陰離^容離強度依據經驗的比較則表列在生物化學的 私準教科晉中。更佳的是根據本發明的緩衝物質是一種磷 酸鹽緩衝液。碌酸氫越且右彻 — 蛳虹双風具有低的溶離強纟,尤其示若採用 於_或低# PH8時如此,且更因其尤低的促溶 (chaotropic)性質而勝出。 雖然成批的操作方式可行,但是對第一陰離子交換步 20 丄 +厶〇 驟而5管柱操作方式卻較。 10至6。毫升/小時的流速為有:形之中’以採用大約 季乂隹疋在10到30毫券抬髀/丄, 說如熟習本技藝者所=用!交換樹脂的範圍。自不用 ^極端稀釋試樣會造成抗體的產 的’,二待純化的抗體是在裝載操作的低流出物中被收集 液!同樣的平衡緩衝液冲洗之一根管柱體積的沖洗 二值可調整至中…增進穩定性和防止 犰體蛋白質的聚集及/或沉澱。 在第—陰離子交換齋丨夕未μ 或可視為需要進-步使用rif’抗體可用於應用用途 更佳的具體實例中,第法加以精製。.在-項 步驟換步驟接在第一離子交換 換介〜A 〜驟中抗體經裝载並且與第二種離子交 趟貝〜’且以農载緩衝液之外的其他緩衝液,用增加 :及/或PH的方法進行溶離,溶離出基本 集抗體。「美太卜,, 非1 ,θ . _ "」在本說明書上下文中意指少於5%。較 二—離子交換劑是一種單獨或與先前章節說明過的且 肢貫例組合的陽離子交換劑。這種蛋白質“見和性色層; 析步驟接著第一離子交換和第二離子交換步驟的組合是新 顆的二吾人已詳知來自細胞培養肉汁的大多數微量污染物 蛋白貝具有較抗體尤其1 IgG抗體遠為低的W值;因此陽 離子:換旎有效率的移除聚集的抗體和可能的傳染性試劑 ^病毒的蛋白殼以及抗體以外的蛋白質污染物。因為快速 ,作’在裝載、結合和從管柱溶離之後高度有效率的抗體 口收以及尚的裝载容量,其亦容許用單一批抗體進行重複 21 1325428 的猶環操# _ , 卞作,而對於用單回結合 有加成的作田^ /谷離所達成的純化係數 ㈣作用。較佳是裝載緩衝液 是PH4. 〇1到6 、力為PH4到7,更佳 b最佳疋PH4. 02到5 ς * 〇. 1至1 2Μ臨从《 』5。更佳是使用範圍從 鹽的鹽梯度將該抗體 出來,其中哕gi γ β 知離子交換劑中出溶離 Τ 4鹽較佳是一種鹼金眉踏s 或鈉鹽。較佳β/ 现更佳疋一種經、鉀 几 疋在邱7到8進行溶離以使聚隼物福…畀士 化和使因酸性條件造成的抗吏承集物移除最大 溶離在“"的酸性ΡΗ進行,更佳?:。:視需要較佳是 物蛋…的移除最大化,由此方二到6以使污染 ά ^ ^ ± 1 方式可達到至低如<0 4紊 镟克/¾克抗體的濃度。此第_ U.4毫 # ^ ^ ^ 弟—%離子交換劑的步驟勝過 =的:,而容許高容量和對離子交換劑而言典型的 的二Γ子交換劑能支持1〇,毫克抗體7毫升樹脂 的裝載里。在一項尤佳的具體 只丨7』τ ’在蛋白質A色層公 析法之後的第一陰離子交換劑 u π女、土姑〃曰, 第一 %離子父換劑步驟的 純化方法使传到未經過進—步最終大小篩除色 (SEC)步驟處理的臨床等級抗 B ^ 將抗體聚集物及/或抗體…:=步驟需具備適用於 胆蛋白貝A複合物與單體的抗體如 一般的I gG分離之分子量切分點。 -般而5 ’本發明的方法不能使用於被抗蛋白質A所 帶抗原決定基所培養出的抗體。此種抗體是被放辛 管這對熟習本技藝者而言是-項顯然可見的限制:、★ 本發明方法之最為吸引人之特色在於經由陰離子交換 劑以非結合性或直接流經的方式純化抗體’管柱的容旦」 全不會限制物質的流出量,該容量只對少量污染物蛋= 22 Α的保留具有決定性。這樣節省了許多加χ時間和材料資 源而容許非常有效率的移除蛋白質Α污染物。 【實施方式】 實驗
1.蛋白質A ELISA 午夕種蛋白質A或重組蛋白質A的ELISA業已被說明 過(請參4 US 4983722和在其中所說明的參考文獻)。對於 說月的所有研究而言,吾人使用—種簡單的三明治 ELISA. ’其捕捉用的抗蛋白質A抗體被塗覆在平底的%孔 微滴盤(NUnC TM)中,其能保有蛋白質A。然後使用-種與 生物素連接的抗蛋白f A _用抗體_結合的蛋白質A ’其容許進—步與鏈狀抗生物素蛋白(办eptavidirO連接 的辣根過氧化(Amersham#RPN 1231)結合。用於捕捉的市 售抗蛋白質A兔子抗體(對抗天然金黃色葡萄糖菌蛋白質A 所=月的)係購自Sigma_Aldrich公司(#卜3775卜本研究 通貫前後就是使用這種抗體。偵測用的兔子抗體同樣是從 Sigrna-Aldrich公司購得的(#p_3775)。以非專一性吸附過 :包覆蛋白質之後’用包覆過的蛋白質來保留住對於蛋白 質A具有專一性的蛋白w a捕捉用抗體,進一步用生物素 :合的兔子抗蛋白f A和鏈狀抗生物素蛋白_辣根過氧化 酶伯測該捕捉用抗體。四甲基聯苯胺被用做產生顏色的受 質。未知濃度的試樣是用待偵測污染物蛋白質A之最原= 蛋白質A或蛋白質衍生物所製作的標準曲線來讀取其濃产 。在酸性pH值進行包覆和正確製備標準物的重要性已被 23 1325428 證明。尤其是對於修改使其攜帶其他的半胱胺酸殘基的重 組蛋白質A例如Streamllne蛋白質AT„(Amersham
Biosciences公司,先前為Pharmacia公司),吾人發現標 準溶液需要預先用具還原性的巯基用劑處理以確保蛋白質 標準溶液的單體狀態。 相反的,野生型蛋白質A標準物可購自數家公司,例 如 Sigma-Aldrich 公司 /瑞典(朴6〇31)或 pharmacia(#i7 — 0770-01 )並且不需要此種預先處理。對於以下說明之觀察 得自Streamline η基質之污染物蛋白質A漏失的實驗而言 ’吾人使用得自製造商的未連接重組蛋白f A試樣做為標 準物。 1_1飽含半胱胺酸的蛋白質A標準物之預先處理 存在於Streamline tm蛋白質A親和性色層分析法 (Amersham Bi〇Sciences公司)的管柱材料中銷售之純的重 組蛋白質A-Cys是以冷凍乾燥的形式從
Pharmacia/Amersham Biosciences 公司購得的。把高達 2〇 毫克/毫升蛋白質溶解在含有〇· 5M NaC1、lmM EDTa和 20mM二硫赤藻糖醇的〇· 1M Tris pH 8中,在室溫下培育 15-30分鐘並且用可拋棄式pD_1〇膠體過濾管柱(Amersham Biosciences公司)去鹽。在包覆之前用於處理標準溶液的 所有緩衝液應先用心處理以防止硫醇基團被氧化。蛋白質 標準物的處理最佳是緊接在使用該標準物包覆微滴盤之前 進行。視需要製備1毫克/毫升的貯備溶液並保持在-6 的冷來庫中;解凍之後,從裝載到非還原性SDS-PAGE的一 24 1325428 小部份檢驗蛋白質的單體特徵。蛋白質標準物的濃度是藉 -由Bradf〇rd檢驗(Bradford等人,1976年,《分析生物化 學》’第 72 期:第 248_254 頁;splittgerber 等人, I989年,《分析生物化學》,第179期:第198_2〇1頁) 以及藉由自動化胺基酸分析測定的。此種預先處理的結果 顯不在圖1之中,利用非還原性1〇%SDS_pAGE做為葡萄球 囷蛋白質A標準物(第1欄:天然蛋白質A ;第2攔:在預 先處理之後)和純的未經偶合的Sfreami ine tm重組蛋白質 A(由 Pharmacia 公司提供,現在是 Amersham Biosciences 籲 公司;第4攔:天然的重組蛋白質a ;第5攔:在預先處 理之後)。第1攔是分子量的標記物,具有,對應的分子質 量標註在縱軸上。得自Pharmacia公司之具有多一個Cys 殘基的重組蛋白質A在還原之後偏移到低分子量;在大約 34kD處保留一個單體的條帶並且更為密集,顯然是從二硫 · 化物橋接的二聚體分離所產生的。 .
1.2 ELISA "·1試樣的製備 · 藉由兩個稀釋步驟,i:製備1毫克/毫升蛋白質Α標準 貯備溶液的200.000倍稀釋液,以提供5〇毫微克/毫升高 標準物1此’製備出㈣〇·2亳微克/毫升的稀釋液以檢 驗標準曲線。而且,將標準物的稀釋液〔「添加溶液」 ^Piking s〇lution)〕用於添加到待試驗的兩個複製產物 试樣以排除試樣中干擾物質的存在。 對於最後的產物試樣試驗而言,把每一試樣分成兩份 25 丄y厶厶ο ,或的^00微升體積。一份用1 000毫微克/毫升添加溶液 質H右適當則使用1〇微克/毫升溶液,以使最終的蛋白 /量為10毫微克蛋白質Α/每毫克抗體。把另外—半 ϋ同樣體積的試樣緩衝液;從*說明因為添加所造 婉產物4樣之稀釋因子。以下把兩種型式的製備物稱為「 二加的《樣」。試樣緩衝液是由7.51公克甘胺酸(驗性) 一 &克NaC1、0. 5毫升Triton Χ-100加去離子水哎 二次蒸餘水達體積1公升製備的。 〆 為了達到最佳正確性的測量,因此用本技藝中以熟知 —LISA法預先測定試樣中的抗體濃度。還有—項標 :液則添加等量已知標準抗體,該抗體之固定區域對蛋白 貝A有可相比的親和力,以便測定酸化步驟的效率,並且 解開本檢驗中任何由於h 7由於抗體結合而使蛋白f A免於被捕捉 所V致的潛在系統誤差。 酸化作用.肖45〇微升經添加的試樣或標準物添加 200微升0.2M檸檬酸鹽/G G5%Trit〇nX_i()Q缓衝液 。對所有的試樣進行三重複製。進而準備試樣的稀釋液並 進行三次重複試驗,因兔枯 因為忒檢驗以1毫克/亳升和0.2毫安 /毫升範圍的抗體濃度作用最佳。在本檢驗中酸化 重要,該:乍用是為了釋放污染物蛋白質…片段,否則 匕們會與试樣溶液中過量的抗體結合。 1.2.2用抗趙包覆微滴盤 用L59公克/公升Na2C03, 2.93公克/公升NaHC〇3和 〇_ 20公克/公升疊氮化鈉製作包覆用緩衝液。將緩衝液的 26 1325428 pH調整到pH9. 6。每孔添加1 〇〇微升的抗體溶液,該溶液 包含充分而不會對蛋白質A標準物顯示出飽和的抗體量。 用塑膠膜把微滴盤蓋住’放在溼度箱中。在37%過夜培育 大約18小時。用至少300微升的沖洗緩衝液[NaC15 8公 克 / 公升 ’ Na2HP041.15 公克 / 公升 ’ NaH2P04. H20 0.26 公 克/公升,EDTA 3.7公克/公升,Tween_2〇 〇·2公克/公升 ,丁醇1 0毫升/公升,pH 7. 2 ]沖洗所有的孔槽三次,輕拍 乾燥(tap dry )。對每孔添加250微升阻滯緩衝液[包覆 用缓衝液加上0.5%酷蛋白hammarsten]並且在常溫下於桌 上型軌道振盪态(速度為12 〇rpm )上培育2小時。用至少 300微升的沖洗緩衝液沖洗所有孔槽三次,並予輕拍乾燥 1 · 2. 3试樣的培育與偵測 將標準物與試樣(包含任何經添加的試樣)以丨〇 〇微升/ 每孔加入盤中。用塑膠膜把微滴盤蓋住,纟常溫下於桌上 型軌道振盪器上培育9G分鐘。重複沖洗。用至少_微升 的沖洗緩衝液沖洗所有的孔槽三次,輕拍乾燥。以先前所 測得的最佳稀釋濃度稀釋生物素連接的兔子抗__蛋白質A。 每孔添加1〇〇微升,用塑夥膜把微滴盤蓋住’在常溫下於 軌道振盪器上培育90分鐘。重複沖洗。 以先前所測得的畏#接_ 、曲 ]敢佳稀釋 >辰度用連接用緩衝液 [Na2HP04l. 15 公克/公并,ΜίΐΓ1 c 、 A 升 NaC15.84 公克/公升,NaH2P〇4 • ¥ 〇.26公克/公升’ EDT".73公克/公升,Trit〇n [ 1〇〇 〇·〇5%(ν/ν)’ pH 7 2]稀釋鏈狀抗生物素蛋白—辣根過 27 1325428 氧化酶。·%孔添加100微升,用塑膠膜把微滴盤蓋住,在 常溫下於桌上型軌道振盪器上培育分鐘。重複沖洗。 添加1〇〇微升新鮮配置的四甲基聯苯胺(TMB,丨cn產品編 號#980502)受質溶液。該受f溶液的製備像這樣:將1〇毫 克TMB溶解在i毫升DMS〇中以製備貯備溶液。把1〇微升
這樣的貯備溶液和10微升1〇2添加到2.05%(w/w)乙酸.鈉 水溶液中,而該乙酸鈉水溶液係以〇 . 5M檸檬酸將邱調整 到6· 0。不用說所有用於製備該檢驗試劑的水都是最高品 質的,也就是去離子的超純水或至少是二次蒸餾水。 將受質溶液在常溫下於振盪器上培育8_u分鐘。藉由 添加50微升/每孔的終止溶液〔13%H2S〇4〕使反應終止。 在添加該終止溶液之後10分鐘以内,在一個平盤讀取式 分光光度計下測定孔槽在45 0nm波長下的吸光值。 此種ELISA的偵測限制是0·2毫微克/毫升蛋白質a 工作酿0.2到50毫微克/毫升。檢驗之間的差異性 於10%。 〆、
圖2顯示從使用以硫醚鍵單點連接蛋白質A
StreamlineTM重組蛋白質A色層公格κ 9刀析法付到的抗體溶離 中漏失的重組蛋白質A濃度。該循頊々童 傾%-人數係指在以1M氯 鈉溶離和再平衡之後重複使用。雖然得自融合瘤細胞诗 物的細胞培養肉汁之漏失典型上是在5〇〇ppm的大小 其他細胞型式卻產生高達iOOOppm的濃度。得自不同= 基質的漏失之比例的總覽請見表]•洛思八』 1,色層分析法是根擄 造商的指引進行的。 28 1325428 表1 基質 供應商 偶合化學 典型的漏失 p. p. m. 工作容量 (毫克/毫升) 流速 (公分/小時) 天然蛋白質A Sepharose 4FF Amersham- Biosciences 多點連接的 CNBr 10-20 5-20 30-300 rmp蛋白質A Sepharose Amersham- Biosciences 多點連接的 10-20 5-20 30-300 Poros A高容 量 Applied Biosystems 多點連接的 10-50 10 500-1000 蛋白質A ceramic Hyper D Biosepra 多點連接的 高達300 10-20 200-500 r蛋白質A Sepharose Amersham- Biosciences 單點連接的硫 酸鍵結 50-1000 20-40 30-300 MabSelect Amersham- Biosciences 單點連接的硫 酿鍵結 50-1000 20-40 500 STREAMLINE r 蛋白質A Amersham- Biosciences 單點連接的硫 驗鍵結 50-1000 20-40 200-400 圖3進一步提供在重複使用相同親和性基質材料的蛋 白質A親和性色層分析法期間,污染物蛋白質A無實質上 地降低漏失的數據:野生型蛋白質 A多點連接的 Sepharose 4FF (Amersham-Biosciences 公司)如以下 2. 1 章節所說明的被重複使用,並且在溶離液被進一步加工之 前,溶離液中的污染物蛋白質A的濃度是用以上說明的 ELISA測定的。 2.蛋白質A和Sepharose Q色層分析法 29 1325428 2·1用Streamline7«進行蛋白質A親和性色層分析法 將得自NSO骨髓瘤細胞培養物的細胞培養物懸浮液用 離心法粗略純化並且深入過濾並以超過濾法予以濃縮;超 過濾法也被用在把培養液交換成PBS ρΗ7· 5 ◊細胞所產生 的抗體#5的效價是0.2毫克/毫升,將總共i公升緩衝液 交換過的懸浮物裝載上去。單株抗體#5的pI是85。蛋白 質A StreamlineTM管柱(體積5〇毫升)先用十支管柱體積 的50mM甘胺酸/甘胺酸鹽,ρΗ 8·8,4·3Μ NaC1予以平衡 ;流速為200公分/小時。對裝載而言,管柱是以5〇公分/ 小時的流速操作的;裝載容量大約為2〇毫克/毫升基質材 料。在溶離之前,將管柱用至少十支管柱體積補充以另外 200mMNaCl和0· l%Tween-20之甘胺酸平衡緩衝液沖洗。溶 離是以0·1Μ甘胺酸/HC1 pH4. 0緩衝液組成的溶離緩衝液 來達成的。緊接在溶離之後,把包含抗體尖峰的溶離液部 分收集物用充足份量的〇· 5MTrisHCl ρΗ7· 5予以中和,並 且用Amicon的透析過濾(diafiltrati〇n)設備進行緩衝液 乂換,使用本發明的裝載用/平衡用緩衝液(丨〇mM Tr i s/HCi pH 8. 0,50mM NaCl )以俾緊接的離子交換劑步驟,預防 更長時間的接觸酸性pH。 抗體濃度與污染物蛋白質A的濃度是用以上說明的方 法測定的。溶離液中污染物蛋白質A的濃度在透析過濾之 月’J達1434 *微克/毫克抗體,而在透析過濾後達165〇毫微 克/宅克抗體。根據緩衝液交換的上澄液的效價之抗體回 收率在裝載前是81%,而在透析過濾溶液中的抗體濃度則 30 1325428 是3. 6毫克/毫升。 乂非結。性方式進行Q-Sepharose FF陰離子交 換步驟 把灰帛2. 1章節純化的抗體進一步如以下說明加工: 將根 5.0 毫升的 Q-Sepharose FF 管柱(Amersham- 用10毫升G.1M罐,接著用兩支管柱體積 的 0.1M Tris όΗ8 ;鱼上士
ρ训進仃充填,並且以十支管柱體積的i〇mM
Tns PH8/5W NaCl以流速75公分/小時平衡之。平衡之 後把抓速降低成5〇公分/小時。把6毫升透析過遽的抗 體溶液裝載到管柱上並且收集直接流出物以供進一步加工 ;繼續收集流出物,直到在用起初的6毫升裝載管柱並在 其後持續使I純的裝載或平衡緩衝液lGmM Tris pH8 〇, 5〇mMNaC1’在波長所監測到之流出物吸光值回到 基底線為止。流出物中回收到的總抗體量是Μ毫克抗體 (87%)。;亏染物蛋白f “農度的測定得到<3毫微克/毫克抗 體。 進-步用膠體過遽法(大小篩除色層分析法)對這種q_ Sepharose純化的批次抗體,使用Sephacryi s_3〇〇在 10_磷酸鹽PH7‘〇, 14〇mM NaCl緩衝液,以流速1〇公分/ 小時用15 $克抗體/每毫升凝膠的裝載比率進行加工Λ,刀結 果發現基本上並未再對這種微量蛋白質Α污染物的濃度= 實質上的改變。藉著經驗,SEC可用於進一步將大約 1 00毫微克/毫克濃度之污染物蛋白質A降低到大約1_5毫 微克/毫克。因此,SEC對於微量蛋白質A具有非常低的純 31 1325428 的親和力作用 工使得抗體蛋 載的抗體量做 化係數,這或許解釋了抗體與污染物A之間 。然而,由於試樣無可避免的稀釋與緩慢加 白質發生相同的衰敗’因此SEC只能對所裝 7議回收。這意味著儘管SEC需要許多時間,但卻無可避 免的造成物質的損失。 Q-Sepharose管柱乃藉著在2M NaC1中分別溶離和進 一步如以上說明予以平衡進行再循環使用。 r、 3.用隨後的陽離子交換步驟進行蛋白質A和 Sepharose Q純化 卜 使用Q-Sephar〇se陰離子交換 在進一步的實驗當中 以非結合性方式從實驗2· 2純化的抗體。:以另一最終的 SEC純化步驟取代試驗,將Sephar〇se Q管柱中的流出物 所收獲的抗體用第二陽離子交換步驟以購自 Biosciences 公司的 SP-Sephar〇se FF(sp =磺酸基丙基)基 質處理。SP-Sepharose FF容許100公分/小時的流速,而 在裝载、沖洗和將抗體從陽離子交換劑上溶離下來之後具 有93%抗體之可複現產率。對裝載而言,將化灿打的/' 純化步驟之後得到的抗體溶液的pH用50mM乙酸鹽緩衝液 ρΗ4· 5予以!周整為ρΗ4· 5-5. 0。裝載容量被設定在^ 的裝載導電性下使用1〇毫克/毫升基質材料❶進一步使用 50mM乙酸鹽緩衝液將之沖洗到基底線。用5〇mM乙酸鈉 邱15,1M NaCl高鹽緩衝液溶離抗體,單體型式的抗體先 被溶離出,而聚集物常常是在末尾的部分收集物中以高離 子強度,谷離出來。在唧筒推送到管柱之前於溶離緩衝液中 32 1325428 使用較不陡直的鹽梯度來實施鹽梯度是同樣可行的;直接 使用高鹽度緩衝液會得到較未被稀釋的抗體和結果更為精 確的取樣以及在酸溶液中較短的駐留時間。在溶離之後, 迅速用PBS ρΗ7· 5交換酸性緩衝液。在匯集的溶離液中污 染物蛋白質Α的濃度係以<〇. 4毫微克/毫克抗體測定,藉 由以大小排除之HPLC方法顯示出抗體有>99%是單體。 4. 用慣常製造的多點連接蛋白質a進行StreamlineTM 蛋白質A親和性色層分析法 迠種多點連接Stream 1 ineTM蛋白質A親和性基質是慣 常製造且由Pharmacia Biotech公司(現為Amersham-
Pharmacia公司)供應的。其乃由製造商將末端具有Cys殘 基之相同的34kD Stre.amlineTM型重組蛋白質A偶合到相同 的Sepharose基質材料上,但是使用傳統的⑶計化學進行 活化和偶合而不用環氧化物調節的活化作用和僅將_sh基 團偶合的選擇性反應條件來製造的(請參考製造商的產品 資訊)。重複實驗2.1的方法並且用353毫微克/毫克抗體 測定污染物蛋白質A的濃度。這意味著偶合的方式部分地 解釋何以來自高容量、輩戥;鱼# 一 令里早點連接的重組蛋白質a親和性基 貞之资白質漏失增加;^ ii: E tte / <- 凡正長度的野生型蛋白質A相比 ,導入此種重組蛋白皙A少 負A之私基酸序列的修飾對於增加的 蛋白質漏失也有相當大的影響。 5. 方法的平行比較:與密勒氏法(Miles Method, US 4, 983, 722)比較 在,勒氏的專利幸(第4 7〇〇 弟4, 983, 722號)請求:使用結合的 33 1325428 DEAE Sepharose作為第二色層分析法步驟而用鹽梯戶 (0.025M到0.25M NaCl)進行溶離可降低溶離液中漏失的= 白質A含量到少於15毫微克/毫克抗體(蛋白質A的範圍θ 〇. 9到1 4毫微克/毫克抗體)。 疋 表2 : 溶 在單-或多點連接的蛋白質Α親和性基質上純化的6Μ抗體的 離液試樣中蛋白質A的殘留物比較 基質 r蛋白質 A Spharose (單點連接的) rmp蛋白質A / Sepharose (多點連接的) 天然蛋白質A Sepharose (多點連接的) 試樣 蛋白質A溶離液 蛋白質A溶離液 蛋白質A的濃度 (毫微克/毫支k 20.2 2.16 以二貝1«的目標是要確認這些利用1 at (新的單 點連接之r蛋白f A基質)與較低Pi的抗體(ΡΙ 6.5-7·5) 的結果,並且直接比較非結合性的Q_Sephar〇se法(利用不 同的平衡/裝載緩衝液)與密勒氏專利案之方法。 應用的方法 6A1 抗體c、 • 〔 5)的純化包括兩個色層分析的步驟 其包含 MabSelect 蛋白質A步驟,接著Q-Sepharose陰 離子交換色層分析法Γ (非、、。合性),或是 DEAE Sepharose 色 曰分析法(結合的)步^。i 。请參考 L〇 90 07 和 L0 9375。 34 1325428
MabSelect蛋白質A色層分 管柱基質MabSlect重組蛋白質A(單點連接的rpA) 管柱規格 1. 6公分内徑xl5公分基床高度 管柱體積 30毫升 操作流速 500公分/小時(16_ 80毫升/分鐘) 清潔 6M鹽酸胍(2支管柱體積) 裝載容量 35毫克/毫升基質 平衡 50mM甘胺酸/甘胺酸鹽pH8. 0/250mM NaCl(8支管柱體積) 裝載後沖洗50mM甘胺酸/甘胺酸鹽pH8.0/250mM NaCl(8支管柱體積) 溶離缓衝液l〇〇mM甘胺酸pH 3. 50 (6支管柱體積) 沖洗 lOOmM檸檬酸pH 2.1 (2支管柱體積) 把含有6A1抗體的培養物上澄液用MabSelect管柱(3〇 毫升)純化,該管柱連接到一個AKTA FPLC系統。所使用的 條件說明在以上的表中。用0 · 1Μ甘胺酸pH3· 5把抗體溶離 出來。溶離之後,把溶離液的pH調整到ρΗ7· 0,然後把溶 離液的試樣分成五個小部份;然後將每一小部份透析過濾 到用於陰離子交換色層分析法的不同的緩衝液中。 將第一小部份透析過爐到50mM TrisHCl ’ pH8/75mM NaCl之中以供第一輪的Q-Sepharose色層分析法。將第二 個小部份透析過遽到50mM TrisHCl,pH8/lOOmM NaCl之中 以供第二輪的Q-Sepharose色層分析法。將第三個小部份 透析過濾到20mM磷酸鈉,pH6. 5/80mM NaCl之中以供第三 輪的Q-Sepharose色層分析法。將第四和苐五小部份以緩 衝液交換成25mM TrisHCl,pH8.0/25mM NaCl以供評估說 35 1325428 明在密勒氏專利案中的結合的DEAE Sepharose法β > 弟四 和第五輪之間的差異在於第四輪的主要尖峰被收集成—個 部分收集物且在分析之前經透析過濾到標準的磷酸鹽緩衝 鹽溶液中’而第五輪中溶離尖峰被部分收集並且經過透析 到如密勒氏專利案之說明所製備的磷酸鹽緩衝液之中。 該五輪管柱之每一者的條件說明如下: fcgepharose色層分柄法:竿一始 管柱基質 Q_Sepharose Fast Flow 官柱規格 1. 6公分内徑χ8公分基床高度 管柱體積 16毫升 管柱製備 以150公分/小時在〇. 1Μ氫氧化鈉中裝填 操作流速 1〇〇公分/小時(3. 35毫升/分鐘) 清潔 〇·1Μ氫氧化鈉(2支管柱體積) 裝載容量 15毫克/毫升基質 平衡 50mM TrisHCl pH8. 0/75mM NaCl(8支管柱體積) 裝載後沖洗 50mM TrisHCl pH8. 0/75mM NaCl(5支管检體積) 剝離用緩衝液2M氯化鈉(2支管柱體積) 冲洗 〇. 1M氫氧化納(2支管柱體積)
Qzg印harose色屠分析法:第二輪 管柱基質 Q-Sepharose Fast Flow 管柱規格 1. 6公分内徑χ8公分基床高度 管柱體積 16毫升 管柱製備 以150公分/小時在0· 1Μ氫氧化鈉中裝填 操作流速 100公分/小時(3. 35毫升/分鐘) 36 1325428 清潔 〇. 1M氫氧化鈉(2支管柱體積) 裝載容量 7.5毫克/毫^基質 平衡 SOmM TrisHCl pH8,0/lOOmM NaCl(8支管板錯積) 裝載後沖洗 5(kM TrisHCl pH8.0/100mM NaCl(5支管杜體積) 剝離用緩衝液2M氣化鈉(2支管柱體積) 沖洗 〇· 1M氫氧化鈉(2支管柱體積) Q-Sepharose色層分析法:笫三輪 管柱基質 Q-Sepharose Fast Flow 管柱規格 1. 6公分内徑χ8公分基床高度 管柱體積 16毫升 ® 管柱製備 以150公分/小時在0.1Μ氫氧化鈉中裝填 操作流速 100公分/小時(3. 35毫升/分鐘) 清潔 0.1Μ氫氧化鈉(2支管柱體積) 裝載容量 7. 5毫克/毫升基質 平衡 20mM磷酸納 pH6. 5/80mM MaCl 裝載後沖洗 20mM填酸鈉pH6. 5/80mM MaCl(5支管杈體積) 剝離用緩衝液2M氯化鈉(2支管柱體積) 沖洗 0.1M氫氧化鈉(2支管柱體積) 盡 述AE-Sepharose :第四輪 管 4主基質 DEAE-Sepharose 管柱規格 管柱體積 管杈製備 操作流速 1. 6公分内徑x8公分基床高度 16毫升 以150公分/小時在平衡緩衝液中裝填 100公分/小時(3. 35¾升/分鐘) 37 1325428 清潔 〇. 1M氫氧化鈉(2支管柱體積) ^ 裝載容量 7. 5毫克/毫升基質 平衡 25mM TrisHa,pH8· 6/25mM NaCl(8支管柱體積) 裝載後沖洗 25mM TrisHCl,pH8. 6/25mM NaCl(5支管柱體積) 溶離用緩衝液 25m MTrisHCl ’ pH8.6/25mM NaCl到25mM Tris HC1, pH8.6/250mM NaCl(10支管柱體積) 沖洗 2M氣化鈉(2支管柱體積) 連AE-Seuharose結合方法:第五輪(密勒氏法) · 管柱基質 DEAE-Sepharose f柱規格 1. 6公分内徑χ8公分基床高度 管柱體積 16毫升 管柱製備 以150公分/小時在平衡緩衝液中裝填 操作流速 100公分/小時(3· 35毫升/分鐘) 清潔 〇. 1Μ氫氧化鈉(2支管柱體積) 裝載容量 7. 5毫克/毫升基質 · 平衡 25mM TrisHCl,pH8. 6/25mM NaCl(8支管柱體積) · 裝載後沖洗25mM TrisHCl,pH8. 6/25mM NaCl(5支管柱體積) 溶離用緩衝液 25mM Tris HC1,pH8.6/25mM NaCl到25mM Tris HC1, pH8.6/250mM NaCl(10支管柱體積) 沖洗 2M氣化鈉(2支管柱體積) 在本研究中所使用之不同緩衝液的性質顯示於表3之中。 從五輪離子交換所產生的溶離液試樣以rPA ELISA檢 知·蛋白質A的濃度。結果顯示於表4之中。 38 1325428 表3 : 本研究中所使用的緩衝液 平衡 輪次 導電性 樹脂 pH 緩衝液 (ms/cm) 50mMTrisHCl » 1 10.74 Q-Sepharose 8.00 pH8. 0/75mM NaCl (非結合性) 50mMTrisHCl , 2 12. 85 Q-Sepharose 8.01 pH8. O/lOOmM NaCl (非結合性) 20mM構酸鈉, 3 10.20 Q-Sepharose 6. 50 pH6. 5/80mM NaCl (非結合性) 25mMTrisHCl > 4/5 3.35 DEAE-Sepharose 8.60 pH8. 6/25mM NaCl (結合性) 25mMTrisHCl , 4/5 24. 54 DEAE-Sepharose 8.61 pH8. 6/250mM NaCl* (結合性) *梯度溶離緩衝液 收集跨過第五輪DEAE-Sepharose (密勒氏法)的溶離過程之 部分收集物,並且以r蛋白質A EL ISA分析;結果顯示在 表5之中。 表4 ·' r蛋白質A ELISA的結果 *其中CV’s係指管柱體積 試樣ID r蛋白質A的濃 度(毫微克/毫 克) 抗體濃度 (毫克/毫升) % 回收率 溶離體積 (CV,s)木 Q-Sepharose 溶 離液第一輪 <0.4 1.42 82 4.5 Q-Sepharose 溶 離液第二輪 2. 94 1.49 70 3.5 Q-Sepharose 溶 離液第三輪 0. 73 1.86 85 3.4 39 1325428 DEAE-Sepharose 溶離液匯集物 第四輪 (所有部分收集 换之匯集) 1.72 2.16 75 2.5 DEAE-Sepharose 溶離液匯集物( 密勒氏法) 第五輪 (部分收集物2至 6之匯集) 1.55 1.83 73 3 表5 :在結合的DEAE-Sepharose分離作用期間(密勒氏法)所得到跨過溶離尖
峰的溶離部分收集物中r蛋白質A的濃度;第5輪 部分收集物 r蛋白質A的濃度 吸光值 編號 (毫微克/毫克) (A哪) 1 3. 33 0.018 2 0.4 0.108 3 0.4 0. 22 4 0.4 0.169 5 2.01 0.092 6 16.7 0. 042 7 6. 38 0016
對此種抗體(6A1 ; pI6. 5-7. 5)之最高的回收率(85%)與 最佳的r蛋白質A清除是在非結合條件下於Q-Sepharose 用20mM磷酸鈉,pH6.5/80mM NaCl缓衝液(即等同於第三 輪)得到的。第一輪也顯示佳的回收率(82%)與蛋白質A清 除,然而這一輪的溶離體積顯著高於吾人對於非結合法所 期望的;這種結果建議在此缓衝液系統中抗體在管柱中有 40 1325428 部分被阻滞。增加的NaCU農度(第二輪)造成較低的扩蛋白 h清除’因此在第三輪中所使用的緩衝液系統較適用於 此種抗體。吾人先前觀察到在第一 社弟輪使用的緩衝液系統較 適用於高pi的抗體,而用於第= 乐—輪的綾衝液系統尤其有 用於中,或微酸性的抗體。這些實驗是以相似的容量(7.5 毫克/宅升樹脂)進行的,吾人希贫· At夕 山 人希望施夠在更高的容量(>30 毫克/宅升)下使料種非結合方法。吾人期望這種非^ 方法除了陰離子交換膜的吸附劑(如—、·二
Intercept SartQbindQ)之㈣可應用於許多陰離子 交換劑例如Q-Hyper D。吾人亦期望ρ s A d望k種方法較諸密勒氏 法更適用於大規模生產,如可施用更高的容量等。 在第五輪的情形中(密勒氏法),觀察到^蛋白質 部分收集物跨過主要溶離尖峰, 衣b所不。因此需要小 心的將部分收集物匯集以確認良好清除掉^蛋白冑A。、士 會對回收率(73%)有影響,並且甚至在 貝。故 a从人Α 王仕此〖月形中並不能給予 妒非'纟。s法所得到的良好清除。因此對於密 Η觀察到有非常高的漏失’則對細胞系/抗體而錢難 Ξ=Γ清除和高的回收率(就如以單點連接基質常得 從第五輪得到的數據代表密勒氏專利案中說明的條件 〇 方法比較與所得數據的全覽顯示在以下的表6之中。 41 1325428 表6 抗體純化之不同階段的r蛋白質a濃度摘錄 NSO acc·到 Ex.S 培養物上澄液
r蛋白質 A Sepharose(130)
濃縮/透析過濾 (50mM Tris HCI/lOOmM NaCI ,pH8.00) (71.40) ψ 濃縮/透析過濾 (20mM填酸鈉/SOmMNaCl, pH6.50) (50.80)
(46.70)
陰離子交換DEAE(2.94) (50mMTrisHCl/100mMNaCl > PH8.00) 陰離子交換Q (0.73) (20mM 峨酸鈉/80mM NaCI -pH6.50) DEAE Sepharose(1.55) 密勒氏梯度溶離 (50mM TrisHCl/25mM NaCI,pH8.60到 25mM TrisHCl/250mM NaCI * pH8.60 非結合 非結合 結合 *所有實例均使用7,5毫克/毫升的交換劑裝載來進行或者15毫克/毫升的裝載容量:濃縮與透析過渡(50mM TrisHCl/75mM NaCI · pH8.00)及陰離子交換Q(<0.4)(50mM TrisHCl/75mM NaCI > pH8.00)
往:蛋白質A的濃度顯示在括弧中(毫微克/毫克);請注意並不是所有的NSO選殖細胞系上澄液都會產生相似的蛋白質A污染 濃度。 42 1325428 6.高dI抗體的純化 利用蛋白質A親和性色層分析法(MabSelect-單點連接 的重組蛋白質A基質),接著用Q-Sepharose陰離子交換色 層分析法(在非結合條件下;用以移除微量污染物),接著 用SP-Sepharose陽離子交換色層分析法(在結合條件下; 用以移除聚集物)來純化高pl(pl 9. 0-9. 3)的抗體。 抗體X (pl>8. 00) φ
Mab Select 蛋白質A 濃縮/透析過濾 :
I Q-Sepharose色層分析法
I 濃縮/透析過濾 Φ
I SP-Sepharose色層分析法 實驗材料及方法
MabSelect蛋白質A色層分析法: 管柱基質 Mab Select重組蛋白質A(單點連接的rPA) 管柱規格 1. 6公分内徑χ15公分基床高度 43 1325428 管柱體積 30毫升 操作流速 500公分/小時(16.80毫升/分鐘) 清潔 6M鹽酸胍(2支管枉體積) 裝載容量 35毫克/毫升基質 平衡 50mM甘胺酸/甘胺酸鹽’ pH8.〇/250mM NaCl(8支管柱 體積) 裝載後沖洗 50mM甘胺酸/甘胺酸鹽,pH8.0/250mM NaCl(8支管柱 體積) 溶離缓衝液 100mM甘胺酸,ρΗ3· 50(6支管柱體積) 沖洗 100mM檸檬酸,,ρΗ2.1(2支管柱體積) 用連接在AKTA FPLC系統的MabSlect蛋白質A親和性 管柱(30毫升)純化含有高pi抗體的培養物上澄液。所使 用的條件如以上表中所說明。用〇. 甘胺酸,pH3. 5對抗 體進行溶離。在溶離之後,把溶離液保持在pH3. 69(不需 調整)經60分鐘(低pH病毒失活步驟),然後用2M的Tris 驗中和至pH8。對蛋白質a進行三個循環;產物的回收係 以A280nm測定並且每一循環列示在表7之中。 表7 : Mab Select蛋白質a管柱%回收率 循環編號 " —-- %回收率 I 81 2 81 3 80 在Mab Select蛋白質a色層分析法之後,將得自三個 循環之每一者的溶離液匯聚起來,並使用裝有1 〇kDa Millipore滤膜之Amicon公司的攪拌式細胞濃縮機以緩衝 1325428 液交換成25mM Tris pH8. 0(Q_Sepharose平衡緩衝液)。 Q-Sepharose色層分析法 管柱基質 Q-Sepharose Fast Flow 管柱規格 1. 6公分内徑χ15公分基床高度 管柱體積 30毫升 管柱製備 以225公分/小時在0.1Μ氫氧化鈉中裝填 操作流速 150公分/小時(5. 0毫升/分鐘) 清潔 0.1Μ氫氧化鈉(2支管柱體積) 裝載容量 40毫克/毫升基質 平衡 20mM Tris ρΗ8. 0(8支管柱體積) 裝載後沖洗 20mM Tris ρΗ8.0 (5支管柱體積) 剥離用緩衝液20mM Tris ρΗ8. 0 /2Μ氯化鈉(2支管柱體積) 沖洗 0. 1Μ氫氧化鈉(2支管柱體積) 將40毫升濃縮/透析過濾的MabSelect蛋白質Α溶離 液以40毫克/毫升的裝載容量裝載到Q-Sepharose管柱上 。該管柱以非結合方式操作並且收集含有抗體的未結合部 分收集物。此步驟的回收率藉由A280測得是69%。對於此 種抗體而言這要比在這些條件下所得到的回收率稍低,這 可能是由於在FPLC試樣唧筒中留存的體積而未精確的估算 裝載體積所致。 在Q-Sepharose色層分析法之後,未經結合的部分收 集物被濃縮到13. 98毫克/毫升,並且使用裝有10kDa M i 11 i pore濾膜之Ami con公司的攪拌式細胞濃縮機透析過 濾到 SP-Sepharose 平衡緩衝液中(25mM 乙酸鈉 45 1325428 pH5.0/25mM NaCl) 〇 SP-Sepharose色層分析法 官柱基質 Q_Sepharose Fast Flow 管柱規格 1· 6公分内徑xi'5公分基床高度 管柱體積 30毫升 管柱製備 以150公分/小時在〇. 1M氫氧化鈉中裝填 操作流速 公分/小時(3. 35毫升/分鐘) 清潔 〇. 氫氧化鈉(2支管柱體積) 裝載容量 10毫克/毫升基質 平衡 25mM乙酸鈉pH5. 00/25mM NaCl(8支管柱體積) 裝載後沖洗 25mM乙酸鈉pH5.00/25mM NaCl(6支管柱體積) 溶離 25mM乙酸鈉pH5.00/186mM NaCl(25支管柱體積) 剝離用緩衝液25mM乙酸鈉pH5. 00/2M NaCl(2支管柱體積) 沖洗 〇. 1M氫氧化鈉(2支管柱體積) 將24 4升緩衝液交換過的Q-Sepharose溶離液以10 毫克/毫升的裝載容量裝載到SP-Sepharose管柱上。該管 才主是以結合方式操作的;把溶離液收集成部分收集物。用 GP-HPLC分析跨過溶離過程的部分收集物以測定聚集物的 濃度結果’並將結果顯示在表8之中。收集每一色層分析 步驟之後的試樣,並且分析r蛋白質A的殘留物,結果呈 現在表9之中。 表8 :每一色層分析步驟之後的r蛋白質A ELISA結果 試樣ID r蛋白質A的濃度 抗體濃度 (毫微克/毫克) (毫克/毫升) 46 1325428
MabSelect蛋白質A溶 離液(在濃縮/透析過 濾之後) 2.64 46.7 Q-Sephar ose 溶離液 <4 8.10 SP-Sepharose 溶離液 匯集物FC1-16) <4 1.79 表9 : SP-Sepharose部分收集物的GP-HPLC分析 試樣ID %聚集物 吸光值(a280) SP溶離液匯集物F(l-3) 0.57 11.2 SP溶離液匯集物F(4-6) 1 1. 10 2.7 SP溶離液匯集物F(7-9) 2. 07 0.655 SP溶離液匯集物F(10-12) 2.12 0.351 SP溶離液匯集物FC13-15) 2.56 0.208 結論:在抗體尖峰的步驟溶離期間吾人觀察到聚集物之部 分收集物;請參考表4。將稍後溶離出的飽含聚集物之部 分收集物(位在溶離尖峰的尾端)與包含非聚集物的部分收 集物比較。尾端的部分收集物可從主要匯集物中省略掉以 獲得99%的單體匯集物並且仍具有高的回收率(>95%)。 47 1325428 部分收集跨過SP-Sepharose溶離尖.峰之聚集物以獲 得高Pi抗體
【圖示簡單說明】 圖1為非還原性SDS-PAGE所顯示之飽含半胱胺酸的蛋 白質A標準物之預先處理之結果。 圖2顯示從使用以硫醚鍵單點連接蛋白質a的 Streaml ineTM重組蛋白質 a耷厗公挤雀ί曰,, 貝Λ巳層刀析法付到的抗體溶離液 中漏失的重組蛋白質Α濃度。 圖3顯示在重複使用相同親和性基質材料的蛋白質a 親和性色層分析法期間,污达物备&哲 /可,丨、物蛋白貝A無實質上地降低 漏失的數據 48

Claims (1)

  1. 拾、申請專利範圍:@3月y 1. 一種純化抗體的^-* (λη. ύ 击其包括以下步 ⑷從細胞培養物收獲抗體; A親和性色層分析 法純化步驟(a)中所收 (b)用蛋白質 獲的抗體; (c) 在從該蛋白質 體後獲得包含蛋白質 (d) 在容許蛋白質 留在流出物中的條件 載到陰離子交換劑上 A親和性色層 > 析法溶離經結合的抗 A污染物的經純化抗體; A結合到_?交換劑且ϋ成抗體保 下將步驟(c)中所獲得的經純化抗體裝 (e) 在陰離子交換兩| $ . 之出物中收集步驟(d)中所獲得的 k體而巧杂物蛋白皙A总&人丄 如 質Α係結合到該陰離子交換劑,並 (f) 藉由將抗體裝載到為陽触工 秋巧马険離子父換劑的第二離子交換 月叫上、使抗體結合到第-離$ _·_ M t ' 弟一離子父換劑、並將抗體從第二離 父換劑溶離而進—步純化該抗體。 2·根據中請專利範圍第ι項的方法’特徵在於該容許 白質A結合到陰離子交換劑且造成抗體保留在流出物中 的條件包含使用具有置換鹽濃度·福且pH為6别的 袭載緩衝液。 3. 根據申請專利範圍第1或2項的方法,特徵在於該 蛋白質A是天然蛋白質A或重組蛋白質A。 4. 根據申請專利範圍第3項的方法,特徵在於該重組 蛋白質Α在該重組蛋白質厶之胺基酸序列之c端之最後 30個胺基酸中包含半胱胺酸且透過該半胱胺酸殘基之硫原 49 1325428 99年3月修正 A親和 子經由硫醚鍵作為結合之單一點連接到用於蛋白質 性色層分析法的色層分析擔體材料。 ,特徵在於該 聚集的抗體。 ’特徵在於該 5. 根據申請專利範圍第1或2項的方法 經純化的抗體是單體抗體且步驟(|>)允許除去 6. 根據申請專利範圍第丨或2項的方法 抗體具有至少7.5或更高的pI值。 特徵在於該 7.根據申請專利範圍第1或2項的方法 抗體是單株抗體。 項的方法,特徵在於該抗體暑 8.根據申請專利範圍第 是IgG抗體。 •很像甲請專利範圍第 将徵在於該IgG 抗體為嵌合的或CDR_移植的IgG抗體 10.根據申請專利範圍第8或 砂抗體在關於抗體之&冑分的方法’特徵在於該 邮卜賊之和邮”組群。 糸選自包含人類 Π·根據申請專利範圍第i或2項的 抗體是從哺乳動物細胞培養物收獲。、 ,待徵在於該 拾壹、圓式: 如次頁 50
TW093106464A 2003-02-28 2004-03-11 Protein a chromatography TWI325428B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB0304576.2A GB0304576D0 (en) 2003-02-28 2003-02-28 Protein a chromatography

Publications (2)

Publication Number Publication Date
TW200530265A TW200530265A (en) 2005-09-16
TWI325428B true TWI325428B (en) 2010-06-01

Family

ID=9953825

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093106464A TWI325428B (en) 2003-02-28 2004-03-11 Protein a chromatography

Country Status (9)

Country Link
US (3) US20060030696A1 (zh)
JP (2) JP2007525412A (zh)
KR (1) KR101200732B1 (zh)
CN (1) CN100384874C (zh)
AT (1) ATE363491T1 (zh)
DE (1) DE602004006725T2 (zh)
ES (1) ES2288252T3 (zh)
GB (1) GB0304576D0 (zh)
TW (1) TWI325428B (zh)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160279239A1 (en) 2011-05-02 2016-09-29 Immunomedics, Inc. Subcutaneous administration of anti-cd74 antibody for systemic lupus erythematosus and autoimmune disease
GB0220894D0 (en) * 2002-09-09 2002-10-16 Millipore Uk Ltd Method of separation
GB0304576D0 (en) * 2003-02-28 2003-04-02 Lonza Biologics Plc Protein a chromatography
SG150501A1 (en) * 2004-02-05 2009-03-30 Millipore Corp Porous adsorptive or chromatographic media
EP1797182A2 (en) * 2004-10-05 2007-06-20 Wyeth a Corporation of the State of Delaware Methods and compositions for improving recombinant protein production
US20160355591A1 (en) 2011-05-02 2016-12-08 Immunomedics, Inc. Subcutaneous anti-hla-dr monoclonal antibody for treatment of hematologic malignancies
EP1869065B1 (en) * 2005-03-11 2020-05-06 Wyeth LLC A method of weak partitioning chromatography
AU2006259298B2 (en) 2005-06-17 2012-06-14 Wyeth Llc Methods of purifying Fc region containing proteins
MY157846A (en) * 2006-08-28 2016-07-29 Ares Trading Sa Process for the purification of fc-containing proteins
ES2449148T5 (es) 2007-06-01 2023-06-14 Hoffmann La Roche Purificación de inmunoglobulinas
US9433922B2 (en) * 2007-08-14 2016-09-06 Emd Millipore Corporation Media for membrane ion exchange chromatography based on polymeric primary amines, sorption device containing that media, and chromatography scheme and purification method using the same
US20090130738A1 (en) * 2007-11-19 2009-05-21 Mikhail Kozlov Media for membrane ion exchange chromatography
JP2011520443A (ja) * 2008-05-16 2011-07-21 サムスン エレクトロニクス カンパニー リミテッド タンパク質の精製方法およびタンパク質精製用アフィニティカラム
US8592555B2 (en) 2008-08-11 2013-11-26 Emd Millipore Corporation Immunoglobulin-binding proteins with improved specificity
ES2391931T3 (es) * 2008-09-15 2012-12-03 Emd Millipore Corporation Procedimientos para cuantificar la filtración de proteína desde resinas de cromatografía de afinidad basada en proteína
EP2339339A4 (en) 2008-09-25 2016-10-12 Jsr Corp CHARGE FOR AFFINITY CHROMATOGRAPHY
US10419541B2 (en) 2008-11-26 2019-09-17 Free Stream Media Corp. Remotely control devices over a network without authentication or registration
EP2360183B1 (en) 2008-12-19 2016-07-27 Takeda Pharmaceutical Company Limited Antibody purification method by mixed mode chromatography utilizing an arginine-containing loading solution
EP2379108B1 (en) 2008-12-22 2014-06-25 F. Hoffmann-La Roche AG Immunoglobulin purification
SG162687A1 (en) * 2008-12-24 2010-07-29 Millipore Corp Caustic stable chromatography ligands
RU2573894C2 (ru) 2009-08-06 2016-01-27 Дженентек, Инк. Способ усовершенствования процесса удаления вирусов при очистке белков
SG177577A1 (en) * 2009-08-07 2012-03-29 Emd Millipore Corp Methods for purifying a target protein from one or more impurities in a sample
CA2774212C (en) * 2009-09-15 2018-01-30 Althea Technologies, Inc. Protein a crystals and cross-linked crystals and methods of use thereof
SG10201406713XA (en) 2009-10-20 2014-11-27 Abbvie Inc Isolation and purification of anti-il-13 antibodies using protein a affinity chromatography
RU2564569C2 (ru) 2009-12-18 2015-10-10 Новартис Аг Промывочный раствор и способ промывки для аффинной хроматографии
US20130116413A1 (en) * 2009-12-29 2013-05-09 Dr. Reddy's Laboratories, Inc. Purification of proteins
EP3266793A1 (en) * 2010-06-21 2018-01-10 Kyowa Hakko Kirin Co., Ltd. Method for purifying protein using amino acid
CA2814781A1 (en) * 2010-11-01 2012-05-10 Diderik Reinder Kremer Single unit ion exchange chromatography antibody purification
EP2655412B1 (en) * 2010-12-21 2018-01-17 F. Hoffmann-La Roche AG Isoform enriched antibody preparation and method for obtaining it
CN103501825B (zh) 2011-05-02 2017-03-15 免疫医疗公司 用于小体积施用的同种异型选择的抗体的超滤浓缩
IL212911A0 (en) 2011-05-16 2011-07-31 Omrix Biopharmaceuticals Ltd Immunoglobulin reduced in thrombogenic contaminants and preparation thereof
WO2012160536A1 (en) * 2011-05-26 2012-11-29 Dr Reddy's Laboratories Limited Antibody purification
SG186552A1 (en) 2011-06-08 2013-01-30 Emd Millipore Corp Chromatography matrices including novel staphylococcus aureus protein a based ligands
CN103814044A (zh) 2011-07-08 2014-05-21 默沙东公司 纯化fc-融合蛋白的方法
US9096648B2 (en) 2011-08-19 2015-08-04 Emd Millipore Corporation Methods of reducing level of one or more impurities in a sample during protein purification
AU2012340826A1 (en) * 2011-11-21 2014-05-29 Genentech, Inc. Purification of anti-c-met antibodies
CN103998469B (zh) * 2011-12-15 2018-01-02 普雷斯蒂奇生物制药私人有限公司 抗体纯化方法
EP2682168A1 (en) * 2012-07-02 2014-01-08 Millipore Corporation Purification of biological molecules
CN103073616A (zh) * 2013-01-06 2013-05-01 西北大学 使用混合模式层析技术去除抗体聚集体的方法
RU2646098C2 (ru) 2013-04-30 2018-03-01 Интас Фармасьютикалс Лтд Новый способ клонирования, экспрессии и очистки для получения ранибизумаба
CN105555795A (zh) * 2013-09-17 2016-05-04 株式会社钟化 新抗体纯化方法和由该方法得到的抗体、以及使用了阳离子交换基团的新抗体纯化法和由该方法得到的抗体
KR102123700B1 (ko) * 2013-12-17 2020-06-16 (주)셀트리온 혼합 방식 크로마토그래피를 이용한 침출된 단백질 a 제거 방법
US10429359B2 (en) * 2014-02-14 2019-10-01 Ge Healthcare Bio-Sciences Ab Automated multi-step purification system
WO2015137530A1 (ko) * 2014-03-11 2015-09-17 주식회사 녹십자홀딩스 면역글로불린의 정제방법
CN106414476B (zh) * 2014-03-11 2019-12-31 株式会社绿十字控股 用于纯化免疫球蛋白的方法
EP3116531B1 (en) 2014-03-14 2021-10-20 Merck Sharp & Dohme Corp. Purifying insulin using cation exchange and reverse phase chromatography in the presence of an organic modifier and elevated temperature
JP6451118B2 (ja) * 2014-07-17 2019-01-16 東ソー株式会社 抗体の分離方法
KR101672947B1 (ko) 2015-03-17 2016-11-04 주식회사 비에스엘 상황 알림 기능을 가진 히어링 디바이스 및 그에 의한 상황 알림 방법
US20160280767A1 (en) 2015-03-23 2016-09-29 Lonza Ltd. Methods for controlling protein glycosylation
US11364358B2 (en) 2015-06-30 2022-06-21 Vapotherm, Inc. Nasal cannula for continuous and simultaneous delivery of aerosolized medicament and high flow therapy
US11186858B1 (en) 2016-03-15 2021-11-30 Fresenius Kabi Deutschland Gmbh Methods for increasing biosimilarity
WO2018022628A1 (en) 2016-07-25 2018-02-01 Cephalon, Inc. Affinity chromatography wash buffer
CN106380519B (zh) * 2016-10-17 2019-11-01 深圳万乐药业有限公司 一种单克隆抗体的纯化方法
US10799597B2 (en) 2017-04-03 2020-10-13 Immunomedics, Inc. Subcutaneous administration of antibody-drug conjugates for cancer therapy
WO2019051245A1 (en) 2017-09-08 2019-03-14 Vapotherm, Inc. BIFURCATED CANNULA DEVICE
EP3769083A1 (en) 2018-03-21 2021-01-27 Waters Technologies Corporation Non-antibody high-affinity-based sample preparation, sorbents, devices and methods
EP3816177A4 (en) * 2018-06-29 2021-12-01 Mitsubishi Chemical Corporation POLYPEPTIDE ISOLATION PROCESS, POLYPEPTIDE PRODUCTION PROCESS AND POLYPEPTIDE PURIFICATION APPARATUS
CN109324143B (zh) * 2018-10-19 2021-10-29 张骐 利用二维液相分离制备抗体类产品相关杂质的方法
US11583650B2 (en) 2019-06-28 2023-02-21 Vapotherm, Inc. Variable geometry cannula
EP4353288A3 (en) 2019-09-26 2024-06-19 Vapotherm, Inc. Internal cannula mounted nebulizer

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1201063A (en) 1982-07-20 1986-02-25 Winnipeg Rh Institute Inc., (The) Process for preparing purified immune globulin (igg)
US5089605A (en) 1987-03-13 1992-02-18 Repligen Corporation Immobilized immunoglobulin-binding proteins
EP0289129A3 (en) 1987-03-26 1990-10-10 Repligen Corporation High purity protein a preparation
US5084559A (en) * 1987-03-27 1992-01-28 Repligen Corporation Protein a domain mutants
US5118796A (en) * 1987-12-09 1992-06-02 Centocor, Incorporated Efficient large-scale purification of immunoglobulins and derivatives
US5115101A (en) * 1988-06-08 1992-05-19 Miles Inc. Removal of protein A from antibody preparations
US4983722A (en) 1988-06-08 1991-01-08 Miles Inc. Removal of protein A from antibody preparations
ATE156191T1 (de) 1990-04-20 1997-08-15 Teijin Ltd Menschliche monoklonale antikörper gegen gpiii des varizella-zoster-virus
US5650319A (en) * 1990-04-20 1997-07-22 Teijin Limited Human monoclonal antibody to glycoprotein GPIII of varicella zoster virus
GB9022547D0 (en) * 1990-10-17 1990-11-28 Wellcome Found Purified immunoglobulin
WO1992018629A1 (en) 1991-04-19 1992-10-29 Genetics Institute, Inc. Recombinant 3f8-type antibodies
DE69329503T2 (de) * 1992-11-13 2001-05-03 Idec Pharma Corp Therapeutische Verwendung von chimerischen und markierten Antikörpern, die gegen ein Differenzierung-Antigen gerichtet sind, dessen Expression auf menschliche B Lymphozyt beschränkt ist, für die Behandlung von B-Zell-Lymphoma
JPH07155194A (ja) 1993-12-10 1995-06-20 Teijin Ltd タンパク質の精製法
US5429746A (en) * 1994-02-22 1995-07-04 Smith Kline Beecham Corporation Antibody purification
SE9503925D0 (sv) 1995-11-07 1995-11-07 Pharmacia Biotech Ab Separationsmedium för IgG
US6013763A (en) * 1996-06-04 2000-01-11 Genentech, Inc. Peptide variants of protein A
US6114506A (en) * 1996-09-20 2000-09-05 General Hospital Corporation Composition and method for enhancing fibrinolysis
WO1998056808A1 (en) * 1997-06-13 1998-12-17 Genentech, Inc. Protein recovery by chromatography followed by filtration upon a charged layer
US5886154A (en) * 1997-06-20 1999-03-23 Lebing; Wytold R. Chromatographic method for high yield purification and viral inactivation of antibodies
TW505655B (en) * 1997-10-14 2002-10-11 Tanox Inc Enhanced aggregate removal from bulk-biologicals using ion exchange chromatography
US6504013B1 (en) 2000-02-01 2003-01-07 Idexx Laboratories, Inc. Canine allergy therapeutic recombinant chimeric anti-IgE monoclonal antibody
EP1073721B1 (en) * 1998-04-22 2005-08-31 Genvec, Inc. Efficient purification of adenovirus
EP1084136B1 (en) * 1998-06-01 2004-08-25 Genentech, Inc. Separation of antibody monomers from its multimers by use of ion-exchange chromatography
GB9902000D0 (en) 1999-01-30 1999-03-17 Delta Biotechnology Ltd Process
AU2002327164A1 (en) * 2001-01-29 2002-12-09 Idec Pharmaceuticals Corporation Engineered tetravalent antibodies and methods of use
US7122641B2 (en) * 2001-12-21 2006-10-17 Immunex Corporation Methods for purifying protein
US7323553B2 (en) * 2002-04-26 2008-01-29 Genentech, Inc. Non-affinity purification of proteins
WO2004076485A1 (en) 2003-02-28 2004-09-10 Lonza Biologics Plc. Antibody purification by protein a and ion exchange chromatography
GB0304576D0 (en) * 2003-02-28 2003-04-02 Lonza Biologics Plc Protein a chromatography
JPWO2004087761A1 (ja) * 2003-03-31 2006-07-27 麒麟麦酒株式会社 ヒトモノクローナル抗体およびヒトポリクローナル抗体の精製
US9469672B2 (en) * 2003-10-27 2016-10-18 Wyeth Llc Removal of high molecular weight aggregates using hydroxyapatite chromatography
WO2006024497A1 (en) * 2004-08-30 2006-03-09 Lonza Biologics Plc. Affinity- plus ion exchange- chromatography for purifying antibodies

Also Published As

Publication number Publication date
DE602004006725T2 (de) 2008-02-07
US20060030696A1 (en) 2006-02-09
CN100384874C (zh) 2008-04-30
CN1771260A (zh) 2006-05-10
KR20050113617A (ko) 2005-12-02
DE602004006725D1 (de) 2007-07-12
ES2288252T3 (es) 2008-01-01
TW200530265A (en) 2005-09-16
JP2012067108A (ja) 2012-04-05
US20110040075A1 (en) 2011-02-17
ATE363491T1 (de) 2007-06-15
US7847071B2 (en) 2010-12-07
US20060194953A1 (en) 2006-08-31
JP5752558B2 (ja) 2015-07-22
JP2007525412A (ja) 2007-09-06
KR101200732B1 (ko) 2012-11-13
GB0304576D0 (en) 2003-04-02

Similar Documents

Publication Publication Date Title
TWI325428B (en) Protein a chromatography
KR101858266B1 (ko) 친화성 크로마토그래피를 위한 세척용액 및 방법
EP1601697B1 (en) Antibody purification by Protein A and ion exchange chromatography
CA2739352C (en) Methods for purification of single domain antigen binding molecules
Narayanan Preparative affinity chromatography of proteins
KR101921767B1 (ko) 단백질 정제
Boschetti The use of thiophilic chromatography for antibody purification: a review
KR20070072510A (ko) 항체 정제를 위한 친화도- 및 이온 교환- 크로마토그래피
CN103596968B (zh) 用于亲和层析的洗涤溶液和方法
US20120149875A1 (en) Affinity chromatography matrix
NO319182B1 (no) Fremgangsmate for rensing av monomert IgG-antistoff fra en blanding og IgG-antistoff fra kondisjonert cellekulturmedium.
KR20110139216A (ko) 소형 모듈형 면역약제 단백질의 정제 방법
JP5033177B2 (ja) 陽イオン界面活性剤によるタンパク質の精製
CN109689675A (zh) 纯化抗体的方法
JP2022519808A (ja) アフィニティー精製用免疫グロブリン結合タンパク質
CN113748128B (zh) 分离缺少能够结合至蛋白A的Fc区域的抗体或抗体片段的方法
JP2014524453A (ja) 陽イオンおよび陰イオン交換クロマトグラフィー法
CN114539416A (zh) 一种双特异性抗体的层析纯化工艺
Fursova et al. Refolding of scFv mini-antibodies using size-exclusion chromatography via arginine solution layer
Ren et al. An engineered peptide tag-specific nanobody for immunoaffinity chromatography application enabling efficient product recovery at mild conditions
JP2023533529A (ja) アフィニティ精製のための免疫グロブリン結合タンパク質
TW202140510A (zh) 用於親和層析的新型清洗緩衝液
Affinity Purification of Antibody Light Chains by Metal Affinity and Protein L Chromatography Sonia Tyutyulkova and Sudhir Paul

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees