TWI281821B - Data processing method, data processing apparatus, semiconductor device for detecting physical quantity distribution, and electronic apparatus - Google Patents

Data processing method, data processing apparatus, semiconductor device for detecting physical quantity distribution, and electronic apparatus Download PDF

Info

Publication number
TWI281821B
TWI281821B TW094123378A TW94123378A TWI281821B TW I281821 B TWI281821 B TW I281821B TW 094123378 A TW094123378 A TW 094123378A TW 94123378 A TW94123378 A TW 94123378A TW I281821 B TWI281821 B TW I281821B
Authority
TW
Taiwan
Prior art keywords
signal
pixel
unit
counting
counter
Prior art date
Application number
TW094123378A
Other languages
English (en)
Other versions
TW200627939A (en
Inventor
Yoshikazu Nitta
Noriyuki Fukushima
Yoshinori Muramatsu
Yukihiro Yasui
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of TW200627939A publication Critical patent/TW200627939A/zh
Application granted granted Critical
Publication of TWI281821B publication Critical patent/TWI281821B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/708Pixels for edge detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Analogue/Digital Conversion (AREA)
  • Color Television Image Signal Generators (AREA)

Description

1281821 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種資料處理方法、—種資料處理裝置、 -種供偵測其中置放有複數個單以件之物理數量分佈之 半導體器具以及-種電子裝置。更明確言之,本發明係關 於一種適用於供摘測物理數量分佈之半導體器具之數位信 號處理技術,例如固態成像裝置以及其他電子裝置,於其 中置放複數個單元元件,該等單元元件回應於外部源 輸入的電磁波’例如光或輻射’並且藉由該等單元元件將 電磁波轉換成電氣信號而獲得之物理數量分佈可選擇性地 藉由位址控制而作為電氣信號來讀取。更特定言之,本發 明係關於一種當處置福數^ — 地禝数種奴處理的信號類型時用於獲得 計算出的數位資料之技術。 【先前技術】 供偵測物理數量分佈的半導體器具使用於各種領域中, 於其中以線或矩陣的形式置放複數個單元元件(例如,像 素),其回應於從外部源輸入的電磁波,例如光或輕射。 在視訊設備領域中,使用CCD(電荷輕合器具)、m〇s(全 氧半導體)或⑽s(互補金氧半導體)固態成像裝置來偵測 作為物理數量的光(其為電磁波的—範例)。該成像裝置藉由 使用單元元件(固態成像裝置中的像素)以電氣信號的形式 頃取藉由將光轉換成電氣信號而獲得之物理數量分佈。 固態成像裝置包括放大固態成像裝置。放大固態成像裝 置具有由放大固態成像器具(APS;主動像素感測器/亦稱為 101832.doc 1281821 「增盈早70」)所形成的像素,該等器具在像素信號產生器 中具有放大驅動電晶體,該等產生器用於根據電荷產生器 中所產生的信號電荷來產生像素信號。舉例而言,許多 CMOS固態成像裝置具有此一組態。 在此種放大固態成像裝置中,為將像素信號讀出到一外 部源,在置放有複數個單元像素的像素部分上執行位址控 制,以便從個別單元像素選擇性地讀取該等信號。亦即, 該放大固態成像裝置為位址控制固態成像裝置的一範例。 例如,在一放大固態成像器具(其為具有置放成矩陣之單 7G像素之X-Y位址固態成像器具的一種類型)中,使用 結構化主動器具(M0S電晶體)來形成像素,以使該等像素 本身具有放大功能。亦即,藉由主動器具來放大儲存於光 二極體(其為光電轉換器具)中的信號電荷(光電子),並且以 影像資訊的形式來讀取已放大的信號電荷。 以此種X-Y位址固態成像器具為例,將許多像素電晶體 置放於一二雏矩陣中以形成一像素部分,開始根據每一線 (列)或每一像素中的入射光來累積信號電荷,並且藉由定址 而從個別像素依順序讀取基於該已累積信號電荷的電流或 電壓信號。在MOS(包括CMOS)固態成像器具中,主要使用 一種同時存取一列中的像素並以列為單元從該像素部分讀 取像素信號的位址控制方法。 如必要,以一類比至數位轉換器(AD轉換器)來將從像素 部分讀取的類比像素信號轉換成數位資料。因此,已提出 各種AD轉換機制。在某些已知的機制中,根據用於同時存 101832.doc 1281821 —I列h料並從像素部㈣取像素錢的方法,採用 ^胃的行平行系統’其中針對每—垂直行置放一 Μ轉 、益以及用於AD轉換以外的其他信號處理的信號處理器。 二從像素輸出的像素信號執行各種類型的處理’以產生 厂質的影像或將像素信號用於特殊的應用。該等類型的 主要包括·第一處理方法,其在類比域中處理像素信 〜’然後將像素信號轉換成數位資料;第二處理方法,^ :字λ等類比像素號轉換成數位資料,然後對立 料執行計算(數位計算)。 貝 例二作為第一處理方法,以下揭示用於摘測邊緣的機 。將用於摘測光的來自複數個像素的電流同時輸出至— 勒出匯流排’並在輪出匯流排上相加或㈣。接著,將所 產生的電流轉換成具有在時間軸上之幅度的脈衝寬度信 旎’並且藉由在彼此平行而垂直地置放的計數器電路 异脈衝寬度信號之脈衝寬度之時脈數目而對脈衝寬度信於 進仃AD轉換,&而將加法/減法結果轉換成數位資料。而。 且’已揭示一種用於偵測運動部分的機制,該摘測 在類比域中產生在不同時間點處獲得之像素信號之間二 異亚藉由將該差異轉換成數位資料(例如二進制值) 以下機制在相關技術中係已知的。藉由使用_像° 容量來作為像素間記憶體,可將光二極體所债測到的" 電荷暫時儲存於像素間記憶體中, ^ 實現-電子快門。 …取’從而 以下機制在相關技術中係已知的。藉由使用像素 101832.doc
1281821 量作為像素間記憶體,可 至像素中的目^ 〖先别的圖框信號並將其添加 严… 號’從而擴大動態範圍、執行邊缘 處理或偵測運動部分。 固视灯瓊緣 作為第二處理方法,有一 相關拮…, 有種用於偵測運動部分的機制在 ==係已知的’㈣測係藉由將不同時間點處所操 取的稷數個類比視訊信號轉換成數位f料而達成。 =計算處理的電路配置而言,一種用於在器具外部 中係已知的。 的方法(曰曰片外方旬在相關技術 一種用於在影像感測器上提供各種處理功能(例如加法/ 減法功能)的方法(該技術稱為「晶片上方法」)在相關技術 ▲中係已知的。料言之,—所㈣「行平㈣統」結構被 為為適用於晶片上方法,在該結構中,於每一垂直行中置 放一信號處理器以用於從像素部分讀取像素信號。 ^而,在上述已知機制中,AD轉換與計算處理的組合係 不充分的,因為其在處理與電路配置方面有利有弊。例如, 用於在類比域中對信號執行加法/減法並將所得信號數位 化的機制不一定係有效的。 另外,某些已知的ad轉換功能具有一相關雙取樣功能, 即藉由執行減法處理來移除雜訊成分。然而,該功能僅執 行一像素信號中的信號成分與重設成分之間的差處理。亦 即,在此功能中,獲得在相同單元元件(例如一像素)所輸出 的一信號中具有不同物理特性的信號成分與重設成分之間 的差異’並且在此功能中不處理具有相同物理特性的複數 101832.doc J281821 個信號’例如像素信號。因此, 質影像或用於將像素信號用::=為用於產生高品 所執行的計算。為產生高品質的=的硬數個像素之間 殊的應用,在AD轉換之後,需要將像素信號用於特 因此,馨於上述情況,轉2㈣種數位計算。 單的機制來有效地執行AD轉換及計算處理。種車又間 【發明内容】 本發明提供-種資料處理方法,其包括:藉由使用用於 複數個W之第-信號的數位資料作為—計數操作的一初 始值來比較-對應於該複數個㈣之第:㈣之電氣信號 與一用於獲得㈣二信號之數㈣料的參考信號,在執行 該比較處理的同時以—向下計數模式與—向上計數模式之 一來執行計數操作,以及當完成該比較處理時儲存一計數 值。 本發明還提供一種資料處理裝置,其包括:一比較器, φ 其用於將一對應於該複數個信號之一的電氣信號與一用於 將該信號的電氣信號轉換成該數位資料的參考信號進行比 較,以及一計數器,其用於在該比較器執行該比較處理的 同時以一向下計數模式與一向上計數模式之一來執行一計 數操作’並用於在該比較器完成該比較處理時儲存一計數 值。 本發明亦提供一種具有以預定次序置放之單元元件之半 ‘體裔具,每一單元元件包括一電荷產生器,其用於產生 對應於所施加之電磁波的電荷,以及一單元信號產生器, 101832.doc -10- 1281821 其用於根據該電荷產生%客 為所產生的電荷來產生-類比單元 信號’該半導體器具包括:一 比1乂态,其用於將一對應於 該單元信號之電氣信號與一用於腺兮w ^ 、 N用於將该早元信號的電氣信號 轉換成該數位資料的參考作鲈推 1 L现進仃比較;以及一計數器, 其用於在該比較器執行該比較處 平乂岭理的冋時以一向下計數模 式與一向上計數模式之一夾勃) 4l 、 术執仃一计數刼作,並用於在該 比較器完成該比較處理時儲存一計數值。
本發明還提供一種電子梦罟,# ^ 电卞裝置,其包括·一參考信號產生 器’其用於產生一參考作&闲於膝:^ ^ 1乜現用於將一欲處理的類比信號轉 換成數位資料;一比聋$ ,甘® ^ %罕乂為,其用於比較該類比信號與該參 考仏號產生器所產生的該參考信號;一計數器,其用於在 該比較器執行該比較處理的同時以一向下計數模式與一向 上計數模式之一來執行一計數操作,並用於在該比較器完 成該比較處理時儲存一計數值;以及一控制器,其用於控 制該計數器之計數操作之模式。 【實施方式】 下文中將參考附圖詳細說明本發明的具體實施例。在以 下說明中’使用CMOS成像器具,其為一種χ-γ位址固態成 像器具。應假定所有CMOS成像器具都為NMOS或PMOS。 然而’ CMOS成像器具的使用僅係範例,並且本發明中所 用的器具不限於MOS成像器具。以下具體實施例可類似地 應用於所有供偵測物理數量分佈的半導體器具,其中以線 或矩陣來置放複數個單元元件,其回應於從外部源輸入之 電磁波,例如光或輻射。 101832.doc -11 - ⑧ 1281821 <第一具體實施例;固態成像裝置之組態> 圖1為s兒明CMOS固態成像裝置(CM〇s影像感測器)之示 忍圖,其為本發明之半導體器具之第一具體實施例。CM〇s 固態成像裝置亦為根據本發明之電子裝置之一方面。 固悲成像裝置1包括一像素部分,其中以列及行(即二維 矩陣)的形式來置放複數個像素,其包括光電轉換器具(電荷 產生器的範例),例如光二極體,用於根據入射光的數量來 輸出電氣信號,從每-像素輪出的信號為電壓信號。以彼 平订的個別灯來置放資料處理器,例如cds(相關雙取樣) 處理功能以及數位轉換器(Anal〇g叫㈣Co··; A%)。 者以彼此平灯的個別來置放資料處理器」意味著,針 對實質上彼此平行的垂直行中的垂直信號㈣來提供複數 DS處理功此及數位轉換器。當從頂部觀察該器具時, 複數個功能可能僅置放於一關於像素部分ι〇的邊緣⑷底 :的輸出侧)處,或可能置放於_邊緣及橫跨像素部分_ 緣(圖1中的頂部)處。如果使用第二種組態,則用於 ==執行讀出掃描(水平掃描)的水平掃描器較 放於兩邊緣處並獨立地運作。 型=1行而垂直地提供⑽處理功能及數位轉換器的典 孓把例為行類型成像感測器。
Jk ιψ xh ^ ^ 取像感測裔中,將CDS 換器彼此平行而垂直地置放於一行區域 w仃區域係置放於成像部分 信號讀出至兮鈐中如,+ 铷出側,亚且依順序將 像部分。舉例而言,可將—C 有另-種形式的成 τ將CDS處理功能與一數位轉換器 101832.doc -12- 1281821 指派給複數條(例如兩條)相鄰垂直信號線19,或者可將— CDS處理功能與—數位轉換器指派給n(n為正整數)條其他 線中的N條垂直信號線19(垂直行)。 錢行類型之外的任何其他形式中,由於將—cds處理 力月b /、數位轉換器用於複數條垂直信號線1 9(垂直行),故 提供一開關電路(開關)將用於複數行信號線19的像素作號 從一像素部分H)供應至一 CDS處理功能或一數位轉換器f 籲可能需要一記憶體來儲存輸出信號,視後續階段的處理而 定。 精由將-CDS處理功能與—數位轉換器指派給複數條垂 直1言號線19(垂直行),可在從像素行讀出像素信號之後對其 進行信號處理。因此,相比於對每一單元像素中的一像素 信號執行類似影像處理的情況相比,可簡化每一單元像素 的組恶’亚且可實施多像素、較小、較廉價的影像感測器。 另外,彼此平行而垂直地置放的複數個信號處理器可同 籲,處理-列侔素信號。因此,相比於藉由一輸出電路或該 :外α卩的一 CDS處理功能及一數位轉換器來執行處理的 情況,可以較低的速度來操作信號處理器,其在功率消耗、 頻帶性能及雜訊方面更佳。換言之,當功率消耗及頻帶性 能相同時,可在整個感測器中實施更高級的操作。 行類型成像感測器(其可以較低的速度運作)在功率消 耗、頻帶性能或雜訊π面係較佳的,並|其另一較佳之處 係不需要一開關電路(開關)。在以下具體實施例中,應假定 使用行類型成像感測器,另有規定時除外。 101832.doc -13 - 1281821 如圖1所示,楚 m m ^ u _ —體實&例之m態成像裝置丨包括像素 與^部分)1G,其#有複數個方形單元像素3置放成列 n /方點陣)’—驅動控制器7 ’·—行處理1126; 一參考 ^生器27’其用於將—AD轉換參考信號供應至該行處 ° H輸出f路28,其係置放在像素部分1〇的外 〇ρ ° 2要’在行處理ϋ26之前或之後’可於置放行處理器 = 目同半導體區域中置放一具有信號放大功能的 叫自動增益控制)電路。如果在行處理器26之前執行 AGC’則進行類比放大’並且如果在行處理器^之後執行 GC貝J進仃數位放大。如果將η位元數位資料直接放大, 則可能會削弱灰階。因而較佳係在執行數位轉換之前對信 號執行類比放大。 驅動控制器7具有從像素部分1〇依順序讀取信號的控制 電路功能。例如,驅動控制器7包括水平掃描電路(行掃描 電路)12,其用於控制較址或行掃描;—垂直掃描電路⑼ 掃描電路)14,其用於控制列定址及列掃描;以及一通信/ %序控制器20 ’纟具有’例如’產生内部時脈的功能。 如通信/時序控制器2〇附近的虛線所示,作為高速時脈產 生器的範例’可置放-時脈轉換器23,其用於產生時脈頻 率高於輸入時脈頻率的脈衝。通信/時序控制器2〇根據—經 由端子5a輸入的輸入時脈(主時脈)(:1^尺〇及一產生於時脈轉 換器23中的高速時脈來產生内部時脈。 藉由使用一基於時脈轉換器23中所產生之高速時脈的信 101832.doc -14 - 1281821 就,可高速地進行換處理。藉由使用高速時脈, 仃需要快速計算的影片解壓縮或壓縮處理。另夕卜, 行處理器26輸出的並列資料轉換成串列資料,以將視^ _輸出到裝置i的外部。使用此組態,可以少於經a轉 換之數位資料之位元數的端子數來實施快速操作。
時脈23具有一内置乘法器電路,其用於產生時脈頻率高 :輸入時脈頻率的脈衝。此時脈轉換器23從通信/時序控: 盗20接收低速時脈CLK2,並根據低速時脈cm來產生一 頻率至少為低速時脈CLK2兩倍高的時脈。扣為低速時脈 c⑴之頻率的因子時’可提供—kl乘法μ路作為時脈轉 換器23的乘法器電路,並可使用各種已知的電路。 儘管為簡化起見,圖i中未顯示某些列與行,但每一列或 每一行中置放有數十至數千像素單元3。一般而言,像素單 元3係由作為光接收器具(電荷產生器)的光二極體以及具有 一放大半導體器具(例如電晶體)的像素間放大器所形成。 舉例而言’可使用一浮動擴散放大器作為像素間放大 器。例如,對於電荷產生器,可使用具有四個電晶體(其一 般用在CMOS感測器中)的像素間放大器,例如一讀出選擇 電晶體,其為電荷讀取器(傳輸閘極/讀出閘極)的範例;一 重設電晶體,其為重設閘極的範例;一垂直選擇電晶體; 以及一源極隨耦器放大電晶體,其為偵測器器具的範例, 用於偵測浮動擴散元件之電位變化。 或者’如第2708455號專利所揭示,可使用具有三個電晶 體的像素間放大器,例如一連接至汲極線(DRN)的放大電晶 101832.doc © -15- 1281821 體,以根據電荷產生器所產生的信號電荷來放大信號電 壓;一重設電晶體,其用於重設電荷產生器;以及一讀出 選擇電晶體(傳輸閘極),其係藉由一垂直移位暫存器經由一 傳輸線(TRF)來進行掃描。 作為形成驅動控制器7的其他元件,配置水平掃描電路 、垂直掃描電路14及通信/時序控制器2〇。水平掃描電路 12具有從行處理器26讀出計數值的讀出掃描功能。藉由類 _ 似於半導體積體電路製造技術的技術,將形成驅動控制器7 的該等元件與像素部分10整合於一半導體區域上,例如單 晶矽,從而形成一固態成像器具(成像裝置),其為半導體系 統的範例。 像素單元3係經由列控制線15連接到垂直掃描線14以選 擇列,並且亦係經由垂直信號線19連接到行處理器%,其 中為每垂直行提供一行AD電路25。列控制線丨5表示從垂 直掃描電路14至像素的總體線路。 • 〖此具體實施例中,行AD電路25具有自行獲得數位資料 的貝料處理功能,該數位資料為複數個信號的乘積和運算 結果 ° 母一水平掃描電路12與垂直掃描電路14具有一如下所述 的解碼益,亚且回應於從通信/時序控制器2〇供應的控制信 號。別與⑽而開始讀取欲處理的像素信號。因此,會將各 種用於驅動單元像素3的脈衝信號(例如,重設脈衝咖、傳 輸脈衝TRF及一 DRN控制脈衝DRN)包含於列控制線丄$中。 垂直掃描電路14與通信/時序控制1120形成-單元信號 101832.doc -16- 1281821 選擇控制器,其指定進行乘積和運算處理的複數個單元像 素3的位置,以將複數個像素信號從指定的單元像素3輸入 到行處理器26中。 儘管圖中未予顯示,通信/時序控制器20具有一時序產生 器TG之功能區塊(讀出位址控制器具的範例),其用於供應 為操作個別元件所需的時脈及預定的時序脈衝信號,以及 一通信介面之功能區堍,苴 ^ 其用於經由端子5a接收主時脈 φ CKL0並經由端子5b接收指示操作模式的資料mm,而且 用於輸出含有固態成像裝置之相關資訊的資料。 舉例而言,通信/時序控制器2〇輸出一水平位址信號至— 水平解…a並輪出一垂直位址信號至一垂直解碼器 亚且母一解碼器12a或14a接收對應的位址信號來選擇 對應的行或列。 、释 ^在此種情形下’由於像素單元3係置放於二維矩陣中 車乂么係按以下方式來執行像素信號與像素資料的快速讀 瞻^執彳T垂直掃描,以便㈣為單元存取及讀 = 所產生並沿行方向經由垂直信號線19輸出的類: 〇、口號’然後’執行水平掃描,以便沿列方向存取像专 =(在此具體實施例中,為數位像素資料)並將其讀出到於 出側。像夸行 叫土J袍 ^ σ /、像素資料的讀取不限於掃描,由吉 定址欲讀出沾留一 9 且接 關的資1 並藉由僅讀取與所需單元像素3有 關的貝讯,可有 :―具體實施例中的通信/時序控制器2〇將頻率與 a輪入的主時脈CLK〇相同的一時脈CLKi,以及被纩 101832.doc 17 1281821 小至時脈CLK1之一半或更低的低速時脈,供應至諸如水平 掃描電路12、垂直掃描電路14以及行處理器26之類的元 件。被縮小至主時脈之一半或更低的時脈下稱「低速時脈 CLK2」。 垂直掃描電路14選擇像素部分10的若干列,並將所需的 脈衝供應至選定的列。例如,垂直掃描電路14包括垂直解 碼器14a ’其用於定義欲讀取的像素部分丨〇的若干列,以及 一垂直驅動電路14b,其用於驅動所讀取的列,該驅動係藉 由將脈衝供應至與垂直解碼器14a所定義的讀出位址(列)處 的單元像素3相對應的列控制線丨5而達成。垂直解碼器^ & 不僅選擇從中讀出信號的列,而且亦選擇用於電子快門的 列。 水平掃描電路12同步於低速時脈CLK2而依順序選擇行 處理器26的行AD電路25,並將對應的信號輸出至一水平信 號線(水平輸出線)18。水平掃描電路12包括水平解碼器 12a,其用辟定義欲讀取的行(行處理器%内的行電路 25),以及一水平驅動電路12b,其用於根據由水平解碼器 12a所定義的讀出位址將行處理器%的信號輸出至水平信 號線18。如果行AD電路25所處置的位元數為n(n為正整 數),例如ι〇(=η)位元,則水平信號線18包括1〇條線。 在如上所述配置的固態成像裝置1中,經由垂直信號線19 將攸每一垂直行之單元像素3輪出的像素信號供應至行處 理^§ 26的對應行ad電路2 5。 在订處理器26與水平掃描電路12之間的信號路徑上,置 101832.doc 18 1281821 放一包含負載MOS電晶體(未顯示)的負載電晶體部分,該 等電晶體的汲極端子係連接到對應的垂直信號線19上,以 及一負載控制器(負載MOS控制器),其用於控制負載MOS 電晶體的驅動。 將形成像素單元3的放大電晶體連接到對應的垂直·信號 線19,並將垂直信號線19連接到每一垂直行中的負載M〇s 電晶體的汲極,並且將來自負載控制器的負載控制信號
CTld輸入到所有負載MOS電晶體的閘極端子。當讀出信號 時,預定的恆定電流繼續藉由連接至對應放大電晶體之負 載MOS電晶體流動。 仃处理器26之每一行AD電路25接收一行的像素信號立 將其轉換為數位資料。行AD電路25亦依順序接收位於由辱 元信號選擇控制ϋ所指定之像素位置處欲進行乘積和運 (二其=一定在相同的垂直行中)的複數個像素信號,其藉由= 仏序產生裔20及垂直掃描電路14的操作來發揮作用,立 根據複數個像素信號來執行乘積和運算。行ad電路25亦網 ㈣值轉換為數位資料。舉例而言,每—行仙電路25呈有 二撕⑽比數位轉換器)電路具有_操作功㈣ 2積和運算及用於根據低速時脈咖2將_類比信 換成,例如,10位元數位資料。 υ ADC電路的組態細節如下所示。ad轉換執行如下 斜坡參考信號(參考電壓)RAMp供應至_ 器)’同時,開始以一時脈信號計數。計數一直進較 比較—㈣垂直信號線19輸人的㈣像素信號與參考= 101832.doc -19· 1281821 RAMP而獲得脈衝信號為止。 在此種情形下,藉由對經由垂直信號線19輸入的電壓模 式像素信號進行AD轉換之外,還修改電路組態,可獲得重 設像素之後片刻的信號位準(雜訊位準)與基於所接收光數 量的真實信號位準Vsig之間的差異。使用此配置,可消除 雜訊信號成分,例如固定圖案雜訊(FpN)或重設雜訊。 絰由水平選擇開關(未顯示)將行AD電路25中數位化的 φ 像素資料傳輸至水平信號線18並將其輸出至輸出電路28, 該水平選擇開關係由從水平掃描電路12供應的水平選擇信 號來驅動。10位元數位資料僅為範例,並且位元數可小於 1〇(例如,8位元)或大於1〇(例如,14位元)。 使用上述組態,從像素部分10的個別行依順序輸出像素 h唬,於像素部分10中將作為電荷產生器的光接收器具置 放成列與行。接著,藉由整個像素部分10的一組像素信號 來表不一對應於像素部分丨0的影像,即圖框影像,在該像 Φ 素邓刀10中將光接收器具(光電轉換器具,例如光二極體) 置放成列與行。 <打AD電路及參考信號產生器之細節> 多考L號產生器27包括DA轉換電路(DAC ;數位類比轉 換态)27a。DA轉換電路27a同步於計數時脈CK〇而從供應自 通時序控制器20的控制資料CN4所表示的初始值產生一 階梯斜坡形«波(斜坡波形),並且將所產生的錫齒波供應 至行處理器26的個別行AD電路25以作為AD轉換參考信號 (ADC苓考化號)RAMp。儘管圖!中未顯示,但可置放雜訊 101832.doc -20- 1281821 抑制遽波器。 根據供應自時脈轉換器23的高速時脈所產生的階梯斜坡 形鋸齒波,例如,產生於乘法器電路中的一已倍增的時脈, 可以較高的速度發生變化,該速度高於根據經由端子化所 輸入的主時脈CLKO來產生錯齒波的情況。 從通信/時序控制器20供應至參考信號產生器27之〇八轉 換電路27a_制資料CN4包含指示每—比較處理之斜坡 電壓梯度(電壓變化的程度;電壓關於時間變化的數幻的資 =。更明確言之’設定針對每一計數操作而改變電壓的數 量,並於每單元時間改變計數值(計數時脈ck〇)。 為使信號ϋ處理衫參考信號位準與欲處理的相同像素 信號之真實信號成分位準之間的差異,㈣ 處理的斜坡電Μ梯度(變化率)的絕對值位準設定為相同。 如果對欲處理的複數個信號(在此具體實施例中為像素 信號)執行信號差處理的空間差處理或時間差處理’則用於 f旨信聲的斜坡電壓的梯度(變化率)的絕對值位準可 5又疋為相同的或可設定為不同的。 藉由將梯度(變化率)的絕對值位準設定為不同,可 =供應自翠元像素3之像素信號(更明確 ” 成=:數:乘之後的和(帶符號魏^ 开在此種情形下,.- 义 .. 果對二個或更多像素信號執行* Π 差處理或時間差處理㈣仃工間 有相同梯度(變化率)絕對值的:所需的方式來選擇欲與具 及欲與具有不同梯”j:的斜坡電壓比較的像素數目以 -、、、對值的斜坡電壓比較的像素數目。 101832.d〇i 1281821 行ad電路25包括電墨比較器252, ^於比較料㈣ 產生器27之DA轉換電路27a中所產生的參考信號r撕與 經由垂直信號線19(V0, Vl,…)而從列控制線15⑽,钔) 亦包括計數器254’其料計算電壓比㈣放完成比較處 理之前的時間並用於儲存計數結果。亦即,行ad電路㈣ 有一 η位元AD轉換功能。 八 之單元像素3供應的類比像素信號進行比較。行AD電路25
曰通信/時序控制器20具有一控制計數模式的功能,其根據 疋否將像素信號的重設成分Δ ν或信號成分用於電壓 比較器2 5 2中的比較處理來控制欲用於計數器2 5 4的計數模 式。將-用於指定計數H254是否以向下計數模式或向上計 數模式來操作的模式控制信號CN5以及將一用於將計數器 254中所儲存的計數值重設為初始值的重設控制信號 k通L /日守序產生器20輸入到每一行AD電路25的計數器 中。 。 將產生於參考信號產生器27之階梯斜坡形參考信號 ramp輸入到每一電壓比較器252的一輸入端子RAMp中, 並且電壓比較為252之其他輸入端子係連接到對應的垂直 信號線19並從像素部分10接收像素信號電壓。將來自電壓 比較為2 5 2的輸出信號供應至對應計數器2 $ 4。 將計數時脈CK0從通信/時序控制器20輸入至計數器254 的時脈端子CK。 儘官未顯示計數器254的組態,但可藉由將由鎖存器所形 成的資料儲存單元255的線路配置變成同步計數器而實施 101832.doc -22- 1281821 Γ數:Γ/並且藉由接收一計數時脈ck°來執行内部計 的=梯Φ電屋波形所不’亦可根據來自時脈轉換器^ 使二::脈(例如,7倍增的時脈)來產生計數時脈⑽,以 ,、 速度快於經由端子5&輸入的主 可藉由η鎖存器之組合來實㈣立_二=二 =:至由兩區塊所形成的資料館存單元⑸的電
:=一=區塊均具有_存器。另外,不必提供 寸數态24,並且總體組態相對變小。 —儘管下文給出第一具體實施例之計數器254之 節,但計數器254的主要特徵如,… ,_ ^猎由使用共用的向上/ 向下计數器(U/DCNT)而不考慮計數模式,可藉由在 數操作與向上計數摔作 〇 计 呆作之間進仃切換而對相同的像辛作萝 或複數個具有相同物理特性的像素信號執行計數 (:)置Sr 254 ’以使其可'貞測計數溢位或處理正負號 日吏先可技術,例如,藉由添加-溢位附加位凡或使用一進 理溢位或錢處理。彳位^借位位元’可容易地處 成Π!Γ:出的像素信號不僅包含真實、有效的信號 ΐ:二:含重設成分。就時間順序而言,首先出現 重“:(参考成分)’然後是叠置於重設成分上的真實、有 效的^3虎成分。重兮夺占八沾田 一、又成分與雙置於重設成分上的真實、有 效的仏说:分之間的差異係真實、有效的信號成分。 因此,為獲得像奮^古缺 位資料,當藉由對參心八二、有效信號成分Vsig之數 刀(重没成分Δν)以及真實信號成 101832.doc -23 - 1281821 T執行計數而對相同的像素信修執行ad轉換時,將針對 :考成分與真實信號成分(一般而言為重設成分)之一而獲 ^的數位資料用作其他成分(一般而言為信號成分)之計數又 知作的初始值。使用此配置,在藉由計數操作而對其他成 刀執仃AD轉換之後,可自動地獲得數位資料,其為兩成分 之間的差異。即,可將類比作|卢之夫 間的差異轉換成數位=參考成分與信號成分之 =外,藉由計數模式的相同組合對具有相同物 稷數個不同像素信號(例如,具有不同 的 置相同但成像時間不同的像素信號)重= 仃什數#作,從而對複數個像素信號實施加法運算 ,變計數模式的組合(更明確言之,藉由反轉該組合)而葉: 同的像素信號重複地執行計數操作,從而對㈣ 20的押^實施差(減法)運算。可藉由在通信/時序控制器 的抆制下调整水平掃描電路丨2與垂帝 圖案而實施攝作處理模式的切換。 田电14的知描 — 數器254中’當藉由對複數個單元像素3的每 像辛操作而進行AD轉換時,將針對其中-獲仔的數位資料用作其他像素信號(欲— 什數刼作的信號)之計數操作的初始值 - 2他像素信號的計數操作而執行AD轉換^後,^2行 侍作為執行兩像素信號之乘積 獲 在此情形下,藉由使用相同的計 操作所獲得之最終計數值係將複數個單元像素3_素= 101832.doc -24- 1281821 號(更明確言之為真實的信號成分)相加而產生的數位資 料。相反,藉由使用不同計數模式(相反模式),藉由第二計 數插作所獲得之計數值係對複數個像素3的像素信號執行 減法而產生的數位資料。如果處理三個或更多像素,則可 將上述操作組合,在該情形下,可實施對於來自單元像素3 之像素信號(更明確言之為真實的信號成分)求和(帶符號) 的功能,即乘積和運算。 使用用於同步於計數時脈CK〇而輸出計數輸出值的同步 计數器作為第一具體實施例的計數器254。若係同步計數 器,則藉由計數時脈CKO來限制所有正反器(計數器基本元 件)的操作。因而,如果需要較高頻率操作,則較佳係使用 適合快速操作的非同步計婁丈器、,因為操作極限頻率僅取決 於第一正反器(計數器基本元件)的極限頻率。 經由控制信號12c將控制脈衝從水平掃描電路12輸入到 -十數器254中。计數器254具有鎖存計數結果之鎖存功能, 並且鎖存計數輸出值,直至經由控制線⑸接收控制脈衝。 針對每-垂直信號線19(V0,V1,···)置放如上所述配置的 行AD電路25以形成行處理器26,其為行平行結構化鞭區 塊。 行AD電路25的輸出側係連接至水平信號線18。如上所 述,水平信號線18包括與η位元行AD電路25㈣的η條信號 線’並且經由對應於輸出線“個感測電路(未顯示)將信號 線連接到輸出電路28。 使用此組態,在像素信號讀出週期期間,行ad電路㈣ 101832.doc -25- 1281821 行叶數操作,並按預定的時序輸出計數結果。更明碟言 之,電壓比較器252首先比較來自參考信號產生器27的斜坡 波形電壓與經由垂直信號線19而輸入的像素信號電壓,並 且當二電壓變為彼此相等時,將電壓比較器252的比較器輸 出反轉(在此具體實施例中,從H位準至L位準)。 計數器254已開始同步於從參考信號產生器_入的斜 坡波形電㈣以向下計數模式或向上計數模式來進行計數
知作,並且當接收指示比較器輸出被反轉的資訊時,計數 ⑽4停止計數操作’並且鎖存(儲存)作為像素資料的計數 值,從而完成AD轉換。 彳數器254根據按預定的時序經由控制線12c從水 =描電㈣輸人的水平選擇信號CH⑴的偏移操作,經由 =出端子5e而依順序輸出所儲存的像素資料至行處理器 j外σ卩或具有像素部分10的晶片的外部。 的=:他各種信號處理電路包含於形成固態成像裝置1 未顯^ ,不過由於其與本具體實施例不直接_,故其 /、體貫施例;信號差處理 圖2為說明圖1戶斤 θ Τ5Λ 行AD電路2: 實施例之固態成像裝置1 :電路25中之信號差處理(其為基本操作)的時序巴 用於將像素部分1〇之每一像素單元 … 像素信?卢Μ施士 * 斤感測到的類 虎轉換成數位信號的機制,例如,如下 以預定梯度漸淮彳、士 t 如下所不。搜. 進式減小的斜坡波形參考作 於單元像素3之料卿變為 5號之參考成分或信號成分之電壓 101832.doc -26- 1281821 時間’並且以計數時脈來計算從產生用於 #唬RAMP直到對應於像素信號之參考: =:與參考信號重合時的時間,從而獲== 或佗唬成分之位準相關的計數值。 方成刀 士對=成垂Λ信號:線19輸出的像素信號,就時間順序而 5 ^成刀Vs㈣現在重設成分^(即參考成分,包 素信號的雜訊)之後。如果對參考成分(重設成分Δν)執行第 -操作’騎藉由將信號成*Vsig加到參考成分(重設成分 △V)上而獲得的信號執行第二操作。以下會特別討論此操 作0 對於第-讀出操作,通信/時序控制器2〇將模式控制信號 CN5設定為低位準,以便將計數器254設定為處於向下計數 杈式,亚且亦將重設控制信號CN6設定為活動(在此具體實 施例中為高位準)一預定的週期,以便將計數器254的計數 值重設為初始值〇(t9)。使得用於將像素信號從選定的列Ηχ Φ 讀取到垂直偉號線19(V0, VI,…)的第一讀出操作穩定之 後’通信/時序控制器20將用於產生參考信號ramp的控制 資料CN4供應至參考信號產生器27。 在接收控制資料CN4之後,參考信號產生器27將階梯形 波形(RAMP波形)輸出至電壓比較器252的一輸入端子 RAMP作為比較電壓,其中該波形的錯齒波(raMP)形狀隨 時間變化。電壓比較器252比較RAMP波形比較電壓與供應 自像素部分1〇的選定垂直信號線19(Vx)的像素信號電壓。 在將參考信號RAMP輸入到電壓比較器252之輸入端子 101832.doc -27- 1281821 RAMP的同時,為藉由計數器254來測量電壓比較器2兄中的 比較時間,同步於從參考信號產生器27(u〇)輸出的斜坡波 形電壓而將計數時脈CK0從通信/時序控制器2〇輸入到計數 器254的時脈端子中,並且從初始值〇開始向下計數,其為 第一計數操作。亦即,沿負方向開始計數操作。 電壓比較器252比較從參考信號產生器27供應的斜坡參 考信號RAMP與經由垂直信號線19輸入的像素信號電壓 φ VX ’並且當兩電壓變為彼此相等時,電屋比較器252將比較 器輸出從Η位準反轉為L位準(tl2)。亦即,在比較對應於重 設成分Vrst的電壓信號與參考信號RAMp之後,電壓比較器 2 52在紅過一#又對應於重設成分Vrst之位準的時間之後產生 一活動低(L)脈衝信號,並將所產生的脈衝信號供應至計數 器 254。 在接收此結果之後,計數器2 5 4在幾乎與比較器輸出之反 轉相同的時間停止計數操作,並且鎖存(保留/儲存)作為像 φ 素貪料的對摩計數值,從而完成AD轉換(tl2)。亦即,在產 生欲供應至電壓比較器252的斜坡參考信號RAMp的同時, 汁數器254開始向下計數,並且繼續以時脈CK〇計數,直至 接收因比較處理而產生的活動低(L)脈衝信號,從而獲得對 應於重設成分Vrst之位準的計數值。 在經過一預定的向下計數週期(tl4)之後,通信/時序控制 杰20停止供應控制資料CN4至電壓比較器252並停止供應 计數時脈CK0至計數器254。接著,電壓比較器252停止產 生斜坡參考信號RAMP。 101832.doc
-28- 1281821 在此第一讀出操作中,由 抑…v的舌 較器252來谓測像 :: 位準一執行計數操作,故讀取單 元像素3之重没成分av。 重設成分0包含視單元像素3而變化的偏移雜訊。秋 而’-般而言,重設成分Δν的變化係小的,並且所_ 的重設位準Vrst—般传鈿π认 m, ’、 係相㈣。因此,選定垂直信號線19 之像素信號電壓VX之”成分^之輸出值-般係已知的。
因此,在重設成分ΔΥ的第一讀出操作中,藉由調整RAMP 電壓,可縮短向下計數週期⑽至U4;比較週期)。在此具 體實施例中’藉由將比較處理的最大週期設定為7位元計數 週期(128個時脈),執行重設成分Δν的比較處理。 隨後,在第二讀出操作中,除了重設成分^,讀取根據 入射光數量的每一單元像素3的電氣信號成分Vsig,並且執 行颃似於第一項出操作的操作。更明確言之,通信/時序控 制器20首先將模式控制信號⑽變為高位準,以便將計數 器254設定為向上計數模式(tl8)。接著,使得用於將信號成 为Vsig從選定列Hx之單元像素3讀取到垂直信號線19(v〇, vi,…)的第二讀出操作穩定之後,通信/時序控制器2〇將用 於產生參考信號RAMP的控制資料CN4供應至參考信號產 生器27。 在接收控制資料CN4之後,參考信號產生器27將階梯形 波形(ramp波形)輸出至電壓比較器252的一輸入端子 RAMP作為比較電壓(t2〇),其中該波形的鋸齒形狀(RAMp 形狀)隨時間變化。電壓比較器252比較RAMP波形比較電壓 101832.doc -29-
1281821 與供應自像素部分10的選定垂直信號線19(Vx)的像素信號 電壓。 在將參考信號RAMP輸入到電壓比較器252之輸入端子 RAMP的同時,為藉由計數器254來測量電壓比較器252中的 比較時間,同步於從參考信號產生器27(t2〇)供應的斜坡波 形而將計數時脈CK0從通信/時序控制器2〇輸入到計數器 254的時脈端子,並且與第一計數操作相反,在第二計數操 φ 作中,δ十數器254開始從對應於第一讀出操作中所獲得之單 兀像素3之重設成分Δν的計數值進行計數。亦即,沿正方 向開始計數操作。 電壓比較器252比較從參考信號產生器27供應的斜坡參 考信號RAMP與經由垂直信號線19輸入的像素信號電壓
Vx並且g兩電壓變為彼此相等時,電壓比較器2 5 2將比較 器輸出從Η位準反轉為l位準(t22)。亦即,在比較對應於信 號成分Vsig的電壓信號與參考信號ramp之後,電壓比較器 ❿ 252在經過一段對應於信號成分Vsig之位準的時間之後產 生一活動低(L)脈衝信號,並將所產生的脈衝信號供應至計 數器254。 在接收此結果之後,計數器254在幾乎與比較器輸出之反 轉相同的時間停止計數操作,並且鎖存(保留/儲存)作為像 素資料的對應計數值,從而完成AD轉換(t22)。亦即,在產 生欲供應至電壓比較器252的斜坡參考信號尺八馗1>的同時, 计數器254開始向上計數,並且繼續以時脈CK〇計數,直至 接收因比較處理而產生的活動低(L)脈衝信號,從而獲得對 101832.doc -30-
1281821 應於信號成分Vsig之位準的計數值。 咖在經過一預定的向上計數週期㈦句之後,通信/時序控制 斋20停止供應控制資料⑽至電壓比較器⑸並停止供應 計數時脈⑽至計數器254。接著,電壓比較器放停止產 生斜坡參考信號RAMP。 在此第二讀出操作中,由於藉由電壓比較器252來谓測像
素信號電壓Vx的信號成分Vsig而執行計數操作,故讀取單 元像素3之信號成分Vsig。 在此具體實施例中,就計數器254的計數操作而言,在第 -讀出操作期間執行向下計數,然後在第二讀出操作期間 執行向上計數。因此’在計數器254中自動執行等式⑴所表 不的減法,並且將由減法而產生的計數值保留於計數器w 中作為η位元數位值。 [數學等式1] (第二比較週期中的計數值)_(第一 V ^ 此竿乂週期中的計數 值)…⑴. 数 在此情形中,可將等式⑴修改成等式⑺,因此,保留於 計數器254中的計數值為對應於信號成分Vsi_位元數位 值0 [數學等式2] (第二比較週期中的計數值)_(第—比較週期中的計數值 =(信號成分Vsigl +重設成分Δνΐ+行八1)雷%。 v、 电塔25中的偏移 分) -(重設成分ΔΥ1+行AD電路25中的偏移成分) 101832.doc -31 - 1281821 =(信號成分 Vsigl) ..,(2) =即,如上所述,根據計數器254中藉由二讀出操作愈二 '知作的差處理,例如第一讀出操作期間的向下計數以 及弟-項出操作期間的向上計數,可消除包含視單元像素3 而變化的雜訊之重設成分Δν以及視請電路乃而定的偏 移成分,並且僅以簡單的組態抽取根據每一像素單元3中之 入射光數量的電氣錢成分化^在此情形下,亦可
地消除重設雜訊。 因此,此具體實施例中的行AD電路25不僅用作將類比像 素L遽轉換成數位像素資料的數位轉換器,而且用作— CDS(相關雙取樣)處理功能。 等式(2)中所獲得的計數值所表示的像素資料為一正信 號電壓,&而不需要互補的操作。因而,與已知系統的相 谷性係南的。 在第二讀出操作期間讀取電氣信號成分Vsig。因此,由 於在大範圍内決定光數量的位準,故有必要藉由將向上計 數週期(t20至t24 ;比較週期)設定為長週期而使欲供應至電 壓比較為252的斜坡電壓急劇變化。 口此在此具體實施例中,藉由將比較處理的最大週期 設定為10位元計數週期(1024個時脈),執行信號成分Vsig 的匕較處理亦即’將重設成分Δ V (參考成分)之比較處理 的最大週期設定為短於信號成分Vsig之比較處理的最大週 期。並非將重設成分AV(參考成分)之比較處理之最大週期 (即AD轉換週期的最大值)設定為與信號成分Vsig的對應週 101832.doc
-32- 1281821 期相同’而是將重設成分Δν(參考成分)之比較處理之最大 週期設定為短於信號成分Vsig的對應週期,從而減小二操 作的總AD轉換週期。 在此種情形下,將兩操作的總處理時間調整到一水平週 期(一水平處理週期)内。藉由將指派的位元數目設定為信號 的最大範圍(動態範圍)以及藉由將指派的計數時脈CK〇的 循環設定為一位元,可進行此調整。設定來自參考信號產 φ 生器27的參考信號RAMP,以涵蓋信號的最大範圍(動態範 圍)。 " 如果使參考信號RAMP的梯度或計數時脈CK〇的循環固 定,則可根據位元數目來調整AD轉換週期。例如,如果位 元的數目減少m,可將AD轉換週期設定為1/(2Λιη ; λ為指 數)。如果使計數時脈CKO的循環固定,並且如果將參考信 號RAMP的梯度與1/k相乘,則可使信號的係數(增益)增加^ 倍。 —如果AD轉換週期在參考成分與信號成分之間有差別,則 第-刼作與第二操作的比較位元數目係不同的。在此種情 形下,將控制資料CN4從通信/時序控制器2G供應至參考信 唬產生|§ 27,並且根據此控制資料CN4,在參考信號產生 淼27中產生斜坡電壓’以使參考信號RAMp中斜坡電壓的梯 度(即變化率)在第-操作與第二操作之間變為相同。由於藉 由數位控制來產生斜坡電壓,故易於將第—操作與第二^ 作的斜坡電壓梯度設^為相同。因此,可使第_操作^^ 轉換的精確度與第二操作的對應精確度相等,1而可藉由 101832.doc •33 - 1281821 位於一影像之—圖場(其係實質上同時被擷 ^W不同像 素位置處的複數個像素信號之間的差處理。 說明「實質上同時掘取」的理由在於⑽仍感測器的 N况其中電荷累積週期視水平線而不同,因為係在鉻 水:線(掃描線)中執行掃描。藉由使用,例如,_機械快^ 或藉由添加一全域曝光功能至CMOS感測器,所有水平線且 有相同電荷累積週期,因此可確切地在 二
空間差處理的典型範例包括對複數個相鄰列(可能以列 或二多)之像素信號執行的垂直行差處理以及對相同列中 的複數個相鄰像素(可能為三個或更多)處的像素信號執行 κ平列差處理。作為下述具體實施例之空間差處理操作, 執行垂直行差處理。 、 「―圖場週期」為藉由二維地掃描影像平面(更明確言 之’一垂+直掃描週期)而讀取影像的週期,並且「_圖框週 :」,藉由成像平面上的所有像素形成—影像所需的週 =“垂直方向執行用於掃描所有列的順序掃描(漸進式 知描)時’「-圖場週期」等於「一圖框週期 者 行交料掃描(其巾在第―垂直掃料作巾㈣直方= :員=描某些列並且在第二垂直掃描操作中沿垂直方向掃 :剩:的列)時,「k個圖場」等於「—圖框」。「乙表示掃 次數,通常為2。無論係漸進式掃描或交錯式掃 田維地掃描影像平面而讀取—影像的—垂直掃描 ❸可廣義地稱為「一圖框」。在此說明書中,下文的圖框 101832.doc -35- 1281821 指廣義的圖框。 值即ΓΓ讀出雜元數位值之後,計數器254中可保留數位 複數個η差處理中,藉由使料數11 254的保留特性而對 象素信號執行數位差處理,下文會特別論述此點。 如圖3所示,對於第一像素信號V1,藉由在第—讀
期間執行向下計數並在第二讀出操作期間執行向上計數, =5二的差處理⑽至t24)僅抽取根據單元像素3上 , 里的電氣信號成分㈣。由等式⑺所表示的保 适於计數器254B中的計數值為表示正信號電壓Mb位 70數位值。 於第一像素仏^V2,在第一讀出操作期間執行向上計 ί’Γΐ第二讀出操作期間執行向下計數。亦即,藉由與 f 一像素信號V1之計數模式組合相反的計數模式組合來執 灯AD轉換⑽至⑷)。因此,在計數器254中自動執行由等 ^⑴所表示的減法處理,並且在計數器2M中保留所得計數 藉由與第-像素信號V1之計數模式組合相反的計數模式 組合來執行第二像素信號V2的AD轉換。因此,保留於計數 益254中的計數值變為表示負信號電壓(-Vsig2)的n位元數 位值,如等式(3)所表示。 [數學等式3] (第:比較週期中的計數值Η第-比較週期的計數值) 0口唬成刀Vsig2+重設成分△V2 + RAD電路25中的偏 成分) 101832.doc -36 - 1281821 + (重設成分AV2+行AD電路2 5中的偏移成分) =-(信號成分 Vsig2) ...(3) 在完成對第一像素信號VI的第二計數操作之後,即開始 對第二像素信號V2的第一向上計數操作,不必重設保留於 计數器254中的計數值。接著,將由等式(2)所表示的計數值 添加至由等式(3)所表示的計數值。因此,在完成對第二像 素信號V2的第二計數操作之後保留於計數器254中的計數 值為表不二像素信號V1與V2之間的差(減法)計算結果 (Vsigl-Vsig2)的n位元數位值,如等式(4)所示。 [數學等式4] 第一像素信號的計數值 +(第二比較週期)_(第一比較週期) 成分Vsig+i設成分Δν+行AD電路25中的偏移成 (重設成分av+rad電路25中的偏移成分)
气信號成分Vsigl)•(信號成分Vsig2)·⑷ 對:與圖3所示的範例相反,可執行以· 操作,並在第二續出二 間執行向上” 對於第-像音" 間執行向下計數操作。接著 值,艾2 ==不必重設保留於—的計 操作期間執行向:間:仃向下計數操作並於第二讀 ^ 數知作。之後,穿成祖冬 弟二計數操作之德徂囟 70成對像素信號V2 ^ 、邊於計數器2 5 4中的_ | # 素化物與…之間 %十數值專於二 (減法)處理結果(VSig2-Vsigl)。 101832.do 丨 -37 - 1281821 如上所述,在完成對Hy列的AD轉換之後,不必重設計數 器254,藉由與Hy列之AD轉換之計數模式組合相反的計數 杈式組合來執行對重設成分Δν與信號成分心匕之旧^+”列 的AD轉換。因此,將相同垂直行中之列與(Hy+i)列之間 的減法結果保留於行AD電路25之計數器254中,從而對這 二列實施差處理。 在元成對第二像素信號V2的第二計數操作之後的預定時 間⑽)處,通信/時序控制器2〇指示水平掃描電路工2讀出像 素資料。回應於此指令’水平掃描電路12依順序偏移經由 控制線12e供應至計數器254的水平選擇信號ch⑴。 接著,經由_水平信號線18將等式⑷所表示的儲存/保 留於計數器254中的計數值,即表示:像素信號 間的差(減法)結果(Vsig2_Vsigl)‘位元數位資料,從輸出 端子城順序輸出至行處理器26的外部或具有像素部分^ 的晶片外部。然後’按照類似的方式以二列為單元來重複 #作、、果’可獲得計算出的表示二維差影像的資料⑴, =指示相鄰二列中的二像素信號之間的差(減法)計算, 表示差計算結果的影像係解析度為1/2並且其資料數: 化垂直方向(在感測器表面上)壓縮到ι/2的影像。 儘管在此具體實施例中已論述針對二鄰 :里,但:執行包括三或更多列之減法處理的乘積和S處 在此種情形下,當欲處理、^ 列的數目)W 7 具體實施例中係 j的數目)為叫’可將影像資料的數 如上所述,根據第-具體實施例之固態成像二,藉由 101832.doc •38- 1281821 在相反的計數模式中重複地執行相同單元像素& 號之參考成分(重設成分)與信號成分的計數操作可將料 ::號的參考成:分與信號成分之間的差信號成分轉換成數位 貝科。另外,藉由使用不同的計數模式組合來重複地執 複數個(在上述範例中為兩個)不同單元像素3之像素信號的 计數操作’可實施該複數個像素信號之間的差(減法)計曾。 例如,在計數器254中,當藉由對複數個單元像素3的^ 一像素信號執行計數操作而進行AD轉換時,將為1中 素信號獲得的數位資料用作其他像素信號(欲進行第 數操作的信號)之計數操作的初始值。結果,在藉由執行其 他像素信號的計數操作而執行AD#換之後,可自動地 作為執行兩像素信號之乘積和運算之結果的數㈣料广 …如圖3所示,藉由使用不同計數模式(相反模式),藉由第 十數才呆作所獲得之最終計數值係對複數個單元像素㈣ ,^ 座生的數位貝枓。相反,儘管未顯示, 但糟由使用相同的計數模式,藉由第二計數操作所獲得之 :數值係將複數個單元像素3的像素信號(更明確言之為真 =的信號成分)相加而產生的數位資料。可將上述操作粗 二’在該情形下’可實施對於單元像素3之像素信號(更明 =之為真實的信號成分)求和(帶符號)的功能,即乘積和 運昇。 <第二具體實施例;固態成像裝置之組態丨管線處理〉 圖4為說明根據本發明之第二具體實施例之cm〇s固態成 衣置之不思圖。在第二具體實施例之固態成像裝置1中, 101832.doc -39- 1281821 修改第-具體實施例之固態成像裝置i之行ad電路25之組 態。 更明確百之,在第二具體實施例之行AD電路25中,在計 數器254之後提供_資料儲存單元256(其用作—績元記憶 體器具來儲存保留於計數器254中的計數結果),以及一開 關258 ’其置放於計數器254與資料儲存單元256之間。 按預定的時序將用作控制脈衝的記憶體傳輸指令脈衝 • ⑽從通信/時序㈣器20供應至每-開關258。在接收記憶 體傳輸指令脈衝CN8之後,開關258將保留於對應計數器 中的汁數值傳輸至資料健存單元256。資料儲存單元25 6 保留/儲存所傳輸的計數值。 用於按預定的時序將計數器254的計數值保留於資料儲 存早το 256中的機制不限於將開關258置放於計數器254與 資料儲存單元256之間的組態。例如,可將計數器254與資 料儲存單70 256直接連接,並且藉由記憶體傳輸指令脈衝 參 CNS來控制計數器的輸出致動。或者,可將記憶體傳輸 指令脈衝CN8用作一鎖存時脈,其決定資料儲存單元256的 資料讀取時序。 可經由控制線12c將控制脈衝從水平掃描電路12輸入到 貧料儲存單元256中。資料儲存單元256保留來自計數器254 的汁數值,直至其經由控制線12c藉由控制脈衝接收到指 令。 當行處理器26的電壓比較器252與計數器254執行對應的 處理時,水平掃描電路12用作一讀取掃描器來讀取保留於 101832.doc
40- 1281821 資料儲存單元256中的計數值。 根據第一具體實施例之此組態,由於可將保留於計數器 254中的什數結果傳輸至資料儲存單元Mg,故可獨立地控 制AD轉換(即計數器254的計數操作)以及用於將計數結果 讀取到水平信號線18的讀取操作。因而,可實施管線操作 以獨立或同時執行AD轉換以及用於經由水平信號線18讀 出信號至成像裝置1外部的讀取操作。 <第二具體實施例:管線處理基本操作> 圖5為說明圖4所示第二具體實施例之固態成像裝置1之 灯AD電路25中之基本操作的時序圖。行AD電路乃中所執行 的AD轉換類似於第—具體實施例,因此不再對其進 說明。 ^
在第二具體實施例中,將資料儲存單元256新增至第一 ^ 體實施例的組態,並且包括AD轉換的基本操作類似於第人 具體實施例。在計數器254(t6)之操作之前,根據來自鮮 時序控制1120的記憶體傳輸指令脈衝⑽, ° :;::1進行處理而獲得之計數結果傳輸至資J儲存I: ......取珂谈慝理之像素信號 二出#作(即AD轉換)之前,無法將像素資料輸^ 以6的外部。因此,讀出操作受到限制 具體實施例之組態中,在對欲處 屮蓝从^ <像素信號執行第 出知作(即AD轉換)之前,已將指示 傳輸至資料儲存單元256 μ 死引減法處理的計 貝㈣存早以56。因此’讀出操作未受到限. 101832.doc -41 - 1281821 可減少位元數,而不改變參考信號ramp或計數時脈CKO的 梯度。 在後一方法中,如果實現信號的最大範圍(動態範圍)同 時保持應用於最大信號範圍的正常位元解析度,則無法將 每一單元像素3的AD轉換週期,即整個AD轉換週期(例如η 位元計數的η位元),應用於一列。因此,有必要將每一單 元像素3的最大AD轉換週期減小至l/2Am。這意味著,一般 _ 而言,如果參考信號RAMP的梯度不變,則應將位元的數目 減小m。 亦即,為將複數個像素的計算設定於一列週期内,同時 保持位元解析度,而不改變參考信號RAMp的梯度或計數時 脈CK0,有必要根據欲處理的像素數目(在此範例中為列數) 如上所述調整用於計數操作的位元數目。 亦即,當不可能減小AD轉換週期同時保持八;〇轉換精確 度時,如果有2Am個像素需要進行減法處理,則應將圖玲 • 時序圖中計數器254之第二計數操作(即信號成分Vsig之比 較週期)中的數位計數減小至n-m位元。 例如,如果在以二列為單元執行減法處理時以ι〇位元來 執行計數操作,則通常在1024時脈週期期間執行比較。缺 而’在此種情形下,以9位元來執行計數操作,即將比較週 期減小至512時脈週期。在此種情形下,參考信號產生初 之DA轉換電路27a中所產生的參考信號RAMp的時間變化 率應恆定,這意味著,AD轉換週期(即位元解析度)不變。 在此具體實施例中,如圖7之時序圖所示,藉由將AD轉 101832.doc -43- 1281821 換週期減小至1/2,可接圄士 CK0. ^ 率加倍,而*改變計數時脈 CKO或資料輸出速率。 如果使圖框速率加供,目丨丨立抑-. "、母早70像素的電荷累積時間變 t 且亦將信號振幅減小至1/2,從而引起S/N比率減 果以2、列為單元來執行減法,以將ad轉換 ::減小至1/m’則使圖框速率增加_。在此種情形下, ^將η位元AD轉換精確度減小至n_m位元,儘管可能減小 S/N比率,但可增加圖框速率。 <空間差處理的使用模式;線性邊緣摘測〉 圖8A至9說明第一或第二且,音 〜體實&例之組態中所執行之 工間差處理之使用模式的筮 ^ ± Μ的弟1例°如參考圖6與7所述, 错由使用計數器254的向上/向下計數 執行減法處理,得差二以二列為單元來 Μ — 了獲仵差衫像。此處理之使用模式的—範 例為,貫施邊緣抽取功能, 專 特殊的電路。 而不必在行處理器%外部使用
圖_8C說明邊緣_功能。藉由沿行方向執行計數器 去艮的差處理’可執行以二列為單元的相鄰像素之間的減 /’ P沿垂直掃描方向,從而執行邊㈣測。藉H 掃描方向執行相鄰像辛的、出 σ ΐ直
、 4像素的減法處理,如圖8Α所#,作缺A :在主體沿掃描方向的黑白之間的邊界部分受到 地加強。更明確言之,盔 各度 …、法攸電何產生器(例如光二極 之^位準保持恆定的部分獲得差輸出。^體) 位準發生變化的邊界部分獲得-差輸出,從而可執行= 偵測。藉由對複數個垂直 邊緣 口玉罝仃執仃垂直方向邊緣偵測處理, 101832.doc -44 - 1281821 可偵測到沿列與行的直線。 然而’在參考圖7所述的差處理中,由於以 執行減法處理,故如果 -列為早凡來 理的二單〇 R “,、自^的輕部分録於減法處 為解決此門題:f號位準在該邊界部分處得不到加強。 為解夬此_,應依順序逐列地執行以二列 法處理。為實施此順序處理,不必沿單 :=序執掃描水平列,垂直咖 應的二列。仃位址解碼處理而選擇所需的列Hy,從而選擇對 至’如圖9的時序圖所示,將AD轉換週期縮短 框速率ΓΓ圖框速率。而且在此種情形下,可保持圖 丄而不必改變計數時脈CKO或資料輸出速率。 成執行臨界處理用於決定邊緣’以防止隨機雜訊等 : 起的錯誤決定。亦即,當行處理器26之後的輸出 =28或輪出電路28之後的數位信號處理器(未顯示)中指 :於二⑷中所獲得之二像素之間的差結果的數位值大於或 ;—預定值時,可決定偵測到一邊緣。 比電荷波動所引起的散粒雜訊與信號幅度的平方根成正 Γ、·!亦即’如果因景深較亮而使光度較高’則散粒雜訊的 ^ 回。因此,如果決定處理的臨界值係恆定的,在景 儿或太暗的情形下,無法以高精確度偵測到邊緣。為 求解此鬥^ σΊ崎,根據該情況來調整邊緣決定處理的臨 例如,卷士 ω ί 田主體的對比度較高或當景深較暗時,增加決 理的的及括 、处 1值。相反,當主體的對比度較低或當景深較亮時, 101832.doc -45- 1281821 減小決定處理的臨界俏。你田π职 ^ 介值。使用此配置,可以高精確度來偵 測邊緣。 、 〈空間差處理之使用模式;圖案匹配> 圖1GA至10Β說明第—或第二具體實施例之組態中所 行之空間差處理之使用模式的第二範例。在第二範例中, 响述圖案匹配。可根據類似於邊緣㈣概念的概念來 圖案匹配。例如,使用與欲抽取之圖案相同的減法圖案^ 組合來執行掃描,如_Α所示,藉此可從具有與減法圖案 相同之圖案的位置獲得最大程度地加強的信號。此操㈣ 效於使影像可通過線性空„波器的操作,並 或第二具體實施例之組態,可實施圖案匹配功能,而康^ 用特殊的外部電路。 吏 然而,在圖7所示的差虛採| μ、, 姑心 以處理中’由於以二列為單元來執行 η々理’故如果藉由從欲偵測的圖案位移—像素 搜哥,則如圖10Β所示,可從與欲4貞配仃 谓測邊緣。為解決此缺陷,亦以位移一配的圖案 合來執行掃描,而且,,由 圖案之組 ,㈣Λ χ #由位移一列來執行二偵測結果之 ^ ND,或添加由偵測而獲得之影像資料 _ 輯and,則將與欲侦測之圖案不匹配的部分 =丁邏 果執行資料加法,則提古盥铲禎 王除。如 “與以貞測之圖案匹配部分的穷 度減小與欲偵測之圖案不匹配部分山 抽取的部分。 又攸而增強欲 如上所述,根據第-與第二具體實 1,可藉由传用A ^ u恶成像裝置 猎由使用向上/向下計數器來切換處理模式而執行兩次 101832.doc -46- 1281821 冲數操作。在將單兀像素3置放成矩陣的組態中,行Μ電路 25係由置放於個別垂直行中的行平行式行ad電路所形成。 α而τ針對每-垂直行’作為第二計數操作的結果, 而直接獲得參考成分(重設成分)與信號m的減法處 理結果。因此,用於保留參考成分與信號成分之每一者之 J ::的:體益具可藉由為計數器提供的鎖存功能來 ‘心。:且:沒有必要獨立於計數器而另外提供'專屬的記 隐體益具用於保留經AD轉換的資料。另外,用於決定束考 成分與信號成分之間差異的減法係不必要的。 ^ 如果使用由減法處理所雜渡 積和之複數個信號成分來執行乘 積和運异’則可It由為該計數器提供的鎖存功能來
於保留計數操作結果的記,_ I 換的資料。#屬的-憶體器具來保留經辦 因而’不必提供周邊雷欠 專屬呓拎舻^ , , 1用於保留八0轉換結果的 體'、用於決定參考成分與信號成分 相法器或詩執行乘積和運算料相法器屬= 益。因此,可縮小電路規模或電路 驻法. 的成本。另外,可防 4低整個裝置 由於綱路⑽轉換:如率消耗的增加。 付俠态)係由一比較盥 口 成,故不論位元的數目A彳 β w數斋所形 的数目為何’可藉由用於操 計數時脈以及用於控制計數模式的控制線來二的一 作。這使得不必提供用於' 工制計數操 器具的信號線,從而防止 *輪出到記憶體 止雜讯或功率消耗的增加。 101832.doc 1281821 亦即,在相同晶片上安裝AD轉換器的固態成像裝置丄 中’用作AD轉換器的行AD電路25各係由一對電壓比較器 252與計數器254所形成。而且,藉由向上計數與向下計數 之組合來執行計數器254的計數操作,以便可將一欲處理信 號之基本成分(在此具體實施例中為重設成分)與信號成分 之間的差異用作數位資料。目而,可減小電路規模或電路 區域’並且可降低功率消耗。另夕卜,可減小用於與其他功
能連接的線路數目,或者防止由線路所引起的雜訊或功率 消耗的增加。 藉由使用差計算處理模式作為處理模式,並且藉由使 置放於行平行結構中的行AD電路25之模式切換向上/向 1 十數功能,而不使用晶片外部的記憶體,可以列為單元 實施向精確度差處理,而不使用額外的電路K吏得可 H差處理’例如邊緣㈣處理、直線制處理或圖: 匹配處理。
;二維處理;第 <第三具體實施例 一範例> 固態成像裝置之組態 圖1為說明根據本發明之第二 成像裝置之干立同. ―、體只施例之CMOS固 农夏之不思圖。弟二呈轉告 徵在於 、體汽轭例之固態成像裝置1的 饮在於,將用於沿列方向實施处 到第二星體每q 工日差處理的功能元件添 /、體貝靶例之固態成像裝置b 沿行方向以一 I . 下將呪明圖3所 乂 一列為早兀的i計瞀 行Λ i -也 外之外遇進行沿列方向以 仃馮早兀執行的「二列 门乂 〜X —列」差計算。 更明確言之,作炎 作為沿列方向勃;i占 執仃是處理的主要功能 101832.doc -48- 1281821 件,固態成像裝置!具有-數位計算單元⑷282用於執 出電路28中的n_位元減法處理。在行處理器^與輪^ 28的數位計算單元282之間,準備Λ你 一 18⑽與18b)。 丰備兩細位疋水平信號線 數位計算單元282接收複數項數位資料,其係沿行方 沿列方向在行AD電路25中獲得的乘積和運算結果,並且根 據該複數項數位資料,數位計算單元加沿著與行AD電路 25中所採用的行方向或列方向相反的方向執行—乘積和運 算。「與行方向或列方向相反的方向」指,如果行Μ電路 25沿打f向執行處理,魏料算單元加沿財向執行乘 積t?算,並且如果行AD電路沿列方向執行處理,則數位 計算單元282沿行方向執行乘積和運算。在此具體實施例 I!/!定行AD電路25沿行方向執行乘積和運算,並且數位 計异單元282沿列方向執行乘積和運算。作為乘積和運算, 執行差處理。 • 纟此具體實施例中’行處理器262與數位計算單元282形 成一資,處理單元以獲得數位資料,其係複數個信號的乘 積和運异結果。在整個裝置中,可從數位計算單元加獲得 因執行二維乘積和運算而產生的數位資料。 .經由η位元寬度水平信號線心將連接至奇數編號行 (2j-l)Vi、V3、. (j為一或更大的正整數,此條件適用此具 體實施例的以下說明)的行AD電路25連接至數位計算單^ 282的第一輪入端子,同時經“位元寬度水平信號線18b 而將連接至偶數(2j)編號行V2、V4、…的行八〇電路25連接 101832.doc -49- 1281821 至數位計算單元282的第二輸入端子。 數位計算單元282根據經由水平信號線丨8a輸入的奇數編 號行中之兩列之差處理中所獲得的差資料D3a以及經由水 平仏唬線1 8b輸入的偶數編號行中之兩列之差處理中所獲 侍的差資料D3b,沿列方向以兩行為單元來執行差計算,從 而輸出最終的差資料(數位差處理信號)。 與圖3所示沿行方向以二列為單元所執行的差計算一 φ 樣,在數位計算單元282之差處理中,藉^㈣與圖3所示 差計算所用者相同的係數從奇數編號行之差資料D3a減去 偶數編號行的差資料D3b,從而計算出差資料D3 = D3a-D3b。 <第三具體實施例;固態成像裝置之空間差處理操作;二 維處理;第一範例>
圖!2為說明_所示第三具體實施例之固態成像裝U 之行AD電路25中之空間差處理操作的時序圖。圖i3A與ΐ3β 籲言兒明第三具韓實施例之組態中之空間差處理之使用模式。 藉由將像素信號從置放成矩陣的像素部分1〇的每一單元 像素3讀出至置放於每_行中的行AD電路25而沿行方向針 對兩列所執行的差處理操作,即藉由制行ad電路Μ而對
Hx列與邮列之數位計數值執行的差處理操作,類似於第 '一具體實施例。 行Μ電路25之計數器254將所獲得的指示差結果的數位 計數值傳輸至資料儲存單元256,並且資料料單元25一 由水平信號線18a與18b將奇數編號行與偶數編號行的取列 101832.doc -50- 1281821 與Hx+l列之差信號輸出至數位計算單元282。 在此種情形下,來自水平掃描電路12的水平婦描信號 CH⑴同時將儲存於資料儲存單元256中的用於兩行的數: 值,例如CH⑴與CH⑺、⑶⑺與CH⑷,…,輸出到水平信 號線18a與18b。
一作為圖12之時序圖中的輸出信號A,輸出奇數編號的行差 貝料D3a ’並且作為輸出信號B,輸出偶數編號的行差資料 D3b。例如,從輸出信號A的起點處輸出第一行之像素⑽ 像素21之間的差結果,並且從輸出信號B的起點處輸出第二 行之像素12與像素22之間的差結果。 一 因此’從數位計算單元282輸出之差資料⑴之第一輸出 為’藉由從圖叫示的單元像素3之第—列及第_行⑽素 11)與第二列及第二行(像素川之間的差異Vsigu_Vsi仰減 去第-列及第二行(像素12)與帛二列及第二行(像素叫之 間的差異Vsigl2-Vsig22而獲得的差資料,叫侧。 在第三具雔實施例中,與第二具體實施例中—樣 資料儲存單元256,並且由於可將保留於行沾電路Μ之; 數器W中的計數結果傳輸至資料儲存單元以,故^ 地控制計數器254的計數操作與用於將計數結果讀出 平信號線18a與18b的讀取操作。 :由根據欲進行差處理的像素數目來調整計數 目,可減小AD轉換週期’同時保持動態範圍或位元解 又。當用於獲得像素㈣之重設位準(參考成分)之正常〆 理期間的位元精確度^位元時,並且當欲處理的像素數: 101832.doc -51 - 1281821 (在此具體實施例中為4=2x2)時,將用於差處理中之AD轉換 的位元數目減小至m-l=3。接著,可將AD轉換週期減小至 Ι/m,而不改變參考信號RAMP或計數時脈CK〇的梯度。藉 由減小A D轉換的位元精確度而將A D轉換週期減小至丨/ *, 如圖12所示,可使圖框速率增加四倍。
如上所述,根據第三具體實施例的組態,可在數位叶曾 單元282中實施沿列方向的差處理。例如,計數㈣何: 由資料儲存單元256將計數值傳輸至數位計算單元加 不必沿行方向執行差處理。這使得數位計算單元282可執行 兩行之計數值之減法處理,因 U此可只施兩列像素的列方 句差處理。 緣,並且藉由f水平〜 水平方向侦測3 理,可…:亩向對複數個水平列執行邊緣❹" 體只施例中,在置放於行處理器^ 中執行沿列州㈣兩行的差處理==早疋28 處理方面,可獲得類似於了 u 广_式1將-像素信:;每 垂直信號線I9。因此, 抑— 早兀像素3輸出至 件,例如浮動擴散元件a 4單元像素3提供記憶體功能元 之電荷,並且可輸二電::::藉由:荷產生器所獲得 氣信號(電壓信號) 為所獲侍之電荷對應的電 之後,直至重設單將像素信號讀出至垂直信號線19 —一相 101832.doc -52- 1281821 態,不僅可沿第-或第二具體實施例中所述的行 且可沿列方向(與第三具體實施例中一樣),執行差J曾而 理,從而實施高精確度圖形識別功能。 °十异處 <空間差處理之使用模式;針對二行之二維處理> 例如’如圖!3A所示,首先,沿行方向 :差處理,以獲得每-行之-線性伸出的邊二 邊緣制影像)。接著,沿列方向以兩行為單元執(丁 = 理,以獲得每一列之線性伸出的邊緣輪廓(列:: 影像)。根據所產生的二維邊緣輪廊,分析邊緣的形== 目二决疋欲處理之圖形的特徵。將所得圖形與參考 比較,並且選擇最接近圖形的範本。 另外,藉由將圖3所示沿行方向以兩列為單元的行方向差 處理與藉由數位計算單元282以兩行為單元執行差計算的 列方向差處理組合,可實絲-丨—> —了只鉍一列一仃差處理。作為兩列兩 處理的使用模式,例如,作為二維邊緣摘測處理,可 執行角點座標抽取處理或45度傾斜邊緣_處理,如圖13Β 所不,從而實施傾斜方向直線偵測處理。 如上所述,將藉由置放於行處理器26後面的數位計算單 兀282來執行沿水平列方向的差處理之功能元件添加至藉 由使用置放於每一垂直行中的行ad電路Μ的模式切換向 上/向下讀功能而執行沿垂直行方向之差處理的組態。使 。可、准地擴展邊緣偵測處理、直線谓測處理或 圖案匹配處理。 在此種情形下,藉由使用置放於每-垂直行中的行AD電 101832.doc -53- 1281821 路25的模式切換向上/向下計數功能而停止針對複數列像 素信號的沿垂直行方向的差處理功能,僅操作用於抽取含 有重設成分與真實信號成分之像素信號的真實信號成分之 差處理功能,從而僅沿水平列方向對複數個像素信號執行 差處理。結果,僅可沿水平方向擴展邊緣偵測處理、直線 债測處理或圖案匹配處理。 <第四具體實施例;固態成像裝置的組態;三或更多列的 像素信號> 圖14為說明根據本發明之第四具體實施例之cm〇s固態 成像裝置之示意圖。第四具體實施例之固態成像裝Μ的特 徵在於’針對三或更多列的像素信號執行差處理,並且可 在第二具體實施例之固態成像裝L中實施帶符號的乘積 和運算。此處將說明沿行方向以三列為單元的差計算。 〜固態成像裝置1的基本組態類似於第二具體實施例之固 態成像裝置1。然、而,獨立於計數器254所用的計數時脈cK〇 • *提供DAC計數時脈CKdacM乍為用於產生從通信/時序控 制器純供至參考信號產生器27的參考信號RAMP(ADC參 考信號)之計數時脈。該等組態的其他特徵類似於第二具體 實施例。 措由5周整母—列之計數時脈CKdac的循環(頻率),可將 ;每】而"不同的筝考信號RAMP供應至電壓比較 252〇因此,藉由設定一
、, 疋奴處理之像素信號之參考信號RAN 之相同梯度(變化率),可勃
」執仃是處理,假定參考信號RAN 的梯度(變化率)係不同 J ^ 亦即,在將來自每一單元像清 101832.doc -54- 1281821 的像素信號(更特定言之為真實信號成分)與一係數相乘之 後,執行減法處理。亦即,可實施一乘積和運算函數來求 出帶符號的和。 <第四具體實施例;參考信號產生器之功能說明> 圖15 5兒明第四具體實施例之固態成像裝置1中所用之炎 考信號產生器27之DA轉換電路(DAC)27a之功能。 在從通信/時序控制器20接收到DAC計數時脈CKdac之 φ 後’ DA轉換電路27&同步於計數時脈CKdac產生一階梯形鋸 齒波(斜坡波形),並且將所產生的鋸齒波供應至行AD電路 25之電壓比較器252以作為AD轉換參考電壓(adc參考信 號)。 " DA轉換電路27a根據控制資料CN4中所包含的指示每一 比較處理之斜坡電壓之梯度(變化率)的資訊來設定電壓於 每時脈之變化數量ARAMp,並且改變每單元時間的計數值 (計數時脈CKdac)。在現實中,設定關於計數時脈CKdac2 • 最大計數數目(例如,對於10位元為2.0)的最大電壓寬度就 足夠了。 口此對於母一计數時脈CKdac,DA轉換電路將指示 控制貧料CN4中所包含的初始值的電壓(例如3 〇 減小 △ RAMP 〇 當設定來自單元像素3之像素信號(更特定言之為真實信 號成分)的係數時,通信/時序㈣器20將縮小至用於設定係 數1之計數時脈CKdacl之參考循環之1/m的計數時脈 CKdacm供應至0八轉換電路27&。對於每—計數時脈 101832.doc -55- 1281821 CKdacm,DA轉換電路27a將指示控制資料CN4中所包含的 初始值的電壓(例如3·0 V)減小ΔΙΙΑΜΡ。 使用此配置,與使用計數時脈DKdacl(=CK0)來產生參考 信號RAMP的情況相比,欲供應至電壓比較器2 5 2的參考传 號RAMP的梯度增加l/m倍,並且對於相同的像素電壓,計 數器2 5 4中的計數值增加m倍。亦即,可設定係數m。
圖15顯示,當參考信號RAMP的梯度較大時,與單元像素 3中累積的資訊數量相乘的係數較小,而當梯度較小時,則 β亥係數杈大。例如,藉由供應縮小至計數時脈1之參 考循環之1/2的計數時脈CKdaC2,可將係數設定為2,並且 藉由設定縮小至計數時脈CKdacl之參考循環之1/4之計數 時脈CKdac4,可將係數設定為4。#由供應縮小至_的計 數時脈CKdacnm,可將係數設定為m/n。 藉由調整供應至參考信號產生器27的計數時脈CKdaenm 的循環,同時對於每一計數時脈CKdacm,將電壓改變(在 此具體實施例係減小MRAMP,可容易並且精確地設定係 數藉由凋整像素#號之信號成分Vsig之計數操作模式, 可指定係數的符號( + /_)。 用於設定係數的方法僅係範例,並且可使用另一種電 路。例如,當計數器254的輸出值為x,並且當控制資料^ 2包含的斜坡電壓的梯度(變化率)為㈣時使供應至參 —L唬產生器27的計數時脈CKdac的循環固定時,輸出由 :«(初始值)倾算的電位。以此方式,根據指示控制資 "CN4中所包含的斜坡電壓的梯度(變化率)的資訊,可調整 101832.doc
-56- 1281821 母一计數時脈CKdac之電壓變化aRAMP 〇 <第四具體實施例;空間差處理操作> 圖16為說明圖14所示第四具體實施例之固態成像裝置工 之行AD電路25中之空間差處理操作的時序圖。根據第四具 體實施例之組態,在執行複數個像素信號之乘積和運算的 過程中,可供應不同的係數來執行減法處理或加法處理。 在此範例中,在執行行AD電路25之計數器254中的計數 _ 操作時,應用於「3j_2」線H1、H4、...(j為-或更大的正整 數)的係數αΐ為1,應用於「3^」線犯、H5、···的係數α2 為並且應用於r3j」線η3、Η6、··.的係數。因此, 對於像素信號的信號成分Vsig,通信/時序控制器2〇控制計 數器254來執行「3j_2」線的向上計數、「3Η」、線的向下計 數以及「3j」線的向上計數。 因而,在完成對第3j像素信號V3j的第三計數操作之後保 召於u十數器254中的計數值為n位元數位資料,其表示三像 • 素信號Vj3_2、V3H與V3j之間的差處理結果(加法/減法; 使用帶符號值的乘積和運算)(vsigl_2.vsig2+vsig3),如等 式(5)所示。 [數學等式5] α 1(信號成分Vsigl)- α 2(信號成分Vsig2)+ α 3(信號成分 Vsig3) =(信號成分Vsigl)_2(信號成分Vsig2) +(信號成分 Vsig3) ...(5) 仏$在第四具體實施例中已論述以三列為單元並包括差 101832.doc ~ 57 - 1281821 °十异的乘積和運算,但可以四列或更多列為單元來執行乘 積和運算。在此種情形下,某些像素可使用相同的梯度(變 化率)’並且其他像素可使用不同的梯度(變化率)。 ^就欲處理的複數條線之最後一條線之像素信號而言,在 70成第二計數操作之後保留於計數器254中的計數值為η_ 位元數位值,其表示1個像素信號¥1,¥2,〜,¥1^之間的乘積 和運算(加法/減法;使用帶符號值的乘積和運算)結果,如 φ 等式(6)所示。應注意,係數仲包含一個符號。 [數學等式6] ^l-Vsigl + ^2-Vsig2 + ...+ ^k-Vsigk ...(6) <空間差處理之使用模式;三或更多列> 圖17A至17F說明第四具體實施例之組態中之空間差處 里。之使用核式。參考圖16所述,藉由使用計數器254的向上 /向下計數功能,可對三或更多列實施加法/減法(帶符號的 乘積和運算)處理,以獲得各種經處理的影像。作為使用模 • 式之一,可實施線性空間濾波功能,而不使用行處理器26 外部的特殊電路。 圖ΠΑ至17F說明當對三或更多列執行一乘積和運算時 斤獲得的卫間濾波器的範例。藉由針對每一列調整從泉考 2諕產生器27供應的參考信號RAMp的梯度,可根據需要設 疋濾波器係數。例如,如圖17A所示,可將濾波器係數設定 為1 -2、1 ’或者如圖丨7B所示,可將濾波器係數設定為卜 1從而實施空間濾波器以增強中心像素。 另外,藉由調整像素信號之信號成分Vsig之計數操作的 101832.doc -58- 1281821 模^可指定係數的符號(+/.)。例如,如圖i7c所示, 该等係數設定為_ 1、2、-1,哎如圖〗7n — 、 皇…炎, 紗圖17D所不,可將該等係 ,疋為3:·1’從而實施-空間滤波器以增強具有與 Θ 17A及1 7B所示相反特性的中心像素。 藉由停止特定像素的計數操作,可將該等係數設定為〇。 例如’如圖m所*,可將係數設定為]、〇、i,或者如圖 17F所不,可將係數設定為}、〇、],從而沿垂直行方向 施差動濾波器。 根據上述優點,可實施影㈣縮處理中常用的離散餘弦 變換:在離散餘弦變換中’必要的係,例如,在加上所得 值之前,將8x8個像素乘以—餘弦係數,而且,餘弦係數: 有-符號。因@ ’當需要使用正、負號的計算,如離散餘 弦變換,可藉由應用第四具體實施例的組態而容易地實施 所需的功能。 <第五具體實施例;固態成像裝置之組態;三或更多行之 二維處理> 圖18為說明根據本發明之第五具體實施例之cm〇s固態 成像裝置之示意圖。第五具體實施例之固態成像裝置丨的特 徵在於’將用於沿列方向執行差處理的元件添加到第四呈 體實施例之固態成像裝置丨。第五具體實施例之固態成像裝 置1的特徵在於,將用於沿列方向實施空間差處理的元件^ 加至第二具體實施例之固態成像裝置丨,並且針對三或更: 行修改圖U所示第三具體實施例「二列χ二行」固態成像^ 置1。 101832.doc -59- 1281821 以下將根據圖16所示沿行方向以三為 算而沿列古A 一 乂丄 马早兀之乘積和運 成像裝置ΓΓ三單元執行乘積和運算的三列X三行 、 锰官此處未說明,但如果根據沿行;θ、 為單元的差處理來沿列方向以三行為::執仃方:以兩列 曾,-Γ x 灯碍早凡執仃乘積和運 ;元:置二列:三行成像裝置。如根據沿行方向以J列為 和運异來沿列方向以四或更多行(k行)為單元執 订太積和運算,則可配置j列xk行成像裝置。
像執Λ乘積㈣算的主要功能元件,固態成 "/、數位计异早70 282用於執行包括輸出電路28中 2位元減法處理的乘積和運算。將三η位元水平信號線 …a、18b與l8e)置放於行處理㈣與輸出電路28的數位 計弃單元282之間。 經由11位凡寬度水平信號線18a將連接到3j_2行νΐ、V4、 的行AD電路25(j為—或更大的正整數,該條件適用於此具 體實施例的以下說明)連接到輸出計算單元282的第一輸入 知子、’二由巧位元覓度水平線1 8b將連接到3j-1行V2、V5、· · · 的行AD電路25連接到數位計算單元282的第二輸入端子。 經由以立几寬度水平線丨“將連接到3j行V3、V6、…的行AD 電路25連接到數位計算單元282的第三輸入端子。 數位计异單凡282根據經由水平信號線18a輸入的3j_2行 的差貝料D4a、經由水平信號線18b輸入的行的差資料 D4b,以及經由水平信號線18c輸入的3j行的差資料D4c,沿 列方向針對一行執行伴有差計算的乘積和運算,從而輸出 隶終计异出的數位資料D 4。 101832.doc -60 - 1281821 在此具體實施例中,由於可將保留於計數器254中的計數 結果傳輸至記憶體器具256,故可獨立地控制計數器⑸的 t數操作以及用於將§十數結果讀出到水平信號線1 $的讀取 操作,從而對三行像素實施列方向差處理。 猎由沿圖16所示行方向以三列為單元組合列方向差處理 與行方向差處理,可實施三列三行差處理。儘管將固態成 像裝置1配置成使得置放於行處理器26外部的數位計算單 • 元282沿列方向對三行執行差處理,但在沿行方向的差處理 方面,可獲得與第一或第二具體實施例所獲得者類似的優 點。 未顯示圖18所示第五具體實施例之固態成像裝置丨之行 AD電路25中之空間差處理操作的時序圖。然@,基本上, 可將沿圖16所示行方向執行三列之差處理的第四具體實施 例應用於執行沿列方向之差處理的第三具體實施例,如圖 12所示。 • 因此,來自水平掃描電路12的水平掃描信號CH(i)同時將 儲存於行AD電路25之資料儲存單元256中的用於三行的數 位值,例如 CH(1)、CH(2)及 CH(3)、CH(4)、CH(5)及 ch(6)、… 輸出到水平信號線18a、18b及18c。 因而,從數位計算單元282輸出的差資料D4之第一輸出 為,藉由從第一列及第一行(像素丨丨)、第二列及第一行(像 素21)與第三列及第一行(像素31)之間的差 Η-(ν&ιΐ-ν&2ΐ+ν&3ΐ)減去第一列及第二行(像素12)、 第一列及弟二行(像素22)與第三列及第二行(像素32)之間 101832.doc -61 - 1281821 的差r2-(Vsigl2_Vsig22+Vsig32),並藉由將第一列及第三 仃(像素13)、第二列及第三行(像素23)與第三列及第三行 (像素33)之間的差r3_(Vsigl3_Vsig23+Vsig33)加到以上減 法結果,而獲得的結果(D4=rl,D4ai2,D4b1>D4c)。現在 假定係數rk不帶符號。
在此具體實施例中,與第二具體實施例中一樣,提供資 料儲存單元256,並且由於可將保留於行AD電路乃之計數 裔254中的計數結果傳輸至資料儲存單元256,故可獨立地 控制計數器254之計數操作以及用於將計數結果讀出至水 平信號線…、18b與18e的讀出操作。藉由減小ad轉換的 位元精確度而將AD轉換週期縮短至1/9(1/3 · 1/3),可使 框速率增加九倍。 在此/、體實%例中’與第四具體實施例一樣,如果將{ 數rk叹疋為i、_2、丨,則在數位計算單元Μ]的差處理中 用於3k 2仃VI、V4、···的係數,1(k為一或更大的正整數 並且該條件適用於此具體實施例中的以下說明)為!,用方 U丁 V2、V5、…的係數,2為·2,並且用於讣行%、π、. 之係數,3為1。因此,可從數位計算單Tt 282輸出差資米 D4=D3a-2*D3b+D3cii。 〃上所述’根據第五具體實施例之組態,與第三具體漬 方也例的組態一樣,可在齡办Α/τ 夕 ^』在數位计异單元282中實施針對三或更 :行的列方向差處理。藉由單獨使用列方向差處理,可實 加水平方向的空間濾波處理。 猎由組合如圖1 6所示沿;^千士 a 化仃方向以三列為單元的行方向差 101832.doc -62- 1281821 處理與數位計算單元282所執行的以三或更多行為單元的 列方向差處S,可實施沿行方向及/或列方向並具有彼此對 稱之係數的二維空間濾波處理。 〈空間差處理之使用模式;三或更多行之二維處理〉 圖^八至丨卯說明第五具體實施例之組態之空間差處理 之使用模式,並且亦說明此具體實施例中所形成的二維空 間濾波器之範例。 例如,藉由單獨使用列方向差處理,可實施沿水平方向 的空間遽波處理,因此,如圖19A所示,可形成用於偵測垂 直區段的二維空間濾波器。另外’由於可將一特定列的係 數設定為0,如圖19B所示,可實施水平方向差動濾波器。 另外’藉由組合沿行方向以三列為單元的行方向差處理 與數位計算單元282所執行的以三行為單元的列方向差處 理’可實施三列三杆矣處审 ., 、 一 处。作為三列三行差處理的使用 模式’可將用於沿行方向及列方向的差處理之係數設定為 二、-^,如圖19C所示,從而實施二維空間濾波處理以相 :於8個相鄰的像素增強中心像素,即模糊掩蓋銳化濾波處 1二其係所:的羅伯次操作元’以作為三列三行空間滤波 精由將第—係數從2改為,例如3,如圖㈣所示,可實 施具有較高增強程度的模糊掩蓋銳㈣波處理。 、 上所*纟據第五具體實施例,可容易地對—矩陣中 :::像素3實施多重輪入乘積和運算。由於可置放來自單 I C Μ像素信號’故可應用空間濾波器,並且可容易地 影像感測器上實施空間濾波器。亦可容易地實施用 101832.doc -63 - 1281821 於增強影像邊絡& _ 還緣的一維模糊掩蓋銳化濾波器。另外,可以 維方式來實施離散餘弦變換(其常用於影像壓縮處理)。 <應用於加法計算> 、祀據以上说明可知,藉由對像素信號使用相同的計數模 式/可將汁數操作的係數設定為全正或全負。這意味著僅 執:加法處理。而且,由於可藉由改變從參考信號產生器 仏應的參考信號11八1^11>的梯度而設定係數,可實施無法藉
i括減去運异之乘積和運算來實施的濾波器處理。例 。如果將奴處理之像素信號的所有係數設定為相同,則 可貝鈿平滑濾波器處理,例如圖19E所示的處理。如果將中 、象素的係數„又疋為大於周邊像素的係數,則可實施用於 增強中心像素的加權加法處理,例如圖19F所示的處理。 <第六具體實施例;固態成像裝置之組態;某一行之二維 處理之第一範例> 圖20為說明根據本發明之第六具體實施例之cm〇s固態 成j裝置^之示意圖。與第五具體實施例之固態成像裝置1 中-樣,第六具體實施例之固態成像裝置1的特徵在於,添 加了沿列方向執行差處理的元件。亦即,#由以一變換開 關將、、二由垂直#唬線丨9從單元像素3傳輸至行處理器%的 =比像素信號切換至置放於行平行結構中之複數個行… 電路25之一,亦可執行列方向差處理。 在第五具體實施例之組態中,藉由數位計算單元282來實 施列方向差處理功能。在第六具體實施例的組態中,於像 素部分1〇與行處理器26之間提供一行選擇處理器29〇,用於 101832.doc 64 - 1281821 CN12的控制下,變換開關294a選擇輸入至三輸入端子的像 素信號之一,並經由變換開關29乜之輸出端子將選定的像 素傳輸至對應行AD電路25的電壓比較器252。 在圖21中,行AD電路25係配置成在切換控制信號CN10 與CN12的控制下,從三條相鄰的垂直信號線19接收像素信 號。然而’可對行AD電路25與垂直信號線19的關係作各種 修改’例如,對於每三條線,可將一行Ad電路25指派給用 於三行的垂直信號線19。 在此範例中,調適行選擇處理器29〇,以切換將一行Ad 電路25指派給一垂直信號線19之常規結構以及將一行八〇 電路25指派給三垂直信號線19之結構。然而,如果僅提供 將一打AD電路25指派給三垂直信號線19的結構,則可移除 該變換開關組292,並且可針對三垂直信號線19而配置一行 AD電路25。 <空間差處理之使用模式;針對某一行之二維處理之第_
範例> 圖22A至22E說明第六具體實施例之組態中之空間差屬 理之使用模式的範例。在具有圖21料之行選擇處理器^ 之第六具體實施例之固態成像裝置1中,可藉由切換欲處, 的垂直信號線19,藉由沿列方向掃描(在複數個行上),: 沿行方向對複數個列執行計數操作。 ' 對於沿列方向與行方向的處理次序,可採用以 描方法,如圖22A所示。首先,沿 和 作,同時選擇某一垂直俨 ° J '仃計數携 直心唬線丨9,並且將藉由此處理所 101832.doc -66- 1281821 得之計數資料mo設定為後續計數操作的初始值(在此且體 實施例中’不必重設計數器254的計數值)。接著,切換垂 直信號線19’並且沿行方向對相同的』列執行計數操作。針 對欲處理的k行,重複此處理。 如圖22B所示’可採用以下第二掃描方法。針對某一垂直 掃描線職行計數操作,同時選擇某_水平列%,並且將 措由此操作所獲得的計數值設定為後續計數操作的計數值 ^在此具體實施例中’不必重設計數器中的計數幻。接 二藉由切換垂直信號線19’可針對相同的水平列Ηχ依順 ^數#作。在完成所有行_)的計數操作之後,切 換欲處理的水平列,並且藉由切換垂直信號線㈣行所有 仃(W)的:數操作。針對j列重複此處理。或者,可採用沿 傾St掃描的第三掃描方法,即所謂的「錯齒形掃描」。 根據欲進行計數操作的列或行,可 的梯度,或者可將像素錢之信號成分 數模式設定為向上(向下)叶數桓…氣成刀)的汁 式,m + 向下(向上)計數模 ^ 執行乘積和運算,同時切換欲處理 早70像素3的係數帶符號)。 在第-至第三掃描方法之任一方法中,可 根據:Γ:立地供應參考信號_至靡行像素,並且; 在第:\第:定每—計數操作的係數响帶符號)。因此, 此對二::::例中’只能沿行方_^ 活地設定係數。因此減纟此具體實施例中,可靈 數口此,可形成一垂直方向谓測遽波器(例如 101832.doc -67· 1281821 圖22D所示者)或右傾斜方向福測遽波器(例如圖22E所示 者)。 在第-或第二掃描方法中,可根據濾波器係數的配置來 置放具有相同符號的許多係數,並且允許計數H 254有足夠 數目的位兀’以在執行計算時防止計算結果超出動態範 圍。相反,在第三掃描方法中,可執行掃描,使帶符號的 係數之和收斂於零,並且在執行計算時使計算結果不超出 動態範圍,即使不允許計數器254有足夠數目的位元。 <第七具體實施例;固態成像I置之組態,·某—行之二維 處理之第二範例> 圖2 3為說明根據本發明篦 、 升知73 t弟七具體實施例之CMOS固態 :像4置之不思圖。與第五或第六具體實施例之固態成像 襄置1中—樣,第七具體實施例之固態成像裝置1的特徵在 於,添加了沿列方向執行差處理的元件。特定言之,在第 七具體實施例之組態中,外童f哭0 τ彳數斋254係配置成藉由使用已知 技術來載入蓽一初始值。 將初始值設定以控制錢cm續人到每—計數器254 的載入端子LD,並且將先前斗叙w 于无月〗汁數裔254的輸出資料輸入到 後續計數器254的對應資料設^端子Din。使用此組離,可 沿列方向將置放於行平行結構中的行ad電路25(更特定古 之,計數器254)級聯。 ° 以下說明三列三行乘積和運算。然而,此僅係範例,可 根據需要來設定列與行之組合數目。在此具體實施例之也 癌中’採關22A中所示的第_掃描方法,並且針對每一垂 101832.doc * 68 - 1281821 直仃執行計數操作。因此,較佳係配置控制線 計數操作的垂直行之計數器254停止操作,來= 作在^七具體實施例的組態中,-旦完成前—行的計數操 名j5又疋後一行的計數模式之後開始計數操作之前,將 =對前一行之計數器254中的計數操作所獲得之計數值設 :為:―行之計數器254的初始值,從而沿列方向實施乘: 運鼻。 一例^ ’首先’在第-行的計數器254中,沿行方向對第一 仃的一列執行差處理。在此種情形下,可針對第一 :列設定從參考信號產生器27供應的參考信㈣撕。在完 成第—行的計數操作之後,對於第二行而言,在藉由計數 切換控制信號CN5來設定計數模式之後開始計數操作 =則’將用於設定初始值的载人控制信號CNid供應至載入 端子LD,從而將第一行之計數器中之計數操作所獲得 之計數值設定為第二行之計數器254之初始值。然後,沿行 方向對三列執行差處理,同時設定第二行之每一列的參考 信號RAMP。 在完成第二行的計數操作之後,對於第三行而言,在藉 由特模j切換控制信號CN5來設定計數模式之後開料 數才呆作之别,將用於設定初始值的载入控制信號⑽d供應 至載入端子LD,從而將第二行之計數器254中之計數操作 所獲仔之计數值設定為第三行之計數器W之初始值。然 後,沿行方向對三列執行差處理,同時設定第三行之每— 101832.doc -69- 1281821 列的參考信號RAMP。使用此配置,可針對三列與三行 一乘積和運算。 在完成第三行之計數操作的預定時間,在開始對後續二 列的計數操作之前,通信/時序控制器20將記憶體傳輸指: 脈衝CN8供應至開關258以將計數結果供應至資料儲存單 兀〃在此種清形下,由於將藉由對三列與三行執行乘積 和運算所獲得之計數值儲存於每三行的計數器254中,並將 正確的。十开結果儲存於每三行的資料儲存單元⑽中。 然後,在預疋的時間’通信/時序控制㈣指示水平掃描 電路12讀出像素資料。回應於此指令,水平掃描電㈣依 順序偏移經由控制線12c供應至計數器254的水平選擇 ™⑴。在此種情形下’由於將正確的計算結果儲存於= 行:資料儲存單元256中,故從每三行的資料健存單元25: 將貝料項出至水平信號線1 8。 與第六具體實施例一樣,在第七具體實施例的組態中, 可執行計數操作’同時獨立地供應參考信號RAMP至每一 j 列k行像素。因此,可根櫨 凡a — J很據而要,又疋母一計數操作的係數 响帶符號),並且係數的設定可變靈活。使用此配置,與 第六具體實施例一揭r彬士、 +士 + , 樣可形成一垂直方向偵测濾波器(例如 圖22D所不者)或右傾斜方向偵測濾波器(例如圖22E所示 者)。 在圖23中’將先前計數器254的輸出資料輪入到後一叶數 器254之對應的資料設定端子Din中 '然而,如果在撕行 乾圍内,將特定計數器254之輸出資料輸人到所有其它計數 101832.doc -70- 1281821 器254的對應資料設定端子⑽中,則可採用圖22β所示的第 二掃描方法或圖22C所示的鋸齒形掃描(第三掃描方幻。 或者,可藉由使用複數個行AD電路25中的初始值設定函 數來僅執行沿列方向的乘積和運算,而且,亦可提供數位 計算單元282’例如第三具體實施例中的數位計算單元。在 此種情形下’數位計算單元282接收複數項數位資料作為沿 列方向在行AD電路25中的乘積和運算的結果,並根據該複 數項數位資料來執行沿行方向的乘積和運算,從而總體上 實施二維乘積和運算。 〈第八具體實施例;固態成像裝置之組態;彩色成像〉 、圖24為說明根據本發明之第人具體實施例之⑽$固態 成像裝置之不意圖。楚八目鱗每从", 弟八具體實施例之固態成像裝置1之特 2於,將像素部分10配置成在第二具體實施例之固態成 中執㈣色成像。此組態對於執行相同色彩成分的 差處理係有效的。 在用於接收像素部分10之每一電荷產生器之電磁波(在 =體實施例中為光)的光接收表面上,置放有複數個彩色 -’該等彩色遽光器形成用於執行彩色成像的分 色〉慮光器。在圖24中所千的益也丨rfr 靶例中’使用具有-所謂拜耳 *置的基本色彩濾光器,並 展狀 置放於方點陣中的單元像素 係關於紅(R)、綠(G)盥获 了…)與MB)形色濾光器(原色濾光器 放以形成像素部分10。 例如,將用於感測第一色私Γ 你私长虹 色衫(、,,工色,R)的第一色彩像素置 放於可數列與偶數行的交點處 析用於感測第二色彩(綠 101832.doc
-71 - 1281821 色;G)的第二色彩像素置放於奇數列與奇數行以及偶數列 與偶數行的交點處,並將用於感測第三色彩(藍色;B)的第 二色彩像素置放於偶數列與奇數行的交點處。使用此配 置’根據棋盤圖案每隔一線來置放具有R與G的二色像素以 及具有G與B的二色像素。 在固態成像裝置1中,如果決定欲使用的像素部分丨〇(器 具),則決定分色濾光器中之彩色濾光器的色彩類型與配
置,並且可唯一地指定二維點陣中所需位置處之彩色濾光 器的色彩類型。 因此,在第八具體實施例中’從通信/時序控制器2〇接收 讀取像素部分1G中之像素信號的指令之後,垂直掃描電路 14並不是沿垂直方向依順序掃描水平列,而是使用一垂直 解碼器14a’根據分色濾光器之彩色遽光器之配置,藉由位 址解碼處理來選擇列Hy。 亦即,指定欲進行處理的複數個單元像素3的位置,以使 欲進行乘積和運算(在此具體實 德中為差計算)的複數個 象素4唬具有相同的彩色濾光器。使 列與偶數列的色彩配置係不同:置’如果可數 立地執行差處理。 讀讀列與偶數列獨 <第八具體實施例;空間差處理操作> 圖25為說明圖24所示第八具體會 _ 、體具施例之固態成像裝置之 仃AD425中之空間差處理操作 — 序圖對應於圖7所示的時序圖。 @圖25所不的日寸 在具有拜耳配置彩色濾光器的 素#分10中,將圖24所 101832.doc -72- ίη Ν· 1281821 示的G與R彩色濾光器或B與G彩色濾光器置放於相同的列 中。因此,如果依順序選擇列Ηχ,則與第一或者第二具體 實施例中一樣,對具有不同色彩濾光器成分的像素執行計 算’從而引起色彩混合物。 相反在弟八具體實施例之組滤中’垂直掃描電路14依 順序選擇具有相同彩色濾光器成分組合的列Hy,如圖以所 示,例如奇數列m、H3、H5,…以及偶數列H2、H4、H6, ..., 從而對相同的色彩實施乘積和運算(在此具體實施例中,為 差處理),而不會引起色彩混合物。 例如’在圖24所示的像素配置中,如果以二列為單元來 執行差處理,則可實施奇數列H1中的像素與奇數列H3中的 像素之間的奇數列之差處理,例如列H1的像素G1〗以及列 H3中的像素G31,列H1中的像素R12與列H3的像素R32等。 同樣,可對列H2中的像素與H4中的像素之間的偶數列實施 差處理,例如列H2中的像素B21及列則中的像素β41,列 H2中的像素G22與列H4的像素G42等。 儘管在圖24中,根據拜耳配置將三個R、〇與B彩色濾光 态置放於類似點陣的單元像素3上,但濾光器的色彩類型或 配置次序不限於圖24所示的範例。例如,可使用拜耳配置 濾光器之一經修改的範例,或者可使用一互補彩色濾光器 或另一彩色濾、光器。 例如,代替置放於奇數列與奇數行之交叉處的用於感測 第二色彩(綠色,G)之第二色彩像素,可置放用於感測第四 色彩(翠綠色;E)的第四色彩像素。同樣在此情形中,可按 101832.doc -73- 1281821 照圖25所示的時序來執行差處理中的列選擇。 儘管未對色彩信號處理進行詳細說明,但可在輸出電路 28之後置放一影像處理器用於執行矩陣計算,以從對應於 四彩色濾光器的四彩色視訊信號產生可由人眼觀察到的三 RGB色衫。如果除了 R、三濾光器之外還置放翠綠色 (E)濾光器,則與使用三彩色濾光器的情況相比,可減小彩 色重製的差異’並且’舉例而言,可改善藍綠色或紅色的 重製。 在圖25所示的範例中,論述具有相同色彩配置之兩列之 呈處理。然、而’可執行具有相同色彩配置的三或更多列的 乘積和運#(減法及/或加法)。在此種情形下,藉由在具有 相同色彩配置之列之間執行乘積和運算,可執行具有相同 彩色遽光器成分之像素之間的計算,而不會引起彩色混合 物0 <第九具體實施例;固態成像裝置之組態;時間差處理 圖26為說明根據本發明之第九具體實施例之CMOS固) 成像裝置之示意圖。圖27A至27C為說明第九具體實施例, 所用之單元像素3之結構的示意圖。第九具體實施例之以 成像裝置!的特徵在於,可代替空間處理而執行時間處⑴ 偵測運動σ卩》,用於作為乘積和運算處理功能。當執行日 間處理時,對位於相同位置的像素進行處理。 从^具體實施例之像素部分1Q中的單元像素3包括一驾 :用:Γ;光'貞測器/光電轉換器具)32,例如光二箱 產生及累積與入射光對應的電荷;-放大電晶遵 101832.doc -74- 1281821
(M)42,其根據供應至控制區域(閘極)的電荷將對應於入射 光的類比信號輸出至放大電晶體42之源極與汲極之間的節 點34 ; — p通道讀出選擇電晶體34,其用於將電荷產生器32 中所產生及累積的電荷傳輸至放大電晶體42之控制區域; 一 P通道重設電晶體36,其用於重設放大電晶體42之控制區 域中的電荷;以及一 η通道垂直選擇電晶體40,其置放於放 大電晶體42與垂直信號線19之間,以分離/連接放大電晶體 42的源極與垂直信號線丨9。 如圖27Α所示,單元像素3的機制如下所示。將與電荷產 生器32所偵測到的入射光對應的電氣信號(信號電荷)供應 至放大電晶體42的閘極(控制區域),並且係藉由源極隨耦器 操作來放大其電流。接著,將電氣信號讀出至對應的垂直 信號線19,以使一信號電壓出現於垂直信號線19中。 使用η通道接面場效電晶體(JFET)作為放大電晶體。 JFET之P型區域亦用作一像素間記憶體(電荷儲存部分)以 用於儲存電界,其為電荷產生器32中㈣到的信號電荷。 藉由使用電荷產生器32與放大電晶體42中所累積的 L ^虎可短暫的間隔依順序從單元像素3輸出先前圖框的 信號以及目前圖框的信號,《其進行比較。 象素刀離垂直選擇電晶體40將放大電晶體42的源極 共同地連接到對應的垂直信號線19上。將功率供應電避
Vdd(正電壓)施力%益 力於母一放大電晶體42的汲極與電荷產生 裔3 2的陰極。 將傳輸讀出選擇電 晶體3 4的源極_汲極連接至電荷產生 101832.doc 1281821 器32的陽極以及放大電晶體42的閘極(控制區域)。而且,將 傳輸讀出選擇電晶體34的傳輸閘極(TG)共同地連接至用於 置放成矩陣之單元像素3之對應列控制線15(更明確言之, 為傳輸閘極線路),並且施加從連接至列控制線15之垂直掃 描電路14輸出的驅動脈衝0丁(}時,根據驅動脈衝的位準 來依順序操作傳輸讀出選擇電晶體34。 將電源供應電壓Vrd連接至單元像素3之重設電晶體3 6之 φ 汲極(重設汲極),並且將電壓施加於重設電晶體36之汲極。 將重設電晶體36之閘極(RSG)共同地連接到與垂直掃描電 路14連接的對應列控制線15(更明確言之,為重設線路),並 且重叹電晶體3 6的源極與傳輸讀出選擇電晶體3 4的源極係 彼此共同地加以使用。 S k垂直知描電路14將驅動脈衝# R G施加於重設電晶體 36的閘極時,根據驅動脈衝來操作重設電晶體36。將 像素为離垂直選擇電晶體40的閘極共同地連接至用於置放 φ 成矩陣之單_元像素3的對應列控制線15(更明確言之,為列 選擇線/垂直選擇線),並且根據來自垂直掃描電路14之驅動 脈衝$SEL之位準來依順序操作像素分離垂直選擇電晶體 40 〇 儘管未顯示,一負載電晶體部分係置放於行處理器26與 水平掃描電路12之間的垂直信號線19之信號路徑上,該負 載電晶體部分包括具有連接至對應垂直信號線丨9之沒極端 子的負載MOS電晶體(未顯示),並且提供一負載控制器(負 載MOS控制器),以用於控制負載M〇s電晶體之驅動。 101832.doc -76- 1281821 將形成單元像素3的放大電晶體42連接至對應的垂直信 號線19 ’並且將垂直信號線19連接至負載MOS電晶體的汲 極。而且’將來自負载控制器的負載控制信號CTld輸入到 負載MOS電晶體之閘極端子,並且當讀出信號時,預定的 ^亙疋電流繼續藉由連接至放大電晶體42的負載M〇s電晶體 流動。
在此具體實施例中,將一 JFET(其不僅充當放大器而且充 田像素間纪憶體)用作單元像素3,並且藉由使用JFET之記 隱體功旎,可獲得相同像素位置處之複數個圖框之像素信 唬然而,用於獲得相同像素位置處之複數個圖框之像素 信號的像素結構不限於使用JFET。 作為使用像素間圮憶體之像素結構,不僅可使用而 且可使用MOS一極體(其稱為「光閘」),如圖27b所示,以 作為電何產生$ 32之光:極體。在此像素結構中,將藉由 光閘以光電方式轉換的信號電荷傳輸至浮動擴散元件 〜用作像素間記憶體,橫跨讀出閘極Tx而形成, I且藉由放大電晶體42來放大浮動擴散元件Μ的電壓變 化’然後將其輸出。本例中,已重設浮動擴散元件38以輸 出一重設信號,然後經由讀出閘極Τχ而從已累積電荷的光 問咖號電荷,並且輸出像素信號。藉由像素信號與重 ❹叙⑽操作來有利地移除浮動擴散元㈣的KTc雜 訊0 間 作為使用浮動擴散元件38的另一 記憶體),可使用嵌入式光二極體 擴散結構(其充當像素 ’如圖27C所示。可認 101832.doc -77- 1281821 為’此像素結構中的讀出操作可藉由讀出選擇電晶體34使 用光閘來代替讀出閘極Τχ而進行操作。在嵌入式光二極體 中,可實施一弱暗電流,原因在於ρ-η接面處所產生的耗盡 層未達到像素表面,並且可防止電極材料(例如光閘)吸收 光。與使用光閘的結構中一樣,不產生重設期間出現的KTc 雜訊。 當使用光閘或嵌入式光二極體來代替JFET並將其與浮動 擴散7G件38(其用作像素間記憶體)組合時的讀出時序未加 以顯示。然而’一般而言,與下述圖28所示聰之讀出時 序-樣’在讀出浮動擴散元件38中累積的先前圖框的信號 成分之後,重設浮動擴散元件38,然後,將藉由目前圖框 中的曝光而在電荷產生器32中所產生的信號電荷傳輸至浮 動擴散兀件38,從而讀出目前圖框的信號成分。 圖28為說明用於驅動第九具體實施例之單元像素3之操
作的時序圖。圖28說明由一單元像素⑽執行的用於則 的間隔在二連續圖框,即n-1 、J 圖框)中,《人射光的讀出操作(先圖框(目前 在置放成-矩陣的單元像素3中,相同列中的單元 執行相同的讀出操作。在圖28中,η ’、 期t60至指干裳π 圖框或η圖框中的週 至㈣不弟_列之單元像素3之讀 … t70至t79指示第二列之單元 亚且週期 據圖28所R時序圖巾的㈣操作。現在主要根 _中之第一列之單元 操作與η圖框相同。 、出刼作。η-1圖框之讀出 101832.doc -78- 1281821 在該週期從η圖框的t60到t61(等於^圖柜之⑺之後的週 期)之前,每―列的驅動脈衝仰係保持於高位準,每一列 的驅動脈衝保持於高位準,並且每—列的驅動脈衝 彡RG係保持於高位準。 j此方式’在t61之前’由於每—列中的驅動脈衝仰處 於高位準,故傳輸讀出選擇電晶體34關閉,並且由於每一 列的驅動脈衝’處於高位準,故重設電晶體%關閉。 因此,將放大電晶體42的閘極(控制區域)設定於浮動狀 態。然而’由於寄生電容效應,對應於電荷產生器32中產 生的入射光並且當傳輸讀出選擇電晶體34在前一 圖框 中開啟時經由讀出選擇電晶體34傳輸至放大電晶體42的閘 極(控制區域)的電荷(第一信號電荷)仍保留於放大電晶體 42的閘極(控制區域),即使在讀出選擇電晶體“關閉之後。 放大電晶體42繼續藉由源極隨耦器操作輸出對應於閘極電 壓的電軋仍號,直至重設累積於閘極(控制區域)的電荷。 在將傳輸?買出選擇電晶體34關閉之後,於電荷產生器32 產生及累積對應於入射光的電荷(第二信號電荷)。在此種情 形下’苐一信號電荷為電荷產生器3 2中產生及累積的對應 於n-1圖框中之入射光的電荷,並且第二信號電荷為電荷產 生裔32中產生及累積的對應於η圖框(目前圖框)中之入射光 的電荷。 在t61之前,由於驅動脈衝^SEL處於高位準,故像素分離 垂直選擇電晶體40關閉’並且每一單元像素3係與垂直信號 線19分開。 101832.doc -79- 1281821
當該週期繼t60之後到達t6丨時,將第一列的驅動脈衝 彡SEL1反轉至低位準,並且將第一列之每一單元像素3之像 素为離垂直選擇電晶體4〇開啟,並且將放大電晶體42之源 極連接至垂直信號線19並開啟以選擇垂直信號線19。在此 種情形下,已將對應於入射光的第一信號電荷傳輸至前一 圖框(n-1圖框中的週期t63)之第一列之每一單元像素3之放 大電晶體42之閘極(控制區域),並且即使在將讀出選擇電晶 體34關閉之後,仍保留第一信號電荷。因此,將對應於已 保留之第一信號電荷之電氣信號輸出到垂直信號線19。 在t6卜將重設電晶體36關閉。因此,當於丨6丨處選擇之第 一列之每一放大電晶體42執行源極隨耦器操作時,增加放 大電晶體42之源極電位,直至在源極與汲極之間流動的電 流(汲極電流)達到藉由負載M〇s電晶體(未顯示)而在恆定 電流源中流動的電流值IB。 在此種情形下,亦已將第—信號電荷傳輸至前一圖矛丨 (n-l圖框之遇期t63)之第一列之每一放大電晶體42之閘本 (控制區域)’並且在完成傳輸操作之後(傳輸讀出選擇電: 體34關閉之後)仍保留閘極電麼。因此,藉由源極隨•禺器: 作而輸出對應於第一信號電荷的第一輸出信號v s s n _ i。: 一輸出信號V⑽·g由等式⑺表示。將如上所述偵測到; n-l圖框中的輸出信號Vssn—i輸出至對應垂直行的 路 25。 ' [數學等式7]
Vssn^l=VRD+vsl.VT=Vsigl (?) 101832.doc -80 - 1281821 在等式(7)中,VRD指示當重設電晶體“於^丨圖框中開啟 時供應的電源供應電壓,VS1表示根據卜丨圖框中之第一信 號電荷之放大電晶體42之閘極電位的增加,並且ντ表示當 放大電晶體42的汲極電流達到負載M〇s電晶體(未顯示)所 定義的負載電流IB時放大電晶體42之閘極與源極之間的電 壓。 VS1的值由「對應於入射光/閘極電容的第一信號電荷」 • 决疋實際上,藉由將驅動脈衝0RG重設為低位準的重設 操作,像素信號不僅包含真實的信號成分,而且包含第一 或第二具體實施例中所述的重設成分及其他變化成分。 VRD-VT包含重設成分及其他變化成分,並且對應於第一具 體實施例之變化成分,例如,重設成分(以下統稱Δγι)。 對於第一列之每一放大電晶體42,由於驅動脈衝 仍保留於低位準,故第二列的每一像素分離垂直選擇電晶 體40關閉’並且不將第二列之每一放大電晶體竹之源極連 參 接至垂直信裝線19(非選擇狀態)。然後,當該週期到達t62 時’將驅動脈衝外⑴反轉至低位準。 藉由在t62將驅動脈衝4RG1反轉至低位準,將第一列的重 設電晶體36開啟,以將電源供應電壓vrD(讀出位準)傳輸至 第一列之每一放大電晶體42之閘極(控制區域)。藉由開啟重 設電晶體36,從放大電晶體42之閘極(控制區域)釋放第一信 號電荷’同時,將放大電晶體42(控制區域)的閘極偏壓至電 源供應電壓VRD(讀出位準)。 當該週期到達t63時,將驅動脈衝0RG1反轉至高位準。因 101832.doc -81 - 1281821 此,將第一列的重設電晶體36再次關閉,並且將第一列之 放大電晶體42之閘極(控制區域)設定於浮動狀態。然而,由 於寄生電容效應,放大電晶體42的閘極依然係偏壓至電源 供應電壓VRD(讀出位準)。 當該週期達到t64時,將驅動脈衝八G1反轉至低位準,並 且將第一列中之每一單元像素3之傳輸讀出選擇電晶體34 開啟,以便將對應於第一列中之每一單元像素3之光二極體 中產生及累積的對應於入射光的電荷(第二信號電荷)傳輸 至第一列之每一單元像素3之放大電晶體42之閘極(控制區
域)。第二信號電荷充當根據11圖框中之入射光之電氣信號 電荷。 U 如上所述,當將對應於η圖框(目前圖框)中之入射光之臂 荷(第二信號電荷)傳輸至放大電晶體42之閘極(控制區域 時,藉由所傳輸的電荷來增加放大電晶體42的閘極電位。 因而,第一列之放大電晶體42執行源極隨耦器操作,並卫 藉由閘極電饵來增加放大電晶體42的源極電位。 在此種情形下,經由處於開啟狀態的像素分離垂直選擇 電晶體40將對應於第二信號電荷的第二輸出信號(第二電 氣信號)從執行源極隨耦器操作之第一列之每一放大電晶 體42輸出到垂直信號線ip。 ” 當該週期達到t65時’將第一列的驅動脈衝0TG1反轉至高 位準時,並且將第一列的每一傳輸讀出選擇電晶體則 閉。因此’完成將第-列之每—單元像素3之電荷產生器% 中產生及累積的對應於入射光的電荷(第二信號電荷)傳輸 101832.doc -82 - 1281821 至放大電晶體42的閘極(控制區域),因而,將放大電晶體^ 的閘極(控制區域)設定於浮動狀態。然而,由於寄生電容六文 應,對於所傳輸的信號電荷(第二信號電荷),閘極電位保持 於提高的位準。 在η圖框,傳輸至閘極(控制區域)並作為目前圖框之第二 信號電荷的電荷得以保留,直至在後續的n+1圖框(未顯示) 中重設閘極,即直至將重設電晶體36開啟。因此,將累積 _ 於閘極中的電荷用作n+1圖框中的第一信號電荷(前一圖框 之電荷)。 如上所述,將傳輸讀出選擇電晶體34開啟,以便將第二 信號電荷暫時傳輸至放大電晶體42的閘極(控制區域),然 後,將第二信號電荷保留於閘極(控制區域)中,即使在關閉 傳輸讀出選擇電晶體34之後。因此,藉由重設閘極之前的 源極隨耦器操作(t65之後),從放大電晶體42輸出對應於閘
極中累積的電荷(第二信號電荷)之t氣信號(第二輸出信號 Vssn)。 在從削至t65的週期中,當源極與没極之間流動的電流藉 由源極隨耗器操作而達到負載M〇s電晶體(未顯示)所定義 之負载電流IB,放大電晶體42之源極電位(第二輸出信號 Vssn)變為由等式⑻所表示的值。將如上所述偵測到的打圖 框輸出信號V s s η輸出至對應垂直行的行A d電路2 $。 [數學等式8]
Vssn=VRD+VS2.VT=Vsig2 ...(8) η圖框中開啟 在等式(8)中’ VRD指示當重設電晶體刊於 101832.doc -83 - 1281821 時供應的電源供應電壓,VS2表示根據n圖框中之第二信號 電何之放大電晶體42閘極電位的增加,並且ντ表示當放大 電晶體42的汲極電流達到負載M0S電晶體(未顯示)所定義 的負載電流IB時放大電晶體42之閘極與源極之間的電壓。 與VS1—樣,VS2的值係由「對應於入射光/閘極電容的 第一#號電荷」指示。實際上,藉由將驅動脈衝重設 為低位準的重設操作,像素信號不僅包含真實的信號成
刀而且包含弟一或苐一具體實施例中戶斤述的重設成分及 其他變化成一ντ包含重設成分及其他變化成:,並 且對應於第一具體實施例之變化成分,例如,重設成分(以 下統稱AV2)。 當該週期達到t69時,將驅動脈衝多SEU反轉至高位準 將像素分離垂直選擇電晶體4〇關閉,並且將第一列的單^ 像素3與垂直信號線19分離。 在後續週期m至t79中,在第二列的單元像素3上重複如 執行週期_至t69中之第一列之單元像素3之讀出操作,名 而在η圖框中執行時間差操作。 :上:述,將W圖框與η圖框中各自的輸出信號V 到行AD電路25’該等輸出信號係在兩個連❹ ㈣元像素3“的類度^並表讀據人射光從對肩 行==電轉換器具(例如光二極體)中產生及累積的電 了直接仏應至JFET的控制區 、 對應的電氣信號作為-…山每供應至間極的電荷 作為一“虎輪出,例如前-圖框的電氣信 101832.doc -84 - 1281821 號以及目前圖框的電氣信號。在此種情形下,經由垂直作 號線19 ’以傳輸至閘極之電荷轉換而來的電壓信號之形 式,來讀取像素信號。因此,與作為電荷輸出像素信號的 情況(電流模式)相比,可抑制由電荷分佈所引起的信號劣 化。 在行AD電路25中’偵測於兩個連續圖框⑹圖框盘n圖 框)之間所獲得之複數個圖框的第一類比輸出信號VsW與 第二類比輸出信號Vssn之間的差異,即執行時間差處理, 從而偵測運動部分。藉由重複上述操作’可偵測到另外的 兩個或更多連續圖框之間的運動部分。 <第九具體實施例;時間差處理操作> 圖29為說明圖26所示第九具體實施例之固態成像裝置丄 之行AD電路25所執行之時間差處理操作的時序圖1⑽ 結合圖框料㈣第九具體實_之日㈣差處理操作之時 序圖。 猎由分別以Π-1圖框(前—RI iii ^ u I—. 口 圖框)及η圖框(目前圖框)取代 圖6所示第二具體實施例之空間差處理中的列(前一列) 與η列(目前列),來執行圖29所示之時間差處理。 4亍AD電路25以短暫的pg岐分丨=— 心“ ^ 順序讀取累積於放大電晶 體42中的先前圖框η·丨的像辛 的像幻5唬¥_-1以及目前圖框η中 電何產生态32中所累積的券命 、, 轉的先則圖框叫目同的列之像素 秸唬Vssn,並且計算傻去产 沾兰H f #像素化就Vssn」與像素信號Vssn之間 的差異。 更明確言之,在完成前一圖框之像素信號V叫之第二 101832.doc
-85- 1281821 计數操作之後,當開始目前圖框之像素信號ν_之第一向 上叶數操作時,執行計數操作,不必重設儲存於計數器心 中^計數值。因此,時間差資料D5(其為完成目前圖框之像 素k唬Vssn之第二計數操作之後儲存於計數器254中的計 數值)變為指示不同圖框之二像素信號VssW與bn間之時 間計算結果(VSSn-l-Vssn)之數位值,如等式(9)所示。由於 係執行不同圖框(即具有不同的成像時間)之二像素信號 • Vssn^Vss11之間的差計算,差處理非為空間差處理,而 是時間差處理。 [數學等式9] =Vsigl_Vsig2 ==(^1圖框信號Vssn_n)_(n圖框信號Vssn) =(VRD+VS1-VT)-(VRD+VS2.VT) =VS1-VS2 ...(9) 除非等式(9)中的時間差資料D 5為〇,㈣圖框之間已發 春 生運動,因咚可偵測主體的運動部分。 纟據® 29巾所示的單元像素3之驅動時序可知,對於η_【 圖框(前一圖框)的像素信號,基於驅動脈衝^RG的重設成分 與其他變化成分Uvi)出現在真實信號成分Vsigl之後,而 對於η圖框(目前圖框)的像素信號,真實信號成分化丨以出現 在基於驅動脈衝彡RG之重設成分與其他變化成分(Δν2)之 後。 因此,當執行時間差處理的計數操作時,通信/時序控制 器20藉由上述成分的出現來控制計數器的計數模式。例 101832.doc -86 - 1281821 如,如圖29所示,對於 上計數模式中的△,加來執行= 與向 下计數模式中的Δνι執行計數操作m者針對向 號成分VsigI之計數值(像素資料卜 ^η·1圖框之信 對於後續η圖框,針對向 作,铁後,的AV2執行計數操 S 成分與向下計數模式中的m 相加而執行計數操作。因此 的
Fa1 ΛΛ # g v . , J將一圖框中的信號成分之 1的差異vslgl-Vsig2決定為計數結果。 可以認為,由於v 衝卿故兩者實質上仙⑽ 同時間點的驅動脈 巾者實貝上係相同的。因此,即使省去Δνι與 的计數操作’亦可將兩圖框之真實信號成分之間的差異
Vslgl-VSlg2決定為計數結果。在此種情形下,可將功率消 耗降低與計數操作相等的數量。 當根據由上料間差處理所獲得之計數值_運動部分 時’較佳係執行臨界處理,以便防止由隨機雜訊等成分所 引起的錯誤決定1即,可決定當等式(9)中所獲得的值大 於或等於預定的值時偵測運動部分。 然而,如果景深太亮或太暗,則無法以高精確度產生運 動仏號。電荷波動所引起的散粒雜訊與信號幅度的平方根 成正比。亦即,如果因景深較亮而使光度較高,則散粒雜 戒的位準變高。因此,如果決定處理的臨界值係恆定的, 則會錯誤地將具有較高光度的靜態主體決定為一運動部 分’或相反地,無法充分地偵測到低對比度主體的運動。 如果景深係暗的,則會錯誤地將靜態主體決定為運動部 101832.doc -87- 1281821 分,原因在於其易受隨機雜訊影響。 為解決此問題,根據該情況來調整決定處理的臨界值 例如,當主體的對比度較高或當景深較暗時,增加決— 理的臨界值。減,當主體的對比度較低或當景深較^處 減小決定處理的臨界值。使用此配置,可以高精確:來貞 測主體的運動。 如上所述,在此具體實施例中,將指示運動部分的時間 差資料D5作為n位元多層數位資料輸出。因而,可根據前一 圖框之電氣信號與目前圖框之電氣信號之間的差^並2據 環境狀況(例如主體的對比度或照明),以高精確度決定一主 體是否為運動部分。 儘管未給出詳細說明,但在正常操作期間,#由僅在圖 29所示之n圖框(目前圖框)之讀出週期期間執行操作,可僅 抽取視訊信號。圖29所示之η圖框(目前圖框)之讀出週期期 間之像素信號的符號為負、然而,藉由設定重心準_ 向下計數模式以及信號位準Vssn(真實信號成分ν々2)的向 下計數模式,可獲得帶正號的像素信號。 以類似於第—或第三具體實施例的方式來執行時間差計 算。藉由使用電壓比較器252與計數器254,將根據每一圖 框= 象素信號之電壓㈣與按預定梯度變化的參考信號進 :二i接著’以計數時脈對產生參考信號之時起至電壓 』=考信號重合之時為止的週期進行計數,從而根據 :的像素信號來獲得與電壓信號之間的差異相對應的計 因而,當執行AD轉換時,卩容易地獲得表示運動部 101832.doc -88 - 1281821 分的差信號,而不必在AD轉換器之後提供額外的差電路。 另外’與第-及第二具體實施例中一樣,可減小電路規 模或電路區域’並且可降低功率消耗。可減少用於與其它 功能連接的線路數目’並且由線路所引起的雜訊消 的電流不會增加。
在上述具體實施例中,將該複數個行仏電路25置放於垂 直行中’並且在對應的行AD電路25中同時處理從像素部分 10傳輸之-列之像素信號。在此組態中,藉由將比較處理 與計數操作組合而進#AD轉換,可執行時間差處理。可將 較處理與計數操作之組合來進行AD轉換而執行 二差處理的基本機制應用於逐個抽取及處理像素信號的 斋具。 々j已論述將此機制應用於具有單元像幻之器具,其_ 母二早元像素具有—像相記憶體,例如肿了或浮動擴黄 :。然而,該機制的應用不限於具有像素間記憶體的署 _It ’如果不提供像素間記憶體,則讀取前一圖框今 Ί號並將其與參考信號進行比較,料㈣此比彰 “將外獲得當完成比較處理時的計數-圖框的A:…部的圖框記憶體中而完成前- 形:二广:進行差處理之一圖框(前-圖框)的像素信號 前 ^料。在此種情形下’不必使用行AD電路25將 器來獲素信號形成為數位資料。可使用另—AD轉換 w —圖框的像素資料並將其儲存於圖框記憶體 101832.doc -89- 1281821 中。 然後,在目前圖框的Α〇轉換期間, 相同位署_ 义 使用與目ΙΪΓ圖框 处的先别圖框的計數值(像素資料)作為’If 的初始佶,脸你主仏 只7寸)作馬汁數操作 初始值’料素㈣與 執杆呌叙π a 疋仃比較,並且同時, 。&作,然後獲得完成比較處理時的計數值, 仃時間差處理。如果前-圖框的計數值(像辛次 號的資料,則可以向下計數模式來勃值(像素貝科)為帶正 作。 彳數#式來執行目前圖框的計數操 <第十具體實施例;應用於電子裝置> 圖31為說明根據本發明之第+ 弟十具體實施例之電子裝置之 換^ 第九具體實施例中,將以下類型的AD轉 用(AD轉換器具;上述具體實施例中的行AD電路)(盆 ==料處^單〜應用於固態成像裝置卜_換電路 與AD鐘姑車^益其用於將對應於欲處理信號的電氣信號 轉換參考信號進行比較;一呼齡哭甘 计數[其用於在藉由比 二二比較處理時,以向下計數模式與向上計數模式之 值來Γ㈣數操作,並用於在完成比較處理時保留計數 、…、而透過第一至第九具體實施例所論述的AD轉換電 路,貝料處理单元的機制不僅可應用於固態成像器具,而 且可應用於需要資料處理機制的任何電子装置,以獲得表 Γ、/、有相同物理屬性之複數個信號之間之乘積和運算結果 的數位資料。 在弟十具體實施例中,論述將本發明之資料處理方法或 資料處理裝置應用於固態^象裳^夕卜之電子裝置的情 101832.doc -90- 1281821 只要其具有相同的物理屬性即可 算。 形。與第-至第九具體實施例—樣,在此具體實施例中, 欲處理的信號為固態成像裝41之像素部分ι〇所輪出 素信號。’然而’可對像素信號以外的其他信號進行處理, 以使其可進行乘積和運
圖31所示的電子裝置800具有各種基於乘積和運算,士果 的處理功能’例如檢查固態成像裝置之缺陷像素之功能或 ㈣運動部分之功能。更明確言之,電子裝置8〇〇包括一控 制器具802,舉例而t,其使用-個人電腦,用於控制電子 裝置800的總體操作’該個人電腦係置放於該之中心部分 處之分離線的左側處’以及—AD轉換請5,其係置放二 刀離線的右侧處。% 了藉由分離線來分割控制器具⑼2與 AD轉換器8G5之外,亦可將電子裝置_形成為單一的μ 轉換器805’其包含控制器具8〇2並用作資料處理單元來獲 得表示複數個信號之間的乘積和運算結果的數位資料。 用作資料.處理單元的AD轉換器8〇5包括一電壓比較器 M2及-計數器854,其用於將從固態成像裝置工讀取的類比 像素信號轉換為數位資料。電壓比較器852與計數器854分 ♦別對應=電壓比較器252與計數器254,並且其基本操作係 頦似於第一至第九具體實施例之電壓比較器252盥計數器 254 〇 控制杰具802包括用於將AD轉換參考電壓供應至八〇轉 、。805之電壓比較器852的參考信號產生器827以及用於 控制參考信號產生器827及計數器854之輸出電路,以作為 101832.doc -91 - 1281821 用於控制AD轉換器805的功能元件。時序控制器82〇與參考 仏號產生器827分別對應於通信/時序控制器2〇及參考作號 產生器27,並且其基本操作係類似於第一至第九具體實施 例之通信/時序控制器20及參考信號產生器27。 貝也 在此具體實施例的獨特組態中,控制器具8〇2包括一資料 儲存單元828,其用於儲存乘積和運算主體之一的資料,2 及一決定/檢查單元830,其用於根據計數器854中所獲得的 指示乘積和運算結果的資料D8來檢查固態成像裝置用 於執行其他決定處理。 在第十具體實施例中,論述將本發明之資料處理方法或 資料處理裝置應用於固態成像裝置以外之電子裝置的情 形。與第一至第九具體實施例一 #,在此具體實施例中, 欲處理的信號為固態成像裝置!之像素部分1〇所輸出的像 素信號。然而,可對像素信號以外的其他信號進行處理, 只要其具有相同的物理屬性即可’以使其可進行乘積和 算。 _ 圖31所示的電子裝置800具有各種基於乘積和運算結果 的處理功能’例如檢查固態成像裝置之缺陷像素之功能或 價測運動部分之功能。更明確言之,電子裝置_包括—控 制器具802’舉例而言,其使用—個人電腦,用於控制電子 裝置800的總體操作,該個人電腦係置放於圖η之中心部分 處之分離線的左側處,以及一 AD轉換器8〇5,其係置放於 分離線的右側處1 了藉由分離線來分割控制器具8〇2血 AD轉換器805之外,亦可將電子裝置δ⑽形成為單一的μ 101832.doc -92- 1281821 轉換器805,其包含控制器具8〇2並用作資料處理單元來獲 得表不複數個信號之間的乘積和運算結果的數位資料。 用作資料處理單元的AD轉換器805包括一電壓比較器 852及一計數器854,其用於將從固態成像裝置丄讀取的類比 像素信號轉換為數位資料。電壓比較器852與計數器854分 別對應於電壓比較器252與計數器254,並且其基本操作係 類似於第一至第九具體實施例之電壓比較器252與計數器 254 〇 控制器具802包括用於將AD轉換參考電壓供應至AD轉 換器805之電壓比較器852的參考信號產生器827以及用於 控制參考“號產生器827及計數器854之輸出電路28,以作 為用於控制AD轉換器805的功能元件。時序控制器82〇與參 考信號產生器827分別對應於通信/時序控制器2〇及參考信 號產生器27,並且其基本操作係類似於第一至第九具體實 施例之通信/時序控制器20及參考信號產生器2?。 在此具體實施例的獨特組態中,控制器具8〇2包括一資料 儲存單元828,其用於儲存乘積和運算主體之一的資料,以 及一決定/檢查單元830,其用於根據計數器854中所獲得的 指示乘積和運算結果的資料D8來檢查固態成像裝置i並用 於執行其他決定處理。 使用此組態,為實施檢查固態成像裝置1之缺陷像素的功 能,首先獲得欲進行比較的不具有缺陷像素的正常固態成 像裝置1的像素資料(下稱「正確資料」),然後從欲進行檢 查的固悲成像裝置1讀取像素信號,從而執行正確資料與像 101832.doc -93 - Ϊ281821 y就之間的差處理。根據處理結果來決定是否存在缺 :。較佳係檢查缺陷像素是Η暗缺陷像素或亮缺陷像 ^為檢查暗缺陷像素,在固態成像1置14於非曝光狀態 /件下’獲得正確資料並檢查像素。為檢查亮缺陷像素, =態成像裝置4於全白照相狀態的條件下,獲得正確資 科並檢查像素。 2獲传正確的資料’ AD轉換器8()5從欲進行比較的正常
每a成像裝置1獲知類比成像信號,並且以類似於第一具體 :施例之基本操作的方式,電壓比較器Μ2比較成像信號之 母一像素信號與從參考信號產生器827供應的一參考信號 RAMP(其以預定的梯度變化),並且搜尋像素信號與參考信 號RAMP重合的點。 " 士為在暗條件下獲得正確的資料,時序控制器82〇指示參考 U產生裔827減小參考信號RAMp的梯度,使之小於正常 的梯f這意味著,將暗條件下的低位準像素信號轉換成 具有高增益的數位資料。 在開始藉由參考#號產生器827產生參考信號的同 時’计數Is 854開始以時序控制器82()所指定的計數模式根 據片數日卞脈CKO來進行計數。纟此種情形了,時序控制器 82(K又疋计數裔854之計數模式,以便針對重設成分設定 向下计數杈式’並且針對信號成分Vsig設定向上計數模 式。這意味著’獲得正資料用作與信號成分Vsig對應的像 素資料。 計數器8 5 4對從產生電壓 比較器852中之比較處理所用 的 101832.doc -94- 1281821 參考信號RAMP之點起至像素信號與參考信號RAMp重合 之點為止的計數時脈CKO進行計數,並且將計數結果作為 内部暫存資料D9a關聯於像素位置而暫存於資料^存單^ 828中。AD轉•奐器805針對成像信號的所有像素重複該處 不必藉由使用AD轉換器805來獲得正確的資料。例如, 可從外部器具獲得正確的資料,可將從此外部器具輸入的 暫存資料D%關聯於像素位置而暫存於資料儲存單元咖 中。或者,可假定正確的資料係恆定的(―致的)而與像素位 置無關,在該情形下’正確資料的獲取係不必要的。 為檢查暗缺陷像素或亮缺陷像素,將固態成像裝置工設定 於預定的曝光狀態中。時序控制器82〇設定計數器854之計 數模式,以便針對重設成分Δν設定向上計數模式,並且針 對㈣成分Vsig設定向下計數模式。這意味著,獲得負資 料作為與信號成分Vsig對應的像素資料。 時序控制:器820指示參考信號產生器8 RAMP的梯度設定為與獲得正確資料時的情況相同這^ ;料=素信號轉換成數位資料,使其增益與獲得正確 貝枓呀的情況相同。 85:=:器820將初始值控制信號CN7供應至計數器 之像辛^不3十數盗854從資料儲存單元828讀取與欲處理 的=!:相同像素位置處的正確像素資料,並將所讀取 像素貝料設定為計數操作的初始值。 AD轉換器§ 〇5從欲檢杳 人柘查之固恶成像裝置!獲得一類比成 101832.doc -95- 1281821 像信號,並且電壓比較器852比較成像信號的每一像素信號 與從參考信號產生器827供應的參考信號尺八]^1>(其按預定 的梯度變化),並搜尋像素信號與參考信號RAMp重合的點。 在開始藉由參考信號產生器827產生參考信號RAMp的同 時,計數器854開始以時序控制器82〇所指定的計數模式根 據計數時脈cko來進行計數。接著,計數器854對從產生電 壓比較器852中之比較處理所用的參考信號RAMp之點起至 • 像素信號與參考信號RAMM合的點為止的特時脈CK0 的數目進行計數。 决疋/檢查單兀830藉由使用指示正確資料與實際資料之 間的差異並由計數器854中所獲得之計數值表示的乘積和 運算資料m作為缺陷決定諸而決定U存在缺陷像素。 —作為計數結果,獲得藉由從正常像素㈣減去實際像素 貧料而獲得的值。若無缺陷像素,所得計數值僅包含誤差 成分或雜訊成分,並且係足夠小的。相反,若有任何缺陷 •像素,可觀察到正確像素資料與實際像素資料之間的大差 二此:在檢查缺陷的像素時’為防止由誤差成分或雜訊 數1广成的錯誤決定,較佳係使決定/檢查單元830在計 中所獲得的乘積和運算資❹8達到-預定的數值 0守決定有缺陷像素。 :田使用包子裝置800來檢查缺陷的像素時,藉 由使用電壓比較器852盥計數哭 換器805來執行正確… 合所形成的八轉 來執订正確,具與欲檢查之主旨器具之間之像素 101832.doc -96- 1281821 ^'差處理。因此,如第一至第九具體實施例中所述, 田子处於實際狀態的像素信號執行ad轉換時,可從計數器 254直接輸出彳旨示正確狀態與實際狀態之間差異的數位資 料。 猎由使用資料儲存單以28作為用於儲存正確資料的圖 &思·可找到有缺陷像素,而不必使用一用於實際狀 ^像=乜戒的圖框記憶體或一用於執行正確器具與欲檢 一之α主曰态具之間的像素資料之差處理的額外電路。因 、可有放地執仃用於處於實際狀態的像素信號之AD轉換 ' ;私查缺陷像素的計算處理(在此具體實施例中的 差處理)。如果正確資料係恆定的而與像素位置無關,則必 須使用資料儲存單元828作為用於料正確資料的圖框記 “在圖/6所示的組態中,為實施運動部分偵測功能,藉由 :固像裝置1讀取欲比較之前-圖框之像素信號而獲
/于象素貝料接著,從固態成像裝置丄讀取目前圖框的像素 :號。接著,執行前一圖框之像素資料與目前圖框之像素 ,〜的差處理’從而根據處理結果來偵測一運動部分。 當獲得前-圖框的像素資料時,AD轉換器8〇5從 像裝置!獲得類比成像信號,並且以類似於第一具體實施例 之基本操作的方式,電壓比較器852比較成像錢之每 素“虎與從參考信號產生器827供應的一參考 RAMP(其u預定的梯度變化),並且搜㈣素㈣與參考作 號RAMP重合的點。 ° 101832.doc
-97- 1281821 在開始產生電壓比較器852之比較處理所用的參考信號 RAMP的同時’計數器854開始以時序控制器82〇所指定的計 數模式根據計數時脈CKO來進行計數。在此種情形下,時 序控制器820設定計數器854之計數模式,以便針對重設成 分AV設定向下計數模式,並且針對信號成分設定向上 計數模式。這意味著,針對與信號成分㈣對應的像素資 料獲得正資料。
計數器854對從產生電M比較器852中之比較處理所用的 參考信號RAMP的點起至像素信號與參考信似撕重合 的點為止的計數時脈CKG的數目進行計數,並且將計數結 果作為内部暫存資料D9a關聯於像素位置暫存於資料儲: 單元m中。AD轉換㈣5針對成像信號的所有像素重複該 處理。這使得可獲得及儲存前—圖框的像素資料,即使^ 成固態成像裝置丨之像素部分_單元像素林具有像相 記憶體。 、曰 -q設定計數著 之計數模式,以便針對重設成分Δν設定向上計數模: 且針對信號成分Vsig設定向下計數模式。這意味著: 與信號成分Vsig對應的像素資料獲得負資料。 時序控制器820指示參考信號產生器奶產 _,其具有與獲得前_圖框 ’ 、二丸 < 1豕京貝枓時相同的禚; 以味著,將目前圖框的像素信號轉換成數位資料,_ 增益與獲得前一圖框之像素信號時的情況相同。、 時序控制器82°亦將初始值控制信號CN7供應至計教 101832.doc -98- 1281821 854’並且指示計數器854從資料儲存單元828讀取與欲處理 之像素信號處於相同像素位置處的像素資料,並將像素資 料設定為計數操作的初始值。 AD轉換器805從固態成像裝置丨獲得目前圖框之一類比 成像信號’並且電壓比較器852比較成像信號的每一像素信 諕與仗參考尨號產生器827供應的參考信號ramp(其按預 定的梯度變化)’並搜尋像素信號與參考信號RAMp重
點〇 在開始藉由參考信號產生器827產生參考信號ramp的同 時》十數為854開始以時序控制器82〇所指定的計數模式相 據計數時脈⑽來進行計數。接著,計數H85顿從產生電 壓比較器852中之比較處理所用的參考信號讀P之點起至 像素L就與參考仏號RAMp重合的點為止的計數時脈⑶ 的數目進仃st數。AD轉換||8()5針對成像信號的所有像素 重複該處理。 、 一決定/檢查—單元83〇藉由使用指示兩圖框(其成像時間相差 二=:間(一圖框))之像素信號 =/得之計數值表示的乘積和運算資料卿為運戴 疋貢料’來決定是否存在運動部分。 :為:數結果,獲得藉由從處於與目前圖框相 的刖一圖框的像素資料減去
值。若主體無運叙,曰^則圖框之像素資料獲得K 八,並‘”、,所侍叶數值僅包含誤差成分或雜訊成 刀,亚且係足夠小的。相反,若 兩圖框之像素資料之間的大差異。有運動’可觀⑽ 101832.doc -99- 1281821 因此’在藉由決定/檢查單元請檢查運動部分時,為防 止由誤差成分或雜訊成分所造成的錯誤決定,較佳係使決 定/檢查單元咖在計數器854中所獲得的乘積和運算資料 D8達到一預定的數值時決定有運動部分。 如上所述,當使用電子裝置_來侦測運動部分時,藉由 ^用由電壓比較器852與計數器⑽之組合所形成的Μ轉 換器8〇5而執行兩圖框之間的像素資料差處理。因此,鱼檢
:缺陷像素:樣,當執行目前圖框之像素信號之Μ轉換 ^可直接獲得指示目前圖框與前—圖框之間差異的數位 貝料以作為計數器854之輸出。 藉由使用資料儲存單元828作為前—圖框的圖框記憶 ^一不具有像素間記憶體的器具可實施一運動部分制 工月,’而不必使用目前圖框的圖框記憶體或—詩執行兩 圖框之間的像素資料之差處理的額外電路。因而,可有效 地執行目前圖框之像辛作缺 ^ v 俅素仏唬之AD轉換以及用於偵測運動 b的計算4理(在此具體實施例中為差處理)。 雖然已參考所揭示的具體實施例來說明本發明,但應瞭 解’本發明的技術料不限於所揭示的具體實施例。相反, 本發明意欲涵以脫離本發明精神的各種修改與等效配 置’亚且於本發明之技術料内包含各種修改與配置。 上述具體實施例不限制所主張的發明,而且該等且體余 施例中所揭示的特徵之所有組合不—μ本發明之解^ 歧必需的。上述具體實施例包括本發明的各種模式 且精由適當地紐人辞望目麻也, ' …亥4具體實施例中所揭示的複數個特 101832.doc 1281821 二::侍各種發明。即使刪除該等具體實施例中所揭示 亦可根據所得特徵獲得本發^ 行=中在上述具體實施财’儘管AD轉換功能係配置於 於 刀U“虎的位置處,但其可位 ^ 处。例如,可將類比像素信號輸出至水平作浐 2線8。8’然後將其轉換成數位信號,並將其傳遞至輸出電: 而且在此情形中,腺、仓 與a轉換參抑㈣ΤΓΓ 算的複數個像素信號 6下斗去 。進订比車父’並且當執行比較處理時,以 向下計數模式及向上計數掇4♦ + ^ ^人 著,儲存〜# _式之一來執行計數操作。接 二=較處理的計數值。在此種情形下,將針 1數^ 异的複數個像素信號之—的數位資料用作 计數操作的初始佶,L上 貝丁卞用作 時,可庐得H 而,萄執行其他像素信號的AD轉換 了獲传表不乘積和運算結果的數 因此,可藉由計數H的針“t + °果。 JL m ^ ^ . 、、子功月b來實施一記憶體器具, :之存進行乘積和運算的複數個像素 #號之計數結果,並且 記憔體5|且戈 、於叶數器而提供一專屬的 心體杰/、來保留經AD轉換的资村 轉換功能,並且…Γ貝枓。所有垂直行僅需, ks品要快速轉換處理,但與前述具體實 竭情況相比,可縮小電路規模。 /、體貝 在前述具體實施例中, 開始於切_數;η、,、δ數模式之後的計數操作係 々狹口t數杈式之前的最钦 如果使用-向上/向下計數哭來;计數值。在此種情形下, 口口來同步於計數時脈CKO輪出計 101832.doc -101 - 1281821 數值,則不需要使料殊的配置來切換模式。 然而,如果使用—㈣步向均下計數器 限頻率僅由第一正反5!(g + 於刼作極 -甘“ $(核盗基本元件)的極限頻率決
疋’其適合快速操作’則當切換計數模式時會去失計數值: 因而,無法在切換計數模式前後保持相同值的同時執行正 :的計數操:。、因此,較佳係配置-調整處理 Η刀換植㈣之後的計數操作可開始於切 前的計數值。此處未給出調整處理器的細節。如果= 之間的加法處理’則第一與第二計數操作的計數 枳式係相同的’因而上述配置係不必要的。 在上述具體實施例中,現在假定,考慮一像素,其中按 時間順序」信號成分Vsigit}現在重設成分^(參考成分)之 後’並且第二級處理器處理_帶正號的信號(具有較高位準 之信號具有較大的正值)’決定像素的真實成分。在此種情 Φ下作為第一處理操作,針對重設成分^(參考成分)執 行=較處理與向下計數操作,並且作為第二處理操作,針 =信號成分Vsig執行比較處理與向上計數操作。然而,不 _參考成分與信號成分出現的時間順序為何,信號成分與 =數模式的組合及處理次序係任意的。根據處理次序,因 第一#作而獲得的數位資料可能為負值。在此種情形下, 可執行符號反轉或校正計算。 根據像素4为1 〇的盗具架構,必須在信號成分之後 〇貝取重。又成为Δγ(參考成分)。如果第二級處理器處理帶正 號的U虎肖更有效的做法係執行信號成分之比較處 101832.doc -102- 1281821 理與=下計數操作以作為第一操作並執行重設成分參 考成刀)之比較處理及向上計數操作以作為第二操作。 在以上具體實施例中,假定信號成分Vsig出現在相同像 素的重设成分Δν(參考成分)之後,則當執行複數個像素信 號之間的乘積和運算時,執行用於求出真實信號成分的差 二僅可對信號成分Vsig進行處理而不考慮重設成 刀f >分),則可省略用於求出真實信號成分的差處 理0 本_所述根據本發料處理方法、資料處理裝置、 半導體器具及電子梦署,此,、A老说 ^ ^ 參考信號進行比= 號與一用於AD轉換的 數模…丁此比較處理的同時,以向下計 數杈式與向上計數模式 成比較處理時的計數值。 以㈣’城存當完 為=二’將用於複數個信號之-的數位資料設定 今八則5就之叶數操作的初始值 個信號之乘積和運曾姓要h 了獲付表不複數 —二=:::作為計數結果。 用_執㈣轉換與轉:’故可構建 I數:轉::考信號來對一信號執行A D轉換,同時,使用 複數個信號來執行乘籍釦 丁使用 運算結果的計數值(/為^矣^。,可獲得作為乘積和 列像素信號號執:計數操作之後對-(η+ι) ”數模式設定為與,二=:=: 1〇1832.doc -103 - 1281821 (n+l)列計數操作所驊 〜伸之計數值變為一減士 (n+1)列計數操作的計 套、^果。如果將 則精由(η+1)列計數# 双铞作相冋, τ數知作所獲得之計數值 另外,在由比較5g盥、 加法結果。 l 興叶數器所形成的AD轉換琴夕冰植似 頟外的電路,例如用 、裔之外k供 储存經AD轉換之資耕沾垂s 器具或用於執行接W狀貝枓的專屬記憶體 、和運算的函數,係不必 小電路規模或電路區域。 要的攸而細 在上述具體實施例中, ^ 換操作模式來執行計數 W下5 4共同用於藉由切 器不限於可切換模而:論㈣模式為何。計數 計數模式與向上計數模;/向下计數為’只要其藉由向下 . 彳數_式之組合來執行計數操作即可。 冑由用於執行向下計數 執行向上計數的1双為電路與用於 淺的向上叶數器電路之 在此種情形下,較佳係你用n 數益。 始值的計數μ路^ 知技術來接收所需初 W Μ路。例如’如果在 向上計數,如圖 寸數之後執行 所不,則操作向下計數器電路以執 一計數操作,麸絲拥―二 电峪以執仃弟
^ …、後執仃向上計數器電路以執行第-舛IP 作。在此種情开彡下如一 1 订弟一汁數# 切換計數Γ·ν、^,猎由計數模式切換控制信號⑶5來 、 果式之後開始向上計數操作之前,將用於f6、 始值的負載控制信號CNld供應至向上計數哭電路 = 子LDn’從而將向計 、載、 定Μ P“ 所獲得之向下計數值設 疋為向上叶數器電路中的初始值。 所例如如果在執行向上計數之後執行向下計數,如圖32Β 不、"呆作向上計數器電路以執行第一計數操作,然後 101832.doc 1281821 執行向:計數器電路以執行第二計數操作。在此種情形 下在藉由汁數模式切換控制信號CN5來切換計數模式之 f開始向下計數操作之前,將用於設定初始值的負載控制 供應至向下計數器電路的負載端子LDd,從而將 向上計數器操作中所獲得之向上計數值設定 電路中。 双裔 在複數個仏旎之間執行加法處理時,於第二級計數電路 中開始計數操作之前,以類似於複數個信號之間之減法處 理的方式設定初始值,同時保持第一與第二計數操作的相 同計數模式。 一 述配置,在圖32八或32B所示的組態中,為獲得第 二級計數器電路的輸出,可直接地執行複數個信號(包括來 考成分與信號成分)之間的減法處理。此使得不必提供特殊 的加法電路來計算複數個信號之間的差異。另夕卜,沒必要 將貝料傳輸至減法器,因而,可抑制雜訊、電流或功率消 耗的增加。 使用由向下计數器電路與向上計數器電路之組合所 配,的^數為’則不會將第一計數操作中所獲得之計數值 ;疋為第一什數操作的初始I,而是從零開始第二計數操 在此種情形下,舉例而言,如果執行差處理,如圖32c 所示’需要額外的電路來將向上計數器電路之輸出㈣(正 值)與向下什數器電路之輸出Qd〇wn(負值)相加。在此種情 形下,為每-AD轉換器提供一加法電路,其係由一比較器 101832.doc -105- 1281821 與-·=數器所形成。因而,可使線路長度較短,並且可防 止由資料傳輸所造成的雜訊、電流或功率消耗的增加。 在圖32A、32B與32C所示的任一組態中,與上述具體實 施例—樣’可藉由通信/時序㈣器2G來提供用於操:向^ 計數器電路與向上計數器電路的指令。向下計數器電路鱼 向上计數器電路都可藉由計數時脈CK〇來操作。 在前述具體實施例中’置放成矩陣的NM〇WpM〇s單元 像素用在感測器中。然而’感測器不限於此種類型,並且 感測器,在該情形下,可獲得類似於上述具體實 細例的刼作與優點。 光具體實施例中,使用一具有像素部分以藉由接收 信號電荷的CM0S感測器,作為可藉由位址控制來 需單元像素讀取信號的固態成像裝置。信號 紫 π限於光’而可為-般的電磁波,例如紅外線、 :卜=射線。可將前述具體實施例中所揭示 有單元像素的半導體器具,在該等單元像素中置 =根據電磁波的數量來輸出類比信號的器具。 像辛^上述具體實施例中,置放方形單元像素3,但單元 像素3的配置不限於方點陣, 的像素部分Π)係傾斜45度。為斜點陣,其中圖1所示 儘管在前述具體實施例中 狀為方形’但不限於方形,而可為 =看的單元像素3的形 情形下,單元像素3的配置如下,使、_。形_(蜂房式_)。纽種 像素列均包括複數個單元像素。以像素打與-單元 -106 - 1281821 奇複數個單元像素沿行方向從形成-元像素行中的單-::70像素位移-距離’其等於每-單 的複數個單元像素位移 :二 編號列==距的約1/2。每-單元像素行僅包括奇數 J次者或偶數編號列中的單元像素。
積=控!線15來將基於單元像素3之電荷產生器中累 的 〜電何的像素信號讀取至行處理器26。以婉蜒曲折 的方式在蜂启守放+ ,米… 式早兀像素3周圍配置列控制線路15。換言 ,、頁邛觀看日守,在藉由將列控制線15置放成蜂房式 形成的’、角形空間中,置放單元像素3。使用此配置,總 間=2讀取像素信號,同時使單元像素位移像素間 藉由將單元像素3與列控制線is配置成蜂房式狀,可改善 表面兀件在度,同時防止每一單元像素3之電荷產生器之光 接收表面之面積下降。 如果像素部分10與彩色成像相容,則不論單元像素3的形 ^或配置,何’應選擇像素3,以便對相同的色彩成分執行 ^積矛運#。亦即’根據分色據光器之彩色濾光器之配置, 才曰定複數個單像素的位置,以使執行乘積和運算的複數 個單元^唬具有相同的彩色濾光器。
上述具體實施例中作為資料處理器的範例❿論述的— 轉換電路不必整合於固態成像裝置或另一電子裝置中。AD 101832.doc
-107- 1281821 S =可二為IC(積體電路)、AD轉換模組或具有乘積和 ^(貝料處理功能)來執行複數個像素間之運曾的資 料處理模組而單獨提供。 運-的貝 =此種胯形下’可提供包括比較器與計數 路(或資料處理器)。或者,可將 轉換電 之組合所形成的模組中,在”:二二中或由個別晶片 導體基板上安裝—失考曰曰片中’於相同的半 失老>考^唬產生器,其用於產生一 AD轉換 多考k號並將盆供廡$ 料教1 應至比較器’以及-控制器,其用於控 制计數裔中的計數操作模式。 藉由將AD轉換電路提供丨 數考w 杈仏到IC或杈組中,控制比較器與計 處置或管理H Λ (加以處置,從而輔助組件的 組整 i於AD#換所需的元件係作為1C或模 、正δ文便於作為製成品來製ID能A、# 子裝置。 木固您成像裝置或其他電 【圖式簡單說明】 圖1為說明CMOS固態成像梦 立 半導成像裝置的不意圖,其為本發明之 牛¥體為具之第一具體實施例。 圖2為說明圖1所示之第一 ^ ^ /、體只施例之固態成像裝置之 订an路中之基本操作的時序圖。 圖3為說明請示之第—具體 Μ電路中之空間差處理操作之時序圖。衣置之 圖4為說明根據本發明一 像裝置之示意圖。 二具體實施例之CMOS固態成 圖5為說明第二具體實雜γ λ 固恶成像裝置之行AD電路 101832.doc -108- 1281821 中之基本操作的時序圖。 圖6為說明圖4所示 一 —弟一具體實施例之固態成像裝置之 行AD電路中之空問兰+ 卫間差處理操作的時序圖。 圖7為說明與圖框# 迷率相關之空間差處理之時序圖。 圖8A、8B與8C說明繁一今、够 、 弟一或弟二具體實施例之組態中之空 間差處理之使用模式之第一範例(邊緣蝴。 圖9说明弟一或第二具體實施例之組態中之空間差處理 之使用模式之第-範例(邊緣偵測)。 圖10A與10B說明篦一々μ 弟 或弟二具體實施例之組態中之空 間差處理之使用模式之第二範例(圖案匹配)。 、圖U為說明根據本發明之第三具體實施例之CMOS固態 成像裝置之示意圖。 圖12為ϋ兄明第二具體實施例之固態成像裝置之行AD電 路之空間差處理之時序圖。 圖13Α與13Β說明第三具體實施例之組態中之空間差處 理之使用模式。 圖14為說明根據本發明 成像裝置^錢。之弟四具體實_^刪固態 圖15說明第四具體實施例之固態成像裝置中所用之表考 信號產生器之DA轉換電路之功能。 / 圖16為說明第四具體實施例之固態成像裝置之行AD電 路之空間差處理操作之時序圖。 包 =至_明第四具體實施例之组態中之空 理之使用模式。 & 101832.doc -109- 1281821 圖1 8為說明根據本發明之第五具體實施例之CMOS固態 成像裝置之示意圖。 圖19A至19F說明第五具體實施例之組態中之空間差處 理之使用模式。 圖20為說明根據本發明之第六具體實施例之cmos固態 成像裝置之示意圖。 圖21說明第六具體實施例之固態成像裝置中所用之行選 擇處理器之組態之範例。 圖22A至22E說明第六具體實施例之組態中之空間差處 理之使用模式。 圖23為說明根據本發明之第七具體實施例之cm〇s固態 成像裝置之示意圖。 圖24為說明根據本發明之第八具體實施例之cm〇s固態 成像裝置之示意圖。 圖25為說明第八具體實施例之固態成像裝置之行A。電 路之空間差處理操作之時序圖。 圖26為說明根據本發明之第九具體實施例之固態 成像裝置之示意圖。 圖27A至27C為說明第九具體實施例中所用之 之結構的示意圖。 节 圖28為說明用於驅動第九具體實施例中所用之單元 之操作的時序圖。 、 圖29為說明第九具體實施例之固態成像裳置之行ADf 路之時間差處理操作之時序圖。 电 101832.doc -110- 1281821 圖30為說明第九具體實施 處理之時序圖。 -圖框速率相闕的時間差 圖31為說明本發明之第十具體實施例之電子裝置之示意 圖。 圖32A、32B與32C為說明計數器之經修改範例之電路方 塊圖。 【主要元件符號說明】 1 固態成像裝置 3 單元像素 5 a 端子 5b 端子 5c 輸出端子 7 驅動控制器 10 像素部分 12 水平掃描電路(行掃描電路) 12a 水平解碼器 12b 水平驅動電路 12c 控制信號 14 垂直掃描電路(列掃描電路) 14a 垂直解碼器 14b 垂直驅動電路 15 列控制線 18 水平信號線(水平輸出線) 18a 水平信號線 101832.doc -111 - 1281821 18b 水平信號線 18c 水平信號線 19 垂直信號線 20 通信/時序控制器 23 時脈轉換器 25 行AD電路 26 行處理器 27 參考信號產生器 27a DA轉換電路 28 輸出電路 32 電荷產生器 34 選擇電晶體 36 重設電晶體 38 浮動擴散元件 40 選擇電晶體 42 放A電晶體 252 電壓比較器 254 計數器 256 資料儲存單元 258 開關 282 數位計算單元 290 行選擇處理器 292 變換開關組 292a單輸入多輸出變換開關 101832.doc -112- 1281821
294 294a 800 802 805 820 827 828 830 852 854 變換切換組 多輸入單輸出變換開關 電子裝置 控制器具 AD轉換器 時序控制器 參考信號產生器 資料儲存單元 決定/檢查單元 電壓比較器 計數器
101832.doc -113 -

Claims (1)

128城說期號專利申請案 ' 中文申請專利範圍替換本士年〗】月) \ ^ 十、申請專利範圍: 1· 一種資料處理方法,其包括: 藉由使用複數個信號之第一信號之數位資料作為一計 數操作的初始值,比較一對應於該複數個信號之第二信 號的電氣信號與一用於獲得該第二信號之數位資料的參 考仏號’在執行該比較處理的同時以一向下計數模式與 向上計數模式之一來執行該計數操作,以及當完成該比 較處理時儲存一計數值。 2·如請求項1之資料處理方法,其中比較一對應於該第一信 號的電氣信號與一用於獲得該第一信號之數位資料的參 考#號,在執行該比較處理的同時以該向下計數模式與 該向上計數模式之—來執行該計數操作,儲存當完成該 比較處理時的一計數值’從而獲得該第一信號的數位資 3.如請求項2之資料處理方法,其中,當獲得表示該等欲處 則,號之差計算處理之結果的數位資料時,將用於該第 -信號之計數模式㈣於㈣二㈣之計㈣式設 相反。 巧 4. 如請求項1之資料處理方法,其中一 以藉由切換該向上/向下計數器的處理:向上/向下計數器 作的該向下計數模式與該向上計、式:在該計數操 要文挺式之間切換。 5. 如請求項1之資料處理方法,其中 、 元 τ用於§亥計數操作的 數目係根據该複數個信號來調整。 ’' 、 6. 如請求項5之資料處理方法,盆中奋 八,萄欲藉由該乘積和運 101832-951122.doc 1281821 异來處理的信號數目為為指數)時,將用於該計數操 作的位元數目從用於對一欲處理信號執行正常計數操作 之位元數目減少m。 ' 7. 如請求項2之資料處理方法,其中用於該等欲處理信號的 一係數係根據該參考信號隨時間變化的數量來設定。 8. 如請求項以資料處理方法,其中表示一先前計:桑作中 所獲得之一計數值儲存於一預定的資料儲存單元中,並 且當執行-目前計數操料,從該諸儲存單元讀取該 計數值。 9·如明求項1之貝料處理方法,其中,在供痛測物理數量分 料-半導體H具中,以預定次序置放多個單元元件, 每一該單元元件包括—電荷產生器用於產生對應於所施 加電=波之電荷以及—單元信號產生器用於根據該電荷 =益所產生的電荷來產生—單元信號,該等欲處理的 U為精由δ亥早疋信號產生器所產生及輸出之類比單元 10·:請求項9之資料處理方法,其中該等單元元件係置放成 矩陣,並且針對細 > 于相冋仃、複數個列中由該單元信號產 生器所產生诉、VL彡-+ , 丁 向輸出以作為該欲處理的複數個信 號的信號來執行該計數操作。 U· St項9之資料處理方法,其中該等單元元件係置放成 二“並且針對相同列、複數個行中由該單元信號產 生為所產生並沿杆 ^ ^ ^ 乃向輸出以作為該欲處理的複數個信 5 虎的“波來執行該計數操作。 101832-951122.doc 1281821 ‘,*-«»·_〜—I—〜\ | 12.如請求項9之資料 … 一^| β 乃古其中遠専早^件係置放成 矩陣,並且針對相回A ^ ,, y 生…“ 複數個列中由該單元信號產 兮…户 仃方向輸出以及相同列、複數個行中由 搜m“ 生並…丁方向輸出以作為該欲處 理的複數個信號的信號來執行該計數操作。 該^之M料處理方法,其巾該計數操作係針對位於 個二IT:牛中相同位置處並於不同時間獲得之該複數 個么5虎來執行。 14· 一種資料處理裝置,其包括: 々二比較H,其用於比較—對應於複數個信號之一的電 破與—用於將該信號的電氣信號轉換為該數位資料 的參考信號;以及 一計數器’其用於在該比較器執行該比較處理的同時 以-向下計數模式與m丨數模式之—來執行一計數 操作ϋ用於在$比較n完成該比較處理時儲存一計數 值0 1 5·如明求項14之資料處理裝置,其中該比較器比較一對應 於忒複數個信號之第一信號之電氣信號與一用於獲得該 第一信號之數位資料的參考信號,並且當該比較器在執 行該比較處理的同時,該計數器以該向下計數模式與該 向上計數模式之一來執行該計數操作,並且當該比較器 完成该比較處理時儲存一計數值,從而獲得用於該第一 信號的數位資料。 16.如請求項14之資料處理裝置,其中該計數器係由一能夠 101832-951122.doc 1281821 年月、修&)正替換頁 數器電路戶 :=式與該向下計數模式之間切換的共用計 產生:二4:貝枓處理裝置,其進-步包括-參考信號 號並將該參考信號供應至該比較器。 考1口 u·如請求項17之資料 配置成中該參考信號產生器係 成°周整该參考信號隨時間變化的數量。 19. 如請求項14之資料處理裝置,並進牛里 於控制該計數操作的模式。/、 一-控制器用 20. 如請求項19之資料處理 A 信妒之笛一 ^ /、中"亥控制器將該複數個 ^ 叙彳數模以及該複數個信號之第1 唬之計數模式設定為相反。 弟一 t 21. =,料處理裝置,其中用於該計數器中之計 '、&兀數目係根據該複數個信號來調整。 2'=來^21之資料處理裝置,其中,當欲藉由該乘積和 =未處理的信號數目為2_為指數)時, 計 才呆作之位元數目從用於對一欲處 々數 知作之位元數目減少m。 f數 23.如請求項14之資料處理裝置,其進一步包括: -資料儲存單元,其肖於儲 所獲得之計數m 先^數操作中 之對:::!器’其用於與指派給該比較器及該計數号 之對應目則計數操作同時地從該。 數值。 电仔早兀碩出該計 101832-951122.doc I281821 - i4:' :卜 . …— ….........-,] 24· —種具有以預定次序置放之單元元件之半導體器具,每 一單元元件包括一電荷產生器,其用於產生對應於所施 加之電磁波的電荷,以及一單元信號產生器,其用於根 據該電荷產生器所產生的電荷來產生一類比單元信號, 該半導體器具包括: 一比較器,其比較一對應於該單元信號之電氣信號與 一用於將該單元信號之該電氣信號轉換成數位資料的參 _ 考信號;以及 一計數器,其在該比較器執行該比較處理的同時以一 向下計數模式與一向上計數模式之一來執行一計數操 作,並用於在該比較器完成該比較處理時儲存一計數值。 25.如請求項24之半導體器具,其進一步包括一參考信號產 生器,該產生器產生用於將信號轉換成該數位資料之該 參考信號並將該參考信號供應至該比較器。 26·如請求項24之半導體器具,其進一步包括一控制器,該 曝 控制器控制遠計數器之計數操作之模式。 27·如請求項24之半導體器具,其中針對每一行中的該等單 元元件置放一組該比較器及該計數器。 28_如請求項24之半導體器具,其進一步包括一單元信號選 擇處理器,該處理器藉由指定欲藉由該比較器與該計數 器來處理的母一該複數個單元元件之位置而將來自該單 元信號產生器的每一該複數個單元信號輸入到該比較器 中〇 29·如請求項28之半導體器具,其中該等單元元件係置放成 101832-951122.doc 1281821 C ,;* . . W- / γ οσ陣,並且該單元信號選擇控制器包括一行選擇控制 上Υ用於藉由逐行切換該等單元信號來將從相同行中之 /等單7L兀件之單兀信號產生器輸出的單元信號輸入到 該比較器中。 一肖长項28之半導體器具,其中該等單元元件係置放成 抑車並且5亥比較器與該計數器在該單元信號選擇控 」7 制下’藉由使用相同行、該複數個列中由該等 =U產生裔所產生並沿該行方向輸出的單元信號作 為該複數個單元信號,來勃 禾執仃私派給該比較器與該計數 器的對應操作。 31.如請求項28之半導體器具,i _ ^ ^ /、τ 5亥專早π π件係置放成 矩陣’並且該比較器盘 口口 α /、w °十數裔在該皁元信號選擇控 制為的控制下,藉由使用相 W J ^ δ亥禝數個行中由該等 早疋化號產生器所產生並沿兮J ^方向輸出的單元信號作 為该稷數個單元信號’來執行該計數操作。 Μ·如請求項28之半導體器具, 一 、Τ °亥荨早凡兀件係置放成 一矩陣,並且該比較器與該計 Φ] ^ ^ ΠΓ ^ T数杰在5亥早兀信號選擇控 制夯的控制下,精由使用相 一 ] 硬數個列中由該笤罝 凡信號產生器所產生並沿該行 寺早 列、複數個行中由該等單元俨 门 寸平疋仏唬產生器所產生 :輸出的信號作為該複數個單元信號,來執行: 33·如請求項28之半導體器具,其中: 該等單元元件係置放成一矩陣; 101832-951122.doc
1281821 一組该比較态與該計數器係針對备 T 丁母一行中的該等單元 元件置放;以及 該單元信號選擇控制器控制由儲存於第一組該比較器 與㈣數ϋ之計數器中的計數值所指示的表示—乘積和 運异之結果的數位資料,使之忐盘 丄本 ⑫之成為弟二組該比較器與該 計數器之計數操作之一初始值。 34.:請求項28之半導體器具,其中該等單元元件係置放成 並且第一組該比較器與該計數器在該單元信號 k擇控制器的控制下,藉由佶 稭由使用相冋行、複數個列中由 該等單元信號產生器所產生並沿該行方向輸出的單元信 號料該複數個單4號,來執行指派給該比較器與該 什數器的對應操作。 3 5·如請求項28之半導體器具,其中·· 形成用於執行彩色成像之分色濾光器之複數個彩色濟 光器之-係置放料等電磁波所人射之每—電荷產生器 之一表面上;以及 、a Γ几^號選擇控制器根據該分色濾、光器之該等彩色 濾光杰之位置來指定該複數個單元像素之每一單元像素 、 x使進仃乘積和運算的該等單元像素具有相同 的彩色濾、光器、。 u • h求項24之半導體器具,其中該比較器與該計數器針 對位於相同位置並於不同時點獲得之該等單元元件 數個信號來執行指派給該比較器與該計數器之對應操 作0 y、 101832-951122.doc 1281821 ...一 …. . .I 37·如請求項33之半導體器具,其中·· 該單元元件具有—記憶體功能元件詩儲存由該電荷 產生器在一相對較前的時間產生的電荷;以及 X比車乂。。與5亥s十數器根據儲存於該記憶體功能元件中 的電荷針對由該電荷信號產生器所產生的該複數個信號 之至少一信號執行對應操作。 38. 如請求項24之半導體器具,其中該等單元元件係置放成 -矩陣’該半導體器具進一步包括一計算單元,其用於 接收表不該列方向或該行方向之一之乘積和運算之結果 並由儲存於該計數器中之計數值所指示的複數項數位資 料’並根據該複數項數位f料來執行㈣方向與該行方 向之另一方向上之乘積和運算。 39. 如請求項24之半導體器具,其中該單元信號產生器包括 -半導體器具’其用於產生一對應於由該電荷產生器所 產生之電荷之類比電壓信號作為該單元信號並用於將該 類比電壓信號供應至該比較器。 4〇· —種電子裝置,其包括: ,,考彳"號產生器,其用於產生一用於將一欲處理之 類比信號轉換成數位資料之參考信號; 比較器,其用於比較該類比信號與該參考信號產生 器所產生的該參考信號; 计數器,其用於在該比較器執行該比較處理的同時 以一向下計數模式與一向上計數模式之一來執行一計數 操作,並用於在該比較器完成該比較處理時儲存一計數 101832-951122.doc 1281821 ' Μ * 年正替换頁 值;以及 一控制器,其用於控制該計數器之計數操作之模式
101832-951122.doc 1281i94123378號專利申請案 * 中文圖式替換頁(95年11月) 101832.doc
1281821 η[ιΐ24 1^94123378號專利丨申謗案Η ; ^ 中文圖式替換頁(95年 (鎰雖職π) _Iiiia+CSI'islMIr~~0 έ # 簡^||亡 SiES~U~,f^~LT 空_ulw> 9H —SH •εΗ •空了工 σν^Αώ)濉 J, i 戴Itov^u 濉 一蠢αν Γ®疵 si— 1J il.0¾ 舞1?1B^J(I3濉赵(εβ^ιρ^ΙΙ搬F^ud i S ^Π0 戴驟αν甲濉
ΧΙΗ •i 画i 101832.doc -25-
TW094123378A 2004-07-16 2005-07-11 Data processing method, data processing apparatus, semiconductor device for detecting physical quantity distribution, and electronic apparatus TWI281821B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004209886A JP4380439B2 (ja) 2004-07-16 2004-07-16 データ処理方法およびデータ処理装置並びに物理量分布検知の半導体装置および電子機器

Publications (2)

Publication Number Publication Date
TW200627939A TW200627939A (en) 2006-08-01
TWI281821B true TWI281821B (en) 2007-05-21

Family

ID=35599488

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094123378A TWI281821B (en) 2004-07-16 2005-07-11 Data processing method, data processing apparatus, semiconductor device for detecting physical quantity distribution, and electronic apparatus

Country Status (5)

Country Link
US (1) US7786921B2 (zh)
JP (1) JP4380439B2 (zh)
KR (2) KR101195325B1 (zh)
CN (2) CN104202543A (zh)
TW (1) TWI281821B (zh)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4107269B2 (ja) * 2004-02-23 2008-06-25 ソニー株式会社 固体撮像装置
EP1657910A1 (en) * 2004-11-12 2006-05-17 STMicroelectronics Limited Image sensor
JP4959207B2 (ja) * 2006-03-06 2012-06-20 ソニー株式会社 固体撮像装置
JP2008011284A (ja) * 2006-06-30 2008-01-17 Fujitsu Ltd 画像処理回路、撮像回路および電子機器
JP4786631B2 (ja) * 2007-01-17 2011-10-05 ソニー株式会社 固体撮像装置、撮像装置
US8237808B2 (en) 2007-01-17 2012-08-07 Sony Corporation Solid state imaging device and imaging apparatus adjusting the spatial positions of pixels after addition by controlling the ratio of weight values during addition
US8159585B2 (en) * 2007-05-01 2012-04-17 Omnivision Technologies, Inc. Image sensor pixel with gain control
DE102007027463B4 (de) * 2007-06-14 2021-03-25 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Bildsensor
JP4929075B2 (ja) * 2007-06-28 2012-05-09 パナソニック株式会社 固体撮像装置およびその駆動方法、撮像装置
JP4929090B2 (ja) 2007-07-26 2012-05-09 パナソニック株式会社 固体撮像装置およびその駆動方法
KR101377270B1 (ko) 2007-08-29 2014-03-21 삼성전자주식회사 리플 카운터를 포함하는 이미지 센서와 상기 이미지 센서의 동작 방법
JP2009081705A (ja) * 2007-09-26 2009-04-16 Panasonic Corp 固体撮像装置、受光強度測定装置、および受光強度測定方法
JP4858388B2 (ja) * 2007-09-28 2012-01-18 ソニー株式会社 固体撮像装置、駆動制御方法、および撮像装置
TWI399088B (zh) 2007-10-12 2013-06-11 Sony Corp 資料處理器,固態成像裝置,成像裝置,及電子設備
DE102007058973A1 (de) * 2007-12-07 2009-06-18 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Bildsensor
JP2009159069A (ja) 2007-12-25 2009-07-16 Panasonic Corp 固体撮像装置およびカメラ
JP5347341B2 (ja) * 2008-06-06 2013-11-20 ソニー株式会社 固体撮像装置、撮像装置、電子機器、ad変換装置、ad変換方法
JP2009296500A (ja) * 2008-06-09 2009-12-17 Olympus Corp 撮像装置
JP5272634B2 (ja) * 2008-06-20 2013-08-28 ソニー株式会社 固体撮像装置、固体撮像装置の信号処理方法および撮像装置
JP4535182B2 (ja) * 2008-08-27 2010-09-01 ソニー株式会社 アナログデジタル変換器及びアナログデジタル変換方法、並びに撮像装置及びその駆動方法
US8253809B2 (en) * 2008-08-27 2012-08-28 Sony Corporation Analog-digital converter, analog-digital conversion method, image pickup device, method of driving the same, and camera
JP5165520B2 (ja) * 2008-10-01 2013-03-21 ソニー株式会社 固体撮像装置、撮像装置、および固体撮像装置のad変換方法
JP2010103913A (ja) * 2008-10-27 2010-05-06 Toshiba Corp A/d変換器、及びそれを備えた固体撮像装置
US8010722B2 (en) * 2008-11-04 2011-08-30 Renesas Electronics America Inc. Analog comparators in a control system
KR101754131B1 (ko) 2010-12-01 2017-07-06 삼성전자주식회사 샘플링 회로와 광감지 장치
JP5822547B2 (ja) * 2011-06-10 2015-11-24 キヤノン株式会社 撮像装置および撮像システム
JP5445555B2 (ja) * 2011-10-17 2014-03-19 ソニー株式会社 固体撮像装置
JP6019692B2 (ja) * 2012-04-16 2016-11-02 ソニー株式会社 撮像素子、撮像素子の制御方法、および、撮像装置
CN110572586A (zh) * 2012-05-02 2019-12-13 株式会社尼康 拍摄元件及电子设备
JP6120495B2 (ja) 2012-06-04 2017-04-26 キヤノン株式会社 撮像装置、撮像装置の駆動方法、撮像システム、撮像システムの駆動方法
JP6119117B2 (ja) * 2012-06-05 2017-04-26 株式会社ニコン 電子機器
JP2014060573A (ja) * 2012-09-18 2014-04-03 Sony Corp 固体撮像素子、制御方法、および電子機器
JP6149369B2 (ja) 2012-09-27 2017-06-21 株式会社ニコン 撮像素子
JP5990080B2 (ja) * 2012-10-05 2016-09-07 キヤノン株式会社 撮像システム、および撮像システムの駆動方法
JP2014099693A (ja) 2012-11-13 2014-05-29 Sony Corp 撮像素子、撮像装置、半導体素子、および読み出し方法
JP6033098B2 (ja) * 2013-01-18 2016-11-30 キヤノン株式会社 画像処理装置及びその制御方法、プログラム
JP5962533B2 (ja) 2013-02-13 2016-08-03 ソニー株式会社 固体撮像素子、駆動方法、および撮像装置
CN103592598A (zh) * 2013-10-31 2014-02-19 江苏绿扬电子仪器集团有限公司 针对逻辑分析仪定时分析的采样装置
JP6399749B2 (ja) * 2013-12-19 2018-10-03 キヤノン株式会社 撮像装置および撮像システム
JPWO2015107575A1 (ja) * 2014-01-15 2017-03-23 パナソニックIpマネジメント株式会社 撮像装置
KR102108322B1 (ko) 2014-02-25 2020-05-28 삼성전자주식회사 이미지 센서에서의 데이터 이송 장치 및 데이터 이송 방법
US20150312093A1 (en) * 2014-04-29 2015-10-29 General Electric Company System and method for input and output between hardware components
JP6612056B2 (ja) * 2014-05-16 2019-11-27 株式会社半導体エネルギー研究所 撮像装置、及び監視装置
JP6507627B2 (ja) * 2014-12-22 2019-05-08 株式会社デンソー 撮像装置
CN104767913B (zh) * 2015-04-16 2018-04-27 北京思朗科技有限责任公司 一种对比度自适应的视频去噪系统
US9843797B2 (en) * 2015-06-11 2017-12-12 Semiconductor Components Industries, Llc Imaging systems having column readout circuitry with test data injection capabilities
US9625312B2 (en) * 2015-07-30 2017-04-18 Intel Corporation Light sensor with correlated double sampling
US10003761B2 (en) 2015-09-10 2018-06-19 Canon Kabushiki Kaisha Imaging device having multiple analog-digital conversion circuits that perform multiple ad conversions for a singular one of a pixel signal
JP6666043B2 (ja) * 2015-09-10 2020-03-13 キヤノン株式会社 撮像装置及び撮像システム
KR102332942B1 (ko) * 2015-11-27 2021-12-01 에스케이하이닉스 주식회사 전력 소모 감소를 위한 카운팅 장치 및 그를 이용한 아날로그-디지털 변환 장치와 씨모스 이미지 센서
US9955096B2 (en) * 2016-03-22 2018-04-24 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for high-speed down-sampled CMOS image sensor readout
JP2018121254A (ja) * 2017-01-26 2018-08-02 アイシン精機株式会社 固体撮像素子
JP6921587B2 (ja) * 2017-03-31 2021-08-18 キヤノン株式会社 撮像装置、撮像システム、移動体
US10395376B2 (en) * 2017-07-19 2019-08-27 Qualcomm Incorporated CMOS image sensor on-die motion detection using inter-pixel mesh relationship
JP6870518B2 (ja) * 2017-07-25 2021-05-12 セイコーエプソン株式会社 集積回路装置、物理量測定装置、電子機器及び移動体
JP2019047383A (ja) * 2017-09-04 2019-03-22 ソニーセミコンダクタソリューションズ株式会社 撮像装置、および、固体撮像素子の制御方法
CN107659762B (zh) * 2017-10-23 2019-11-22 德淮半导体有限公司 一种图像传感器及其输出电路
JP7169751B2 (ja) * 2018-03-15 2022-11-11 キヤノン株式会社 撮像素子およびそれを有する電子機器
JP7366522B2 (ja) * 2018-03-22 2023-10-23 カシオ計算機株式会社 液晶制御回路、電子時計、および液晶制御方法
JP6797249B2 (ja) * 2018-08-10 2020-12-09 シャープ株式会社 Ad変換器、および固体撮像素子
JP7245638B2 (ja) * 2018-11-30 2023-03-24 株式会社ジャパンディスプレイ 検出装置
EP3702805A1 (en) 2019-02-28 2020-09-02 STMicroelectronics (Research & Development) Limited Photodiode array sensor with disabling of defective pixels
KR20210108569A (ko) 2020-02-26 2021-09-03 삼성전자주식회사 이미지 센싱 장치, 이의 동작 방법
US11055548B1 (en) * 2020-06-05 2021-07-06 Pixart Imaging Inc. Motion sensor using temporal difference pixels and lift-up detection thereof
CN113256872B (zh) * 2020-12-31 2024-02-02 深圳怡化电脑股份有限公司 图像传感器参数配置方法、装置、计算机设备及存储介质
CN112911175B (zh) * 2021-02-02 2023-03-14 中国电子科技集团公司第四十四研究所 一种cmos图像传感器微光成像的降噪系统
US11431925B1 (en) * 2021-03-07 2022-08-30 Shenzhen GOODIX Technology Co., Ltd. Pixel ramp generator controller for image sensor
JP2023013368A (ja) * 2021-07-16 2023-01-26 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2023062935A1 (ja) * 2021-10-15 2023-04-20 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
KR102481596B1 (ko) 2021-11-25 2022-12-27 금오공과대학교 산학협력단 해상 태양광 접지 시스템
CN113936015B (zh) * 2021-12-17 2022-03-25 青岛美迪康数字工程有限公司 一种图像有效区域的提取方法及装置
WO2024042896A1 (ja) * 2022-08-25 2024-02-29 ソニーセミコンダクタソリューションズ株式会社 光検出素子および電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2503502B1 (fr) * 1981-03-31 1985-07-05 Thomson Csf Dispositif d'analyse d'images en couleur utilisant le transfert de charges electriques et camera de television comportant un tel dispositif
JPH09200052A (ja) 1996-01-16 1997-07-31 Meidensha Corp アナログ−ディジタル変換装置
US5877715A (en) * 1997-06-12 1999-03-02 International Business Machines Corporation Correlated double sampling with up/down counter
US5920274A (en) 1997-08-05 1999-07-06 International Business Machines Corporation Image sensor employing non-uniform A/D conversion
US6204795B1 (en) * 1999-01-08 2001-03-20 Intel Corporation Programmable incremental A/D converter for digital camera and image processing
JP3507800B2 (ja) * 2001-02-02 2004-03-15 有限会社リニアセル・デザイン アナログ−デジタル変換器及びこれを用いたイメージセンサ

Also Published As

Publication number Publication date
CN104202543A (zh) 2014-12-10
CN1770831A (zh) 2006-05-10
KR101195325B1 (ko) 2012-10-29
JP4380439B2 (ja) 2009-12-09
TW200627939A (en) 2006-08-01
US20060013485A1 (en) 2006-01-19
KR101195327B1 (ko) 2012-10-29
JP2006033452A (ja) 2006-02-02
KR20120006961A (ko) 2012-01-19
KR20060050215A (ko) 2006-05-19
US7786921B2 (en) 2010-08-31

Similar Documents

Publication Publication Date Title
TWI281821B (en) Data processing method, data processing apparatus, semiconductor device for detecting physical quantity distribution, and electronic apparatus
CN105144699B (zh) 阈值监测的有条件重置的图像传感器及其操作方法
US10205904B2 (en) Image sensor capable of correcting noise caused by dark charge of a floating diffusion portion, control method therefor, and image capturing apparatus
TWI252686B (en) Method of controlling semiconductor device, signal processing method, semiconductor device, and electronic apparatus
US10075662B2 (en) Solid-state image pickup device with plurality of converters
US6633335B1 (en) CMOS image sensor with testing circuit for verifying operation thereof
JP4193768B2 (ja) データ処理方法並びに物理量分布検知の半導体装置および電子機器
TWI362884B (en) Skimmed charge capture and charge packet removal for increased effective pixel photosensor full well capacity
Young et al. A data-compressive 1.5/2.75-bit log-gradient QVGA image sensor with multi-scale readout for always-on object detection
US8854244B2 (en) Imagers with improved analog-to-digital converters
US10225441B2 (en) Time delay and integration (TDI) imaging sensor and method
US8411184B2 (en) Column output circuits for image sensors
CN101981694A (zh) 用于高动态范围图像传感器感测阵列的系统和方法
TW201644266A (zh) 用於低雜訊影像感測器之斜波產生器
El-Desouki et al. CMOS active-pixel sensor with in-situ memory for ultrahigh-speed imaging
CN106937063B (zh) 用于减少暗信号的模/数转换时间的方法及系统
WO2017101558A1 (zh) 图像传感器和具有其的终端、成像方法
KR20160015712A (ko) 이미지 촬상 장치 및 방법
US9712774B1 (en) Method and system for implementing dynamic ground sharing in an image sensor with pipeline architecture
WO2017101562A1 (zh) 图像传感器及具有其的终端、成像方法
US9843756B2 (en) Imaging devices, arrays of pixels receiving photocharges in bulk of select transistor, and methods
KR102003909B1 (ko) 픽셀 신호 처리 장치 및 그를 이용한 씨모스 이미지 센서
JP2006295833A (ja) 固体撮像装置
KR102559953B1 (ko) 플로팅 확산 영역의 전압 변동 리드아웃 장치 및 그 방법과 그를 이용한 씨모스 이미지 센서
US20120280108A1 (en) Systems and methods for adding or subtracting pixels

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees