TWI260049B - Fabrication method of semiconductor device and semiconductor device - Google Patents

Fabrication method of semiconductor device and semiconductor device Download PDF

Info

Publication number
TWI260049B
TWI260049B TW092113887A TW92113887A TWI260049B TW I260049 B TWI260049 B TW I260049B TW 092113887 A TW092113887 A TW 092113887A TW 92113887 A TW92113887 A TW 92113887A TW I260049 B TWI260049 B TW I260049B
Authority
TW
Taiwan
Prior art keywords
film
ruthenium
semiconductor device
concentration
gas
Prior art date
Application number
TW092113887A
Other languages
English (en)
Chinese (zh)
Other versions
TW200405436A (en
Inventor
Yasuichi Kondo
Nobuyuki Sugii
Wataru Hirasawa
Original Assignee
Hitachi Ltd
Renesas E Jp Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Renesas E Jp Semiconductor Inc filed Critical Hitachi Ltd
Publication of TW200405436A publication Critical patent/TW200405436A/zh
Application granted granted Critical
Publication of TWI260049B publication Critical patent/TWI260049B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45506Turbulent flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/2807Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being Si or Ge or C and their alloys except Si
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0223Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/751Insulated-gate field-effect transistors [IGFET] having composition variations in the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Recrystallisation Techniques (AREA)
TW092113887A 2002-05-31 2003-05-22 Fabrication method of semiconductor device and semiconductor device TWI260049B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158608A JP2003347229A (ja) 2002-05-31 2002-05-31 半導体装置の製造方法および半導体装置

Publications (2)

Publication Number Publication Date
TW200405436A TW200405436A (en) 2004-04-01
TWI260049B true TWI260049B (en) 2006-08-11

Family

ID=29561550

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092113887A TWI260049B (en) 2002-05-31 2003-05-22 Fabrication method of semiconductor device and semiconductor device

Country Status (4)

Country Link
US (3) US6897129B2 (enExample)
JP (1) JP2003347229A (enExample)
KR (1) KR20030094018A (enExample)
TW (1) TWI260049B (enExample)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557505B2 (ja) * 2003-05-19 2010-10-06 コバレントマテリアル株式会社 半導体基板の製造方法
KR100640971B1 (ko) * 2004-12-31 2006-11-02 동부일렉트로닉스 주식회사 반도체 소자의 제조 방법
US7972703B2 (en) * 2005-03-03 2011-07-05 Ferrotec (Usa) Corporation Baffle wafers and randomly oriented polycrystalline silicon used therefor
EP1763069B1 (en) * 2005-09-07 2016-04-13 Soitec Method for forming a semiconductor heterostructure
US20070154637A1 (en) * 2005-12-19 2007-07-05 Rohm And Haas Electronic Materials Llc Organometallic composition
KR100873299B1 (ko) * 2007-08-20 2008-12-11 주식회사 실트론 Ssoi 기판의 제조방법
JP5018473B2 (ja) * 2007-12-28 2012-09-05 富士通セミコンダクター株式会社 半導体装置の製造方法
JP2010103142A (ja) * 2008-10-21 2010-05-06 Toshiba Corp 半導体装置の製造方法
US8623728B2 (en) * 2009-07-28 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming high germanium concentration SiGe stressor
US8598027B2 (en) * 2010-01-20 2013-12-03 International Business Machines Corporation High-K transistors with low threshold voltage
US8598020B2 (en) * 2010-06-25 2013-12-03 Applied Materials, Inc. Plasma-enhanced chemical vapor deposition of crystalline germanium
JP6004429B2 (ja) * 2012-09-10 2016-10-05 国立研究開発法人産業技術総合研究所 単結晶SiGe層の製造方法及びそれを用いた太陽電池
JP6640596B2 (ja) * 2016-02-22 2020-02-05 東京エレクトロン株式会社 成膜方法
CN108350602B (zh) * 2016-03-18 2020-11-27 株式会社Lg化学 用于制造多晶硅的超高温沉淀工艺
EP3229262B1 (en) 2016-04-05 2018-08-15 Siltronic AG Method for the vapour phase etching of a semiconductor wafer for trace metal analysis
US11296227B2 (en) 2019-10-16 2022-04-05 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing semiconductor devices and semiconductor devices
WO2025155387A1 (en) * 2024-01-17 2025-07-24 La Luce Cristallina Inc. Twin-free, small lattice parameter perovskite pseudo-substrates on silicon carrier wafers and fabrication methods therefor

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648727U (enExample) 1987-07-07 1989-01-18
KR890003983A (ko) 1987-08-27 1989-04-19 엔.라이스 머레트 종래의 cvd 반응로를 사용한 스트레인층 초격자의 연속 화학 증착 성장 방법
US6004137A (en) * 1991-01-10 1999-12-21 International Business Machines Corporation Method of making graded channel effect transistor
JPH0691249B2 (ja) 1991-01-10 1994-11-14 インターナショナル・ビジネス・マシーンズ・コーポレイション 変調ドープ形misfet及びその製造方法
US5221413A (en) 1991-04-24 1993-06-22 At&T Bell Laboratories Method for making low defect density semiconductor heterostructure and devices made thereby
CA2062134C (en) 1991-05-31 1997-03-25 Ibm Low Defect Densiry/Arbitrary Lattice Constant Heteroepitaxial Layers
JPH05315269A (ja) 1992-03-11 1993-11-26 Central Glass Co Ltd 薄膜の製膜方法
JPH0669131A (ja) 1992-08-17 1994-03-11 Oki Electric Ind Co Ltd 半導体薄膜形成方法
JP3080806B2 (ja) 1993-03-26 2000-08-28 エア・ウォーター株式会社 エピタキシャル膜成長法
JPH0745530A (ja) 1993-07-27 1995-02-14 Shin Etsu Handotai Co Ltd 縦型気相成長装置
JPH07201740A (ja) 1993-12-28 1995-08-04 Toshiba Corp エピタキシャル成長方法
US5906951A (en) * 1997-04-30 1999-05-25 International Business Machines Corporation Strained Si/SiGe layers on insulator
EP1016129B2 (en) 1997-06-24 2009-06-10 Massachusetts Institute Of Technology Controlling threading dislocation densities using graded layers and planarization
US6127233A (en) * 1997-12-05 2000-10-03 Texas Instruments Incorporated Lateral MOSFET having a barrier between the source/drain regions and the channel region
US6350993B1 (en) * 1999-03-12 2002-02-26 International Business Machines Corporation High speed composite p-channel Si/SiGe heterostructure for field effect devices
KR100441469B1 (ko) 1999-03-12 2004-07-23 인터내셔널 비지네스 머신즈 코포레이션 전계 효과 장치용 고속 게르마늄 채널 이종구조물
JP2000331943A (ja) 1999-05-20 2000-11-30 Komatsu Electronic Metals Co Ltd 半導体ウェーハの薄膜形成方法および半導体ウェーハの薄膜形成装置
US6326667B1 (en) 1999-09-09 2001-12-04 Kabushiki Kaisha Toshiba Semiconductor devices and methods for producing semiconductor devices
JP4212228B2 (ja) 1999-09-09 2009-01-21 株式会社東芝 半導体装置の製造方法
JP4220665B2 (ja) 1999-11-15 2009-02-04 パナソニック株式会社 半導体装置
EP1672700A2 (en) * 1999-11-15 2006-06-21 Matsushita Electric Industrial Co., Ltd. Field effect semiconductor device
TW497120B (en) * 2000-03-06 2002-08-01 Toshiba Corp Transistor, semiconductor device and manufacturing method of semiconductor device
JP3777306B2 (ja) 2000-03-06 2006-05-24 株式会社東芝 半導体装置の製造方法
JP3603747B2 (ja) 2000-05-11 2004-12-22 三菱住友シリコン株式会社 SiGe膜の形成方法とヘテロ接合トランジスタの製造方法、及びヘテロ接合バイポーラトランジスタ
EP1223608A1 (en) 2000-06-16 2002-07-17 Matsushita Electric Industrial Co., Ltd. Structure evaluating method, method for manufacturing semiconductor devices, and recording medium
JP4642276B2 (ja) 2000-06-16 2011-03-02 パナソニック株式会社 半導体装置の製造方法及び記録媒体
JP2002043566A (ja) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP4269541B2 (ja) 2000-08-01 2009-05-27 株式会社Sumco 半導体基板と電界効果型トランジスタ並びにSiGe層の形成方法及びこれを用いた歪みSi層の形成方法と電界効果型トランジスタの製造方法
US6613695B2 (en) * 2000-11-24 2003-09-02 Asm America, Inc. Surface preparation prior to deposition
JP2002329664A (ja) 2001-04-26 2002-11-15 Mitsubishi Materials Silicon Corp SiGe層の形成方法及びこれを用いた歪みSi層の形成方法と電界効果型トランジスタの製造方法、並びに半導体ウェーハ及びこれを用いた歪みSiウェーハと電界効果型トランジスタ
JP2003077845A (ja) * 2001-09-05 2003-03-14 Hitachi Kokusai Electric Inc 半導体装置の製造方法および基板処理装置
US20030111013A1 (en) * 2001-12-19 2003-06-19 Oosterlaken Theodorus Gerardus Maria Method for the deposition of silicon germanium layers
US20030124818A1 (en) * 2001-12-28 2003-07-03 Applied Materials, Inc. Method and apparatus for forming silicon containing films
US20030227057A1 (en) * 2002-06-07 2003-12-11 Lochtefeld Anthony J. Strained-semiconductor-on-insulator device structures

Also Published As

Publication number Publication date
KR20030094018A (ko) 2003-12-11
US8878244B2 (en) 2014-11-04
JP2003347229A (ja) 2003-12-05
US6897129B2 (en) 2005-05-24
US20050173705A1 (en) 2005-08-11
US20080128863A1 (en) 2008-06-05
TW200405436A (en) 2004-04-01
US20030221611A1 (en) 2003-12-04

Similar Documents

Publication Publication Date Title
TWI260049B (en) Fabrication method of semiconductor device and semiconductor device
JP4466775B2 (ja) 薄膜半導体装置の製造方法
US6673126B2 (en) Multiple chamber fabrication equipment for thin film transistors in a display or electronic device
JP2005536054A (ja) アモルファスケイ素含有膜の堆積
CN107026070B (zh) 半导体装置的制作方法
KR101321424B1 (ko) 반도체 소자의 표면 처리 및 박막 성장 방법, 그리고 이를 구현하는 표면 처리 및 박막 성장 장치
JP7231120B2 (ja) エピタキシャルウェーハの製造方法
JP2001189275A (ja) 半導体膜形成方法及び薄膜半導体装置の製造方法
US20030178674A1 (en) Semiconductor device and its manufacturing method
JP2011023431A (ja) 炭化珪素半導体装置の製造方法
JP2022125625A (ja) エピタキシャルウェーハの製造方法
CN112420835A (zh) 半导体装置的形成方法
JP2011108692A (ja) Cmosデバイス用シリコンウェハの製造方法
JPH10511507A (ja) 選択的に堆積された半導体領域を有する半導体装置の製造
JP3443909B2 (ja) 半導体膜形成方法、半導体装置の製造方法及び半導体装置
JP4696037B2 (ja) 半導体装置の製造方法および半導体装置
JP4222232B2 (ja) 薄膜トランジスタの製造方法
TW200425337A (en) Discontinuity prevention method for SiGe layer on oxide region surface and fabrication of heterojunction bipolar transistor (HBT) and bipolar complementary metal-oxide -semiconductor transistor (BICOMS) using the method
JP2001168055A (ja) 半導体膜形成方法及び薄膜半導体装置の製造方法
JP4510707B2 (ja) エピタキシャル膜の形成方法と、これを用いた薄膜形成方法、及び半導体装置の製造方法
JP4023367B2 (ja) 半導体膜形成方法、及び半導体膜製造方法
TW202544910A (zh) 電性接觸腔體結構及其形成方法
JPH0319340A (ja) 半導体装置の製造方法
Liu et al. Single-crystalline Si on insulator in confined structures fabricated by two-step metal-induced crystallization of amorphous Si
JPH02292831A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees