TW593764B - Method for selectively etching low k dielectrics - Google Patents

Method for selectively etching low k dielectrics Download PDF

Info

Publication number
TW593764B
TW593764B TW088105166A TW88105166A TW593764B TW 593764 B TW593764 B TW 593764B TW 088105166 A TW088105166 A TW 088105166A TW 88105166 A TW88105166 A TW 88105166A TW 593764 B TW593764 B TW 593764B
Authority
TW
Taiwan
Prior art keywords
patent application
low
scope
item
oxygen
Prior art date
Application number
TW088105166A
Other languages
English (en)
Inventor
Chun Yan
Gary C Hsueh
Yan Ye
Diana Xiaobing Ma
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Application granted granted Critical
Publication of TW593764B publication Critical patent/TW593764B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Drying Of Semiconductors (AREA)

Description

A7 五、 發明説明( B7 經濟部智慧財產局員工消費合作社印製 本發明係關於一種低,,k”介電材料的蝕刻方法。該方_ 法 、 ▲。被用於構圖(Patterned)蝕刻或用於回蝕刻的應用上。該 、去對於蝕刻内含至少8 0 %重量百分比之聚合材料的低 、材料特別有用。典型地,該聚合材料為一以有機物為底 的材料。此外,該方法可用於蝕刻具有—無機組成物之 低k材料,該無機組成物很容易受到包括氯及氧在内之 電漿的影響^ : 在半導體裝置製造領域中,眾所週知的是,當裝置 特徵(feature)的尺吋降至〇·ι8微米或更小時,互連線之Rc 延遲會成為一個限制裝置速度的主要原因。可藉由使用 2或其它電阻(R)比鋁還低的導體來降低互連線導體之 包阻,目前鋁是互連線材料業界的標準。第二個眾所矚 目的領域^是使用具有一介電常數低於二氧化矽之低介 電常數(10¾介電材料,二氧化碎乃是業界的標準介電^ 料。低k介電材料可減低電容(c)之互連線程度。 有兩種其他技術可用來產生半導體之互連線結構。 第種技術被稱為鑲嵌(damascene)技術。在此技術中, 使用銅來作為特徵呎吋在〇·25微米以下之導電材料以製 造一多層結構的典型製程將包括:坦覆沉積一介電材 料,對逐介電材料構圖以形成開口;沉積一擴散阻障層 及’典型地係一圍繞開口之濕層;在該基材上沉積充: 本纸張尺度適用中國國家標準(CNS ) Α4規格 第5頁 (210 Χ 297公釐) (請先閱讀背面之注意事項再填寫本頁)
經濟部43慧財產¾¾工消費合作社印製 5卩3764 A7 B7 五、發明説明() 厚度的銅層以填充該等開口;及使用化學機械研磨 (CMP)技術從該基材表面去除過多的導電材料。此方法需 要該介電材料的圖案蝕刻。該鑲嵌方法被詳細地介紹於 由 C· Steinbmchel 所著,發表於 Applied Surface Science 91 (95) 139-146 期刊中之 ’’Patterning of copper for multilevel metallization : reactive ion etching and chemical-mechanical polishing” 的文章中。 另一為涉及該導電銅層圖案蝕刻之技術。在此技術 中,一典型岛製程包括:在一所需要的基材上(典型地為 一具有一阻障層於其表面上之介電材料)沉積一銅層; 施加一硬質的遮罩材料及一光阻於該銅層上;使用濕式 或乾式技術圖案蝕刻該光阻、硬質遮罩材料及銅層:及沉 積一介電材料於該經過構圖的銅層上用以提供絕緣給包 含了許多積體電路之導電線路及接點。在施用介電材料 之後,其典型地需要回蝕刻該介電材料用以露出在該等 線路及接點上之接觸點。 於1997年一月授予Shin-Pun Jeng之美國第5,591,677 號專利揭杀一種具有包埋的低介電常數絕緣體之多層互 連線結構,及製造該結構的方法。詳言之,該結構之介 電部分包括可與二氧化矽層一起使用之低介電常數的有 機聚合物層。該專利描述了因使用該有機聚合物作為介 電質所可能衍生的問題,及熱安定性問題及蝕刻上的困 難。然而,發明人發展出一種回I虫刻該有機低k介電材 料的方法用以露出多條互連線的上表面。詳言之,該蝕 刻係藉帶有小量CF4之一氧氣電漿來進行蝕刻。被建議 _mm_ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公慶) (請先閱讀背面之注意事項再填寫本頁)
593764 A7 B7- 五、發明説明(/ ) ' 使用於該方法中之低k介電質為,,鐵氟龍,,(杜邦公司的商 fe),苯并環丁婦(BCB),聚對二甲苯基(;聚酸亞 (polyimide),或其它介電常數低於3.9的材料。較佳實轉 例中係使用聚對二甲苯基。 1995年十月15日授予Havemann之美國第5,565,384 號專利描述了一種使用低電容率(介電質之自動 對齊的介層孔(via)。該低電容率之介電質係用來降低在一 連接層上相知導體之間的電容。製造該介層孔的方法包 括用一包含有機體之介電材料(聯合訊號5〇〇系列)充填 介於經過構圖之導體間的水平間隙,在該包含有機物的 介電材料上形成一無機介電層,並使用一包含碳氟化合 物之高密度電漿在不會姓刻到該含有機物介電材料的情 況下來姓刻該二氧化梦層。該包含有機物之介電材料在 作為一停止蝕刻物的同時,也可降低該裝置之電容,防 止因介層孔沒有與經過構圖的導體對齊或半導體裝置上 不平均表面所造成的過度钱刻。大部分之中間介電層是由 氧化物或i有良好熱傳遞及結構特徵之其它常見的介電 質所構成。 1 997年十月21日授予cheun〇^ ,m # un§寺人之吴國呆5,679,608 號專利揭示了使用一諸如苯并 +汗彡衣丁婦或其衍生物之低介 電常數材料作為在一金屬互 廣互連線上之介電質旋施物 (spin)。詳言之,一低介電當盤 %吊數材料係被界定為一種且有 比二氧化矽介電常數更低(即 、 必V丨小於4.0)之物質。
Lauterbach等人之PCT申嗜奋々 卞,次弟PCT/DE96/02 1 08號揭 本紙張尺度適用中國國家標準(CNS ) (請先閱讀背面之注意事項再填寫本頁) -口 經濟部智慧財產局S工消費合作社印製 五、 發明説明( A7 B7 經濟部智慧財產局員工消費合作社印製 :了-種垂直集積之半導體構件,於不同基材上形成該 ::平面並由-苯并環丁晞連接層加以連接。許多含有 ^膜層均宣稱是由包含了 CF4/〇2之電漿所姓刻的。 於洲年九月29日公告之德國專利申請案 h489l A1號中揭帝了使用笨 皙μJ冬并% 丁烯作為介電 進,二施物的例子,其係使用-〜F4為底的電衆 進仃回蝕刻以露出一導電元件。 :密度丰導體應用中之多層電路所用的無機… =二是習知的。通常’此等材料會包含無錯之無定 开;^爛碎酸鹽坡璃。 炊上述之電侧包含了含氣成分之該電渡源氣體。 …、而’使用含氟㈣劑會對環境造成傷害m 用广刻劑時’典型地會有大量聚合物沉積於電子裝 置表面上。在某些應用中’在低k介電材料底下會有一 :乳切層(或其它可輕易用氟加以⑽q的層)。如果以氣 “〗邊低k介电材料的話’常無法在不蝕刻到相鄰接 厂…嶋下’只選擇…刻該低k介電質。例如, 在低k介電質被蝕刻的同時,—底層之硬質遮罩(如二氧 化1^氮切)亦會被"#。再者,該經過㈣之低k ’丨电貝表面上殘存南於膜層表面組成5 %原子百分比之 I虫刻用氟會造成後續處理上的—些問題。 若是能有一種以一不具上述含氟電漿蝕刻物缺點之 M W㈣以㈣Μ之(及在某些射為無機體 基的)低k介電質材料的方法乃是非常有利的。最好是, 第8頁 本纸張尺度適用中國國家標準(CNS ) Λ4規格(210x1^7^· (請先閱讀背面之注意事項再填寫本頁)
A7 五、 B7 發明説明( 該餘刻化學物適於用來触刻數種不同種類之低k材料; :蝕J率(大於8000埃/每分鐘);相對於鄰接的氧化物 η氮化物而",可對低k材料表現出高度的蝕刻選擇性; 扶供一良好的蝕刻外形及關鍵尺吋控 射氣體;及較低的成本。 制;產生最小的發 經濟部智慧財產局員工消費合作社印製 爱二9月目的及: •本發明係關於半導體製程,及關於一種用來蝕刻低 介電常數(低k)材料,特別是一種以聚合物為底之低k材 料的方法。泫聚合物為底的材料包含矽或氟或其混合 物。最好是’該低k介電聚合材料包含至少約1 〇%原子 百刀比的矽及少於5%原子百分比的氟。該方法使用電漿 進行姓刻,主要的電漿蝕刻物包含了除了氟之外的函素 氧取好疋,違鹵素為氣。該姓刻電漿中之鹵素來源 可以是C12、Br2、l2、Icl、Ibr、BrCl或一包含函素的化 合物,如 HC1、BC13、CHC13、cch2ci2、ch2ci2、cci4、 C2H3CI3 > t2H4Cl2 > S1CI4 > HBr > CH3Br > C2H2Br2Cl2 > HI、CCl2〇、CCl3N〇2或其組合,且其不會以一種有害或 不合貫際的方式(在此,不實際意謂一會影響該處理之安 全及有效性之不利反應的發生)起反應。在該蝕刻電漿中 足氧的來源可以是上述包含氧的化合物中的一種,或是 〇2、c〇、c〇2、ch40、C2H6〇、N2〇、N〇2、〇3、 其組合,只要包含鹵素的材料與包含氧的材料之混合物 不會以一種有害或不合實際的方式起反應即可 ϋ H20或 (請先閱讀背面之注意事項再填寫本頁)
訂卜VI 第9苜— 衣紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ 297公慶 經濟部智慧財產局員工消費合作社印製 593764 A7 B7 五、發明説明() 當蝕刻電漿的來源氣體亦包含可與氧氣混合之氯或 溴或碘氣時,則該iS素氣體:氧氣之體積(流率)比例範圍 約在1 : 2 0至2 0 : 1之間。當鹵素的來源為一包含鹵素 的化合物時,函素:氧之原子比例的範圍約在1 : 20至 20 : 1之間。當該鹵素為氯時,氯對氧之原子比例的範圍 最好是在1 : 1 0至5 : 1之間,如此相對於相鄰之含氧或 含氮之膜層而言,會選擇性較利於低k材料的姓刻。 該電漿來源氣體可包含用來改善低k材料相對於相 鄰材料之蝕刻選擇性或用來提供較佳蝕刻外形之添加 物。當有添加氣體時,一般該等混合氣體體積百分比係 小於總供應電漿來源氣體之1 5 %。可與主要電漿來源氣 體合用之添加物為N2、H2、CxHy(其中X典型地小於3 及y典型地小於8)、CF4及NF3,選擇可與上述含函素及 氧之電漿來源氣體相容之添加物。諸如氦、氖、氬、氪 及氙之鈍氣亦可被用作為添加物。 典型地,使用包含氯/氧的電漿來蝕刻該低k介電材 料之蝕刻4至少約為 8000埃/每分鐘。一鹵素:氧的原 子比例在1 : 1 0至5 : 1範圍内之蝕刻速率視其它電漿處 理參數而異。最好是,相對於相鄰諸如如SiN4之含氮材 料層或一諸如Si02之相鄰含氧材料層而言,該低k材料 之蝕刻選擇性至少是1 0 : 1。此蝕刻選擇性係在電漿氣體 中之鹵素:氧氣的比例隨著其它電漿處理參數而於1 : 1 0 至5 : 1的範圍内變化時所獲得的。 通常,該低k介電材料係使用一有圖案覆蓋在上面 _第10苜_ 本纸張尺度適用中國國家標準((:>^)八4規格(21〇/< 297公漦) (請先閲讀背面之注意事項再填寫本頁)
oy3764 、 發明説明( 之,,硬質,,遮罩來進行構圖,該遮罩包含一像疋,化夕二 二氧化矽的材料。在該硬質遮華上的圖案通系田 , 誇柄V八齋材料是值 光&劑來產生。在某些例子中’以- , 勺各 -硬質遮罩及一光阻劑來進行構圖。當構圖的遮罩匕 - 、#漿爽湄资體對該硬質遮 二氧化矽時,可使用一含氟的私水不源轧膝 ^ ^ 罩進行構圖,接下來是使用包含氯/氧的電漿來源孔=由 將該圖案傳送通過該低k介電廣°當該構_ @ ^ _ 包含氯/氧氣體:以至少1 000埃/每分鐘的速率進灯均勻1 刻(在整個晶圓表面的表面高度上的變化小^ 1Q /°或更7 ) 的材料所組成時,最好避免使用一含氟的氣體源來形成 該蝕刻電漿。 經濟部智慧財產局員工消費合作社印製 Μ式簡單說明: 第1圖為可用來實施本文所述社刻處理之電漿處理設備 的一較佳實施例的示意圖。 第2Α圖顯示苯并環丁晞(BCB)的蝕刻速率,其係為氯: 氧電漿來源氣體之體積(流率)比函數。 弟2 Β圖顯示以B C Β進行基材表面钱刻時之非均勻性, 其係為氯··氧電漿來源氣體流率比例之函數。 第3Α圖係以射頻(RF)偏壓能量的函數來顯示該BCB的 名虫刻速率。 第SB ®係、以射頻(RF)偏壓能量的函數來顯示@ BCB的 基材表面蝕刻非均勾性。 第4A圖係以射頻(RF)來;^姅旦AA 7 ^ 、;木,原月匕里的函數來顯示該BCB的 _1ϋΜ 本紙張尺度適用中國國家標準(CNS ) Λ4規格(21〇、χ 297公慶) (請先閱讀背面之注意事項再填寫本頁)、
593764 五、發明説明( 触刻速率 第4B圖係以射頻(RF)來源能量的、 、 教木顯7F該B C B的 基材表面触刻非均句性。 第5圖顯示一經過氯對氧的比例太低之 氯/氧電漿源氣體 經濟部智慧財產局員工消費合作社印製 蚀刻的BCB表面的三卷其u 准基材表面。(雖然BCB的 表現並非很恰當’但此電靖决 包水;^源氧體對於某些不 含矽的低k介電材料亦作用的很好) 第6A及6B圖分別顯示一經過翕斟备^ - 幻虱對虱的比例較佳(雖然在 该處理反應i的幫浦側的蝕刻率稍慢一些)之氯/ 氧電漿源氣體姓刻的BCB表面的三維基材表面。 第7A至7C圖以SILK低k介電材料為不同蝕刻處理變 數的函數的方式來顯示蝕刻率及一晶圓表面之姓 刻率非均勻性。 第7D至7F圖以不同蝕刻處理變數的函數的方式來顯示 在二氧化碎上之SIL K低k介電材料的姓刻率選擇 性。 第8A至8C圖以FLARE 2.0低k介電材料為不同蝕刻處 理變數的函數的方式來顯示蝕刻率及一晶圓表面 之蝕刻率非均勻性。 第8 D至8 F圖以不同蝕刻處理變數的函數的方式來顯示 在二氧化矽上之FLARE 2.0低k介電材料的蝕刻 率選擇性。 第9A至9C圖顯示一 BCB基材及經歷該BCB基材的圖 案蝕刻中之一系列的處理步驟之蝕刻疊層(etch 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂 593764 A7 B7 五、發明説明Γ stack)進行的情形。 第10A圖顯示在該晶圓中心之BCB 0.25微米密集的渠道 之圖案蝕刻的顯微照像。 第10B圖顯示在該晶圓中心之BCB 0.25微米孤立的渠道 之圖案蝕刻的顯微照像。
頁 第1 1圖顯示在該晶圓中心之FPI 0.25微米密集的渠道之 圖案蝕刻的顯微照像。 圖號對照說明: 10 處理室 12 電感線圈天線段 14 基材 16 基材支撐盤(陰極) 18,22 射頻能量產生器 24 阻抗配接網路 30 導電室壁 34 接地極 26 入口埠 27 節流閥 發明詳細說明: 經濟部智慧財/$局P'工消費合作社印製 所揭示的是一種用來蝕刻低k材料的方法,特別是 指聚合物為底的低k材料。該方法使用電漿蝕刻,其中 該電漿的蝕刻物質包含氯及氧。該電漿來源氣體可包含 用來改善該低k介電質相對於一相鄰材料的蝕刻選擇性 或用來提供較佳的蝕刻外形。最好是,使用包含氯/氧的 電漿來蝕刻該低k介電材料之蝕刻率至少約為8000埃/ 每分鐘。最好是,該低k材料相對於相鄰含氮材料層之 蝕刻選擇性至少是1 〇 : 1,且該低k材料相對於一相鄰含 第13頁 本纸張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公慶) 593764 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(> ) 氧材料層之蝕刻選擇性至少是1 0 : 1。 雖然用來蝕刻本文所述較佳實施例材料之設備為一 非輕合的電漿源 Centura® Integrated Processing System,但亦可使 用其它種類的蝕刻處理設備,例如藉由電感耦合或電容 耦合或諧襯鶴合,或其的組合之電漿蚀刻處理設備。某 些較佳實施例的例子包括:具有一位在該基材表面上之 整合裝置之處理室,該裝置有助於經由電感韓合來產生 電漿;具有由τ遠距生成之電漿來源的處理室;一處理 室,其具有一位在該室外、有助於經由電感耦合來產生 電漿之裝置;及一使用平行板裝置之處理室,該裝置有 助於經由電容耦合來產生電漿。 I.定義 在進行詳細說明之前,需知在此說明書及申請專 範圍中單數形式的’’一”及,,該,,包含了複數的事物,除 其明確地表示只有一個。因此’,,一半導體,,的稱呼係 括了多種6知具有半導體行為特性之不同材料,,,—導 材料”的稱呼包括1呂、自、白金、銀ϋ及其,且人 合金之金1,及料上述應用而言為適當的其 料。 ^ 對於本發明說明特別重要的特殊術語定義 在本文中所用之“非轉合的(dec〇upied)電裝 或’’DPS”係指對於主要用來. ^ 受用來控制電漿密度(來源 該電感耦合的射頻能量及主I 十t b ^ j 及王要用來控制該基材表面離 本纸張尺度適用中國國家標準(CNS ) (請先閱讀背面之注意事項再填寫本頁)
經濟部智慧財產局員工消費合作社印製 593764 A7 B7 _ 五、發明説明(’) 轟擊能量之偏壓能量而言具有獨立的控制之電漿蝕刻設 備。 “特徵”一詞係指在一基材上的金屬線及開孔,及構 成基材表面的拓僕之其它結構。特徵尺吋通常是指在該 晶圓上最小特徵之尺17寸。 ‘‘離子轟擊”一詞係指用離子與一表面撞擊。該等離 子係藉由曝露在電漿下之該表面附近的電場作用而朝向 該表面加速: “低k介電質”一詞係指具有低於二氧化矽的k值 (k = 4.0)之任何材料。 “聚合物為底之低k介電質”一詞係指具有至少80% 重量百分比之聚合物成分之低k介電質。 “電漿”一詞係指一被部分離子化的氣體,其包含了 數目相等之正電荷及負電荷,及某些數量之非離子化的 氣體粒子。 “選擇性”一詞係指 a)兩種材料之間的蝕刻比例;及 b)當一種衧料的蝕刻率與另一種材料相比較被提高時, 在蝕刻期間所達成的一個狀況。 “來源能量”一詞係指藉由提供該能源的一主要部分 來將該室中之中性物質離子化以保持該電漿能量。 4‘疊層”或” li刻疊層”一詞係指一層一層地被沉積之 不同材料層的集合,其至少一部分是在一#刻處理期間 被触刻。 “基材” 一詞係指包括半導體材料,玻璃,陶瓷,聚 ___第15頁_ 本紙張尺度適用中國國家標準(CNS ) Λ4規格(:210X 297公f ) (請先閱讀背面之注意事項再填寫本頁)
593764 經濟部智慧財產局員工消費合作社印製 Α7 Β7 五、發明説明(# ) 合材料’及其它被使用於半導體工業中之材料。 ‘‘垂直外形”一詞係指一特徵外形,其中該特徵的一 剖面具有與該特徵所在之表面垂直的側壁。或者,一,,正 外形”是該特徵的剖面之在該特徵所在的表面上之寬产 大於與該表面離一段距離處之寬度。 II·實施本發明的設備 本文中所述該蝕刻方法的較佳實施例是用設在美國 加州 Santa Claim 市的 Applied Materials 公司所出售之 Cemura@ Integrated Processing System來實施。該系統被顯示及說明於美 國專利第5,1 8 6,7 1 8號中,該案的揭示内容藉由此參照而 被併於本文中。雖然用於本文例子中之钱刻處理室被示 意地示於第1圖中,但任何此工業之蝕刻處理室,經調 整某些處理參數後,都可使用本文所述之化學物質。第i 圖所示設備包括屬於Yan Ye等人於1 996年五月7日在第 十一屆 International Symposium of Plasma Processing 會議中所描述的 及在 Electrochemical Society Proceedings, Volume 96-12, pp.222-233 (1996) 所發表之#耦合的電漿源(DPS)。該電漿處理室能夠處理 一直徑8英吋(200mm)的矽基材表面。 如第1A圖中所示,該處理室10被建構成包括一電 感線圈天線段1 2,其位在該蝕刻處理室1 0的外面且連接 至一射頻(RF)能量產生器18(具有一可在2MHZ附近作調 整之頻率用以在不同的電漿條件之下作阻抗地配接之來 源能量產生器)。一基材1 4支撐盤1 6(陰極)設在該處理 室内部其經由一阻抗配接網路24連接至一 RF能量產生 - -_____第16 頁______— 本纸張尺度適用中國國家標準(CNS ) Α4規格(210/ 297公釐) (請先閱讀背面之注意事項再填寫本頁)
593764 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明() 器22(頻率固定在1356Mhz之偏壓能量產生器)’及一 導電的室壁3 0亦在該室的内部,其作為該偏移偏壓的電 子地極3 4,該偏壓為供應至該基材支撐盤1 6上之RF能 量累積於該基材1 4上的結果。 半導體基材14被置於該支撐盤16上且氣體的成分 經由入口埠26被供應至該處理室中。一電漿是藉由施加 RF能量1 8及22而於該處理室1 〇中被激勵。在該蝕刻 處理室10中」之:壓力是使用一真空幫浦(未示出)及一位在 該處理室1 0與該幫浦之間的節流閥27來控制。在蝕刻 1:壁的表面上之溫度是用内含液體的導管(未示出)來控 制,該導管是位在蝕刻室1 〇的壁内。半導體基材的溫度 是藉由穩足薇支撐托盤的溫度及讓氦氣體流經由基材背 側與在該托盤1 6的表面上之溝槽(未示出)所形成的通道 來加以控制的。該氦氣體是被用來促進基材與托盤之間 的熱傳遞。在蝕刻處理期間,該基材表面被電漿逐漸地 加熱至一穩態溫度,其是高於基材支撐盤之溫度的25_4〇 C ’孩溫度是視處理條件而定。在吾人的實驗期間,基 材表面溫度典型地約在75t:附近。蝕刻室壁的表面係使 用先前所述之冷卻導管而被維持在約8 〇 t。 III·低κ介電材料之姓刻的例子 一特定的電漿蚀刻化學物已被展示用以提供在數個 低k材料蝕刻上的優點。特徵尺寸在〇 25微米的一般蝕 刻(回餘刻技術的展示)及圖案蝕刻已被展示。該蝕刻化學 物是根據使用氯及氧電漿的組合。有希望的蝕刻率,相 ___第17頁 本紙張尺度適用中ii家標準(CNS ) Λ4規格(210X 297公t ~ --- (請先閱讀背面之注意事項再填寫本頁)
593764 A7 ____ _B7__ 五、發明説明(^ ) (請先閱讀背面之注意事項再填寫本頁) 對於相鄰的材料之蝕刻選擇性,及絕佳的蝕刻外形被獲 得。如先前所述的,該蝕刻處理是在一 2〇〇mmDps Centura® Metal Etch系統中實施的。陰極的溫度被設定在3 〇。匸,這是 在一蝕刻基材表面溫度為75ΐ的結果。基材溫度是藉由 在基材的背側使用氦氣作為熱傳遞媒介而被維持,介於 陰極與該基材背側之間之該氦氣的壓力約為7托耳 (Torr) 〇 四種低:k、介質材料被詳細的評估:苯并環丁烯 (BCB)’其可從位在美國密西根州Midland市之Dow Chemical 公司的CYCLOTENETM產品中獲得’且包含約5 %原子百分比 的石夕’ SILKMTM ’其可從Dow Chemical公司獲得,且其與BCB 非常相似,但不包含矽;FLARE 2.0TM,其可從位在美國加 州 Sunnyvale 市的 Allied Signal Advanced Microelectronic Materials 公司 .4. 取得,其為一專利材料且不論其名稱為何,其並不包含 氟;及氟化的聚合物,FPI-13 6M,其可由位在美國德拉 瓦州威明頓市的杜邦公司獲得。後兩種材料不包含矽。 經濟部智慧財產局員工消費合作社印製 雖然 feCB,SILKMTM,FLARE 2·0ΤΜ,及 FPI 在本文中被 詳細討論,但仍有許多其它的低k介電材料其在依據本 發明的方法使用本文中所述的蝕刻化學物被蝕刻時會以 相似的方式表現。這些其它低k介電材料包括聚(亞芳香 基)醚;聚(亞芳香基)醚呤唑;氟化聚(亞芳香基)醚 (FLARE);聚對二甲苯基-N ;聚對二甲苯基-F ;聚對二 甲苯基-AF ;聚對二甲苯基-AF4 ;聚醯亞胺;聚蓁-N ; 聚蓁-F ;全氟環丁烯(PFCB);聚四氣乙烯(PTFE);聚苯 _____第順___ 本纸張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公漦) "~ 經濟部智慧財產局員工消費合作社印製 第19頁 W3764
、發明説明( 基-對氮雜蓁(PPQ);聚苯幷呤嗅;聚氫化茚;聚原冰片 缔’永表乙稀',聚亞苯氧化物;聚乙晞;聚丙婦;及其 類似物質。 该四個被詳細的評估之低^介電材料係如在一熱氧 化基材上的單一層般地被蝕刻。該介電材料的厚度約為 10,000 埃。 實施例1 j : 在適¥姓刻化學物(亦即,内容適當、可用來姓刻 BCB之電瘦來源氣體)之研發過程中,將已知最會影響蝕 刻速千之其它處理參數保持恆定。電漿來源氣體的總流 率被保持在約l〇〇sccm。該射頻電漿能量源約為1200 瓦。偏壓能量約為200瓦。處理室壓力約為12mT及基材 支撐盤(陰極)溫度被保持在約3〇。〇。蝕刻時間約為3〇 秒。 下面表1顯示姓刻速率的結果,及在肖BCB基材表 面上之㈣率的均勾性’其為該電漿來源氣體成分的函 數0 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公犛 (請先閱讀背面之注意事項再填寫本頁)
經濟部智慧財產局員工消費合作社印製 593764 A7 B7 五、發明説明(’) 表1 C12 (seem) 〇2 (seem) n2 (seem) chf3 (seem) 餘刻率 (埃/每分鐘) 1 a (%) 60 40 6700 4.57 60 25 15 6000 3.92 60 25 15 6000 4.16 60 40 700 4.52 :8 0: 20 400 7.68 表1之資料清楚地顯示BCB之最佳蝕刻率性能結果 是在只有氯或只有氧被作為電漿來源氣體時所得到的。 添加N2及CHF3會稍微降低蝕刻率,但可明顯改善基材 表面上之蝕刻率均勻性。將少量N2或<:11?3添加至(:12/02 來源氣體中將有助於在蝕刻圖案基材期間對於外形及關 鍵尺忖的控制。 由N2/〇2化學物所獲得的蝕刻速率相當低。這是一 令人相當驚訝的結果,因為使用此化學物之介電質蝕刻 的結果相當好。進一步研究後,認為使用n2/ 02化學物 所獲得之良好結果實際上是因為處理室中含氟的緣故。 該氟是從先前用於硬質遮罩開孔處理步驟中所留下來的 殘餘氟。 實施例2
根據表1中之資料,設計出一 L4正交矩陣以便由關 鍵處理參數的變化結果來尋找趨勢。詳言之,第2A、3 A ___第20頁_ 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁)
593764 A7 B7 五、發明説明(/ ) 及4A圖分別顯示電漿來源氣體中之Ci2 :〇2體積比例的 改變對於BCB飯刻率的影響;施加至該基材支撐盤之射 頻偏壓能量的改變對於蝕刻率的影響;及施加至該電漿 之射頻來源能量的改變對於蝕刻率的影響。相對應的第 2B、3B及4B圖分別顯示bcb蝕刻率的非均勻性,其為 相同處理變數的函數。 參照第2A及2B圖:第2A圖的曲線202顯示BCB 的#刻率’其為在電漿來源氣體中之Cl2 : 〇2的體積比 例的函數。蝕刻率是以埃/每分鐘被示刻度2〇4上,及 C12 · Ο2的體積比例被示於刻度2 〇 8上。很明顯地,當該 比例提A時,蝕刻率即會下降。此外,如將於稍後被詳 細討論的,Ch : ο]的體積比例必需加以小心的平衡用以 讓B C B相對於相鄰的材料,如基材蝕刻停止層及阻障 層,的蝕刻率最佳化。 經濟部智慧財產局員工消費合作社印製 ----- (請先閱讀背面之注意事項再填寫本頁)、 在該基材表面上之蝕刻率的均勻性上之變化被顯示 於第2B圖中。刻度2 1 4顯示經過預蝕刻的及經過後蝕刻 的晶圓之簡在厚度差異上之1 σ差(根據49點測量的標準 差)的%。將該姓刻率均勻性的差異保持在最小是所想要 的。工業標準典型地要求此差異在約5 %以下。 參照第3 Α及3 Β圖:第3 Α圖的曲線2 3 2顯示B C Β 的姓刻率’其為施加至該基材支撐盤之射頻偏壓能量的 的函數。蝕刻率是以埃/每分鐘被示刻度2 3 4上,及該偏 壓能量被示於刻度236上。很明顯地,在所顯示之範圍 内之偏壓能量的增加對於BCB蝕刻率具有非常顯著的影 _______ 第21 百 本紙張尺度適用中國國家標準(CNS )八4規格(加:/—297公— -- 593764 經濟部智慧財產苟員工消費合作社印製 Α7 Β7 五、發明説明() 響。在所評估的酸項變數中,偏壓能量對於蝕刻率的影 響最為顯著。在B CB基材上之蝕刻率均勻性的變化以第 3B圖的曲線來表不’其為偏壓能賓的函數。在經過預姓 刻的及經過後蝕刻的晶圓之間之在厚度差異上之% 1 σ差 異被示於刻度244上,而偏壓能量則被示於刻度246上。 偏壓能量從150瓦增加至250瓦之變化獲得了從4%提高 至約5.6 %之基材表面之触刻均勻性。 參照第夂Α ’及4 Β圖··第4 Α圖的曲線2 5 2顯示B C Β 的蝕刻率’其為施加至該電漿之射頻來源能量的的函 數。蝕刻率是以埃/每分鐘被示刻度2 5 4上,及該來源能 量被示於刻度2 5 6上。很明顯地,在所顯示的範圍内之 來源能量的增加對於BCB蝕刻率具有顯著的影響。蝕刻 率均勻性的變化是以射頻來源能量的含函數的方式被示 於第4B圖中。在經過預蝕刻的及經過後蚀刻的晶圓之間 之在厚度差異上之% icr差異被示於刻度264上,而來源 能量則被示於刻度2 5 6上。很明顯地,在所顯示的範圍 内之來源邊量的增加可顯著地提高BCB蝕刻率。在經過 預蝕刻的及經過後蝕刻的晶圓之間之在厚度差異上之% 1 σ差異被示於刻度2 6 4上,而來源能量則被示於刻度2 6 6 上。在所顯示的範圍内之來源能量的增加,從8 0 0瓦至 1 6 0 0瓦,獲得了從4.2 %提高至約5 · 4 °/。之基材表面之蝕 刻均勻性。 實施例3 ______ 第22 頁 木纸張尺度適用中國國家標準(CNS ) Λ4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)
593764 A7 B7 i、發明説明() 有鑑於從C 12 : 0 2的體積比例增加超過1 : 1 (5 〇 s c c m 的Ch及5 0sccm的〇2)會造成BCB蝕刻率的降低之觀察 結果’吾人決定對一低的Cl2 : 的體積比例作研究。 吾人坪估C 12 .〇2的比例為〇 7 : 1.0 (7 0 s c c m的C12及 lOOsccm的〇2)。然而,吾人發現,當一充分富含氧的電 漿來源氣體被使用時’該經過蝕刻的表面之拓樸學會變 得無法被接受。第5圖顯示三維空間之經過蝕刻的bcB 表面。該% 1-σ差異為3 3.6%。該經過蝕刻之表面的一詳 細的檢驗顯示姓刻並沒有在該BCB表面上的相同位置發 生。其被認為氧氣與在該BCB膜層中之矽起反應而形成 一會讓該蝕刻處理題停止的氧化物硬質遮罩。 實施例4 根據上面富含氧之電漿會造成BCB蝕刻的問題之檢 驗結果’因此決定對於使用c 12 : 〇 2的比例為丨:1之B C Β 相對於其它材料的選擇性加以評估。第及6B圖顯示 二維$間£經過蝕刻的BCB表面,其是使用Cl2 : 02的 比例為1 : 1 (60sccm的Cl2及60sccm的02)來加以蝕刻。 其Έ:的處理參數係如下所列:來源能量為1 2〇〇瓦;偏壓 能量為3 5 0瓦;處理容器壓力為丨2rnT ;在該基材的背側 上(氛氣熱傳遞壓力為7t;支撐該BCB基材之陰極的溫 度約為30°C。飯刻時間約4〇秒。該1 σ差異的%被示於 第6 Α及6 Β圖中之蝕刻表面外形的左側的刻度上。在處 理1:氣體況模式上的調整導致在蝕刻均勾性上之改善被 本纸張尺度適财關家標準(CNS ) Λ«Γ^210 χ 2975^ (請先閱讀背面之注意事項再填寫本頁)
經濟部智慧財產局員工消費合作社印製 經濟舞智。«財產局揚工^1費合作社印». 593764 A7 B7 五、發明説明() 示於第6A及6B圖之間。 此蝕刻化學物不僅就其對於蝕刻表面均勾性的影響 家以評估,更就其對於蝕刻率及B C B與其它熱沉積的二 氧化矽,氮化矽,及I線光阻之間的蝕刻選擇性的影響 加以評估。此資料被示於表2中。 表2 基材: 名虫刻率 (埃/每分鐘) 1 σ (%) BCB 9200 4.49 氧化物 220 6.22 氮化物 680 11.12 I-線光阻 7900 2.67 使用此蝕刻化學物,吾人同時達成一高B C B蝕刻率 及一相對於二氧化矽及氮化矽之高BCB選擇性。應被注 意的是,該蝕刻速率圖案被彎曲,其在該處理室的幫浦 埠處較低。一硬體的修改被進行以解決此缺點。 實施例5 為了要改善BCB對於氮的選擇性,及蝕刻均勻性, 所以處理室壓力被提高至1 4mT。因為在室壓力的升高被 觀察到對於B C B蝕刻率有負面的衝擊,所以射頻偏壓能 量從 3 5 0瓦被提高至 4 5 0瓦用以將離子更強力地朝向 BCB基材吸引。其它的處理變數被保持在上文中給定的 ______第 24 頁_ 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁)
593764 A7 B7 五 、發明説明( 數值’參照表3。此在處理參數上之改m 於表3中。 、以又的性能資料被示
BCB 8700 3.75 改善 氧化物 氮化杨 220 160 5.12 13.84 I-線光阻 7900 ^~~' ~ ---L-— ----- 〇 · 2 6 BCB相對於氮化矽(氮化物)的選擇性如所預期地 被 經濟部智慧財產局員工浈費合作社印製 根據在独刻BCB中的經驗’兩種額外之低k介電材 料被蝕刻。這兩個材料為SILK及FLARE 2 0。 實施例6 第7A$至7F圖顯示SILK低k介電材料的蝕刻資料。 詳言又,第7A,7B及7C圖顯示分別顯示電漿來源氣體 中之Ch :〇2的體積比例的改變對於sILK的蝕刻率的影 響,施加至該基材支撐盤之射頻偏壓能量的改變對於蝕 刻率的影響;及施加至該電漿之射頻來源能量的改變對 於触刻率的影響。相對應的第,7E及7F圖分別顯示 SIL K |虫刻率的非均勻性,其為相同處理變數的函數。 參照第7A及7D圖:第7A圖的曲線702顯示SILK 的蚀刻率’其為在電漿來源氣體中之Cl2 : ο:的體積比 第25苜 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210 X.297公趁 (請先閱讀背面之注意事項再填寫本頁)、
經濟部智慧財產局員工消費合作社印製 593764 A7 __B7_ 五、發明説明(-) 例的函數。姓刻率是以埃/每分鐘被示刻度7 0 6上,及 C12 : 〇2的體積比例被示於刻度708上。第7A圖中之曲 線704顯示1 (J差異的%,其為Cl2 : 02的體積比例的函 數’且1 σ差異的%被示於刻度7 1 0上。很明顯地,當該 比例於所顯示的範圍内被提高時,蝕刻率及1 σ差異這兩 者都會下降。第7D圖的曲線712顯示SILK的選擇性比 例在有存在二氧化矽的情形下為較佳,其為C12 : 〇2的 比例的函數^且選擇性被顯示於刻度7 1 4上及Cl2 : 02 的比例被顯示於刻度7 1 6上。在Cl2 : 〇2之被顯示的比 例範圍之内,該選擇性從95 : 1(SILK:二氧化矽)降至 3 0: 1 〇
參照第7B及第7E圖:第7B圖的曲線722顯示SILK 的餘刻率,其為施加至基材支撐盤(陰極)的射頻偏壓能量 的函數。蝕刻率是以埃/每分鐘被示刻度726上,及射頻 偏壓能量被示於刻度728上。第7B圖中之曲線724顯示 1 σ差異的%,其為射頻偏壓能量的函數,且1 σ差異的% 被示於刻產7 3 0上。很明顯地,當射頻偏壓能量於所顯 示的範圍内被提高時,蝕刻率及1 σ差異這兩者都會上 升。第7Ε圖的曲線732顯示SILK的選擇性比例在有存 在二氧化碎的情形下為較佳,其為射頻偏壓能量的函 數’且選擇性被顯示於刻度734上及射頻偏壓能量被顯 不於刻度73 6上。在射頻偏壓能量之被顯示的比例範園 之内’該選擇性從75 : 1(SILK:二氧化矽)降至55 : i。 參照第7C及第7F圖:第7C圖的曲線742顯示SILK 本纸張尺度適用中國國家標準(CNS ) 21〔):^7讀) (請先閱讀背面之注意事項再填寫本頁)
593764 A7 B7 五、發明説明( 的蝕刻率’其為射頻電漿源能量的函數。蝕刻 卞疋以埃/ 每分鐘被示刻度746上,及射頻電漿源能量被示於刻户 748上。第7C圖中之曲線744顯示! σ差異的%,其為 射頻電漿源能量的函數,且i σ差異的%被示於刻度 上。很明顯地,當射頻電漿源能量於所顯示的範園内被 提南時’蚀刻率及1(7差異這兩者都會上升。第 不/ h圖的 曲線752顯示SILK的選擇性比例在有存在二备 一虱化矽的情 形下為較佳j,其為射頻電漿源能量的函數,且 選擇性被 顯示於刻度754上及射頻電漿源能量被顯示於刻度 上。在射頻電漿源能量之被顯示的比例範圍之、 門,遠選 擇性被大致保持固定。 (請先閱讀背面之注意事項再填寫本頁}
經濟部智慧財產局Μ工消費合作社印製 實施例7 第圖顯示FLARROU介電材料的Μ 資料。詳言之,第8Α,8…C圖顯示分別顯示電聚來 源氣體…丨2 : 〇2的體積比例的改變對於flare2 〇的 蚀刻率“響;施加至該基材支撑盤之射頻偏壓能量的 改變對Μ刻率的影響;及施加至該電漿之射頻來源能 量的改變對於触刻率的影響。相對應的第8D,8Ε及8F 圖分別顯# FLARE2.G㈣率的非均勾性,其為相同處理 變數的函數。 參照第8A及8D圖:第8a圖的曲線8〇2顯示 FLARE2.0的蝕刻_,其為在電漿來源氣體中之ch: 〇2 的體積比例的函數。蝕刻率是以埃/每分鐘被示刻度8〇6 _第27苜 本紙張尺度適用中國國家標隼(CNS ) Λ4規格(210X 297公螯
|^nn ^ϋ· I
經濟部智慧財4局員工消費合作社印製 593764 A7 B7 五、發明説明(’) 上,及Cl2 : 02的體積比例被示於刻度808上。第8A圖 中之曲線8 0 4顯示1 (J差異的%,其為C12 : 0 2的體積比 例的函數,且1 σ差異的%被示於刻度8 1 0上。很明顯地, 當該比例於所顯示的範圍内被提高時,蝕刻率及1 σ差異 這兩者都會下降。第8D圖的曲線812顯示FLARE2.0的 選擇性比例在有存在二氧化矽的情形下為較佳,其為 Cl2 : 〇2的比例的函數,且選擇性被顯示於刻度8 1 4上及 Cl2 : 02的比j’例被顯示於刻度816上。在Cl2 : 02之被顯 示的比例範圍之内,該選擇性從125 : 1(FLARE2.0 :二 氧化矽)降至3 0 : 1。 參照第8B及第8E圖:第8B圖的曲線722顯示 FLARE2.0的蝕刻率,其為施加至基材支撐盤(陰極)的射 頻偏壓能量的函數。蝕刻率是以埃/每分鐘被示刻度826 上’及射頻偏壓能量被示於刻度828上。第8B圖中之曲 線824顯示1 σ差異的%,其為射頻偏壓能量的函數,且 1 σ差異的%被示於刻度83 0上。很明顯地,當射頻偏壓 能量於所_示的範圍内被提高時,姓刻率及1 σ差異這兩 者都會上升。第8Ε圖的曲線832顯示FLARE2.0的選擇 性比例在有存在二氧化矽的情形下為較佳,其為射頻偏 塾能量的函數,且選擇性被顯示於刻度734上及射頻偏 壓能量被顯示於刻度8 3 6上。在射頻偏壓能量之被顯示 的比例範圍之内,該選擇性只稍微地下降。 參照第8C及第8F圖:第8C圖的曲線842顯示 FLARE2.0的蝕刻率,其為射頻電漿源能量的函數。蝕刻 -----.,_ ___第 28 頁— 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公H --_ (請先閱讀背面之注意事項再填寫本頁)、 ,ιτ °^764 °^764 經濟部智慧財產局員工消費合作社印製 A7 ^^-__________ B7 _ 五、發明説明(’) 午是以埃/每分鐘被示刻度846上,及射頻電漿源能量被 示於刻度848上。第8C圖中之曲線844顯示1σ差異的 /〇 ’其為射頻電漿源能量的函數,且1 σ差異的%被示於 到度8 5 0上。很明顯地,當射頻電漿源能量於所顯示的 範圍内被提高時,触刻率及1 σ差異這雨者都會上升。第 7F圖的曲線852顯不FLARE2.0的選擇性比例在有存在 —氧化碎的情形下為較佳’其為射頻電漿源能量的函 數’且選擇检被顯tf於刻度8 5 4上及射頻電漿源能量被 顯不於刻度8 5 6上。在射頻電漿源能量之被顯示的比例 fe圍之内’該選擇性從65 : l(FLARE2.0 :二氧化矽)上升 至 90 : 1。 貫施例8 以上所呈現的資料為在一熱氧化物基材表面上之單 一層的BCB,或SILK ’或FLARE2.0。接下來的步騾是 評估一低k介電層表面之圖案蝕刻。 , 第9A*至9C圖一 BCB基材及經歷該BCB基材的圖 案蝕刻中之一系列的處理步驟之蝕刻疊層(etch stack)進行 的情形。參照第9 A圖,在一基材上之蝕刻疊層被以結構 900 0來表示。底下的基材9〇2為一矽晶圓。該蝕刻疊層 包括一 0.8微米後之有圖案的光阻層912。該圖案為一系 列的渠道,一渠道的特徵尺吋約為〇. 2 5微米。在該光阻 層9 1 2底下的是一 〇. 〇 7微米厚的以有機物為底的抗反射 塗層(ARC)910。在ARC 910底下的是〇·1微米厚的二氧 _____ 箪 29W ____ 本紙張尺度適用中國國家標準(CNS ) A4規格(210 ,< 297公釐) (請先閱讀背面之注意事項再填寫本頁)
593764 經濟部智慧財產局員工消費合作社印製 A7 B7 1、發明説明厂) 化碎硬質遮罩材料 90S。在該氧化物硬質遮罩材料908 底下的是0.1微米厚的BCB層906。在BCB層906底下 的是0.5微米厚的TEOS層904。在TEOS層904底下的 是矽晶圓基材902。因為ARC層710及氧化物硬質遮罩 層708還未被開洞,所以一 CHFs/Ch基的電漿源氣體化 學物被用來蝕刻穿透該二層,產生第9B圖所示的結構。 該電漿蝕刻條件如下所列:50sccm的CHF3及30sccm的 Ch ;來源能-量:1 400瓦;偏壓能量100瓦;處理室壓力 1 OmT ;對於基材背側之氦氣背側壓力為7Torr ;陰極溫 度3 0 °C ;及蝕刻時間約為6 5秒。 第9b圖顯示在CHF^Ch電漿蝕刻後之BCB基材 906,其中層疊於氧化物硬質遮罩層908層及ARC層910 上之諸層被形成圖案。 接下來,該BCB層使用本發明之蝕刻化學物加以蝕 刻。該特定的蝕刻條件如下所列:60sccm 的 Cl2及 60sccm的〇2;來源能量1200瓦;偏壓能量350瓦;處 理室壓力1 1 OmT ;對於基材背側之氦氣背側壓力為 7Torr ;陰極溫度3 0°C ;及蝕刻時間約為60秒。所得到 的結構被示於第9C圖中,其中有圖案的BCB層疊在由 該碎晶圓所支撐著的TEOS層904上。 第1 0A圖為經過蝕刻之BCB層的一顯微照像圖,其 詳細地顯示被刻以圖案之BCB層之位在晶圓中心附近之 密集的渠道的蝕刻外形。在第1 〇 A圖中,經過蝕刻的b c B 被標以1 006及底下的基材TEOS被標以1 004。垂直的外 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X2Q7公廢) (請先閱讀背面之注意事項再填寫本頁)
經濟部智慧財產局Μ工消費合作社印製 593764 A7 B7 五、發明説明(/ ) 形是在一高蝕刻速率下達成的,即使是對於〇. 2 5微米特 徵尺吋而言亦然。對於一空白的B C B基材而言在該晶圓 上之蝕刻非均勻性是相同的。 第1 0B圖為經過蝕刻之BCB層的一顯微照像圖,其 詳細地顯示被刻以圖案之BCB層之一位在晶圓中心附近 之被獨立的渠道的蝕刻外形。再次地,在第1 0B圖中, 經過蝕刻的BCB被標以1 006及底下的基材TEOS被標以 1 0 0 4。一絕佳的垂直外形被達成。 密集的渠道圖案及獨立的渠道之不同的蝕刻速率及 微負載(V -負載)被示於下面的表4中。 表4 位置 密集的渠道姓刻速率 獨立的渠道蝕刻率(埃 V -負載 (埃/每分鐘) /每分鐘) (%) 上 73 00 8200 1 1.6 中心 75 00 8 3 00 10.1 底 ^ 8200 8800 7.1 左 7800 8400 7.4 右 7700 8400 8.7 Max- 12 7.2 平均9.0 Min(%) -負載表示在一獨立的渠道與一密集的渠道之間 的银刻速率差異。 1^&\-^1丨11(%) = 2\[(最大姓刻速率-最小蚀刻速率)/ _______第 31 苜_ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公漦) (請先閱讀背面之注意事項再填寫本頁)、
^93764 A7 B7
經濟部智慧財產局員工消費合作社印製 (最大蝕刻速率+最小蝕刻速率)]X 1 Ο Ο 其中該等蝕刻速率是跨越該晶圓被加以測量的。 實施例9 · 在例8中被刻以圖案的B C Β含有約5 %重量的石夕 為了要在一不具有矽成分之以有機物為底的低k介如# 上測試本發明之蝕刻化學物,吾人蝕刻一 #仆 4 鼠化的齟合物 低k介電質。:該蝕刻疊層基本上與例8中所使用的相同, 且姓刻步驟亦相同。該ARC層及氧化物硬質遮罩層使用 下列的蝕刻化學物及處理條件加以蝕刻:50sccm的 CHF3及30sccm的C12 ;來源能量1400瓦;偏塾能量1〇0 瓦,處理1:壓力1 〇mT ;對於基材背側之氦氣背側壓力 為7Tonr;陰極溫度30°C ;及蝕刻時間約為67秒。 接下來該FPI層使用本發明之蝕刻化學物加以蝕 刻。該特定的蝕刻條件如下所列:6〇sccm的Cl2及 6〇SCCm的〇2;來源能量1 200瓦;偏壓能量35〇瓦;處 理室壓力t 1 OmT ;對於基材背側之氦氣背側壓力為 7丁〇rr ;陰極溫度3(TC ;及蝕刻時間約為50秒。 第1 1圖為經過蝕刻之F PI層的一顯微照像圖,其詳 細地顯示被刻以圖案之FPI層之位在晶圓中心附近之密 集的渠道的蝕刻外形。該經過蝕刻的FPI被標以1 〇 1 6及 底下的基材Τ Ε Ο S被標以1 〇 1 4。垂直的外形是在一高蚀 刻速率下達成的’即使是對於〇.25微米特徵尺吋而言亦 然。FPI的蚀刻速率比BCB快,很顯然是因為FPI較不 ________第 32 百 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X 297^^7 --- (請先閲讀背面之注意事項再填寫本頁)、 訂---- 593764
7 B 五 明説 明發 明 發 本 制 限 來 用 要 是 不 並 例 施 實 佳 較 之 述 。 描 係所 關面 的上 密 緻 佳.的 較明 等發 該本 將之 可定 明界 說所 的圍 述 範 上利 據專 根請 者申 藝案 技本 此至 悉充 。 熟擴圍 一 以範 , 加的 圍例物 範施的 的實標 (請先閲讀背面之注意事項再填寫本頁) j1訂 經濟部智慧財產局員工消費合作社印製 頁 3 3 第 本纸張尺度適用中國國家標準(CNS ) Λ4規格(210X2W公釐)

Claims (1)

  1. W764 公告本 g营第顯,(^从號術(1案?0年〜月修正 六 經濟部智慧財產局員工消費合作社印製 、申請專利範圍 ι—種選擇性電漿蝕刻"rjTir低k介電材料中之方法, 以產生一結構其實質以一導電材料填充形成一導電特 c請先閱讀背面之注意事項再填寫本頁} 徵’其中該低k介電材料相對於相鄰之氧化物或氮化 物或其組合物被選擇性蝕刻,藉由與一電漿源氣體產 生之電槳接觸,該電漿源氣體包含氧及一含鹵素氣體, 其中該_素不是氟,且其中該低k介電材料相斜於相 鄰之氧化物或氮化物或其組合物的蚀刻選擇性至少 10 : 1 〇 2 ·如申請專利範圍第1項所述之方法,其中該源氣體包 含含函素氣體,其係選自由下列組成之組群中:C1 , Br2,I2,ICM,IBr,BrCM,HCn,BC13,CHC13,CH2C1, CC14, C2H3C13, C2H4C12, SiCl4, HBr,CH3Br,C2H2Br2Cl2, HI,CCl2〇,CC13N02,及其組合。 Φ 3.如申請專利範圍第1或2項所述之方法,其中該自素 為亂。 4·如申請專利範圍第2項所述之方法,其中氣體源包今 選自下列組群之含氧氣體:〇2, CO, C02, CH4〇, c2H6〇, N20,N02,03,H20 及其組合。 5 ·如申請專利範圍第1、2或4項所述之方法,其中〜添 加物與該氧及該含_素氣體一起使用,及其中該添加 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 593764 A8 B8 C8 D8 六 申請專利範圍 物少於總電漿源氣體供應的1 5 %的體積百分比。 6.如申請專利範圍第5項所述之方法,其中該添加物是 選自由下列組成之組合中:N2、H2、CxHy、CF4、NF3、 及其組合,其中x小於3及y小於8。 經濟部智慧財產局員工消費合作社印製 7.如申請專利範圍第5項所述之方法,其中該添加物是 選自由下列組成之組合中:N2、H2、CxHy、CF4、NF3、 氦、氖、氬、氪、及氙及其組合,其中x小於3及y 小於8 〇 8·如申請專利範圍第1項所述之方法,其中該低k材料 為^一聚合物為底的材料。 9 ·如申請專利範圍第8項所述之方法,其中該聚合物為 底的材料為一有機物為底的材料。 I 0 ·如申請專利範圍第1項所述之方法,其中該_素與氧 的原子比例是從1 : 2 0至2 0 ·· 1。 II ·如申請專利範圍第1 〇項所述之方法,其中該齒素與 氧的原子比例是從1 : 1 0至5 : 1。 1 2 ·如申請專利範圍第1項所述之方法,其中該電漿源氣 第35頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) n n n n ϋ n n n I I · n n n n n n ft 一^In 1 ϋ ϋ I (請先閱讀背面之注意事項再填寫本頁) 妒3764 經濟部智慧財產局員工消費合作社印剩衣 A8 B8 C8 D8 六、申請專利範圍 體包含一 1 5 °/。體積百分比或更少量之添加物,其是用 來改善低k材料相對於相鄰的材料之触刻選擇性,或 用來提供較佳的蝕刻外形,或改善關鍵尺对的控制。 1 3 ·如申請專利範圍第1 2項所述之方法,其中該添加物 改善相對於一氧化物為低k介電材料之独刻的選擇 性,該氧化物包含至少3 0%之原子百分比的氧。 14·如申請專利範圍第13項h这之方法,其中該氧化物 為一矽的氧化物。 1 5 ·如申请專利範圍第1 2項所述之方法,其中該添加物 改善相對於一氮化物為低k介電材料之蝕刻的選擇 性,該氮化物包含至少30%之原子百分比的氮。 16·如申請專利範圍第15項所述之方法,其中該氮化物 為一矽的氮化物。 I7·如申請專利範圍第!項所述之方法,其中該氧化物與 氮化物的組合物為矽的氮氧化物。 1 8.如申請專利範圍第丨或第12項所述之方法,其中該 低k介電材料不包含碎。 第36貫 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐〉 ------I I ^ ^---- I----- (請先閱讀背面之注意事項再填寫本頁) 593764 六、申請專利範圍 1 9 ·如申凊專利範圍第3項所述之方法,其中該低k介電 材料之使用包含氯及氧之電漿源氣體的蝕刻速率至少 是8000埃/每分鐘。 20·如申請專利範圍第1或第12項所述之方法,其中該 低k介電材料是從包含聚(芳烯)醚;聚(芳晞)醚膦唑 氟化聚(芳婦)醚(FLARE);聚芳烯基-N ;聚芳婦基 聚芳婦基-AF ;聚芳婦基-AF4 ;聚醯亞胺;聚唑_N 聚唾-F;全氟環丁婦(PFCB);聚四氟乙婦(pTFE);聚 苯基-對氮雜唑(PPQ);聚苯並膦唑;聚氫化噻;聚原 冰片婦;聚苯乙婦;聚亞苯氧化物;聚乙浠;聚丙 埽;α-碳化物,SILKTM及它們的組合的組群中選取的。 2 1 ·如申請專利範圍第丨或第1 2項所述之方法,其中該 低k介電材料是從包含BCB,FPI,SILK™,FLARE™ 2·0,及它們的組合的組群中選取的。 22.如申請專利範圍第1項所述之方法,其中該低k介電 材料在一晶圓表面上是以1 σ之1 〇%或更少的厚度被 均勾地姓刻。 23 · —種選擇性電漿回蝕刻低k介電材料之方法,該低k 介電材料係沉積於一圖案化導電材料之表面,以提供 導線與接觸窗之隔離,其中該低k介電材料相對於相 第37肓 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297 裝----II (請先閱讀背面之注意事項再填寫本頁) 訂Γ· ♦ 593764 ABC 經濟部智慧財產局員工消費合作社印製 -------- D8六、申請專利範圍 鄰之氧化物吱氣几。 々乳化物或其組合物被選擇性蝕刻,藉由 ;、鼠之遠漿源氣體產生之電漿接觸,該電滎:源 氣心包含氯及氧’其中該低k介電材料相對於相鄰之 氧化物或氮化物或其等之組合的蝕刻選擇性為至少 10: 1 〇 24. 如申w專利範圍第23項所述之方法,其中該源氣體 包含含氯氣體’其係選自由下列組成之組群中:Cl2, IC1’ BrC卜 HC1,BC13, CHC13, CH2C12, CC14, C2H3C13, C2H4C12,SiCl4,(:2Ι12:ΒΓ2(:12,CC120,CC13N02,及其 等之組合。 25. 如申請專利範園第23項所述之方法,其中氣體源包 含選自下列組群之含氧氣體:〇2,CO,C02,CH40, C2H60,N20,no2,03,h20 及其等之組合。 26. 如申請專利範圍第23、24或25項所述之方法,其中 一添加物與該含氧及氯氣體之不含氟氣體一起使用, 及其中該添加物少於總電漿源氣體供應的1 5 %的體積 百分比。 27. 如申請專利範圍第26項所述之方法,其中該添加物 是選自由下列組成之組合中:N2、H2、CxHy、CF4、NF3、 及其等之組合,其中x小於3及y小於8。 第38頁 (請先閱讀背面之注意事項再填寫本頁) · n n §ΜΜβ n n i —ft— · in i-ϋ I Ψ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 593764 A8 B8 C8 D8 六、申請專利範圍 (請先閱讀背面之注意事項再填寫本頁) 28. 如申請專利範圍第 26項所述之方法,其中該添加物 是選自由下列組成之組合中:N2、H2、CxHy、CF4、NF3、 氦、氖、氬、氪、及氙及其等之組合,其中x小於3 及y小於8。 29. 如申請專利範圍第23項所述之方法,其中該低k材 料為一聚合物為底的材料。 30. 如申請專利範圍第 23項所述之方法,其中該聚合物 為底的材料為一有機物為底的材料。 3 1.如申請專利範圍第23項所述之方法,其中該氯與氧 的原子比例是從1 : 20至20 : 1。 32.如申請專利範圍第31項所述之方法,其中該氯與氧 的原子比例是從1 : 1 0至5 : 1。 經濟部智慧財產局員工消費合作社印製 第39貫 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)
TW088105166A 1998-04-02 1999-04-12 Method for selectively etching low k dielectrics TW593764B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5428598A 1998-04-02 1998-04-02

Publications (1)

Publication Number Publication Date
TW593764B true TW593764B (en) 2004-06-21

Family

ID=21990005

Family Applications (1)

Application Number Title Priority Date Filing Date
TW088105166A TW593764B (en) 1998-04-02 1999-04-12 Method for selectively etching low k dielectrics

Country Status (6)

Country Link
US (1) US6547977B1 (zh)
EP (1) EP1070346A1 (zh)
JP (1) JP2002510878A (zh)
KR (1) KR20010042419A (zh)
TW (1) TW593764B (zh)
WO (1) WO1999052135A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550134B (zh) * 2016-04-22 2016-09-21 台灣美日先進光罩股份有限公司 用於電漿處理的製程方法以及光罩板材

Families Citing this family (222)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593247B1 (en) * 1998-02-11 2003-07-15 Applied Materials, Inc. Method of depositing low k films using an oxidizing plasma
JP2000208488A (ja) * 1999-01-12 2000-07-28 Kawasaki Steel Corp エッチング方法
CN1367935A (zh) * 1999-06-28 2002-09-04 拉姆研究公司 用于蚀刻碳掺杂有机硅酸盐玻璃的方法和装置
JP2002270586A (ja) * 2001-03-08 2002-09-20 Tokyo Electron Ltd 有機系絶縁膜のエッチング方法およびデュアルダマシンプロセス
US20020177321A1 (en) * 2001-03-30 2002-11-28 Li Si Yi Plasma etching of silicon carbide
US7084070B1 (en) 2001-03-30 2006-08-01 Lam Research Corporation Treatment for corrosion in substrate processing
US7776314B2 (en) 2002-06-17 2010-08-17 Grunenthal Gmbh Abuse-proofed dosage system
JP4014456B2 (ja) * 2002-06-19 2007-11-28 株式会社日立ハイテクノロジーズ エッチング処理方法
US7232766B2 (en) * 2003-03-14 2007-06-19 Lam Research Corporation System and method for surface reduction, passivation, corrosion prevention and activation of copper surface
DE102005005446A1 (de) * 2005-02-04 2006-08-10 Grünenthal GmbH Bruchfeste Darreichungsformen mit retardierter Freisetzung
DE102004020220A1 (de) * 2004-04-22 2005-11-10 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten, festen Darreichungsform
US20070048228A1 (en) 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
DE10361596A1 (de) * 2003-12-24 2005-09-29 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten Darreichungsform
DE10336400A1 (de) 2003-08-06 2005-03-24 Grünenthal GmbH Gegen Missbrauch gesicherte Darreichungsform
PL1842533T3 (pl) * 2003-08-06 2013-08-30 Gruenenthal Gmbh Postać aplikacyjna zabezpieczona przed nadużyciem
US20060051966A1 (en) * 2004-02-26 2006-03-09 Applied Materials, Inc. In-situ chamber clean process to remove by-product deposits from chemical vapor etch chamber
US20050230350A1 (en) 2004-02-26 2005-10-20 Applied Materials, Inc. In-situ dry clean chamber for front end of line fabrication
DE102004032049A1 (de) 2004-07-01 2006-01-19 Grünenthal GmbH Gegen Missbrauch gesicherte, orale Darreichungsform
JP4761502B2 (ja) * 2004-10-07 2011-08-31 株式会社アルバック 層間絶縁膜のドライエッチング方法
US20060118519A1 (en) * 2004-12-03 2006-06-08 Applied Materials Inc. Dielectric etch method with high source and low bombardment plasma providing high etch rates
US7253123B2 (en) * 2005-01-10 2007-08-07 Applied Materials, Inc. Method for producing gate stack sidewall spacers
US20060168794A1 (en) * 2005-01-28 2006-08-03 Hitachi Global Storage Technologies Method to control mask profile for read sensor definition
DE102005005449A1 (de) 2005-02-04 2006-08-10 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten Darreichungsform
US20070045230A1 (en) * 2005-08-30 2007-03-01 Micron Technology, Inc. Methods for independently controlling one or more etching parameters in the manufacture of microfeature devices
KR100780944B1 (ko) 2005-10-12 2007-12-03 삼성전자주식회사 탄소함유막 식각 방법 및 이를 이용한 반도체 소자의 제조방법
US20070238254A1 (en) * 2006-03-28 2007-10-11 Applied Materials, Inc. Method of etching low dielectric constant films
US7601651B2 (en) * 2006-03-31 2009-10-13 Applied Materials, Inc. Method to improve the step coverage and pattern loading for dielectric films
US20070287301A1 (en) * 2006-03-31 2007-12-13 Huiwen Xu Method to minimize wet etch undercuts and provide pore sealing of extreme low k (k<2.5) dielectrics
US7780865B2 (en) * 2006-03-31 2010-08-24 Applied Materials, Inc. Method to improve the step coverage and pattern loading for dielectric films
DE102007011485A1 (de) 2007-03-07 2008-09-11 Grünenthal GmbH Darreichungsform mit erschwertem Missbrauch
BRPI0906467C1 (pt) 2008-01-25 2021-05-25 Gruenenthal Gmbh forma de dosagem farmacêutica com formato exterior modificado resistente à ruptura e com liberação controlada
KR101690094B1 (ko) 2008-05-09 2016-12-27 그뤼넨탈 게엠베하 분무 응결 단계의 사용하에 중간 분말 제형 및 최종 고체 제형을 제조하는 방법
JP5607881B2 (ja) 2008-12-26 2014-10-15 東京エレクトロン株式会社 基板処理方法
PE20121067A1 (es) 2009-07-22 2012-09-05 Gruenenthal Chemie Forma de dosificacion de liberacion controlada extruida por fusion en caliente
WO2011009604A1 (en) * 2009-07-22 2011-01-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
ES2606227T3 (es) * 2010-02-03 2017-03-23 Grünenthal GmbH Preparación de una composición farmacéutica en polvo mediante una extrusora
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US8828883B2 (en) 2010-08-24 2014-09-09 Micron Technology, Inc. Methods and apparatuses for energetic neutral flux generation for processing a substrate
TWI402012B (zh) 2010-09-01 2013-07-11 Ind Tech Res Inst 圖案化可撓式基板的方法
CA2808541C (en) 2010-09-02 2019-01-08 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
WO2012028319A1 (en) 2010-09-02 2012-03-08 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8771539B2 (en) 2011-02-22 2014-07-08 Applied Materials, Inc. Remotely-excited fluorine and water vapor etch
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
KR20140053158A (ko) 2011-07-29 2014-05-07 그뤼넨탈 게엠베하 즉시 약물 방출을 제공하는 탬퍼-저항성 정제
AR087360A1 (es) 2011-07-29 2014-03-19 Gruenenthal Gmbh Tableta a prueba de manipulacion que proporciona liberacion de farmaco inmediato
US8771536B2 (en) 2011-08-01 2014-07-08 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US8679982B2 (en) 2011-08-26 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and oxygen
US8679983B2 (en) 2011-09-01 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and nitrogen
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US8808563B2 (en) 2011-10-07 2014-08-19 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
WO2013070436A1 (en) 2011-11-08 2013-05-16 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
CA2864949A1 (en) 2012-02-28 2013-09-06 Grunenthal Gmbh Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US8551877B2 (en) * 2012-03-07 2013-10-08 Tokyo Electron Limited Sidewall and chamfer protection during hard mask removal for interconnect patterning
JP6282261B2 (ja) 2012-04-18 2018-02-21 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 不正使用防止および過量放出防止医薬剤形
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8765574B2 (en) 2012-11-09 2014-07-01 Applied Materials, Inc. Dry etch process
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
JP6163820B2 (ja) * 2013-03-27 2017-07-19 日本ゼオン株式会社 エッチング方法
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
CA2913209A1 (en) 2013-05-29 2014-12-04 Grunenthal Gmbh Tamper resistant dosage form with bimodal release profile
EP3003279A1 (en) 2013-05-29 2016-04-13 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
AU2014289187B2 (en) 2013-07-12 2019-07-11 Grunenthal Gmbh Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US10297459B2 (en) 2013-09-20 2019-05-21 Lam Research Corporation Technique to deposit sidewall passivation for high aspect ratio cylinder etch
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
MX371372B (es) 2013-11-26 2020-01-28 Gruenenthal Gmbh Preparacion de una composicion farmaceutica en polvo por medio de criomolienda.
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9269590B2 (en) 2014-04-07 2016-02-23 Applied Materials, Inc. Spacer formation
CA2947786A1 (en) 2014-05-12 2015-11-19 Grunenthal Gmbh Tamper resistant immediate release capsule formulation comprising tapentadol
WO2015181059A1 (en) 2014-05-26 2015-12-03 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9837254B2 (en) 2014-08-12 2017-12-05 Lam Research Corporation Differentially pumped reactive gas injector
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US10825652B2 (en) 2014-08-29 2020-11-03 Lam Research Corporation Ion beam etch without need for wafer tilt or rotation
US9406535B2 (en) 2014-08-29 2016-08-02 Lam Research Corporation Ion injector and lens system for ion beam milling
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9355862B2 (en) 2014-09-24 2016-05-31 Applied Materials, Inc. Fluorine-based hardmask removal
US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9536748B2 (en) 2014-10-21 2017-01-03 Lam Research Corporation Use of ion beam etching to generate gate-all-around structure
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US9384998B2 (en) 2014-12-04 2016-07-05 Lam Research Corporation Technique to deposit sidewall passivation for high aspect ratio cylinder etch
US9887097B2 (en) 2014-12-04 2018-02-06 Lam Research Corporation Technique to deposit sidewall passivation for high aspect ratio cylinder etch
US9620377B2 (en) 2014-12-04 2017-04-11 Lab Research Corporation Technique to deposit metal-containing sidewall passivation for high aspect ratio cylinder etch
US9299583B1 (en) 2014-12-05 2016-03-29 Applied Materials, Inc. Aluminum oxide selective etch
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US9343272B1 (en) 2015-01-08 2016-05-17 Applied Materials, Inc. Self-aligned process
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9373522B1 (en) 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
JP6364368B2 (ja) * 2015-03-16 2018-07-25 東芝メモリ株式会社 半導体装置の製造方法
JP2018517676A (ja) 2015-04-24 2018-07-05 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 即時放出および溶媒抽出に対する耐性を有する改変防止製剤
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US9543148B1 (en) 2015-09-01 2017-01-10 Lam Research Corporation Mask shrink layer for high aspect ratio dielectric etch
WO2017042325A1 (en) 2015-09-10 2017-03-16 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
US9779955B2 (en) 2016-02-25 2017-10-03 Lam Research Corporation Ion beam etching utilizing cryogenic wafer temperatures
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US20180286707A1 (en) * 2017-03-30 2018-10-04 Lam Research Corporation Gas additives for sidewall passivation during high aspect ratio cryogenic etch
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10276398B2 (en) 2017-08-02 2019-04-30 Lam Research Corporation High aspect ratio selective lateral etch using cyclic passivation and etching
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10847374B2 (en) 2017-10-31 2020-11-24 Lam Research Corporation Method for etching features in a stack
US10658174B2 (en) 2017-11-21 2020-05-19 Lam Research Corporation Atomic layer deposition and etch for reducing roughness
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10361092B1 (en) 2018-02-23 2019-07-23 Lam Research Corporation Etching features using metal passivation
TWI716818B (zh) 2018-02-28 2021-01-21 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
KR102560240B1 (ko) * 2018-05-01 2023-07-28 어플라이드 머티어리얼스, 인코포레이티드 선택적 식각 프로세스들을 위해 선택성을 증가시키는 방법들
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
KR20210123409A (ko) 2019-02-28 2021-10-13 램 리써치 코포레이션 측벽 세정을 사용한 이온 빔 에칭

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE52971B1 (en) * 1979-07-23 1988-04-27 Fujitsu Ltd Method of manufacturing a semiconductor device wherein first and second layers are formed
JPS59163826A (ja) * 1983-03-08 1984-09-14 Toshiba Corp ドライエツチング方法
US4613400A (en) 1985-05-20 1986-09-23 Applied Materials, Inc. In-situ photoresist capping process for plasma etching
US4786360A (en) 1987-03-30 1988-11-22 International Business Machines Corporation Anisotropic etch process for tungsten metallurgy
US5007983A (en) * 1988-01-29 1991-04-16 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Etching method for photoresists or polymers
US4832787A (en) 1988-02-19 1989-05-23 International Business Machines Corporation Gas mixture and method for anisotropic selective etch of nitride
JPH02186636A (ja) 1989-01-12 1990-07-20 Seiko Epson Corp 集積回路装置の配線法
JP2932488B2 (ja) * 1989-03-16 1999-08-09 ソニー株式会社 ドライエッチング方法
US4968552A (en) 1989-10-13 1990-11-06 International Business Machines Corp. Versatile reactive ion etch barriers from polyamic acid salts
US5070046A (en) 1989-10-19 1991-12-03 E. I. Du Pont De Nemours And Company Dielectric compositions
US5024975A (en) 1989-10-19 1991-06-18 E. I. Du Pont De Nemours And Co., Inc. Crystallizable, low dielectric constant, low dielectric loss composition
US5196381A (en) 1990-01-16 1993-03-23 E. I. Du Pont De Nemours And Company Metaphosphate glass composition
US5707486A (en) * 1990-07-31 1998-01-13 Applied Materials, Inc. Plasma reactor using UHF/VHF and RF triode source, and process
JP3116369B2 (ja) * 1990-11-02 2000-12-11 ソニー株式会社 多層レジストドライエッチング方法
JPH04343425A (ja) * 1991-05-21 1992-11-30 Sony Corp 半導体装置の製造方法
JPH05121371A (ja) * 1991-10-25 1993-05-18 Nec Corp 半導体装置の製造方法
US5525534A (en) 1992-03-13 1996-06-11 Fujitsu Limited Method of producing a semiconductor device using a reticle having a polygonal shaped hole
JPH05283375A (ja) * 1992-03-31 1993-10-29 Hitachi Ltd ドライエッチング方法
US5486493A (en) 1994-02-25 1996-01-23 Jeng; Shin-Puu Planarized multi-level interconnect scheme with embedded low-dielectric constant insulators
US5565384A (en) 1994-04-28 1996-10-15 Texas Instruments Inc Self-aligned via using low permittivity dielectric
DE4434891B4 (de) 1994-09-29 2005-01-05 Infineon Technologies Ag Verfahren zum Freilegen einer oberen Stegfläche eines auf der Oberfläche eines Substrats ausgebildeten und mit einem Material umformten schmalen Steges im Mikrometerbereich und Anwendung eines solchen Verfahrens zur Kontaktierung schmaler Stege
US5550405A (en) 1994-12-21 1996-08-27 Advanced Micro Devices, Incorporated Processing techniques for achieving production-worthy, low dielectric, low interconnect resistance and high performance ICS
JP3465444B2 (ja) * 1995-10-13 2003-11-10 ソニー株式会社 プラズマエッチング方法
DE19543540C1 (de) 1995-11-22 1996-11-21 Siemens Ag Vertikal integriertes Halbleiterbauelement mit zwei miteinander verbundenen Substraten und Herstellungsverfahren dafür
US5950106A (en) * 1996-05-14 1999-09-07 Advanced Micro Devices, Inc. Method of patterning a metal substrate using spin-on glass as a hard mask
US5880033A (en) * 1996-06-17 1999-03-09 Applied Materials, Inc. Method for etching metal silicide with high selectivity to polysilicon
TW363220B (en) * 1996-07-15 1999-07-01 Applied Materials Inc Etching organic antireflective coating from a substrate
US5880018A (en) 1996-10-07 1999-03-09 Motorola Inc. Method for manufacturing a low dielectric constant inter-level integrated circuit structure
US6340435B1 (en) * 1998-02-11 2002-01-22 Applied Materials, Inc. Integrated low K dielectrics and etch stops
US5968847A (en) * 1998-03-13 1999-10-19 Applied Materials, Inc. Process for copper etch back
US6387819B1 (en) * 1998-04-29 2002-05-14 Applied Materials, Inc. Method for etching low K dielectric layers
US6040248A (en) * 1998-06-24 2000-03-21 Taiwan Semiconductor Manufacturing Company Chemistry for etching organic low-k materials
US6440870B1 (en) * 2000-07-12 2002-08-27 Applied Materials, Inc. Method of etching tungsten or tungsten nitride electrode gates in semiconductor structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550134B (zh) * 2016-04-22 2016-09-21 台灣美日先進光罩股份有限公司 用於電漿處理的製程方法以及光罩板材

Also Published As

Publication number Publication date
JP2002510878A (ja) 2002-04-09
US6547977B1 (en) 2003-04-15
KR20010042419A (ko) 2001-05-25
WO1999052135A1 (en) 1999-10-14
EP1070346A1 (en) 2001-01-24

Similar Documents

Publication Publication Date Title
TW593764B (en) Method for selectively etching low k dielectrics
TW505984B (en) Method of etching patterned layers useful as masking during subsequent etching or for damascene structures
KR100756200B1 (ko) 반도체 장치의 제조방법
US7265060B2 (en) Bi-level resist structure and fabrication method for contact holes on semiconductor substrates
TW464952B (en) Process for producing semiconductor device
TWI299190B (en) Method of etching a trench in a silicon-containing dielectric material
KR100414506B1 (ko) 드라이 에칭 방법 및 반도체 장치의 제조 방법
KR20030087041A (ko) 실리콘 카바이드 플라즈마 식각 방법
US20030054656A1 (en) Method for manufacturing semiconductor device including two-step ashing process of N2 plasma gas and N2/H2 plasma gas
US6605855B1 (en) CVD plasma process to fill contact hole in damascene process
TW486733B (en) Dry etching method and manufacturing method of semiconductor device for realizing high selective etching
TW413866B (en) Method of etching doped silicon dioxide with selectivity to undoped silicon dioxide with a high density plasma etcher
TW384512B (en) Manufacturing method for semiconductor devices and manufacturing apparatuses for semiconductors
US6647994B1 (en) Method of resist stripping over low-k dielectric material
US6524963B1 (en) Method to improve etching of organic-based, low dielectric constant materials
US5425843A (en) Process for semiconductor device etch damage reduction using hydrogen-containing plasma
CN1661799B (zh) 半导体器件
JP2000340549A (ja) エッチング方法及びそれを用いた半導体装置の製造方法
CN100426469C (zh) 用于有机硅化物玻璃的一氧化二氮去除光刻胶的方法
JP2000091308A (ja) 半導体装置の製造方法
JPH06232098A (ja) 酸化防止方法およびドライエッチング方法
US7192531B1 (en) In-situ plug fill
KR20020017764A (ko) 캐패시터의 제조 방법
KR100756742B1 (ko) 고밀도 ram 커패시터의 전극을 패턴화하기 위한 개선된마스킹 방법 및 에칭 공정
KR100816719B1 (ko) 패턴의 임계치수가 넓어지는 현상을 방지할 수 있는반도체소자 제조방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees