TW586165B - Self-aligned nanotube field effect transistor and method of fabricating same - Google Patents
Self-aligned nanotube field effect transistor and method of fabricating same Download PDFInfo
- Publication number
- TW586165B TW586165B TW092104050A TW92104050A TW586165B TW 586165 B TW586165 B TW 586165B TW 092104050 A TW092104050 A TW 092104050A TW 92104050 A TW92104050 A TW 92104050A TW 586165 B TW586165 B TW 586165B
- Authority
- TW
- Taiwan
- Prior art keywords
- carbon nanotube
- gate
- metal
- effect transistor
- dielectric layer
- Prior art date
Links
- 230000005669 field effect Effects 0.000 title claims abstract description 42
- 239000002071 nanotube Substances 0.000 title claims description 50
- 238000004519 manufacturing process Methods 0.000 title description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 79
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 74
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 74
- 239000004065 semiconductor Substances 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims description 83
- 239000002184 metal Substances 0.000 claims description 83
- 238000000034 method Methods 0.000 claims description 34
- 239000003054 catalyst Substances 0.000 claims description 33
- 150000004767 nitrides Chemical class 0.000 claims description 22
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 14
- 238000000151 deposition Methods 0.000 claims description 14
- 230000001681 protective effect Effects 0.000 claims description 12
- 238000005229 chemical vapour deposition Methods 0.000 claims description 8
- 125000006850 spacer group Chemical group 0.000 claims description 6
- 239000004575 stone Substances 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 229920002120 photoresistant polymer Polymers 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 230000004888 barrier function Effects 0.000 claims description 4
- 239000003989 dielectric material Substances 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 2
- 241000238631 Hexapoda Species 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 238000002161 passivation Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 88
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 125000003636 chemical group Chemical group 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241001674048 Phthiraptera Species 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
- H01L29/0669—Nanowires or nanotubes
- H01L29/0673—Nanowires or nanotubes oriented parallel to a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
- H01L29/0669—Nanowires or nanotubes
- H01L29/0676—Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/466—Lateral bottom-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/468—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/936—Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
- Y10S977/938—Field effect transistors, FETS, with nanowire- or nanotube-channel region
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/94—Specified use of nanostructure for electronic or optoelectronic application in a logic circuit
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Thin Film Transistor (AREA)
- Bipolar Transistors (AREA)
- Electrodes Of Semiconductors (AREA)
Description
586165
一、【發明所屬之技術領域】 本發明係有關於-種場效電晶體,特別有關於一種碳 奈米管場效電晶體。 二、【先前技術】 在分子奈米電子學(molecular nanoelectronics) 領域中,很少有材料像奈米管那麼有希望,特別是碳奈米 管,其包含有埃米等級直徑的石墨中空圓柱。奈米管可被 使用於電子元件中,如二極體及電晶體,視奈米管的電子 特性而定。奈米管具有特殊的尺寸、形狀以及物理特性。 結構上碳奈米管類似碳的六角形晶格滾入一圓柱中。 除了有趣的低溫下量子行為,碳奈米管具有至少兩項 重要特性:奈米管可以是金屬或是半導體的,依其對掌性 (chirality )而定(即構造幾何,conf〇rmati〇nai geometry)。金屬奈米管可以固定電阻率傳載極大電流。 半導體奈米管則可以電切換開或關,類似一場效電晶體 (field-effect transistor,FET)。這兩種奈米管可共價 連接(分享電子)。這些特性使得奈米管成為製作奈米等 級半導體電路之良好材料。 -此外,碳奈米管為——維電導體,意即僅有一維量子 ‘ 力學模式傳載電流。因為材料内之散射(scattering )被· 強烈壓抑,而使得使用碳奈米管之電晶體的元件效能具有
第5頁 586165
強大的優勢。元件具有較低之散射 代表具有較好之效
…對一個三端元件而言,例如場效電晶體,一閘極(第 二端)需要與主動通道區、源極以及汲極絕緣。因此需要 使用例如是二氧化矽等介電材料。要改善矽元件内之元件 特性介電層厚度可降低。而介電層厚度減少,使得閘極 電谷i曰加,且促進閘極對通道— channei)之耦 合。對標準矽場效應元件而言,閘極電容之大小與介電能 厚度成反比。現今製造的高效能處理器中,二氧化矽之厚 度低於4nm。重要的是,不易達到更低之厚度,因為當氧 化層厚度低於4nm時,閘極透過介電層之漏電流指數增 加0 ;、、、、而’對於一碳奈米管電晶體而言,閘極電容與介電 f厚度不呈反比關係。&而代之的是,碳奈米管依循-對 =關,。與-般標準之發場效電晶體相較,因為其圓柱狀 成何外形,碳奈米管電晶體之閘極電容可以更大。 未有已知系統或方法在一場效電晶體中使用奈米管以 Φ : 5表現與較小尺寸。因11匕,需要-製作-奈米管場效 電日日體的系統及方法。 三
發明内容
第6頁
ου 丄 CO
自對準碳奈米管場效 根據本發明之一實施例,提供_ 電晶體半導體元件。此元件包二 山 _ -基板。-源極形成於上述碳太::一:示米管放置於 形成於上述碳奈米管之-第::未官之H -沒極 上述碳奈米管之一部分上,」及-閘極實質形成於 述碳奈米管隔開。 、’"電層使上述閘極與上 上述基板包括一I之厚度約為150nm ‘ 热礼化層沉積於 帘丞敗上 以 此元件更包括一保護介電層於元件上。 此半導體元件更包括一對準記號於基板上,供源極以 上述閘極披覆於介電層以及碳奈米管,並與碳奈米管 之一背面接觸。 ” & 根據本發明之一實施例,提供一自對準碳奈米管場效 電aa體半導體元件。此元件包括以下。一垂直碳奈米管, 以一介電材料纏繞。一源極,形成於上述碳奈米管之一第 586165
第8頁 586165
五、發明說明(5) 金屬接點係利用一光阻形成。 根據本發明之一實施例,提供一形成自對準碳奈米管 場效電晶體半導體元件的方法。此方法包括以下步驟。放 置一碳奈米管於一熱氧化物基板上,其中基板包括一對準 "己號。以反應式離子#刻(reactive ion etch)方式, ^碳奈米管之每一端形成一金屬接點,其中一第一金屬接 點係一源極,且一第二金屬接點係一汲極。形成一氮化間 ^壁於每一金屬接點之兩側。沉積具有高介電常數(high 之了介電層’於自對準碳奈米管場效電晶體半導體元件 上。以及形成一閘極,實質位於源極以及汲極之間,並於 碳奈米管上。 上述方法更包含一步驟:沉積一保護介電層於元件 場效ί f 5::之一實施例,提供-形成自對準碳奈米管 置-件的方法。此方法包括以下步驟。激 記號。在碳I米管:mi: 基板包括-對準 層使非晶矽柱絕緣。 : 虱化 間。形成-閉^實質位於間於ί晶:柱之― 上。形成-氮化層,於閘極上。於 ^二:奴奈米官 氧化間隙壁。以金屬接點取代非…第2屬 586165 五、發明說明(6) 以及沉積一 接點係一源極,且一第二金屬接點係一汲極。 保護介電層於元件上。 …根據本發明之另一實施例,提供一形成自對準碳 管場效電晶體半導體元件的方法’此方法包括以下? 沉積-金屬催化劑於-熱氧化物基板。沉積一低 於元件上。姓刻形成一溝槽(trench),溝槽通過氧化^ 以及金屬催化劑,並進入位於金屬催化劑下方之一埶氧化 層。蝕刻低溫氧化層以形成氧化物島。剝除 … (stripping )暴露之金屬催化劑。成長一奈米管,位於 該等氧化物島之下的該金屬催化劑之間。以一閘極介電層 包覆碳奈米管。形成氮化物間隙壁於氧化物島相對之表 面。以化學氣相沉積方式形成一閘極,實質位於氧化物島 之間,並位於奈米管上。以及沉積一保護介電層於元件 上。 根據本發明之一實施例,提供一形成自對準碳奈米管 場效電晶體半導體元件的方法,此方法包括以下步驟。成 長一奈米管垂直於該半導體元件之一表面所形成之一金屬 催化劑。形成一氮化物塊結構。以一閘極介電層包覆破奈 米管。沉積一閘極金屬’並以閘極介電層使閘極金屬與金 屬催化劑隔開。沉積一氮化層。形成閘極金屬柱,被氮化 層所覆蓋。形成氮化物間隙壁,包覆閘極金屬柱。沉積一 >及極金屬’實質位於閘極金屬柱之間,以介電層使汲極金
第10頁 586165
586165 五、發明說明(8) 1 〇 9以形成金屬接點1 〇 6、1 〇 7之側的間隙壁11 〇。而非晶石夕 1 08可以選擇性方式移除或以濕式化學方法氧化之。一@問 極介電層111形成於元件上。這裡以及以下的方法中,介 電層可以是二氧化矽或是任何高介電常數之材料,例如: Hf〇2。閘極112可利用化學氣相沉積以及蝕刻法實質形成金 屬接點106、107、源極以及汲極之間。一保護介電層113 沉積於元件上。源極、汲極以及閘極皆自對準於 ^呓號 101。 〇
在另一實施例中,在形成閘極之前,源極以及汲極以 反應式離子蝕刻方法而成。請參閱第2a〜2b圖,形成源 極、汲極以及金屬接點1〇6、107之方法,首先利用反應式 離子钱刻方式定義源極以及汲極之金屬。其中,反應式離 子餘刻需絕緣於碳奈米管104。一氮化層2〇ι沉積於^牛 上,並自金屬接點周圍區域蝕刻之。氮化物間隙壁2〇2形 成於金屬接點之側邊。一閘極介電層2 〇 3沉積於元件上。 閘極金屬204實質形成於源極以及閘極1〇6、1〇7之門。一 保護介電層205可沉積於元件上。熱氧化層厚度約。
、,根據本發明之另一實施例,閘極可形成於源極/汲極 之丽。非晶矽301可沉積於碳奈米管1〇4之兩端。此非晶矽 可以一氧化物層302覆蓋。一閘極介電層3〇3沉積於非晶矽 層,例如301,之間。一閘極304實質形成於此非晶矽柱 301之間。一氮化層3 0 5形成覆蓋閘極3〇4。氧化物間隙壁
586165 五、發明說明(9) 306形成於閘極304金屬之兩端。而暴露出之非晶石夕/ 物之角^,可以被剝除以露出非晶石卜餘下之非晶秒乳化费 閘極金屬,可以反應式離子㈣方式移除之。金屬接^ 307、308與奈米管1〇4連接,奈米管1〇4部分位於閘極3〇4 以及閘極介電層3 03下方。金屬接點3〇7、3〇8形成此半 體兀,之源極以及汲極。金屬接點3〇7、3〇8可以對準沉 於熱氧化層102以及矽基板103内之對準記號1〇1。最貝 保護介電層3 0 9於此元件上。 、,根據本發明之一實施例,一碳奈米管場效電晶體可於 適當處成長。其中源極/汲極形成於閘極之前,一非晶石夕 層401/儿積於一熱氧化層1Q2上。一低溫氧化層jog (lt〇) 可沉積於金屬催化劑上。蝕刻低溫氧化層4〇2、非晶矽層 4〇1以及熱氧化層1〇2以形成一溝槽。則部分位於氧化層 402下方之非晶石夕層4〇1被底切(un(jer cut)。一金屬催 化劑40 1B則進入非晶矽4〇1被底切之邊緣,其中,金屬催 化劑可以為Fe、Co、Ni或是Fe/Mo。一碳奈米管403可成長 於金屬催化劑40 1B之間,其中一部分奈米管懸吊於熱氧化 層1 02上。一閘極介電層4〇4以化學氣相沉積方式沉積並包 覆奈米管403。因此奈米管403可完全以閘極介電層覆蓋。 間隙壁405可形成於氧化層402之側邊。一閘極40 6可實質 形成於氧化層402之間。若是熱氧化層102被蝕刻的夠深, 則閘極金屬406可包覆整個碳奈米管403以及介電層404。 為達到此目的’閘極金屬可以化學氣相沉積之方式,以覆
第13頁 586165
蓋奈米管/介電層堆疊之背面。此一包覆方式,提供較佳 之閘極與奈米管之耦合。一保護介電層4〇6沉積於表 面上。 、根據本發明之另一實施例,一碳奈米管於適當處垂直 成長。成長一奈米管垂直於例如於基部的一金屬源極戍一 金屬催化劑。請參閱第5a〜5n圖,一金屬催化劑5〇1形1於 矽基板502上。一氮化物503之第一層沉積於半導體元件 上。在氮化物503上沉積一氧化層504,再在氧化層5〇4上 >儿積第二層氮化物5 0 5。一光阻5 0 6以一般微影製程形成於 此半導體元件,且曝露出金屬催化劑5 〇 1之部分。將複數 個第二金屬催化劑5 0 7沉積於此元件上。再將光阻5 〇 6剝 離,使得第二金屬催化劑507僅存在於第一金屬催化劑5〇1 上。而在每一第二金屬催化劑5〇7上,垂直地成長一奈米 管5 0 8,如此形成奈米管的二維以及三維陣列。 當分子金屬催化劑設置對準於基板上之細孔 (pore ) ’則碳奈米管垂直於基板成長。在此情形下,成 長空間被偈限,並使奈米管之成長僅在垂直方向。原則 上,垂直之細孔,如第5b圖所示,可利用光阻及圖案轉移 製作。 一非晶矽層5 0 9形成覆蓋元件。元件可被平坦化至與 氮化層5 0 5齊。再移除部分之氮化物—氧化物-氮化物層5 0 3
第14頁 586165 五、發明說明(11) -- 〜505。奈米管5〇8周圍以及金屬催化劑5〇ι、5〇7周圍留下 ,狀物(Pillar )。一犧牲層51〇覆蓋氮化物5〇5、碳夺 官508以及非晶州9。接觸層可以為η或是w。移除氮化、 ”03以及505間之氧化物5〇4。接著非晶矽5〇9同時自 = 5 08周圍被移除。非晶㈣9亦可以在移除氧化物之、 後被移除。一閘極介電層5n ,形成於奈米管5〇8周圍 於犧牲層51〇下,金屬催化劑51()上。若為二維奈米管陣位· 列,閘極介電層511可形成於碳奈米管間。犧牲層51〇可 Π方5移除。接著沉積於元件表面上。沉積第三氮化層 13於閘極金屬512上。接著移除部份氮化物513以及閘^
512,而形成柱狀之氮化物513以及閘極512仍包覆前述 I 屬催化劑-奈米管結構。氮化物間隙壁514形成於柱狀两 圍。汲極接點5 1 5形成於金屬催化劑_奈米管結構上,形二 一場效電晶體。沉積一保護介電層516於各個場效電晶體 之間。 、必須注意的是,自金屬催化劑成長奈米管之確實機 並不被知道。不過此一金屬催化劑成長單壁奈米管之過, 程,例如鈷於氧化鋁支撐之鉬顆粒上(c〇baU Mer之 alumina-supported Molybdenum particles),可採用不 根據本發明之另一實施例,可採用應用組裝之 而非如前所述放置或成長的方式來擺放奈米管。應 方 用 式, 組裝
第15頁 586165
可用於垂直或是水平之奈米管放置,此放置係利用化學或 物f方式驅動之選擇性設置。此一選擇性放置包括形成一 黏著層或是化學基團(chemical gr〇ups)作為接收體, 用以幫助奈米管放置在所需之位置上。第6a〜6b圖分別顯 示水平以及垂直應用組裝之方法。其中,一奈米管6〇1兩 端包括預設之化學基團602,例如DNA股(strand )或是醇 類。奈米管601被帶到靠近具有接收體6〇4之基板6〇3,若 用DNA,則使用互補之DNA股。而若用醇類,則金粒或包含 金的接點可用以作為鏈結具有此類化學基團6 〇 2之奈米管 601。而奈米管601可以此組裝方式設置於基板6〇3内。 效能較佳之高介電常數介電層可作為閘極之絕緣層。 了碳奈米管場效電晶體之電容不會隨介電層厚度產生巨 變化,因此較難達到所需之電容,甚至是較薄之閘極介 層。Abo〆介電常數k = 9)以及Hf〇2(介電常數k = 2〇)在此背旦 之下,則有希望可以作為介電層用。化學氣相沉積銘,‘ 氧化以形成高介電常數之閘極介電層,或是直接沉積八 (則2亦可以直接沉積)。與二氧切相較,使用上述材^ 約可增加五倍之問極電$,且對半導體元件之效能比減少 介電層厚度具有較大之影響效果。纟於奈米管在—空 境下為PFET,而在真空下通入氬氣並經過退火後,會轉變 為nFET,0此在介電層沉積前,可對此半導體元件進 火,使^奈米管轉變為nFET。在原處Un以汕)以一介 電層加蓋此一半導體元件’以防止奈米管再次轉換為
586165 五、發明說明(13) pFET。對^互補技術而言,應轉為矸^的場效電晶體上的 介電層可被移除,且仍可摻雜此些場效電晶體。再在低溫 下利用-化學氣相沉積塗佈此些元件,不需額外之退 驟0 適结Λ,或是nm)皆以氧化層 適田之"電層)覆盍’目此在閘極電極製造時,並不 ΠΪ之沉積可使用化學氣相沉積。如第4以及第5 學氣相沉積法進行此-製程可確定介電層 :王二;官丄同時閘極金屬亦完全包覆介電層,而形 Ϊ: Π 管輕合之條件。閘極金屬可以在所需 可以開放(。pen)以供電接觸。疋移除而源極和汲極 雖然本發明已以一較佳青祐 以限定本發明,任何熟習此技藝j揭:並非用 二圍;當可作些許之更動與潤飾,因此本發 乾圍s視後附之申請專利範圍所界定者為準。 ’、凌 586165 圖式簡單說明 五、【圖式簡單說明】 第1 a〜1 i圖顯示本發明一實施例之一源/閘極第一碳奈米管 場效電晶體, 第2 a〜2 b圖顯示本發明另一實施例之一源/閘第一碳奈米管 場效電晶體; 第3 a〜3 g圖顯示本發明一實施例之一閘極第一碳奈米管場 效電晶體; 第4 a〜4 d圖顯示本發明一實施例之一碳奈米管場效電晶體 包含適當地方成長之一奈米管; 第5 a〜5 η圖顯示本發明一實施例之一碳奈米管場效電晶體 包含適當地方垂直成長之一奈米管;以及 第6 a〜b圖顯示本發明一實施例奈米管之應用組裝。 元件符號說明 1 (Π〜對準記號; 1 0 2〜熱氧化層; 103、 502、603〜石夕基板; 104、 403、508、601〜奈米管; 105、 506〜光阻; 106、 107、307、308、515〜接點; 108、 301、401、50 9〜非晶石夕層; 109、 201、30 5、503、50 5、513〜氮化層; 110、 2 0 2、30 6、40 5、514〜間隙壁; 111 、113 、203 、205 、303 、309 、404 、 511、 516〜介電
第18頁 586165 圖式簡單說明 層; 1 1 2、2 0 4、3 0 4、4 0 6、5 1 2 〜問極; · 3 0 2、4 0 2、5 0 4〜氧化物層; , 4 0 1 B、5 0 1、5 0 7〜金屬催化劑; 5 1 0〜犧牲層; 6 0 2〜化學基團; , 604〜接收體。
第19頁
Claims (1)
- 586165 六、申請專利範圍 1. 一種自對準碳奈米管場效電晶體半導體元件,包括: 一碳奈米管放置(deposited)於一基板; 一源極形成於該碳奈米管之一第一端; 一汲極形成於該碳奈米管之一第二端;以及 一閘極實質形成於該碳奈米管之一部分上,並以一介 電層使該閘極與該碳奈米管隔開。2. 如申請專利範圍第1項所述之自對準碳奈米管場效電晶 體半導體元件,其中該基板包括一熱氧化層沉積於一矽基 板。 3. 如申請專利範圍第2項所述之自對準碳奈米管場效電晶 體半導體元件,其中該熱氧化層之厚度約為150 nm。 4. 如申請專利範圍第1項所述之自對準碳奈米管場效電晶 體半導體元件,其中一部分之該閘極更以一氧化層與該碳 奈米管隔開。5. 如申請專利範圍第1項所述之自對準碳奈米管場效電晶 體半導體元件,其中該閘極以一氮化物間隙壁 (spacer ),與該源極和沒極隔開。 6.如申請專利範圍第1項所述之自對準碳奈米管場效電晶 體半導體元件,更包括一保護介電層(passivation第20頁 586165 六、申請專利範圍 dielectric layer)覆蓋該元件。 7 ·如申請專利範圍第1項所述之自對準碳奈米管場效電晶 體半導體元件,更包括一對準記號於該基板上,供該源極 以及該汲極對準。 8 ·如申請專利範圍第1項所述之自對準碳奈米管場效電晶 體半導體元件,其中該閘極披覆於(wraps around )該介 電層以及該碳奈米管,以與該碳奈米管之一背面接觸。 9. 一種碳奈米管場效電晶體半導體元件,包括: 一垂直碳奈米管,以一介電材料纏繞(wrap ); 一源極,形成於該碳奈米管之一第一端; 一汲極,形成於該碳奈米管之一第二端; 一雙層氮化物複合體(bilayer nitride complex ),供形成該源極以及該汲極各自之一捆帶 (band strap),並使該源極以及該汲極與該介電材料纏 繞之該碳奈米管連接;以及 一閘極’實質形成於該碳奈米管之一部分上。 1 0 ·如申請專利範圍第9項所述之碳奈米管場效電晶體半導 體元件’其更包括—金屬催化劑於該碳奈米管之一基部 (base ) °586165 六、申請專利範圍 11·、種形成一自對準碳奈米管場效電晶體半導體元件的 方法,包括下列步驟: 放置一奈米管於一熱氧化物基板上,其中該基板包括 一對準記號; 於该奈米官之每一端形成一金屬接點,其中一第一金 屬接點係一源極,且一第二金屬接點係一汲極; 沉積一非晶矽層於該元件上; 形成一氮化間隙壁,於每一該等金屬接點之兩側 (oppos i ng sides); 沉積具有高介電常數(high k)之一介電層於該元件 上; 氧化该非晶秒層;以及 形成一閘極,實質上位於該源極以及該汲極之間,並 位於該奈米管上。 1 2·如申請專利範圍第11項所述之方法,其更包含一步 驟··沉積一保護介電層於該元件上。 1 3 ·如申請專利範圍第丨丨項所述之方法,其中該奈米管係 一單壁(single-waiied)奈米管。 1 4 ·如申請專利範圍第丨丨項所述之方法,其中該等金屬接 點係利用一光阻形成。第22頁 586165 六、申請專利範圍 1 5 · —種形成一自對準碳奈米管場效電晶體半導體元件的 方法,包括下列步驟: 散I 奈米管於一熱氧化物基板上,其中該基板包括 一對準記號; 以反應式離子餘刻(reactive i〇n etch)方式,於 ΰ玄示米’之母一端形成一金屬接點,其中一第一金屬接點 係一源極,且一第二金屬接點係一汲極; 形成一氮化間隙壁於每一該等金屬接點之兩側; >冗積具有高介電常數之一介電層於該元件上;以及形成一閘極,實質位於該源極以及該汲極之間,且位 於該奈米管上。 16.如申請專利範圍第15項所述之方法,其更包含一步 驟:沉積一保護介電層於該元件上。 1 7 · —種形成一自對準碳奈米管場效電晶體半導體元件的 方法,包括下列步驟: 放置一奈米管於一熱氧化物基板上,其中該基板包括 一對準記號; 在邊奈米管之每一端上,形成一非晶矽柱 (amorphous silicon pillar ) \ 以一氧化層使該等非晶矽柱絕緣(丨s〇丨at i叫); 形成一閘極介電層於該等非晶矽柱之間; 升/成閘極貝貝位於该專非晶石夕柱之間,且位於該第23頁 586165 六、申請專利範圍 奈米管上; 形成一氮化層於該閘極上; 於该閘極之每一邊,形成一氧化間隙壁; 以i屬接點取代該等非晶矽柱,其中一第一金屬接點 係一源極,且一第二金屬接點係一汲極;以及 沉積一保護介電層於該元件上。 18· —種形成一自對準碳奈米管場效電晶體半導體元件的 . 方法,包括下列步驟: 沉積一金屬催化劑於一熱氧化物基板上; · 沉積一低溫氧化層於該元件上; I虫刻形成一溝槽,該溝槽通過該氧化層以及該金屬催 化劑,並進入位於該金屬催化劑下方之一熱氧化層; 蝕刻該低溫氧化層以形成氧化物島; 剝除暴露之該金屬催化劑; 成長一奈米管,位於該等氧化物島之下的該金屬催化 劑之間; 以一閘極介電層包覆該奈米管; 形成氮化物間隙壁於該等氧化物島相對之表面; 以化學氣相沉積方式形成一閘極,實質位於該等氧化 | 物島之間,並位於該奈米管上;以及 沉積一保護介電層於該元件上。 . 1 9 · 一種形成一自對準碳奈米管場效電晶體半導體元件的586165 六、申請專利範圍 方法,包括下列步驟: 成長一奈米管垂直於該半導體元件之一表面所形成之 一金屬催化劑; 形成一氮化物塊結構(n i t r i d e b 1 〇 c k structure ); 以一閘極介電層包覆該奈米管; 沉積一閘極金屬,並以該閘極介電層使該閘極金屬與 該金屬催化劑隔開; 沉積一氮化層; 形成閘極金屬柱,被該氮化層所覆蓋; 形成氮化物間隙壁於該柱周圍; 沉積一汲極金屬,實質位於該柱之間,以該介電層使 該汲極金屬與該閘極金屬分開;以及 沉積一保護介電層於該元件上。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/102,365 US6891227B2 (en) | 2002-03-20 | 2002-03-20 | Self-aligned nanotube field effect transistor and method of fabricating same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200304679A TW200304679A (en) | 2003-10-01 |
TW586165B true TW586165B (en) | 2004-05-01 |
Family
ID=28040198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092104050A TW586165B (en) | 2002-03-20 | 2003-02-26 | Self-aligned nanotube field effect transistor and method of fabricating same |
Country Status (14)
Country | Link |
---|---|
US (6) | US6891227B2 (zh) |
EP (2) | EP1748503B1 (zh) |
JP (1) | JP4493344B2 (zh) |
KR (1) | KR100714932B1 (zh) |
CN (2) | CN101807668B (zh) |
AT (2) | ATE551734T1 (zh) |
AU (1) | AU2003224668A1 (zh) |
BR (1) | BR0308569A (zh) |
CA (3) | CA2695715C (zh) |
IL (2) | IL164066A0 (zh) |
MX (1) | MXPA04008984A (zh) |
PL (1) | PL373571A1 (zh) |
TW (1) | TW586165B (zh) |
WO (1) | WO2003081687A2 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7560327B2 (en) | 2005-12-28 | 2009-07-14 | Hynix Semiconductor Inc. | Method of fabricating semiconductor device with dual gate structure |
TWI421918B (zh) * | 2007-02-21 | 2014-01-01 | Nantero Inc | 形成以碳奈米管為基礎的接觸件至半導體之方法 |
Families Citing this family (269)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040253741A1 (en) * | 2003-02-06 | 2004-12-16 | Alexander Star | Analyte detection in liquids with carbon nanotube field effect transistor devices |
US20070178477A1 (en) * | 2002-01-16 | 2007-08-02 | Nanomix, Inc. | Nanotube sensor devices for DNA detection |
US20060228723A1 (en) * | 2002-01-16 | 2006-10-12 | Keith Bradley | System and method for electronic sensing of biomolecules |
US6891227B2 (en) * | 2002-03-20 | 2005-05-10 | International Business Machines Corporation | Self-aligned nanotube field effect transistor and method of fabricating same |
JP3804594B2 (ja) * | 2002-08-02 | 2006-08-02 | 日本電気株式会社 | 触媒担持基板およびそれを用いたカーボンナノチューブの成長方法ならびにカーボンナノチューブを用いたトランジスタ |
US7135728B2 (en) * | 2002-09-30 | 2006-11-14 | Nanosys, Inc. | Large-area nanoenabled macroelectronic substrates and uses therefor |
TWI309845B (en) * | 2002-09-30 | 2009-05-11 | Nanosys Inc | Large-area nanoenabled macroelectronic substrates and uses therefor |
AU2003282558A1 (en) * | 2002-10-11 | 2004-05-04 | Massachusetts Institute Of Technology | Nanopellets and method of making nanopellets |
US7253434B2 (en) * | 2002-10-29 | 2007-08-07 | President And Fellows Of Harvard College | Suspended carbon nanotube field effect transistor |
JP5025132B2 (ja) * | 2002-10-29 | 2012-09-12 | プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ | カーボンナノチューブ素子の製造 |
JP4501339B2 (ja) * | 2002-11-29 | 2010-07-14 | ソニー株式会社 | pn接合素子の製造方法 |
US6933222B2 (en) * | 2003-01-02 | 2005-08-23 | Intel Corporation | Microcircuit fabrication and interconnection |
CA2419704A1 (en) | 2003-02-24 | 2004-08-24 | Ignis Innovation Inc. | Method of manufacturing a pixel with organic light-emitting diode |
US6696327B1 (en) * | 2003-03-18 | 2004-02-24 | Intel Corporation | Method for making a semiconductor device having a high-k gate dielectric |
US20100244262A1 (en) * | 2003-06-30 | 2010-09-30 | Fujitsu Limited | Deposition method and a deposition apparatus of fine particles, a forming method and a forming apparatus of carbon nanotubes, and a semiconductor device and a manufacturing method of the same |
WO2005019095A1 (en) * | 2003-08-20 | 2005-03-03 | Qucor Pty Ltd | Fabricating nanoscale and atomic scale devices |
TWI239071B (en) * | 2003-08-20 | 2005-09-01 | Ind Tech Res Inst | Manufacturing method of carbon nano-tube transistor |
DE10340926A1 (de) * | 2003-09-03 | 2005-03-31 | Technische Universität Ilmenau Abteilung Forschungsförderung und Technologietransfer | Verfahren zur Herstellung von elektronischen Bauelementen |
US7105851B2 (en) * | 2003-09-24 | 2006-09-12 | Intel Corporation | Nanotubes for integrated circuits |
JP5250615B2 (ja) * | 2003-10-28 | 2013-07-31 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2005050305A1 (ja) * | 2003-11-18 | 2005-06-02 | Nikon Corporation | 表示デバイス製造方法及び表示デバイス |
US7374793B2 (en) | 2003-12-11 | 2008-05-20 | International Business Machines Corporation | Methods and structures for promoting stable synthesis of carbon nanotubes |
US7038299B2 (en) * | 2003-12-11 | 2006-05-02 | International Business Machines Corporation | Selective synthesis of semiconducting carbon nanotubes |
DE102004001340A1 (de) * | 2004-01-08 | 2005-08-04 | Infineon Technologies Ag | Verfahren zum Herstellen eines Nanoelement-Feldeffektransistors, Nanoelement-Feldeffekttransistor und Nanoelement-Anordnung |
DE102004003374A1 (de) * | 2004-01-22 | 2005-08-25 | Infineon Technologies Ag | Halbleiter-Leistungsschalter sowie dafür geeignetes Herstellungsverfahren |
US20050167655A1 (en) * | 2004-01-29 | 2005-08-04 | International Business Machines Corporation | Vertical nanotube semiconductor device structures and methods of forming the same |
US7211844B2 (en) | 2004-01-29 | 2007-05-01 | International Business Machines Corporation | Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage |
US7829883B2 (en) * | 2004-02-12 | 2010-11-09 | International Business Machines Corporation | Vertical carbon nanotube field effect transistors and arrays |
KR101050468B1 (ko) * | 2004-02-14 | 2011-07-19 | 삼성에스디아이 주식회사 | 바이오 칩 및 이를 이용한 바이오 분자 검출 시스템 |
US7253431B2 (en) * | 2004-03-02 | 2007-08-07 | International Business Machines Corporation | Method and apparatus for solution processed doping of carbon nanotube |
US7862624B2 (en) * | 2004-04-06 | 2011-01-04 | Bao Tran | Nano-particles on fabric or textile |
US20050218397A1 (en) * | 2004-04-06 | 2005-10-06 | Availableip.Com | NANO-electronics for programmable array IC |
US7330369B2 (en) | 2004-04-06 | 2008-02-12 | Bao Tran | NANO-electronic memory array |
US7019391B2 (en) * | 2004-04-06 | 2006-03-28 | Bao Tran | NANO IC packaging |
US20050218398A1 (en) * | 2004-04-06 | 2005-10-06 | Availableip.Com | NANO-electronics |
US7498641B2 (en) * | 2004-05-28 | 2009-03-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Partial replacement silicide gate |
US7109546B2 (en) | 2004-06-29 | 2006-09-19 | International Business Machines Corporation | Horizontal memory gain cells |
US7129097B2 (en) * | 2004-07-29 | 2006-10-31 | International Business Machines Corporation | Integrated circuit chip utilizing oriented carbon nanotube conductive layers |
US20060063318A1 (en) * | 2004-09-10 | 2006-03-23 | Suman Datta | Reducing ambipolar conduction in carbon nanotube transistors |
KR101025846B1 (ko) * | 2004-09-13 | 2011-03-30 | 삼성전자주식회사 | 탄소나노튜브 채널을 포함하는 반도체 장치의 트랜지스터 |
US7345296B2 (en) * | 2004-09-16 | 2008-03-18 | Atomate Corporation | Nanotube transistor and rectifying devices |
US7776307B2 (en) | 2004-09-16 | 2010-08-17 | Etamota Corporation | Concentric gate nanotube transistor devices |
US7943418B2 (en) | 2004-09-16 | 2011-05-17 | Etamota Corporation | Removing undesirable nanotubes during nanotube device fabrication |
US7462890B1 (en) | 2004-09-16 | 2008-12-09 | Atomate Corporation | Nanotube transistor integrated circuit layout |
US7233071B2 (en) * | 2004-10-04 | 2007-06-19 | International Business Machines Corporation | Low-k dielectric layer based upon carbon nanostructures |
US20070246784A1 (en) * | 2004-10-13 | 2007-10-25 | Samsung Electronics Co., Ltd. | Unipolar nanotube transistor using a carrier-trapping material |
US7226818B2 (en) | 2004-10-15 | 2007-06-05 | General Electric Company | High performance field effect transistors comprising carbon nanotubes fabricated using solution based processing |
CN100420033C (zh) * | 2004-10-28 | 2008-09-17 | 鸿富锦精密工业(深圳)有限公司 | 场效应晶体管及其制造方法 |
US7405129B2 (en) * | 2004-11-18 | 2008-07-29 | International Business Machines Corporation | Device comprising doped nano-component and method of forming the device |
US7582534B2 (en) * | 2004-11-18 | 2009-09-01 | International Business Machines Corporation | Chemical doping of nano-components |
WO2006086074A2 (en) * | 2004-12-16 | 2006-08-17 | William Marsh Rice University | Carbon nanotube substrates and catalyzed hot stamp for polishing and patterning the substrates |
US7202173B2 (en) * | 2004-12-20 | 2007-04-10 | Palo Alto Research Corporation Incorporated | Systems and methods for electrical contacts to arrays of vertically aligned nanorods |
US7598516B2 (en) * | 2005-01-07 | 2009-10-06 | International Business Machines Corporation | Self-aligned process for nanotube/nanowire FETs |
US8362525B2 (en) * | 2005-01-14 | 2013-01-29 | Nantero Inc. | Field effect device having a channel of nanofabric and methods of making same |
US7598544B2 (en) * | 2005-01-14 | 2009-10-06 | Nanotero, Inc. | Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same |
CA2495726A1 (en) | 2005-01-28 | 2006-07-28 | Ignis Innovation Inc. | Locally referenced voltage programmed pixel for amoled displays |
US7535016B2 (en) * | 2005-01-31 | 2009-05-19 | International Business Machines Corporation | Vertical carbon nanotube transistor integration |
WO2006085559A1 (ja) * | 2005-02-10 | 2006-08-17 | Matsushita Electric Industrial Co., Ltd. | 微細構造体を保持するための構造体、半導体装置、tft駆動回路、パネル、ディスプレイ、センサおよびこれらの製造方法 |
US20100065820A1 (en) * | 2005-02-14 | 2010-03-18 | Atomate Corporation | Nanotube Device Having Nanotubes with Multiple Characteristics |
US20060180859A1 (en) * | 2005-02-16 | 2006-08-17 | Marko Radosavljevic | Metal gate carbon nanotube transistor |
US7671398B2 (en) * | 2005-02-23 | 2010-03-02 | Tran Bao Q | Nano memory, light, energy, antenna and strand-based systems and methods |
US7126207B2 (en) * | 2005-03-24 | 2006-10-24 | Intel Corporation | Capacitor with carbon nanotubes |
US7468271B2 (en) * | 2005-04-06 | 2008-12-23 | President And Fellows Of Harvard College | Molecular characterization with carbon nanotube control |
US7271079B2 (en) * | 2005-04-06 | 2007-09-18 | International Business Machines Corporation | Method of doping a gate electrode of a field effect transistor |
KR101109623B1 (ko) * | 2005-04-07 | 2012-01-31 | 엘지디스플레이 주식회사 | 박막트랜지스터와 그 제조방법. |
KR101145146B1 (ko) | 2005-04-07 | 2012-05-14 | 엘지디스플레이 주식회사 | 박막트랜지스터와 그 제조방법 |
US7479654B2 (en) | 2005-05-09 | 2009-01-20 | Nantero, Inc. | Memory arrays using nanotube articles with reprogrammable resistance |
US7781862B2 (en) * | 2005-05-09 | 2010-08-24 | Nantero, Inc. | Two-terminal nanotube devices and systems and methods of making same |
US7141727B1 (en) * | 2005-05-16 | 2006-11-28 | International Business Machines Corporation | Method and apparatus for fabricating a carbon nanotube transistor having unipolar characteristics |
US7230286B2 (en) * | 2005-05-23 | 2007-06-12 | International Business Machines Corporation | Vertical FET with nanowire channels and a silicided bottom contact |
US7838943B2 (en) * | 2005-07-25 | 2010-11-23 | International Business Machines Corporation | Shared gate for conventional planar device and horizontal CNT |
US20070031318A1 (en) * | 2005-08-03 | 2007-02-08 | Jie Liu | Methods of chemically treating an electrically conductive layer having nanotubes therein with diazonium reagent |
US7485908B2 (en) * | 2005-08-18 | 2009-02-03 | United States Of America As Represented By The Secretary Of The Air Force | Insulated gate silicon nanowire transistor and method of manufacture |
US7371677B2 (en) * | 2005-09-30 | 2008-05-13 | Freescale Semiconductor, Inc. | Laterally grown nanotubes and method of formation |
US7492015B2 (en) * | 2005-11-10 | 2009-02-17 | International Business Machines Corporation | Complementary carbon nanotube triple gate technology |
WO2007092770A2 (en) * | 2006-02-02 | 2007-08-16 | William Marsh Rice University | Fabrication de dispositifs electriques par façonnage de nanotubes |
US20070183189A1 (en) * | 2006-02-08 | 2007-08-09 | Thomas Nirschl | Memory having nanotube transistor access device |
US8759811B2 (en) * | 2006-02-14 | 2014-06-24 | Raytheon Company | Particle encapsulated nanoswitch |
KR100668355B1 (ko) * | 2006-02-16 | 2007-01-12 | 삼성전자주식회사 | 캐리어 트래핑 물질을 구비한 유니폴라 탄소나노튜브 및유니폴라 전계효과 트랜지스터 |
WO2008054839A2 (en) * | 2006-03-03 | 2008-05-08 | William Marsh Rice University | Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces |
KR100777265B1 (ko) * | 2006-03-30 | 2007-11-20 | 고려대학교 산학협력단 | 나노 입자를 이용한 전면 게이트 박막 트랜지스터 및 그제조 방법 |
US8785058B2 (en) | 2006-04-07 | 2014-07-22 | New Jersey Institute Of Technology | Integrated biofuel cell with aligned nanotube electrodes and method of use thereof |
US7626190B2 (en) | 2006-06-02 | 2009-12-01 | Infineon Technologies Ag | Memory device, in particular phase change random access memory device with transistor, and method for fabricating a memory device |
DE102006026949A1 (de) * | 2006-06-09 | 2007-12-13 | Infineon Technologies Ag | Speicherbauelement, insbesondere Phasenwechselspeicherbauelement mit wahlfreiem Zugriff mit Transistor, und Verfahren zum Herstellen eines Speicherbauelements |
US7714386B2 (en) | 2006-06-09 | 2010-05-11 | Northrop Grumman Systems Corporation | Carbon nanotube field effect transistor |
US7393699B2 (en) | 2006-06-12 | 2008-07-01 | Tran Bao Q | NANO-electronics |
US20070290394A1 (en) * | 2006-06-20 | 2007-12-20 | International Business Machines Corporation | Method and structure for forming self-planarizing wiring layers in multilevel electronic devices |
US20080135892A1 (en) * | 2006-07-25 | 2008-06-12 | Paul Finnie | Carbon nanotube field effect transistor and method of making thereof |
FR2897978A1 (fr) * | 2006-08-03 | 2007-08-31 | Commissariat Energie Atomique | Cellule de memoire comportant un transistor moleculaire, dispositif comportant une pluralite de telles cellules et procede d'utilisation |
JP5168888B2 (ja) * | 2006-11-20 | 2013-03-27 | 日本電気株式会社 | 半導体装置及びその製造方法 |
KR100912111B1 (ko) * | 2006-12-04 | 2009-08-13 | 한국전자통신연구원 | 쇼트키 장벽 나노선 전계 효과 트랜지스터 및 그 제조방법 |
US8168495B1 (en) | 2006-12-29 | 2012-05-01 | Etamota Corporation | Carbon nanotube high frequency transistor technology |
US9806273B2 (en) * | 2007-01-03 | 2017-10-31 | The United States Of America As Represented By The Secretary Of The Army | Field effect transistor array using single wall carbon nano-tubes |
DE102007001130B4 (de) * | 2007-01-04 | 2014-07-03 | Qimonda Ag | Verfahren zum Herstellen einer Durchkontaktierung in einer Schicht und Anordnung mit einer Schicht mit Durchkontaktierung |
US7511344B2 (en) * | 2007-01-17 | 2009-03-31 | International Business Machines Corporation | Field effect transistor |
US8039870B2 (en) * | 2008-01-28 | 2011-10-18 | Rf Nano Corporation | Multifinger carbon nanotube field-effect transistor |
US9209246B2 (en) | 2007-04-12 | 2015-12-08 | The Penn State University | Accumulation field effect microelectronic device and process for the formation thereof |
US8569834B2 (en) * | 2007-04-12 | 2013-10-29 | The Penn State Research Foundation | Accumulation field effect microelectronic device and process for the formation thereof |
WO2009023304A2 (en) * | 2007-05-02 | 2009-02-19 | Atomate Corporation | High density nanotube devices |
US7964143B2 (en) | 2007-06-20 | 2011-06-21 | New Jersey Institute Of Technology | Nanotube device and method of fabrication |
US7736979B2 (en) * | 2007-06-20 | 2010-06-15 | New Jersey Institute Of Technology | Method of forming nanotube vertical field effect transistor |
US8546027B2 (en) | 2007-06-20 | 2013-10-01 | New Jersey Institute Of Technology | System and method for directed self-assembly technique for the creation of carbon nanotube sensors and bio-fuel cells on single plane |
US7858454B2 (en) * | 2007-07-31 | 2010-12-28 | Rf Nano Corporation | Self-aligned T-gate carbon nanotube field effect transistor devices and method for forming the same |
CN101442105B (zh) * | 2007-11-21 | 2010-06-09 | 中国科学院化学研究所 | 一种有机场效应晶体管及其专用源漏电极与制备方法 |
WO2009088882A2 (en) * | 2007-12-31 | 2009-07-16 | Atomate Corporation | Edge-contacted vertical carbon nanotube transistor |
KR100930997B1 (ko) * | 2008-01-22 | 2009-12-10 | 한국화학연구원 | 탄소나노튜브 트랜지스터 제조 방법 및 그에 의한탄소나노튜브 트랜지스터 |
US8847249B2 (en) | 2008-06-16 | 2014-09-30 | Soraa, Inc. | Solid-state optical device having enhanced indium content in active regions |
US7858506B2 (en) * | 2008-06-18 | 2010-12-28 | Micron Technology, Inc. | Diodes, and methods of forming diodes |
US8767787B1 (en) | 2008-07-14 | 2014-07-01 | Soraa Laser Diode, Inc. | Integrated laser diodes with quality facets on GaN substrates |
US8143148B1 (en) * | 2008-07-14 | 2012-03-27 | Soraa, Inc. | Self-aligned multi-dielectric-layer lift off process for laser diode stripes |
US8805134B1 (en) | 2012-02-17 | 2014-08-12 | Soraa Laser Diode, Inc. | Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices |
WO2010017148A1 (en) | 2008-08-04 | 2010-02-11 | Soraa, Inc. | White light devices using non-polar or semipolar gallium containing materials and phosphors |
US8284810B1 (en) | 2008-08-04 | 2012-10-09 | Soraa, Inc. | Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods |
US8063454B2 (en) * | 2008-08-13 | 2011-11-22 | Micron Technology, Inc. | Semiconductor structures including a movable switching element and systems including same |
US9494615B2 (en) * | 2008-11-24 | 2016-11-15 | Massachusetts Institute Of Technology | Method of making and assembling capsulated nanostructures |
US7893492B2 (en) * | 2009-02-17 | 2011-02-22 | International Business Machines Corporation | Nanowire mesh device and method of fabricating same |
US8247886B1 (en) | 2009-03-09 | 2012-08-21 | Soraa, Inc. | Polarization direction of optical devices using selected spatial configurations |
US9531164B2 (en) * | 2009-04-13 | 2016-12-27 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates for laser applications |
US8837545B2 (en) | 2009-04-13 | 2014-09-16 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
US8634442B1 (en) | 2009-04-13 | 2014-01-21 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates for laser applications |
US10108079B2 (en) | 2009-05-29 | 2018-10-23 | Soraa Laser Diode, Inc. | Laser light source for a vehicle |
US9829780B2 (en) | 2009-05-29 | 2017-11-28 | Soraa Laser Diode, Inc. | Laser light source for a vehicle |
US8427590B2 (en) | 2009-05-29 | 2013-04-23 | Soraa, Inc. | Laser based display method and system |
US8247887B1 (en) | 2009-05-29 | 2012-08-21 | Soraa, Inc. | Method and surface morphology of non-polar gallium nitride containing substrates |
US8509275B1 (en) | 2009-05-29 | 2013-08-13 | Soraa, Inc. | Gallium nitride based laser dazzling device and method |
US9800017B1 (en) | 2009-05-29 | 2017-10-24 | Soraa Laser Diode, Inc. | Laser device and method for a vehicle |
US9250044B1 (en) | 2009-05-29 | 2016-02-02 | Soraa Laser Diode, Inc. | Gallium and nitrogen containing laser diode dazzling devices and methods of use |
US8895352B2 (en) * | 2009-06-02 | 2014-11-25 | International Business Machines Corporation | Method to improve nucleation of materials on graphene and carbon nanotubes |
US8574673B2 (en) * | 2009-07-31 | 2013-11-05 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US8128993B2 (en) * | 2009-07-31 | 2012-03-06 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
CN101997035B (zh) * | 2009-08-14 | 2012-08-29 | 清华大学 | 薄膜晶体管 |
US8750342B1 (en) | 2011-09-09 | 2014-06-10 | Soraa Laser Diode, Inc. | Laser diodes with scribe structures |
US8355418B2 (en) | 2009-09-17 | 2013-01-15 | Soraa, Inc. | Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates |
US9583678B2 (en) | 2009-09-18 | 2017-02-28 | Soraa, Inc. | High-performance LED fabrication |
US8841652B2 (en) * | 2009-11-30 | 2014-09-23 | International Business Machines Corporation | Self aligned carbide source/drain FET |
US20110127492A1 (en) * | 2009-11-30 | 2011-06-02 | International Business Machines Corporation | Field Effect Transistor Having Nanostructure Channel |
US8384065B2 (en) * | 2009-12-04 | 2013-02-26 | International Business Machines Corporation | Gate-all-around nanowire field effect transistors |
US8143113B2 (en) * | 2009-12-04 | 2012-03-27 | International Business Machines Corporation | Omega shaped nanowire tunnel field effect transistors fabrication |
US8455334B2 (en) | 2009-12-04 | 2013-06-04 | International Business Machines Corporation | Planar and nanowire field effect transistors |
US8129247B2 (en) * | 2009-12-04 | 2012-03-06 | International Business Machines Corporation | Omega shaped nanowire field effect transistors |
US8097515B2 (en) * | 2009-12-04 | 2012-01-17 | International Business Machines Corporation | Self-aligned contacts for nanowire field effect transistors |
US8173993B2 (en) * | 2009-12-04 | 2012-05-08 | International Business Machines Corporation | Gate-all-around nanowire tunnel field effect transistors |
WO2011068028A1 (en) * | 2009-12-04 | 2011-06-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor element, semiconductor device, and method for manufacturing the same |
WO2011076245A1 (en) * | 2009-12-21 | 2011-06-30 | Imec | Double gate nanostructure fet |
WO2011077966A1 (en) | 2009-12-25 | 2011-06-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US8101474B2 (en) * | 2010-01-06 | 2012-01-24 | International Business Machines Corporation | Structure and method of forming buried-channel graphene field effect device |
US8722492B2 (en) * | 2010-01-08 | 2014-05-13 | International Business Machines Corporation | Nanowire pin tunnel field effect devices |
US8905588B2 (en) | 2010-02-03 | 2014-12-09 | Sorra, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US10147850B1 (en) | 2010-02-03 | 2018-12-04 | Soraa, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US8436403B2 (en) * | 2010-02-05 | 2013-05-07 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including transistor provided with sidewall and electronic appliance |
JP5601848B2 (ja) | 2010-02-09 | 2014-10-08 | 三菱電機株式会社 | SiC半導体装置の製造方法 |
US9362390B2 (en) | 2010-02-22 | 2016-06-07 | Nantero, Inc. | Logic elements comprising carbon nanotube field effect transistor (CNTFET) devices and methods of making same |
WO2011105198A1 (en) * | 2010-02-26 | 2011-09-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US20110233513A1 (en) * | 2010-03-29 | 2011-09-29 | International Business Machines Corporation | Enhanced bonding interfaces on carbon-based materials for nanoelectronic devices |
US8324940B2 (en) | 2010-04-13 | 2012-12-04 | International Business Machines Corporation | Nanowire circuits in matched devices |
US8361907B2 (en) | 2010-05-10 | 2013-01-29 | International Business Machines Corporation | Directionally etched nanowire field effect transistors |
US8324030B2 (en) | 2010-05-12 | 2012-12-04 | International Business Machines Corporation | Nanowire tunnel field effect transistors |
US8451876B1 (en) | 2010-05-17 | 2013-05-28 | Soraa, Inc. | Method and system for providing bidirectional light sources with broad spectrum |
US8513099B2 (en) * | 2010-06-17 | 2013-08-20 | International Business Machines Corporation | Epitaxial source/drain contacts self-aligned to gates for deposited FET channels |
US9450143B2 (en) | 2010-06-18 | 2016-09-20 | Soraa, Inc. | Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices |
US8404539B2 (en) | 2010-07-08 | 2013-03-26 | International Business Machines Corporation | Self-aligned contacts in carbon devices |
WO2012014786A1 (en) * | 2010-07-30 | 2012-02-02 | Semiconductor Energy Laboratory Co., Ltd. | Semicondcutor device and manufacturing method thereof |
US8835231B2 (en) | 2010-08-16 | 2014-09-16 | International Business Machines Corporation | Methods of forming contacts for nanowire field effect transistors |
US8536563B2 (en) | 2010-09-17 | 2013-09-17 | International Business Machines Corporation | Nanowire field effect transistors |
US8816319B1 (en) | 2010-11-05 | 2014-08-26 | Soraa Laser Diode, Inc. | Method of strain engineering and related optical device using a gallium and nitrogen containing active region |
US9048170B2 (en) | 2010-11-09 | 2015-06-02 | Soraa Laser Diode, Inc. | Method of fabricating optical devices using laser treatment |
US8597967B1 (en) | 2010-11-17 | 2013-12-03 | Soraa, Inc. | Method and system for dicing substrates containing gallium and nitrogen material |
US9025635B2 (en) | 2011-01-24 | 2015-05-05 | Soraa Laser Diode, Inc. | Laser package having multiple emitters configured on a support member |
US9595813B2 (en) | 2011-01-24 | 2017-03-14 | Soraa Laser Diode, Inc. | Laser package having multiple emitters configured on a substrate member |
US9093820B1 (en) | 2011-01-25 | 2015-07-28 | Soraa Laser Diode, Inc. | Method and structure for laser devices using optical blocking regions |
US9287684B2 (en) | 2011-04-04 | 2016-03-15 | Soraa Laser Diode, Inc. | Laser package having multiple emitters with color wheel |
US8471249B2 (en) * | 2011-05-10 | 2013-06-25 | International Business Machines Corporation | Carbon field effect transistors having charged monolayers to reduce parasitic resistance |
US9606607B2 (en) | 2011-05-17 | 2017-03-28 | Ignis Innovation Inc. | Systems and methods for display systems with dynamic power control |
US8455365B2 (en) * | 2011-05-19 | 2013-06-04 | Dechao Guo | Self-aligned carbon electronics with embedded gate electrode |
US8492748B2 (en) | 2011-06-27 | 2013-07-23 | International Business Machines Corporation | Collapsable gate for deposited nanostructures |
US8486778B2 (en) * | 2011-07-15 | 2013-07-16 | International Business Machines Corporation | Low resistance source and drain extensions for ETSOI |
US8729529B2 (en) * | 2011-08-03 | 2014-05-20 | Ignis Innovation Inc. | Thin film transistor including a nanoconductor layer |
US8686431B2 (en) | 2011-08-22 | 2014-04-01 | Soraa, Inc. | Gallium and nitrogen containing trilateral configuration for optical devices |
US8951727B2 (en) | 2011-09-19 | 2015-02-10 | California Institute Of Technology | Translocation and nucleotide reading mechanisms for sequencing nanodevices |
US8803129B2 (en) * | 2011-10-11 | 2014-08-12 | International Business Machines Corporation | Patterning contacts in carbon nanotube devices |
US8971370B1 (en) | 2011-10-13 | 2015-03-03 | Soraa Laser Diode, Inc. | Laser devices using a semipolar plane |
US8629010B2 (en) | 2011-10-21 | 2014-01-14 | International Business Machines Corporation | Carbon nanotube transistor employing embedded electrodes |
US8569121B2 (en) * | 2011-11-01 | 2013-10-29 | International Business Machines Corporation | Graphene and nanotube/nanowire transistor with a self-aligned gate structure on transparent substrates and method of making same |
US8772782B2 (en) | 2011-11-23 | 2014-07-08 | International Business Machines Corporation | Transistor employing vertically stacked self-aligned carbon nanotubes |
US8912025B2 (en) | 2011-11-23 | 2014-12-16 | Soraa, Inc. | Method for manufacture of bright GaN LEDs using a selective removal process |
JP5887881B2 (ja) * | 2011-11-28 | 2016-03-16 | 株式会社リコー | 配線の形成方法 |
US8772910B2 (en) | 2011-11-29 | 2014-07-08 | International Business Machines Corporation | Doping carbon nanotubes and graphene for improving electronic mobility |
US8895417B2 (en) | 2011-11-29 | 2014-11-25 | International Business Machines Corporation | Reducing contact resistance for field-effect transistor devices |
US9385169B2 (en) | 2011-11-29 | 2016-07-05 | Ignis Innovation Inc. | Multi-functional active matrix organic light-emitting diode display |
US8642432B2 (en) | 2011-12-01 | 2014-02-04 | International Business Machines Corporation | N-dopant for carbon nanotubes and graphene |
US9663369B2 (en) | 2011-12-16 | 2017-05-30 | International Business Machines Corporation | Cerium (IV) salts as effective dopant for carbon nanotubes and graphene |
US9240552B2 (en) | 2011-12-27 | 2016-01-19 | Intel Corporation | Carbon nanotube semiconductor devices and deterministic nanofabrication methods |
US10224413B1 (en) * | 2012-01-30 | 2019-03-05 | Northrop Grumman Systems Corporation | Radio-frequency carbon-nanotube field effect transistor devices with local backgates and methods for making same |
JP2013179274A (ja) * | 2012-02-09 | 2013-09-09 | Nippon Telegr & Teleph Corp <Ntt> | 電界効果トランジスタおよびその製造方法 |
US9020003B1 (en) | 2012-03-14 | 2015-04-28 | Soraa Laser Diode, Inc. | Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates |
US9343871B1 (en) | 2012-04-05 | 2016-05-17 | Soraa Laser Diode, Inc. | Facet on a gallium and nitrogen containing laser diode |
EP2674996A1 (en) * | 2012-06-15 | 2013-12-18 | Imec VZW | Method for growing nanostructures in recessed structures |
US8741756B2 (en) | 2012-08-13 | 2014-06-03 | International Business Machines Corporation | Contacts-first self-aligned carbon nanotube transistor with gate-all-around |
US8786018B2 (en) | 2012-09-11 | 2014-07-22 | International Business Machines Corporation | Self-aligned carbon nanostructure field effect transistors using selective dielectric deposition |
US8735869B2 (en) | 2012-09-27 | 2014-05-27 | Intel Corporation | Strained gate-all-around semiconductor devices formed on globally or locally isolated substrates |
US8823059B2 (en) | 2012-09-27 | 2014-09-02 | Intel Corporation | Non-planar semiconductor device having group III-V material active region with multi-dielectric gate stack |
US9978904B2 (en) | 2012-10-16 | 2018-05-22 | Soraa, Inc. | Indium gallium nitride light emitting devices |
US8796096B2 (en) | 2012-12-04 | 2014-08-05 | International Business Machines Corporation | Self-aligned double-gate graphene transistor |
US8609481B1 (en) | 2012-12-05 | 2013-12-17 | International Business Machines Corporation | Gate-all-around carbon nanotube transistor with selectively doped spacers |
US8900975B2 (en) | 2013-01-03 | 2014-12-02 | International Business Machines Corporation | Nanopore sensor device |
JP5637231B2 (ja) * | 2013-03-04 | 2014-12-10 | 富士通株式会社 | 電界効果型トランジスタの製造方法 |
US9721505B2 (en) | 2013-03-08 | 2017-08-01 | Ignis Innovation Inc. | Pixel circuits for AMOLED displays |
JP6376788B2 (ja) | 2013-03-26 | 2018-08-22 | 株式会社半導体エネルギー研究所 | 半導体装置およびその作製方法 |
US9048216B2 (en) | 2013-04-17 | 2015-06-02 | International Business Machines Corporation | Self aligned embedded gate carbon transistors |
US9193585B2 (en) | 2013-06-07 | 2015-11-24 | International Business Machines Corporation | Surface modification using functional carbon nanotubes |
US8841189B1 (en) * | 2013-06-14 | 2014-09-23 | International Business Machines Corporation | Transistor having all-around source/drain metal contact channel stressor and method to fabricate same |
JP2015032662A (ja) * | 2013-08-01 | 2015-02-16 | 株式会社東芝 | 半導体装置及びその製造方法 |
US9406888B2 (en) | 2013-08-07 | 2016-08-02 | GlobalFoundries, Inc. | Carbon nanotube device |
US9419189B1 (en) | 2013-11-04 | 2016-08-16 | Soraa, Inc. | Small LED source with high brightness and high efficiency |
CN104576324A (zh) * | 2013-12-21 | 2015-04-29 | 上海大学 | 碳基电子的制作及互连方法 |
CA2872563A1 (en) | 2014-11-28 | 2016-05-28 | Ignis Innovation Inc. | High pixel density array architecture |
US9859394B2 (en) | 2014-12-18 | 2018-01-02 | Agilome, Inc. | Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids |
US9618474B2 (en) | 2014-12-18 | 2017-04-11 | Edico Genome, Inc. | Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids |
US9857328B2 (en) | 2014-12-18 | 2018-01-02 | Agilome, Inc. | Chemically-sensitive field effect transistors, systems and methods for manufacturing and using the same |
US10020300B2 (en) | 2014-12-18 | 2018-07-10 | Agilome, Inc. | Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids |
WO2016100049A1 (en) | 2014-12-18 | 2016-06-23 | Edico Genome Corporation | Chemically-sensitive field effect transistor |
US10006910B2 (en) | 2014-12-18 | 2018-06-26 | Agilome, Inc. | Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same |
US9502673B2 (en) * | 2015-03-31 | 2016-11-22 | International Business Machines Corporation | Transistor devices with tapered suspended vertical arrays of carbon nanotubes |
US10217819B2 (en) * | 2015-05-20 | 2019-02-26 | Samsung Electronics Co., Ltd. | Semiconductor device including metal-2 dimensional material-semiconductor contact |
US10373554B2 (en) | 2015-07-24 | 2019-08-06 | Ignis Innovation Inc. | Pixels and reference circuits and timing techniques |
CA2898282A1 (en) | 2015-07-24 | 2017-01-24 | Ignis Innovation Inc. | Hybrid calibration of current sources for current biased voltage progra mmed (cbvp) displays |
US10657895B2 (en) | 2015-07-24 | 2020-05-19 | Ignis Innovation Inc. | Pixels and reference circuits and timing techniques |
US9787963B2 (en) | 2015-10-08 | 2017-10-10 | Soraa Laser Diode, Inc. | Laser lighting having selective resolution |
JP6851166B2 (ja) | 2015-10-12 | 2021-03-31 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
US10276698B2 (en) | 2015-10-21 | 2019-04-30 | International Business Machines Corporation | Scalable process for the formation of self aligned, planar electrodes for devices employing one or two dimensional lattice structures |
CA2909813A1 (en) | 2015-10-26 | 2017-04-26 | Ignis Innovation Inc | High ppi pattern orientation |
US9577204B1 (en) | 2015-10-30 | 2017-02-21 | International Business Machines Corporation | Carbon nanotube field-effect transistor with sidewall-protected metal contacts |
US9837394B2 (en) | 2015-12-02 | 2017-12-05 | International Business Machines Corporation | Self-aligned three dimensional chip stack and method for making the same |
US10396300B2 (en) | 2015-12-03 | 2019-08-27 | International Business Machines Corporation | Carbon nanotube device with N-type end-bonded metal contacts |
WO2017201081A1 (en) | 2016-05-16 | 2017-11-23 | Agilome, Inc. | Graphene fet devices, systems, and methods of using the same for sequencing nucleic acids |
US10665798B2 (en) * | 2016-07-14 | 2020-05-26 | International Business Machines Corporation | Carbon nanotube transistor and logic with end-bonded metal contacts |
US10665799B2 (en) * | 2016-07-14 | 2020-05-26 | International Business Machines Corporation | N-type end-bonded metal contacts for carbon nanotube transistors |
US10825681B2 (en) * | 2016-08-13 | 2020-11-03 | Applied Materials, Inc. | 3D CTF integration using hybrid charge trap layer of sin and self aligned SiGe nanodot |
GB2554362B (en) * | 2016-09-21 | 2020-11-11 | Pragmatic Printing Ltd | Transistor and its method of manufacture |
CN106229348A (zh) * | 2016-09-22 | 2016-12-14 | 京东方科技集团股份有限公司 | 薄膜晶体管及其制造方法、阵列基板、显示装置 |
US10586491B2 (en) | 2016-12-06 | 2020-03-10 | Ignis Innovation Inc. | Pixel circuits for mitigation of hysteresis |
US10304804B2 (en) * | 2017-03-31 | 2019-05-28 | Intel Corporation | System on package architecture including structures on die back side |
US11004982B2 (en) * | 2017-03-31 | 2021-05-11 | Intel Corporation | Gate for a transistor |
US10714018B2 (en) | 2017-05-17 | 2020-07-14 | Ignis Innovation Inc. | System and method for loading image correction data for displays |
US10141528B1 (en) * | 2017-05-23 | 2018-11-27 | International Business Machines Corporation | Enhancing drive current and increasing device yield in n-type carbon nanotube field effect transistors |
US10193090B2 (en) * | 2017-06-20 | 2019-01-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of manufacturing a semiconductor device and a semiconductor device |
JP7118973B2 (ja) * | 2017-08-04 | 2022-08-16 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US11025899B2 (en) | 2017-08-11 | 2021-06-01 | Ignis Innovation Inc. | Optical correction systems and methods for correcting non-uniformity of emissive display devices |
US10771155B2 (en) | 2017-09-28 | 2020-09-08 | Soraa Laser Diode, Inc. | Intelligent visible light with a gallium and nitrogen containing laser source |
CN107706307B (zh) * | 2017-10-13 | 2020-05-19 | 深圳市华星光电半导体显示技术有限公司 | 碳纳米管薄膜晶体管及其制作方法 |
CN107819037B (zh) * | 2017-12-07 | 2023-10-27 | 苏州大学 | 应用碳纳米管作为导电沟槽的鳍式场效应管及其制备方法 |
US10333088B1 (en) | 2017-12-12 | 2019-06-25 | International Business Machines Corporation | Carbon nanotube transistor with carrier blocking using thin dielectric under contact |
US10222474B1 (en) | 2017-12-13 | 2019-03-05 | Soraa Laser Diode, Inc. | Lidar systems including a gallium and nitrogen containing laser light source |
US10971078B2 (en) | 2018-02-12 | 2021-04-06 | Ignis Innovation Inc. | Pixel measurement through data line |
US10551728B1 (en) | 2018-04-10 | 2020-02-04 | Soraa Laser Diode, Inc. | Structured phosphors for dynamic lighting |
CN109560125B (zh) * | 2018-11-27 | 2022-03-11 | 湖南工业大学 | 金属堆叠源漏电极场效应管及其制作方法 |
US11239637B2 (en) | 2018-12-21 | 2022-02-01 | Kyocera Sld Laser, Inc. | Fiber delivered laser induced white light system |
US11421843B2 (en) | 2018-12-21 | 2022-08-23 | Kyocera Sld Laser, Inc. | Fiber-delivered laser-induced dynamic light system |
US12000552B2 (en) | 2019-01-18 | 2024-06-04 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system for a vehicle |
US11884202B2 (en) | 2019-01-18 | 2024-01-30 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system |
KR102666776B1 (ko) * | 2019-05-10 | 2024-05-21 | 삼성디스플레이 주식회사 | 박막 트랜지스터의 제조 방법, 표시 장치의 제조 방법 및 박막 트랜지스터 기판 |
CN110364438B (zh) * | 2019-05-29 | 2023-05-05 | 北京华碳元芯电子科技有限责任公司 | 晶体管及其制造方法 |
CN110571333B (zh) * | 2019-08-13 | 2023-06-30 | 北京元芯碳基集成电路研究院 | 一种无掺杂晶体管器件制作方法 |
US11417729B2 (en) | 2019-08-29 | 2022-08-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Transistors with channels formed of low-dimensional materials and method forming same |
DE102020109756A1 (de) * | 2019-08-29 | 2021-03-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Transistoren mit kanälen gebildet aus niedrigdimensionalenmaterialien und verfahren zum bilden derselben |
CN113644112B (zh) * | 2020-05-11 | 2022-07-15 | 北京华碳元芯电子科技有限责任公司 | 晶体管及制作方法 |
JP7487780B2 (ja) | 2020-08-17 | 2024-05-21 | 株式会社村田製作所 | 半導体センサ |
WO2023097120A1 (en) * | 2021-11-29 | 2023-06-01 | Duke University | Metallic single-walled carbon nanotube hybrid assemblies and superstructures |
CN118191022A (zh) * | 2024-03-20 | 2024-06-14 | 北京大学 | 悬空阵列碳纳米管场效应晶体管生物传感器的制备方法 |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2137806B (en) * | 1983-04-05 | 1986-10-08 | Standard Telephones Cables Ltd | Ion implantation in semiconductor bodies |
CA1308496C (en) * | 1988-02-18 | 1992-10-06 | Rajiv V. Joshi | Deposition of tungsten on silicon in a non-self-limiting cvd process |
JPH02206130A (ja) * | 1989-02-06 | 1990-08-15 | Nec Corp | Mos型電界効果トランジスタの製造方法 |
JP2717234B2 (ja) * | 1991-05-11 | 1998-02-18 | 株式会社 半導体エネルギー研究所 | 絶縁ゲイト型電界効果半導体装置およびその作製方法 |
JP3403231B2 (ja) * | 1993-05-12 | 2003-05-06 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
JP3460863B2 (ja) * | 1993-09-17 | 2003-10-27 | 三菱電機株式会社 | 半導体装置の製造方法 |
JP3393237B2 (ja) * | 1994-10-04 | 2003-04-07 | ソニー株式会社 | 半導体装置の製造方法 |
US6025635A (en) * | 1997-07-09 | 2000-02-15 | Advanced Micro Devices, Inc. | Short channel transistor having resistive gate extensions |
CA2347365A1 (en) * | 1998-10-23 | 2000-05-04 | Merck Frosst Canada & Co. | Combination product comprising an e-type prostaglandin ligand and a cox-2 selective inhibitor and methods of use |
US6022771A (en) * | 1999-01-25 | 2000-02-08 | International Business Machines Corporation | Fabrication of semiconductor device having shallow junctions and sidewall spacers creating taper-shaped isolation where the source and drain regions meet the gate regions |
JP4039600B2 (ja) * | 1999-02-22 | 2008-01-30 | クラウソン、ジョセフ、イー、ジュニア | ナノ構造デバイス及び装置 |
JP2000275678A (ja) * | 1999-03-26 | 2000-10-06 | Matsushita Electric Ind Co Ltd | 薄膜半導体装置およびその製造方法 |
SE517833C2 (sv) | 1999-11-26 | 2002-07-23 | Ericsson Telefon Ab L M | Metod vid tillverkning av en bipolär kiseltransistor för att bilda basområden och öppna ett emitterfönster samt bipolär kiseltransistor tillverkad enligt metoden |
US7335603B2 (en) * | 2000-02-07 | 2008-02-26 | Vladimir Mancevski | System and method for fabricating logic devices comprising carbon nanotube transistors |
US6407435B1 (en) | 2000-02-11 | 2002-06-18 | Sharp Laboratories Of America, Inc. | Multilayer dielectric stack and method |
KR100360476B1 (ko) * | 2000-06-27 | 2002-11-08 | 삼성전자 주식회사 | 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법 |
KR100327496B1 (ko) * | 2000-06-27 | 2002-03-15 | 윤종용 | 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법 |
WO2002003482A1 (de) * | 2000-07-04 | 2002-01-10 | Infineon Technologies Ag | Feldeffekttransistor |
KR100350794B1 (ko) * | 2000-11-20 | 2002-09-05 | 엘지전자 주식회사 | 탄소나노튜브를 이용한 스핀 밸브 단전자 트랜지스터 |
CN1251962C (zh) * | 2000-07-18 | 2006-04-19 | Lg电子株式会社 | 水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管 |
DE10036897C1 (de) * | 2000-07-28 | 2002-01-03 | Infineon Technologies Ag | Feldeffekttransistor, Schaltungsanordnung und Verfahren zum Herstellen eines Feldeffekttransistors |
US6664143B2 (en) * | 2000-11-22 | 2003-12-16 | North Carolina State University | Methods of fabricating vertical field effect transistors by conformal channel layer deposition on sidewalls |
US6423583B1 (en) * | 2001-01-03 | 2002-07-23 | International Business Machines Corporation | Methodology for electrically induced selective breakdown of nanotubes |
US6524920B1 (en) * | 2001-02-09 | 2003-02-25 | Advanced Micro Devices, Inc. | Low temperature process for a transistor with elevated source and drain |
JP3731486B2 (ja) * | 2001-03-16 | 2006-01-05 | 富士ゼロックス株式会社 | トランジスタ |
US7084507B2 (en) * | 2001-05-02 | 2006-08-01 | Fujitsu Limited | Integrated circuit device and method of producing the same |
JP4225716B2 (ja) * | 2001-09-11 | 2009-02-18 | 富士通株式会社 | 円筒状多層構造体による半導体装置 |
JP2004537174A (ja) | 2001-07-26 | 2004-12-09 | テクニシェ ユニヴェルシテイト デルフト | カーボンナノチューブを利用した電子デバイス |
US6515325B1 (en) * | 2002-03-06 | 2003-02-04 | Micron Technology, Inc. | Nanotube semiconductor devices and methods for making the same |
US6891227B2 (en) * | 2002-03-20 | 2005-05-10 | International Business Machines Corporation | Self-aligned nanotube field effect transistor and method of fabricating same |
TWI220269B (en) * | 2002-07-31 | 2004-08-11 | Ind Tech Res Inst | Method for fabricating n-type carbon nanotube device |
US20040144972A1 (en) * | 2002-10-04 | 2004-07-29 | Hongjie Dai | Carbon nanotube circuits with high-kappa dielectrics |
MY134672A (en) | 2004-05-20 | 2007-12-31 | Japan Tobacco Inc | Stable crystal of 4-oxoquinoline compound |
-
2002
- 2002-03-20 US US10/102,365 patent/US6891227B2/en not_active Expired - Lifetime
-
2003
- 2003-02-19 EP EP06120727A patent/EP1748503B1/en not_active Expired - Lifetime
- 2003-02-19 WO PCT/US2003/007269 patent/WO2003081687A2/en active Application Filing
- 2003-02-19 AU AU2003224668A patent/AU2003224668A1/en not_active Abandoned
- 2003-02-19 EP EP03721349A patent/EP1485958B1/en not_active Expired - Lifetime
- 2003-02-19 AT AT03721349T patent/ATE551734T1/de active
- 2003-02-19 BR BRPI0308569-4A patent/BR0308569A/pt not_active Application Discontinuation
- 2003-02-19 KR KR1020047013701A patent/KR100714932B1/ko not_active IP Right Cessation
- 2003-02-19 CA CA2695715A patent/CA2695715C/en not_active Expired - Fee Related
- 2003-02-19 IL IL16406603A patent/IL164066A0/xx unknown
- 2003-02-19 AT AT06120727T patent/ATE516600T1/de not_active IP Right Cessation
- 2003-02-19 CN CN2010101262554A patent/CN101807668B/zh not_active Expired - Lifetime
- 2003-02-19 JP JP2003579292A patent/JP4493344B2/ja not_active Expired - Fee Related
- 2003-02-19 CA CA2659479A patent/CA2659479C/en not_active Expired - Fee Related
- 2003-02-19 MX MXPA04008984A patent/MXPA04008984A/es active IP Right Grant
- 2003-02-19 CN CN038062925A patent/CN1669160B/zh not_active Expired - Lifetime
- 2003-02-19 PL PL03373571A patent/PL373571A1/xx not_active IP Right Cessation
- 2003-02-19 CA CA2479024A patent/CA2479024C/en not_active Expired - Fee Related
- 2003-02-26 TW TW092104050A patent/TW586165B/zh not_active IP Right Cessation
-
2004
- 2004-09-14 IL IL164066A patent/IL164066A/en not_active IP Right Cessation
- 2004-10-01 US US10/956,851 patent/US7253065B2/en not_active Expired - Lifetime
-
2007
- 2007-08-07 US US11/835,167 patent/US7635856B2/en not_active Expired - Lifetime
-
2009
- 2009-08-20 US US12/544,436 patent/US8138491B2/en not_active Expired - Fee Related
- 2009-08-20 US US12/544,412 patent/US7897960B2/en not_active Expired - Fee Related
-
2012
- 2012-02-08 US US13/368,901 patent/US8637374B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7560327B2 (en) | 2005-12-28 | 2009-07-14 | Hynix Semiconductor Inc. | Method of fabricating semiconductor device with dual gate structure |
TWI421918B (zh) * | 2007-02-21 | 2014-01-01 | Nantero Inc | 形成以碳奈米管為基礎的接觸件至半導體之方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW586165B (en) | Self-aligned nanotube field effect transistor and method of fabricating same | |
US20220093772A1 (en) | Graphene/nanostructure fet with self-aligned contact and gate | |
US8753965B2 (en) | Graphene transistor with a self-aligned gate | |
CN103518255B (zh) | 具有减小寄生电阻的带电单层的碳场效应晶体管 | |
TWI248677B (en) | Method of fabricating an ultra-narrow channel semiconductor device | |
US7892956B2 (en) | Methods of manufacture of vertical nanowire FET devices | |
US20130344664A1 (en) | Field effect transistor having germanium nanorod and method of manufacturing the same | |
US8193032B2 (en) | Ultrathin spacer formation for carbon-based FET | |
CN111509047B (zh) | 石墨烯场效应晶体管及其制备方法 | |
KR970023709A (ko) | 반도체 장치의 캐패시터 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |