TW564549B - Semiconductor device and the manufacturing method thereof - Google Patents

Semiconductor device and the manufacturing method thereof Download PDF

Info

Publication number
TW564549B
TW564549B TW091116494A TW91116494A TW564549B TW 564549 B TW564549 B TW 564549B TW 091116494 A TW091116494 A TW 091116494A TW 91116494 A TW91116494 A TW 91116494A TW 564549 B TW564549 B TW 564549B
Authority
TW
Taiwan
Prior art keywords
film
semiconductor device
manufacturing
silicon
scope
Prior art date
Application number
TW091116494A
Other languages
English (en)
Chinese (zh)
Inventor
Yasuhiro Shimamoto
Katsunori Obata
Kazunari Torii
Masahiko Hiratani
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of TW564549B publication Critical patent/TW564549B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/671Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor having lateral variation in doping or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28211Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • H10D64/017Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/681Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
    • H10D64/685Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being perpendicular to the channel plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/691Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator comprising metallic compounds, e.g. metal oxides or metal silicates 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/693Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • H10D1/682Capacitors having no potential barriers having dielectrics comprising perovskite structures
    • H10D1/684Capacitors having no potential barriers having dielectrics comprising perovskite structures the dielectrics comprising multiple layers, e.g. comprising buffer layers, seed layers or gradient layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0212Manufacture or treatment of FETs having insulated gates [IGFET] using self-aligned silicidation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)
TW091116494A 2001-08-27 2002-07-24 Semiconductor device and the manufacturing method thereof TW564549B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001255454A JP2003069011A (ja) 2001-08-27 2001-08-27 半導体装置とその製造方法

Publications (1)

Publication Number Publication Date
TW564549B true TW564549B (en) 2003-12-01

Family

ID=19083420

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091116494A TW564549B (en) 2001-08-27 2002-07-24 Semiconductor device and the manufacturing method thereof

Country Status (3)

Country Link
US (3) US6787451B2 (enExample)
JP (1) JP2003069011A (enExample)
TW (1) TW564549B (enExample)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806145B2 (en) * 2001-08-31 2004-10-19 Asm International, N.V. Low temperature method of forming a gate stack with a high k layer deposited over an interfacial oxide layer
KR100683104B1 (ko) * 2001-11-30 2007-02-15 가부시끼가이샤 르네사스 테크놀로지 반도체 집적 회로 장치 및 그 제조 방법
US6787440B2 (en) * 2002-12-10 2004-09-07 Intel Corporation Method for making a semiconductor device having an ultra-thin high-k gate dielectric
US20040126944A1 (en) * 2002-12-31 2004-07-01 Pacheco Rotondaro Antonio Luis Methods for forming interfacial layer for deposition of high-k dielectrics
JP4489368B2 (ja) * 2003-03-24 2010-06-23 株式会社日立製作所 半導体装置およびその製造方法
JP4933256B2 (ja) * 2003-07-31 2012-05-16 東京エレクトロン株式会社 半導体微細構造物を形成する方法
JP2005072405A (ja) * 2003-08-27 2005-03-17 Sony Corp 薄膜の形成方法および半導体装置の製造方法
JP4059183B2 (ja) 2003-10-07 2008-03-12 ソニー株式会社 絶縁体薄膜の製造方法
US7144825B2 (en) * 2003-10-16 2006-12-05 Freescale Semiconductor, Inc. Multi-layer dielectric containing diffusion barrier material
JP2005159316A (ja) * 2003-10-30 2005-06-16 Tokyo Electron Ltd 半導体装置の製造方法及び成膜装置並びに記憶媒体
US7071122B2 (en) * 2003-12-10 2006-07-04 International Business Machines Corporation Field effect transistor with etched-back gate dielectric
KR100574358B1 (ko) * 2003-12-29 2006-04-27 삼성전자주식회사 반도체 장치 및 그 제조방법
JP5050351B2 (ja) * 2004-01-28 2012-10-17 日本電気株式会社 半導体装置の製造方法
JP2005285809A (ja) * 2004-03-26 2005-10-13 Sony Corp 半導体装置およびその製造方法
US7115959B2 (en) * 2004-06-22 2006-10-03 International Business Machines Corporation Method of forming metal/high-k gate stacks with high mobility
US7560361B2 (en) * 2004-08-12 2009-07-14 International Business Machines Corporation Method of forming gate stack for semiconductor electronic device
JP4264039B2 (ja) * 2004-08-25 2009-05-13 パナソニック株式会社 半導体装置
JP2006086151A (ja) * 2004-09-14 2006-03-30 Fujitsu Ltd 半導体装置の製造方法
JP2006086272A (ja) * 2004-09-15 2006-03-30 Fujitsu Ltd 半導体装置
WO2006032300A1 (en) * 2004-09-21 2006-03-30 Freescale Semiconductor, Inc Semiconductor device and method of forming the same
US7242055B2 (en) * 2004-11-15 2007-07-10 International Business Machines Corporation Nitrogen-containing field effect transistor gate stack containing a threshold voltage control layer formed via deposition of a metal oxide
KR101048890B1 (ko) * 2004-12-01 2011-07-13 주식회사 하이닉스반도체 반도체 소자의 커패시터 형성 방법
JP4541125B2 (ja) 2004-12-15 2010-09-08 パナソニック株式会社 高誘電率ゲート絶縁膜を備えた電界効果トランジスタを有する半導体装置及びその製造方法
US20060151846A1 (en) * 2005-01-13 2006-07-13 International Business Machines Corporation Method of forming HfSiN metal for n-FET applications
US7531405B2 (en) * 2005-02-28 2009-05-12 Qimonds Ag Method of manufacturing a dielectric layer and corresponding semiconductor device
JP2006269520A (ja) * 2005-03-22 2006-10-05 Renesas Technology Corp 半導体装置およびその製造方法
JP4522900B2 (ja) * 2005-03-30 2010-08-11 東京エレクトロン株式会社 成膜方法および記録媒体
US7820538B2 (en) * 2005-04-21 2010-10-26 Freescale Semiconductor, Inc. Method of fabricating a MOS device with non-SiO2 gate dielectric
US7301219B2 (en) * 2005-06-06 2007-11-27 Macronix International Co., Ltd. Electrically erasable programmable read only memory (EEPROM) cell and method for making the same
US7473607B2 (en) * 2005-07-06 2009-01-06 International Business Machines Corporation Method of manufacturing a multi-workfunction gates for a CMOS circuit
JP2007088322A (ja) 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US7655994B2 (en) * 2005-10-26 2010-02-02 International Business Machines Corporation Low threshold voltage semiconductor device with dual threshold voltage control means
JP4782037B2 (ja) * 2006-03-03 2011-09-28 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法及び製造装置
JP4926504B2 (ja) * 2006-03-08 2012-05-09 浜松ホトニクス株式会社 光電面、それを備える電子管及び光電面の製造方法
JPWO2007139141A1 (ja) * 2006-05-31 2009-10-08 東京エレクトロン株式会社 絶縁膜の形成方法および半導体装置の製造方法
KR20090094033A (ko) * 2006-12-28 2009-09-02 도쿄엘렉트론가부시키가이샤 절연막의 형성 방법 및 반도체 장치의 제조 방법
JP5280670B2 (ja) * 2007-12-07 2013-09-04 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP5387173B2 (ja) * 2009-06-30 2014-01-15 富士通セミコンダクター株式会社 半導体装置及びその製造方法
JP2010118677A (ja) * 2010-01-15 2010-05-27 Renesas Technology Corp 半導体装置
JP5521726B2 (ja) * 2010-04-16 2014-06-18 富士通セミコンダクター株式会社 半導体装置及びその製造方法
US8492247B2 (en) 2010-08-17 2013-07-23 International Business Machines Corporation Programmable FETs using Vt-shift effect and methods of manufacture
JP5569253B2 (ja) * 2010-08-24 2014-08-13 富士通セミコンダクター株式会社 半導体装置の製造方法
WO2012131898A1 (ja) * 2011-03-29 2012-10-04 株式会社日立製作所 炭化珪素半導体装置
CN103177966B (zh) * 2011-12-22 2017-09-22 中芯国际集成电路制造(上海)有限公司 晶体管及其制作方法
KR101934829B1 (ko) * 2012-10-23 2019-03-18 삼성전자 주식회사 반도체 장치 및 반도체 장치의 제조 방법
CN104701240A (zh) * 2015-03-31 2015-06-10 上海华力微电子有限公司 用于制备高k介质层的方法
US10263025B2 (en) * 2015-06-05 2019-04-16 Sony Corporation Solid-state imaging sensor
US11045646B2 (en) * 2016-06-27 2021-06-29 Board Of Regents, The University Of Texas System Softening nerve cuff electrodes
KR102208520B1 (ko) 2016-07-19 2021-01-26 어플라이드 머티어리얼스, 인코포레이티드 디스플레이 디바이스들에서 활용되는 지르코늄 산화물을 포함하는 하이-k 유전체 재료들
US9876069B1 (en) * 2017-05-18 2018-01-23 Vanguard International Semiconductor Corporation High-voltage semiconductor device and method for manufacturing the same
JP6887307B2 (ja) * 2017-05-19 2021-06-16 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US12336249B2 (en) * 2022-03-16 2025-06-17 Taiwan Semiconductor Manufacturing Company, Ltd. Gate spacer and formation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298297A (ja) * 1996-04-30 1997-11-18 Ricoh Co Ltd 半導体装置およびその製造方法
JPH10189483A (ja) * 1996-12-26 1998-07-21 Fujitsu Ltd 半導体装置の製造方法及び半導体装置
JP3222404B2 (ja) * 1997-06-20 2001-10-29 科学技術振興事業団 半導体基板表面の絶縁膜の形成方法及びその形成装置
JPH1126756A (ja) * 1997-06-30 1999-01-29 Sharp Corp 半導体装置の製造方法
JPH11135774A (ja) 1997-07-24 1999-05-21 Texas Instr Inc <Ti> 高誘電率シリケート・ゲート誘電体
US6020024A (en) * 1997-08-04 2000-02-01 Motorola, Inc. Method for forming high dielectric constant metal oxides
JP3357861B2 (ja) * 1998-06-04 2002-12-16 株式会社東芝 Mis半導体装置及び不揮発性半導体記憶装置
JP2000049349A (ja) * 1998-07-15 2000-02-18 Texas Instr Inc <Ti> 集積回路に電界効果デバイスを製造する方法
US6140167A (en) * 1998-08-18 2000-10-31 Advanced Micro Devices, Inc. High performance MOSFET and method of forming the same using silicidation and junction implantation prior to gate formation
JP2000106432A (ja) * 1998-09-29 2000-04-11 Nec Corp ゲート絶縁膜の製造方法及びそれを用いた半導体装置
US6610548B1 (en) * 1999-03-26 2003-08-26 Sony Corporation Crystal growth method of oxide, cerium oxide, promethium oxide, multi-layered structure of oxides, manufacturing method of field effect transistor, manufacturing method of ferroelectric non-volatile memory and ferroelectric non-volatile memory
JP2000307083A (ja) * 1999-04-22 2000-11-02 Hitachi Ltd 半導体装置およびその製造方法
JP4237332B2 (ja) * 1999-04-30 2009-03-11 株式会社東芝 半導体装置の製造方法
JP2000332235A (ja) * 1999-05-17 2000-11-30 Hitachi Ltd 半導体装置およびその製造方法
JP2001077108A (ja) * 1999-08-31 2001-03-23 Nec Corp 半導体装置及び複合酸化物薄膜の製造方法
CA2360312A1 (en) * 2000-10-30 2002-04-30 National Research Council Of Canada Novel gate dielectric

Also Published As

Publication number Publication date
US20070001244A1 (en) 2007-01-04
US20040262642A1 (en) 2004-12-30
US7119407B2 (en) 2006-10-10
JP2003069011A (ja) 2003-03-07
US20030042557A1 (en) 2003-03-06
US6787451B2 (en) 2004-09-07

Similar Documents

Publication Publication Date Title
TW564549B (en) Semiconductor device and the manufacturing method thereof
US7750418B2 (en) Introduction of metal impurity to change workfunction of conductive electrodes
US7446380B2 (en) Stabilization of flatband voltages and threshold voltages in hafnium oxide based silicon transistors for CMOS
CN1332451C (zh) 半导体器件及其制造方法
US7872317B2 (en) Dual metal gate self-aligned integration
CN100485936C (zh) 半导体结构及其制造方法
US20050250318A1 (en) CVD tantalum compounds for FET gate electrodes
US20090057787A1 (en) Semiconductor device
US20090294876A1 (en) Method for deposition of an ultra-thin electropositive metal-containing cap layer
JP2008172227A (ja) 電子デバイスおよびその製造プロセス
JP5270086B2 (ja) pFET材料としての金属酸窒化物を用いた半導体構造およびその製造方法
US20080146012A1 (en) Novel method to adjust work function by plasma assisted metal incorporated dielectric
US8294201B2 (en) High-k gate dielectric and method of manufacture
US7880241B2 (en) Low-temperature electrically activated gate electrode and method of fabricating same
JP5387173B2 (ja) 半導体装置及びその製造方法
US7939396B2 (en) Base oxide engineering for high-K gate stacks
US7018883B2 (en) Dual work function gate electrodes
KR100843223B1 (ko) 채널 타입에 따라 이종의 메탈 게이트 구조를 채용하는반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees