TW201930457A - 固體電解電容器製造用分散液組成物及固體電解電容器之製造方法 - Google Patents

固體電解電容器製造用分散液組成物及固體電解電容器之製造方法 Download PDF

Info

Publication number
TW201930457A
TW201930457A TW107146766A TW107146766A TW201930457A TW 201930457 A TW201930457 A TW 201930457A TW 107146766 A TW107146766 A TW 107146766A TW 107146766 A TW107146766 A TW 107146766A TW 201930457 A TW201930457 A TW 201930457A
Authority
TW
Taiwan
Prior art keywords
group
compound
electrolytic capacitor
solid electrolytic
dispersion
Prior art date
Application number
TW107146766A
Other languages
English (en)
Other versions
TWI806949B (zh
Inventor
川本健
大久保
Original Assignee
日商昭和電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商昭和電工股份有限公司 filed Critical 日商昭和電工股份有限公司
Publication of TW201930457A publication Critical patent/TW201930457A/zh
Application granted granted Critical
Publication of TWI806949B publication Critical patent/TWI806949B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本發明係關於一種固體電解電容器製造用分散液組成物及固體電解電容器之製造方法,其中該固體電解電容器製造用分散液組成物係包含:在包含由聚陰離子進行保護膠體化之種子粒子的分散介質中或包含聚陰離子的分散介質中,將單體化合物聚合而得的共軛系導電性聚合物;及通式(1)所示之化合物(a);該固體電解電容器之製造方法係具有:使該組成物附著於表面具有介電體被膜之由閥作用金屬所構成的多孔性陽極體之步驟;及由附著於前述多孔性陽極體之分散液組成物去除分散介質,而形成固體電解質層之步驟(式中之記號係如說明書所記載)。根據本發明,可容易地形成固體電解質層,而能夠製造高容量表現率(靜電電容)的固體電解電容器;

Description

固體電解電容器製造用分散液組成物及固體電解電容器之製造方法
本發明係關於一種固體電解電容器之製造方法、及用於該製造方法之固體電解電容器製造用分散液組成物。
作為藉由陽極氧化在金屬表面形成介電體氧化被膜,並使其接觸固體電解質所製造的固體電解電容器之固體電解質,有人提案使用導電性高分子。
作為藉由陽極氧化形成介電體氧化被膜而被覆之金屬的實例,已知有鋁、鉭、鈮等。
此外,作為用於固體電解電容器的導電性高分子,已知有聚噻吩、聚吡咯、聚苯胺、聚乙炔、聚苯、聚(對苯乙烯)、聚并苯、聚噻吩乙烯及其衍生物等共軛系導電性聚合物。又,已知有一種使用聚苯乙烯磺酸等聚陰離子作為上述共軛系導電性聚合物的對陰離子,並摻雜共軛系導電性聚合物之技術。
固體電解質一般而言係在形成於具有閥作用之金屬表面的介電體氧化被膜上,使用來獲得導電性高分子聚合物的單體溶液與氧化劑溶液進行化學氧化聚合而形成,或者藉由電解聚合而形成。又,有人提出一種藉由塗佈導電性高分子水溶液或者懸浮液而形成的方法。
例如,專利文獻1中揭示一種製造方法,其係具備:使分散有導電性高分子之微粒子的導電性高分子分散水溶液含浸於電容器元件而形成第1固體電解質層之步驟;藉由使具有雜環式單體之溶液與含有氧化劑之溶液個別含浸於此第1固體電解質層的表面,或藉由使含有雜環式單體與氧化劑之混合溶液含浸於此第1固體電解質層的表面,而形成第2固體電解質層之步驟。
專利文獻2中揭示一種方法,在將介電體氧化皮膜形成於將閥金屬粉末燒結而成之燒結體的表面的電容器元件,藉由聚合性單體的化學聚合形成作為固體電解質層之導電性高分子層後,將此電容器元件浸漬於導電性高分子溶液,或塗佈導電性高分子溶液並使其乾燥,藉此在化學聚合所致之導電性高分子層上進一步形成厚導電性高分子層。
專利文獻3中,為了使導電性聚合物含浸於電容器內部,而提出一種製程,其係將聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT-PSS)分散液進行低黏度化,並使用超音波照射進行聚合。
專利文獻4中表示一種藉由在包含用來獲得共軛系導電性聚合物之單體與由聚陰離子進行保護膠體化之種子粒子的分散介質中,將單體聚合而獲得含共軛系導電性聚合物之分散液之步驟,可生產性良好地製造電容器特性優良的固體電解電容器之方法及固體電解電容器。此固體電解電容器,由於使用導電性高分子,而具有所謂等效串聯電阻(ESR)低、頻率特性優良且對於溫度變化,特性變化小之特徵。

[先前技術文獻]
[專利文獻]
[專利文獻1] 日本特開2003-100561號公報
[專利文獻2] 日本特開2005-109252號公報
[專利文獻3] 日本特表2011-510141號公報(美國專利第8721928號說明書)
[專利文獻4] 國際公開第2014/163202號說明書(美國專利第9640325號說明書)
[發明所欲解決之課題]
因此,本發明課題在於提供一種容易地形成固體電解質層而製造高容量表現率(靜電電容)的固體電解電容器之方法、及於前述方法中使用的固體電解質層形成用之分散液組成物(簡稱為「固體電解電容器製造用分散液組成物」)。

[解決課題之手段]
本案發明人等致力重複多次研究的結果發現,藉由使包含共軛系導電性聚合物與特定結構之縮合多環式化合物單體的分散液組成物(固體電解電容器製造用分散液組成物)附著於表面具有介電體被膜之由閥作用金屬所構成的多孔性陽極體後,去除分散介質使縮合多環式化合物單體聚合而形成固體電解質層,可解決前述課題,而完成本發明。
亦即,本發明係關於下述[1]~[6]之固體電解電容器製造用分散液組成物、及[7]~[15]之固體電解電容器之製造方法。
[1] 一種固體電解電容器製造用分散液組成物,其包含:
共軛系導電性聚合物;分散介質;及通式(1)所示之化合物(a):

(式中,R1 、R2 、R3 、R4 、R5 及R6 各自獨立表示選自由(1)氫原子、(2-1)碳數1~20之直鏈狀或分支狀烷基、(2-2)碳數1~20之直鏈狀或分支狀烷氧基、(2-3)碳數1~20之直鏈狀或分支狀烷基羰氧基、(3)-SO2 M(M表示OH、或選自O- Na+ 、O- Li+ 及O- K+ 之鹼金屬醇鹽、O- NH4 + 所示之銨醇鹽、碳數1~20之直鏈狀或分支狀烷氧基、選自氯、氟、溴、或碘之鹵素原子)、(4)鹵素原子、(5)羧基、(6)膦基、(7)硝基、(8)氰基、(9)一級、二級或三級胺基、(10)三鹵甲基、(11)苯基、及(12)經選自烷基、羥基、烷氧基、烷基羰氧基、磺酸基、及鹵素原子之至少1種所取代之苯基所成群組的一價取代基;R1 、R2 、R3 、R4 、R5 及R6 所表示之取代基中的烴鏈可彼此於任意位置鍵結,而與該取代基所鍵結之碳原子共同形成至少1條二價鏈,此二價鏈至少形成1個3~7員環之飽和或不飽和烴之環狀結構;R1 、R2 、R3 、R4 、R5 及R6 所表示之烷基、烷氧基、烷基羰氧基、或由彼等所形成的環狀烴鏈中可包含選自羰基、醚、酯、醯胺、硫醚、亞磺醯基、磺醯基及亞胺基的至少1種鍵結;k表示被雜環與具有取代基R1 ~R4 之苯環所包圍的縮合環數,為0~3之整數)。
[2] 如前項1之固體電解電容器製造用分散液組成物,其中前述通式(1)中之R1 、R2 、R3 、R4 、R5 及R6 各自獨立為選自(1)氫原子、(2-1)碳數1~20之直鏈狀或分支狀烷基、(2-2)碳數1~20之直鏈狀或分支狀烷氧基、(2-3)碳數1~20之直鏈狀或分支狀烷基羰氧基、(3)-SO2 M、及(4)鹵素原子的一價取代基。
[3] 如前項1或2之固體電解電容器製造用分散液組成物,其中前述化合物(a)係以下化合物的至少1種:化合物(a1),其係前述通式(1)中之R1 、R2 、R3 、R4 、R5 及R6 各自獨立為選自(1)氫原子、(2-1)碳數1~20之直鏈狀或分支狀烷基、(2-2)碳數1~20之直鏈狀或分支狀烷氧基、(2-3)碳數1~20之直鏈狀或分支狀烷基羰氧基、及(4)鹵素原子的一價取代基;及化合物(a2),其係前述通式(1)中之R1 為(3)-SO2 M。
[4] 如前項1~3中任一項之固體電解電容器製造用分散液組成物,其中前述化合物(a)係前述通式(1)中之k為0的化合物。
[5] 如前項1~4中任一項之固體電解電容器製造用分散液組成物,其中前述共軛系導電性聚合物係式(2)

(式中,R7 及R8 各自獨立表示氫原子、羥基、可具有取代基之碳數1~18之烷基、可具有取代基之碳數1~18之烷氧基、或者可具有取代基之碳數1~18之烷硫基、或R7 與R8 彼此鍵結表示可具有取代基之碳數3~10之脂環、可具有取代基之碳數6~10之芳香環、可具有取代基之碳數2~10之含氧原子雜環、可具有取代基之碳數2~10之含硫原子雜環、或者可具有取代基之碳數2~10之含硫原子及氧原子之雜環)所示之單體化合物的聚合物。
[6] 如前項1~5中任一項之固體電解電容器製造用分散液組成物,其係進一步包含聚陰離子。
[7] 一種固體電解電容器之製造方法,其特徵為具有:使如前項1~6中任一項之固體電解電容器製造用分散液組成物附著於表面具有介電體被膜之由閥作用金屬所構成的多孔性陽極體之步驟(步驟C1);及由附著於前述多孔性陽極體之分散液組成物去除分散介質,而形成固體電解質層之步驟(步驟D1)。
[8] 一種固體電解電容器之製造方法,其特徵為具有:
在包含由聚陰離子所保護膠體化之種子粒子的分散介質中或包含聚陰離子的分散介質中,將單體化合物聚合而得到含共軛系導電性聚合物之分散液(i)之步驟(步驟A);
對前述含共軛系導電性聚合物之分散液(i)添加通式(1)

(式中之記號係表示與前項1之記載相同的意義)
所示之化合物(a),而調製含有化合物(a)與共軛系導電性聚合物的分散液(ii)之步驟(步驟B);
使前述分散液(ii)附著於表面具有介電體被膜之由閥作用金屬所構成的多孔性陽極體之步驟(步驟C2);及
由附著於前述多孔性陽極體之分散液(ii)去除分散介質而形成固體電解質層之步驟(步驟D2)。
[9] 如前項8之固體電解電容器之製造方法,其中前述通式(1)中之R1 、R2 、R3 、R4 、R5 及R6 各自獨立為選自(1)氫原子、(2-1)碳數1~20之直鏈狀或分支狀烷基、(2-2)碳數1~20之直鏈狀或分支狀烷氧基、(2-3)碳數1~20之直鏈狀或分支狀烷基羰氧基、(3)-SO2 M、及(4)鹵素原子的一價取代基。
[10] 如前項8或9之固體電解電容器之製造方法,其中前述化合物(a)係以下化合物的至少1種:化合物(a1),其係前述通式(1)中之R1 、R2 、R3 、R4 、R5 及R6 各自獨立為選自(1)氫原子、(2-1)碳數1~20之直鏈狀或分支狀烷基、(2-2)碳數1~20之直鏈狀或分支狀烷氧基、(2-3)碳數1~20之直鏈狀或分支狀烷基羰氧基、及(4)鹵素原子的一價取代基;及化合物(a2),其係前述通式(1)中之R1 為-SO2 M。
[11] 如前項8~10中任一項之固體電解電容器之製造方法,其中前述化合物(a)係前述通式(1)中之k為0的化合物。
[12] 如前項8~11中任一項之固體電解電容器之製造方法,其中前述種子粒子為乙烯性不飽和單體之聚合物的粒子。
[13] 如前項8~12中任一項之固體電解電容器之製造方法,其中前述由聚陰離子進行保護膠體化之種子粒子的d50粒徑為0.01~10μm。
[14] 如前項8~13中任一項之固體電解電容器之製造方法,其中前述聚陰離子為具有磺酸基的聚合物。
[15] 如前項8~14中任一項之固體電解電容器之製造方法,其中,相對於前述單體化合物1莫耳,前述聚陰離子中之陰離子基的比例為0.25~30莫耳。

[發明之效果]
藉由使包含共軛系導電性聚合物與通式(1)所示之縮合多環式化合物單體的分散液組成物(固體電解電容器製造用分散液組成物)附著於表面具有介電體被膜之由閥作用金屬所構成的多孔性陽極體後,藉由去除分散介質,使縮合多環式化合物聚合而形成固體電解質層,可獲得高容量表現率(靜電電容)的固體電解電容器。
[實施發明之形態]
第1發明之固體電解電容器製造用分散液組成物係一種包含共軛系導電性聚合物;分散介質;及通式(1)所示之化合物(a)的分散液組成物;

(式中,R1 、R2 、R3 、R4 、R5 及R6 各自獨立表示選自由(1)氫原子、(2-1)碳數1~20之直鏈狀或分支狀烷基、(2-2)碳數1~20之直鏈狀或分支狀烷氧基、(2-3)碳數1~20之直鏈狀或分支狀烷基羰氧基、(3)-SO2 M(M表示OH、或選自O- Na+ 、O- Li+ 及O- K+ 之鹼金屬醇鹽、O- NH4 + 所示之銨醇鹽、碳數1~20之直鏈狀或分支狀烷氧基、選自氯、氟、溴、或碘之鹵素原子)、(4)鹵素原子、(5)羧基、(6)膦基、(7)硝基、(8)氰基、(9)一級、二級或三級胺基、(10)三鹵甲基、(11)苯基、及(12)經選自烷基、羥基、烷氧基、烷基羰氧基、磺酸基、及鹵素原子之至少1種所取代之苯基所成群組的一價取代基;R1 、R2 、R3 、R4 、R5 及R6 所表示之取代基中的烴鏈可彼此於任意位置鍵結,而與該取代基所鍵結之碳原子共同形成至少1條二價鏈,此二價鏈至少形成1個3~7員環之飽和或不飽和烴之環狀結構;R1 、R2 、R3 、R4 、R5 及R6 所表示之烷基、烷氧基、烷基羰氧基、或由彼等所形成的環狀烴鏈中可包含選自羰基、醚、酯、醯胺、硫醚、亞磺醯基、磺醯基及亞胺基的至少1種鍵結;k表示被雜環與具有取代基R1 ~R4 之苯環所包圍的縮合環數,為0~3之整數)。
又,第2發明之固體電解電容器之製造方法,其特徵為具有:使第1發明之固體電解電容器製造用分散液組成物附著於表面具有介電體被膜之由閥作用金屬所構成的多孔性陽極體之步驟(步驟C1);及由附著於前述多孔性陽極體之分散液組成物去除分散介質,而形成固體電解質層之步驟(步驟D1)。
再者,第3發明之固體電解電容器之製造方法,其特徵為具有:在包含由聚陰離子進行保護膠體化之種子粒子的分散介質中或包含聚陰離子的分散介質中,將單體化合物聚合而得到含共軛系導電性聚合物之分散液(i)之步驟(步驟A);對前述含共軛系導電性聚合物之分散液(i)添加上述化合物(a),而調製含有化合物(a)與共軛系導電性聚合物的分散液(ii)之步驟(步驟B);使前述分散液(ii)附著於表面具有介電體被膜之由閥作用金屬所構成的多孔性陽極體之步驟(步驟C2);及由附著於前述多孔性陽極體之分散液(ii)去除分散介質而形成固體電解質層之步驟(步驟D2)。
於本說明書中,將單體化合物單獨聚合而得知共軛系導電性聚合物、及將多種單體化合物共聚合而得之共軛系導電性共聚物係一併稱為「共軛系導電性聚合物」。
於本說明書中,「(甲基)丙烯酸」係指丙烯酸或甲基丙烯酸;又,「(甲基)丙烯酸酯」係指丙烯酸酯或甲基丙烯酸酯。
再者,茲將聚陰離子配位於種子粒子的表面而形成保護膠體之狀態的粒子稱為「由聚陰離子進行保護膠體化之種子粒子」。此外,聚陰離子係指具有2個以上陰離子性基之聚合物。
<第1發明:固體電解電容器製造用分散液組成物>
以下就固體電解電容器製造用分散液組成物加以說明。
第1發明之固體電解電容器製造用分散液組成物係包含共軛系導電性聚合物、分散介質、及後述之化合物(a)。
由於化合物(a)會藉由親電子劑所致之轉移反應及脫水反應而轉移至高活性單體,因此,透過由第1發明之固體電解電容器製造用分散液組成物去除分散介質,可容易地形成包含化合物(a)之聚合物與共軛系導電性聚合物的固體電解質層。
第1發明之固體電解電容器製造用分散液組成物之製造方法不特別限定,較佳藉由下述第3發明中的步驟B調製成分散液組成物。
[1-1.單體化合物]
共軛系導電性聚合物之構成單元的單體化合物較佳為包含選自可具有取代基之吡咯、可具有取代基之苯胺、及可具有取代基之噻吩的1種以上者。作為取代基,可舉出例如碳數1~18之烷基、碳數6~10之芳基、碳數5~10之雜芳基、碳數1~18之烷氧基、碳數1~18之烷硫基、羧基、羥基、鹵素原子及氰基等。此外,上述烷基、芳基、雜芳基、烷氧基及烷硫基可經選自羧基、羥基、鹵素原子或氰基中的1種以上取代。又,前述取代基亦可2個以上經縮合而形成環。
作為上述單體化合物之具體例,可舉出吡咯、N-甲基吡咯、3-甲基吡咯、3-乙基吡咯、3-正丙基吡咯、3-丁基吡咯、3-辛基吡咯、3-癸基吡咯、3-十二基吡咯、3,4-二甲基吡咯、3,4-二丁基吡咯、3-羧基吡咯、3-甲基-4-羧基吡咯、3-甲基-4-羧基乙基吡咯、3-甲基-4-羧基丁基吡咯、3-羥基吡咯、3-甲氧基吡咯、3-乙氧基吡咯、3-丁氧基吡咯、3-己氧基吡咯、3-甲基-4-己氧基吡咯;
噻吩、3-甲基噻吩、3-乙基噻吩、3-丙基噻吩、3-丁基噻吩、3-己基噻吩、3-庚基噻吩、3-辛基噻吩、3-癸基噻吩、3-十二基噻吩、3-十八基噻吩、3-溴噻吩、3-氯噻吩、3-碘噻吩、3-氰基噻吩、3-苯基噻吩、3,4-二甲基噻吩、3,4-二丁基噻吩、3-羥基噻吩、3-甲氧基噻吩、3-乙氧基噻吩、3-丁氧基噻吩、3-己氧基噻吩、3-庚氧基噻吩、3-辛氧基噻吩、3-癸氧基噻吩、3-十二基氧基噻吩、3-十八基氧基噻吩、3,4-二羥基噻吩、3,4-二甲氧基噻吩、3,4-二乙氧基噻吩、3,4-二丙氧基噻吩、3,4-二丁氧基噻吩、3,4-二己氧基噻吩、3,4-二庚氧基噻吩、3,4-二辛氧基噻吩、3,4-二癸氧基噻吩、3,4-雙十二基氧基噻吩、3,4-伸乙基二氧噻吩、3,4-伸丙基二氧基噻吩、3,4-伸丁基二氧基噻吩、3-甲基-4-甲氧基噻吩、3-甲基-4-乙氧基噻吩、3-羧基噻吩、3-甲基-4-羧基噻吩、3-甲基-4-羧基乙基噻吩、3-甲基-4-羧基丁基噻吩、3,4-伸乙基氧基硫雜噻吩;
苯胺、2-甲基苯胺、3-異丁基苯胺、2-苯胺磺酸、3-苯胺磺酸等。
上述單體化合物可單獨使用1種或組合2種以上來使用。
上述單體化合物之中,較佳為下述式(2)所示之化合物,更佳為下述式(3)所示之化合物,再更佳為3,4-伸乙基二氧噻吩。
式(2)中,R7 及R8 各自獨立表示氫原子、羥基、可具有取代基之碳數1~18之烷基、可具有取代基之碳數1~18之烷氧基、或者可具有取代基之碳數1~18之烷硫基、或R7 與R8 彼此鍵結而形成環之可具有取代基之碳數3~10之脂環、可具有取代基之碳數6~10之芳香環、可具有取代基之碳數2~10之含氧原子雜環、可具有取代基之碳數2~10之含硫原子雜環、或者可具有取代基之碳數2~10之含硫原子及氧原子之雜環。作為取代基,可舉出例如碳數1~18之烷基、碳數6~10之芳基、碳數5~10之雜芳基、碳數1~18之烷氧基、碳數1~18之烷硫基、羧基、羥基、鹵素原子及氰基。此外,上述烷基、芳基、雜芳基、烷氧基及烷硫基可經羧基、羥基、鹵素原子或氰基取代。又,2個以上之取代基亦可縮合而形成環。
作為上述含氧原子雜環,可舉出環氧乙烷環、環氧丙烷環、呋喃環、氫呋喃環、吡喃環、哌哢環、二噁烷環、三噁烷環等。
作為上述含硫原子雜環,可舉出環硫乙烷(thiirane)環、環硫丙烷(thietane)環、噻吩環、噻烷(thiane)環、噻喃(thiopyran)環、噻喃鎓(thiopyrylium)環、苯并噻喃環、二噻烷環、二硫戊烷(dithiolane)環、三噻烷環等。
作為上述含硫原子及氧原子之雜環,可舉出如氧雜硫戊烷(oxathiolane)環、氧雜噻烷環等。
式(3)中,R9 及R10 各自獨立表示氫原子或可具有取代基之碳數1~4之烷基,或R9 與R10 彼此鍵結而形成環的可具有取代基之碳數3~6之含氧原子雜環。
R9 及R10 較佳為R9 與R10 彼此鍵結而形成環的可具有取代基之碳數3~6之含氧原子雜環。作為上述含氧原子雜環,可舉出二噁烷環、三噁烷環等,較佳為二噁烷環。作為取代基,可舉出例如碳數1~18之烷基、碳數6~10之芳基、碳數5~10之雜芳基、碳數1~18之烷氧基、碳數1~18之烷硫基、羧基、羥基、鹵素原子及氰基。此外,上述烷基、芳基、雜芳基、烷氧基及烷硫基可經羧基、羥基、鹵素原子或氰基取代。又,2個以上之取代基亦可縮合而形成環。
[1-2.共軛系導電性聚合物]
將用來獲得前述共軛系導電性聚合物之單體聚合而得的共軛系導電性聚合物,若為主鏈具有π共軛系的有機高分子化合物則不特別限定。作為共軛系導電性聚合物,可舉出聚吡咯類、聚噻吩類、聚異噻茚類、聚乙炔類、聚苯類、聚伸苯乙烯類、聚苯胺類、聚并苯類、聚噻吩乙烯類、及此等之共聚物等。
此等共軛系導電性聚合物之中,由導電性較高之觀點來看,較佳為聚吡咯、聚噻吩、聚(N-甲基吡咯)、聚(3-甲基噻吩)、聚(3-甲氧基噻吩)及聚(3,4-乙烯二氧噻吩)。尤其是由導電性更高,且耐熱性亦優良來看,更佳為聚(3,4-乙烯二氧噻吩)(PEDOT)。
此外,此等共軛系導電性聚合物可單獨使用1種或組合2種以上來使用。
[1-3.分散介質]
用來使共軛系導電性聚合物分散的分散介質,若為可使共軛系導電性聚合物分散,且可使化合物(a)溶解或分散者則不特別限定。
作為分散介質,可舉出例如水;N-乙烯基吡咯啶酮、六甲基磷三醯胺(Hexamethylphosphortriamide)、N-乙烯基甲醯胺、N-乙烯基乙醯胺等醯胺類;甲酚、酚、茬酚等酚類;二丙二醇、1,3-丁二醇、1,4-丁二醇、二丙三醇、異戊二烯甘醇、丁二醇、1,5-戊二醇、1,6-己二醇、1,9-壬二醇、新戊二醇等多元醇類;碳酸伸乙酯、碳酸伸丙酯等碳酸酯化合物;二噁烷、二乙基醚、丙二醇二烷基醚、聚乙二醇二烷基醚、聚丙二醇二烷基醚等醚類;3-甲基-2-噁唑林酮等雜環化合物;乙腈、戊二腈、甲氧基乙腈、丙腈、苄腈等腈類。此等溶劑可單獨使用1種或組合2種以上來使用。此等之中,較佳使用含有1.0~99.0質量%的水的分散介質,更佳含有50.0~99.0質量%的水,再更佳為單獨使用水。
相對於共軛系導電性聚合物、化合物(a)及其他任意不揮發分的總計100質量份,分散介質的用量較佳為10~50000質量份,更佳為50~10000質量份。分散介質的用量若為10質量份以上則黏度為合宜;若為50000質量份以下則固體電解電容器的性能良好。
[1-4.化合物(a)]
本發明所使用之化合物(a)係通式(1)

所示之化合物。化合物(a)可單獨使用1種或組合2種以上來使用。
通式(1)中,R1 、R2 、R3 、R4 、R5 及R6 各自獨立表示選自由(1)氫原子、(2-1)碳數1~20之直鏈狀或分支狀烷基、(2-2)碳數1~20之直鏈狀或分支狀烷氧基、(2-3)碳數1~20之直鏈狀或分支狀烷基羰氧基、(3)-SO2 M(M表示OH、或選自O- Na+ 、O- Li+ 及O- K+ 之鹼金屬醇鹽、O- NH4 + 所示之銨醇鹽、碳數1~20之直鏈狀或分支狀烷氧基、選自氯、氟、溴、或碘之鹵素原子)、(4)鹵素原子、(5)羧基、(6)膦基、(7)硝基、(8)氰基、(9)1級、2級或3級胺基、(10)三鹵甲基、(11)苯基、及(12)經選自烷基、羥基、烷氧基、烷基羰氧基、磺酸基、及鹵素原子之至少1種所取代之苯基所成群組的一價取代基。
有用於作為取代基R1 、R2 、R3 、R4 、R5 及R6 之實例,可舉出氫原子、鹵素原子、-SO2 M、碳數1~20之直鏈狀或分支狀烷基、碳數1~20之直鏈狀或分支狀烷氧基、碳數1~20之直鏈狀或分支狀烷基羰氧基、硝基、氰基等。
若更詳細例示此等取代基,則作為鹵素原子,可舉出氟、氯、溴、碘等;作為烷基或烷基羰氧基之烴鏈,可舉出甲基、乙基、丙基、異丙基、正丁基、異丁基、第三丁基、戊基、己基、辛基、十二基、十四基、環戊基、環己基等。作為烷氧基,可舉出甲氧基、乙氧基、(2-甲氧基)乙氧基、丙氧基、異丙氧基、己氧基、辛氧基、十二烷氧基等基。烷基羰氧基可舉出例如丙二酸酯基(-OCOCH2 CO2 H)、富馬酸酯基(-OCOCH=CHCO2 H、雙鍵為反式)、馬來酸酯基(-OCOCH=CHCO2 H、雙鍵為順式)等。又,烷基羰氧基之烷基亦可舉出甲基、乙基、正丙基、異丙基、正丁基、異丁基、第三丁基、戊基、己基、辛基、十二基、十四基、環戊基、環己基等。
再者,作為前述以外之取代基的實例,可舉出甲胺基、乙胺基、二苯胺基、苯胺基等胺基、三氟甲基、氯苯基、乙醯胺等基。
R1 、R2 、R3 、R4 、R5 及R6 所表示之取代基中的烴鏈可彼此於任意位置鍵結,而與該取代基所鍵結之碳原子共同形成至少1條二價鏈,此二價鏈可形成至少1個3~7員環之飽和或不飽和烴之環狀結構。
R1 、R2 、R3 、R4 、R5 及R6 所表示之烷基、烷氧基、烷基羰氧基、或由彼等所形成的環狀烴鏈中可包含選自羰基、醚、酯、醯胺、硫醚、亞磺醯基、磺醯基及亞胺基的至少1種鍵結。
作為前述通式(1)中之取代基R1 、R2 、R3 、R4 、R5 及R6 的烴鏈彼此於任意位置鍵結而形成3~7員環之飽和或不飽和烴環狀結構的實例,可舉出下述式(4)及(5)所示之結構等:
k表示通式(1)中由1,3-二氫噻吩-S-氧化物環與具有取代基R1 ~R4 之被苯環所包圍的縮合環數,表示0~3之整數。基於對溶劑的溶解性之觀點,k較佳為0。
作為通式(1)所示之化合物之去除取代基R1 ~R6 的基本骨架部分之具體例,可舉出例如1,3-二氫異噻茚-S-氧化物(k為0之化合物)。
就通式(1)所示之化合物而言,較佳使用選自可具有取代基之苯并[c]噻吩-1,3-二氫-2-氧化物、萘并[2,3-c]噻吩-1,3-二氫-2-氧化物的至少1種。
此外,表示化合物(a)之通式(1)亦包含通式(1-2)所示之化合物。
通式(1-2)中,R1A 、R2A 、R3A 、R4A 、R5A 、R6A 及k係表示與前述通式(1)中之R1 、R2 、R3 、R4 、R5 、R6 及k相同的意義。具體而言,可舉出下述式(6)所示之結構。
化合物(a1):
於本發明中,化合物(a)較佳包含化合物(a1),其係通式(1)中之R1 、R2 、R3 、R4 、R5 及R6 各自獨立為選自(1)氫原子、(2-1)碳數1~20之直鏈狀或分支狀烷基、(2-2)碳數1~20之直鏈狀或分支狀烷氧基、或(2-3)碳數1~20之直鏈狀或分支狀烷基羰氧基、及(4)鹵素原子的一價取代基。
具體而言,可舉出例如苯并[c]噻吩-1,3-二氫-2-氧化物、苯并[c]噻吩-1,3-二氫-5-甲基-2-氧化物、苯并[c]噻吩-1,3-二氫-5,6-二甲基-2-氧化物、苯并[c]噻吩-1,3-二氫-5-甲醇-2-氧化物、苯并[c]噻吩-1,3-二氫-5-羥基-2-氧化物、苯并[c]噻吩-1,3-二氫-5-氟-2-氧化物、苯并[c]噻吩-1,3-二氫-5-氯-2-氧化物、苯并[c]噻吩-1,3-二氫-5-溴-2-氧化物、苯并[c]噻吩-1,3-二氫-5-醇-2-氧化物、萘并[2,3-c]噻吩-1,3-二氫-2-氧化物、萘并[2,3-c]噻吩-1,3-二氫-4-苯基-2-氧化物,但不限定於此。
R5 及R6 更佳為氫原子。
R1 、R2 、R3 、R4 係以4個中至少2個為氫原子為更佳,再更佳為至少3個為氫原子,特佳為全部為氫原子。
化合物(a2):
就本發明另一形態,化合物(a)較佳包含化合物(a2),其係通式(1)中之R1 為(3)-SO2 M。
具體而言,可舉出例如苯并[c]噻吩-1,3-二氫-2-氧化物-4-磺酸、苯并[c]噻吩-1,3-二氫-2-氧化物-5-磺酸、苯并[c]噻吩-1,3-二氫-2-氧化物-5,6-二磺酸、苯并[c]噻吩-1,3-二氫-2-氧化物-4,5-二磺酸、苯并[c]噻吩-1,3-二氫-2-氧化物-4,6-二磺酸、苯并[c]噻吩-1,3-二氫-2-氧化物-4,7-二磺酸,但不限定於此。
通式(1)中之R5 及R6 更佳為氫原子。
通式(1)中之R2 、R3 、R4 係以3個中至少1個為氫原子為更佳,再更佳為至少2個為氫原子,特佳為全部為氫原子。
相對於共軛系導電性聚合物100質量份,化合物(a)相對於固體電解電容器製造用分散液組成物的添加量較佳為0.1~500質量份,更佳為0.5~200質量份,再更佳為1~100質量份。若為0.01質量份以上,可增加本發明效果之固體電解電容器的容量表現率。若為500質量份以下,則可形成良好的固體電解質。
添加於本發明之固體電解電容器製造用分散液組成物的化合物(a1)、化合物(a2)的混合比例可為任意者。
[1-5.聚陰離子]
固體電解電容器製造用分散液組成物中可視需求添加聚陰離子。
聚陰離子係具有2個以上陰離子性基之聚合物,配位於種子粒子的表面而形成保護膠體,並發揮作為對共軛系導電性聚合物的摻雜物之機能。
作為陰離子性基,可舉出例如由磺酸或其鹽所構成之基、由磷酸或其鹽所構成之基、一取代磷酸酯基、由羧酸或其鹽所構成之基、一取代硫酸酯基等。此等之中,較佳為強酸性基,更佳為由磺酸或其鹽所構成之基、及由磷酸或其鹽所構成之基,再更佳為由磺酸或其鹽所構成之基。
陰離子性基可直接鍵結於聚合物的主鏈,亦可鍵結於側鏈。當陰離子性基鍵結於側鏈時,由於摻雜效應會更顯著,而以鍵結於側鏈的末端為佳。
聚陰離子亦可具有陰離子性基以外的取代基。作為取代基,可舉出烷基、羥基、烷氧基、酚基、氰基、苯基、羥苯基、酯基、鹵基、烯基、醯亞胺基、醯胺基、胺基、氧羰基、羰基等。此等之中,較佳為烷基、羥基、氰基、酚基、氧羰基,更佳為烷基、羥基、氰基。取代基可直接鍵結於聚合物主鏈,亦可鍵結於側鏈。當取代基鍵結於側鏈時,由於可顯示各取代基之作用效果,因此取代基係以鍵結於側鏈的末端為佳。
作為聚陰離子的取代基之烷基可望發揮提高對分散介質的溶解性及分散性、與共軛系導電性聚合物的相溶性及分散性等之作用。作為烷基,可舉出甲基、乙基、丙基、丁基、異丁基、第三丁基、戊基、己基、辛基、癸基、十二基等鏈狀烷基;環丙基、環戊基、環己基等環烷基。考量到對分散介質的溶解性、對共軛系導電性聚合物的分散性、立體障礙等,更佳為碳數1~12之烷基。
作為聚陰離子的取代基之羥基可望發揮容易與其他的氫原子等形成氫鍵,而提高對分散介質的溶解性、與共軛系導電性聚合物的相溶性、分散性、接著性之作用。羥基較佳為鍵結在鍵結於聚合物主鏈之碳數1~6之烷基的末端者。
作為聚陰離子的取代基之氰基及羥苯基可望發揮提高與共軛系導電性聚合物的相溶性、對分散介質的溶解性、耐熱性之作用。氰基較佳為直接鍵結於聚合物主鏈者、鍵結在鍵結於聚合物主鏈之碳數1~7之烷基的末端者、鍵結在鍵結於聚合物主鏈之碳數2~7之烯基的末端者。
作為聚陰離子的取代基之氧羰基較佳為直接鍵結於聚合物主鏈之烷基氧羰基、芳基氧羰基、中介存在其他官能基而成之烷基氧羰基或芳基氧羰基。
聚陰離子之聚合物主鏈的組成不特別限制。作為聚合物主鏈,可舉出例如聚烯烴、聚醯亞胺、聚醯胺、聚酯等。此等之中,基於容易合成及取得之觀點,較佳為聚烯烴。
聚烯烴係由乙烯性不飽和單體之重複單元所構成的聚合物。聚烯烴可於主鏈上具有碳-碳雙鍵。作為聚烯烴,可舉出例如聚乙烯、聚丙烯、聚丁烯、聚戊烯、聚己烯、聚乙烯醇、聚乙烯基酚、聚(3,3,3-三氟丙烯)、聚丙烯腈、聚丙烯酸酯、聚甲基丙烯酸酯、聚苯乙烯、聚丁二烯、聚異戊二烯等。
作為聚醯亞胺,可舉出如藉由苯均四酸二酐、聯苯基四羧酸二酐、二苯甲酮四羧酸二酐、2,2,3,3-四羧基二苯基醚二酐、2,2-[4,4’-二(二羧基苯基氧基)苯基]丙烷二酐等酸酐,與氧二苯胺、對苯二胺、間苯二胺、二苯甲酮二胺等二胺之縮聚合反應而得之聚合物。
作為聚醯胺,可舉出聚醯胺6、聚醯胺6,6、聚醯胺6,10等。
作為聚酯,可舉出聚對酞酸乙二酯、聚對酞酸丁二酯等。
適用於作為聚陰離子的具有磺酸基之聚合物的具體例,可舉出聚乙烯基磺酸、聚苯乙烯磺酸、聚烯丙基磺酸、聚丙烯酸乙基磺酸、聚丙烯酸丁基磺酸、聚(2-丙烯醯胺-2-甲基丙烷磺酸)、聚異戊二烯磺酸等。此等可為均聚物,亦可為2種以上之共聚物。由賦予導電性之點來看,此等之中較佳為聚苯乙烯磺酸、聚異戊二烯磺酸、聚丙烯酸乙基磺酸、聚丙烯酸丁基磺酸,更佳為聚苯乙烯磺酸(PSS)。
聚陰離子,尤其具有磺酸基之聚合物,係使用來獲得共軛系導電性聚合物之單體在分散介質中的分散性提升,而且可發揮作為共軛系導電性聚合物的摻雜物之機能。
本發明所使用之聚陰離子其重量平均分子量較佳為1000~1000000,更佳為5000~500000,再更佳為50000~300000。重量平均分子量若處於此範圍,則聚陰離子對分散介質的溶解性、聚陰離子對共軛系導電性聚合物的摻雜更良好。此外,此處所稱重量平均分子量,係指使用凝膠滲透層析法,以聚苯乙烯換算分子量所測得的值。
聚陰離子可由市售品之中選擇具有上述特性者,或者亦可為藉由周知方法所合成者。聚陰離子之合成法係記載於例如日本特開2005-76016號公報(美國專利申請公開第2007/096066號公報)。
聚陰離子的用量,亦即使用於種子粒子之保護膠體化者、聚合開始前預先加入者及於聚合中途添加者相加之聚陰離子的總用量,相對於用來獲得共軛系導電性聚合物之單體1莫耳,聚陰離子中之陰離子性基較佳為達0.25~30莫耳,更佳為達0.8~25莫耳的量。
又,本步驟中相對於共軛系導電性聚合物100質量份之聚陰離子的用量較佳為10~30000質量份,更佳為50~25000質量份。
聚陰離子的用量若為10質量份以上,則導電性聚合物的導電性為合宜;若為30000質量份以下,則導電性聚合物在分散介質中的分散性良好。
[1-6.由聚陰離子進行保護膠體化之種子粒子]
固體電解電容器製造用分散液組成物中,為了在共軛系導電性聚合物的聚合時使反應液的黏度大幅降低,可視需求添加由聚陰離子進行保護膠體化之種子粒子。由聚陰離子進行保護膠體化之種子粒子可透過在分散介質中藉由聚陰離子將種子粒子進行保護膠體化而製作。
本發明所使用之種子粒子係於分散介質中由聚陰離子進行保護膠體化之聚合物粒子。作為種子粒子,較佳為例如由包含1種或2種以上之乙烯性不飽和單體作為構成單元之聚合物所構成者。聚合物可為單獨1種,亦可為2種以上的混合物,又,也可為結晶性或非晶性任一種。為結晶性時,結晶度較佳為50%以下。
就乙烯性不飽和單體而言,若為具有1個以上聚合性之乙烯性碳-碳雙鍵者即可。作為乙烯性不飽和單體,可舉出例如具有直鏈狀、分支狀或環狀烷基鏈之(甲基)丙烯酸酯;苯乙烯、α-甲基苯乙烯等芳香族乙烯基化合物;乙烯基吡咯啶酮等雜環式乙烯基化合物;羥烷基(甲基)丙烯酸酯;(甲基)丙烯酸2-乙基己酯等二烷基胺基烷基(甲基)丙烯酸酯;乙酸乙烯酯、烷酸乙烯酯等乙烯基酯類;乙烯、丙烯、丁烯、異丁烯等單烯烴;丁二烯、異戊二烯、氯丁二烯等共軛二烯烴;丙烯酸、甲基丙烯酸、巴豆酸、伊康酸、馬來酸、富馬酸等α,β-不飽和單或二羧酸;丙烯腈等氰化乙烯基化合物;丙烯醛、二丙酮丙烯醯胺等含羰基之乙烯基化合物等。此等乙烯性不飽和單體可單獨使用1種或組合2種以上來使用。
又,乙烯性不飽和單體可包含交聯性單體,亦可其本身彼此、或與具活性氫基之乙烯性不飽和化合物組合而交聯。藉由形成交聯之共聚物,可提升導電膜的耐水性、耐濕性、耐熱性。此外,交聯性單體係指具有2個以上乙烯性碳-碳雙鍵之化合物,或具有1個以上乙烯性碳-碳雙鍵且具有1個以上其他反應性基之化合物。
作為交聯性單體,可舉出例如環氧丙基(甲基)丙烯酸酯等含環氧基之α,β-乙烯性不飽和化合物;乙烯基三乙氧基矽烷、γ-甲基丙烯醯氧基丙基三甲氧基矽烷等含水解性烷氧基矽基之α,β-乙烯性不飽和化合物;乙二醇二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、(甲基)丙烯酸烯丙酯、二乙烯基苯、酞酸二烯丙酯等多官能乙烯基化合物等。
又,亦可使用含羧基之α,β-乙烯性不飽和化合物(含酮基者)等交聯性單體,與多肼化合物(尤其草酸二醯肼、琥珀酸二醯肼、己二酸二醯肼、聚丙烯酸醯肼等具有2個以上醯肼基者)組合而交聯。
乙烯性不飽和單體中之交聯性單體的含量較佳為50.0質量%以下,更佳為35.0質量%以下,再更佳為25.0質量%以下。
[1-7.其他添加劑]
固體電解電容器製造用分散液組成物中,可視需求添加通式(7)

所示之嗎啉化合物。
藉由添加嗎啉化合物,可製作容量表現率(靜電電容)高、耐熱性優良且高溫條件下之可靠性高的固體電解電容器。又,可對固體電解電容器賦予耐腐蝕性,並可調整含共軛系導電性聚合物之分散液的pH。
通式(7)中,R11 表示(1)氫原子、(2)可經羥基、氰基、胺基取代之碳數1~8之烷基、(3)碳數5~6之環烯基、(4)可經胺基、氰基、或甲醯基取代之苯基、(5)乙醯基、(6)乙醯乙醯基、(7)烯丙基、(8)丙烯醯基、(9)吡啶基、(10)可經羥基取代之烷基磺酸基、或(11)甲醯基,n為0、1或2。
作為通式(7)所示之化合物的具體例,可舉出嗎啉、4-甲基嗎啉、4-乙基嗎啉、4-正丙基嗎啉、4-異丙基嗎啉、4-正丁基嗎啉、4-異丁基嗎啉、4-戊基嗎啉、4-己基嗎啉、(R)-3-甲基嗎啉、(S)-3-甲基嗎啉、cis-2,6-二甲基嗎啉、4-(1-環己烯基)嗎啉、1-嗎啉基-1-環戊烯、4-苯基嗎啉、4-(對甲苯基)嗎啉、4-(2-胺基乙基)嗎啉、4-(3-胺基丙基)嗎啉、2-嗎啉基苯胺、4-嗎啉基苯胺、4-(2-嗎啉基乙氧基)苯胺、4-(4-吡啶基)嗎啉、4-胺基嗎啉、4-(2-羥丙基)嗎啉、4-(2-羥乙基)嗎啉、4-(3-羥丙基)嗎啉、2-羥基-3-嗎啉基丙磺酸、2-嗎啉基乙磺酸、3-嗎啉基丙磺酸、4-乙醯基嗎啉、4-乙醯乙醯基嗎啉、4-丙烯醯基嗎啉、4-烯丙基嗎啉、苯基嗎啉、3-(嗎啉基)丙酸乙酯、4-甲醯基嗎啉、4-(4-甲醯基苯基)嗎啉、及上述化合物之鹽。
此等之中,由生產性而言較佳為嗎啉、4-乙基嗎啉、4-正丁基嗎啉、4-異丁基嗎啉、4-苯基嗎啉、4-(2-羥丙基)嗎啉、4-(2-羥乙基)嗎啉、4-(3-羥丙基)嗎啉。
上述嗎啉化合物對固體電解電容器製造用分散液組成物的添加量,相對於固體電解電容器製造用分散液組成物的中和當量,較佳為0.1~4當量,更佳為0.4~2當量。若為0.1當量以上,則明顯顯現添加效果。若添加4當量以下,則不易發生摻雜於共軛系導電性聚合物之聚陰離子的去摻雜。
又,上述嗎啉化合物對固體電解電容器製造用分散液組成物的添加量,較佳調整成pH處於3~13的範圍,更佳調整成pH4~7。pH若為3以上,由鋁等所用之閥作用金屬使腐蝕難以進行。又,若為pH13以下,則變得不易發生摻雜於導電性聚合物之聚陰離子的去摻雜。
再者,固體電解電容器製造用分散液組成物中,視需求,除通式(7)所示之嗎啉化合物以外亦可添加其他的添加劑。其他的添加劑,若為可與共軛系導電性聚合物、及由聚陰離子進行保護膠體化之種子粒子、聚陰離子、或者化合物(a)混合者則不特別限制。
作為此種添加劑,可舉出例如水溶性高分子化合物、水分散性化合物、鹼性化合物、界面活性劑、消泡劑、偶合劑、抗氧化劑、電導率提升劑等。此等添加劑可單獨使用1種或組合2種以上來使用。
水溶性高分子化合物係為在高分子的主鏈或側鏈具有陽離子性基或非離子性基之水溶性聚合物。作為水溶性高分子化合物之具體例,可舉出例如聚氧伸烷基、水溶性聚胺基甲酸酯、水溶性聚酯、水溶性聚醯胺、水溶性聚醯亞胺、水溶性聚丙烯酸、水溶性聚丙烯醯胺、聚乙烯醇、聚丙烯酸等。此等之中,較佳為聚氧伸烷基。
作為聚氧伸烷基之具體例,可舉出二乙二醇、三乙二醇、寡聚乙二醇、三乙二醇單氯醇、二乙二醇單氯醇、寡乙二醇單氯醇、三乙二醇單溴醇、二乙二醇單溴醇、寡乙二醇單溴醇、聚乙二醇、乙二醇二環氧丙基醚、聚乙二醇二環氧丙基醚、環氧丙基醚、聚乙二醇環氧丙基醚、聚環氧乙烷、三乙二醇‧二甲基醚、四乙二醇‧二甲基醚、二乙二醇‧二甲基醚、二乙二醇‧二乙基醚‧二乙二醇‧二丁基醚、二丙二醇、三丙二醇、聚丙二醇、二氧化聚丙烯(Polypropylene dioxide)、聚氧乙烯烷基醚、聚氧乙烯丙三醇脂肪酸酯、聚氧乙烯脂肪酸醯胺等。
水分散性化合物係低親水性化合物的一部分經高親水性官能基取代者,或者在低親水性化合物的周圍吸附有具高親水性官能基之化合物者(例如乳液等),可舉出在水中不會沉澱而呈分散者。作為其具體例,可舉出聚酯、聚胺基甲酸酯、丙烯酸樹脂、聚矽氧樹脂、及此等聚合物之乳液等。又,可舉出丙烯酸樹脂與聚酯或聚胺基甲酸酯等其他共聚物之嵌段共聚物或接枝共聚物。
水溶性高分子化合物及水分散性化合物可單獨使用1種或組合2種以上來使用。藉由添加水溶性高分子化合物及水分散性化合物,可調節包含導電性聚合物之分散液的黏度,且可提升塗佈性能。
相對於共軛系導電性聚合物與由聚陰離子進行保護膠體化之種子粒子的合計100質量份,水溶性高分子化合物及水分散性化合物的用量較佳為1~4000質量份,更佳為50~2000質量份。水溶性高分子化合物及水分散性化合物的量若處於1~4000質量份的範圍,則可展現適當的導電性,可獲得良好之固體電解電容器的等效串聯電阻(ESR)。
固體電解電容器製造用分散液組成物中,除嗎啉化合物外亦可添加鹼性化合物。藉由添加鹼性化合物,可對施用分散液之物品賦予耐腐蝕性,並可調整含共軛系導電性聚合物之分散液的pH。
作為鹼性化合物,可使用周知之無機鹼性化合物或嗎啉化合物以外的有機鹼性化合物。作為無機鹼性化合物,可舉出例如氨、氫氧化鈉、氫氧化鉀、氫氧化鈣、氨等。作為有機鹼性化合物,可舉出芳香族胺、脂肪族胺、鹼金屬醇鹽等。
芳香族胺之中,較佳為含氮雜芳環化合物。含氮雜芳環化合物係顯示芳香族性之含氮雜環化合物。於芳香族胺中,雜環所含氮原子係與其他原子保持共軛關係。
作為含氮雜芳環化合物,可舉出吡啶類、咪唑類、嘧啶類、吡嗪類、三嗪類等。此等之中,基於溶劑溶解性等觀點,較佳為吡啶類、咪唑類、嘧啶類。
作為脂肪族胺,可舉出例如乙胺、正辛胺、二乙胺、二異丁胺、甲基乙基胺、三甲胺、三乙胺、烯丙基胺、2-乙基胺基乙醇、2,2’-亞胺基二乙醇、N-乙基乙二胺等。
作為鹼金屬醇鹽,可舉出例如甲醇鈉、乙醇鈉等鈉醇鹽、鉀醇鹽、鈣醇鹽等。
作為界面活性劑,可舉出羧酸鹽、磺酸鹽、硫酸酯鹽、磷酸酯鹽等陰離子界面活性劑;胺鹽、四級銨鹽等陽離子界面活性劑;羧基甜菜鹼、胺基羧酸鹽、咪唑鎓甜菜鹼等兩性界面活性劑;聚氧乙烯烷基醚、聚氧乙烯丙三醇脂肪酸酯、乙二醇脂肪酸酯、聚氧乙烯脂肪酸醯胺等非離子界面活性劑等。
作為消泡劑,可舉出聚矽氧樹脂、聚二甲基矽氧烷、聚矽氧樹脂等。
作為抗氧化劑,可舉出酚系抗氧化劑、胺系抗氧化劑、磷系抗氧化劑、硫系抗氧化劑、糖類、維生素類等。
電導率提升劑,若為可使包含導電性聚合物之分散液的電導率增加者則不特別限制。作為電導率提升劑,可舉出例如四氫呋喃等包含醚鍵之化合物;γ-丁內酯、γ-戊內酯等包含內酯基之化合物;己內醯胺、N-甲基己內醯胺、N,N-二甲基乙醯胺、N-甲基乙醯胺、N,N-二甲基甲醯胺、N-甲基甲醯胺、N-甲基甲醯苯胺、N-甲基吡咯啶酮、N-辛基吡咯啶酮、吡咯啶酮等包含醯胺基或內醯胺基之化合物;四亞甲基碸、二甲亞碸等碸化合物或者亞碸化合物;蔗糖、葡萄糖、果糖、乳糖等糖類或糖類衍生物;山梨醇、甘露醇等糖醇類;丁二醯亞胺、馬來醯亞胺等醯亞胺類;2-呋喃羧酸、3-呋喃羧酸等呋喃衍生物;乙二醇、丙二醇、丙三醇、二乙二醇、三乙二醇等二醇或者多元醇等。基於提升電導性之觀點,此等之中較佳為四氫呋喃、N-甲基甲醯胺、N-甲基吡咯啶酮、乙二醇、丙二醇、丙三醇、二甲亞碸、山梨醇,其中更佳為乙二醇、丙二醇、二乙二醇、三乙二醇及丙三醇。電導率提升劑可單獨使用1種或組合2種以上來使用。
<第2發明:固體電解電容器之製造方法>
以下就固體電解電容器之製造方法的第1形態加以說明。
[2-1.步驟C1:使固體電解電容器製造用分散液組成物附著於多孔性陽極體之步驟]
第2發明之固體電解電容器之製造方法係具有使第1發明之固體電解電容器製造用分散液組成物附著於表面具有介電體被膜之由閥作用金屬所構成的多孔性陽極體之步驟(步驟C1)。
本發明之製造方法之固體電解電容器例如可採用將具有高表面積之閥作用金屬粉末燒結而成的多孔性電極,或者可將把閥作用金屬箔蝕刻而得的多孔性膜作為電極。
作為上述閥作用金屬,可舉出鋁(Al)、鈹(Be)、鉍(Bi)、鎂(Mg)、鍺(Ge)、鉿(Hf)、鈮(Nb)、銻(Sb)、矽(Si)、錫(Sn)、鉭(Ta)、鈦(Ti)、釩(V)、鎢(W)及鋯(Zr),以及此等金屬之至少1種與其他元素的合金或化合物。其中較佳為由Al、Nb、或Ta之閥作用金屬所構成的電極材料。
由閥作用金屬所構成的多孔性電極係例如藉由陽極氧化於表面形成介電體氧化被膜,而作成多孔性陽極體。
上述多孔性電極,可藉由在例如磷酸溶液中施加電壓進行陽極氧化,而形成介電體氧化被膜。可根據介電體氧化被膜的厚度或電容器的耐受電壓來決定化成電壓的大小。較佳之化成電壓為1~800V,更佳為1~300V。
接著,使第1發明之固體電解電容器製造用分散液組成物附著於多孔性陽極體。作為附著方法,可舉出塗佈、噴霧、浸漬等周知方法。其中由使固體電解電容器製造用分散液組成物無不均地均勻附著、滲透於多孔性陽極體之觀點來看,較佳為使其浸漬之方法。又,為了使其進一步含浸至多孔性陽極體的微細部分,亦可於減壓下含浸。
浸漬時間通常為10秒~5分鐘,固體電解電容器製造用分散液組成物的溫度係隨分散介質的種類而異,通常為10~35℃。
[2-2.步驟D1:形成固體電解質層之步驟]
第2發明之固體電解電容器之製造方法係具有由附著於前述步驟C1所得之多孔性陽極體的第1發明之固體電解電容器製造用分散液組成物去除分散介質,而形成固體電解質層之步驟(步驟D1)。本步驟D1中之分散介質的去除非指去除所有分散介質,在不影響固體電解電容器的製造的範圍內亦可殘留一部分分散介質。
分散介質的去除,由效率性之點來看較佳為加熱處理。加熱條件可考量分散介質的沸點或揮發性來決定。加熱係以在導電性聚合物不會受到氧所引起之劣化的溫度範圍,例如50~300℃,較佳為100~200℃進行為佳。加熱處理時間較佳為5秒~數小時。加熱處理例如可使用加熱板、烘箱、熱風乾燥機於大氣下進行,或者為了迅速地進行加熱處理而於減壓下進行。
於本發明中,根據電極體的種類,亦可重複進行1次或2次以上之上述使分散液附著之步驟C1與形成固體電解質層之步驟D1。可每次使分散液附著時進行加熱處理,而去除分散介質的一部分或全部,或使分散液連續附著多次,最後去除分散介質。再者,亦可去除附著之分散液所含之分散介質的一部分或全部後,再含浸任意的電解液。
<第3發明:固體電解電容器之製造方法>
以下就固體電解電容器之製造方法的第2形態加以說明。
第3發明之固體電解電容器之製造方法係具有:在包含由聚陰離子進行保護膠體化之種子粒子的分散介質中或包含聚陰離子的分散介質中,將單體化合物聚合而得到含共軛系導電性聚合物之分散液(i)之步驟(步驟A);對前述含共軛系導電性聚合物之分散液(i)添加上述化合物(a),而調製含有化合物(a)與共軛系導電性聚合物的分散液(ii)之步驟(步驟B);使前述分散液(ii)附著於表面具有介電體被膜之由閥作用金屬所構成的多孔性陽極體之步驟(步驟C2);及由附著於前述多孔性陽極體之分散液(ii)去除分散介質而形成固體電解質層之步驟(步驟D2)。
[3-1.步驟A:含共軛系導電性聚合物之分散液的調製]
首先,在包含由聚陰離子進行保護膠體化之種子粒子的分散介質中、或在包含聚陰離子的分散介質中,將單體化合物聚合而調製含共軛系導電性聚合物之分散液(以下有簡稱為「分散液(i)」之情況)之(步驟A)。
於本步驟A中,研判聚陰離子會透過摻雜於共軛系導電性聚合物而形成複合體,藉由聚合而生成之共軛系導電性聚合物能以共軛系導電性聚合物與由聚陰離子進行保護膠體化之種子粒子的複合體、或共軛系導電性聚合物與聚陰離子之複合體分散於分散介質中的分散液獲得。聚陰離子及由聚陰離子進行保護膠體化之種子粒子的細節係如前述。
(3-1-2.由聚陰離子進行保護膠體化之種子粒子的製造)
種子粒子係在分散介質中由聚陰離子進行保護膠體化。經保護膠體化之種子粒子的分散液可製成樹脂乳液。
樹脂乳液的製造係以自由基聚合,使用常壓反應器或耐壓反應器,以分批式、半連續式、連續式任一種方法進行。由聚合時的反應穩定性或聚合物的均勻性,較佳為對使乙烯性不飽和單體及聚陰離子分別預先溶解、乳化或分散於分散介質中而成的含有聚陰離子之液體連續或間歇性地添加乙烯性不飽和單體溶液而使其進行聚合。
反應溫度通常係以10~100℃進行,較佳為30~90℃。反應時間不特別限制,只要依據各成分的用量、聚合起始劑的種類及反應溫度等適宜調整即可。
進行自由基聚合時,作為保護膠體之聚陰離子係有助於乳液粒子的穩定性,惟亦可視需求將陰離子性乳化劑、非離子性乳化劑及反應性乳化劑等乳化劑、或脂肪族胺等添加於聚合系統內。乳化劑、脂肪族胺的種類或用量若依據以聚陰離子的用量、乙烯性不飽和單體的組成為首的各種條件適宜調節即可。
作為此種使用於自由基聚合反應的乳化劑,可舉出例如烷基硫酸酯鹽、烷基苯磺酸鹽、烷基磺基琥珀酸鹽、烷基二苯基醚二磺酸鹽、聚氧伸烷基烷基硫酸鹽、聚氧伸烷基烷基磷酸酯等陰離子性乳化劑;聚氧伸烷基烷基醚、聚氧伸烷基烷基酚醚、聚氧伸烷基脂肪酸酯、聚氧伸烷基山梨醇酐脂肪酸酯等非離子系界面活性劑。
作為脂肪族胺,可舉出辛基胺、月桂基胺、肉豆蔻基胺、硬脂醯基胺、油醯基胺等一級胺;二辛基胺、二月桂基胺、二硬脂醯基胺、二油醯基胺等二級胺;N,N-二甲基月桂基胺、N,N-二甲基肉豆蔻基胺、N,N-二甲基棕櫚基胺、N,N-二甲基硬脂醯基胺、N,N-二甲基二十二基胺、N,N-二甲基油醯基胺、N-甲基二癸基胺、N-甲基二油醯基胺等三級胺等。
乳化劑及脂肪族胺可單獨使用1種或組合2種以上來使用。
又,在不損及所得共軛系導電性聚合物之特性的範圍內,亦可併用聚乙烯醇、甲基纖維素、羧甲基纖維素、羥乙基纖維素、羥丙基纖維素、聚乙烯基吡咯啶酮等水溶性高分子。
作為種子粒子製造時的分散介質,係使用水、或水與水溶性溶劑之混合溶劑的水性介質。混合溶劑中之水溶性溶劑的比例較佳為0.0~30.0質量%。水溶性溶劑的比例若為30.0質量%以下,可使樹脂乳液的聚合反應呈穩定化。作為水溶性溶劑,可舉出甲醇、乙醇、異丙醇等醇類;丙酮等酮類;乙二醇、丙二醇等二醇類;乙二醇單甲基醚、乙二醇單丁基醚等醚類等。
作為自由基聚合時所使用的聚合起始劑,可使用周知慣用者。聚合起始劑可舉出例如過氧化氫、過硫酸、過硫酸銨、過硫酸鉀、過硫酸鈉等無機過氧化物;過氧化苄醯基、氫過氧化第三丁基等有機過氧化物;2,2’-偶氮二異丁腈、4,4’-偶氮雙(4-氰基戊酸)等偶氮化合物。又,亦可視需求將此等聚合起始劑與鈉甲醛烴硫酸鹽、抗壞血酸、亞硫酸鹽、酒石酸或者此等之鹽、或硫酸鐵(II)等組合而成為氧化還原聚合。又,亦可視需求使用醇類、硫醇類等鏈轉移劑。
經保護膠體化之種子粒子製造時的聚陰離子與乙烯性不飽和單體的用量,相對於聚陰離子100質量份,乙烯性不飽和單體較佳為10~100質量份,更佳為20~90質量份。乙烯性不飽和單體的用量若為10質量份以上,包含由聚陰離子進行保護膠體化之種子粒子的導電性聚合物占共軛系導電性聚合物的比例為合宜,可抑制聚合所引起的增黏。若為100質量份以下,則經保護膠體化之種子粒子的穩定性良好。
經保護膠體化且分散於分散介質中之種子粒子的粒徑的d50(以體積基準之50%中值徑)較佳為0.01~10μm,更佳為0.05~1μm,再更佳為0.1~0.8μm。種子粒子的粒徑分布能以日機裝(股)製Micritrac UPI型粒度分布測定裝置來測定。分散於分散介質中之種子粒子的粒徑的d50若為0.01μm以上則種子粒子的分散性良好;若為10μm以下則粒子不易沉降。
[3-1-3.單體化合物的聚合]
用來獲得共軛系導電性聚合物之單體化合物的聚合係在(1)包含單體化合物與由聚陰離子進行保護膠體化之種子粒子的分散介質中,或在(2)包含單體化合物與聚陰離子的分散介質中進行。
(3-1-3-1.單體化合物分散液)
為了將用來獲得共軛系導電性聚合物之單體化合物在分散介質中聚合,而調製包含單體化合物與經保護膠體化之種子粒子的分散液、或包含單體化合物與聚陰離子的分散液(以下有將兩者一併簡稱為「單體液」之情況)。
上述單體液若為用來獲得共軛系導電性聚合物之單體化合物經溶解、乳化或分散者即可,為此,一般係使用均質機等強力的攪拌裝置或超音波照射。超音波照射能量,只要可獲得均勻的單體液則不特別限定,較佳以消耗功率5~500W/L(升)、照射時間0.1~2小時/L(升)進行。
又,使用包含用來獲得共軛系導電性聚合物之單體化合物與由聚陰離子進行保護膠體化之種子粒子的分散液作為單體液時,基於抑制藉由聚合所生成之共軛系導電性聚合物的凝聚之觀點,較佳使其含有與使用於種子粒子之保護膠體化者相同的聚陰離子。聚陰離子可藉由添加於單體液,並使其溶解、乳化或分散而含有。除經保護膠體化之種子粒子的分散液所含者以外使聚陰離子含於單體液時,其量較佳為所用聚陰離子之總量的5.0~99.0質量%,更佳為10.0~90.0質量%,再更佳為20.0~80.0質量%。
(3-1-3-2.分散介質)
用來獲得共軛系導電性聚合物之單體化合物的聚合所使用之分散介質,若為可使共軛系導電性聚合物與由聚陰離子進行保護膠體化之種子粒子的複合體、或共軛系導電性聚合物與聚陰離子的複合體分散,且使化合物(a)溶解或分散者則不特別限定,較佳為與由聚陰離子進行保護膠體化之種子粒子的分散液所使用者相同種類者。
作為具體例及較佳之分散介質,可舉出前述第1發明中的分散介質。
相對於用來獲得共軛系導電性聚合物之單體化合物、由聚陰離子進行保護膠體化之種子粒子及聚陰離子的總計100質量份,分散介質的用量較佳為1~50000質量份,更佳為50~10000質量份。分散介質的用量若為1質量份以上則聚合中之黏度為合宜;若為50000質量份以下,則固體電解電容器的性能良好。
(3-1-3-3.氧化劑)
於上述單體化合物的聚合中,例如製造包含聚吡咯類或聚噻吩類作為共軛系導電性聚合物的分散液時,係於氧化劑的存在下設定既定的溫度而開始聚合。
作為氧化劑,可舉出過氧二硫酸;過氧二硫酸銨、過氧二硫酸鈉、過氧二硫酸鉀等過氧二硫酸鹽;三氟化硼等金屬鹵素化合物;氯化鐵(III)、硫酸鐵(III)、氯化銅(II)等過渡金屬化合物;氧化銀、氧化銫等金屬氧化物;過氧化氫、臭氧等過氧化物;過氧化苄醯基等有機過氧化物;氧等。此等之中較佳為過氧二硫酸及過氧二硫酸鹽,更佳為過氧二硫酸鹽。
上述氧化劑可單獨使用1種或組合2種以上來使用。
(3-1-3-4.聚合溫度)
上述單體聚合時的溫度通常為5~80℃,較佳為10~60℃,更佳為15~40℃。若使聚合時的溫度為此範圍內,則能以適度的反應速度進行聚合,可抑制黏度的上升,可穩定地以經濟性的時間製造包含導電性聚合物的分散液,且有所得導電性聚合物的導電率提高的傾向。聚合時的溫度可透過使用周知之加熱器或冷卻器來控管。又,亦可視需求一面於上述範圍內改變溫度一面進行聚合。
(3-1-3-5.分散處理)
於獲得含共軛系導電性聚合物之分散液(i)之步驟A中,較佳對在聚合反應中藉由上述單體化合物的聚合而生成的共軛系導電性聚合物進行分散處理。此分散處理較佳藉由均質機等強力的攪拌裝置或超音波照射來進行。藉此分散處理,可抑制具有長主鏈之共軛系導電性聚合物的凝聚。例如,較佳以日本特開2007-332183公報(美國專利第7960499號說明書)所記載之一面以剪切速度5000s-1 以上攪拌一面進行聚合的方法,或者,若採超音波照射時,較佳以每單位分散處理液的消耗功率5~500W/L進行至反應結束時。
(3-1-3-6.經保護膠體化之種子粒子的分散液的添加)
此外,在使用包含上述單體化合物與經保護膠體化之種子粒子的分散液的聚合中,較佳進一步添加由聚陰離子進行保護膠體化之種子粒子的分散液。藉由在聚合中進一步添加既定量之經保護膠體化之種子粒子的分散液,可抑制聚合時之反應液的增黏,而能夠提升90%攪拌混合效率或減少對製造裝置的負擔。聚合中所添加之經保護膠體化之種子粒子的分散液的量較佳為所使用之經保護膠體化之種子粒子的分散液的總量的10~90質量%,更佳為20~70質量%。
(3-1-3-7.聚陰離子的添加)
在單體化合物的聚合中亦可進一步添加聚陰離子。藉由在聚合中進一步添加既定量之聚陰離子的一部分,可抑制聚合時之反應液的增黏,而能夠提升攪拌混合效率或減少對製造裝置的負擔。聚合中所添加之聚陰離子的量較佳為所使用之聚陰離子的總量的0~90質量%,更佳為20~70質量%。
[3-2.步驟B:含有共軛系導電性聚合物與化合物(a)的分散液的調製]
第3發明之固體電解電容器之製造方法係具有對步驟A中所調製之含共軛系導電性聚合物之分散液(i)添加前述化合物(a),而調製含有化合物(a)與共軛系導電性聚合物之作為分散液(ii)的固體電解電容器製造用分散液組成物之步驟(步驟B)。又,分散液(ii)中亦可視需求添加前述其他的添加劑。
[3-3.步驟C2:使分散液(ii)附著於多孔性陽極體之步驟]
第3發明之固體電解電容器之製造方法係具有使分散液(ii)附著於表面具有介電體被膜之由閥作用金屬所構成的多孔性陽極體之步驟(步驟C2)。
就步驟C2,係除於前述步驟C1,將第1發明之固體電解電容器製造用分散液組成物變更為分散液(ii)以外能以同樣方式進行。
[3-4.步驟D2:形成固體電解質層之步驟]
第3發明之固體電解電容器之製造方法係具有由前述步驟C2所得之附著於多孔性陽極體的分散液(ii)去除分散介質,而形成固體電解質層之步驟(步驟D2)。
就步驟D2,係除於前述步驟D1中,將第1發明之固體電解電容器製造用分散液組成物變更為分散液(ii)以外能以同樣方式進行。

[實施例]
以下根據實施例及比較例具體地說明本發明,惟本發明不受此等各例所限定。實施例及比較例中之分散液之各物性的測定方法如下述。
(1)固含量濃度
各例之固含量濃度係取各例中所得之試料約10g,使用紅外線水分計(Kett Electric Laboratory(股)製,形式FD-720、加熱條件110℃/30分鐘)來測定,計算蒸發殘分作為固體成分。
(2)pH
各例中所得之分散液的pH係於25℃下使用pH計(DKK-TOA(股)製,型式HM-30G)來測定。
(3)種子粒子的粒徑
藉由日機裝(股)製Micritrac UPA型粒度分布測定裝置來測定。
(4)聚苯乙烯磺酸鈉的重量平均分子量
使用凝膠滲透層析儀來進行測定。此外,測定係使用昭和電工(股)製「Shodex(註冊商標) GPC 101」(管柱 OHPak SB-806M HQ),測定條件係管柱溫度40℃、溶出液為水、溶出速度1ml/分鐘。以標準聚苯乙烯換算分子量(Mw)表示。
[由聚陰離子進行保護膠體化之種子粒子的分散液的製作]
將苯乙烯86g、丙烯酸2-乙基己酯49g、二乙烯基苯15g及聚苯乙烯磺酸鈉(TOSOH ORGANIC CHEMICAL股份有限公司製,POLYNAS PS-5,重量平均分子量:120,000)22質量%水溶液500g攪拌混合,而調製單體混合液。另外,一面攪拌聚苯乙烯磺酸鈉(同上)22質量%水溶液1000g,一面升溫至80℃,並對其添加過硫酸鉀2g。對此溶液分別花費2小時及2.5小時滴入前述單體混合液及過硫酸鉀2.5質量%水溶液40g。滴入結束後,保持於80℃2小時,其後冷卻至室溫(25℃)。對所得反應液添加陽離子交換樹脂(ORGANO股份有限公司製,IR120B-H)1500ml及陰離子交換樹脂(ORGANO股份有限公司製,IRA410-OH)1500ml,攪拌12小時後,過濾分離離子交換樹脂。添加離子交換水(以下僅稱水)將固含量濃度調整成15.0質量%,而得到由聚陰離子進行保護膠體化之種子粒子(Tg:30℃,粒徑d50:0.46μm)的分散液。
製造例1:包含由聚陰離子進行保護膠體化之種子粒子的含共軛系導電性聚合物之分散液(i-1)
於1L聚乙烯製容器內,在32℃下將水223.2g、聚苯乙烯磺酸鈉12質量%水溶液31.5g、及上述所製作之由聚陰離子進行保護膠體化之種子粒子的分散液34.0g攪拌混合。對此混合液於32℃下添加3,4-乙烯二氧噻吩2.80g,以均質機(特殊機化工業股份有限公司製ROBOMIX;4000rpm)進行30分鐘乳化混合,而調製成單體分散液(相對於3,4-乙烯二氧噻吩1莫耳的磺酸基含量:1.9莫耳)。此外,前述磺酸基係源於聚苯乙烯磺酸鈉12質量%水溶液及前述分散液中的聚苯乙烯磺酸鈉者。
將前述單體分散液倒入至連接有高剪力混合機(太平洋機工股份有限公司製MILDER(註冊商標)303V;5000rpm)及循環泵的1L不鏽鋼製容器,並藉由攪拌葉片及高剪力混合機,一面於32℃進行循環一面攪拌,添加作為氧化劑之過氧二硫酸鈉5.89g及硫酸鐵(III)六水合物的1質量%水溶液6.88g,進行24小時聚合反應。將所得反應液221g及水79g倒入至連接有高剪力混合機(IKA公司製Magic Lab;1800rpm)及循環泵的1L不鏽鋼製容器,一面進行循環一面攪拌12小時,來進行分散處理。對所得分散液300g添加陽離子交換樹脂(同上)300mL及陰離子交換樹脂(同上)300mL,攪拌6小時後,過濾分離離子交換樹脂,藉此操作,去除未反應單體及氧化劑,而得到包含由聚陰離子進行保護膠體化之種子粒子與共軛系導電性聚合物之複合體的分散液(固含量濃度2.7質量%、pH1.9)。
製造例2:含聚陰離子且不含種子粒子的含共軛系導電性聚合物之分散液(i-2)
於1L聚乙烯製容器內,在32℃下將水231.0g、聚苯乙烯磺酸鈉12質量%水溶液60.0g攪拌混合。對此混合液於32℃下添加3,4-乙烯二氧噻吩2.80g,以均質機(特殊機化工業股份有限公司製ROBOMIX;4000rpm)進行30分鐘乳化混合,而調製成單體分散液。
將前述單體分散液倒入至連接有高剪力混合機(太平洋機工股份有限公司製MILDER(註冊商標)303V;5000rpm)及循環泵的1L不鏽鋼製容器,並藉由攪拌葉片及高剪力混合機,一面於32℃進行循環一面攪拌,添加作為氧化劑之過氧二硫酸鈉5.89g及硫酸鐵(III)六水合物的1質量%水溶液6.88g,進行24小時聚合反應。將所得反應液221g及水79g倒入至連接有高剪力混合機(IKA公司製Magic Lab;1800rpm)及循環泵的1L不鏽鋼製容器,一面進行循環一面攪拌12小時,來進行分散處理。對所得分散液300g添加陽離子交換樹脂(同上)300mL及陰離子交換樹脂(同上)300mL,攪拌6小時後,過濾分離離子交換樹脂,藉此操作,去除未反應單體及氧化劑,而得到包含聚陰離子與共軛系導電性聚合物之複合體的分散液(固含量濃度2.6質量%、pH1.8)。
製造例3:表面具有介電體氧化被膜之多孔性陽極體的調製
藉由日本特開2011-77257號公報所記載之方法製造用於固體電解電容器之表面具有介電體氧化被膜的多孔性陽極體。亦即,使用電容器用鈮粉末,製作形成有陽極體表面具有五氧化二鈮之介電體氧化被膜之附有陽極導線的多孔性陽極體。使用LCR計(Agilent製E4980A)測定所得之多孔性陽極體在120Hz之靜電電容(μF)的結果,此多孔性陽極體在20質量%硫酸中的靜電電容為21.4μF。
實施例1:固體電解電容器製造用分散液組成物(分散液ii-1)的調製
對上述分散液(i-1)74.1質量份添加作為化合物(a1)之苯并[c]噻吩-1,3-二氫-2-氧化物的乙醇溶液(10質量%)5.0質量份,並進一步添加純水20.9質量份,而得到固體電解電容器製作用之分散液組成物(ii-1)。
實施例2~7:固體電解電容器製造用分散液組成物(分散液ii-2~ii-7)的調製
如表1所示,將化合物(a1)之乙醇溶液(10質量%)的用量由實施例1之5.0質量份變更為2.5質量份及1.0質量份而調整實施例2及3之分散液ii-2及ii-3。
使用等量之苯并[c]噻吩-1,3-二氫-2-氧化物-磺酸(化合物(a2))來替代化合物(a1)而調整實施例4之分散液ii-4。
分別使用2.5質量份之化合物(a1)及化合物(a2)的乙醇溶液來替代化合物(a1)乙醇溶液5.0質量份而調整實施例5之分散液。
對分散液(i-2)76.9質量份添加化合物(a1)的乙醇溶液(10質量%)5.0質量份、純水18.1質量份而調整實施例6之分散液組成物(ii-6),分別使用2.5質量份之化合物(a1)與化合物(a2)的乙醇溶液而調整分散液組成物(ii-7)。
比較例1~2:
由分散液(i-1)74.1質量份與純水25.9質量份調整比較例1之分散液組成物(ii-8)由分散液(i-2)74.1質量份與純水25.9質量份而調整比較例2之分散液組成物(ii-9)。
[步驟C及步驟D:固體電解電容器的製作暨評定]
在25℃之大氣下,使上述方法中所得之多孔性陽極體含浸於上述各分散液(ii-1)~(ii-9)1分鐘後,以熱風乾燥器(TABAI製,形式ST-110)於120℃乾燥30分鐘。重複進行此處理4次。接著以未使其接觸陽極導線端子的方式對多孔性陽極體塗佈碳糊並使其乾燥。進而,為了取得陽極・陰極的接點而塗佈銀糊並置於導線架上使其乾燥。使此元件之陽極導線電性連接於導線架的陽極導線部並以樹脂密封,由此獲得固體電解電容器元件。使用LCR計以n=4測定所得固體電解電容器元件在120Hz下的靜電電容(μF),作為初始靜電電容。接著,測定將元件放置於130℃的熱風乾燥機中250小時後之在120Hz下的靜電電容(μF)。將結果示於表1。
除將120℃、30分鐘乾燥處理改為重複8次而進行以外,係與上述方法同樣地製作,將測定之固體電解電容器元件的評定結果示於表1。
由表1之實施例1~7與比較例1及2的比較,可知藉由添加化合物(a)而使靜電電容大幅增大。
使用摻有苯并[c]噻吩-1,3-二氫-2-氧化物(化合物(a1))、及苯并[c]噻吩-1,3-二氫-2-氧化物-磺酸(化合物(a2))之至少一者的實施例1~7之固體電解電容器製造用分散液組成物的固體電解電容器元件的靜電電容,與未使用該化合物的比較例1及2相比不僅靜電電容增加,且能以較少次數表現靜電電容。
根據本發明,可容易地實現固體電解電容器的高性能化,並可縮短製程。

Claims (15)

  1. 一種固體電解電容器製造用分散液組成物,其包含: 共軛系導電性聚合物;分散介質;及通式(1)所示之化合物(a): (式中,R1 、R2 、R3 、R4 、R5 及R6 各自獨立表示選自由(1)氫原子、(2-1)碳數1~20之直鏈狀或分支狀烷基、(2-2)碳數1~20之直鏈狀或分支狀烷氧基、(2-3)碳數1~20之直鏈狀或分支狀烷基羰氧基、(3)-SO2 M(M表示OH、或選自O- Na+ 、O- Li+ 及O- K+ 之鹼金屬醇鹽、O- NH4 + 所示之銨醇鹽、碳數1~20之直鏈狀或分支狀烷氧基、選自氯、氟、溴、或碘之鹵素原子)、(4)鹵素原子、(5)羧基、(6)膦基、(7)硝基、(8)氰基、(9)一級、二級或三級胺基、(10)三鹵甲基、(11)苯基、及(12)經選自烷基、羥基、烷氧基、烷基羰氧基、磺酸基、及鹵素原子之至少1種所取代之苯基所成群組的一價取代基;R1 、R2 、R3 、R4 、R5 及R6 所表示之取代基中的烴鏈可彼此於任意位置鍵結,而與該取代基所鍵結之碳原子共同形成至少1條二價鏈,此二價鏈可形成至少1個3~7員環之飽和或不飽和烴之環狀結構;R1 、R2 、R3 、R4 、R5 及R6 所表示之烷基、烷氧基、烷基羰氧基、或由彼等所形成的環狀烴鏈中可包含選自羰基、醚、酯、醯胺、硫醚、亞磺醯基、磺醯基及亞胺基的至少1種鍵結;k表示被雜環與具有取代基R1 ~R4 之苯環所包圍的縮合環數,為0~3之整數)。
  2. 如請求項1之固體電解電容器製造用分散液組成物,其中前述通式(1)中之R1 、R2 、R3 、R4 、R5 及R6 各自獨立為選自(1)氫原子、(2-1)碳數1~20之直鏈狀或分支狀烷基、(2-2)碳數1~20之直鏈狀或分支狀烷氧基、(2-3)碳數1~20之直鏈狀或分支狀烷基羰氧基、(3)-SO2 M、及(4)鹵素原子的一價取代基。
  3. 如請求項1之固體電解電容器製造用分散液組成物,其中前述化合物(a)係以下化合物的至少1種:化合物(a1),其係前述通式(1)中之R1 、R2 、R3 、R4 、R5 及R6 各自獨立為選自(1)氫原子、(2-1)碳數1~20之直鏈狀或分支狀烷基、(2-2)碳數1~20之直鏈狀或分支狀烷氧基、(2-3)碳數1~20之直鏈狀或分支狀烷基羰氧基、及(4)鹵素原子的一價取代基;及化合物(a2),其係前述通式(1)中之R1 為(3)-SO2 M。
  4. 如請求項1之固體電解電容器製造用分散液組成物,其中前述化合物(a)係前述通式(1)中之k為0的化合物。
  5. 如請求項1之固體電解電容器製造用分散液組成物,其中前述共軛系導電性聚合物係式(2) (式中,R7 及R8 各自獨立表示氫原子、羥基、可具有取代基之碳數1~18之烷基、可具有取代基之碳數1~18之烷氧基、或者可具有取代基之碳數1~18之烷硫基;或R7 與R8 彼此鍵結表示可具有取代基之碳數3~10之脂環、可具有取代基之碳數6~10之芳香環、可具有取代基之碳數2~10之含氧原子雜環、可具有取代基之碳數2~10之含硫原子雜環、或者可具有取代基之碳數2~10之含硫原子及氧原子之雜環)所示之單體化合物的聚合物。
  6. 如請求項1之固體電解電容器製造用分散液組成物,其係進一步包含聚陰離子。
  7. 一種固體電解電容器之製造方法,其特徵為具有:使如請求項1~6中任一項之固體電解電容器製造用分散液組成物附著於表面具有介電體被膜之由閥作用金屬所構成的多孔性陽極體之步驟(步驟C1);及由附著於前述多孔性陽極體之分散液組成物去除分散介質,而形成固體電解質層之步驟(步驟D1)。
  8. 一種固體電解電容器之製造方法,其特徵為具有: 在包含由聚陰離子所保護膠體化之種子粒子的分散介質中或包含聚陰離子的分散介質中,將單體化合物聚合而得到含共軛系導電性聚合物之分散液(i)之步驟(步驟A); 對前述含共軛系導電性聚合物之分散液(i)添加通式(1) (式中之記號係表示與請求項1之記載相同的意義) 所示之化合物(a),而調製含有化合物(a)與共軛系導電性聚合物的分散液(ii)之步驟(步驟B); 使前述分散液(ii)附著於表面具有介電體被膜之由閥作用金屬所構成的多孔性陽極體之步驟(步驟C2);及 由附著於前述多孔性陽極體之分散液(ii)去除分散介質而形成固體電解質層之步驟(步驟D2)。
  9. 如請求項8之固體電解電容器之製造方法,其中前述通式(1)中之R1 、R2 、R3 、R4 、R5 及R6 各自獨立為選自(1)氫原子、(2-1)碳數1~20之直鏈狀或分支狀烷基、(2-2)碳數1~20之直鏈狀或分支狀烷氧基、(2-3)碳數1~20之直鏈狀或分支狀烷基羰氧基、(3)-SO2 M、及(4)鹵素原子的一價取代基。
  10. 如請求項8之固體電解電容器之製造方法,其中前述化合物(a)係以下化合物的至少1種:化合物(a1),其係前述通式(1)中之R1 、R2 、R3 、R4 、R5 及R6 各自獨立為選自(1)氫原子、(2-1)碳數1~20之直鏈狀或分支狀烷基、(2-2)碳數1~20之直鏈狀或分支狀烷氧基、(2-3)碳數1~20之直鏈狀或分支狀烷基羰氧基、及(4)鹵素原子的一價取代基;及化合物(a2),其係前述通式(1)中之R1 為-SO2 M。
  11. 如請求項8之固體電解電容器之製造方法,其中前述化合物(a)係前述通式(1)中之k為0的化合物。
  12. 如請求項8之固體電解電容器之製造方法,其中前述種子粒子為乙烯性不飽和單體之聚合物的粒子。
  13. 如請求項8之固體電解電容器之製造方法,其中前述由聚陰離子所保護膠體化之種子粒子的d50粒徑為0.01~10μm。
  14. 如請求項8之固體電解電容器之製造方法,其中前述聚陰離子為具有磺酸基的聚合物。
  15. 如請求項8之固體電解電容器之製造方法,其中,相對於前述單體化合物1莫耳,前述聚陰離子中之陰離子基的比例為0.25~30莫耳。
TW107146766A 2017-12-25 2018-12-24 固體電解電容器製造用分散液組成物及固體電解電容器之製造方法 TWI806949B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-248068 2017-12-25
JP2017248068 2017-12-25

Publications (2)

Publication Number Publication Date
TW201930457A true TW201930457A (zh) 2019-08-01
TWI806949B TWI806949B (zh) 2023-07-01

Family

ID=67066939

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146766A TWI806949B (zh) 2017-12-25 2018-12-24 固體電解電容器製造用分散液組成物及固體電解電容器之製造方法

Country Status (7)

Country Link
US (1) US11721493B2 (zh)
EP (1) EP3734626A4 (zh)
JP (1) JP7238793B2 (zh)
KR (1) KR102602355B1 (zh)
CN (1) CN111527574B (zh)
TW (1) TWI806949B (zh)
WO (1) WO2019130677A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI838024B (zh) * 2022-12-20 2024-04-01 財團法人工業技術研究院 雙分子嵌段聚合物以及含有其的電解液與電雙層電容器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7287267B2 (ja) * 2019-12-20 2023-06-06 株式会社レゾナック 導電性重合体分散液の製造方法
CN114846571A (zh) * 2019-12-24 2022-08-02 松下知识产权经营株式会社 电解电容器及其制造方法
TW202235452A (zh) * 2020-10-30 2022-09-16 日商東邦化學工業股份有限公司 乙烯系樹脂粒子

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648453A (en) 1991-12-04 1997-07-15 Showa Denko K.K. Electroconductive polymer and process for producing the polymer
JP3182239B2 (ja) * 1991-12-04 2001-07-03 昭和電工株式会社 新規水溶性導電性重合体及びその製造方法
JP3541429B2 (ja) * 1993-05-31 2004-07-14 昭和電工株式会社 スルホン酸基を有する縮合ヘテロ環式化合物及びその製造方法
US5530139A (en) * 1993-05-31 1996-06-25 Showa Denko Kabushiki Kaisha Condensed heterocyclic compound with a sulfonic acid group and process for producing the same
JP3957231B2 (ja) * 1996-10-24 2007-08-15 昭和電工株式会社 導電性ミクロゲル分散体、及びその製造方法
WO1999028932A1 (fr) * 1997-11-28 1999-06-10 Showa Denko K.K. Condensateur electrolytique solide et son procede de production
US6351370B1 (en) * 1998-03-19 2002-02-26 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
AUPR517701A0 (en) * 2001-05-21 2001-06-14 University Of Melbourne, The Dental restorative materials
JP4329299B2 (ja) 2001-07-16 2009-09-09 パナソニック株式会社 固体電解コンデンサの製造方法
JP4077675B2 (ja) * 2002-07-26 2008-04-16 ナガセケムテックス株式会社 ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体およびその製造方法
US20070096066A1 (en) 2003-06-18 2007-05-03 Kazuyoshi Yoshida Conductive composition, conductive coating material, conductive resin, capacitor, photoelectric transducer, and their production method
JP3980540B2 (ja) * 2003-09-03 2007-09-26 信越ポリマー株式会社 導電性組成物及びその製造方法
JP2005109252A (ja) 2003-09-30 2005-04-21 Nippon Chemicon Corp 固体電解コンデンサの製造方法
JP4683886B2 (ja) * 2004-09-13 2011-05-18 大日本印刷株式会社 チオフェン誘導体および有機エレクトロルミネッセンス素子
WO2007004505A1 (ja) 2005-06-30 2007-01-11 Showa Denko K. K. 固体電解コンデンサ及びその製造方法
US7842758B2 (en) * 2006-01-10 2010-11-30 The Trustees Of The University Of Pennsylvania Conjugated materials featuring proquinoidal units
JP2007204654A (ja) 2006-02-03 2007-08-16 Toyo Ink Mfg Co Ltd 導電性高分子モノマーの再生製造方法
TWI479509B (zh) 2006-02-09 2015-04-01 信越聚合物股份有限公司 導電性高分子溶液、導電性塗膜、電容器,以及電容器之製造方法
TWI404090B (zh) 2006-02-21 2013-08-01 Shinetsu Polymer Co 電容器及電容器之製造方法
KR20090024695A (ko) 2006-06-12 2009-03-09 요코하마 고무 가부시키가이샤 도전성 폴리머 분산액의 제조 방법 및 도전성 폴리머 분산액
JP2007332183A (ja) 2006-06-12 2007-12-27 Yokohama Rubber Co Ltd:The 導電性ポリマーの合成方法および導電性ポリマーならびに導電性ポリマー分散液の製造方法および導電性ポリマー分散液
DE102008005568A1 (de) 2008-01-22 2009-07-23 H.C. Starck Gmbh Verfahren zur Herstellung von leitfähigen Polymeren
EP2449051B1 (en) * 2009-07-02 2016-04-06 University of Florida Research Foundation, Inc. Soluble alternating donor-acceptor conjugated polymer electrochromes
JP5341699B2 (ja) 2009-09-30 2013-11-13 昭和電工株式会社 固体電解コンデンサの製造方法
CA2797406C (en) * 2010-05-21 2018-06-26 University Of Florida Research Foundation, Inc. Multi-colored conjugated polymers with highly transmissive oxidized state
JP6408459B2 (ja) * 2013-03-05 2018-10-17 昭和電工株式会社 固体電解コンデンサおよびその製造方法
WO2014141367A1 (ja) * 2013-03-11 2014-09-18 昭和電工株式会社 導電性重合体含有分散液の製造方法
KR101782434B1 (ko) * 2013-04-05 2017-09-28 쇼와 덴코 가부시키가이샤 고체 전해 콘덴서의 제조 방법
WO2016009680A1 (ja) * 2014-07-16 2016-01-21 昭和電工株式会社 固体電解コンデンサ素子の製造方法
TWI675033B (zh) 2015-01-05 2019-10-21 日商綜研化學股份有限公司 含有雜環的化合物、使用該化合物的聚合物及其用途
US20180244838A1 (en) 2015-03-27 2018-08-30 Soken Chemical & Engineering Co., Ltd. Polymer, oxidized polymer, polymer composition, gel-type polymer composition, and use thereof
JP6491936B2 (ja) * 2015-04-16 2019-03-27 株式会社ノリタケカンパニーリミテド 固体酸化物形燃料電池の製造方法、固体酸化物形燃料電池のハーフセルグリーンシートおよび固体酸化物形燃料電池
JP6590642B2 (ja) * 2015-11-06 2019-10-16 信越ポリマー株式会社 導電性高分子分散液、キャパシタ及びその製造方法
CN110121757B (zh) * 2016-12-28 2021-09-14 昭和电工株式会社 固体电解电容器的制造方法
WO2018123178A1 (ja) * 2016-12-28 2018-07-05 昭和電工株式会社 縮合ヘテロ多環式化合物、及びその化合物を用いた導電性ポリマーの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI838024B (zh) * 2022-12-20 2024-04-01 財團法人工業技術研究院 雙分子嵌段聚合物以及含有其的電解液與電雙層電容器

Also Published As

Publication number Publication date
JP7238793B2 (ja) 2023-03-14
US11721493B2 (en) 2023-08-08
CN111527574A (zh) 2020-08-11
EP3734626A4 (en) 2022-01-05
JPWO2019130677A1 (ja) 2020-12-17
KR102602355B1 (ko) 2023-11-17
TWI806949B (zh) 2023-07-01
WO2019130677A1 (ja) 2019-07-04
CN111527574B (zh) 2022-12-09
KR20200102439A (ko) 2020-08-31
US20200402721A1 (en) 2020-12-24
EP3734626A1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
TWI620216B (zh) Method for manufacturing solid electrolytic capacitor
TWI806949B (zh) 固體電解電容器製造用分散液組成物及固體電解電容器之製造方法
JP7552775B2 (ja) 共役系導電性重合体含有分散液、及び固体電解コンデンサの製造方法
TW201447943A (zh) 固體電解電容器及其製造方法
JP7131941B2 (ja) 共役系導電性重合体を含有する分散液の製造方法、固体電解コンデンサの製造方法および固体電解コンデンサ
CN111937106B (zh) 固体电解电容器的制造方法、和含有共轭系导电性聚合物的分散液的制造方法
TW202325748A (zh) 固體電解電容用聚合物分散液之製造方法及固體電解電容之製造方法