WO2016009680A1 - 固体電解コンデンサ素子の製造方法 - Google Patents

固体電解コンデンサ素子の製造方法 Download PDF

Info

Publication number
WO2016009680A1
WO2016009680A1 PCT/JP2015/059942 JP2015059942W WO2016009680A1 WO 2016009680 A1 WO2016009680 A1 WO 2016009680A1 JP 2015059942 W JP2015059942 W JP 2015059942W WO 2016009680 A1 WO2016009680 A1 WO 2016009680A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
conductive polymer
solid electrolytic
electrolytic capacitor
capacitor element
Prior art date
Application number
PCT/JP2015/059942
Other languages
English (en)
French (fr)
Inventor
内藤 一美
正二 矢部
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2015534866A priority Critical patent/JP5824190B1/ja
Priority to CN201580037531.0A priority patent/CN106575576B/zh
Priority to US15/326,124 priority patent/US20170200569A1/en
Publication of WO2016009680A1 publication Critical patent/WO2016009680A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to a method for manufacturing a solid electrolytic capacitor element. More specifically, the present invention provides a method for producing a solid electrolytic capacitor element with high productivity and few defective products such as unsealed.
  • Patent Document 1 discloses a photopolymerization apparatus and a photopolymerization method capable of suitably forming a reaction product containing an electrically conductive polymer.
  • Patent Document 2 discloses a method of synthesizing benzo [c] thiophene by irradiating light in a gas phase, a liquid phase or a solid phase containing a 1,3-dihydrobenzo [c] thiophene compound.
  • Patent Document 3 discloses a moldability or film-forming composition that can be polymerized by light irradiation to change only the irradiated portion to be conductive, and can produce a conductive composite material uniformly mixed with a general-purpose polymer. Disclosure.
  • the solid electrolytic capacitor element includes a sintering process in which a valve metal is sintered to form an anode body, a chemical conversion process in which a dielectric layer is formed on a surface layer portion of the anode body, and the anode body is made of a conductive polymer monomer.
  • Manufacturing by a manufacturing method including a semiconductor layer forming step of forming a semiconductor layer by immersing in a solution and polymerizing the monomer and a conductor layer forming step of forming a conductive layer on the anode body in this order. Can do.
  • darkening or floating matter may be generated in the monomer solution of the conductive polymer used for forming the semiconductor layer after forming the semiconductor layer. This darkening or floating matter may adhere to the semiconductor layer and cause a defective product such as unsealed.
  • an object of the present invention is to solve the above-mentioned problems and provide a method for producing a solid electrolytic capacitor element with high productivity and few defective products such as unsealed.
  • the present inventors presumed that the cause of darkening and suspended matter was illegal photopolymerization of the conductive polymer in the monomer solution based on Patent Documents 1 to 3.
  • the problem is to prevent this photopolymerization and to prevent the occurrence of darkening and floating matters.
  • the present invention relates to the following [1] to [6].
  • a semiconductor layer forming step of forming a semiconductor layer made of a conductive polymer by immersing in the polymer and polymerizing the monomer, and a conductor layer forming step of forming a conductor layer on the anode body in this order A method for manufacturing a solid electrolytic capacitor element, wherein the semiconductor layer forming step is performed under a condition in which photopolymerization of the monomer of the conductive polymer does not occur.
  • the condition in which the photopolymerization of the monomer of the conductive polymer does not occur is a condition in which the integrated irradiation light amount of light having a wavelength of 150 to 450 nm in the semiconductor layer forming step is 10 mJ / cm 2 or less.
  • Manufacturing method of the solid electrolytic capacitor element [3] The method for producing a solid electrolytic capacitor element according to [1] or [2], wherein the conductive polymer is at least one selected from polyethylene dioxythiophene, polypyrrole, and derivatives thereof.
  • the method for producing a solid electrolytic capacitor element according to [1], wherein a condition in which the photopolymerization of the conductive polymer does not occur is a light shielding condition.
  • valve metal is at least one selected from tantalum, niobium, tungsten, and aluminum.
  • valve metal is tantalum and / or tungsten.
  • unauthorized photopolymerization of the conductive polymer in the semiconductor layer forming step can be prevented.
  • defective products such as unsealed solid electrolytic capacitor elements to be manufactured are reduced, and productivity is improved.
  • 4 is a stereoscopic microscope photograph (magnification: 20 times) of the surface of the anode body after the semiconductor layer forming step in Example 2.
  • 4 is a stereomicrograph (magnification: 20 times) of the surface of the anode body after the semiconductor layer forming step in Comparative Example 2.
  • the method for producing a solid electrolytic capacitor element of the present invention includes a sintering step in which a valve action metal is sintered to form an anode body, a chemical conversion step in which a dielectric layer is formed on a surface layer portion of the anode body, and the anode body is made conductive.
  • the semiconductor layer is formed in a state where the anode body or the monomer solution is irradiated with light such as a fluorescent lamp in order to confirm the state of the semiconductor layer formation or for convenience of various operations.
  • light such as a fluorescent lamp
  • the semiconductor layer forming step is performed under the condition that the photopolymerization of the conductive polymer does not occur, thereby preventing the occurrence of darkening and floating substances.
  • the condition under which the photopolymerization of the conductive polymer does not occur is preferably a condition in which the integrated irradiation light amount of light having a wavelength of 150 to 450 nm in the semiconductor layer forming step is 10 mJ / cm 2 or less, and more preferably, light shielding. It is a condition.
  • the insulating metal oxide constituting the dielectric layer of the solid electrolytic capacitor element includes those having photoactivity. Therefore, when the semiconductor layer is formed in a state where the anode body or the monomer solution is exposed to light, the insulating metal oxide is photoactivated, which promotes illegal photopolymerization of the conductive polymer described above, There is a possibility that the polymer of the conductive polymer formed as will be cut. In the production method of the present invention, the formation of the semiconductor layer can be prevented by forming the semiconductor layer under conditions where photopolymerization of the conductive polymer does not occur, and the semiconductor layer can be more suitably formed.
  • the main component of the dielectric layer is tungsten trioxide. Since tungsten trioxide has high photoactivity, it is preferable to use the production method of the present invention.
  • valve action metals such as tantalum, niobium, tungsten, and aluminum, alloys and compositions containing these metals as main components, and conductive oxides of these metals are preferable. Two or more kinds of these powders may be mixed and used.
  • the alloy includes one in which a part of the metal is alloyed.
  • the anode body may contain a metal other than the main component as long as it does not adversely affect the capacitor characteristics.
  • the metal other than the main component include valve metals such as tantalum, niobium, aluminum, titanium, vanadium, zinc, molybdenum, hafnium, and zirconium.
  • tungsten When using tungsten as the valve action metal, commercially available tungsten powder can be used as the raw material tungsten powder. Tungsten powder having a particle size smaller than that of commercially available tungsten powder by a method such as reduction of tungsten trioxide powder in a hydrogen gas atmosphere can be preferably used.
  • the tungsten powder is more preferably a granulated tungsten powder (hereinafter sometimes referred to as “granulated powder”) because pores are easily formed in the anode body.
  • granulated powder at least one selected from tungsten silicide powder, tungsten carbide powder, tungsten boride powder, and tungsten powder in which nitrogen is solidified is preferably used.
  • the tungsten granulated powder described above also includes tungsten granulated powder partially silicified, carbonized, borated, and partially solidified with nitrogen.
  • the tungsten silicide powder can be obtained, for example, by thoroughly mixing silicon powder with tungsten powder and heating under reduced pressure conditions.
  • tungsten silicide such as W 5 WSi 3 is formed locally in a region usually within 50 nm from the particle surface. Therefore, the center portion of the particles remains as a metal, and the equivalent series resistance of the capacitor anode body can be kept low, which is preferable.
  • the pressure for siliciding tungsten is preferably 10 -1 Pa or less, more preferably 10 -3 Pa or less.
  • the reaction temperature is preferably 1100 ° C. or higher and 2600 ° C. or lower. When the reaction temperature is within the above range, silicidation does not take too much time, and there is a low possibility that problems such as vaporization of silicon and alloying with the metal of the electrode (such as molybdenum) cause the electrode to become brittle.
  • the tungsten powder may further contain oxygen and phosphorus.
  • the tungsten powder has a total content of impurity elements other than the aforementioned silicon, carbon, boron, nitrogen, oxygen and phosphorus elements of 0.1% by mass or less. It is preferable to suppress.
  • the forming process may be performed before sintering the valve action metal described above.
  • the valve action metal to be formed may be any of granulated powder, ungranulated powder, and a mixture of granulated powder and ungranulated powder.
  • a binder may be mixed and molded. Further, the porosity and molding density of the anode body can be adjusted by adjusting the molding pressure.
  • an anode lead wire for forming a terminal of the anode body may be embedded in the molded body and planted.
  • a metal wire of valve action metal can be used as the anode lead wire, but a metal plate or metal foil may be planted or connected to the anode body.
  • the valve action metal is sintered to form an anode body.
  • the valve metal may be ungranulated, but may be granulated and molded as described above.
  • the anode body can be manufactured in the shape of a foil, a plate, a wire or the like. It is preferable to form a porous body having pores or fine gaps between the internal particles because the capacity of the produced capacitor element is increased.
  • such an anode body can be manufactured according to a usual method.
  • the process which contains silicification, boride or carbonization, nitrogen, phosphorus etc. at the time of baking can also be performed.
  • the pressure in the sintering is preferably a reduced pressure condition of 10 2 Pa or less, for example.
  • the sintering temperature is preferably 1000 to 2000 ° C., more preferably 1100 to 1700 ° C., and still more preferably 1200 to 1600 ° C.
  • a dielectric layer is formed on the surface layer portion of the anode body obtained in the above-described sintering step.
  • the dielectric layer can be formed by performing a chemical conversion treatment.
  • the chemical conversion treatment can be performed according to a conventional method, and either chemical oxidation or electrolytic oxidation may be used, or both may be repeated.
  • Chemical oxidation can be performed by immersing the anode body in the chemical conversion solution.
  • Electrolytic oxidation can be carried out by applying a voltage after the anode body is immersed in the chemical conversion solution. The voltage is applied between the anode body (anode) and the counter electrode (cathode).
  • Energization of the anode body can be performed through an anode lead wire. It is preferable that the voltage application starts at a predetermined initial current density, maintains the current density value, and maintains the voltage after reaching a predetermined voltage (formation voltage).
  • the formation voltage can be appropriately set according to a desired withstand voltage.
  • the chemical conversion liquid is not particularly limited, and an aqueous solution containing an oxidizing agent used in a conventional method can be used.
  • an aqueous solution containing an oxidizing agent used in a conventional method can be used.
  • tantalum is used as the valve action metal
  • a phosphoric acid aqueous solution, a nitric acid aqueous solution, a sulfuric acid aqueous solution or the like can be used as the chemical conversion solution.
  • the oxidizing agent is preferably at least one selected from the group consisting of manganese (VII) compounds, chromium (VI) compounds, halogen acid compounds, persulfate compounds and organic peroxides.
  • manganese (VII) compounds such as permanganate; chromium (VI) compounds such as chromium trioxide, chromate and dichromate; perchloric acid, chlorous acid, hypochlorous acid and the like And halogen acid compounds such as salts thereof; organic acid peroxides such as peracetic acid, perbenzoic acid and salts and derivatives thereof; and persulfuric acid compounds such as persulfuric acid and salts thereof.
  • persulfate compounds such as ammonium persulfate, potassium persulfate, and potassium hydrogen persulfate are preferable from the viewpoints of ease of handling, stability as an oxidizing agent, water solubility, and capacity increase.
  • oxidizing agents can be used alone or in combination of two or more.
  • an aqueous solution containing a neutral salt such as ammonium adipate or ammonium benzoate can be used as the chemical conversion liquid.
  • the concentration of the oxidizing agent, the formation temperature, the formation time and the like may be determined according to a conventional method, and are not particularly limited.
  • the anode body may be washed with water. It is preferable to remove the chemical conversion liquid as much as possible by this washing. After washing with water, it is preferable to remove water adhering to the surface or water soaked in the pores of the anode body.
  • the removal of water can be carried out, for example, by performing a heat treatment in contact with a solvent miscible with water (propanol, ethanol, methanol, etc.).
  • the temperature of the heat treatment is preferably 100 to 200 ° C. or higher.
  • the heat treatment time is not particularly limited as long as the stability of the dielectric layer can be maintained.
  • the anode layer on which the dielectric layer is formed by the above-described method is immersed in a monomer solution of a conductive polymer, and the monomer is polymerized to form the semiconductor layer.
  • the semiconductor layer forming step is performed under the condition where photopolymerization of the conductive polymer does not occur, thereby preventing the above-mentioned darkening and floating matter.
  • the conditions under which the photopolymerization of the conductive polymer does not occur are preferably conditions in which the integrated irradiation light amount of light having a wavelength of 150 to 450 nm in the semiconductor layer forming step is 10 mJ / cm 2 or less.
  • the integrated irradiation light amount is preferably 8 mJ / cm 2 or less, more preferably 6 mJ / cm 2 or less, and further preferably 4 mJ / cm 2 or less.
  • the light source include a fluorescent lamp, sunlight, a light bulb, a halogen lamp, a xenon lamp, an LED, and a laser.
  • Examples of a method for setting the cumulative amount of irradiation of light having a wavelength of 150 to 450 nm to 10 mJ / cm 2 or less include a method using a light shielding film and a yellow room.
  • the conditions under which the photopolymerization of the conductive polymer does not occur are more preferably light shielding conditions.
  • the light-shielding condition refers to a condition in which light is essentially not applied, and is preferably a dark room, a state where the entire reaction apparatus is covered, or the like.
  • the conductive polymer for the semiconductor layer for example, polyethylenedioxythiophene, polypyrrole, or derivatives or mixtures thereof can be used.
  • a layer made of manganese dioxide or an island-shaped interspersed layer may be formed before, during or after the formation of the semiconductor layer.
  • the polymerization liquid used for polymerization of the conductive polymer may contain a dopant. Examples of the dopant include toluene sulfonic acid, anthraquinone sulfonic acid, benzoquinone sulfonic acid, naphthalene sulfonic acid, polystyrene sulfonic acid, or a salt thereof.
  • the polymerization of the conductive polymer either chemical polymerization or electrolytic polymerization may be used, and both may be repeated. In either case, the polymerization is preferably carried out under conditions that do not cause photopolymerization of the conductive polymer.
  • Chemical polymerization can be carried out by immersing the anode body in a polymerization solution.
  • Electrolytic polymerization can be carried out by applying a voltage after immersing the anode body in a polymerization solution. The voltage can be applied in the same manner as the electrolytic oxidation in the chemical conversion step, but the energization condition is preferably a constant current condition.
  • the concentration of the conductive polymer or dopant, the polymerization temperature, and the polymerization time may be determined according to a conventional method, and are not particularly limited.
  • cleaning and heat treatment may be performed in the same manner as in the chemical conversion step.
  • the temperature of the heat treatment is preferably lower than that of the chemical conversion step in order to avoid deterioration of the semiconductor layer.
  • post-forming may be performed to repair the damage generated in the dielectric layer.
  • the post-chemical conversion step can be performed in the same manner as the chemical conversion step. However, in order to prevent deterioration of the semiconductor layer, the applied voltage is preferably lower than that in the chemical conversion step.
  • washing and heat treatment may be performed in the same manner as in the semiconductor layer forming step. In addition, you may repeat from a semiconductor layer formation process to post-chemical conversion.
  • a conductor layer is formed on the anode body on which the semiconductor layer is formed by the above-described method.
  • the conductor layer may be formed according to a conventional method, for example, a method of sequentially laminating a silver layer on a carbon layer.
  • the above capacitor element can be packaged with, for example, a resin mold to obtain solid electrolytic capacitor products for various uses.
  • a cathode lead is electrically connected to the conductor layer, and a part of the cathode lead is exposed outside the exterior of the capacitor and becomes a cathode external terminal.
  • an anode lead is electrically connected to the anode body via an anode lead wire, and a part of the anode lead is exposed to the outside of the exterior of the capacitor and becomes an anode external terminal.
  • resin used for resin mold exterior what is used by a usual method, such as an epoxy resin, a phenol resin, an alkyd resin, an ester resin, an allyl ester resin, or a mixture thereof, can be used. Sealing is preferably performed by transfer molding.
  • the capacitor can be mounted on various electric circuits or electronic circuits and used by the manufacturing method according to the present invention.
  • the particle size (volume average particle size) of the powder was measured using an HRA9320-X100 (laser diffraction / scattering particle size analyzer) manufactured by Microtrack. Specifically, the volume-based particle size distribution was measured with this apparatus, and in the cumulative distribution, the particle size value corresponding to the cumulative volume% of 50 volume% was defined as the volume average particle diameter D50 ( ⁇ m).
  • Example 1 Comparative Example 1: (1) Sintering Step After a commercially available tantalum powder (trade name S-10, manufactured by GAM) was molded with a tantalum wire of 0.24 mm ⁇ , it was sintered in vacuum at 1320 ° C. for 30 minutes, and the size was 1 1,000 anode bodies having a size of 0.0 ⁇ 2.3 ⁇ 1.7 mm were produced. In the anode body, a tantalum wire was planted in the center of the 1.0 ⁇ 2.3 mm surface. The tantalum wire was planted so that 1.2 mm was inside the anode body and 8.5 mm was outside the anode body.
  • S-10 commercially available tantalum powder
  • the tantalum wire of the anode body was inserted in the connection socket part of the same jig as used in Example 1 of Japanese Patent No. 4620184, and 64 anode bodies were arranged. Similarly, five jigs on which the anode body was arranged were prepared. Using this jig, a predetermined portion of the anode body and the tantalum wire is immersed in a 2% by mass phosphoric acid aqueous solution, subjected to chemical conversion treatment at 60 ° C. and 10 V for 5 hours, and a dielectric layer made of tantalum pentoxide. Formed.
  • the stainless steel container has a solution volume of 220 mL, a container size of 220 ⁇ 50 mm, and a height of 30 mm.
  • a tantalum wire was connected to the positive electrode of the power source and a stainless steel container was connected to the negative electrode of the power source, and polymerization was carried out at 25 ° C. for 1 hour under constant current conditions of 60 ⁇ A / anode body. After electrolytic polymerization, washing with water and washing with ethanol were performed, and heat treatment was performed at 80 ° C.
  • Example 1 (3) the semiconductor layer forming step and (4) the post-forming step were performed under light shielding conditions.
  • the light shielding conditions were such that the entire reaction apparatus was covered.
  • Comparative Example 1 all the steps were performed under a 20 W fluorescent lamp. The distance between the fluorescent lamp and the liquid level was 110 cm.
  • Examples 2-3 and Comparative Example 2 (1) Sintering Step A tungsten powder (volume average particle diameter D50: 0.2 ⁇ m) obtained by reducing tungsten trioxide in a hydrogen atmosphere was added to 0.3% by mass of commercially available silicon powder (volume average particle diameter D50). 1 ⁇ m) and heated in vacuo at 1100 ° C. for 30 minutes. After heating, the temperature was returned to room temperature, taken out into the atmosphere, and crushed. The obtained tungsten granulated powder (volume average particle diameter D50: 59 ⁇ m) was sintered in the same manner as in Example 1 except that the sintering temperature was 1260 ° C., and an anode body was produced. The ratio of the sintered body density to the green body density was 1.09. (2) Chemical conversion process It carried out like Example 1 except having used 3 mass% ammonium-persulfate aqueous solution as a solution, and having made chemical conversion temperature 50 degreeC.
  • Example 3 was carried out in the same manner as Comparative Example 2 except that the 20 W fluorescent lamp was replaced with a 1 W miniature light bulb.
  • Table 1 shows the state of the monomer solution after polymerization in Examples 1 to 3 and Comparative Examples 1 and 2, and the number of elements having foreign matters attached to the semiconductor layer.
  • the ratio of light having a wavelength of 150 to 450 nm is calculated as 30% for a 20 W fluorescent lamp and 5% for a 1 W mini-bulb
  • the integrated amount of irradiation is 365 mJ / cm 2 in Comparative Examples 1 and 2, and the example. 2 was 3.0 mJ / cm 2 .
  • FIG. 1 and FIG. 2 show stereoscopic microscope photographs (magnification: 20 times) of the surface of the anode body after the semiconductor layer forming step in Example 2 and Comparative Example 2, respectively.
  • FIG. 2 the adhesion of foreign matters is seen near the center, but such foreign matters are not observed in FIG.
  • Example 1 and 2 where the semiconductor layer formation step was performed under light-shielding conditions and Example 3 where the photopolymerization of the conductive polymer did not occur
  • the monomer solution after the semiconductor layer formation was colorless and transparent, No element with foreign matter attached to the semiconductor layer was found.
  • Comparative Examples 1 and 2 in which the semiconductor layer formation step was performed under irradiation with a fluorescent lamp, the monomer solution after the semiconductor layer formation was darkened, floating substances were generated, and elements with foreign matters attached to the semiconductor layer were observed. Sealing occurred. From the above, it was confirmed that the formation of darkening and floating substances in the monomer solution and the unsealing can be prevented by performing the semiconductor layer forming step under the condition that the photopolymerization of the conductive polymer does not occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 本発明は弁作用金属を焼結して陽極体を形成する焼結工程と、前記陽極体の表層部に誘電体層を形成する化成工程と、前記陽極体を導電性高分子のモノマーの溶液に浸漬し、前記モノマーを重合することによって導電性高分子からなる半導体層を形成する半導体層形成工程と、前記陽極体上に導電体層を形成する導電体層形成工程とをこの順で含む固体電解コンデンサ素子の製造方法であって、前記半導体層形成工程を、前記導電性高分子のモノマーの光重合が起こらない条件下で行うことを特徴とする固体電解コンデンサ素子の製造方法を提供する。本発明によれば、未封止等の不良品が少ない固体電解コンデンサを生産性よく製造することができる。

Description

固体電解コンデンサ素子の製造方法
 本発明は、固体電解コンデンサ素子の製造方法に関する。さらに詳しく言えば、未封止等の不良品が少ない、生産性が高い固体電解コンデンサ素子の製造方法を提供する。
 特許文献1は、電気伝導性の高分子を含む反応生成物を好適に形成することが可能な光重合装置、及び光重合方法を開示している。
 特許文献2は、1,3-ジヒドロベンゾ[c]チオフェン化合物を含む気相、液相または固相中に光を照射して、ベンゾ[c]チオフェンを合成する方法を開示している。
 特許文献3は、光照射により重合させて、照射部分のみを導電性に変化させるとともに、汎用高分子と均一に混合された導電性の複合材料が製造可能な成形性またはフィルム形成性組成物を開示している。
 以上の通り、一般的な導電性高分子のモノマーは光により重合することが知られている。
特開2006-290912号公報 特開平5-255486号公報 特開平7-188399号公報
 固体電解コンデンサ素子は、弁作用金属を焼結して陽極体を形成する焼結工程と、陽極体の表層部に誘電体層を形成する化成工程と、陽極体を導電性高分子のモノマーの溶液に浸漬し、当該モノマーを重合することによって半導体層を形成する半導体層形成工程と、陽極体上に導電体層を形成する導電体層形成工程とをこの順で含む製造方法によって製造することができる。
 定法に従って半導体層を形成すると、半導体層形成後、半導体層形成に用いた導電性高分子のモノマー溶液において黒ずみや浮遊物が発生することがある。この黒ずみや浮遊物は、半導体層に付着して、未封止等の不良品を発生させる可能性がある。
 よって、本発明の目的は、上記課題を解決し、未封止等の不良品が少ない、生産性が高い固体電解コンデンサ素子の製造方法を提供することである。
 そこで、本発明者らは、特許文献1~3をふまえ、黒ずみや浮遊物の原因が、モノマー溶液における導電性高分子の不正な光重合であると推測した。未封止等の不良品を少なくするためには、この光重合を防ぎ、黒ずみや浮遊物の発生を防止することが課題であると考えた。その結果、以下の発明を完成するに至った。すなわち、本発明は、下記の[1]~[6]に関する。
[1]弁作用金属を焼結して陽極体を形成する焼結工程と、前記陽極体の表層部に誘電体層を形成する化成工程と、前記陽極体を導電性高分子のモノマーの溶液に浸漬し、前記モノマーを重合することによって導電性高分子からなる半導体層を形成する半導体層形成工程と、前記陽極体上に導電体層を形成する導電体層形成工程とをこの順で含む固体電解コンデンサ素子の製造方法であって、前記半導体層形成工程を、前記導電性高分子のモノマーの光重合が起こらない条件下で行うことを特徴とする固体電解コンデンサ素子の製造方法。
[2]前記導電性高分子のモノマーの光重合が起こらない条件が、半導体層形成工程における波長150~450nmの光の照射積算光量を10mJ/cm2以下にする条件である[1]に記載の固体電解コンデンサ素子の製造方法。
[3]前記導電性高分子が、ポリエチレンジオキシチオフェン、ポリピロール、及びそれらの誘導体から選ばれる少なくとも1つである[1]または[2]に記載の固体電解コンデンサ素子の製造方法。
[4]前記導電性高分子の光重合が起こらない条件が、遮光条件である[1]に記載の固体電解コンデンサ素子の製造方法。
[5]前記弁作用金属が、タンタル、ニオブ、タングステン、アルミニウムから選ばれる少なくとも1つである[1]~[4]のいずれかに記載の固体電解コンデンサ素子の製造方法。
[6]前記弁作用金属が、タンタル及び/またはタングステンである[5]に記載の固体電解コンデンサ素子の製造方法。
 本発明によれば、半導体層形成工程における導電性高分子の不正な光重合を防止することができる。その結果、製造される固体電解コンデンサ素子における未封止等の不良品が減少し、生産性が向上する。
実施例2における半導体層形成工程後の陽極体表面の実体顕微鏡写真(倍率:20倍)である。 比較例2における半導体層形成工程後の陽極体表面の実体顕微鏡写真(倍率:20倍)である。
 本発明の固体電解コンデンサ素子の製造方法は、弁作用金属を焼結して陽極体を形成する焼結工程と、陽極体の表層部に誘電体層を形成する化成工程と、陽極体を導電性高分子のモノマーの溶液に浸漬し、当該モノマーを重合することによって半導体層を形成する半導体層形成工程と、陽極体上に導電体層を形成する導電体層形成工程とをこの順で含む固体電解コンデンサ素子の製造方法であって、半導体層形成工程を、導電性高分子の光重合が起こらない条件下で行うことを特徴とする。
 定法では、半導体層形成の様子を確認するため、あるいは各種操作の都合上、陽極体やモノマー溶液に蛍光灯等の光を照射した状態で半導体層の形成を行う。これによって、導電性高分子の不正な光重合が起こり、黒ずみや浮遊物が発生して、未封止の原因となるものと推測した。
 そこで、本発明の製造方法は、半導体層形成工程を、導電性高分子の光重合が起こらない条件下で行い、黒ずみや浮遊物の発生を防止する。なお、導電性高分子の光重合が起こらない条件は、好ましくは、半導体層形成工程における波長150~450nmの光の照射積算光量を10mJ/cm2以下にする条件であり、より好ましくは、遮光条件である。
 また、固体電解コンデンサ素子の誘電体層を構成する絶縁性金属酸化物は、光活性があるものも含まれる。よって、陽極体やモノマー溶液に光が当たった状態で半導体層形成を行うと、絶縁性金属酸化物が光活性化され、前述の導電性高分子の不正な光重合を促進したり、半導体層として形成された導電性高分子のポリマーを切断したりする可能性がある。本発明の製造方法は、半導体層の形成を導電性高分子の光重合が起こらない条件下で行うことにより、これらを防止することもでき、より好適に半導体層を形成できる。
 例えば、弁作用金属としてタングステンを用いた場合、誘電体層の主成分は三酸化タングステンとなる。三酸化タングステンは光活性が大きいので、本発明の製造方法を用いることが好ましい。
 以下、本発明をより詳細に説明する。
 弁作用金属としては、タンタル、ニオブ、タングステン、アルミニウム等の弁作用金属や、これら金属を主成分とする合金、組成物、これら金属の導電性酸化物が好ましい。これらの粉を2種類以上混合して使用してもよい。また、合金は、金属のうち一部が合金化したものも含む。
 陽極体は主成分以外の金属をコンデンサ特性に悪影響を与えない範囲で含んでいてもよい。主成分以外の金属として、例えば、タンタル、ニオブ、アルミニウム、チタン、バナジウム、亜鉛、モリブデン、ハフニウム、ジルコニウム等の弁作用金属が挙げられる。
 弁作用金属としてタングステンを用いる場合、原料タングステン粉としては、市販されているタングステン粉を用いることができる。三酸化タングステン粉を水素ガス雰囲気下で還元する等の手法により、市販のタングステン粉よりもさらに粒径を小さくしたタングステン粉も、好ましく使用できる。
 タングステン粉としては、陽極体に細孔を形成しやすくなるので、造粒されたタングステン粉(以下に「造粒粉」ということがある。)がより好ましい。タングステン造粒粉としては、ケイ化タングステン粉、炭化タングステン粉、ホウ化タングステン粉及び窒素が固溶化したタングステン粉から選ばれる少なくとも1つが好ましく用いられる。なお、前述のタングステン造粒粉は、一部がケイ化、炭化、ホウ化、一部に窒素が固溶化したタングステン造粒粉も含む。
 ケイ化タングステン粉は、例えば、タングステン粉にケイ素粉をよく混合し、減圧条件下で加熱することにより得ることができる。この方法の場合、W5WSi3等のケイ化タングステンが粒子表面から通常50nm以内の領域に局在して形成される。そのため、粒子の中心部は金属として残存し、コンデンサ陽極体の等価直列抵抗を低く抑えることができ、好ましい。
 タングステンをケイ化する際の圧力は、好ましくは10-1Pa以下、より好ましくは10-3Pa以下である。反応温度は、1100℃以上2600℃以下が好ましい。反応温度を当該範囲とすると、ケイ化に時間がかかりすぎず、かつ、ケイ素が気化し、電極の金属(モリブデン等)と合金化して電極がもろくなる等の問題が発生する可能性が低い。
 タングステン粉は、さらに酸素、リンを含んでいてもよい。
 タングステン粉は、さらに良好なLC(漏れ電流)特性を得るために、前述のケイ素、炭素、ホウ素、窒素、酸素及びリンの各元素以外の不純物元素の合計含有量を0.1質量%以下に抑えることが好ましい。
 前述の弁作用金属を焼結する前に、成形処理を行ってもよい。成形する弁作用金属は造粒粉、未造粒粉、及び造粒粉と未造粒粉との混合物のいずれであってもよい。加圧成形を容易にするため、バインダーを混ぜて成形してもよい。また、成形圧力を加減することによって陽極体の細孔率、成形密度を調節することができる。
 成形において、陽極体の端子とするための陽極リード線を成形体に埋設し、植立させてもよい。陽極リード線としては弁作用金属の金属線を用いることができるが、金属板や金属箔を陽極体に植立または接続してもよい。
<焼結工程>
 焼結工程では、弁作用金属を焼結して陽極体を形成する。弁作用金属は、未造粒であってもよいが、前述の通り造粒、成形されていてもよい。
 陽極体は、箔、板、線等の形状で製造することができる。内部の粒子間に細孔や微細な隙間を有する多孔質体を形成すると、作製したコンデンサ素子の容量が大きくなるため好ましい。なお、このような陽極体は定法に従って製造することができる。
 また、焼成時にケイ化、ホウ化または炭化、窒素、リン等を含有させる処理を行うこともできる。
 焼結における圧力は、例えば、102Pa以下の減圧条件であることが好ましい。焼結温度は、好ましくは1000~2000℃、より好ましくは1100~1700℃、さらに好ましくは1200~1600℃である。
<化成工程>
 化成工程では、前述の焼結工程で得た陽極体の表層部に、誘電体層を形成する。誘電体層は、化成処理を行うことによって形成することができる。なお、化成処理は定法に従って行うことができ、化学酸化、電解酸化のどちらを用いてよく、両方を繰り返し行ってもよい。
 化学酸化は、化成液に陽極体を浸漬することにより実施できる。
 電解酸化は、化成液に陽極体を浸漬した上で、電圧を印加することにより実施できる。電圧は、陽極体(陽極)と対電極(陰極)との間に印加する。陽極体への通電は陽極リード線を通じて行うことができる。電圧印加は、所定の初期電流密度にて開始し、該電流密度値を維持し、所定の電圧(化成電圧)に達した後はその電圧を維持することが好ましい。化成電圧は所望の耐電圧に応じて適宜設定することができる。
 化成液としては、特に限定されず、定法で用いる酸化剤を含む水溶液が使用できる。
 弁作用金属としてタンタルを用いた場合、化成液としては、例えば、リン酸水溶液、硝酸水溶液、硫酸水溶液等を使用することができる。
 弁作用金属としてタングステンを用いた場合、酸化剤はマンガン(VII)化合物、クロム(VI)化合物、ハロゲン酸化合物、過硫酸化合物および有機過酸化物からなる群から選ばれる少なくとも一つが好ましい。具体的には、過マンガン酸塩等のマンガン(VII)化合物;三酸化クロム、クロム酸塩、ニクロム酸塩等のクロム(VI)化合物;過塩素酸、亜塩素酸、次亜塩素酸及びそれらの塩等のハロゲン酸化合物;過酢酸、過安息香酸及びそれらの塩や誘導体等の有機酸過酸化物;過硫酸及びその塩等の過硫酸化合物が挙げられる。これらのうち、扱い易さ、酸化剤としての安定性および水易溶性、並びに容量上昇性の観点から、過硫酸アンモニウム、過硫酸カリウム、過硫酸水素カリウム等の過硫酸化合物が好ましい。これらの酸化剤は1種単独でまたは2種以上を組み合わせて使用することができる。
 弁作用金属としてアルミニウムを用いた場合、化成液としては、例えば、アジピン酸アンモニウム、安息香酸アンモニウム等の中性塩を含む水溶液を使用することができる。
 化成においては、公知の冶具を用いてもよい。冶具の一例としては、特許第4620184号で開示されたものが挙げられる。
 酸化剤の濃度、化成温度、化成時間等は定法に従って決定すればよく、特に限定されない。
 化成処理の後、陽極体を水で洗浄してもよい。この洗浄によって化成液をできるだけ除去することが好ましい。水洗浄の後、表面に付着した水または陽極体の細孔内にしみ込んだ水は除去することが好ましい。水の除去は、例えば水との混和性を有する溶剤(プロパノール、エタノール、メタノール等)に接触させて加熱処理を行うことによって実施できる。加熱処理の温度は、好ましくは100~200℃以上である。加熱処理の時間は、誘電体層の安定性が維持できる範囲であれば特に制限されない。
<半導体層形成工程>
 半導体層形成工程では、前述の方法で誘電体層を形成した陽極体を、導電性高分子のモノマー溶液に浸漬し、当該モノマーを重合することによって半導体層を形成する。
 本発明においては、半導体層形成工程を、導電性高分子の光重合が起こらない条件下で行い、前述の黒ずみや浮遊物の発生を防止する。
 実際に、三酸化タングステンを誘電体層としたタングステン陽極体に対して、エチレンジオキシフェンモノマー溶液中を用いて、蛍光灯下で6時間、電解重合を行い、半導体層の形成を行った場合、半導体層形成後のモノマー溶液は黒ずみ、低分子量のポリマーくずが浮遊したり沈降したりする。一方、電解重合を暗所で行った場合、電解重合後のモノマー溶液は透明となる。
 導電性高分子の光重合が起こらない条件は、好ましくは、半導体層形成工程における波長150~450nmの光の照射積算光量を10mJ/cm2以下にする条件である。
 照射積算光量は、好ましくは8mJ/cm2以下、より好ましくは6mJ/cm2以下、さらに好ましくは4mJ/cm2以下である。
 光源としては、蛍光灯、太陽光、電球、ハロゲンランプ、キセノンランプ、LED、レーザー等が挙げられる。
 波長150~450nmの光の照射積算光量を10mJ/cm2以下にする方法としては、遮光フィルム、イエロールームを用いる方法等が挙げられる。
 導電性高分子の光重合が起こらない条件は、さらに好ましくは、遮光条件である。遮光条件とは、本質的に光が当たらない条件を示し、好ましくは、暗室、反応装置全体に覆いをかぶせた状態等である。
 なお、導電性高分子の光重合が起こらない条件は、弁作用金属や導電性高分子の種類によって多少異なるので、詳細な条件は予備実験を行って求めてもよい。
 半導体層の導電性高分子は、例えば、ポリエチレンジオキシチオフェンやポリピロール、またはこれらの誘導体、混合物が使用できる。半導体層を形成する前後またはその途中に、二酸化マンガンからなる層または島状の点在層を形成しておいても良い。
 導電性高分子の重合に用いる重合液は、ドーパントを含んでいてもよい。ドーパントとしては、トルエンスルフォン酸、アントラキノンスルフォン酸、ベンゾキノンスルフォン酸、ナフタレンスルフォン酸、ポリスチレンスルフォン酸、またはその塩等が挙げられる。
 導電性高分子の重合は、化学重合、電解重合のどちらを用いてもよく、両方を繰り返し行ってもよい。なお、どちらの重合を行う場合でも、導電性高分子の光重合が起こらない条件で重合することが好ましい。
 化学重合は、重合液に陽極体を浸漬することにより実施できる。
 電解重合は、重合液に陽極体を浸漬した上で、電圧を印加することにより実施できる。電圧は化成工程の電解酸化と同様に印加することができるが、通電条件は定電流条件とすることが好ましい。
 導電性高分子やドーパントの濃度、重合温度、重合時間は定法に従って決定すればよく、特に限定されない。
 半導体層形成後、化成工程と同様に、洗浄、加熱処理を行ってもよい。ただし、加熱処理の温度は、半導体層の劣化を避けるため、化成工程よりも低い温度であることが好ましい。
 半導体層形成後、誘電体層に生じた損傷を修復する、後化成を行ってもよい。
 後化成工程は、化成工程と同様に行うことができる。ただし、半導体層の劣化を防ぐため、印加する電圧は化成工程よりも低いことが好ましい。
 後化成後、半導体層形成工程と同様に、洗浄、加熱処理を行ってもよい。
 なお、半導体層形成工程から後化成までは、繰り返し行ってもよい。
<導電体層形成工程>
 導電体層形成工程では、前述の方法で半導体層を形成した陽極体上に、導電体層を形成する。導電体層の形成は定法に従って行えばよく、例えば、カーボン層に銀層を順次積層する方法が挙げられる。
 以上のコンデンサ素子は、例えば樹脂モールド等により外装して各種用途の固体電解コンデンサ製品とすることができる。
 導電体層に陰極リードが電気的に接続され、陰極リードの一部がコンデンサの外装の外部に露出して陰極外部端子となる。一方、陽極体には、陽極リード線を介して陽極リードが電気的に接続され、陽極リードの一部がコンデンサの外装の外部に露出して陽極外部端子となる。
 樹脂モールド外装に使用される樹脂の種類としては、エポキシ樹脂、フェノール樹脂、アルキッド樹脂、エステル樹脂、アリルエステル樹脂、またはこれらの混合物等、定法で用いるものを使用できる。
 封止はトランスファー成形により行うことが好ましい。
 本発明に係る製造方法によってコンデンサは、各種電気回路または電子回路に装着し、使用することができる。
 以下に実施例及び比較例を挙げて本発明を説明するが、下記の記載により本発明は何ら限定されるものではない。
 本発明において、粉体の粒径(体積平均粒径)は、マイクロトラック社製HRA9320-X100(レーザー回折・散乱式粒度分析計)を用いて測定した。具体的には、本装置により体積基準の粒度分布を測定し、その累積分布において、累積体積%が50体積%に相当する粒径値を体積平均粒径D50(μm)とした。
実施例1、比較例1:
(1)焼結工程
 市販のタンタル粉(GAM社製、商品名S-10)を、0.24mmφのタンタル線と共に成形した後、真空中、1320℃で30分間焼結し、大きさが1.0×2.3×1.7mmの陽極体を1000個作製した。なお、陽極体においては、1.0×2.3mm面中央にタンタル線を植立した。タンタル線は、1.2mmは陽極体内部に、8.5mmは陽極体外部になるように植立した。
(2)化成工程
 次に、特許第4620184号の実施例1で使用したものと同じ冶具の連結ソケット部に陽極体のタンタル線を差し込み、64個の陽極体を配置した。これと同様に陽極体を配置した冶具を5枚用意した。この冶具を用いて、2質量%のリン酸水溶液中に陽極体とタンタル線の所定部分を浸漬して、60℃、10Vで5時間、化成処理を行い、五酸化二タンタルからなる誘電体層を形成した。
(3)半導体層形成工程
 次に、化成処理済みの陽極体を10質量%のエチレンジオキシチオフェンエタノール溶液に浸漬した後に、別途用意した10質量%のトルエンスルフォン酸鉄水溶液を用いて、60℃で15分間、化学重合を行った。浸漬から化学重合までの操作は3回繰り返した。
 続いて、3質量%のアントラキノンスルフォン酸と、飽和濃度以上のエチレンジオキシチオフェンとを含む、質量比が水:エチレングリコール=7:3の溶液を用意して電解重合用のモノマー溶液とした。これをステンレス製容器に入れ、陽極体を浸漬して電解重合を行った。なお、ステンレス製容器は溶液体積220mL、容器寸法220×50mm、高さ30mmである。電解重合においては、タンタル線を電源の正極に、ステンレス製容器を電源の負極に接続し、60μA/陽極体の定電流条件で、25℃で1時間、重合を行った。
 電解重合の後、水洗、エタノール洗浄を行い、80℃で加熱処理を行った。
(4)後化成工程
 次に、(2)化成工程で用いたものと同じ溶液に陽極体を浸漬し、9Vで15分間、後化成処理を行った。
 前述の電解重合から後化成までの操作は6回繰り返した。電解重合の電流値は、2~3回目が70μA/陽極体、4~6回目が80μA/陽極体とした。
 なお、実施例1においては(3)半導体層形成工程、(4)後化成工程を遮光条件で行った。なお、遮光条件は反応装置全体に覆いをかぶせた状態とした。
 一方、比較例1は全ての工程を20Wの蛍光灯の下で行った。蛍光灯と液面との距離は110cmとした。
(5)導電体層形成工程
 続いて、半導体層のタンタル線が植立された面以外の面にカーボン層、銀層を順次形成し、タンタル固体電解コンデンサ素子を320個作製した。
(6)封止工程
 得られた320個の素子を、トランスファー成形によりエポキシ樹脂で外装し、大きさ1.9×2.8×3.4mmのチップ状固体電解コンデンサを作製した。なお、1.9×2.8mmの面は、陽極体の1.0×2.3mmの面と平行になるようにした。
実施例2~3、比較例2:
(1)焼結工程
 三酸化タングステンを水素雰囲気下で還元して得たタングステン粉(体積平均粒径D50:0.2μm)に、0.3質量%の市販のケイ素粉(体積平均粒径D50:1μm)を混合し、真空中、1100℃で30分間、加熱した。加熱後、室温に戻してから大気中に取り出し、解砕した。得られたタングステン造粒粉(体積平均粒径D50:59μm)を、焼結温度を1260℃としたこと以外は実施例1と同様に焼結して、陽極体を作製した。なお、成形体密度に対する焼結体密度の比は1.09であった。
(2)化成工程
 溶液として3質量%の過硫酸アンモニウム水溶液を用いたこと、化成温度を50℃にしたこと以外は実施例1と同様に行った。
(3)半導体層形成工程、(4)後化成工程、(5)導電体層形成工程、(6)封止工程は、それぞれ実施例1、比較例1と同様にして、実施例2、比較例2を行った。
 また、20Wの蛍光灯を、1Wの豆電球としたこと以外は比較例2と同様にして、実施例3を実施した。
 実施例1~3、比較例1~2における重合後のモノマー溶液の様子、半導体層に異物が付着した素子の数を表1に示す。なお、波長150~450nmの光の割合を、20Wの蛍光灯では30%、1Wの豆電球では5%として計算した場合、照射積算光量は、比較例1~2では365mJ/cm2、実施例2では3.0mJ/cm2であった。
























Figure JPOXMLDOC01-appb-T000001
 実施例2、比較例2における、半導体層形成工程後の陽極体表面の実体顕微鏡写真(倍率:20倍)をそれぞれ図1、図2に示す。図2では、中央付近に異物の付着が見られるが、図1ではこのような異物は観察されない。
 半導体層形成工程を遮光条件で行った実施例1~2、および導電性高分子の光重合が起こらない条件下で行った実施例3は、半導体層形成後のモノマー溶液が無色透明であり、半導体層に異物が付着した素子は見られなかった。一方、半導体層形成工程を蛍光灯照射下で行った比較例1~2は、半導体層形成後のモノマー溶液に黒ずみ、浮遊物が発生し、半導体層に異物が付着した素子が見られ、未封止が発生した。
 以上より、半導体層形成工程を、導電性高分子の光重合が起こらない条件で行うことにより、モノマー溶液における黒ずみや浮遊物の発生、および未封止を防止することができることを確認した。

Claims (6)

  1.  弁作用金属を焼結して陽極体を形成する焼結工程と、前記陽極体の表層部に誘電体層を形成する化成工程と、前記陽極体を導電性高分子のモノマーの溶液に浸漬し、前記モノマーを重合することによって導電性高分子からなる半導体層を形成する半導体層形成工程と、前記陽極体上に導電体層を形成する導電体層形成工程とをこの順で含む固体電解コンデンサ素子の製造方法であって、前記半導体層形成工程を、前記導電性高分子のモノマーの光重合が起こらない条件下で行うことを特徴とする固体電解コンデンサ素子の製造方法。
  2.  前記導電性高分子のモノマーの光重合が起こらない条件が、半導体層形成工程における波長150~450nmの光の照射積算光量を10mJ/cm2以下にする条件である請求項1に記載の固体電解コンデンサ素子の製造方法。
  3.  前記導電性高分子が、ポリエチレンジオキシチオフェン、ポリピロール、及びそれらの誘導体から選ばれる少なくとも1つである請求項1または2に記載の固体電解コンデンサ素子の製造方法。
  4.  前記導電性高分子の光重合が起こらない条件が、遮光条件である請求項1に記載の固体電解コンデンサ素子の製造方法。
  5.  前記弁作用金属が、タンタル、ニオブ、タングステン、アルミニウムから選ばれる少なくとも1つである請求項1~4のいずれかに記載の固体電解コンデンサ素子の製造方法。
  6.  前記弁作用金属が、タンタル及び/またはタングステンである請求項5に記載の固体電解コンデンサ素子の製造方法。
PCT/JP2015/059942 2014-07-16 2015-03-30 固体電解コンデンサ素子の製造方法 WO2016009680A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015534866A JP5824190B1 (ja) 2014-07-16 2015-03-30 固体電解コンデンサ素子の製造方法
CN201580037531.0A CN106575576B (zh) 2014-07-16 2015-03-30 固体电解电容器元件的制造方法
US15/326,124 US20170200569A1 (en) 2014-07-16 2015-03-30 Method for producing solid electrolytic capacitor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-145717 2014-07-16
JP2014145717 2014-07-16

Publications (1)

Publication Number Publication Date
WO2016009680A1 true WO2016009680A1 (ja) 2016-01-21

Family

ID=55078185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059942 WO2016009680A1 (ja) 2014-07-16 2015-03-30 固体電解コンデンサ素子の製造方法

Country Status (3)

Country Link
US (1) US20170200569A1 (ja)
CN (1) CN106575576B (ja)
WO (1) WO2016009680A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527574B (zh) * 2017-12-25 2022-12-09 昭和电工株式会社 固体电解电容器制造用分散液组合物和固体电解电容器的制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306605A (ja) * 1999-04-22 2000-11-02 Dainippon Ink & Chem Inc 活性エネルギー線硬化性高分子固体電解質およびその製造方法
JP2005183256A (ja) * 2003-12-22 2005-07-07 Tdk Corp 固体電解質およびその形成方法、ならびに電子部品およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130339A (en) * 1999-06-01 2000-10-10 The United States Of America As Represented By The Secretary Of The Air Force Electro-active monomers comprised of aniline-thiophene units
US6197921B1 (en) * 1999-06-01 2001-03-06 The United States Of America As Represented By The Secretary Of The Air Force Polymers of 1-(bithien-2-yl)-4-aminobenzene
WO2004047130A2 (en) * 2002-11-21 2004-06-03 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US8057553B2 (en) * 2007-03-15 2011-11-15 Sanyo Electric Co., Ltd. Method for manufacturing solid electrolytic capacitor and solid electrolytic capacitor
JP5022525B1 (ja) * 2011-05-11 2012-09-12 パイオニア株式会社 照明装置
KR101633369B1 (ko) * 2011-12-06 2016-07-08 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 옐로 룸 시스템
WO2013088845A1 (ja) * 2011-12-14 2013-06-20 三洋電機株式会社 固体電解コンデンサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306605A (ja) * 1999-04-22 2000-11-02 Dainippon Ink & Chem Inc 活性エネルギー線硬化性高分子固体電解質およびその製造方法
JP2005183256A (ja) * 2003-12-22 2005-07-07 Tdk Corp 固体電解質およびその形成方法、ならびに電子部品およびその製造方法

Also Published As

Publication number Publication date
US20170200569A1 (en) 2017-07-13
CN106575576B (zh) 2018-09-11
CN106575576A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
JP4596543B2 (ja) 固体電解コンデンサの製造方法
JP2004349658A (ja) 電解コンデンサ
WO2013186970A1 (ja) コンデンサ素子およびその製造方法
JP2009239312A (ja) タンタル焼結体の製造方法及びコンデンサの製造方法
JP5731719B2 (ja) カーボンペーストおよび固体電解コンデンサ素子
WO2016038959A1 (ja) タングステンコンデンサ素子及びその製造方法
WO2013190756A1 (ja) コンデンサの製造方法
JP5824190B1 (ja) 固体電解コンデンサ素子の製造方法
WO2016009680A1 (ja) 固体電解コンデンサ素子の製造方法
JP5476511B1 (ja) コンデンサ素子
US9704652B2 (en) Method for manufacturing tungsten-based capacitor element
JP5798279B1 (ja) タングステン系コンデンサ素子の製造方法
EP1264321A1 (en) Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body
US9478360B2 (en) Tungsten capacitor anode and process for production thereof
JP5824115B1 (ja) タングステン系コンデンサ素子の製造方法
JP5613863B2 (ja) タングステンコンデンサの陽極体及びその製造方法
JP5020433B2 (ja) コンデンサ用ニオブ粉、焼結体及びその焼結体を用いたコンデンサ
JP5940222B2 (ja) 固体電解コンデンサ素子の陽極体及びその製造方法
JP2010265549A (ja) コンデンサ用ニオブ粉
JP5840821B1 (ja) タングステンコンデンサ素子及びその製造方法
JP2001307963A (ja) コンデンサ用ニオブ粉、それを用いた焼結体及びそれを用いたコンデンサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015534866

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822496

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15326124

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822496

Country of ref document: EP

Kind code of ref document: A1