TW201812810A - 積層陶瓷電容器 - Google Patents

積層陶瓷電容器 Download PDF

Info

Publication number
TW201812810A
TW201812810A TW106116425A TW106116425A TW201812810A TW 201812810 A TW201812810 A TW 201812810A TW 106116425 A TW106116425 A TW 106116425A TW 106116425 A TW106116425 A TW 106116425A TW 201812810 A TW201812810 A TW 201812810A
Authority
TW
Taiwan
Prior art keywords
site
multilayer ceramic
volatile
ceramic capacitor
ceramic
Prior art date
Application number
TW106116425A
Other languages
English (en)
Other versions
TWI642074B (zh
Inventor
岡本貴史
Original Assignee
村田製作所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田製作所股份有限公司 filed Critical 村田製作所股份有限公司
Publication of TW201812810A publication Critical patent/TW201812810A/zh
Application granted granted Critical
Publication of TWI642074B publication Critical patent/TWI642074B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • H01G4/1245Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates containing also titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/248Terminals the terminals embracing or surrounding the capacitive element, e.g. caps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本發明係實現一種即便介電層由鈣鈦礦型化合物所形成,且內部電極由卑金屬材料所形成,仍可抑制絕緣性能經時性地劣化,且可確保良好之可靠性之積層陶瓷電容器。 陶瓷燒結體1係交替地積層有介電層6a~6g與內部電極2a~2f。介電層6a~6g係主成分由通式ABO3 所表示之鈣鈦礦型化合物所形成,上述鈣鈦礦型化合物至少含有Ti及會固溶於B位之揮發性元素。內部電極2a~2f係由包含揮發性元素之卑金屬材料所形成。陶瓷燒結體1係設為揮發性元素之含量相對於除上述揮發性元素以外之上述B位之構成元素100莫耳份,大於0莫耳份且為0.2莫耳份以下。

Description

積層陶瓷電容器
本發明係關於一種積層陶瓷電容器,更詳細而言,係關於一種介電層由鈣鈦礦型化合物所形成且內部電極由卑金屬材料所形成之積層陶瓷電容器。
近年來,積層陶瓷電容器係搭載於各種電子機器中。而且,作為此種積層陶瓷電容器所使用之介電材料,先前廣泛使用有能夠獲得高介電常數之BaTiO3 系化合物。又,作為積層陶瓷電容器之內部電極材料,廣泛使用有低成本且具有良好導電性之Ni等卑金屬材料。 例如,於專利文獻1中,揭示有由組成式{(Ba1-x-y Cax Bry )O}m ・TiO2 (此處,m、x、y為1.005≦m≦1.03、0.02≦x≦0.22、0.05≦y≦0.35)所表示之鈦酸鋇系介電磁性組合物。 於該專利文獻1中,分別用Ca及Br取代Ba之一部分,且將通式Am BO3 所表示之鈣鈦礦化合物之m值(=A/B)設為A位富集,並且於如內部電極材料不會氧化之還原氣氛下進行煅燒,藉此獲得比電阻為105 Ω・cm以上且介電常數ε為5000以上之積層陶瓷電容器。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開昭55-67567號公報(申請專利範圍第1項、第(3)頁表1等)
[發明所欲解決之問題] 然而,於專利文獻1中,雖於驅動初期能夠確保105 MΩ・cm以上之比電阻,但存在若於高溫下長時間連續驅動,則絕緣電阻降低而導致絕緣性能之劣化,從而無法確保充分之可靠性之問題。 即,已知若將如BaTiO3 系化合物之鈣鈦礦型晶體結構之介電材料於還原氣氛下進行煅燒,則於晶格中產生氧缺陷。而且,此種氧缺陷會在驅動中於晶粒內移動而擴散,因此存在若於高溫下長時間連續驅動,則絕緣性能經時性地劣化,故而導致高溫負荷壽命之降低,而無法確保充分之可靠性之問題。 本發明係鑒於此種情況而完成者,其目的在於提供一種即便介電層由鈣鈦礦型化合物所形成,且內部電極由卑金屬材料所形成,亦可抑制絕緣性能經時性地劣化,而可確保良好之可靠性之積層陶瓷電容器。 [解決問題之技術手段] 關於積層陶瓷電容器,通常將介電材料與內部電極材料同時煅燒而製作陶瓷燒結體。 然,於由卑金屬材料形成內部電極之情形時,必須如專利文獻1般於如卑金屬材料不會氧化之還原氣氛下進行煅燒處理。 另一方面,已知若如上述般將BaTiO3 等鈣鈦礦型晶體結構(通式ABO3 )之陶瓷材料於還原性氣氛下進行煅燒,則會於晶格中產生氧缺陷(氧空位)。而且,此種氧缺陷會在驅動中於晶粒內移動而擴散,此會導致絕緣性能之經時性劣化。因此,為了抑制絕緣性能之經時性劣化而提高可靠性,必須抑制氧缺陷之擴散。 為了抑制氧缺陷之擴散,認為有效的是於供Ti配位之B位形成空位。 然而,若只是相對於構成A位之A位元素之含有莫耳量,減少Ti之含有莫耳量,則即便於B位生成空位,燒結體亦欠缺緻密性,而難以表現出所需之介電特性。 因此,本發明者進行銳意研究,製作使揮發性元素固溶於含有Ti之鈣鈦礦型化合物之B位而成之陶瓷原料,將該陶瓷原料與Ni等卑金屬之內部電極材料交替地積層,於還原氣氛下同時煅燒而製作陶瓷燒結體。而且,獲得如下見解:可藉由以於還原氣氛下之煅燒處理中揮發之揮發性元素於陶瓷燒結體中成為特定範圍之方式進行調整,且以揮發性元素之一部分固定於內部電極之方式使該揮發性元素包含於內部電極中,而抑制絕緣性能之經時性劣化,而提高可靠性。 本發明係基於此種見解而完成者,且本發明之積層陶瓷電容器係如下積層陶瓷電容器,其係具有將介電層與內部電極交替地積層而成之陶瓷燒結體者,其特徵在於:上述介電層係主成分由通式ABO3 所表示之鈣鈦礦型化合物所形成,上述鈣鈦礦型化合物至少含有Ti及會固溶於B位之揮發性元素,並且上述內部電極由包含上述揮發性元素之卑金屬材料所形成,上述陶瓷燒結體係上述揮發性元素之含量相對於除上述揮發性元素以外之上述B位之構成元素100莫耳份,大於0莫耳份且為0.2莫耳份以下。 又,本發明之積層陶瓷電容器較佳為A位之構成元素相對於除上述揮發性元素以外之上述B位之構成元素的比率以莫耳比換算計為1.00以上且1.04以下。 又,本發明之積層陶瓷電容器較佳為上述揮發性元素包含選自Zn、Sn、Sb、及In中之至少1種以上之元素。 又,本發明之積層陶瓷電容器較佳為上述A位元素包含選自Ba、Ca、及Sr中之至少1種以上之元素。 進而,本發明之積層陶瓷電容器亦較佳為含有選自稀土類元素、過渡金屬元素、及Si中之至少1種以上之元素作為副成分。 又,本發明之積層陶瓷電容器較佳為上述稀土類元素為選自Gd、Dy、及Y中之至少1種以上之元素。 進而,本發明之積層陶瓷電容器較佳為上述過渡金屬元素為選自Mg、Al、Mn、Cu、V中之至少1種以上之元素。 [發明之效果] 根據本發明之積層陶瓷電容器,係如下積層陶瓷電容器,其係具有將介電層與內部電極交替地積層而成之陶瓷燒結體者,且上述介電層係主成分由通式ABO3 所表示之鈣鈦礦型化合物所形成,上述鈣鈦礦型化合物至少含有Ti及會固溶於B位之揮發性元素,並且上述內部電極由包含上述揮發性元素之卑金屬材料所形成,上述陶瓷燒結體係上述揮發性元素之含量相對於除上述揮發性元素以外之上述B位之構成元素100莫耳份,大於0莫耳份且為0.2莫耳份以下,因此藉由固溶於B位之揮發性元素之揮發而抑制氧缺陷之擴散,並且由於內部電極包含揮發性元素,故而揮發性元素之一部分固定於內部電極,從而強化介電層與內部電極之界面之絕緣性。 即,根據本發明,可獲得氧缺陷之擴散之抑制、與介電層與內部電極之界面之絕緣性之強化協同地進行作用,而絕緣性能提高,即便於高溫下長時間連續驅動,絕緣性能之經時性劣化亦得到抑制之可靠性良好之積層陶瓷電容器。
其次,對本發明之實施形態詳細地進行說明。 圖1係模式性地表示本發明之積層陶瓷電容器之一實施形態的縱剖視圖。 該積層陶瓷電容器係於陶瓷燒結體1中埋設有內部電極2a~2f,並且於該陶瓷燒結體1之兩端部形成有外部電極3a、3b,進而於該外部電極3a、3b之表面形成有第1鍍覆皮膜4a、4b及第2鍍覆皮膜5a、5b。 即,陶瓷燒結體1係將介電層6a~6g與內部電極2a~2f交替地積層並進行煅燒而成,且內部電極2a、2c、2e係與外部電極3a電性連接,內部電極2b、2d、2f係與外部電極3b電性連接。而且,於內部電極2a、2c、2e與內部電極2b、2d、2f之對向面間形成有靜電電容。 關於介電層6a~6g,具體而言,主成分由通式ABO3 所表示之鈣鈦礦型化合物所形成。該鈣鈦礦型化合物至少含有Ti及會固溶於B位之揮發性元素E。 又,內部電極2a~2f係由包含揮發性元素E之卑金屬材料所形成。而且,關於包含介電層6a~6g與內部電極2a~2f之陶瓷燒結體1中的揮發性元素E之含量,係設為相對於除上述揮發性元素E以外之上述B位之構成元素(B-E)100莫耳份,大於0莫耳份且為0.2莫耳份以下。藉此,即便於高溫下長時間連續驅動,仍可抑制絕緣性能之經時性劣化,而能夠確保良好之可靠性。 即,於積層陶瓷電容器之內部電極材料使用Ni等卑金屬材料之情形時,在將內部電極材料與介電坯片同時煅燒時,必須於還原性氣氛下進行煅燒以使內部電極材料不被氧化。 然而,亦如[發明所欲解決之問題]之項中所述般,若將含有Ti之鈣鈦礦型化合物於還原性氣氛下進行煅燒,則會於晶格中之供氧配位之位置產生缺陷,而生成氧缺陷。而且,該氧缺陷會於晶粒中擴散,因此有若於高溫下長時間連續驅動,則導致絕緣性能之經時性劣化,而有損可靠性之虞。 另一方面,為了抑制該氧缺陷之擴散,認為有效的是於供Ti配位之B位形成空位。然而,若只是相對於A位元素之含有莫耳量,減少Ti之含有莫耳量,則即便於B位生成空位,亦由於相對於化學計量組成成為A位富集,故而陶瓷燒結體1有欠缺緻密性之虞,而難以表現出所需之介電特性。 因此,本發明者進行銳意研究,製作使揮發性元素固溶於含有Ti之鈣鈦礦型化合物之B位而成之陶瓷原料,將該陶瓷原料與Ni等卑金屬之內部電極材料交替地積層,一面調整還原氣氛一面同時煅燒,而製作陶瓷燒結體。可知其結果為,可藉由使發生揮發之揮發性元素於陶瓷燒結體中處於特定範圍內,且使揮發性元素之一部分固定於內部電極,而抑制絕緣性能之經時性劣化從而提高可靠性。推測其原因如下。 認為若將包含固溶於B位之揮發性元素之陶瓷原料於還原性氣氛下進行煅燒處理,使揮發性元素E揮發,則會於該揮發性元素E發生揮發之位置上形成空位(B位空位)。另一方面,B位空位如上述般具有抑制因還原性氣氛下之煅燒處理而形成之氧缺陷之移動、擴散之作用。因此,藉由煅燒處理使揮發性元素E揮發而形成B位空位,藉此可抑制氧缺陷之移動、擴散。 進而,若調整還原性氣氛而於更強還原側進行煅燒處理,則陶瓷原料中之揮發性元素E會有效地向內部電極2a~2f側擴散。其結果為,揮發性元素E變得包含於內部電極2a~2f中,而揮發性元素E之一部分固定於內部電極2a~2g。而且,認為以上述方式揮發性元素E之一部分固定於內部電極2a~2g之結果為,介電層6a~6g與內部電極2a~2f之界面之絕緣性得到強化。 即,認為:藉由將陶瓷燒結體1中之揮發性元素E之含量規定為特定範圍,且以於內部電極2a~2f含有揮發性元素E之方式使揮發性元素E之一部分固定於內部電極2a~2f,而氧缺陷之擴散之抑制、與介電層與內部電極之界面之絕緣性之強化協同地進行作用,而絕緣性能提高,藉此即便於150℃以上之高溫下長時間連續驅動,亦可抑制絕緣性能之經時性劣化,而可提高可靠性。 再者,為了使鈣鈦礦型化合物中之揮發性元素E向內部電極2a~2f側擴散以使揮發性元素E之一部分固定於內部電極2a~2f之表面,較佳為如上述般將煅燒氣氛調整為更強還原側,例如較佳為將還原氣氛下之氧分壓設定為10-12 ~10-13 MPa而進行煅燒處理。 陶瓷燒結體1中之揮發性元素E只要為揮發性元素E揮發而會生成B位空位之含量即可。但,若陶瓷燒結體1中之揮發性元素E之含量相對於除該揮發性元素E以外之B位元素(B-E)100莫耳份,超出0.2莫耳份,則即便揮發性元素E固定於內部電極2a~2f之表面,亦由於揮發性元素E過量地殘存於B位,故而無法於晶體結構中形成充分量之B位空位,而無法充分地抑制氧缺陷之移動、擴散,因此無法獲得充分之高溫負荷壽命,而難以確保所需之可靠性。 因此,於本實施形態中,揮發性元素E之含量係設為相對於除揮發性元素E以外之B位元素(B-E)100莫耳份,大於0莫耳份且為0.2莫耳份以下。 再者,即便於在介電層6a~6g中含有揮發性元素E之情形時,在固溶於A位之情形、或僅作為副成分含有並存在於晶界之情形時,即便揮發性元素E揮發,亦無法解決本發明之問題。即,認為於該情形時,由於揮發性元素E未固溶於B位,故而無法形成具有氧缺陷之擴散抑制作用之B位空位。因此,於本發明中,重要的是揮發性元素E於上述範圍內固溶於B位。 作為此種揮發性元素E,只要為具有揮發性且以取代Ti之一部分之形態固溶於B位之元素,則並無特別限定,較佳為使用熔點較低且離子半徑近似於Ti並容易取代Ti之元素、例如選自Zn、Sn、Sb、及In中之至少1種以上,於其等中,尤其願意使用廉價之Zn。 又,關於形成鈣鈦礦型化合物之A位之構成元素即A位元素,亦只要為會形成陶瓷材料之主元素者,則並無特別限定,通常較佳為使用選自Ba、Ca、及Sr中之至少1種以上,於其等中,可願意使用尤其是表現出良好之介電特性之Ba。 又,作為構成B位之B位元素,只要如上述般至少含有Ti及揮發性元素即可,亦可視需要含有作為四價元素之Zr。 因此,作為鈣鈦礦型化合物,若以E表示揮發性元素,則可列舉:Ba(Ti,E)O3 、Ba(Ti,Zr,E)O3 、(Ba,Sr,Ca)(Ti,E)O3 、(Ba,Ca,Sr)(Ti,Zr,E)O3 等。 又,內部電極之構成材料只要為至少包含Zn之卑金屬材料,則並無特別限定,作為卑金屬材料,可使用Ni、Cu、或將該等Ni或Cu作為主成分之Ni合金或Cu合金等合金類。 再者,關於鈣鈦礦型化合物之A位元素相對於B位元素之比(A/B比),化學計量比為1.000,但並不限定於化學計量比。 然而,若A位元素相對於除揮發性元素以外之B位元素之比,即A/(B-E)比未達1.00,則A位元素變少,因此有即便揮發性元素E揮發,亦無法獲得高可靠性之虞。 另一方面,若A/(B-E)比超過1.04,則有變得過度A位富集而導致燒結性降低之虞。 因此,A/(B-E)比較佳為1.00以上且1.04以下。 而且,介電層6a~6g只要主成分(例如超過50 wt%,較佳為80 wt%以上,更佳為90 wt%以上)由上述鈣鈦礦化合物形成即可,亦較佳為於不會對特性造成影響之範圍內視需要含有稀土類元素、過渡金屬元素、Si、Cl、P等各種副成分。例如,作為稀土類元素,可使用Gd、Dy、Y等,作為過渡金屬元素,可使用Mg、Al、Mn、Cu、V等。 再者,使該等稀土類元素或過渡金屬元素固溶於主成分欠佳。例如於使稀土類元素固溶於主成分之情形時,為了確保耐還原性而必須使Mg等受體元素與稀土類元素一併固溶於主成分。然而,Mg由於對Ti之離子性較高,故而有若使Mg固溶於主成分則居里點降低,而導致高溫下之比介電常數降低之虞,故而欠佳。 其次,對上述積層陶瓷電容器之製造方法詳細地進行說明。 首先,準備含有Ba化合物、Ti化合物、揮發性元素之揮發性化合物等陶瓷素原料。然後,秤量特定量之該等陶瓷素原料,將該秤量物與PSZ(Partially Stabilized Zirconia:部分穩定氧化鋯)球等粉碎介質及純水一併投入至球磨機中,以濕式充分地混合粉碎,使之乾燥後,於900~1100℃之溫度下實施特定時間之預燒處理而進行合成,藉此製作主成分粉末。 其次,視需要準備稀土類化合物、過渡金屬化合物、及Si化合物等副成分並秤量特定量。然後,將該等秤量物與上述主成分粉末、粉碎介質及純水一併投入至球磨機中,以濕式充分地混合粉碎並進行混合,實施乾燥處理,藉此製作陶瓷原料粉末。 繼而,將上述陶瓷原料粉末與有機黏合劑或有機溶劑、粉碎介質一併投入至球磨機中,進行濕式混合而製作陶瓷漿料,藉由澆嘴塗佈法或刮刀法等對陶瓷漿料實施成形加工,並以煅燒後之厚度成為2 μm左右或2 μm以下之方式製作陶瓷坯片。 繼而,準備以Ni等卑金屬材料作為主成分之內部電極用導電膏。然後,使用該內部電極用導電膏,於陶瓷坯片上實施網版印刷,於上述陶瓷坯片之表面形成特定圖案之導電膜。 繼而,將形成有導電膜之陶瓷坯片於特定方向上積層複數片,將未形成有導電膜之陶瓷片配置於最上層並進行壓接,切割成特定尺寸,而製作陶瓷積層體。 然後,將該陶瓷積層體於大氣氣氛下以溫度250~350℃進行熱處理,使黏合劑燃燒而將之去除,之後於包含H2 -N2 -H2 O氣體之強還原性氣氛(例如氧分壓為10-11 ~10-13 MPa)下以煅燒溫度1200~1300℃進行約2小時煅燒處理。藉此,將導電膜與陶瓷坯片進行共燒結,而獲得埋設有內部電極2a~2f之陶瓷燒結體1。而且,因該煅燒處理而揮發性元素E適度地揮發,且向內部電極2a~2f側擴散。其結果為,揮發性元素E之一部分固定於內部電極2a~2f。即,可獲得如下陶瓷燒結體1,即於內部電極2a~2f中含有揮發性元素E,且揮發性元素E之含量相對於除揮發性元素E以外之B位元素(B-E)100莫耳份,大於0且為0.2莫耳份以下。 再者,揮發性元素E之揮發量只要揮發性元素E之含量於陶瓷燒結體1中滿足上述範圍,則並無須特別限定。 其次,於陶瓷燒結體1之兩端面塗佈外部電極用導電膏,於600~800℃之溫度下進行烘烤處理,而形成外部電極3a、3b。 再者,關於外部電極用導電膏所含有之導電材料,亦並無特別限定,就低成本化之觀點而言,較佳為使用以Ag或Cu、或者該等之合金作為主成分之材料。 又,作為外部電極3a、3b之形成方法,亦可於在積層成形體之兩端面塗佈外部電極用導電膏後,與積層成形體同時實施煅燒處理。 然後,最後實施電鍍而於外部電極3a、3b之表面形成包含Ni、Cu、Ni-Cu合金等之第1鍍覆皮膜4a、4b,進而於該第1鍍覆皮膜4a、4b之表面形成包含焊料或錫等之第2鍍覆皮膜5a、5b,藉此製造積層陶瓷電容器。 再者,本發明並不限定於上述實施形態。例如,關於Ba化合物、Ti化合物等陶瓷素原料,亦可視合成反應之形態而適當選擇碳酸鹽或氧化物、硝酸鹽、氫氧化物、有機酸鹽、烷氧化物、螯合化合物等。 又,關於主成分粉末之合成方法,亦不限定於上述之固相法,亦可使用共沈澱法、水熱法、草酸法等合成法。 其次,對本發明之實施例具體地進行說明。 [實施例] [試樣之製作] 準備BaCO3 、TiO2 、及ZnO作為陶瓷素原料,以相對於Ti 100莫耳份之Zn之含量(莫耳份)、及Ba相對於Ti之莫耳比(以下稱為「Ba/Ti比」)於合成後成為表1之方式秤量該等陶瓷素原料。然後,將該等秤量物與PSZ球及純水一併投入至球磨機中,以濕式充分地混合粉碎,使之乾燥後,於大氣氣氛下以900~1100℃之溫度預燒約2小時,藉此製作主成分粉末。 其次,準備Dy2 O3 、MgO、MnCO3 、及SiO2 作為副成分粉末。然後,以副成分粉末之含量相對於Ti 100莫耳份成為Dy2 O3 :1.5莫耳份、MgO:0.75莫耳份、MnCO3 :1莫耳份、及SiO2 :1.5莫耳份之方式秤量該等副成分粉末,於球磨機內進行濕式混合,其後實施乾燥處理,而獲得試樣編號1~13之陶瓷原料粉末。 藉由ICP-AES法(高頻感應耦合電漿發光分析法)及XRF法(X射線螢光法)對該試樣編號1~13之陶瓷原料粉末進行組成分析,算出相對於Ti 100莫耳份之合成後之Zn之莫耳份、Ba/Ti比。其結果為,確認到與秤量組成相同。 繼而,將上述陶瓷原料粉末與乙醇或聚乙烯丁醛系黏合劑、塑化劑及PSZ球一併投入至球磨機中,進行濕式混合,藉此製作陶瓷漿料。繼而,藉由刮刀法,以煅燒後之厚度成為2.0 μm之方式將陶瓷漿料進行成形,而製作陶瓷坯片。 繼而,準備以Ni粉末作為主成分之內部電極用導電膏。然後,使用該內部電極用導電膏,於陶瓷坯片上實施網版印刷,而於上述陶瓷坯片之表面形成特定圖案之導電膜。 繼而,將形成有導電膜之陶瓷坯片之特定片數進行積層,將未形成有導電膜之陶瓷坯片配置於最上層並進行壓接,切割成特定尺寸,而製作陶瓷積層體。然後,於大氣氣氛下以350℃之溫度加熱3小時而進行脫黏合劑處理,繼而,於氧分壓被控制在10-9 ~10-13 MPa之包含H2 -N2 -H2 O氣體之還原性氣氛下以1200~1250℃下進行2小時煅燒處理,藉此將導電膜與陶瓷坯片進行共燒結,而獲得將介電層與內部電極交替積層而成之陶瓷燒結體。 繼而,將含有Cu粉末及玻璃料之外部電極用導電膏塗佈於陶瓷燒結體之兩端面,於氮氣氣氛下以800℃之溫度下進行烘烤處理,形成外部電極,而製作試樣編號1~13之各試樣。 所獲得之各試樣之介電層之厚度為2.0 μm,內部電極之厚度為0.6 μm,外形尺寸為長度L:3.2 mm、寬度W:1.6 mm、厚度T:0.62 mm,介電層每一層之對向電極面積為2.5 mm2 ,介電層之有效積層數為200層。 [試樣之評價] 關於該試樣編號1~13之各試樣,藉由XRD法(X射線繞射法)對陶瓷燒結體進行結構分析,結果確認到主成分均具有BaTiO3 系鈣鈦礦型晶體結構。 又,關於試樣編號1~13之各試樣,使用XRF法對介電層中之Ba/Ti比進行測定,結果確認到與合成時之陶瓷原料粉末相同。 又,關於試樣編號1~13之各試樣,使陶瓷燒結體熔解,藉由ICP-AES進行分析,測定陶瓷燒結體中之相對於Ti 100莫耳份之Zn之含量。 繼而,使用WDX(波長分散型X射線分析裝置),針對陶瓷燒結體,於複數個區域進行Zn及Ni之面分析,調查於內部電極中是否會檢測出Zn成分。 圖2係陶瓷燒結體之橫剖視圖,陶瓷燒結體51具有寬度W(=1.6 mm)及厚度T(=0.62 mm),以介電層52之有效積層數成為200之方式將厚度2.0 μm之介電層52與厚度0.6 μm之內部電極53交替地積層。 然後,於內部電極53之寬度w之中央部(w/2)中,將內部電極之高度t進行3等分,設為上部區域X、中部區域Y、下部區域Z。又,將中部區域Y之水平方向之(w/4)附近設為區域Y1,將中部區域Y之水平方向之內部電極53之前端部(w=0)設為側面區域Y2,對該等共計5處進行Zn及Ni之面分析。 其結果為,確認到於上部區域X、中部區域Y、下部區域Z、區域Y1及區域Y2中均檢測出Ni,且於該等各區域中形成有內部電極53。然後,針對該等各區域,調查是否會檢測出Zn。 又,針對試樣編號1~13之各試樣,進行高溫負荷試驗,而求出平均故障時間。 即,針對各試樣10個,於溫度175℃下施加20 V之直流電壓,將絕緣電阻已降低至10 kΩ以下之試樣判斷為不良,藉由魏普圖(Weibull plot)求出魏普機率繪圖紙(Weibull probability paper)上之50%時之故障時間即平均故障時間。再者,將平均故障時間為100小時以下之試樣判斷為不良品。 表1係表示試樣編號1~13之各試樣之Ba/Ti比、相對於Ti 100莫耳份之合成後及煅燒處理後之Zn含量、內部電極53中之Zn有無存在、及平均故障時間。 於表1中,在「內部電極中之Zn之存在」之欄中,「有」係表示自上述任一區域中均檢測出Zn,「無」係表示自上述任一區域中均未檢測出Zn。 [表1] 試樣編號1、3、5、7、9、及11係於合成後與煅燒處理後相對於Ti 100莫耳份之Zn含量未產生變化,因此,即便藉由還原氣氛下之煅燒處理,Zn亦幾乎不揮發,而且自內部電極亦未檢測出Zn。因此,可知平均故障時間較短為未達1小時~11小時,而可靠性欠佳。 關於試樣編號13,由於煅燒處理後之Zn含量與合成後之Zn含量相比減少至1/5左右,故而Zn因煅燒處理而揮發,又,雖然自內部電極亦檢測出Zn,但平均故障時間較短為18小時。認為其原因在於:雖Zn因煅燒處理而揮發,但Zn含量即便於煅燒後亦相對於Ti 100莫耳份較多為0.30莫耳份,而Zn於B位過量存在,因此無法形成B位空位至可抑制氧空位之擴散之程度。 相對於此,關於試樣編號2、4、6、8、10、及12,可知煅燒後之Zn含量與合成後相比減少,因煅燒處理而一定量之Zn揮發。而且,陶瓷燒結體51中之Zn含量相對於Ti 100莫耳份為0.010~0.18莫耳份,大於0莫耳份且為0.20莫耳份以下,於內部電極53中亦檢測出Zn。即,可知該等試樣編號2、4、6、8、10、及12由於在本發明範圍內,故而獲得氧空位之擴散、移動之抑制及介電層52與內部電極之界面之絕緣性強化協同地進行作用,而絕緣性能提高,平均故障時間成為130~270小時,而具有良好之可靠性之積層陶瓷電容器。 又,確認到本發明範圍內之試樣係Ba/Ti比為1.01~1.04,處於本發明之較佳範圍內,藉由於此種範圍內實現Zn含量及內部電極中之Zn之固定,而可獲得絕緣性得到強化之具有所需之良好可靠性的積層陶瓷電容器。 [產業上之可利用性] 本發明實現一種即便於高溫氣氛下長時間持續驅動亦高溫負荷壽命良好且具有高可靠性之積層陶瓷電容器。
1‧‧‧陶瓷燒結體
2a~2f‧‧‧內部電極
3a、3b‧‧‧外部電極
4a、4b‧‧‧第1鍍覆皮膜
5a、5b‧‧‧第2鍍覆皮膜
6a~6g‧‧‧介電層
51‧‧‧陶瓷燒結體
52‧‧‧介電層
53‧‧‧內部電極
t‧‧‧高度
T‧‧‧厚度
w‧‧‧寬度
W‧‧‧寬度
X‧‧‧上部區域
Y‧‧‧中部區域
Z‧‧‧下部區域
圖1係表示本發明之積層陶瓷電容器之一實施形態的縱剖視圖。 圖2係實施例中所製作之陶瓷燒結體之橫剖視圖。

Claims (8)

  1. 一種積層陶瓷電容器,其係具有將介電層與內部電極交替地積層而成之陶瓷燒結體者,其特徵在於: 上述介電層係主成分由通式ABO3 所表示之鈣鈦礦型化合物所形成,上述鈣鈦礦型化合物至少含有Ti及會固溶於B位之揮發性元素,並且 上述內部電極由包含上述揮發性元素之卑金屬材料所形成,且 上述陶瓷燒結體係上述揮發性元素之含量相對於除上述揮發性元素以外之上述B位之構成元素100莫耳份,大於0莫耳份且為0.2莫耳份以下。
  2. 如請求項1之積層陶瓷電容器,其中A位之構成元素相對於除上述揮發性元素以外之上述B位之構成元素的比率以莫耳比換算計為1.00以上且1.04以下。
  3. 如請求項1或2之積層陶瓷電容器,其中上述揮發性元素包含選自Zn、Sn、Sb、及In中之至少1種以上之元素。
  4. 如請求項1或2之積層陶瓷電容器,其中上述A位包含選自Ba、Ca、及Sr中之至少1種以上之元素。
  5. 如請求項1或2之積層陶瓷電容器,其中上述B位包含Zr。
  6. 如請求項1或2之積層陶瓷電容器,其含有選自稀土類元素、過渡金屬元素、及Si中之至少1種以上之元素作為副成分。
  7. 如請求項6之積層陶瓷電容器,其中上述稀土類元素包含選自Gd、Dy、及Y之群中之至少1種以上之元素。
  8. 如請求項6之積層陶瓷電容器,其中上述過渡金屬元素包含選自Mg、Al、Mn、Cu、V之群中之至少1種以上之元素。
TW106116425A 2016-06-06 2017-05-18 Multilayer ceramic capacitor TWI642074B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP??2016-112613 2016-06-06
JP2016112613 2016-06-06

Publications (2)

Publication Number Publication Date
TW201812810A true TW201812810A (zh) 2018-04-01
TWI642074B TWI642074B (zh) 2018-11-21

Family

ID=60578695

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106116425A TWI642074B (zh) 2016-06-06 2017-05-18 Multilayer ceramic capacitor

Country Status (6)

Country Link
US (1) US10726994B2 (zh)
JP (1) JP6624473B2 (zh)
KR (1) KR102137395B1 (zh)
CN (1) CN109219861B (zh)
TW (1) TWI642074B (zh)
WO (1) WO2017212978A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740261B (zh) * 2019-11-04 2021-09-21 興勤電子工業股份有限公司 陶瓷組成物之用途、陶瓷燒結體之用途及熱敏電阻器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102752A (ja) * 2017-12-07 2019-06-24 太陽誘電株式会社 積層セラミックコンデンサ
US11424075B2 (en) * 2019-06-28 2022-08-23 Murata Manufacturing Co., Ltd. Multilayer electronic component and method for manufacturing multilayer electronic component
JP7338310B2 (ja) * 2019-08-07 2023-09-05 株式会社村田製作所 積層型電子部品
CN112759384B (zh) * 2019-11-06 2022-09-30 兴勤电子工业股份有限公司 陶瓷组成物用于热敏电阻器的用途、陶瓷烧结体用于热敏电阻器的用途及热敏电阻器
JP2022136771A (ja) * 2021-03-08 2022-09-21 Tdk株式会社 セラミック電子部品
KR20230068721A (ko) * 2021-11-11 2023-05-18 삼성전기주식회사 커패시터 부품 및 커패시터 부품의 제조 방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567567A (en) 1978-11-10 1980-05-21 Murata Manufacturing Co Nonreducible dielectric porcelain composition and preparing ceramic laminated capacitor using same
JP2680480B2 (ja) 1991-01-30 1997-11-19 太陽誘電 株式会社 積層セラミックコンデンサ
JPH07118431B2 (ja) * 1991-03-16 1995-12-18 太陽誘電株式会社 磁器コンデンサ及びその製造方法
JP3064668B2 (ja) 1992-06-02 2000-07-12 松下電器産業株式会社 積層セラミック磁器素子の製造方法
JPH09246084A (ja) 1996-03-11 1997-09-19 Murata Mfg Co Ltd 積層セラミック電子部品
JPH10139405A (ja) * 1996-11-12 1998-05-26 Murata Mfg Co Ltd 複合ペロブスカイト化合物粉体の製造方法
JP3435039B2 (ja) * 1997-10-31 2003-08-11 京セラ株式会社 誘電体磁器および積層セラミックコンデンサ
JP3567759B2 (ja) * 1998-09-28 2004-09-22 株式会社村田製作所 誘電体セラミック組成物および積層セラミックコンデンサ
US20040121153A1 (en) * 2002-12-20 2004-06-24 Sridhar Venigalla High tetragonality barium titanate-based compositions and methods of forming the same
KR100586961B1 (ko) * 2004-04-14 2006-06-08 삼성전기주식회사 내환원성 유전체 자기조성물과 초박층 적층세라믹 콘덴서
JP2007297258A (ja) * 2006-04-28 2007-11-15 Taiyo Yuden Co Ltd 誘電体セラミックス及び積層セラミックコンデンサ
WO2008068999A1 (ja) * 2006-12-05 2008-06-12 Murata Manufacturing Co., Ltd. 誘電体セラミックおよびそれを用いた積層セラミックコンデンサ
JP5297011B2 (ja) 2007-07-26 2013-09-25 太陽誘電株式会社 積層セラミックコンデンサ及びその製造方法
WO2009136320A1 (en) * 2008-05-08 2009-11-12 Nxp B.V. Tunable capacitor
WO2010098033A1 (ja) * 2009-02-27 2010-09-02 株式会社村田製作所 誘電体セラミックおよび積層セラミックコンデンサ
JP5740645B2 (ja) * 2010-04-13 2015-06-24 国立研究開発法人産業技術総合研究所 配向ペロブスカイト酸化物薄膜
JP2012046372A (ja) * 2010-08-26 2012-03-08 Hitachi Metals Ltd Ptc素子および発熱モジュール
CN103124706B (zh) * 2011-02-14 2015-06-10 株式会社村田制作所 层叠陶瓷电容器以及层叠陶瓷电容器的制造方法
WO2012111592A1 (ja) 2011-02-14 2012-08-23 株式会社村田製作所 積層セラミックコンデンサ及び積層セラミックコンデンサの製造方法
CN105453201B (zh) * 2013-07-30 2018-10-02 京瓷株式会社 电介质膜、膜电容器以及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740261B (zh) * 2019-11-04 2021-09-21 興勤電子工業股份有限公司 陶瓷組成物之用途、陶瓷燒結體之用途及熱敏電阻器

Also Published As

Publication number Publication date
KR102137395B1 (ko) 2020-07-24
CN109219861A (zh) 2019-01-15
WO2017212978A1 (ja) 2017-12-14
TWI642074B (zh) 2018-11-21
US10726994B2 (en) 2020-07-28
CN109219861B (zh) 2021-08-13
JP6624473B2 (ja) 2019-12-25
US20190057813A1 (en) 2019-02-21
KR20180122418A (ko) 2018-11-12
JPWO2017212978A1 (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
TWI642074B (zh) Multilayer ceramic capacitor
JP5182531B2 (ja) 誘電体セラミック、及び積層セラミックコンデンサ
JP5151990B2 (ja) 誘電体セラミックおよびそれを用いた積層セラミックコンデンサ
JP5131595B2 (ja) 誘電体セラミック、及びセラミック電子部品、並びに積層セラミックコンデンサ
JP5455164B2 (ja) 誘電体磁器組成物、及び積層セラミックコンデンサ
KR101575614B1 (ko) 유전체 세라믹 및 적층 세라믹 콘덴서
KR101494851B1 (ko) 적층 세라믹 콘덴서 및 적층 세라믹 콘덴서의 제조방법
JP5120255B2 (ja) 誘電体セラミック及びその製造方法、並びに積層セラミックコンデンサ
KR20160018750A (ko) 적층 세라믹 콘덴서 및 그 제조 방법
US10618846B2 (en) Dielectric porcelain composition, multilayer ceramic capacitor, and method for producing multilayer ceramic capacitor
CN107680805B (zh) 层叠陶瓷电容器
JP5434407B2 (ja) セラミック電子部品およびその製造方法
TWI734892B (zh) 積層陶瓷電容器及其製造方法
JP2022143403A (ja) 積層セラミックコンデンサ
JP7338963B2 (ja) 積層セラミックコンデンサおよびセラミック原料粉末
WO2014167754A1 (ja) 誘電体セラミック、及び積層セラミックコンデンサ
WO2014010376A1 (ja) 積層セラミックコンデンサおよびその製造方法
JP2006347799A (ja) 誘電体セラミック、積層セラミックコンデンサ及び積層セラミックコンデンサの製造方法
KR101853290B1 (ko) 적층 세라믹 콘덴서
JP7262640B2 (ja) セラミックコンデンサ
JP7169069B2 (ja) 積層セラミックコンデンサおよびその製造方法
JP5354185B2 (ja) 誘電体セラミック及びその製造方法、並びに積層セラミックコンデンサ
JP6680457B2 (ja) 積層セラミックコンデンサ
JP6372569B2 (ja) 誘電体セラミックおよび積層セラミックコンデンサ
JP6519726B2 (ja) 積層セラミックコンデンサ