TW201810134A - 攝像裝置、攝像模組、電子裝置及攝像系統 - Google Patents

攝像裝置、攝像模組、電子裝置及攝像系統 Download PDF

Info

Publication number
TW201810134A
TW201810134A TW106125618A TW106125618A TW201810134A TW 201810134 A TW201810134 A TW 201810134A TW 106125618 A TW106125618 A TW 106125618A TW 106125618 A TW106125618 A TW 106125618A TW 201810134 A TW201810134 A TW 201810134A
Authority
TW
Taiwan
Prior art keywords
circuit
signal
transistor
layer
addition
Prior art date
Application number
TW106125618A
Other languages
English (en)
Other versions
TWI758307B (zh
Inventor
池田隆之
福留貴浩
Original Assignee
日商半導體能源硏究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源硏究所股份有限公司 filed Critical 日商半導體能源硏究所股份有限公司
Publication of TW201810134A publication Critical patent/TW201810134A/zh
Application granted granted Critical
Publication of TWI758307B publication Critical patent/TWI758307B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/067Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means
    • G06N3/0675Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means using electro-optical, acousto-optical or opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/065Analogue means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14614Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14616Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Neurology (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Studio Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

本發明提供一種連接於神經網路的攝像裝置。在具有神經網路的神經元的攝像裝置中,包括多個第一像素、第一電路、第二電路及第三電路,其中,第一像素包括光電轉換元件。第一像素與所述第一電路電連接,第一電路與所述第二電路電連接,第二電路與所述第三電路電連接。第一像素生成神經網路中的神經元的輸入信號。第一電路、第二電路及第三電路具有神經元的功能。第三電路包括連接於神經網路的介面。

Description

攝像裝置、攝像模組、電子裝置及攝像系統
本發明的一個實施方式係關於一種攝像裝置、攝像模組、電子裝置及攝像系統。
注意,本發明的一個實施方式不侷限於上述技術領域。本說明書等所公開的發明的一個實施方式的技術領域係關於一種物體、方法或製造方法。此外,本發明係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。尤其是,本發明的一個實施方式係關於一種半導體裝置、顯示裝置、發光裝置、蓄電裝置、記憶體裝置、它們的驅動方法或它們的製造方法。
另外,在本說明書等中,半導體裝置是指藉由利用半導體特性而能夠工作的元件、電路或裝置等。作為一個例子,電晶體和二極體等半導體元件是半導體裝置。作為另外的一個例子,包括半導體元件的電路是半導體裝置。作為另外的一個例子,具備包括半導體元件的電路的裝置是半導體裝置。
作為可以用於電晶體的半導體材料,氧化物半導體受到關注。例如,專利文獻1公開了作為氧化物半導體使用氧化鋅或In-Ga-Zn類氧化物半導體來形成電晶體的技術。
另外,專利文獻2公開了一種攝像裝置,其中將包含氧化物半導體的電晶體用於像素電路的一部分。
另外,專利文獻3公開了一種攝像裝置,其中層疊有包含矽的電晶體、包含氧化物半導體的電晶體以及包含晶體矽層的光電二極體。
另外,神經網路具有學習能力,並具有良好的非線性及模式匹配性能,由此被應用於控制、預測、診斷等各種領域。作為這種神經網路,已提出了很多類型的結構,但是已實用化了的結構大多為三層型,其中層疊有兩層(中間層及輸出層)的具有S型函數(sigmoid function)的神經元元件。該三層型結構被廣泛使用的理由在於它已被證明為能夠以任意精度使任何函數模型化。
另外,專利文獻4公開了一種資訊系統,該資訊系統從使用攝像裝置而得到的影像抽出物件並進行判定。
[專利文獻1]日本專利申請公開第2007-123861號公報
[專利文獻2]日本專利申請公開第2011-119711號公報
[專利文獻3]日本專利申請公開第2013-243355號公報
[專利文獻4]日本專利申請公開第2014-032542號公報
半導體積體電路的高密度化及高容量化得到了推進,與此同時,其被要求小型化,由此二維集成方式正在轉移到三維集成方式。在利用三維集成方式的情況下,有時其製程會複雜化,但是各層中的材料及設計規則的彈性提高。因此,製造一種二維集成方式難以製造的高性能的半導體積體電路是一個目的。
攝像裝置的像素包括光電轉換元件及電晶體。該光電轉換元件被要求高光靈敏度,並且該電晶體被要求低關態電流及低雜訊特性。由此,藉由採用以三維方式集成光電轉換元件及電晶體的結構,並進行對各元件使用適當的材料的製程,來製造高性能的攝像元件是一個目的。
另外,較佳為在與像素相同的製程形成驅動電路等週邊電路,來簡化連接製程等。
另外,已在研討利用人工智慧(AI)識別攝像裝置所拍攝的影像並進 行判定的方法。人工智慧是利用神經網路來實現人腦功能的部分特性的一種技術,並需要進行大量的運算工作。因此,藉由運算的硬體化而實現神經網路的高效運算性能是一個目的。
本發明的一個實施方式的目的之一是將多個像素資料壓縮且轉換為具有一個特性的資料。此外,本發明的一個實施方式的目的之一是實現攝像裝置的運算高速化。此外,本發明的一個實施方式的目的之一是提供一種三維集成的攝像裝置。此外,本發明的一個實施方式的目的之一是提供一種能夠減小光電轉換元件所轉換的信號的劣化的攝像裝置。此外,本發明的一個實施方式的目的之一是提供一種新穎的攝像裝置等。
注意,這些目的的記載不妨礙其他目的的存在。本發明的一個實施方式並不需要實現所有上述目的。另外,可以從說明書、圖式、申請專利範圍等的記載得知並衍生上述以外的目的。
注意,本發明的一個實施方式的目的不侷限於上述目的。上述列舉的目的並不妨礙其他目的的存在。其他目的是上面沒有提到而將在下面的記載中進行說明的目的。所屬技術領域的通常知識者可以從說明書或圖式等的記載中導出並適當抽出該上面沒有提到的目的。此外,本發明的一個實施方式實現上述目的和/或其他目的中的至少一個目的。
本發明的一個實施方式是一種具有神經網路的神經元的攝像裝置,該攝像裝置包括第一像素、第一電路、第二電路及第三電路,其中,第一像素包括光電轉換元件,光電轉換元件與第一電路電連接,第一電路與第二電路電連接,第二電路與第三電路電連接,第一像素生成神經網路中的神經元的輸入信號,第一電路、第二電路及第三電路具有神經元的功能,並且,第三電路包括連接於神經網路的介面。
在上述各結構的攝像裝置中,較佳的是,第一像素具有將接收的光轉換為類比信號的功能,第一電路具有放大類比信號的功能,第二電路具有將被放大的所述類比信號加在一起的功能,第三電路具有利用啟動函數將被加在一起的類比信號轉換為特徵資料的功能,並且第三電路具有判定特徵資料的功能。
在上述各結構的攝像裝置中,較佳的是,第一電路包括放大電路、第一記憶體電路及第一加法電路,第二電路包括第二加法電路,第三電路包括第一運算電路及第二記憶體電路,第一像素具有將光轉換為第一信號並將其輸出的功能,放大電路具有以保持在第一記憶體電路中的放大率放大第一信號的功能,第一加法電路具有對被放大的第一信號加上失調電壓的功能,第一加法電路具有以類比信號輸出加上失調電壓的結果作為第二信號的功能,第二加法電路具有將多個第二信號加在一起的功能,第二加法電路具有以類比信號輸出將多個第二信號加在一起的信號作為第三信號的功能,第一運算電路具有判定第三信號並進行二值化的功能,第一運算電路具有將二值化了的信號作為特徵資料供應給第二記憶體電路的功能,並且第二記憶體電路將特徵資料輸出到神經網路。
在上述各結構的攝像裝置中,較佳的是,第一像素具有將接收的光轉換為類比信號並將其作為第四信號輸出的功能,第一電路具有將類比信號轉換為數位信號的功能,第一電路具有藉由位移位(bit shift)運算對數位信號的位準進行分類來生成具有特徵的第五信號的功能,第二電路具有抽出第五信號的特徵並進行合計的功能,第三電路具有利用啟動函數將合計結果轉換為特徵資料的功能,並且第三電路具有判定特徵資料的功能。
在上述各結構的攝像裝置中,較佳的是,第一電路包括第一輸入選擇電路、類比數位轉換電路、第一判定電路及第一記憶體電路,第二電路包括第二輸入選擇電路及特徵抽出電路,第三電路包括第二判定電路及第二記憶體電路,第一輸入選擇電路具有選擇多個第四信號中的任一個的功能,類比數位轉換電路具有將被選擇的第四信號從類比信號轉換為數位信號的功能,第一判定電路具有根據所選擇的位移位量以2的乘方數放大數位信號的功能,第一判定電路具有根據位移位量判定被放大的信號的位準的功能,第一判定電路具有將判定結果作為第五信號供應給第一記憶體電路的功能,第二輸入選擇電路具有依次選擇第一記憶體電路所保持的第五信號並將其輸出到特徵抽出電路的功能,特徵抽出電路具有對具有特徵的第五信號進行計數的功能,第二判定電路對所述計數的結果與被提供的條件進行比較,第二判定電路具有將比較結果作為特徵資料供應給第二記憶體電路的功能,第二記憶體電路將特徵資料輸出到神經網路。
在上述各結構中,較佳的是,在具有神經網路的神經元的攝像裝置中,該攝像裝置還包括信號線及第二類比數位轉換電路,第一像素具有將接收的光轉換為所述類比信號的功能,第一像素藉由所述信號線將所述類比信號供應給所述第二類比數位轉換電路。
在上述各結構的攝像裝置中,較佳的是,第三電路包括選擇電路,並將特徵資料分割成所選擇的長度的排列且輸出到神經網路。
在上述各結構的攝像裝置中,較佳的是,該攝像裝置的像素包括第一電晶體,該第一電晶體在半導體層中包含金屬氧化物。
在上述各結構的攝像裝置中,較佳的是,第一像素所包括的第一電晶體在半導體層中包含金屬氧化物,並且其他電路所包括的第二電晶體在半導體層中包含多晶矽。
在上述各結構的攝像裝置中,較佳的是,在半導體層中包含金屬氧化物的第一電晶體包括背閘極。
在上述各結構的攝像裝置中,較佳的是,第一電晶體都具有與光電轉換元件重疊的區域。
藉由本發明的一個實施方式,可以將多個像素資料壓縮且轉換為具有一個特性的資料。此外,可以實現攝像裝置的運算高速化。此外,可以提供一種三維集成的攝像裝置。此外,可以提供一種能夠減小光電轉換元件所轉換的信號的劣化的攝像裝置。此外,可以提供一種新穎的攝像裝置等。
注意,本發明的一個實施方式的效果不侷限於上述效果。上述效果並不妨礙其他效果的存在。另外,其他效果是上面沒有提到而將在下面的記載中進行說明的效果。所屬技術領域的通常知識者可以從說明書或圖式等的記載中導出並適當抽出上面沒有提到的效果。注意,本發明的一個實施方式具有上述效果和/或其他效果中的至少一個效果。因此,本發明的一個實施方式根據情況有時不具有上述效果。
a1‧‧‧輸出信號
a2‧‧‧輸出信號
b1‧‧‧輸出信號
c1‧‧‧輸出信號
C1‧‧‧電容元件
C2‧‧‧電容元件
C3‧‧‧電容元件
CN1‧‧‧計數電路
CN2‧‧‧計數電路
cnt1‧‧‧輸出信號
Fn1‧‧‧浮動節點
G1‧‧‧掃描線
G2‧‧‧掃描線
OUT1‧‧‧信號線
R1‧‧‧電阻元件
Vbias2‧‧‧端子
Wb1‧‧‧信號線
Wb2‧‧‧信號線
10‧‧‧攝像元件
12‧‧‧電路
20‧‧‧像素
20a‧‧‧判定電路
20A‧‧‧像素
20B‧‧‧像素
20C‧‧‧像素
21‧‧‧受光電路
21a‧‧‧受光電路
22‧‧‧放大電路
22a‧‧‧放大電路
22b‧‧‧記憶體電路
22c‧‧‧加法電路
23‧‧‧記憶體電路
26‧‧‧類比數位轉換電路
26a‧‧‧比較器
26b‧‧‧計數電路
27‧‧‧解碼器電路
28‧‧‧選擇器電路
29‧‧‧控制部
30‧‧‧特徵抽出電路
30a‧‧‧運算放大器
30N‧‧‧神經突觸電路
31‧‧‧判定輸出電路
31a‧‧‧運算電路
31b‧‧‧記憶體電路
31N‧‧‧啟動函數電路
32‧‧‧特徵抽出電路
32a‧‧‧輸入選擇電路
32b‧‧‧反相器
32c‧‧‧計數電路
32N‧‧‧神經突觸電路
33‧‧‧輸出電路
33a‧‧‧判定電路
33b‧‧‧電路
33c‧‧‧記憶體電路
37‧‧‧端子
38‧‧‧端子
41‧‧‧電晶體
42‧‧‧電晶體
43‧‧‧電晶體
44‧‧‧電晶體
44a‧‧‧電晶體
44b‧‧‧電晶體
45a‧‧‧電晶體
45b‧‧‧電晶體
46‧‧‧電晶體
47‧‧‧電晶體
48‧‧‧電晶體
49‧‧‧電晶體
69‧‧‧佈線
80‧‧‧絕緣層
81‧‧‧絕緣層
81a‧‧‧絕緣層
81b‧‧‧絕緣層
81e‧‧‧絕緣層
81g‧‧‧絕緣層
81h‧‧‧絕緣層
82‧‧‧導電體
82a‧‧‧導電體
82b‧‧‧導電體
93‧‧‧佈線
100‧‧‧攝像裝置
100‧‧‧電晶體
101‧‧‧電晶體
102‧‧‧電晶體
103‧‧‧電晶體
104‧‧‧電晶體
105‧‧‧電晶體
106‧‧‧電晶體
107‧‧‧電晶體
115‧‧‧基板
120‧‧‧絕緣層
130‧‧‧氧化物半導體層
130a‧‧‧氧化物半導體層
130b‧‧‧氧化物半導體層
130c‧‧‧氧化物半導體層
130d‧‧‧氧化物半導體層
140‧‧‧導電層
145‧‧‧絕緣層
150‧‧‧導電層
155‧‧‧絕緣層
160‧‧‧絕緣層
170‧‧‧導電層
171‧‧‧導電層
172‧‧‧導電層
173‧‧‧導電層
180‧‧‧絕緣層
200‧‧‧導電體
201‧‧‧導電體
210‧‧‧絕緣層
231‧‧‧區域
232‧‧‧區域
300‧‧‧放大電路
301‧‧‧輸入選擇電路
302‧‧‧類比數位轉換電路
303‧‧‧判定電路
304‧‧‧記憶體電路
305‧‧‧選擇電路
306‧‧‧邏輯電路
310‧‧‧判定輸出電路
405‧‧‧金屬層
406‧‧‧金屬層
561‧‧‧光電轉換層
562‧‧‧透光導電層
563‧‧‧半導體層
564‧‧‧半導體層
565‧‧‧半導體層
566‧‧‧電極
566a‧‧‧導電層
566b‧‧‧導電層
567‧‧‧分隔壁
568‧‧‧電洞注入障壁層
569‧‧‧電子注入障壁層
571‧‧‧佈線
571a‧‧‧導電層
571b‧‧‧導電層
588‧‧‧佈線
600‧‧‧矽基板
620‧‧‧p+區域
630‧‧‧p-區域
640‧‧‧n型區域
650‧‧‧p+區域
660‧‧‧半導體層
810‧‧‧封裝基板
811‧‧‧封裝基板
820‧‧‧玻璃蓋板
821‧‧‧透鏡蓋板
830‧‧‧黏合劑
835‧‧‧透鏡
840‧‧‧凸塊
841‧‧‧焊盤
850‧‧‧影像感測器晶片
851‧‧‧影像感測器晶片
860‧‧‧盤狀電極
861‧‧‧盤狀電極
870‧‧‧線
871‧‧‧線
880‧‧‧通孔
885‧‧‧焊盤
890‧‧‧IC晶片
901‧‧‧外殼
902‧‧‧外殼
903‧‧‧顯示部
904‧‧‧顯示部
905‧‧‧麥克風
906‧‧‧揚聲器
907‧‧‧操作鍵
908‧‧‧觸控筆
909‧‧‧相機
911‧‧‧外殼
912‧‧‧顯示部
919‧‧‧相機
931‧‧‧外殼
932‧‧‧顯示部
933‧‧‧腕帶
935‧‧‧按鈕
936‧‧‧錶冠
939‧‧‧相機
951‧‧‧外殼
952‧‧‧透鏡
953‧‧‧支撐部
961‧‧‧外殼
962‧‧‧快門按鈕
963‧‧‧麥克風
965‧‧‧透鏡
967‧‧‧發光部
971‧‧‧外殼
972‧‧‧外殼
973‧‧‧顯示部
974‧‧‧操作鍵
975‧‧‧透鏡
976‧‧‧連接部
1530‧‧‧遮光層
1540‧‧‧微透鏡陣列
1550a‧‧‧光學轉換層
1550b‧‧‧光學轉換層
1550c‧‧‧光學轉換層
在圖式中:圖1是說明攝像元件的方塊圖;圖2A和圖2B是說明攝像元件的方塊圖;圖3A至圖3C是說明攝像元件的電路圖;圖4A是說明攝像元件的工作的時序圖,圖4B是說明像素的工作的時序圖;圖5是說明攝像元件的方塊圖;圖6A和圖6B是說明攝像元件的方塊圖;圖7是說明攝像元件的電路圖;圖8A是說明攝像元件的工作的時序圖,圖8B是說明像素的工作的時序圖;圖9是說明攝像裝置的結構的剖面圖;圖10是說明攝像裝置的結構的剖面圖;圖11A至圖11E是說明光電轉換元件的連接方式的剖面圖;圖12A至圖12D是說明光電轉換元件的連接方式的剖面圖;圖13是說明攝像裝置的結構的剖面圖;圖14A至圖14C是說明光電轉換元件的連接方式的剖面圖;圖15是說明攝像裝置的結構的剖面圖;圖16A和圖16B是說明攝像裝置的結構的剖面圖;圖17是說明攝像裝置的結構的剖面圖;圖18A至圖18C是說明像素的電路圖;圖19A和圖19B是說明像素的電路圖;圖20A和圖20B是類比數位轉換電路的方塊圖以及示出攝像元件與類比數位轉換電路的連接方式的圖;圖21A至圖21C是說明電晶體的俯視圖及剖面圖;圖22A至圖22C是說明電晶體的俯視圖及剖面圖;圖23A至圖23C是說明電晶體的俯視圖及剖面圖;圖24A至圖24C是說明電晶體的俯視圖及剖面圖;圖25A至圖25C是說明電晶體的俯視圖及剖面圖;圖26A至圖26C是說明電晶體的俯視圖及剖面圖;圖27A至圖27C是說明電晶體的俯視圖及剖面圖;圖28A至圖28H是說明電晶體的俯視圖及剖面圖;圖29A至圖29D是安裝有攝像裝置的封裝的立體圖及剖面圖; 圖30A至圖30D是安裝有攝像裝置的封裝的立體圖及剖面圖;圖31A至圖31F是說明電子裝置的圖。
下面,參照圖式對實施方式進行說明。但是,所屬技術領域的通常知識者可以很容易地理解一個事實,就是實施方式可以以多個不同形式來實施,其方式和詳細內容可以在不脫離本發明的精神及其範圍的條件下被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在以下所示的實施方式所記載的內容中。
在圖式中,為便於清楚地說明,有時誇大表示大小、層的厚度或區域。因此,本發明並不一定限定於上述尺寸。此外,在圖式中,示意性地示出理想的例子,因此本發明不侷限於圖式所示的形狀或數值等。
本說明書所使用的“第一”、“第二”、“第三”等序數詞是為了避免組件的混淆而附加的,而不是為了在數目方面上進行限定的。
在本說明書中,為方便起見,使用了“上”、“下”等表示配置的詞句,以參照圖式說明組件的位置關係。另外,組件的位置關係根據描述各組件的方向適當地改變。因此,不侷限於本說明書中所說明的詞句,可以根據情況適當地更換。
在本說明書等中,電晶體是指至少包括閘極、汲極以及源極這三個端子的元件。電晶體在汲極(汲極端子、汲極區域或汲極電極)與源極(源極端子、源極區域或源極電極)之間具有通道區域,並且電流能夠藉由通道區域流過源極與汲極之間。注意,在本說明書等中,通道形成區域是指電流主要流過的區域。
另外,在使用極性不同的電晶體的情況或電路工作中的電流方向變化的情況等下,源極及汲極的功能有時相互調換。因此,在本說明書等中,源極和汲極可以互相調換。
在本說明書等中,“電連接”包括藉由“具有某種電作用的元件”連接的情況。在此,“具有某種電作用的元件”只要可以進行連接目標間的電信號的授 受,就對其沒有特別的限制。例如,“具有某種電作用的元件”不僅包括電極和佈線,而且還包括電晶體等的切換元件、電阻元件、電感器、電容器、其他具有各種功能的元件等。
在本說明書等中,“平行”是指兩條直線形成的角度為-10°以上且10°以下的狀態。因此,也包括該角度為-5°以上且5°以下的狀態。另外,“垂直”是指兩條直線形成的角度為80°以上且100°以下的狀態。因此也包括85°以上且95°以下的角度的狀態。
另外,在本說明書等中,可以將“膜”和“層”相互調換。例如,有時可以將“導電層”變換為“導電膜”。此外,例如,有時可以將“絕緣膜”變換為“絕緣層”。
在本說明書等中,在沒有特別的說明的情況下,關態電流(off-state current)是指電晶體處於關閉狀態(也稱為非導通狀態、遮斷狀態)的汲極電流。在沒有特別的說明的情況下,在n通道電晶體中,關閉狀態是指閘極與源極間的電壓Vgs低於臨界電壓Vth的狀態,在p通道電晶體中,關閉狀態是指閘極與源極間的電壓Vgs高於臨界電壓Vth的狀態。例如,n通道電晶體的關態電流有時是指閘極與源極間的電壓Vgs低於臨界電壓Vth時的汲極電流。
電晶體的關態電流有時取決於Vgs。因此,“電晶體的關態電流為I以下”有時是指存在使電晶體的關態電流成為I以下的Vgs的值。電晶體的關態電流有時是指:當Vgs為預定的值時的關閉狀態;當Vgs為預定的範圍內的值時的關閉狀態;或者當Vgs為能夠獲得充分低的關態電流的值時的關閉狀態等。
作為一個例子,設想一種n通道電晶體,該n通道電晶體的臨界電壓Vth為0.5V,Vgs為0.5V時的汲極電流為1×10-9A,Vgs為0.1V時的汲極電流為1×10-13A,Vgs為-0.5V時的汲極電流為1×10-19A,Vgs為-0.8V時的汲極電流為1×10-22A。在Vgs為-0.5V時或在Vgs為-0.5V至-0.8V的範圍內,該電晶體的汲極電流為1×10-19A以下,所以有時稱該電晶體的關態電流為1×10-19A以下。由於存在使該電晶體的汲極電流成為1×10-22A以下的Vgs,因此有時稱該電晶體的關態電流為1×10-22A以下。
在本說明書等中,有時以每通道寬度W的電流值表示具有通道寬度W的電晶體的關態電流。另外,有時以每預定的通道寬度(例如1μm)的電流值表示具有通道寬度W的電晶體的關態電流。在為後者時,關態電流的單位有時以具有電流/長度的次元的單位(例如,A/μm)表示。
電晶體的關態電流有時取決於溫度。在本說明書中,在沒有特別的說明的情況下,關態電流有時表示在室溫、60℃、85℃、95℃或125℃下的關態電流。或者,有時表示在保證包括該電晶體的半導體裝置等的可靠性的溫度下或者在包括該電晶體的半導體裝置等被使用的溫度(例如,5℃至35℃中的任一溫度)下的關態電流。“電晶體的關態電流為I以下”有時是指在室溫、60℃、85℃、95℃、125℃、保證包括該電晶體的半導體裝置的可靠性的溫度下或者在包括該電晶體的半導體裝置等被使用的溫度(例如,5℃至35℃中的任一溫度)下存在使電晶體的關態電流成為I以下的Vgs的值。
電晶體的關態電流有時取決於汲極與源極間的電壓Vds。在本說明書中,在沒有特別的說明的情況下,關態電流有時表示Vds為0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V或20V時的關態電流。或者,有時表示保證包括該電晶體的半導體裝置等的可靠性的Vds時或者包括該電晶體的半導體裝置等所使用的Vds時的關態電流。“電晶體的關態電流為I以下”有時是指:在Vds為0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V、20V、保證包括該電晶體的半導體裝置的可靠性的Vds或包括該電晶體的半導體裝置等被使用的Vds下存在使電晶體的關態電流成為I以下的Vgs的值。
在上述關態電流的說明中,可以將汲極換稱為源極。也就是說,關態電流有時指電晶體處於關閉狀態時流過源極的電流。
在本說明書等中,有時將關態電流記作洩漏電流。在本說明書等中,關態電流例如有時指在電晶體處於關閉狀態時流在源極與汲極間的電流。
電壓是指兩個點之間的電位差,而電位是指某一點的靜電場中的某單位電荷所具有的靜電能(電位能量)。但是,一般來說,將某一點的電位與 基準的電位(例如接地電位)之間的電位差簡單地稱為電位或電壓,通常,電位和電壓是同義詞。因此,在本說明書中,除了特別指定的情況以外,既可將“電位”稱為“電壓”,又可將“電壓”稱為“電位”。
實施方式1
在本實施方式中,參照圖1至圖4B對包括連接於神經網路的介面的攝像裝置進行說明。
本發明的一個實施方式是一種攝像裝置的結構及其工作方法,該攝像裝置在攝像元件中分散有像素所輸出的信號的判定電路。
圖1是示出攝像裝置100的結構例子的方塊圖。攝像裝置100包括攝像元件10、類比數位轉換電路(以下稱為類比數位轉換電路26)、解碼器電路27、選擇器電路28及控制部29。
攝像元件10包括多個判定電路20a、多個掃描線G1、多個掃描線G2、多個信號線OUT及多個信號線OUT1。
判定電路20a包括多個像素20、特徵抽出電路30及判定輸出電路31。像素20包括具有光電轉換元件PD的受光電路21(參照圖3A)。
攝像元件10包括配置為m行n列的像素20。在圖1中說明攝像元件10的一部分。作為一個例子,對像素20配置為Pix(i,j)至Pix(i+3,j+3)的結構進行說明(i為1以上且m以下的自然數,j為1以上且n以下的自然數,m為2以上的自然數,n為2以上的自然數,k為1以上且n以下的自然數)。
判定電路20a包括四個像素20、特徵抽出電路30及判定輸出電路31。判定輸出電路31包括運算電路31a及記憶體電路31b(參照圖3B)。
各像素20與特徵抽出電路30電連接。特徵抽出電路30與判定輸出電路31電連接。
注意,判定電路20a所包含的像素20的個數較佳為根據進行判定的區 域適當地選擇。此外,受光電路21也可以與多個放大電路22連接(參照圖2B)。
Pix(i,j)及Pix(i,j+1)與信號線OUT1(i)電連接,Pix(i+1,j)及Pix(i+1,j+1)與信號線OUT1(i+1)電連接。此外,Pix(i,j)及Pix(i+1,j)與掃描線G1(j)電連接,Pix(i,j+1)及Pix(i+1,j+1)與掃描線G1(j+1)電連接。此外,判定輸出電路31與信號線OUT(i)電連接。
像素20及判定電路20a可以由單極電晶體構成,由此,可以在不增加製程數量的情況下同時形成像素20及判定電路20a。
像素20所包括的光電轉換元件PD可以將接收的光轉換為電流,並將該電流轉換為電壓。此外,像素20可以放大類比信號的電壓並輸出輸出信號b。
在特徵抽出電路30中對多個輸出信號b進行運算。作為運算功能,較佳為使用加法或乘法。在本實施方式中說明作為特徵抽出電路30使用加法電路的情況。特徵抽出電路30可以輸出類比信號的輸出信號c。
判定輸出電路31可以在運算電路31a中判定輸入端子所接收的輸出信號c,並使其二值化。可以將二值化了的信號作為數位信號保持在記憶體電路31b中(參照圖3B)。
記憶體電路31b輸出輸出信號d。輸出信號d藉由信號線OUT供應給選擇器電路28(參照圖1)。選擇器電路28可以按所需要的資料長度排序判定電路20a的判定結果,並將其轉送給控制部29。作為輸出信號d的資料長度,可以根據信號的通訊方式選擇與並行通訊、I2C等串列通訊、或者MIPI等差動通訊等的通訊方法相對應的資料長度。
另外,像素20可以藉由信號線OUT1將輸出信號a供應給類比數位轉換電路26(參照圖2A)。類比數位轉換電路26可以將輸出信號a轉換為數位信號且輸出到控制部29。作為從類比數位轉換電路26向控制部29的傳送方法,可以選擇適當的方法。
控制部29包括兩個輸入介面。一個輸入介面由數位介面構成,且對應並行輸入或串列輸入。輸入資料的資料長度被固定。輸出信號a藉由類比數位轉換電路26供應給控制部29的數位介面。
另一個輸入介面對應神經網路的輸入。由於將輸入資料直接輸入到神經網路,所以較佳為將輸入資料的資料長度切換為神經網路容易處理的資料長度。可以使用選擇器電路28切換輸出信號d的資料長度。輸出信號d被加工成適當的資料長度,並供應給控制部29的神經網路介面。
在上述攝像裝置100中,可以自由地選擇光電轉換元件的種類。例如,可以在形成有光電二極體的單晶矽基板上使用在半導體層中包含氧化物半導體的電晶體形成像素20及判定電路20a。
上述在半導體層中包含氧化物半導體的電晶體的關態電流較小,所以可以簡單地構成像素20及判定電路20a中的保持資料的浮動節點、閂鎖器及記憶體。因此,可以根據所需要的功能選擇電晶體中的半導體層。
上述攝像裝置可以僅由單極電晶體構成,但是其面積增大。因此,在像素及記憶體電路中,較佳為選擇在半導體層中包含氧化物半導體的電晶體。此外,在放大電路、判定電路20a、類比數位轉換電路26及解碼器電路27等被要求電流供應能力的電路中,可以選擇在半導體層中包含單晶矽的電晶體。此外,也可以將在半導體層中包含氧化物半導體的電晶體層疊於在半導體層中包含單晶矽的電晶體上。關於氧化物半導體的一個例子,將在實施方式6中進行詳細的說明。
圖2A是示出判定電路20a的詳細結構的方塊圖。圖2A示出判定電路20a包括四個像素20的例子。像素20包括受光電路21、放大電路22及記憶體電路23。放大電路22包括放大電路22a、記憶體電路22b及加法電路22c。
放大電路22a的輸入端子與受光電路21的輸出端子及記憶體電路22b的輸出端子電連接。放大電路22a的輸出端子與加法電路22c電連接。受光電路21藉由放大電路22a與記憶體電路23電連接。記憶體電路23與信號線OUT1電連接。
受光電路21將光電轉換元件PD所生成的電流轉換為電壓並將該電壓作為輸出信號a輸出。由此,輸出信號a供應給放大電路22a。記憶體電路22b可以設定放大電路22a的放大率。加法電路22c可以對放大電路22a的輸出信號a1加上失調電壓B。加法電路22c將輸出信號b從輸出端子輸出且供應給特徵抽出電路30的輸入端子。但是,也可以將輸出信號a1供應給特徵抽出電路30而不經過加法電路22c。
圖2A的方塊圖的結構具有神經網路中的神經元的功能。神經元具有神經突觸和啟動函數的功能。具有神經突觸的功能的神經突觸電路可以將多個輸入信號乘以權係數,並將該乘法運算後的各輸入信號的結果加在一起。換言之,神經元具有對多個輸入信號進行積和運算的功能。具有啟動函數的功能的啟動函數電路具有從積和運算的結果抽出特徵的判定功能。
在圖2B中,以神經元的示意圖的形式示出圖2A的方塊圖。神經突觸電路30N包括像素20及特徵抽出電路30。啟動函數電路31N包括判定輸出電路31。
雖然圖2B示出四個受光電路21與特徵抽出電路30連接的例子,但是被連接的受光電路21的數量不侷限於此。為了簡化說明,將四個受光電路21分別稱為PD(i)、PD(i+1)、PD(i+2)、PD(i+3)。i及j都為1以上的自然數。
放大電路22可以將輸出信號a乘以權係數A。該權係數A在圖2A的記憶體電路22b中被設定。此外,也可以將權係數A換稱為放大率。因此,特徵抽出電路30接收將輸出信號a乘以權係數A且經受失調B等的校正而成的輸出信號b。
特徵抽出電路30可以將多個輸出信號b加在一起。因此,可以以如下公式表示特徵抽出電路30的輸出信號c。放大電路22的權係數A既可以設定為相同的權係數,又可以設定為不同的權係數。
在上述條件下,特徵抽出電路30的輸出的總和以如下公式1表示。
c(j)=Σ(PD(i).A(i)+B) (公式1)
另外,啟動函數電路31N所包括的運算電路31a所輸出的輸出信號c1(j)以如下公式2表示。
c1(j)=f(c(j)) (公式2)
在此,啟動函數電路31N的輸出函數f(c(j))意味著S型函數。啟動函數電路31N所包括的判定輸出電路31既可以從外部接收臨界值電位作為判定條件,又可以接收恆定的臨界值電位。由此,判定輸出電路31可以生成神經網路中的被稱為“放電(firing)”的條件且輸出被二值化的數位信號。
圖3A至圖3C示出圖2A的電路例子。圖3A及圖3B分別示出像素20及判定電路20a的電路例子。圖3C示出放大電路22所包括的加法電路22c的電路例子。
在圖3A中,詳細地說明像素20。像素20包括受光電路20及放大電路22。放大電路22包括放大電路22a及記憶體電路22b。受光電路21包括光電轉換元件PD、電容元件C1、C2及電晶體41至43。光電轉換元件PD的電極中的一個與端子VPD(71)電連接,光電轉換元件PD的電極中的另一個與電晶體41的源極和汲極中的一個及電晶體42的源極和汲極中的一個電連接,電晶體41的源極和汲極中的另一個與電容元件C1的電極中的一個電連接,電晶體42的源極和汲極中的另一個與電晶體43的源極和汲極中的一個及端子VRS(72)電連接,電晶體42的閘極與電晶體43的閘極及端子RS(62)電連接,電晶體43的源極和汲極中的另一個與電容元件C2的電極中的一個電連接。在受光電路21中,也可以採用其他連接方法。作為其他連接方法,圖18A至圖18C或圖19A和圖19B示出與圖3A不同的連接例子。圖19B示出沒有設置電晶體43的例子。
電容元件C1可以保持光電轉換元件PD所生成的電位作為輸出信號a。電容元件C2可以保持用來比較輸出信號a的信號大小的參考電位。電晶體41至43可以控制信號的保持及重設的時序。
作為放大電路22a可以使用吉伯特單元(Gilbert cell)電路。放大電路 22a包括電晶體44a、電晶體45a、電晶體44b、電晶體45b、電晶體46、電晶體47、電晶體48、電阻元件Ra及電阻元件Rb。電阻元件Ra的電極中的一個與電阻元件Rb的電極中的一個及端子VPI(73)電連接,電阻元件Ra的電極中的另一個與電晶體44a的源極和汲極中的一個及電晶體45b的源極和汲極中的一個電連接。電晶體44a的源極和汲極中的另一個與電晶體45a的源極和汲極中的一個及電晶體46的源極和汲極中的一個電連接,電晶體45a的源極和汲極中的另一個與電阻元件Rb的電極中的另一個及電晶體44b的源極和汲極中的一個電連接。電晶體44b的源極和汲極中的另一個與電晶體45b的源極和汲極中的另一個及電晶體47的源極和汲極中的一個電連接。電晶體46的源極和汲極中的另一個與電晶體47的源極和汲極中的另一個及電晶體48的源極和汲極中的一個電連接,電晶體47的閘極與端子VCS電連接,電晶體48的閘極與端子Vbias1電連接,電晶體48的源極和汲極中的另一個與端子VSS(79)電連接。電晶體44a的閘極與電晶體44b的閘極及電容元件C1的電極中的一個電連接,電晶體45a的閘極與電晶體45b的閘極及電容元件C2的電極中的一個電連接。
電晶體44a和電晶體45a構成差動放大電路。電晶體44b和電晶體45b也是同樣的。差動放大電路將電容元件C1的輸出信號a與電容元件C2的參考電位進行比較並放大。
記憶體電路22b包括電晶體49及電容元件C3。電晶體49的源極和汲極中的一個與端子Wd1(75)電連接,電晶體49的源極和汲極中的另一個與電容元件C3的電極中的一個及電晶體46的閘極電連接,電晶體49的閘極與端子W1(74)電連接。
在記憶體電路22b中,電容元件C3從信號線Wb1藉由電晶體49接收用作放大率的電位。該放大率在外部算出後供應給記憶體電路22b。放大電路22放大類比信號。因此,可以減小電路規模。此外,放大電路22還具有對輸出信號a的追從性及使雜訊平滑化的功能。雖然在圖3A至圖3C中未圖示,但是還可以設置列驅動器及行驅動器,以將放大率供應給電容元件C3。或者,也可以使用圖1的解碼器電路27。
記憶體電路22b可以控制放大電路22a的放大率。在神經突觸電路中,放大率相當於權係數A。當對各受光電路21的輸出信號a設定相同的權係 數A時,輸出信號a1被一律地放大,由此可以提高低灰階的受光精度。當對各受光電路21的輸出信號a設定不同的權係數A時,輸出信號a1會強調對應於權係數A的模式,由此可以容易抽出特定的模式。
電晶體48控制放大電路22a的總電流量。在不使用攝像元件10或想要意圖性地使攝像元件10處於非工作狀態的情況下,電晶體48的閘極藉由Vbias1端子而被控制。由此,電晶體48可以停止放大電路22的工作。因此,可以降低功耗。在將氧化物半導體用於電晶體48的半導體層時,可以降低電晶體48的關態電流。因此,電晶體48可以減小放大電路22處於關閉狀態下的待機電流。
記憶體電路23可以保持放大電路22a的輸出信號a2。保持在記憶體電路23中的輸出信號a2根據供應到掃描線G1的掃描信號藉由信號線OUT1被轉送到類比數位轉換電路26。藉由對端子Tx(61)供應Low,可以使電容元件C1保持輸出信號a。但是,像素20也可以不包括記憶體電路23。
圖3B示出判定電路20a的電路例子。注意,加法電路22c包括在放大電路22中。圖3C示出使用被動元件構成的加法電路22c的例子。加法電路22c包括多個電阻器。
可以從端子Vbias2供應作為電壓的加法參數。既可以對攝像元件10所包括的像素供應一律的加法參數,又可以追加記憶體電路而對各像素分別供應不同的電壓。加法參數可以校正放大電路22的輸出,從而可以被用來調節失調。加法電路22c只要具有對信號進行加法處理的功能即可,而不侷限於圖3C所示的結構。
接著,對包括在判定電路20a中的特徵抽出電路30及判定輸出電路31進行說明。作為特徵抽出電路30示出將運算放大器用於加法電路的例子。特徵抽出電路30包括運算放大器30a、電阻元件R1、R2、R3、R4、Rc及Rf。
電阻元件R1、R2、R3、R4的一個端子與放大電路22電連接。電阻元件R1、R2、R3、R4的另一個端子與運算放大器30a的負輸入端子電連接。電阻元件Rf的一個端子與運算放大器30a的負輸入端子電連接,電阻元件 Rf的另一個端子與輸出端子電連接。電阻元件根據需要可以選擇適當大小的電阻值。
由於運算放大器30a的負輸入端子是形成虛短路的基準點,所以電阻元件Rf可以進行電流電壓轉換。因此,將像素20的輸出信號b加在一起而得到的結果作為電壓值被輸出到運算放大器30a的輸出端子。特徵抽出電路30的輸出端子被供應類比信號的輸出信號c。
接著,說明判定輸出電路31。判定輸出電路31包括運算電路31a及記憶體電路31b。此外,運算電路31a也可以包括用來保持判定條件的電壓的記憶體。
運算電路31a的輸入端子與運算放大器30a的輸出端子電連接。運算電路31a的輸出端子與記憶體電路31b的輸入端子連接。在運算電路31a包括記憶體電路的情況下,也可以另行設置用來寫入判定條件的電壓的列驅動器及行驅動器。或者,也可以使用圖1的解碼器電路27。
運算電路31a可以藉由利用輸出函數f判定特徵抽出電路30的輸出信號c。當使用軟體進行處理時,可以使用S型函數等進行處理,而當使用硬體進行處理時,藉由使用運算電路31a可以實現相同的功能。
運算電路31a從信號線Wd2接收判定條件的電壓。運算電路31a對特徵抽出電路30的輸出信號c與判定條件的電壓進行比較。當輸出信號c的電壓大於判定條件的電壓時,運算電路31a輸出High信號。當輸出信號c的電壓小於判定條件的電壓時,運算電路31a輸出Low信號。由此,可以將多個像素的輸出信號a藉由神經元的處理根據輸出函數f轉換為二值化了的數位信號。
二值化了的信號被保持在記憶體電路31b中,且可以根據需要而被讀出。在讀出信號時,根據供應到掃描線G2的掃描信號將信號藉由信號線OUT輸出到選擇器電路28。為了從記憶體電路31b讀出資料,也可以另行設置列驅動器及行驅動器。或者,也可以使用解碼器電路27。
圖4A示出圖1的攝像裝置100的時序圖。在像素20中,從解碼器電 路27對掃描線G1(j)供應掃描信號,將保持在記憶體電路23中的資料轉送到類比數位轉換電路26。在判定電路20a中,從解碼器電路27對掃描線G2(k)供應掃描信號,將保持在記憶體電路31b中的資料轉送到選擇器電路28。記憶體電路23及記憶體電路31b可以切換資料的取得與轉送。因此,記憶體電路31b也可以使用傳輸閘(transfer gate)構成。作為控制傳輸閘的信號,可以使用由解碼器電路供應的掃描信號。
圖4B示出圖3A至圖3C的像素20所包括的受光電路21的時序圖。受光電路21的工作由掃描線G1(j)控制。由掃描線G1(j)供應的掃描信號還被供應到端子RS(62)。圖4A的T1至T2的期間相當於圖4B的T11至T13。
在T11至T12的期間,藉由對端子VRS(72)供應電壓來更新電容元件C2的保持電位。在T11至T12的期間,對端子Tx(61)供應Low,將電晶體41保持為OFF狀態。作為電晶體41處於OFF狀態的時間,採用將資料備份在記憶體電路23及記憶體電路31b中時所需要的時間即可。由於記憶體電路23及記憶體電路31b也可以使用傳輸們構成,所以藉由使用移動率高的電晶體可以縮短T11至T12的期間。作為電晶體41,較佳為使用在實施方式6中說明的CAC-OS電晶體。
在T12至T13的期間,端子Tx(61)成為High,由此,電晶體41至43成為ON狀態。因此,電容元件C1的保持電位被對端子VRS(72)供應的電壓更新。
在T13的時序,供應給掃描線G1(j)的掃描信號成為Low。此外,端子RS(62)成為Low。因此,電晶體42及43成為OFF狀態,而電晶體41保持為ON狀態。因此,光電轉換元件PD進行資料的取得。直到在下一個圖框中掃描線G1(j)被選擇為止,進行上述資料的取得。注意,攝像裝置100所包括的解碼器電路的結構也可以被分割成多個區域並其中進行並行處理。因此,當進行並行處理時,也可以在短於一個圖框的期間內進行上述資料的取得。
攝像元件10包括判定電路20a,由此可以如人腦所包含的神經元所執行的類比資料的處理那樣進行使用類比資料的類比運算處理。攝像元件10 可以在儘量抑制將類比資料轉換為數位資料的頻率的狀態下進行運算處理。
在神經網路中,需要進行龐大量的運算處理及分層處理。但是,藉由使用本實施方式,在神經網路中,判定電路20a可以進行相當於多層感知器的輸入層的處理。因此,相當於輸入層的判定電路20a可以獲得兩種輸出結果,即使用像素20的受光資料藉由類比運算處理而得到的信號以及受光資料的信號。因此,在攝像裝置中,可以減少使用軟體的運算處理,從而可以抑制伴隨運算的功耗。此外,可以縮短運算處理所需要的時間。
在本實施方式中,攝像裝置100可以輸出通常的影像資料以及根據神經網路的資料。由於攝像裝置100處理不同的資料,所以較佳為進行與圖框期間同步的處理。此外,攝像的時序與掃描線的選擇順序同步,因此產生時間差。由此,當使用攝像裝置100拍攝快速移動的被攝體時,較佳為採用全域快門方式。
在全域快門方式中,較佳的是,在攝像元件10所包括的所有受光電路21中同時控制端子Tx(61)和端子RS(62)。由此,攝像裝置100可以同時獲得受光電路21所接收的受光資料。由多層感知器進行運算處理的資料同時被供應到判定電路20a所包括的記憶體電路31b。
本實施方式所示的結構、方法可以與其他實施方式所示的結構、方法適當地組合而使用。
實施方式2
在本實施方式中,參照圖5至圖8B對包括連接於神經網路的介面的攝像裝置進行說明。
本發明的一個實施方式是一種與實施方式1不同的攝像裝置的結構及工作方法。
圖5是示出與圖1不同的攝像裝置100的結構例子的方塊圖。對與圖1不同的結構的判定電路20a進行說明。圖5與圖1不同之處在於判定電路20a包括放大電路300及判定輸出電路310。
在圖5中,對判定電路20a所包括的四個像素20進行說明。
各像素20與放大電路300電連接。放大電路300與判定輸出電路310電連接。
注意,判定電路20a所包括的像素20的個數較佳為根據進行判定的區域適當地選擇。此外,像素20所包括的受光電路21a也可以與多個放大電路300連接。
像素20所包括的受光電路21a所包括的光電轉換元件PD可以將接收的光轉換為電壓。因此,像素20輸出輸出信號a。放大電路300可以將類比信號轉換為數位信號,並可以輸出放大數位信號而成的輸出信號b。
在判定輸出電路310中對輸出信號b進行運算。作為運算功能,較佳為使用加法或乘法。在本實施方式中說明使用加法電路的情況。
判定輸出電路310可以從輸出信號b抽出資料的特徵。對被抽出的資料進行判定,由此可以輸出判定結果作為輸出信號d。
圖6A是示出判定電路20a的詳細結構的方塊圖。與圖5同樣地,對連接有四個像素20的判定電路20a的例子進行說明。像素20包括受光電路21a及記憶體電路23。判定電路20a包括放大電路300、特徵抽出電路32及輸出電路33。
放大電路300包括輸入選擇電路301、類比數位轉換電路302、判定電路303及記憶體電路304。判定電路303包括邏輯電路306及選擇電路305。
受光電路21a與記憶體電路23電連接。記憶體電路23與信號線OUT1電連接。受光電路21a的輸出端子與放大電路300所包括的輸入選擇電路301的輸入端子電連接。
受光電路21a可以將包括在受光電路21a中的光電轉換元件PD所生成的電流轉換為電壓並將其作為輸出信號a輸出。該輸出信號a可以供應給放大電路300的輸入端子。
輸入選擇電路301與類比數位轉換電路302電連接。類比數位轉換電路302與判定電路303電連接。判定電路303與記憶體電路304電連接。
輸入選擇電路301可以利用根據端子CLK所接收的時脈信號而生成的信號選擇四個輸出信號a中的任一個。類比數位轉換電路302可以將所選擇的輸出信號a的電壓轉換為數位信號,並將其輸出到判定電路303的輸入端子。判定電路303可以藉由位移位(bit shift)放大數位信號。藉由利用位移位抽出高階位,可以判定高階位的位準。可以將高階位元的判定結果保持在記憶體電路304中。被保持的信號可以供應給特徵抽出電路32的輸入端子作為輸出信號b。
特徵抽出電路32與輸出電路33電連接。特徵抽出電路32從供應到輸入端子的輸出信號b抽出資料的特徵。將被抽出的資料作為計數值累加並供應給輸出電路33的輸入端子作為輸出信號c。藉由輸出電路33進一步對輸出信號c進行判定,由此可以輸出判定結果作為輸出信號d。
圖6A的方塊圖的結構具有神經網路中的神經元的功能。神經元具有神經突觸及啟動函數的功能。具有神經突觸的功能的神經突觸電路可以將多個輸入信號乘以權係數,並將該乘法運算後的各輸入信號的結果加在一起。換言之,神經元具有對多個輸入信號進行積和運算的功能。具有啟動函數的功能的啟動函數電路具有從積和運算的結果抽出特徵的判定功能。
在圖6B中,以神經元的示意圖的形式示出圖6A的方塊圖。神經突觸電路32N包括放大電路300及特徵抽出電路32。啟動函數電路33N包括輸出電路33。
雖然圖6B示出四個受光電路21a與放大電路300連接的例子,但是被連接的受光電路21a的數量不侷限於此。為了簡化說明,將四個受光電路21a分別稱為PD(i)、PD(i+1)、PD(i+2)、PD(i+3)。i及j都為1以上的自然數。
放大電路300可以將輸出信號a乘以權係數A。該權係數A在圖6A的判定電路303中被設定。此外,也可以將權係數A換稱為放大率。因此, 將輸出信號a乘以權係數A而成的資料作為輸出信號b供應到特徵抽出電路32。
但是,放大電路303的權係數A既可以設定為相同的權係數,又可以設定為不同的權係數。
在上述條件下,特徵抽出電路32的輸出的總和可以以實施方式1所示的公式1表示。此外,啟動函數電路33N所輸出的輸出信號d(i)可以以實施方式1所示的公式2表示。
在此,啟動函數電路33N的輸出函數f(c(i))意味著S型函數。在啟動函數電路33N所包括的輸出電路33中,既可以使判定條件更新,又可以使判定條件固定。由此,藉由使用輸出電路33可以輸出生成神經網路中的被稱為“放電(firing)”的條件且被二值化的數位信號。
圖7A和圖7B示出圖6A的電路例子。圖7A和圖7B示出像素20、放大電路300、特徵抽出電路32及輸出電路33的電路例子。
首先,說明像素20。像素20包括受光電路21a及記憶體電路23。受光電路21a包括光電轉換元件PD、電容元件C1、電晶體41及電晶體42。
電容元件C1可以保持光電轉換元件PD所生成的電位作為輸出信號a。電晶體41及電晶體42可以控制信號的保持及重設的時序。
輸出信號a被保持在記憶體電路23中,且可以根據需要而被讀出。在讀出信號時,根據供應到掃描線G1的掃描信號將該信號藉由信號線OUT1轉送給類比數位轉換電路26。此外,也可以另行設置用來從記憶體電路23讀出信號的列驅動器及行驅動器。或者,也可以使用解碼器電路27。
接著,說明放大電路300。放大電路300包括輸入選擇電路301、類比數位轉換電路302、記憶體電路304、選擇電路305、邏輯電路306及計數電路CN1。在此,對放大電路300與四個受光電路21a電連接的情況進行說明。對放大電路300從CLK端子供應時脈信號。時脈信號被用作電路工作的基準,所以還供應給判定輸出電路310。
輸入選擇電路301可以選擇四個輸出信號a中的任一個。作為選擇方法的一個例子,可以使用計數電路CN1。計數電路CN1可以將輸出信號cnt1供應給輸入選擇電路301。可以根據連接到放大電路300的受光電路21a的數量而選擇計數電路CN1的大小。計數電路CN1以與供應給端子CLK的時脈信號同步的方式進行計數工作,由此輸入選擇電路301可以以與時脈信號同步的方式依次選擇輸出信號a。
輸入選擇電路301可以將根據輸出信號cnt1而被選擇的輸出信號a供應給類比數位轉換電路302。作為類比數位轉換電路302的例子,示出將以電壓供應的輸出信號a轉換為8bit的數位信號D[7:0]的情況。較佳的是,類比數位轉換電路302根據需要適當地選擇資料寬度。
作為數位信號的放大方法,使用藉由位移位產生移位溢出來進行運算的方法。判定電路303可以藉由對數位信號D[7:0]進行位移位來放大信號,並將數位信號的位準分類成多個範圍。
在位移位中,藉由向左移1位,可以進行2倍、4倍、8倍等2的乘方數的放大。因此,當在向左移1位元之後數位信號D[7:0]的最高1位D[7]表示High時,這意味著,數位信號大於128LSB。此外,當最高2位D[7:6]表示High時,這意味著,數位信號大於192LSB。由此,選擇電路305可以放大數位信號並對數位信號的位準範圍進行分類。
選擇電路305從GAIN端子接收用來選擇數位信號的位準範圍的信號。當數位信號在於指定的選擇範圍內時,選擇電路305可以將High信號供應給記憶體電路304,而當數位信號不在於指定的選擇範圍內時,選擇電路305可以將Low信號供應給記憶體電路304。將輸出到記憶體電路304的信號稱為輸出信號a1。
注意,用作放大率的位移位量在外部算出後從GAIN端子被供應。因此,在放大電路300中,既可以使用相同的條件進行判定,又可以使用不同的條件進行判定。由此,作為邏輯電路306的判定條件,也可以藉由使用可程式邏輯陣列根據處理再決定判定條件。
作為記憶體電路304,可以使用閂鎖電路。當將閂鎖電路用作記憶體電 路304時,可以縮小電路規模,並可以減少要控制的信號,所以是較佳的。可以使用計數電路CN1的輸出信號cnt1來控制對記憶體電路304的寫入時序。例如,在輸入選擇電路301以輸出信號cnt1為High的期間為選擇期間的情況下,以與輸出信號cnt1下降的時序同步的方式將輸出信號a1保持在記憶體電路304中。被保持的信號供應給特徵抽出電路32的輸入端子作為輸出信號b。
特徵抽出電路32可以從輸出信號b抽出資料的特徵。該特徵表示判定電路303所抽出的輸出信號a是否包含在指定的範圍內。
特徵抽出電路32包括輸入選擇電路32a、計數電路32c、計數電路CN2及反相器32b。輸出電路33包括判定電路33a、切換電路33b及記憶體電路33c。
輸入選擇電路32a可以選擇四個輸出信號b中的任一個。作為選擇方法的一個例子,可以使用計數電路CN2。由於計數電路CN2在記憶體電路304的輸出信號b被確定之後提取資料,所以可以使用反相器32b使供應給放大電路300的時脈信號反轉並供應給計數電路CN2。輸入選擇電路32a可以依次將輸出信號b作為輸出信號b1輸出。
計數電路32c可以算出滿足從GAIN端子接收的指定範圍的輸出信號b1的總數。當輸出信號a的位準在於指定的範圍內時,輸出信號b1為High,而當輸出信號a的位準不在於指定的範圍內時,輸出信號b1為Low。
由此,計數電路32c可以算出具有資料的特徵的信號的總數。可以將所算出的結果供應給判定輸出電路310的輸出電路33作為輸出信號c。
判定電路33a從CMPD端子接收判定值。判定電路33a判定具有資料的特徵的輸出信號c是否大於判定值。記憶體電路33c接收輸出信號dout作為判定結果。此外,也可以將輸出信號c直接供應給記憶體電路33c。切換電路33b可以切換判定方法的選擇。
作為記憶體電路33c可以使用各種記憶體電路,但是較佳為使用可以使輸出處於高阻抗狀態的電路。例如,可以選擇在電晶體的半導體層中包 含矽的記憶體。此外,也可以選擇在電晶體的半導體層中包含氧化物半導體的記憶體。關於氧化物半導體,將在實施方式6中進行詳細的說明。
較佳的是,保持在記憶體電路33c中的輸出信號dout可以根據需要而被讀出。在讀出信號時,根據供應給掃描線G2的掃描信號將該信號藉由信號線OUT轉送給選擇器電路28。為了從記憶體電路33c讀出資料,也可以另行設置列驅動器及行驅動器。或者,也可以使用圖1的解碼器電路27。
圖8A示出圖5的攝像裝置100的時序圖(T21至T25)。在T21至T25的期間,將掃描信號從解碼器電路27藉由掃描線G1(j)供應給像素20,將保持在記憶體電路23中的資料轉送到類比數位轉換電路26。在判定電路20a中,從解碼器電路27對掃描線G2(k)供應掃描信號,將保持在記憶體電路33c中的資料轉送到選擇器電路28。
圖8B示出圖7的判定電路20a的時序圖。受光電路21a的工作由掃描線G1(j)控制。由掃描線G1(j)供應的掃描信號還被供應到端子RS(62)。圖8A的T21至T22的期間相當於圖8B的T31至T43。
在T31至T41的期間,對端子Tx(61)供應Low,將電晶體41保持為OFF狀態。此外,對端子RS(62)供應High,將電晶體42保持為ON狀態。因此,電容元件C1的保持電位供應給放大電路300作為輸出信號a。在放大電路300及判定輸出電路310中對輸出信號a進行運算處理。
在T41至T43的期間,端子Tx(61)及端子RS(62)成為High,由此,電晶體41及42成為ON狀態。因此,電容元件C1的保持電位被對端子VRS(72)供應的電壓更新。
在T43的時序,供應給掃描線G1(j)的掃描信號成為Low。此外,端子RS(62)成為Low。因此,電晶體42保持為OFF狀態,而電晶體41保持為ON狀態。因此,光電轉換元件PD進行資料的取得。直到在下一個圖框中掃描線G1(j)被選擇為止,進行上述資料的取得。注意,攝像裝置100所包括的解碼器電路的結構也可以被分割成多個區域並其中進行並行處理。因此,當進行並行處理時,也可以在短於一個圖框的期間內進行上述資料的取得。
圖8B示出將供應給掃描線G1(j)的掃描信號與供應給掃描線G2(k-1)的掃描信號以相同的時序供應的例子。注意,從記憶體電路33c讀出資料的時序也可以由獨立地供應給掃描線G2的掃描信號控制。
圖7所示的攝像元件10包括判定電路20a,由此可以如人腦中的神經元所執行的處理那樣將類比資料轉換為數位資料並進行運算處理。藉由使用上述結構,攝像元件10可以從類比資料抽出資料的特徵,並且可以進行使用數位資料的壓縮運算。因此,攝像元件10可以進行多重並行處理的運算處理。
在神經網路中,需要進行龐大量的運算處理及分層處理。但是,藉由使用本實施方式,在神經網路中,判定電路20a可以進行相當於多層感知器的輸入層的處理。因此,相當於輸入層的判定電路20a可以獲得兩種輸出結果,即使用像素20的受光資料藉由數位運算處理而得到的信號以及受光資料的信號。因此,在攝像裝置中,可以減少使用軟體的運算處理,從而可以抑制伴隨運算的功耗。此外,可以抑制運算處理所需要的時間。
本實施方式所示的結構、方法可以與其他實施方式所示的結構、方法適當地組合而使用。
實施方式3
在本實施方式中,參照圖9至圖20B說明實施方式1的攝像裝置的結構。
圖9是說明像素20的具體結構例子的剖面圖,並是示出受光電路21所包括的電晶體41和電晶體42以及放大電路22a所包括的電晶體46和電晶體47的通道長度方向的剖面圖。
注意,雖然在本實施方式所說明的剖面圖中,佈線、電極、金屬層及接觸插頭(導電體82)為彼此不同的組件,但是在圖式上彼此電連接的組件有時在實際的電路中被認作為同一個組件。此外,佈線、電極及金屬層等組件藉由導電體82彼此連接的方式是一個例子,而有時各組件不藉由導 電體82直接連接。
另外,如圖9至圖15及圖17所示,在基板及電晶體等各組件上設置有用作保護膜、層間絕緣膜或平坦化膜的絕緣層81a至81g、絕緣層81j等。例如,絕緣層81a至81g可以使用氧化矽膜、氧氮化矽膜等無機絕緣膜。或者,也可以使用丙烯酸樹脂、聚醯亞胺樹脂等有機絕緣膜等。根據需要可以藉由CMP(Chemical Mechanical Polishing:化學機械拋光)法等對絕緣層81a至81g等的頂面進行平坦化處理。
另外,有時不設置圖式所示的佈線及電晶體等的一部分,或者有時各層包括在圖式中未圖示的佈線及電晶體等。
如圖9所示,像素20可以包括層1100及層1200。
層1100可以包括光電轉換元件PD。作為光電轉換元件PD,例如可以使用具有兩個端子的光電二極體。作為該光電二極體,可以使用:使用單晶矽基板的pn型光電二極體;使用非晶矽薄膜、微晶矽薄膜或多晶矽薄膜的pin型光電二極體;使用硒、硒化合物或有機化合物的光電二極體;等。
在圖9中,作為層1100所包括的光電轉換元件PD示出使用單晶矽基板的pn型光電二極體。該光電轉換元件PD可以具有包括絕緣層81j、p+區域620、p-區域630、n型區域640、p+區域650的結構。
在層1200中,構成受光電路21、放大電路22a及記憶體電路22b的電晶體可以在半導體層中包含氧化物半導體,在圖9中,作為該電晶體的例子示出受光電路21所包括的電晶體41和電晶體42以及放大電路22a所包括的電晶體46和電晶體47。如此,可以實現光電轉換元件PD與受光電路21及放大電路22a重疊的結構,由此可以增大光電轉換元件PD的受光面積。關於氧化物半導體的一個例子,將在實施方式6中進行詳細的說明。
在形成OS電晶體的區域與形成Si裝置(Si電晶體或Si光電二極體等)的區域之間設置有絕緣層80。
較佳為在設置於Si裝置附近的絕緣層中包含氫,以使矽的懸空鍵終結。另一方面,設置於電晶體41、42等的半導體層的氧化物半導體層附近 的絕緣層中的氫有可能成為在氧化物半導體層中生成載子的原因之一。因此,該氫有時引起電晶體41、42等的可靠性的下降。因此,當層疊包含Si裝置的一個層與包含OS電晶體的另一個層時,較佳為在它們之間設置具有防止氫擴散的功能的絕緣層80。藉由設置絕緣層80,可以防止氫的擴散,由此可以提高Si裝置及OS電晶體的可靠性。
作為絕緣層80例如可以使用氧化鋁、氧氮化鋁、氧化鎵、氧氮化鎵、氧化釔、氧氮化釔、氧化鉿、氧氮化鉿、釔安定氧化鋯(YSZ)等。
光電轉換元件PD的一個電極(n型區域640)例如可以藉由兩個導電體82及佈線69電連接到電晶體41及電晶體42。
在此,由於導電體82以穿過絕緣層80的方式設置,所以較佳為導電體82也具有防止氫擴散的功能。例如,如圖9所示,導電體82的至少與貫通口的側壁接觸的外側為對氫具有阻擋性的導電體82b,並且導電體82的內側為電阻低的導電體82a即可。例如,作為導電體82a及導電體82b分別可以使用鎢及氮化鉭等。此外,導電體82也可以僅由導電體82a構成。此外,在包含氫等雜質的層不與導電體82接觸的情況下,導電體82也可以僅由導電體82b構成。
圖9示出在層1200中設置有頂閘極型OS電晶體的結構。例如,OS電晶體設置在形成於層1100上的絕緣層的疊層(絕緣層81a、80、81b)上,且包括氧化物半導體層130、用作源極電極或汲極電極的導電層140、150、用作閘極絕緣層的絕緣層160、用作閘極電極的導電層170。絕緣層81b也可以具有閘極絕緣層的功能。
圖9例示出在OS電晶體中設置用作背閘極電極的導電層173的結構。在圖9所示的結構中,有時經過層1100中的光會使電晶體的電特性變動,由此較佳為採用設置有兼用作遮光層的背閘極電極的結構。此外,藉由設置背閘極,可以控制OS電晶體的臨界電壓等。
此外,像素20也可以具有圖10所示的疊層結構。圖10所示的像素20具有在基板115上設置有層1200及層1100的結構。由於在OS電晶體上設 置光電轉換元件PD,所以容易實現OS電晶體與光電轉換元件PD的一個電極之間的電連接。
圖10示出將硒類材料用於光電轉換層561的方式。使用硒類材料的光電轉換元件PD具有對於可見光的高外部量子效率。另外,由於硒類材料的光吸收係數高,所以具有易於將光電轉換層561形成得較薄的優點。使用硒類材料形成的光電轉換元件PD可以是因突崩培增而放大量大的高靈敏度的感測器。就是說,藉由將硒類材料用於光電轉換層561,即使像素面積變小也可以獲得充分的光電流。因此,可以認為採用硒類材料的光電轉換元件PD適合於低照度環境下的攝像。
作為硒類材料,可以使用非晶硒或結晶硒。作為結晶硒的一個例子,可以藉由形成非晶硒之後進行加熱處理而形成。另外,藉由使結晶硒的結晶粒徑小於像素間距,可以減少各像素間的特性偏差。另外,與非晶硒相比,結晶硒具有對於可見光的光譜靈敏度及光吸收係數高的特性。
雖然圖10示出單層的光電轉換層561,但是如圖11A所示,也可以在受光面一側設置氧化鎵、氧化鈰或In-Ga-Zn氧化物等作為電洞注入障壁層568。另外,如圖11B所示,也可以在電極566一側設置氧化鎳或硫化銻等作為電子注入障壁層569。另外,如圖11C所示,也可以設置電洞注入障壁層568及電子注入障壁層569。
光電轉換層561可以為含有銅、銦、硒的化合物(CIS)的層,也可以為含有銅、銦、鎵、硒的化合物(CIGS)的層。在使用CIS及CIGS的光電轉換元件中,可以與硒的單層同樣地利用突崩倍增。
作為採用硒類材料的光電轉換元件PD,例如可以採用在由金屬材料等形成的電極566與透光導電層562之間具有光電轉換層561的結構。此外,CIS及CIGS是p型半導體,而也可以與其接觸地設置n型半導體的硫化鎘或硫化鋅等以形成鍵合。
雖然圖10示出透光導電層562與佈線571直接接觸的結構,但是如圖11D所示,透光導電層562也可以藉由佈線588與佈線571接觸。雖然圖10示出不使光電轉換層561與透光導電層562在像素間分離的結構,但是 也可以如圖11E所示採用在電路間分離的結構。此外,在像素間的不具有電極566的區域中,較佳為使用絕緣體形成分隔壁567,以不使光電轉換層561及透光導電層562產生裂縫,但是也可以如圖12A、圖12B所示採用不設置分隔壁567的結構。
此外,電極566及佈線571等也可以採用多層結構。例如,如圖12C所示,電極566也可以採用導電層566a和導電層566b的兩層結構,而佈線571也可以採用導電層571a和導電層571b的兩層結構。在圖12C的結構中,例如,較佳為選擇低電阻的金屬等來形成導電層566a及導電層571a,而選擇與光電轉換層561的接觸特性好的金屬等來形成導電層566b及導電層571b。藉由採用這種結構,可以提高光電轉換元件PD的電特性。此外,一些種類的金屬因與透光導電層562接觸而會產生電蝕。即使將這種金屬用於導電層571a,也藉由導電層571b可以防止電蝕。
作為導電層566b及導電層571b,例如可以使用鉬或鎢等。此外,作為導電層566a及導電層571a,例如可以使用鋁、鈦或依次層疊鈦、鋁和鈦的疊層。
另外,如圖12D所示,透光導電層562可以藉由導電體82及佈線588與佈線571連接。
分隔壁567可以使用無機絕緣體或絕緣有機樹脂等形成。另外,分隔壁567也可以著色成黑色等以遮蔽向電晶體等照射的光和/或確定每一個像素的受光部的面積。
另外,像素20也可以具有圖13所示的疊層結構。圖13所示的像素20與圖10所示的像素20的不同之處僅在於層1100,其他結構都是相同的。
在圖13中,層1100所包括的光電轉換元件PD為作為光電轉換層使用非晶矽膜或微晶矽膜等的pin型光電二極體。該光電轉換元件PD可以具有包括n型半導體層565、i型半導體層564、p型半導體層563、電極566、佈線571及佈線588的結構。
電極566與絕緣層80接觸。p型半導體層563藉由佈線588與電極566 電連接。佈線588以穿過絕緣層81e的方式設置。
i型半導體層564較佳為使用非晶矽。p型半導體層563及n型半導體層565可以使用包含賦予各導電型的摻雜物的非晶矽或者微晶矽等。使用非晶矽作為光電轉換層的光電二極體在可見光波長區域內的靈敏度較高,而易於檢測微弱的可見光。
此外,具有pin型薄膜光電二極體的方式的光電轉換元件PD的結構以及光電轉換元件PD與佈線的連接方式也可以採用圖14A至圖14C所示的例子。另外,光電轉換元件PD的結構以及光電轉換元件PD與佈線的連接方式不侷限於此,也可以採用其他方式。
圖14A示出設置有與光電轉換元件PD的p型半導體層563接觸的透光導電層562的結構。透光導電層562被用作電極,而可以提高光電轉換元件PD的輸出電流。
透光導電層562例如可以使用銦錫氧化物、包含矽的銦錫氧化物、包含鋅的氧化銦、氧化鋅、包含鎵的氧化鋅、包含鋁的氧化鋅、氧化錫、包含氟的氧化錫、包含銻的氧化錫、石墨烯或氧化石墨烯等。此外,透光導電層562不侷限於單層,而也可以為不同膜的疊層。
圖14B是透光導電層562藉由導電體82及佈線588與佈線571連接的結構。另外,也可以採用光電轉換元件PD的p型半導體層563藉由導電體82及佈線588與佈線571連接的結構。在圖14B中,也可以不設置透光導電層562。
圖14C示出在覆蓋光電轉換元件PD的絕緣層81e中設置有使p型半導體層563露出的開口並且覆蓋該開口的透光導電層562與佈線571電連接的結構。
使用上述硒類材料或非晶矽等形成的光電轉換元件PD可以經過成膜製程、光微影製程、蝕刻製程等一般的半導體製程來製造。另外,由於硒類材料具有高電阻,也可以如圖10所示那樣採用光電轉換層561不在電路間分離的結構。因此,可以以高良率及低成本製造攝像裝置。
此外,像素20也可以具有圖15所示的疊層結構。圖15所示的像素20具有在層1300上設置有層1200及層1100的結構。在層1300中,例如可以設置有圖3所示的積和運算電路、加法電路、閂鎖電路等記憶體電路、類比數位轉換電路等資料轉換電路、緩衝器電路、攝像裝置整體的控制電路等。
層1300可以包括放大電路22a、記憶體電路22b、特徵抽出電路30及判定輸出電路31所使用的Si電晶體(例如,放大電路22a的電晶體44至48)。雖然圖15例示出電晶體44a、44b、45a、45b具有設置在矽基板600中的鰭型結構,但是如圖16A所示,也可以採用平面型結構。另外,如圖16B所示,也可以為具有矽薄膜的半導體層660的電晶體。半導體層660可以使用多晶矽或SOI(Silicon on Insulator:絕緣層上覆矽)結構的單晶矽。
注意,雖然圖15示出對圖10所示的結構附加層1300的結構,但是也可以對圖13所示的結構附加層1300。
圖17是對圖9所示的結構附加層1400的結構的剖面圖,並示出相當於3個像素(像素20A、20B、20C)的區域。
在層1400中,可以設置有遮光層1530、光學轉換層1550a、1550b、1550c、微透鏡陣列1540等。
在與層1100接觸的區域形成有絕緣層81h。絕緣層81h可以使用可見光透射性高的氧化矽膜等。另外,也可以作為鈍化膜層疊氮化矽膜。此外,也可以作為反射防止膜層疊氧化鉿等介電膜。
在絕緣層81h上可以設置有遮光層1530。遮光層1530設置在相鄰的像素之間,且具有遮蔽從傾斜方向進入的雜散光的功能。遮光層1530可以為鋁、鎢等的金屬層或者層疊該金屬層與被用作反射防止膜的介電膜的結構。
在絕緣層81h及遮光層1530上可以設置有光學轉換層1550a、1550b、1550c。例如,藉由作為光學轉換層1550a、1550b及1550c使用R(紅色)、G(綠色)、B(藍色)、Y(黃色)、C(青色)和M(洋紅)等的濾色片,可以獲得彩色影像。
另外,藉由作為光學轉換層使用阻擋可見光線的波長以下的光的濾光片,可以形成紅外線攝像裝置。另外,藉由作為光學轉換層使用阻擋近紅外線的波長以下的光的濾光片,可以形成遠紅外線攝像裝置。另外,藉由作為光學轉換層使用阻擋可見光線的波長以上的光的濾光片,可以形成紫外線攝像裝置。
另外,藉由將閃爍體用於光學轉換層,可以形成用於X射線攝像裝置等的獲得使輻射強度視覺化的影像的攝像裝置。當透過拍攝物件的X射線等輻射入射到閃爍體時,由於光致發光現象而轉換為可見光線或紫外光線等的光(螢光)。藉由由光電轉換元件PD檢測該光來獲得影像資料。另外,也可以將該結構的攝像裝置用於輻射探測器等。
閃爍體含有如下物質:當閃爍體被照射X射線或伽瑪射線等放射線時吸收放射線的能量而發射可見光或紫外線的物質。例如,可以使用將Gd2O2S:Tb、Gd2O2S:Pr、Gd2O2S:Eu、BaFCl:Eu、NaI、CsI、CaF2、BaF2、CeF3、LiF、LiI、ZnO分散到樹脂或陶瓷中的材料。
在光學轉換層1550a、1550b、1550c上也可以設置有微透鏡陣列1540。透過微透鏡陣列1540所具有的各透鏡的光經由設置在其下的光學轉換層1550a、1550b、1550c而照射到光電轉換元件PD。
另外,如圖18A的受光電路21所示,也可以採用具有浮動節點Fn1及Fn2而不具有電容元件C1、C2的結構。浮動節點Fn1藉由使用電晶體41、電晶體44的閘極電容和佈線之間的寄生電容來保持電荷。
另外,如圖18B所示,用於受光電路21的電晶體41至43也可以設置有背閘極。藉由對背閘極施加恆定電位,可以控制臨界電壓。雖然在此作為一個例子示出了將具有背閘極的電晶體用作電晶體41至電晶體43的結構,但是也可以將具有背閘極的電晶體適用於攝像裝置100所使用的所有電晶體或其一部分。
另外,如圖18B所示,連接到電晶體41至電晶體43所包括的背閘極的佈線也可以與各電晶體的閘極電連接。
在n通道型電晶體中,當對背閘極施加比源極電位低的電位時,臨界電壓向正方向移動。反之,當對背閘極施加比源極電位高的電位時,臨界電壓向負方向移動。因此,在使用預先設定的閘極電壓來控制各電晶體的導通和關閉的情況下,藉由對背閘極施加比源極電位低的電位,可以減小關態電流。此外,藉由對背閘極施加比源極電位高的電位,可以提高通態電流。
受光電路21的浮動節點Fn1及Fn2的電位保持功能較佳為高,由此,如上所述,較佳為將關態電流低的OS電晶體用作電晶體41至43。藉由對電晶體41至43的背閘極施加比源極電位低的電位,可以進一步減小關態電流。因此,可以提高浮動節點Fn1及Fn2的電位保持功能。
另外,如上所述,較佳為對圖18C所例示出的放大電路22a所包括的電晶體44a、45a使用通態電流高的電晶體。藉由對電晶體44a、45a的背閘極施加比源極電位高的電位,可以進一步提高通態電流。雖然圖18C示出受光電路21中的共通的背閘極與端子VBG(73)連接並且放大電路22a中的背閘極與端子VBG(73a)連接的例子,但是也可以分別對各電晶體所包括的背閘極供應彼此不同的電位。由此,藉由進一步提高通態電流,可以提高電路22a中的放大電路的響應性,從而可以在高頻下使該電路22a工作。
為了提高攝像裝置的受光靈敏度,藉由改變施加到光電二極體之間的電壓,可以控制流過光電二極體的電流量。因此,可以根據對使用環境進行檢測及管理的環境感測器(照度感測器、溫度感測器、濕度感測器等)的監測資料而設定適當的受光靈敏度。
在攝像裝置的內部,使用各電源電位、信號電位以及上述施加到背閘極的電位等多種電位。如果從攝像裝置的外部供應多種電位,端子數等就會增加。由此,攝像裝置較佳為包括在該攝像裝置內部生成多種電位的電源電路。
另外,也可以以圖19A所示的方式使受光電路21中的電晶體41與電晶體42連接。電晶體41的源極和汲極中的一個與電晶體42的源極和汲極中的一個與電晶體44a的閘極電連接,而形成浮動節點Fn1。
另外,如圖19B所示,圖19A所示的端子VRS(72)也可以直接連接到電晶體45a的閘極。
圖20A是示出類比數位轉換電路26的一個例子的方塊圖。類比數位轉換電路26可以包括比較器26a、計數電路26b等,且可以對佈線93(OUT3)輸出多個位的數位資料。
在比較器26a中,對從端子37輸入到端子38的信號電位與以上升或下降的方式被掃描了的參考電位(VREF)進行比較。並且,對應於比較器26a的輸出而使計數電路26b工作,將數位信號輸出到佈線93(OUT3)。
在此,為了實現高速工作及低功耗化,類比數位轉換電路26較佳為使用可以構成CMOS電路的Si電晶體來形成。
作為攝像元件10與類比數位轉換電路26的連接方法,例如如圖20B所示,可以藉由打線接合法等使用細線連接端子37與端子38。
在本實施方式中,描述了本發明的一個實施方式。或者,在其他實施方式中,描述本發明的一個實施方式。但是,本發明的一個實施方式不侷限於此。換而言之,在本實施方式及其他的實施方式中,記載有各種各樣的發明的方式,因此本發明的一個實施方式不侷限於特定的方式。例如,雖然作為例子示出將本發明的一個實施方式適用於攝像裝置的情況,但是本發明的一個實施方式不侷限於此。根據情況或狀況,也可以不將本發明的一個實施方式適用於攝像裝置。例如,也可以將本發明的一個實施方式適用於具有其他功能的半導體裝置。例如,作為本發明的一個實施方式,示出電晶體的通道形成區域、源極區域、汲極區域等包含氧化物半導體的例子,但是本發明的一個實施方式不侷限於此。根據情況或狀況,本發明的一個實施方式的各種電晶體、電晶體的通道形成區域、電晶體的源極區域、汲極區域等可以包含各種半導體。根據情況或狀況,本發明的一個實施方式的各種電晶體、電晶體的通道形成區域、或者電晶體的源極區域、汲極區域等可以包含矽、鍺、矽鍺、碳化矽、砷化鎵、砷化鋁鎵、磷化銦、氮化鎵和有機半導體等中的至少一個。另外,例如,根據情況或狀況,本發明的一個實施方式的各種電晶體、電晶體的通道形成區域、電晶體的源 極區域、汲極區域等可以不包含氧化物半導體。例如,雖然作為例子示出本發明的一個實施方式採用全域快門方式的情況,但是本發明的一個實施方式不侷限於此。根據情況或狀況,本發明的一個實施方式可以採用捲動快門方式等其他方式。根據情況或狀況,本發明的一個實施方式也可以不使用全域快門方式。
本實施方式所示的結構、方法可以與其他實施方式所示的結構、方法適當地組合而使用。
實施方式4
在本實施方式中,參照圖式對能夠用於本發明的一個實施方式的OS電晶體進行說明。注意,在本實施方式的圖式中,為了明確起見,放大、縮小或省略部分組件。
圖21A至圖21C是本發明的一個實施方式的電晶體101的俯視圖及剖面圖。圖21A是俯視圖,圖21A所示的點劃線X1-X2方向上的剖面相當於圖21B。另外,圖21A所示的點劃線Y1-Y2方向上的剖面相當於圖21C。
在本實施方式所說明的圖式中,將點劃線X1-X2方向稱為通道長度方向,將點劃線Y1-Y2方向稱為通道寬度方向。
電晶體101包括與基板115接觸的絕緣層120、與絕緣層120接觸的導電層173、與絕緣層120接觸的氧化物半導體層130、與氧化物半導體層130電連接的導電層140及導電層150、與氧化物半導體層130、導電層140及導電層150接觸的絕緣層160、與絕緣層160接觸的導電層170。
根據需要可以在電晶體101上設置與氧化物半導體層130、導電層140、導電層150、絕緣層160及導電層170接觸的絕緣層180。
氧化物半導體層130例如具有氧化物半導體層130a、130b、130c的三層結構。
導電層140、導電層150、絕緣層160及導電層170分別可以用作源極電極層、汲極電極層、閘極絕緣膜及閘極電極層。
藉由將導電層173用作第二閘極電極層(背閘極),可以增加通態電流或控制臨界電壓。此外,導電層173也可以用作遮光層。
當想要增加通態電流時,例如,可以對導電層170及導電層173供應相同的電位來實現雙閘極電晶體。另外,當想要控制臨界電壓時,可以對導電層173供應與導電層170不同的恆定電位。
在氧化物半導體層130中,與導電層140及導電層150接觸的區域可以用作源極區域或汲極區域。
由於氧化物半導體層130與導電層140及導電層150接觸,在氧化物半導體層130中產生氧缺陷,該氧缺陷與殘留在氧化物半導體層130中或從外部擴散的氫之間的相互作用使上述區域成為n型導電型的低電阻區域。
另外,電晶體的“源極”和“汲極”的功能在使用極性不同的電晶體的情況下或在電路工作中電流方向變化的情況等下,有時互相調換。因此,在本說明書中,“源極”和“汲極”可以互相調換。此外,“電極層”也可以稱為“佈線”。
導電層140及導電層150與氧化物半導體層130的頂面接觸而不與氧化物半導體層130的側面接觸。藉由採用該結構,絕緣層120所包含的氧可以容易填補氧化物半導體層130中的氧缺陷。
本發明的一個實施方式的電晶體也可以具有圖22A至圖22C所示的結構。圖22A是電晶體102的俯視圖,圖22A所示的點劃線X1-X2方向上的剖面相當於圖22B。另外,圖22A所示的點劃線Y1-Y2方向上的剖面相當於圖22C。
電晶體102具有與電晶體101同樣的結構,而不同之處在於:導電層140及導電層150與絕緣層120接觸;以及導電層140及導電層150與氧化物半導體層130的側面接觸。
此外,本發明的一個實施方式的電晶體也可以具有圖23A至圖23C所示的結構。圖23A是電晶體103的俯視圖,圖23A所示的點劃線X1-X2方 向上的剖面相當於圖23B。另外,圖23A所示的點劃線Y1-Y2方向上的剖面相當於圖23C。
電晶體103具有與電晶體101同樣的結構,而不同之處在於:氧化物半導體層130a、130b、導電層140及導電層150被氧化物半導體層130c及絕緣層160覆蓋。
藉由由氧化物半導體層130c覆蓋氧化物半導體層130a、130b,可以提高對氧化物半導體層130a、130b及絕緣層120填補氧的效果。此外,由於氧化物半導體層130c夾在絕緣層180與導電層140及導電層150之間,所以可以抑制絕緣層180造成的導電層140及導電層150的氧化。
此外,本發明的一個實施方式的電晶體也可以具有圖24A至圖24C所示的結構。圖24A是電晶體104的俯視圖,圖24A所示的點劃線X1-X2方向上的剖面相當於圖24B。另外,圖24A所示的點劃線Y1-Y2方向上的剖面相當於圖24C。
電晶體104具有與電晶體101同樣的結構,而不同之處在於:氧化物半導體層130a、130b、導電層140及導電層150被氧化物半導體層130c覆蓋;導電層170被絕緣層210覆蓋。
絕緣層210可以使用對氧具有阻擋性的材料。絕緣層210例如可以使用氧化鋁等金屬氧化物。由於絕緣層210夾在絕緣層180與導電層170之間,所以可以抑制絕緣層180造成的導電層170的氧化。
電晶體101至104為具有導電層170與導電層140及導電層150重疊的區域的頂閘極結構。為了減少寄生電容,較佳為將該區域的通道長度方向上的寬度設定為3nm以上且小於300nm。在該結構中,由於在氧化物半導體層130中沒有形成偏置區域,所以容易形成通態電流高的電晶體。
本發明的一個實施方式的電晶體也可以具有圖25A至圖25C所示的結構。圖25A是電晶體105的俯視圖,圖25A所示的點劃線X1-X2方向上的剖面相當於圖25B。另外,圖25A所示的點劃線Y1-Y2方向上的剖面相當於圖25C。
電晶體105包括與基板115接觸的絕緣層120、與絕緣層120接觸的導電層173、與絕緣層120接觸的氧化物半導體層130、與氧化物半導體層130接觸的絕緣層160、與絕緣層160接觸的導電層170。
另外,在用作層間絕緣膜的絕緣層180中設置有與氧化物半導體層130的區域231接觸的導電體200以及與氧化物半導體層130的區域232接觸的導電體201。導電體200及導電體201可以用作源極電極層的一部分或汲極電極層的一部分。
較佳為對電晶體105中的區域231及區域232添加用來形成氧缺陷來提高導電率的雜質。作為在氧化物半導體層中形成氧缺陷的雜質,例如可以使用選自磷、砷、銻、硼、鋁、矽、氮、氦、氖、氬、氪、氙、銦、氟、氯、鈦、鋅及碳中的一種以上。作為該雜質的添加方法,可以使用電漿處理法、離子植入法、離子摻雜法、電漿浸沒離子佈植技術(Plasma-immersion ion implantation method)等。
藉由將上述元素作為雜質元素添加到氧化物半導體層,氧化物半導體層中的金屬元素與氧之間的鍵合被切斷,形成氧缺陷。藉由包含在氧化物半導體層中的氧缺陷與殘留在氧化物半導體層中或在後面添加的氫之間的相互作用,可以提高氧化物半導體層的導電率。
當對添加雜質元素形成有氧缺陷的氧化物半導體添加氫時,氫進入氧缺陷處而在導帶附近形成施體能階。其結果是,可以形成氧化物導電體。這裡氧化物導電體是指導電體化的氧化物半導體。
電晶體105的結構是不具有導電層170與導電層140及導電層150重疊的區域的自對準結構。自對準結構的電晶體由於閘極電極層與源極電極層及汲極電極層之間的寄生電容極小,所以適合於高速工作。
本發明的一個實施方式的電晶體也可以具有圖26A至圖26C所示的結構。圖26A是電晶體106的俯視圖,圖26A所示的點劃線X1-X2方向上的剖面相當於圖26B。另外,圖26A所示的點劃線Y1-Y2方向上的剖面相當於圖26C。
電晶體106包括:基板115;基板115上的絕緣層120;與絕緣層120接觸的導電層173;絕緣層120上的氧化物半導體層130(氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c);與氧化物半導體層130接觸且彼此相隔的導電層140及導電層150;與氧化物半導體層130c接觸的絕緣層160;以及與絕緣層160接觸的導電層170。
另外,氧化物半導體層130c、絕緣層160及導電層170設置在開口中,該開口形成在電晶體106上的絕緣層180中且到達氧化物半導體層130a、氧化物半導體層130b及絕緣層120。
本發明的一個實施方式的電晶體也可以具有圖27A至圖27C所示的結構。圖27A是電晶體107的俯視圖,圖27A所示的點劃線X1-X2方向上的剖面相當於圖27B。另外,圖27A所示的點劃線Y1-Y2方向上的剖面相當於圖27C。
電晶體107具有與電晶體106同樣的結構,而不同之處在於:氧化物半導體層130a、130b、導電層140及導電層150被氧化物半導體層130c及氧化物半導體層130d覆蓋。氧化物半導體層130d可以使用與氧化物半導體層130c相同的材料形成。
藉由由氧化物半導體層130c、130d覆蓋氧化物半導體層130a、130b,可以提高對氧化物半導體層130a、130b及絕緣層120的氧填補效果。此外,由於氧化物半導體層130d夾在絕緣層180與導電層140及導電層150之間,所以可以抑制絕緣層180造成的導電層140及導電層150氧化。
在電晶體106、107的結構中,成為源極或汲極的導電體與成為閘極電極的導電體重疊的區域小,由此可以使寄生電容小。由此,電晶體106、107適合於需要高速工作的電路的組件。
另外,在本發明的一個實施方式的電晶體中,如圖28A所示,氧化物半導體層130也可以由單層形成。或者,如圖28B所示,氧化物半導體層130也可以由兩個層形成。
另外,如圖28C所示,本發明的一個實施方式的電晶體也可以不具有 導電層173。
另外,在本發明的一個實施方式的電晶體中,為了將導電層170與導電層173電連接,例如,如圖28D所示,可以在絕緣層120、氧化物半導體層130c及絕緣層160中設置到達導電層173的開口,並以覆蓋該開口的方式形成導電層170。
另外,如圖28E所示,本發明的一個實施方式的電晶體也可以設置有分別與導電層140及導電層150接觸的絕緣層145及絕緣層155。藉由設置絕緣層145及絕緣層155,可以抑制導電層140及導電層150的氧化。
絕緣層145及絕緣層155可以使用對氧具有阻擋性的材料。例如,絕緣層145及絕緣層155可以使用氧化鋁等金屬氧化物。
另外,如圖28F所示,在本發明的一個實施方式的電晶體中,導電層170也可以由導電層171及導電層172的疊層形成。
另外,在導電層140、150設置於氧化物半導體層130上的本發明的一個實施方式的電晶體中,如圖28G和圖28H所示的俯視圖(僅示出氧化物半導體層130、導電層140及導電層150)那樣,可以使導電層140及導電層150的寬度(WSD)比氧化物半導體層130的寬度(WOS)短。當滿足WOS WSD(WSD為WOS以下)的關係時,閘極電場容易施加到通道形成區域整體,可以提高電晶體的電特性。
另外,雖然圖28A至圖28F示出電晶體101的變形例,但是上述變形例也可以應用於本實施方式所說明的其他電晶體。
在本發明的一個實施方式的電晶體中的任何結構中,作為閘極電極層的導電層170(及導電層173)隔著絕緣層在通道寬度方向上電性上包圍氧化物半導體層130。藉由採用該結構,可以提高通態電流。將該結構稱為surrounded channel(s-channel)結構。
在具有氧化物半導體層130a及氧化物半導體層130b的電晶體以及具有氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c的 電晶體中,藉由適當地選擇構成氧化物半導體層130的兩層或三層的材料,可以將電流流過在氧化物半導體層130b中。由於電流流過氧化物半導體層130b,因此不容易受到介面散射的影響,所以可以獲得很大的通態電流。
藉由採用上述結構的電晶體,可以使半導體裝置具有良好的電特性。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。
實施方式5
在本實施方式中,對實施方式3所示的電晶體的組件進行詳細的說明。
作為基板115,可以使用玻璃基板、石英基板、半導體基板、陶瓷基板、對表面進行了絕緣處理的金屬基板等。或者,作為基板115,可以使用形成有電晶體或光電二極體的矽基板,該矽基板上形成有絕緣層、佈線、用作接觸插頭的導電體等。另外,當對矽基板形成p通道型電晶體時,較佳為使用具有n-型導電型的矽基板。另外,也可以使用包括n-型或i型矽層的SOI基板。另外,當對矽基板設置的電晶體為p通道型電晶體時,較佳為使用如下矽基板:形成電晶體的表面的晶體配向為(110)面。藉由在(110)面形成p通道型電晶體,可以提高移動率。
絕緣層120除了防止雜質從包含在基板115中的組件擴散的功能以外,還可以具有對氧化物半導體層130供應氧的功能。因此,絕緣層120較佳為含氧的絕緣膜,更佳為包含比化學計量組成多的氧的絕緣膜。例如,絕緣層120為藉由在膜表面溫度為100℃以上且700℃以下,較佳為100℃以上且500℃以下的加熱處理中利用TDS法而得到的換算為氧原子的氧釋放量為1.0×1019atoms/cm3以上的膜。此外,當基板115是形成有其他裝置的基板時,絕緣層120還用作層間絕緣膜。在此情況下,較佳為利用CMP法等進行平坦化處理,以使其表面平坦。
作為用作背閘極電極層的導電層173例如可以使用Al、Ti、Cr、Co、Ni、Cu、Y、Zr、Mo、Ru、Ag、Mn、Nd、Sc、Ta及W等的導電膜。另外,也可以使用上述材料的合金或上述材料的導電氮化物。另外,也可以 使用選自上述材料、上述材料的合金及上述材料的導電氮化物中的多種材料的疊層。
例如,作為絕緣層120可以使用氧化鋁、氧化鎂、氧化矽、氧氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿和氧化鉭等氧化物絕緣膜、氮化矽、氮氧化矽、氮化鋁和氮氧化鋁等氮化物絕緣膜或者這些的混合材料。此外,也可以使用上述材料的疊層。
氧化物半導體層130可以採用從絕緣層120一側依次層疊氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c的三層結構。
此外,當氧化物半導體層130為單層時,可以使用相當於本實施方式所示的氧化物半導體層130b的層。
當氧化物半導體層130為兩層時,可以使用從絕緣層120一側依次層疊相當於氧化物半導體層130a的層及相當於氧化物半導體層130b的層的疊層。當採用該結構時,也可以調換氧化物半導體層130a與氧化物半導體層130b。
例如,氧化物半導體層130b使用其電子親和力(真空能階與導帶底之間的能量差)大於氧化物半導體層130a及氧化物半導體層130c的氧化物半導體。
在上述結構中,當對導電層170施加電壓時,通道形成在氧化物半導體層130中的導帶底的能量最低的氧化物半導體層130b中。由此,可以說:氧化物半導體層130b具有被用作半導體的區域,而氧化物半導體層130a及氧化物半導體層130c具有被用作絕緣體或半絕緣體的區域。
另外,能夠用於氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c的氧化物半導體較佳為至少包含In或Zn。或者,較佳為包含In和Zn的兩者。另外,為了減少使用該氧化物半導體的電晶體的電特性偏差,除了上述元素以外,較佳為還包含Al、Ga、Y或Sn等穩定劑(stabilizer)。
例如,氧化物半導體層130a及氧化物半導體層130c可以使用 In:Ga:Zn=1:3:2、1:3:3、1:3:4、1:3:6、1:4:5、1:6:4、1:9:6(原子數比)或其附近的原子數比的In-Ga-Zn氧化物等。此外,氧化物半導體層130b可以使用In:Ga:Zn=1:1:1、2:1:3、5:5:6、3:1:2、3:1:4、5:1:6、4:2:3(原子數比)或其附近的原子數比的In-Ga-Zn氧化物等。
氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c也可以包含結晶部。例如,藉由使用c軸配向結晶,能夠對電晶體賦予穩定的電特性。另外,c軸配向的結晶抗彎曲,由此可以提高使用撓性基板的半導體裝置的可靠性。
作為用作源極電極層的導電層140及用作汲極電極層的導電層150,例如可以使用選自Al、Cr、Cu、Ta、Ti、Mo、W、Ni、Mn、Nd、Sc及該金屬材料的合金或導電性氮化物中的材料的單層或疊層。當使用導電性氮化物的氮化鉭時,可以防止氧化。此外,也可以使用低電阻的Cu或Cu-Mn等合金與上述材料的疊層。
上述材料具有從氧化物半導體膜抽出氧的性質。由此,在與上述材料接觸的氧化物半導體膜的一部分的區域中,氧化物半導體層中的氧被脫離,而在氧化物半導體層中形成氧缺陷。包含於氧化物半導體層中的微量的氫與該氧缺陷鍵合而使該區域明顯地n型化。因此,可以將該n型化的區域用作電晶體的源極或汲極。
作為用作閘極絕緣膜的絕緣層160,可以使用包含氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿和氧化鉭中的一種以上的絕緣膜。此外,絕緣層160也可以是上述材料的疊層。
此外,作為與氧化物半導體層130接觸的絕緣層120及絕緣層160較佳為使用氮氧化物的釋放量少的膜。當氮氧化物的釋放量多的絕緣層與氧化物半導體接觸時,有時因氮氧化物導致能階密度變高。
藉由作為絕緣層120及絕緣層160使用上述絕緣膜,可以降低電晶體的臨界電壓的漂移,由此可以降低電晶體的電特性變動。
作為用作閘極電極層的導電層170例如可以使用Al、Ti、Cr、Co、Ni、Cu、Y、Zr、Mo、Ru、Ag、Mn、Nd、Sc、Ta及W等的導電膜。另外,也可以使用上述材料的合金或上述材料的導電氮化物。此外,也可以使用選自上述材料、上述材料的合金及上述材料的導電氮化物中的多種材料的疊層。典型的是,可以使用鎢、鎢與氮化鈦的疊層、鎢與氮化鉭的疊層等。另外,也可以使用低電阻的Cu或Cu-Mn等合金或者上述材料與Cu或Cu-Mn等合金的疊層。例如,可以作為導電層171使用氮化鈦,作為導電層172使用鎢,以便形成導電層170。
另外,作為導電層170也可以使用In-Ga-Zn氧化物、氧化鋅、氧化銦、氧化錫、氧化銦錫等氧化物導電層。藉由以接觸於絕緣層160的方式設置氧化物導電層,可以從該氧化物導電層對氧化物半導體層130供應氧。
作為絕緣層180可以使用包含氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿和氧化鉭中的一種以上的絕緣膜。此外,該絕緣層也可以是上述材料的疊層。
在此,絕緣層180較佳為與絕緣層120同樣地包含比化學計量組成多的氧。能夠將從絕緣層180釋放的氧穿過絕緣層160擴散到氧化物半導體層130的通道形成區域,因此能夠對形成在通道形成區域中的氧缺陷填補氧。由此,能夠獲得穩定的電晶體電特性。
此外,在電晶體上或絕緣層180上,較佳為設置具有雜質阻擋效果的膜。作為該障壁膜,可以使用氮化矽膜、氮化鋁膜或氧化鋁膜等。
氮化絕緣膜具有阻擋水分等的功能,可以提高電晶體的可靠性。氧化鋁膜的不使氫、水分等雜質以及氧透過的阻擋效果高。因此,將氧化鋁膜適合用作具有如下效果的保護膜:在電晶體的製程中及製造電晶體之後,防止氫、水分等雜質向氧化物半導體層130混入;防止從氧化物半導體層釋放氧;防止氧的從絕緣層120的不需要的釋放。
為了實現半導體裝置的高積體化,必須進行電晶體的微型化。另一方面,伴隨著電晶體的微型化,電晶體的電特性劣化,例如,通道寬度的縮短導致通態電流的降低。
在本發明的一個實施方式的電晶體中,可以由氧化物半導體層130c覆蓋其中形成通道的氧化物半導體層130b。在該結構中,通道形成層不與閘極絕緣膜接觸,由此能夠抑制在通道形成層與閘極絕緣膜的介面產生的載子散射,可以增高電晶體的通態電流。
此外,在本發明的一個實施方式的電晶體中,如上所述,以在通道寬度方向上電性上包圍氧化物半導體層130的方式形成有閘極電極層(導電層170),因此氧化物半導體層130除了垂直於頂面的方向上被施加閘極電場之外,垂直於側面的方向上也被施加閘極電場。換言之,對通道形成層整體施加閘極電場而實效通道寬度擴大,由此可以進一步提高通態電流。
雖然本實施方式所說明的金屬膜、半導體膜及無機絕緣膜等各種膜可以典型地利用濺射法或電漿CVD法形成,但是也可以利用熱CVD法等其他方法形成。作為熱CVD法的例子,可以舉出MOCVD(Metal Organic Chemical Vapor Deposition:有機金屬化學氣相沉積)法或ALD(Atomic Layer Deposition:原子層沉積)法等。
由於熱CVD法是不使用電漿的成膜方法,因此具有不產生電漿損傷所引起的缺陷的優點。
此外,可以以如下方法進行利用熱CVD法的成膜:將源氣體及氧化劑同時供應到腔室內,將腔室內的壓力設定為大氣壓或減壓,使其在基板附近或在基板上起反應。
可以以如下方法進行利用ALD法的成膜:將腔室內的壓力設定為大氣壓或減壓,將用於反應的源氣體引入腔室並起反應,並且按該順序反復地引入氣體。另外,也可以將源氣體與惰性氣體(氬或氮等)用作載子氣體一併地進行引入。例如,也可以將兩種以上的源氣體依次供應到腔室內。此時,在第一源氣體起反應之後引入惰性氣體,然後引入第二源氣體,以防止多種源氣體混合。或者,也可以不引入惰性氣體而藉由真空抽氣將第一源氣體排出,然後引入第二源氣體。第一源氣體附著到基板表面且起反應來形成第一層,之後引入的第二源氣體附著且起反應,由此第二層層疊在第一層上而形成薄膜。藉由按該順序反復多次地引入氣體直到獲得所希 望的厚度為止,可以形成步階覆蓋性良好的薄膜。由於薄膜的厚度可以根據反復引入氣體的次數來進行調節,因此,ALD法可以準確地調節厚度而適用於製造微型FET。
當形成氧化物半導體層時,也可以使用對向靶材式濺射裝置。另外,也可以將使用該對向靶材式濺射裝置的成膜方法稱為VDSP(vapor deposition SP)。
藉由使用對向靶材式濺射裝置形成氧化物半導體層,可以減少在形成氧化物半導體層時產生的電漿損傷。因此,可以減少膜中的氧缺陷。此外,藉由使用對向靶材式濺射裝置可以在低壓下進行成膜,從而可以減少所形成的氧化物半導體層中的雜質濃度(例如,氫、稀有氣體(氬等)、水等)。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。
實施方式6
在本說明書等中,金屬氧化物(metal oxide)是指廣義上的金屬的氧化物。金屬氧化物被分類為氧化物絕緣體、氧化物導電體(包括透明氧化物導電體)和氧化物半導體(Oxide Semiconductor,也可以簡稱為OS)等。例如,在將金屬氧化物用於電晶體的半導體層的情況下,有時將該金屬氧化物稱為氧化物半導體。換言之,在金屬氧化物具有放大作用、整流作用及開關作用中的至少一個時,該金屬氧化物稱為金屬氧化物半導體(metal oxide semiconductor),簡稱為OS。此外,可以將OS電晶體換稱為包含金屬氧化物或氧化物半導體的電晶體。
此外,在本說明書等中,有時將包含氮的金屬氧化物也稱為金屬氧化物(metal oxide)。此外,也可以將包含氮的金屬氧化物稱為金屬氧氮化物(metal oxynitride)。
此外,在本說明書等中,有時記載CAAC(c-axis aligned crystal)或CAC(Cloud-Aligned composite)。注意,CAAC是指結晶結構的一個例子,CAC是指功能或材料構成的一個例子。
此外,在本說明書等中,CAC-OS或CAC-metal oxide在材料的一部分中具有導電性的功能,在材料的另一部分中具有絕緣性的功能,作為材料的整體具有半導體的功能。此外,在將CAC-OS或CAC-metal oxide用於電晶體的半導體層的情況下,導電性的功能是使被用作載子的電子(或電洞)流過的功能,絕緣性的功能是不使被用作載子的電子流過的功能。藉由導電性的功能和絕緣性的功能的互補作用,可以使CAC-OS或CAC-metal oxide具有開關功能(開啟/關閉的功能)。藉由在CAC-OS或CAC-metal oxide中使各功能分離,可以最大限度地提高各功能。
此外,CAC-OS或CAC-metal oxide由具有不同能帶間隙的成分構成。例如,CAC-OS或CAC-metal oxide由具有起因於絕緣性區域的寬隙的成分及具有起因於導電性區域的窄隙的成分構成。在該結構中,當使載子流過時,載子主要在具有窄隙的成分中流過。此外,具有窄隙的成分與具有寬隙的成分互補作用,與具有窄隙的成分聯動地在具有寬隙的成分中載子流過。因此,在將上述CAC-OS或CAC-metal oxide用於電晶體的通道區域時,在電晶體的導通狀態中可以得到高電流驅動力,亦即大通態電流(on-state current)及高場效移動率。
就是說,也可以將CAC-OS或CAC-metal oxide稱為基質複合材料(matrix composite)或金屬基質複合材料(metal matrix composite)。
〈CAC-OS的構成〉
以下,對可用於在本發明的一個實施方式中公開的電晶體的CAC-OS的構成進行說明。
CAC-OS例如是指包含在氧化物半導體中的元素不均勻地分佈的構成,其中包含不均勻地分佈的元素的材料的尺寸為0.5nm以上且10nm以下,較佳為1nm以上且2nm以下或近似的尺寸。注意,在下面也將在氧化物半導體中一個或多個金屬元素不均勻地分佈且包含該金屬元素的區域混合的狀態稱為馬賽克(mosaic)狀或補丁(patch)狀,該區域的尺寸為0.5nm以上且10nm以下,較佳為1nm以上且2nm以下或近似的尺寸。
氧化物半導體較佳為至少包含銦。尤其是,較佳為包含銦及鋅。除此之外,也可以還包含選自鋁、鎵、釔、銅、釩、鈹、硼、矽、鈦、鐵、鎳、 鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂等中的一種或多種。
例如,In-Ga-Zn氧化物中的CAC-OS(在CAC-OS中,尤其可以將In-Ga-Zn氧化物稱為CAC-IGZO)是指材料分成銦氧化物(以下,稱為InOX1(X1為大於0的實數))或銦鋅氧化物(以下,稱為InX2ZnY2OZ2(X2、Y2及Z2為大於0的實數))以及鎵氧化物(以下,稱為GaOX3(X3為大於0的實數))或鎵鋅氧化物(以下,稱為GaX4ZnY4OZ4(X4、Y4及Z4為大於0的實數))等而成為馬賽克狀,且馬賽克狀的InOX1或InX2ZnY2OZ2均勻地分佈在膜中的構成(以下,也稱為雲狀)。
換言之,CAC-OS是具有以GaOX3為主要成分的區域和以InX2ZnY2OZ2或InOX1為主要成分的區域混在一起的構成的複合氧化物半導體。在本說明書中,例如,當第一區域的In與元素M的原子數比大於第二區域的In與元素M的原子數比時,第一區域的In濃度高於第二區域。
注意,IGZO是通稱,有時是指包含In、Ga、Zn及O的化合物。作為典型例子,可以舉出以InGaO3(ZnO)m1(m1為自然數)或In(1+x0)Ga(1-x0)O3(ZnO)m0(-1x01,m0為任意數)表示的結晶性化合物。
上述結晶性化合物具有單晶結構、多晶結構或CAAC結構。CAAC結構是多個IGZO的奈米晶具有c軸配向性且在a-b面上以不配向的方式連接的結晶結構。
另一方面,CAC-OS與氧化物半導體的材料構成有關。CAC-OS是指如下構成:在包含In、Ga、Zn及O的材料構成中,一部分中觀察到以Ga為主要成分的奈米粒子狀區域以及一部分中觀察到以In為主要成分的奈米粒子狀區域分別以馬賽克狀無規律地分散。因此,在CAC-OS中,結晶結構是次要因素。
CAC-OS不包含組成不同的二種以上的膜的疊層結構。例如,不包含由以In為主要成分的膜與以Ga為主要成分的膜的兩層構成的結構。
注意,有時觀察不到以GaOX3為主要成分的區域與以InX2ZnY2OZ2或InOX1為主要成分的區域之間的明確的邊界。
在CAC-OS中包含選自鋁、釔、銅、釩、鈹、硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂等中的一種或多種以代替鎵的情況下,CAC-OS是指如下構成:一部分中觀察到以該元素為主要成分的奈米粒子狀區域以及一部分中觀察到以In為主要成分的奈米粒子狀區域以馬賽克狀無規律地分散。
CAC-OS例如可以藉由在對基板不進行意圖性的加熱的條件下利用濺射法來形成。在利用濺射法形成CAC-OS的情況下,作為沉積氣體,可以使用選自惰性氣體(典型的是氬)、氧氣體和氮氣體中的一種或多種。另外,成膜時的沉積氣體的總流量中的氧氣體的流量比越低越好,例如,將氧氣體的流量比設定為0%以上且低於30%,較佳為0%以上且10%以下。
CAC-OS具有如下特徵:藉由根據X射線繞射(XRD:X-ray diffraction)測定法之一的out-of-plane法利用θ/2θ掃描進行測定時,觀察不到明確的峰值。也就是說,根據X射線繞射,可知在測定區域中沒有a-b面方向及c軸方向上的配向。
另外,在藉由照射束徑為1nm的電子束(也稱為奈米束)而取得的CAC-OS的電子繞射圖案中,觀察到環狀的亮度高的區域以及在該環狀區域內的多個亮點。由此,根據電子繞射圖案,可知CAC-OS的結晶結構具有在平面方向及剖面方向上沒有配向的nc(nano-crystal)結構。
另外,例如在In-Ga-Zn氧化物的CAC-OS中,根據藉由能量色散型X射線分析法(EDX:Energy Dispersive X-ray spectroscopy)取得的EDX面分析影像,可確認到:具有以GaOX3為主要成分的區域及以InX2ZnY2OZ2或InOX1為主要成分的區域不均勻地分佈而混合的構成。
CAC-OS的結構與金屬元素均勻地分佈的IGZO化合物不同,具有與IGZO化合物不同的性質。換言之,CAC-OS具有以GaOX3等為主要成分的區域及以InX2ZnY2OZ2或InOX1為主要成分的區域互相分離且以各元素為主要成分的區域為馬賽克狀的構成。
在此,以InX2ZnY2OZ2或InOX1為主要成分的區域的導電性高於以GaOX3等為主要成分的區域。換言之,當載子流過以InX2ZnY2OZ2或InOX1為主要 成分的區域時,呈現氧化物半導體的導電性。因此,當以InX2ZnY2OZ2或InOX1為主要成分的區域在氧化物半導體中以雲狀分佈時,可以實現高場效移動率(μ)。
另一方面,以GaOX3等為主要成分的區域的絕緣性高於以InX2ZnY2OZ2或InOX1為主要成分的區域。換言之,當以GaOX3等為主要成分的區域在氧化物半導體中分佈時,可以抑制洩漏電流而實現良好的切換工作。
因此,當將CAC-OS用於半導體元件時,藉由起因於GaOX3等的絕緣性及起因於InX2ZnY2OZ2或InOX1的導電性的互補作用可以實現高通態電流(Ion)及高場效移動率(μ)。
另外,使用CAC-OS的半導體元件具有高可靠性。因此,CAC-OS適用於顯示器等各種半導體裝置。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施方式7
在本實施方式中,對容納影像感測器晶片的封裝及相機模組的一個例子進行說明。可以將本發明的一個實施方式的攝像裝置的結構用於該影像感測器晶片。
圖29A是容納影像感測器晶片的封裝的頂面一側的外觀立體圖。該封裝包括固定影像感測器晶片850的封裝基板810、玻璃蓋板820以及黏合兩者的黏合劑830等。
圖29B是該封裝的底面一側的外觀立體圖。封裝的底面有以焊球為凸塊(bump)840的BGA(Ball grid array:球柵陣列)結構。但是,不侷限於BGA結構,還可以採用LGA(Land grid array:地柵陣列)或PGA(Pin Grid Array:針柵陣列)等結構。
圖29C是省略玻璃蓋板820及黏合劑830的一部分的封裝的立體圖,圖29D是該封裝的剖面圖。在封裝基板810上形成有盤狀電極860,盤狀 電極860藉由通孔880及焊盤885與凸塊840電連接。盤狀電極860藉由線870與影像感測器晶片850所具有的電極電連接。
另外,圖30A是相機模組的頂面一側的外觀立體圖,其模組中將影像感測器晶片容納於透鏡一體型的封裝中。該相機模組包括固定影像感測器晶片851的封裝基板811、透鏡蓋板821及透鏡835等。另外,在封裝基板811與影像感測器晶片851之間也設置有具有攝像裝置的驅動電路及信號轉換電路等功能的IC晶片890。由此,形成SiP(System in Package:系統封裝)。
圖30B是該相機模組的底面一側的外觀立體圖。在封裝基板811的底面及其四個側面上具有用來安裝的焊盤841的QFN(Quad flat no-lead package:四側無引腳扁平封裝)的結構。另外,該結構為一個例子,也可以採用QFP(Quad flat package:四面扁平封裝)及上述BGA等。
圖30C是省略透鏡蓋板821及透鏡835的一部分的模組的立體圖,圖30D是該相機模組的剖面圖。將焊盤841的一部分用作盤狀電極861,盤狀電極861藉由線871與影像感測器晶片851及IC晶片890所包括的電極電連接。
藉由將影像感測器晶片容納於上述方式的封裝中,可以容易進行安裝,從而可以將影像感測器晶片安裝在各種半導體裝置及電子裝置中。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。
實施方式8
作為可以使用本發明的一個實施方式的攝像裝置的電子裝置,可以舉出顯示裝置、個人電腦、具備儲存媒體的影像記憶體裝置及影像再現裝置、行動電話、包括可攜式的遊戲機、可攜式資料終端、電子書閱讀器、拍攝裝置諸如視頻攝影機或數位相機等、護目鏡型顯示器(頭戴式顯示器)、導航系統、音頻再生裝置(汽車音響系統、數位聲訊播放機等)、影印機、傳真機、印表機、多功能印表機、自動櫃員機(ATM)以及自動販賣機等。 圖31A至圖31F示出這些電子裝置的具體例子。
圖31A是監控攝影機,該監控攝影機包括外殼951、透鏡952及支撐部953等。作為在該監控攝影機中用來取得影像的構件中的一個,可以具備本發明的一個實施方式的攝像裝置。注意,“監控攝影機”是一般名稱,不侷限於其用途。例如,具有監控攝影機的功能的裝置被稱為攝影機或視頻攝影機。
圖31B是視頻攝影機,該視頻攝影機包括第一外殼971、第二外殼972、顯示部973、操作鍵974、透鏡975、連接部976等。操作鍵974及透鏡975設置在第一外殼971中,顯示部973設置在第二外殼972中。作為在該視頻攝影機中用來取得影像的構件中的一個,可以具備本發明的一個實施方式的攝像裝置。
圖31C是數位相機,該數位相機包括外殼961、快門按鈕962、麥克風963、發光部967以及透鏡965等。作為在該數位相機中用來取得影像的構件中的一個,可以具備本發明的一個實施方式的攝像裝置。
圖31D是手錶型資訊終端,該手錶型資訊終端包括外殼931、顯示部932、腕帶933、操作按鈕935、錶冠936以及相機939等。顯示部932也可以為觸控面板。作為在該資訊終端中用來取得影像的構件中的一個,可以具備本發明的一個實施方式的攝像裝置。
圖31E是可攜式遊戲機,該可攜式遊戲機包括外殼901、外殼902、顯示部903、顯示部904、麥克風905、揚聲器906、操作鍵907、觸控筆908以及相機909等。注意,雖然圖31E所示的可攜式遊戲機包括兩個顯示部903和顯示部904,但是可攜式遊戲機所包括的顯示部的個數不限於此。作為在該可攜式遊戲機中用來取得影像的構件中的一個,可以具備本發明的一個實施方式的攝像裝置。
圖31F是可攜式資料終端,該可攜式資料終端包括外殼911、顯示部912、相機919等。藉由顯示部912所具有的觸控面板功能可以輸入且輸出資訊。作為在該可攜式資料終端中用來取得影像的構件中的一個,可以具備本發明的一個實施方式的攝像裝置。
10‧‧‧攝像元件
20‧‧‧像素
20a‧‧‧判定電路
26‧‧‧類比數位轉換電路
27‧‧‧解碼器電路
28‧‧‧選擇器電路
29‧‧‧控制部
30‧‧‧特徵抽出電路
30a‧‧‧運算放大器
31‧‧‧判定輸出電路
100‧‧‧攝像裝置
G1‧‧‧掃描線
G2‧‧‧掃描線
OUT‧‧‧信號線
OUT1‧‧‧信號線

Claims (13)

  1. 一種具有神經網路的神經元的攝像裝置,包括:多個第一像素;第一電路;第二電路;以及第三電路,其中,該多個第一像素包括光電轉換元件,該光電轉換元件與該第一電路電連接,該第一電路與該第二電路電連接,該第二電路與該第三電路電連接,該多個第一像素生成該神經網路中的該神經元的輸入信號,該第一電路、該第二電路及該第三電路被用作該神經元,並且,該第三電路包括連接於該神經網路的介面。
  2. 根據申請專利範圍第1項之攝像裝置,其中該多個第一像素將接收的光轉換為類比信號,該第一電路放大該類比信號,該第二電路將被放大的多個該類比信號加在一起,該第三電路藉由使用啟動函數將被加在一起的該類比信號轉換為特徵資料,並且該第三電路判定該特徵資料。
  3. 根據申請專利範圍第1項之攝像裝置,其中該第一電路包括放大電路、第一記憶體電路及第一加法電路, 該第二電路包括第二加法電路,該第三電路包括第一運算電路及第二記憶體電路,該多個第一像素將光轉換為第一信號並將其輸出,該放大電路以保持在該第一記憶體電路中的放大率放大該第一信號,該第一加法電路對被放大的該第一信號加上失調電壓,該第一加法電路輸出對該第一信號加上該失調電壓的結果的第二信號,該第二加法電路將多個該第二信號加在一起,該第二加法電路輸出將多個該第二信號加在一起而得到的類比信號的第三信號,該第一運算電路判定該第三信號並進行二值化,該第一運算電路將二值化了的該信號作為特徵資料供應給該第二記憶體電路,並且該第二記憶體電路將該特徵資料輸出到該神經網路。
  4. 根據申請專利範圍第1項之攝像裝置,其中該多個第一像素將接收的光轉換為類比信號並輸出該類比信號作為第四信號,該第一電路將該第四信號轉換為數位信號,該第一電路生成具有藉由使用位移位對該數位信號的位準進行分類而得到的特徵的第五信號,該第二電路抽出該第五信號的該特徵並進行合計,該第三電路藉由使用啟動函數將合計結果轉換為特徵資料, 並且該第三電路判定該特徵資料。
  5. 根據申請專利範圍第4項之攝像裝置,其中該第一電路包括第一輸入選擇電路、類比數位轉換電路、第一判定電路及第一記憶體電路,該第二電路包括第二輸入選擇電路及特徵抽出電路,該第三電路包括第二判定電路及第二記憶體電路,該第一輸入選擇電路選擇多個該第四信號中的任一個,該類比數位轉換電路將被選擇的該第四信號轉換為該數位信號,該第一判定電路根據所選擇的位移位量以2的乘方數放大該數位信號,該第一判定電路根據該位移位量判定被放大的該數位信號的位準,該第一判定電路將判定結果作為該第五信號供應給該第一記憶體電路,該第二輸入選擇電路依次選擇該第一記憶體電路所保持的該第五信號並將所選擇的該第五信號輸出到該特徵抽出電路,該特徵抽出電路對具有該特徵的該第五信號進行計數,該第二判定電路對被提供的條件與計數結果進行比較,該第二判定電路將比較結果作為特徵資料供應給該第二記憶體電路,並且該第二記憶體電路將該特徵資料輸出到該神經網路。
  6. 根據申請專利範圍第1項之攝像裝置,還包括:信號線;以及第二類比數位轉換電路,其中該多個第一像素將接收的光轉換為類比信號, 並且該類比信號從該多個第一像素的每一個藉由該信號線供應給該第二類比數位轉換電路。
  7. 根據申請專利範圍第4項之攝像裝置,其中該第三電路包括選擇電路,並且該特徵資料被分割成各具有所選擇的長度的資料且輸出到該神經網路。
  8. 根據申請專利範圍第1項之攝像裝置,其中該多個第一像素包括第一電晶體,並且該第一電晶體在半導體層中包含金屬氧化物。
  9. 根據申請專利範圍第8項之攝像裝置,其中該多個第一像素所包括的該第一電晶體在該半導體層中包含金屬氧化物,並且該多個第一像素以外的電路所包括的第二電晶體在半導體層中包含單晶矽。
  10. 根據申請專利範圍第8項之攝像裝置,其中該第一電晶體包括背閘極。
  11. 根據申請專利範圍第8項之攝像裝置,其中該第一電晶體包括與該光電轉換元件重疊的區域。
  12. 一種攝像模組,包括:申請專利範圍第1項之攝像裝置;以及透鏡。
  13. 一種電子裝置,包括: 申請專利範圍第1項之攝像裝置;以及顯示裝置。
TW106125618A 2016-08-03 2017-07-28 攝像裝置及包括攝像裝置的晶片 TWI758307B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016153194 2016-08-03
JP2016-153194 2016-08-03
JP2016-153192 2016-08-03
JP2016153192 2016-08-03

Publications (2)

Publication Number Publication Date
TW201810134A true TW201810134A (zh) 2018-03-16
TWI758307B TWI758307B (zh) 2022-03-21

Family

ID=61069649

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106125618A TWI758307B (zh) 2016-08-03 2017-07-28 攝像裝置及包括攝像裝置的晶片
TW111107410A TWI789259B (zh) 2016-08-03 2017-07-28 攝像裝置及包括攝像裝置的晶片

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111107410A TWI789259B (zh) 2016-08-03 2017-07-28 攝像裝置及包括攝像裝置的晶片

Country Status (7)

Country Link
US (3) US20180039882A1 (zh)
JP (5) JP7008445B2 (zh)
KR (3) KR20230133409A (zh)
CN (2) CN111526267B (zh)
DE (1) DE112017003898B4 (zh)
TW (2) TWI758307B (zh)
WO (1) WO2018025116A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685959B (zh) * 2019-01-07 2020-02-21 力晶積成電子製造股份有限公司 影像感測器及其製造方法
TWI836008B (zh) * 2019-03-01 2024-03-21 法商艾索格公司 顏色及紅外影像感測器
US11956526B2 (en) 2018-12-05 2024-04-09 Sony Group Corporation Image capturing element, image capturing device and method
US11955502B2 (en) 2018-09-11 2024-04-09 Sony Semiconductor Solutions Corporation Solid-state image sensor to reduce display unevenness of a captured image

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098698A (ja) * 2015-11-20 2017-06-01 セイコーエプソン株式会社 撮像装置、電子機器および撮像方法
KR102654485B1 (ko) * 2016-12-30 2024-04-03 삼성전자주식회사 이미지 센서 및 그 제조 방법
CN118507500A (zh) * 2017-12-13 2024-08-16 松下知识产权经营株式会社 摄像装置
JP2019145594A (ja) * 2018-02-16 2019-08-29 シャープ株式会社 アクティブマトリクス基板及びそれを備えた撮像パネルと製造方法
JP2019145596A (ja) * 2018-02-16 2019-08-29 シャープ株式会社 アクティブマトリクス基板及びそれを備えたx線撮像パネルと製造方法
US11062205B2 (en) 2018-04-06 2021-07-13 Universal Display Corporation Hybrid neuromorphic computing display
US12001945B2 (en) * 2018-04-26 2024-06-04 Aistorm Inc. Event driven mathematical engine and method
US12069870B2 (en) 2018-06-11 2024-08-20 Cyberswarm, Inc. Synapse array
JP2019220685A (ja) * 2018-06-19 2019-12-26 シャープ株式会社 放射線検出器
US11515873B2 (en) 2018-06-29 2022-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP7374896B2 (ja) 2018-07-05 2023-11-07 株式会社半導体エネルギー研究所 表示装置および電子機器
WO2020016704A1 (ja) * 2018-07-20 2020-01-23 株式会社半導体エネルギー研究所 撮像パネル、撮像装置
US10924090B2 (en) * 2018-07-20 2021-02-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising holding units
US10708522B2 (en) 2018-08-10 2020-07-07 International Business Machines Corporation Image sensor with analog sample and hold circuit control for analog neural networks
CN109508786B (zh) * 2018-09-29 2022-04-08 南京邮电大学 一种学习、记忆和判决识别的光子类脑器件及其制备方法
KR102094275B1 (ko) * 2018-11-20 2020-03-30 광주과학기술원 이미지 센서 및 이미지 센서를 활용하는 이미지인식장치
KR102178561B1 (ko) * 2018-12-04 2020-11-13 서울대학교산학협력단 시각 적응을 모사한 다이나믹 비전 센서
US10978563B2 (en) 2018-12-21 2021-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US10861551B2 (en) * 2018-12-28 2020-12-08 Micron Technology, Inc. Memory cells configured to generate weighted inputs for neural networks
US11037968B2 (en) * 2019-04-05 2021-06-15 Waymo Llc Image sensor architecture
WO2020225640A1 (ja) * 2019-05-08 2020-11-12 株式会社半導体エネルギー研究所 半導体装置
CN114026692A (zh) 2019-07-19 2022-02-08 株式会社半导体能源研究所 摄像装置以及电子设备
CN110474998A (zh) * 2019-07-30 2019-11-19 维沃移动通信(杭州)有限公司 终端设备
WO2021033065A1 (ja) 2019-08-22 2021-02-25 株式会社半導体エネルギー研究所 撮像装置および電子機器
WO2021070000A1 (ja) 2019-10-11 2021-04-15 株式会社半導体エネルギー研究所 撮像システム及び監視システム
KR102230234B1 (ko) * 2019-10-31 2021-03-19 동국대학교 산학협력단 스위치-커패시터를 이용한 이미지 마스크 처리 회로 및 방법
JP7315452B2 (ja) 2019-12-20 2023-07-26 株式会社ジャパンディスプレイ 光センサ装置
WO2021130593A1 (ja) 2019-12-27 2021-07-01 株式会社半導体エネルギー研究所 撮像システム
US11050965B1 (en) 2020-03-18 2021-06-29 Gwangju Institute Of Science And Technology Image sensor and image recognition apparatus using the same
CN111667064B (zh) * 2020-04-22 2023-10-13 南京惟心光电系统有限公司 基于光电计算单元的混合型神经网络及其运算方法
CN111638427B (zh) * 2020-06-03 2021-05-28 西南交通大学 一种基于核胶囊神经元覆盖的变压器故障检测方法
US20220147799A1 (en) * 2020-11-12 2022-05-12 Samsung Electronics Co., Ltd. Neural computer including image sensor capable of controlling photocurrent

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242488A (ja) * 1989-03-16 1990-09-26 Masayoshi Umeno 画像処理装置
JP2662075B2 (ja) * 1990-04-25 1997-10-08 三菱電機株式会社 積層型三次元半導体集積回路
JPH0467259A (ja) 1990-07-09 1992-03-03 Hitachi Ltd 情報処理装置
US5161014A (en) * 1990-11-26 1992-11-03 Rca Thomson Licensing Corporation Neural networks as for video signal processing
JPH04216160A (ja) * 1990-12-17 1992-08-06 Nippon Telegr & Teleph Corp <Ntt> ニュ−ラルネットワ−ク回路
JP2942047B2 (ja) * 1991-03-15 1999-08-30 シャープ株式会社 ビデオカメラ
US5901246A (en) * 1995-06-06 1999-05-04 Hoffberg; Steven M. Ergonomic man-machine interface incorporating adaptive pattern recognition based control system
JP2809954B2 (ja) * 1992-03-25 1998-10-15 三菱電機株式会社 画像感知および処理のための装置および方法
EP0630150B1 (en) * 1993-06-18 1998-08-05 Hewlett-Packard Company Neural network for color translations
WO1996010886A1 (fr) * 1994-09-30 1996-04-11 Matsushita Electric Industrial Co., Ltd. Dispositif de prise de vues
JP3642591B2 (ja) 1994-11-29 2005-04-27 株式会社日立メディコ 画像処理装置
JPH08178637A (ja) 1994-12-27 1996-07-12 Mitsubishi Electric Corp 画像処理装置及び画像処理方法
JPH08204567A (ja) * 1995-01-31 1996-08-09 Canon Inc 半導体装置とこれを用いた半導体回路、相関演算装置、a/d変換器、d/a変換器及び信号処理システム
JPH1031551A (ja) 1996-07-15 1998-02-03 Mitsubishi Electric Corp ヒューマンインターフェースシステムおよびこれを使用した高速移動物体位置検出装置
JPH10300165A (ja) 1997-04-28 1998-11-13 Mitsubishi Electric Corp 空気調和装置
JP2980063B2 (ja) 1997-06-10 1999-11-22 三菱電機株式会社 画像処理装置
JPH11175653A (ja) 1997-12-08 1999-07-02 Mitsubishi Electric Corp 人工網膜チップ応用監視システム
JPH11177889A (ja) 1997-12-16 1999-07-02 Mitsubishi Electric Corp 人工網膜回路を用いた撮像装置
US6768515B1 (en) 1999-03-05 2004-07-27 Clarity Technologies, Inc. Two architectures for integrated realization of sensing and processing in a single device
JP2001094888A (ja) * 1999-09-22 2001-04-06 Canon Inc 撮像装置
CN101015068B (zh) 2004-09-09 2011-03-30 国立大学法人北海道大学 净化单元
CN101437663B (zh) * 2004-11-09 2013-06-19 得克萨斯大学体系董事会 纳米纤维带和板以及加捻和无捻纳米纤维纱线的制造和应用
US20070047803A1 (en) * 2005-08-30 2007-03-01 Nokia Corporation Image processing device with automatic white balance
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
EP1995787A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method therof
TW200919210A (en) * 2007-07-18 2009-05-01 Steven Kays Adaptive electronic design
TW200926033A (en) * 2007-07-18 2009-06-16 Steven Kays Adaptive electronic design
KR20090107254A (ko) * 2008-04-08 2009-10-13 삼성전자주식회사 이진 광신호를 이용한 이미지 센서 및 구동방법
JP2010283787A (ja) 2009-06-08 2010-12-16 Panasonic Corp 撮像装置
CN102598269B (zh) 2009-11-06 2015-04-01 株式会社半导体能源研究所 半导体器件
JP5220777B2 (ja) 2010-01-21 2013-06-26 オリンパス株式会社 画像処理装置、撮像装置、プログラム及び画像処理方法
JP5500007B2 (ja) 2010-09-03 2014-05-21 ソニー株式会社 固体撮像素子およびカメラシステム
US8203116B2 (en) * 2010-10-19 2012-06-19 Raytheon Company Scene based non-uniformity correction for infrared detector arrays
US20120113119A1 (en) * 2010-11-05 2012-05-10 Nova Research, Inc. Super resolution infrared imaging system
US8583577B2 (en) 2011-05-25 2013-11-12 Qualcomm Incorporated Method and apparatus for unsupervised training of input synapses of primary visual cortex simple cells and other neural circuits
JP2013009172A (ja) 2011-06-24 2013-01-10 Olympus Corp 撮像装置及び画像生成方法
US9236408B2 (en) 2012-04-25 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device including photodiode
JP5870871B2 (ja) 2012-08-03 2016-03-01 株式会社デンソー 画像処理装置及び、当該画像処理装置を用いた車両制御システム
JP2015056700A (ja) 2013-09-10 2015-03-23 株式会社東芝 撮像素子、撮像装置および半導体装置
JP6139361B2 (ja) 2013-09-30 2017-05-31 株式会社東芝 医用画像処理装置、治療システム及び医用画像処理方法
KR102114343B1 (ko) * 2013-11-06 2020-05-22 삼성전자주식회사 센싱 픽셀 및 이를 포함하는 이미지 센서
JP6582416B2 (ja) 2014-05-15 2019-10-02 株式会社リコー 画像処理装置、画像処理方法及びプログラム
KR102215751B1 (ko) * 2014-06-11 2021-02-16 삼성전자주식회사 데이터 전송 효율을 높일 수 있는 이미지 센서, 이의 작동 방법, 및 이를 포함하는 이미지 처리 시스템
JP6403461B2 (ja) * 2014-07-01 2018-10-10 キヤノン株式会社 撮像装置及びその駆動方法
US9729809B2 (en) 2014-07-11 2017-08-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device or electronic device
JP2016029795A (ja) 2014-07-18 2016-03-03 株式会社半導体エネルギー研究所 半導体装置、撮像装置及び電子機器
JP6494207B2 (ja) * 2014-07-31 2019-04-03 キヤノン株式会社 光電変換装置、光電変換システム、光電変換装置の駆動方法
JP6571345B2 (ja) 2015-02-20 2019-09-04 株式会社近畿開発 コンクリート構造体のプレストレス導入方法
JP6482315B2 (ja) 2015-02-20 2019-03-13 昭和アルミニウム缶株式会社 印刷装置および缶体の製造方法
JP6674838B2 (ja) 2015-05-21 2020-04-01 株式会社半導体エネルギー研究所 電子装置
WO2017037568A1 (en) 2015-08-31 2017-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device or electronic device including the semiconductor device
WO2017068490A1 (en) 2015-10-23 2017-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
KR102477518B1 (ko) 2015-10-23 2022-12-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 전자 기기
CN108701480B (zh) 2016-03-10 2022-10-14 株式会社半导体能源研究所 半导体装置
US10664748B2 (en) 2016-03-18 2020-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and system using the same
JP6540886B2 (ja) 2016-03-30 2019-07-10 株式会社ニコン 特徴抽出素子、特徴抽出システム、および判定装置
JP7135293B2 (ja) 2017-10-25 2022-09-13 富士電機株式会社 半導体装置および半導体装置の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955502B2 (en) 2018-09-11 2024-04-09 Sony Semiconductor Solutions Corporation Solid-state image sensor to reduce display unevenness of a captured image
US11956526B2 (en) 2018-12-05 2024-04-09 Sony Group Corporation Image capturing element, image capturing device and method
TWI685959B (zh) * 2019-01-07 2020-02-21 力晶積成電子製造股份有限公司 影像感測器及其製造方法
TWI836008B (zh) * 2019-03-01 2024-03-21 法商艾索格公司 顏色及紅外影像感測器

Also Published As

Publication number Publication date
TW202223763A (zh) 2022-06-16
CN111526267B (zh) 2022-09-02
JP2020065305A (ja) 2020-04-23
KR20230133409A (ko) 2023-09-19
KR20190032387A (ko) 2019-03-27
DE112017003898B4 (de) 2024-07-18
US20200226457A1 (en) 2020-07-16
JP7008445B2 (ja) 2022-01-25
JP7303842B2 (ja) 2023-07-05
JP2021108489A (ja) 2021-07-29
US20180039882A1 (en) 2018-02-08
KR20210134066A (ko) 2021-11-08
CN109478557A (zh) 2019-03-15
CN111526267A (zh) 2020-08-11
KR102322723B1 (ko) 2021-11-04
CN109478557B (zh) 2023-07-28
JP6788757B2 (ja) 2020-11-25
JP2023009241A (ja) 2023-01-19
WO2018025116A1 (en) 2018-02-08
JP2018026812A (ja) 2018-02-15
TWI789259B (zh) 2023-01-01
TWI758307B (zh) 2022-03-21
US11699068B2 (en) 2023-07-11
DE112017003898T5 (de) 2019-04-18
JP2024100893A (ja) 2024-07-26
US20230297822A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
TWI789259B (zh) 攝像裝置及包括攝像裝置的晶片
JP7467587B2 (ja) 撮像装置及び電子機器
JP7322239B2 (ja) 撮像装置および電子機器
US11996423B2 (en) Imaging device and electronic device
KR20180051551A (ko) 촬상 장치, 모듈, 전자 기기, 및 촬상 장치의 동작 방법
WO2020250095A1 (ja) 撮像装置および電子機器
WO2021130590A1 (ja) 撮像装置、および電子機器
WO2021028754A1 (ja) 撮像装置、または撮像システム