TW201313800A - 有機半導體調配物 - Google Patents

有機半導體調配物 Download PDF

Info

Publication number
TW201313800A
TW201313800A TW101130896A TW101130896A TW201313800A TW 201313800 A TW201313800 A TW 201313800A TW 101130896 A TW101130896 A TW 101130896A TW 101130896 A TW101130896 A TW 101130896A TW 201313800 A TW201313800 A TW 201313800A
Authority
TW
Taiwan
Prior art keywords
solvent
formulation
group
alkylated
organic semiconductor
Prior art date
Application number
TW101130896A
Other languages
English (en)
Other versions
TWI565744B (zh
Inventor
Toby Cull
Miguel Carrasco-Orozco
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Publication of TW201313800A publication Critical patent/TW201313800A/zh
Application granted granted Critical
Publication of TWI565744B publication Critical patent/TWI565744B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本發明係關於一種包含p型及n型有機半導體(OSC)及一或多種有機溶劑之調配物;其用於製造有機電子(OE)裝置(尤其係塊體異質接面(BHJ)有機光伏打(OPV)裝置)之用途;使用該調配物製造OE裝置(尤其係BHJ OPV裝置)之方法;及使用該方法或調配物製得的OE裝置(尤其係BHJ OPV裝置)。

Description

有機半導體調配物
本發明係關於一種包含p型及n型有機半導體(OSC)及一或多種有機溶劑之調配物;其用於製造有機電子(OE)裝置(尤其係塊體異質接面(BHJ)有機光伏打(OPV)裝置)之用途;使用該調配物製造OE裝置(尤其係BHJ OPV裝置)之方法;及使用該方法或調配物製得的OE裝置(尤其係BHJ OPV裝置)。
當製造BHJ OPV電池時,使活性層中供體與受體的分離最優化以實現高能量轉化效率係重要。通常,供體及受體之混合物係有利地自溶劑塗佈,且隨後在乾燥製程期間發生相分離。可使用諸多不同的塗佈技術,如旋塗、刮塗等。優先使用刮塗,因為其容易應用於大規模工業塗佈方法(參見F.Padinger,C.J.Brabec,T.Fromherz,J.C.Hummelen,N.S.Sariciftci,Opto-Electron.Rev.2000,8,280)且因其與旋塗(參見P.Schilinsky,C.Waldauf,C.J.Brabec,Adv.Funct.Mater.,2006,16,1669)相當。該塗佈技術亦可對相分離產生影響,但與該方法中所包括之材料及溶劑之物理參數相比,此通常趨於具有更低相關性。
先前技術中所述之典型供體/受體摻合物包括(例如)如下所示之聚(3-己基噻吩)(P3HT)、聚[2,6-(4,4-雙(2-乙基己基)-4H-環戊[2,1-b;3,4-b']-二噻吩)-交替-4,7-(2,1,3-苯并噻二唑)](PCPDTBT)或PTPTBT作為供體聚合物: ;及(例如)C60或C70富勒烯或經取代之C60或C70富勒烯(如(例如)下示C60PCBM或C70PCBM)作為受體:
由於尤其該受體組分之有限溶解度,該等供體/受體摻合物趨於自氯化溶劑(如氯苯、三氯苯、二氯苯或氯仿)之溶液經處理,且大多數文獻資料提供自鄰二氯苯(DCB)或氯苯塗佈之P3HT及C60/C70摻合物之實例。
已藉由AFM技術廣泛研究此P3HT/PCBM系統之形態及相分離,且已顯示形成正確形態對實現電池中之有效電荷分離及收集而言係重要(參見Peet,J.;Senatore,M.L.;Heeger,A.J.;Bazan,G.C.Adv.Mater.2009,21,第1521- 1527頁)。亦已指出對各供體/受體系統而言該兩種組分之相圖可係獨特且迄今為止仍需針對任一系統完整描述,此使得獲得新穎摻合物之正確形態成為主要挑戰(參見C.Muller,T.A.M.Ferenczi,M.Campoy-Quiles,J.M.Frost,D.D.C.Bradley,P.Smith,N.Stingelin-Stutzmann,J.Nelson,Adv.Mater.2008,20,3510及B.Lei,Y.Yao,A.Kumar,Y.Yang,V.Ozolins,J.Appl.Phys.2008,104,024504)。
為進一步提高OPV裝置的能量轉化效率(PCE),希望可有意地控制該供體及受體摻合物(其形成負責於OPV裝置中傳輸電荷之塊體異質接面)之形態。文獻資料闡述已嘗試此操作之方式(例如,藉由改良用於製備活性層之溶劑及溶劑摻合物)之諸多實例。Peet,J.;Senatore,M.L.;Heeger,A.J.;Bazan,G.C.Adv.Mater.2009,21,第1521-1527頁的論文提供該領域之良好概述。
在BHJ OPV裝置中,溶劑、所用聚合物及沈積條件/技術之選擇決定供體聚合物與受體(通常係PCBM)之間的相分離形態。文獻資料中已藉由使摻合物及塗佈條件最優化,自主要使用氯化溶劑之供體/受體調配物獲得高PCE。
然而,當自研究轉移至工業方法時,氯化溶劑係非較佳,且確實因此需要用更適用於大規模塗佈應用之溶劑代替。因此目標係使用非氯化溶劑且同時仍保持高PCE。
目前,關於使用非氯化溶劑以形成BHJ OPV裝置之文獻資料係有限。在某些情況下,非氯化溶劑係與氯化溶劑以 摻合物形式一起使用(參見C.Hoth等人,J.Mater.Chem.2009,19,5398;F.Zhang等人Adv.Funct.Mater.2006,16,667),但僅指出少數高效率OPV裝置之實例。在某些情況下,顯示使用含於替代性溶劑(如甲苯、二甲苯、環己酮或四氫化萘)中之P3HT/PCBM之溶液獲得的資料,但與氯化溶劑相比,此等通常顯示更差性能(參見C.Lin等人,Synth.Metals.2010,160,2643;Pure and Applied Chem.2008,80,2151;S.-R.Tseng等人,Organic Electronics,2009,10,74;M.Rispens等人Chem.Com.,2003,2116;T.Aernouts等人,Appl.Phys.Lett.2008,92,033306;S.E.Shaheen等人,Appl.Phys.Lett.2001,78,841;J.Liu等人,Adv.Funct.Mater.2001,11,420)。此係由於P3HT及PCBM於此等替代性溶劑中之溶解度均較低,從而形成含有破壞形態之較大PCBM微晶之粗糙薄膜(參見Nilsson,S.;Bernasik,A.;Budkowski,A.;Moons,E.Macromolecules 2007,40,8291及Chan,S.;Hsiao,Y.;Hung,L.;Hwang,G.;Chen,H.;Ting,C;Chen,C.Macromolecules,2010,43,3399)。
US 2010/0043876 A1揭示一種用於在OPV裝置中形成活性層之組合物,其包含p型材料(如(例如)P3HT)、n型材料(如(例如)C60富勒烯)、包含至少一種烷基苯(如二甲苯或甲苯)或苯并環己烷(即四氫化萘)之第一溶劑、及不同於該第一溶劑且包含至少一種碳環化合物之第二溶劑。其另外揭示該等溶劑可根據其漢森(Hansen)溶解度參數來選擇。該 第一溶劑之沸點可大於該第二溶劑之沸點或反之亦然。該等示例性溶劑系統包括鄰二甲苯/四氫化萘、甲苯/水楊醛、鄰二甲苯/水楊醛、鄰二甲苯/四氫化萘/水楊醛、甲苯/水楊酸甲酯、甲苯/苯甲醚、四氫化萘/甲苯/水楊醛、及四氫化萘/甲苯/茴香醛。
然而,先前技術中所揭示之非氯化溶劑系統確實仍存在若干缺點且具有進一步改良的空間。例如,關於US 2010/0043876 A1中所揭示之溶劑系統,已知其中所使用的P3HT在各種有機溶劑中具有有限溶解度,且因此,影響相分離之溶劑操作之範圍係有限。US 2010/0043876 A1描述添加佔墨水組合物之較小百分比之第二溶劑可如何改良該裝置的效率。該第二溶劑通常係高沸點溶劑,且對P3HT組分具有低溶解度,此使其更容易自溶液結晶且由此趨於更粗糙的活性層(如AFM成像所示)。
少量對該等組分中之一者具有低溶解度之溶劑具有增加粗糙度之效應,此意味著於P3HT或PCBM中形成的結晶/晶界的尺寸增加。造成極粗糙薄膜之一可能原因係形成尺寸增加且可導致較大PCBM或P3HT島狀物的微晶,且因此無法提供最佳相分離形態及性能。
在US 2010/0043876 A1中,添加第二溶劑係與含P3HT系統之粗糙度增加及性能提高有關。然而,如本發明中所示,認為表面粗糙度與性能之間存在普遍聯繫並非始終正確。本發明之實例顯示即使活性層之表面粗糙度無顯著變化,亦可改善裝置性能。
希望提供一種溶劑系統,其提高活性層之性能但不一定亦增加其粗糙度,以避免當其他層沈積於該活性層上時可能出現的問題。
此外,US 2010/0043876 A1中所述之實施例中利用的聚合物係P3HT,其由於具有半結晶/結晶性質而係OPV領域中之一特殊情況;而最近開發的實現更高效率所需要的低能帶隙聚合物之特徵通常係更加非晶態。因此,需要針對此等新穎聚合物而特定開發的改良溶劑系統。
另外,就裝置性能而言,與DCB相比,US 2010/0043876 A1中所述之溶劑(用於代替氯化溶劑(如DCB))顯示具有缺點。
因此,在US 2010/0043876 A1中所揭示之實例中,使用具有變化組成之一系列非氯化溶劑混合物以C-60茚調配P3HT。其中未揭示藉由使用DCB作為溶劑所製得之對照裝置。然而,文獻資料中已顯示:當自DCB塗佈P3HT/C-60茚時,可實現平均值為5.44%之PCE(參見Y.He等人J.Am.Chem.Soc,2010,132,1377)。與之相比,當自US 2010/004387wA1中所例示的甲苯(作為代替DCB之單一溶劑)塗佈P3HT/C-60茚時,此顯示3.73%的低PCE。使用如US 2010/0043876 A1中所另外例示之雙/三溶劑混合物顯示可改良P3HT/C-60茚之性能,然而,所例示之調配物均無法達到或超過在使用DCB作為溶劑時所獲得的性能。
總而言之,如US 2010/0043876 A1中所述之藉由替代性溶劑代替DCB之途徑係非限定性,限於特定材料,且就所 獲得的PCE值而言顯示有限效益。
因此,仍需要改良之溶劑系統及可用作用於製造OE裝置(尤其係OFET及OPV電池)之OSC墨水之OSC調配物,其允許廣泛但準確地選擇具有適宜黏度且對該OE裝置及其組件之性質及性能(如活性層之粗糙度或裝置之PCE)不具有不利影響之非氯化溶劑。
本發明之一目標係提供具有此等優點之溶劑系統及OSC調配物。另一目標係提供可自該等OSC調配物獲得的改良型OE/OPV裝置。熟習此項技術者將自以下描述立即明白其他目標。
本發明之發明者已發現可藉由提供本發明所主張之溶劑系統及OSC調配物實現此等目標並解決上述問題。
特定言之,本發明之發明者已發現可利用溶劑混合物製備OSC調配物以影響該兩種組分之相分離。此係由當所有其他因素保持不變而僅改變調配物組成時觀察到由含於不同溶劑系統中之相同OSC材料製得的OE裝置之間的性能差異所證實。
本發明係關於一種調配物,其包含:至少一種p型有機半導體;至少一種n型有機半導體;至少一種選自由烷基化四氫化萘、烷基化萘及烷基化苯甲醚組成之群之第一溶劑;及視需要之至少一種不同於該第一溶劑之第二溶劑。
該第二溶劑較佳係選自由烷基化苯、烷氧基化苯、茚滿、烷基化茚滿、烷氧基化茚滿、四氫化萘、烷基化四氫 化萘、萘、烷基化萘、苯甲醚及烷基化苯甲醚組成之群。
其他較佳的第二溶劑係選自由直鏈或環狀酮、芳族及/或脂族醚、芳族醇、視需要經取代之噻吩、苯并噻吩、烷氧基化萘、經取代之苯并噻唑、苯甲酸烷基酯、及苯甲酸芳基酯組成之群。
本發明另外係關於一種如上下文所述之調配物於製造有機電子裝置之用途。
本發明另外係關於一種製造有機電子裝置之方法,其包括以下步驟:a)提供陽極;b)提供陰極;c)於該陽極與該陰極之間提供如上下文所述之調配物,且移除該調配物中存在的任何溶劑以形成乾燥薄層;其中步驟a)及b)中之一者亦可於步驟c)之後進行。
本發明另外係關於一種有機電子裝置,其包含:陽極;陰極;自如上下文所述之調配物形成或藉由如上下文所述之方法之步驟c)形成的活性層。
該有機電子(OE)裝置較佳係有機光伏打(OPV)裝置、半透明OPV、可撓性OPV、有機光電二極體、有機雷射二極體(O-雷射器)、肖特基(Schottky)二極體、光導體、電子照相裝置、有機記憶裝置、有機光電晶體、有機場效應電晶體(OFET)或有機發光二極體(OLED)。
該OE裝置極佳係呈任何可能架構的所有有機OPV裝置。該OE裝置尤其佳係塊體異質接面(BHJ)OPV裝置(包括陽極及陰極之所有可能的相對位置)。
術語及定義
如文中所使用,除非本文另有明確指示,否則文中術語之複數形式應被理解為包括單數形式且反之亦然。
在本說明書之整體描述及申請專利範圍中,字詞「包含」及「含有」及該等字詞之變型意指「包括但不限於」且無意(且不)排除其他組分。
在上下文中,術語「聚合物」通常意指高相對分子質量之分子,其結構基本上包含實際上或概念上衍生自低相對分子質量分子的多個重複單元(PAC,1996,68,2291)。術語「寡聚物」通常意指中間相對分子質量之分子,其結構基本上包含實際上或概念上衍生自低相對分子質量分子的少量複數個單元(PAC,1996,68,2291)。在本發明之一較佳定義中,聚合物意指具有>1個(較佳5個)重複單元之化合物;且寡聚物意指具有>1且<10(較佳<5)個重複單元之化合物。
術語「重複單元」及「單體單元」意指組成性重複單元(CRU),其係最小組成單元且其重複組成規則大分子、規則寡聚物分子、規則嵌段或規則鏈(PAC,1996,68,2291)。
除非另有指示,否則術語「供體」及「受體」分別意指電子供體或電子受體。
術語「傳導」及「傳導性」等係指導電性。
術語「共軛」意指主要含有具有sp2雜化(或視需要亦為sp雜化)之C原子(其亦可經雜原子置換)之化合物。在最簡單例中,此係(例如)具有交替C-C單鍵及雙鍵(或三鍵)之化合物,但亦包括具有如1,3-伸苯基之單元之化合物。就此而言,「主要」意指具有可導致共軛中斷之天然(自然)生成缺陷或因設計而包含的缺陷之化合物仍被視為共軛化合物。
「共軛」之定義亦包括其中主鏈包含(例如)如芳基胺、芳基膦及/或某些雜環(即,經由N、O、P或S原子共軛)及/或金屬有機錯合物(即,經由金屬原子共軛)之單元之聚合物。術語「共軛連接基」意指連接兩個由具有sp2雜化或sp雜化之C原子或雜原子組成的環(通常係芳族環)之基團。亦參見「IUPAC Compendium of Chemical terminology,Electronic version」。
術語「聚合物」包括均聚物及共聚物(如統計、交替或嵌段共聚物)。另外,如下文所使用,術語「聚合物」亦包括樹枝狀聚合物,其通常係由多官能性核心基團組成之分支鏈大分子化合物,其中其他分支鏈單體以形成樹枝狀結構之一般方式添加至該多官能性核心基團上,如(例如)M.Fischer and F.Vögtle,Angew.Chem.,Int.Ed.1999,38,885中所述。
除非另有說明,否則分子量係表示為數量平均分子量Mn或重量平均分子量MW,其係藉由於洗脫溶劑(例如,四氫 呋喃、三氯甲烷(TCM,氯仿)、氯苯或1,2,4-三氯苯)中參照聚苯乙烯標準物之凝膠滲透層析法(GPC)來測定。除非另有說明,否則使用三氯甲烷作為溶劑。聚合度(n)意指以n=Mn/MU表示之數量平均聚合度,其中MU係單個重複單元之分子量(如J.M.G.Cowie,Polymers:Chemistry & Physics of Modern Materials,Blackie,Glasgow,1991中所述)。
「小分子」意指單體(即非聚合)化合物。
除非另有說明,否則固體之百分比係重量百分比(「重量%」),液體(如(例如)在溶劑混合物中)之百分比或比例係體積百分比(「體積%」),且溫度係以攝氏度(℃)表示,「室溫(RT)」意指20℃,「b.p.」意指沸點,「大氣壓」意指760 Torr或1013 hPa。
除非另有說明,否則在上下文中,所有的物理性質及值係關於20℃的溫度。
本發明提供一種OSC調配物及其製備方法,其可用於使用不含氯化組分之溶劑及溶劑摻合物製備OE裝置(較佳BHJ OPV裝置)中之活性OSC層。該裝置性能係以能量轉化效率(PCE)值及J/V特徵(可自其確定Jsc、Voc及FF)表示,與其中活性半導體層係自使用氯化溶劑(如鄰二氯苯(DCB))之溶液製得之裝置相比,其等係類似或提高。
包含一或多種非氯化溶劑之本發明調配物之性能較佳係相當於或高於自使用氯化溶劑的類似調配物獲得者。
本發明溶劑系統及調配物使用與先前技術中例示的非氯化溶劑相比通常具有更高沸點之單一溶劑。或者,本發明溶劑系統及調配物使用兩種或更多種溶劑之摻合物,其中主要組分具有高沸點,且與先前技術中例示的溶劑摻合物相比,次要組分係以更大百分比併入。此外,就BHJ中之任一半導體組分而言,該次要組分具有低於主要組分或與其類似的沸點且通常具有良好溶解度(較佳於100℃下大於1 mg/ml)。
當此溶劑系統係用於OSC材料(p型及n型OSC之摻合物例如,p型OSC聚合物作為供體且富勒烯作為受體)時,可有意地藉由使低沸點溶劑組分蒸發來引發n型及p型OSC組分的相分離且隨後藉由使高沸點溶劑組分緩慢乾燥繼續進行,以使聚合物重組。
由於此方法,觀察到該溶劑對OPV薄膜之表面粗糙度產生極少影響。此可解釋為p型及n型OSC在所使用的溶劑中之溶解度係相當高,且因此未觀察到聚合物或富勒烯之更大更無序之微晶及域之生長,且因此該OSC層表面的粗糙度未增加。
當同時使用如實例中所述的當前技術發展水準之高溶解度低能帶隙供體聚合物與富勒烯(如PC60BM)時,可提供單一溶劑及雙溶劑系統以代替DCB,且與使用DCB調配物製得的OPV裝置之性能相比,此仍顯示相當或甚至更高的OPV裝置性能。
此外,當使用如實例中所述的當前技術發展水準之高溶 解度、低能帶隙供體聚合物及本發明所述的非氯化溶劑時,與使用DCB調配物製得的OPV裝置相比,可觀察到該OPV裝置之Voc增加。此係顯示於實例中。
在不希望受特定理論約束之情況下,本發明者提出此增加係與該等摻合物組分在該層中之更佳排序(其導致晶粒尺寸減小及相分離更均勻)有關。此係經由選擇高沸點溶劑而實現,此時溶劑蒸發時間延長且因此該等聚合物鏈可組織成更優化的形態且相分離過程係更緩慢及更可控。亦可使用低沸點溶劑藉由使塗佈參數及塗佈溫度最優化來實現該重組及相分離。
未在P3HT中觀察到此改良,因為該最佳形態僅可在薄膜已乾燥後經由熱處理獲得。此方法導致P3HT/PCBM之相互混合並破壞於乾燥期間形成的相分離形態(參見N.Treat等人Adv.Energy.Mater.2011,1,82)。
在本發明之一較佳實施例中,該調配物含有單一溶劑。在另一較佳實施例中,該調配物含有一或多種第一溶劑與一或多種第二溶劑之摻合物。
當將該調配物沈積於基板上並移除該(等)溶劑時,該p型OSC及n型OSC經歷相分離且由此形成異質接面形態。藉由控制該相分離,亦可控制該異質接面之形態及/或結晶度。
此允許改良p型(供體)組分與n型(受體)組分之間的異質接面形態,由此提高PCE。可藉由使各溶劑在溶劑摻合物中之比例最優化及使該等摻合物之處理條件及處理/乾燥 溫度最優化來實現其他改良。
在一較佳實施例中,選擇該第一(或主要)溶劑以使其對n型OSC之溶解度比對p型OSC高,且選擇該第二(或次要)溶劑以使其對p型OSC之溶解度比對n型OSC高。此外,在此較佳實施例中,該第一溶劑較佳比該第二溶劑具有更高沸點。
在另一較佳實施例中,選擇該第一(或主要)溶劑以使其對n型OSC之溶解度比對p型OSC低,且選擇該第二(或次要)溶劑以使其對p型OSC之溶解度比對n型OSC低。此外,在此較佳實施例中,該第一溶劑較佳比該第二溶劑具有更高沸點。
在另一較佳實施例中,使用具有80至280℃(較佳160℃至240℃)之沸點之單一溶劑。
在該OE裝置製造方法中,將該調配物沈積於基板上並藉由(例如)於加熱及/或減壓下蒸發自該沈積層移除該(等)溶劑。在蒸發之前,該等p型及n型OSC組分係平衡並均溶解於溶液中。
在不希望受任何特定理論約束之情況下,據信當使用上述溶劑摻合物時,在蒸發溶劑時,該第二(次要)低沸點溶劑將比該第一(主要)高沸點溶劑移除得更快。由於此第一(主要)高沸點溶劑對p型OSC具有較低溶解度,當移除該對p型OSC具有高溶解度之第二(次要)溶劑時,該p型OSC將自該溶液開始相分離。該n型OSC因其在該第一高沸點溶劑中之更高溶解度而未受影響,且因此保持溶解態,直至 已移除足量的第一溶劑。此方法導致在已完全移除該第一溶劑之前由p型OSC組分引發相分離網絡。隨後藉由使該第一溶劑緩慢蒸發來使該BHJ形態最優化。因此,控制該兩種溶劑之沸點、溶解度及比例可影響該異質接面之形態/結晶度。
可藉由(例如)使用已知溶解度參數(如漢森(Hansen)溶解度參數(HSP))實現根據第一及第二溶劑對p型及n型OSC之相對溶解度來選擇適宜的第一及第二溶劑。既定溶劑之漢森參數值可參見手冊(如「Hansen Solubility Parameters:A User's Handbook」,第二版,C.M.Hansen(2007),Taylor and Francis Group,LLC(HSPiP manual))。此等通常係表示為HD(或簡稱「D」)、HP(或簡稱「P」)及HH(或簡稱「H」),其中HD意指分散貢獻值[MPa0.5];HP意指極性貢獻值[MPa0.5];及HH意指氫鍵結合貢獻值[MPa0.5]。
可根據由Hanson及Abbot等人提供的漢森溶解度參數實踐(HSPiP)程式(第2版)測定該等漢森溶解度參數。
下文描述兩個可如何使用該HSPiP程式以發現具有可溶解n型及p型OSC之漢森參數之溶劑之實例。
第一實例係確定與良好溶解性氯化溶劑(如氯苯、氯仿及二氯苯)具有類似漢森溶解度參數之溶劑。具有類似參數之溶劑亦可成為n型或p型OSC材料之良好溶劑。此方法因其特性(氯化種類之參數係不同於非氯化種類)而受限, 且因此儘管匹配度可係相近,但此並不一定意味著將顯示特定溶解度。
第二實例係使用已知或實驗上衍生的溶解度數據來尋找對聚合物/富勒烯摻合物之各組分顯示溶解度之溶劑組。
就用作n型材料之富勒烯(如C60PCBM)而言,文獻資料中已指出於各種溶劑中之溶解度數據(參見Nilsson,S.;Bernasik,A.;Budkowski,A.;Moons,E.Macromolecules 2007,40,8291及「Organic Photovoltaics:Materials,Device Physics,and Manufacturing Technologies」,C.Brabec(編輯),U.Scherf(編輯),V.Dyakonov(編輯),Wiley,2008)。
就p型OSC而言且另外就其他較少特徵化的n型材料而言,可藉由量化各組分於具有變化漢森溶解度參數的各種溶劑中之溶解性來進行實驗工作。就各組溶劑及條件(濃度、溫度、時間)而言,評估組分之溶解性(例如,可溶、部分可溶、不溶)。使用該HSPIP程式,可將所評估的所有溶劑之參數繪製於漢森3D空間中且突出彼等顯示良好至部分溶解性者。
可藉由生成溶解度「球」(其中至該球(理想漢森參數計算值係位於其中)中心的距離(半徑)可定義為特定材料之溶解度之量度)來有效描述此等突出點。該等溶劑溶解度參數越相近,則至該球心之半徑越小,且因此化合物在該溶劑中之可溶性越高。
根據所獲得的漢森參數,隨後可藉由測定該溶劑之漢森 參數與該算得的溶解度球之中心之接近程度來評估既定材料在任何溶劑中之溶解度。
此方法允許快速篩選大量適用於同時溶解供體及受體組分之溶劑。另外,個別地評估各材料之溶解度但隨後組合溶解度球允許確定溶解一種材料勝於另一種之溶劑,且因此提供用於研究在形成BHJ形態中的選擇性溶解度效應的工具。
就n型OSC而言,該等漢森溶解度參數(球心)較佳係位於D=16至22 MPa0.5、P=0至11.5 MPa0.5、H=0至12 MPa0.5之範圍內。
就p型OSC而言,該等漢森溶解度參數較佳係位於D=17至21 MPa0.5、P=0至6.5 MPa0.5、H=0至6 MPa0.5之範圍內。
該n型OSC在該第一溶劑中之溶解度較佳係至少0.5 mg/ml。
該p型OSC在該第二溶劑中之溶解度較佳係至少0.5 mg/ml。
該n型OSC在該調配物中之濃度較佳係0.1 mg/ml至100 mg/ml,極佳2 mg/ml至40 mg/ml。
該p型OSC在該調配物中之濃度較佳係0.1 mg/ml至100 mg/ml,極佳2 mg/ml至40 mg/ml。
該第一溶劑較佳係選自高沸點溶劑,其較佳具有150℃,極佳200℃,最佳230℃之沸點。
該第一溶劑較佳係選自烷基化四氫化萘、烷基化萘或烷 基化苯甲醚,較佳係經兩個或更多個烷基取代之四氫化萘、經一或多個烷基取代之萘或經兩個或更多個烷基取代之苯甲醚,該等烷基較佳係具有1至6個(較佳1、2或3個)C原子之直鏈或分支鏈。該第一溶劑極佳係選自由以下組成之群:1,5-二甲基四氫化萘、1-甲基萘、1-乙基萘、2-乙基萘、1,2-二甲基萘、1,3-二甲基萘、1,4-二甲基萘、2,6-二甲基萘、2,7-二異丙基萘及二甲基苯甲醚,最佳係1,5-二甲基四氫化萘、1-甲基萘及二甲基苯甲醚(尤其係2,4-二甲基苯甲醚)。
如上下文所使用,術語「二甲基苯甲醚」包括以下中之任一者:2,3-二甲基苯甲醚、2,4-二甲基苯甲醚、2,5-二甲基苯甲醚、2,6-二甲基苯甲醚、3,4-二甲基苯甲醚及3,5-二甲基苯甲醚,且較佳意指2,4-二甲基苯甲醚。
該第二溶劑較佳係選自由以下組成之群:烷基化苯、烷氧基化苯、茚滿、烷基化茚滿、烷氧基化茚滿、四氫化萘、烷基化四氫化萘、萘、烷基化萘、苯甲醚、烷基化苯甲醚及直鏈或環狀酮,其中「烷基化」意指經一或多個(較佳兩個或更多個)具有1至6個(較佳1、2或3個)C原子之直鏈或分支鏈烷基取代且「烷氧基化」意指經一或多個(較佳兩個或更多個)具有1至6個(較佳1、2或3個)C原子之直鏈或分支鏈烷氧基取代。
其他較佳類型的第二溶劑包括彼等選自由以下組成之群者:芳族及/或脂族醚、芳族醇、視需要經取代的噻吩、苯并噻吩、烷氧基化萘、經取代之苯并噻唑、苯甲酸烷基 酯、苯甲酸芳基酯。
該第二溶劑極佳係選自由以下組成之群:二甲苯(包括呈純異構體或異構體混合物之鄰-、間-及對二甲苯)、甲基異丙苯(包括呈純異構體或異構體混合物之鄰-、間-及對甲基異丙基苯)、茚滿、苯甲醚(甲氧基苯)及藜蘆醚(鄰二甲氧基苯)、二甲基苯甲醚、四氫化萘、1,5-二甲基四氫化萘、萘、1-甲基萘、1-乙基萘、2-乙基萘、1,2-二甲基萘、1,3-二甲基萘、1,4-二甲基萘、2,6-二甲基萘、2,7-二異丙基萘、環戊酮、環己酮,最佳選自間二甲苯、對甲基異丙苯、藜蘆醚、1,5-二甲基四氫化萘、1-甲基萘及茚滿。
其他較佳的特定第二溶劑包括彼等選自由以下組成之群者:1,2-二氫化萘、十氫化萘、二苯醚、環己基苯、苯乙酸甲酯、乙酸苯酯、乙酸苄酯、苯甲酸乙酯、γ-萜品烯、苯并噻吩、噻吩、1-甲氧基萘、苄醇、環己醇、茚、1,4-二噁烷、乙二醇單丁醚、乙醚、N-甲基吡咯啶酮、鄰苯二甲酸二乙酯、苯甲酸苄酯、苯甲酸乙酯、苯乙酮、苯丙酮、2-庚酮、環己酮、苯并噻唑、苄腈、聯環己烷、甲基異丁基酮。
該第二溶劑較佳係經選擇以具有低於該第一溶劑之沸點,且沸點較佳係100℃,極佳130℃,最佳160℃。
如果使用單一溶劑,則其較佳係選自烷基化四氫化萘、烷基化萘或烷基化苯甲醚,較佳係經兩個或更多個烷基取代之四氫化萘、經一或多個烷基取代之萘或經一或多個烷 基取代之苯甲醚,其中該等烷基較佳係具有1至6個(極佳1、2或3個)C原子之直鏈或分支鏈烷基。該單一溶劑極佳係選自由以下組成之群:1,5-二甲基四氫化萘、1-甲基萘、1-乙基萘、2-乙基萘、1,2-二甲基萘、1,3-二甲基萘、1,4-二甲基萘、2,6-二甲基萘、2,7-二異丙基萘及二甲基苯甲醚,最佳係1,5-二甲基四氫化萘、1-甲基萘及2,4-二甲基苯甲醚。
較佳地,該第一溶劑在該溶劑摻合物中之比例係高於該第二溶劑之比例。如果存在多於一種第一溶劑及/或多於一種第二溶劑,則在該溶劑摻合物中,所有第一溶劑在該摻合物中之總比例較佳係高於所有第二溶劑之總比例。
該第一溶劑在該溶劑摻合物中之含量較佳係50體積%。該第二溶劑在該溶劑摻合物中之含量較佳係5體積%。
極佳地,該第一及第二溶劑之比例(體積%)或所有第一及所有第二溶劑之總比例係在50:50至5:95之範圍內。
該p型OSC可選自熟習此項技術者已知及描述於文獻資料中之標準材料,其包括有機聚合物及小分子。
在一較佳實施例中,該p型OSC包含有機共軛聚合物(其可係均聚物或共聚物),且在共聚物之情況下可係交替共聚物(如ABAB或ABCABC型)、統計(無規)共聚物或嵌段共聚物。
該p型有機半導體較佳係非結晶或半結晶共軛有機聚合物。
該p型有機半導體更佳係具有低能帶隙(通常係2.1 eV至1.1 eV,較佳係1.9 eV至1.1 eV,及最佳係1.7 eV至1.1 eV)之共軛有機聚合物。
較佳的p型OSC聚合物係選自共軛烴或雜環聚合物,其包括(但不限於)由以下組成之群:聚并苯、聚苯、聚(伸苯基伸乙烯基)、聚茀、聚茚并茀、聚(經3-取代之噻吩)、聚(經3,4-二取代之噻吩)、聚硒吩、聚(經3-取代之硒吩)、聚(經3,4-二取代之硒吩)、聚(雙噻吩)、聚(三噻吩)、聚(雙硒吩)、聚(三硒吩)、聚噻吩并[2,3-b]噻吩、聚噻吩并[3,2-b]噻吩、聚苯并噻吩、聚苯并[1,2-b:4,5-b']二噻吩、聚異硫茚、聚(N-取代吡咯)、聚(經3-取代之吡咯)、聚(經3,4-二取代之吡咯)、聚呋喃、聚吡啶、聚1,3,4-噁二唑、聚異硫茚、聚(N-取代苯胺)、聚(經2-取代之苯胺)、聚(經3-取代之苯胺)、聚(經2,3-二取代之苯胺)、聚薁、聚芘、聚吡唑啉、聚苯并呋喃、聚吲哚、聚噠嗪、聚三芳基胺,包括前述之任何共聚物,且其中所有此等聚合物係視需要經一或多個基團R取代;其中R係鹵素、CN或碳基或烴基,較佳係F、CN、烷基、烷氧基、硫雜烷基、羰基烷基、氧雜羰基烷基、羰基氧雜烷基(其各係直鏈或分支鏈,視需要經氟化且較佳具有1至30個C原子)、或經一或多個F原子及/或一或多個視需要經氟化且具有1至20個C原子之烷基或烷氧基取代之苯基。
其他較佳的p型OSC係包含一或多個不同電子受體單元 及一或多個不同電子供體單元之共聚物。此類型之較佳共聚物包含一或多個選自如下所限定之組D及組A之單元,且較佳包含一或多個組D之單元及一或多個組A之單元,其中組D係由選自由下式組成之群且較佳具有供電子性質的伸芳基及伸雜芳基組成:
且組A係由選自由下式組成之群且較佳具有受電子性質的伸芳基或伸雜芳基組成:
包括前述之任何共聚物,其中X11及X12中之一者係S且另一者係Se,且R11、R12、R13、R14、R15、R16、R17及R18相互獨立地表示H或如上所定義之R。
此類型之其他較佳共聚物包含一或多個選自上述式D1至D112及A1至A57之單元,且較佳包含一或多個選自由以下各式組成之群之單元:D1、D2、D3、D4、D5、D6、D7、D19、D21、D23、D28、D29、D30及D31(極佳式D1、D2、D3、D5、D19、D28及D31),且另外包含一或多個選自由式A1、A2、A3、A4、A5、A34及A44(極佳式A2及A3)組成之群之單元。
其他較佳的共聚物包含一或多個較佳經上述R基團3,7-二取代及/或4,8-二取代之苯并[1,2-b:4,5-b']二噻吩-2,5-二基(BDT)單元,且另外包含一或多個選自組D及組A之單元。較佳地,除該等BDT單元以外,此等共聚物亦包含至少一個組D(較佳係式D1)之單元及至少一個組A(較佳係式A3)之單元。
以下式共聚物尤其佳:
其中R1-4 相互獨立地具有如上所指定的R之定義中之一者;x 係>0且1;y 係0且<1;x+y 係1;且n 係>1之整數。
R1及R2較佳表示視需要經氟化且具有1至20個C原子之直鏈或分支鏈烷基、氧雜烷氧基、硫雜烷基、羰基烷基、氧雜羰基烷基或羰基氧雜烷基。
R3及R4較佳表示視需要經氟化且具有1至20個C原子之直鏈或分支鏈烷基或烷氧基。
該n型OSC較佳係富勒烯或富勒烯衍生物或包含一或多個富勒烯或經取代之富勒烯基團之聚合物。
較佳的富勒烯及富勒烯衍生物係彼等式F1者: 其中F係式C(20+2m)或C(20+2m+1)富勒烯基團,其中m係20或25至40之整數,較佳係20、25、28、29或30至38之整數,R21係鍵接至該富勒烯基團中之一或兩個C原子之碳基或烴基,且n係0或1至20+2m之整數。
極佳的富勒烯衍生物係彼等式F2者(甲橋富勒烯): 其中F 係如上所定義;n 係1至10+m之整數,較佳係1或2;R22及R23相互獨立地表示具有1至30個C原子之直鏈、分支鏈或環狀烷基,其中一或多個非相鄰CH2基團意欲各相互獨立地經-O-、-S-、-NR0-、-C(O)-、-CH=CH-或-C≡C-置換,置換方式係O及/或S原子不直接相互鍵接;或表示具有2至40個C原子之芳基或雜芳基、芳烷基或雜芳基烷基,其等皆視需要經一或多個基團L取代;L 係選自鹵素、-CN、-NO2、-OH、-SH、-SO3H、-SO2R0、-CF3、-SF5、-C(O)R0、-OC(O)R0、-C(O)OR0、-C(O)NR0R00、-NR0-C(O)R00-NR0R00;具有1至12個C原子之烷基、烷氧基、氧雜烷基、硫烷基、氟烷基及氟烷氧基或具有2至12個C原子之烯基、炔基;R0及R00相互獨立地係H、烷基或芳基,較佳係H、具有1至10個C原子之烷基或苯基。
以具有下示結構之(6,6)-苯基-丁酸甲酯衍生型甲橋C60富勒烯(亦稱為「PCBM」或「C60PCBM」)或具有更高碳數富勒烯(如(例如)C61、C70或C71富勒烯基團(C61PCBM、C70PCBM、C71PCBM))之結構類似化合物尤其佳。
上示富勒烯之適宜合成法及適宜的較佳富勒烯之其他實例係揭示於US 5,739,376、WO 2004/073082 A1及WO 2008/006071 A1中。
在另一較佳實施例中,該調配物另外包含一或多種選自以下之其他組分:表面活性化合物、潤滑劑、潤濕劑、分散劑、疏水劑、黏合劑、流動改良劑、消泡劑、脫氣劑、黏度增強劑、反應性或非反應性稀釋劑、輔助劑、著色劑、染料或顏料、敏化劑、安定劑、奈米顆粒及抑制劑。
可藉由包括但不限於以下之任何適宜的溶液沈積方法,將本發明調配物塗佈至OE裝置之基板或組件上:塗佈或印刷或微分配法(如(例如)浸塗、旋塗、狹縫模印刷、噴墨印刷、凸版印刷、網版印刷、刮塗、輥筒印刷、反轉輥印刷、平版印刷、柔版印刷、輪轉印刷、噴塗、刷塗或移動印刷)。以旋塗、刮塗、狹縫模印刷、柔版印刷、凹板印刷、噴墨印刷、微接觸印刷、軟微影術或壓印尤其佳。
例如,可藉由噴墨印刷或微分配將本發明調配物塗佈至預製的裝置基板上。較佳地,可使用工業壓電式印刷頭(例如(但不限於)彼等由Aprion、Hitachi-Koki、InkJet Technology、On Target Technology、Picojet、Spectra、Trident、Xaar提供者)。另外,可使用半工業印刷頭(例如,彼等由Brother、Epson、Konica、Seiko Instruments Toshiba TEC製造者)或單噴嘴微分配器(例如,彼等由Microdrop及Microfab製造者)。
印刷特徵之尺寸可分別在約1微米直徑或甚至更小的線或點至若干m2的大面積之間(較佳10微米至1 m2)變化。
較佳地,藉由蒸發(例如,藉由將沈積層曝露於高溫及/或減壓)實現移除該(等)溶劑。
移除溶劑後,OSC層之厚度較佳係10 nm至5微米,更佳20 nm至2微米,甚至更佳50 nm至1微米,最佳200 nm至500 nm。
本發明另外係關於一種製造OE裝置之方法,其包括以下步驟:a)提供陽極;b)提供陰極;c)將如上下文所述之調配物沈積於該陽極與該陰極之間,且移除該調配物中存在的任何溶劑,其中步驟a)及b)中之一者亦可在步驟c)之後進行。
本發明另外係關於一種OE裝置,其包含:陽極;陰極;自如上下文所述之調配物形成或藉由如上下文所述之方法之步驟c)形成的活性層。
該OE裝置較佳係OPV裝置或倒置式OPV裝置、有機太陽能電池或光電二極體,極佳係BHJ OPV裝置或倒置式BHJ OPV裝置。
該OPV裝置可係文獻資料中已知的任何類型(參見例如Waldauf等人Appl.Phys.Lett.,2006,89,233517或Coakley,K.M.and McGehee,M.D.Chem.Mater.2004,16,4533)。圖1及圖2分別示例性及示意性描述本發明典型的較佳OPV裝置及倒置式OPV裝置。
本發明之第一較佳OPV裝置(如圖1中示例性顯示)包含以下各層(順序自底部至頂部):- 對可見光透明之基板(1);- 作為陽極之高功函數電極(2)(例如氧化銦錫(ITO));- 視需要之導電層或電洞傳輸層(HTL)或電子阻擋層(EBL)(3),其較佳包含有機聚合物或聚合物摻合物,如(例如)PEDOT:PSS(聚(3,4-伸乙二氧基噻吩):聚(苯乙烯磺酸酯))之摻合物;- 形成塊體異質接面(BHJ)且包含p型OSC及n型OSC之層(4)(亦稱為「活性層」),其係(例如)由p型及n型子層形成的雙層,或分別包含兩個不同的p型及n型層,或係p型及n型OSC之相分離摻合物或混合物;- 視需要之導電層或電子傳輸層(ETL)或電洞阻擋層(HBL)(6),其較佳包含有機聚合物或聚合物摻合物、金屬氧化物或金屬鹵化物(如(例如)LiF、Ca);- 低功函數電極(5),其包含(例如)低功函數金屬(如鋁)並 作為陰極,其中電極(2)及(5)及相關ETL`s、HTL`s、EBL`s或HBL`s中之至少一者(最佳陽極(2)、HTL及EBL)係對可見光透明,且其中該活性層(4)係自本發明調配物製得。
本發明之第二較佳OPV裝置係如圖2中所示例性顯示之倒置式OPV裝置,且包含以下各層(順序自底部至頂部):- 對可見光透明之基板(1);- 作為陰極之高功函數電極(2)(例如氧化銦錫(ITO));- 導電層、電子傳輸層(ETL)或電洞阻擋層(HBL)(6),其較佳包含有機聚合物或聚合物摻合物或金屬或金屬氧化物(如(例如)TiOx或ZnOx);- 形成塊體異質接面(BHJ)且包含p型OSC及n型OSC之層(4)(亦稱為「活性層」),其係(例如)由p型及n型子層形成的雙層,或分別包含兩個不同的p型及n型層,或係p型及n型OSC之相分離摻合物或混合物;- 視需要之導電層或電洞傳輸層(HTL)或電子阻擋層(EBL)(3),其較佳包含有機聚合物或聚合物摻合物(如(例如)PEDOT:PSS之摻合物);- 高功函數電極(5),其包含(例如)高功函數金屬(如金)並作為陽極,其中電極(2)及(5)及相關ETL`s、HTL`s、EBL`s或HBL`s中之至少一者(最佳陰極(2)、HBL及ETL)係對可見光透明,且 其中該活性層(4)係自本發明調配物製得。
就製造如圖1中所示之OPV裝置而言,較佳係首先將該陽極(2)提供於該基板(1)上,視需要將該電洞傳導聚合物層或電子阻擋層(3)提供於該陽極上且藉由將本發明調配物沈積至該導電聚合物層(3)或陽極(2)上並移除溶劑來製備該活性層(4)。隨後視需要將該電洞阻擋層或電子傳輸層(6)提供於該活性層(4)上且將該陰極(5)提供於該導電層(6)或該活性層(4)上。
就製造如圖2中所示之倒置式OPV裝置而言,較佳係首先將該陰極(2)提供於該基板(1)上,將該電子傳導層或電洞阻擋層(6)提供於該陰極上,且然後藉由將本發明調配物沈積至該層(6)或該陰極(2)上並移除溶劑來製備該活性層(4)。隨後視需要將該電子阻擋層或導電聚合物層或電洞傳導層(3)提供於該活性層(4)上,且將該陽極(5)提供於該層(3)或該活性層(4)上。
製造OPV裝置之個別方法步驟係熟知及描述於文獻資料中。
該基板可係任何適用於製造OE裝置且對可見光透明之基板,且可係剛性或可撓性。適宜的較佳基板係(例如)玻璃、平面化Si玻璃或可撓性塑膠薄膜(如聚對苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯(PEN)或聚醯亞胺薄膜)。
該陽極較佳包含高功函數金屬(如Au、Pt、Pd、Ir、Ni、Cu、Ag、Mo)或導電氧化物(如ITO、AZO)或(例如)導電碳奈米線、奈米棒或奈米管。該陰極較佳包含低功函數金屬 (如(例如)Al、Ca、Ba、Cs、Ce、Na、K)。
該可選HTL或EBL或導電層(3)較佳包含有機聚合物或聚合物摻合物(如PEDOT或PEDOT/PSS)或其他適宜的導電有機材料,其中諸多材料係可購得。該可選HBL或ETL或導電層(6)較佳包含金屬、金屬氧化物或金屬氟化物,如TiOx、ZnOx或LiF。
可藉由(例如)氣相沈積塗佈該金屬或含金屬之導電層或電極層。可藉由蒸發通過遮蔽罩或藉由將金屬前驅物或膏糊(例如銀膏)以任何熟習此項技術者已知的印刷方法直接印刷至所需區域來形成圖案化層。
可藉由(例如)上述塗佈或印刷方法塗佈該等有機聚合物層。可藉由印刷所需圖案來形成圖案化層。可在沈積及移除溶劑後使該等有機聚合物層(如層(3)或(4))退火。
亦可藉由(例如)環氧樹脂/玻璃或任何其他適用於抵抗環境影響之封裝劑封裝該裝置。
應瞭解可在不脫離本發明範圍的同時,對本發明前述實施例進行改變。除非另有說明,否則本說明書中所揭示的各特徵可由用於相同、等效或類似目的之其他特徵代替。因此,除非另有說明,否則所揭示的各特徵僅係一般系列的等效或類似特徵之一實例。
本說明書中所揭示的所有特徵可以任何組合方式組合,除其中該等特徵及/或步驟之至少部分係相互排斥之組合以外。特定言之,本發明之較佳特徵可應用於本發明之所有態樣且可以任何組合方式使用。同樣地,非必需組合中 所述的特徵可單獨(以非組合形式)使用。
應瞭解,諸多上述特徵(尤其係較佳實施例)係本身具有獨創性且不僅作為本發明實施例之部分。除當前所主張的任何發明之外或作為其替代物,亦可為此等特徵尋求獨立保護。
現將參考以下實例更詳細地描述本發明,該等實例僅係說明性且不限制本發明之範圍。
實例 OPV標準裝置製造
於購自LUMTEC Corporation的ITO玻璃基板(13 Ω/□)上製造OPV裝置。於超音波浴中使用一般溶劑(丙酮、IPA、DI水)清洗基板,然後進行習知的光刻處理以界定底部電極(陽極)。
將導電聚合物經聚(苯乙烯磺酸)摻雜之聚(伸乙二氧基噻吩)[Clevios VPAI 4083(H.C.Starck)]與DI水以1:1的比例混合。超音波處理此溶液20分鐘以確保適當混合並使用0.2 μm過濾器過濾,且隨後將其旋塗至20 nm之厚度。在該旋塗製程之前,使基板曝露於臭氧,以確保良好的潤濕性質。然後使薄膜於惰性氣氛中及130℃下退火30分鐘,並使其等保持在該惰性氣氛中以用於該方法之其餘部分。
以實例中所述的濃度及組分比例來製備活性材料溶液。於惰性氣氛下根據指定條件刮塗薄膜,以獲得200至300 nm的厚度,或旋塗薄膜以獲得50至150 nm的厚度(使用表面輪廓儀測定)。接著進行短時間乾燥以確保移除過量溶 劑。通常,於RT下乾燥旋塗型薄膜10分鐘。在加熱板上,於70℃下乾燥刮塗型薄膜3分鐘。
就該裝置製造之最後一步而言,使鈣(30 nm)/鋁(200 nm)陰極熱蒸發通過遮蔽罩以界定電池。
使用購自Newport Ltd之太陽能模擬器(型號91160)作為1個太陽光源且使用校準型Si電池作為參照物於RT下測定樣品。藉由連接至PC且經由內部設計軟體控制的Keithley 2400電源電錶獲得I-V數據。處理該I-V數據以獲得各電池之Voc、Jsc、FF及PCE值。除非另有說明,否則所有性能值表示自至少5個於單個基板上製造的個別OPV電池收集之平均值。該電池面積係0.045 cm2
實例1至5
以下實例顯示自1,2-二氯苯及諸多單一非氯化溶劑製造的聚合物P1及PC60BM之裝置。各實例之性能係匯總於表1中。
Mn=25900、Mw=53300、PDI=2.05、HOMO=-5.34 eV、LUMO=-3.58 eV、Eg=1.76 eV
實例1-比較例
於惰性氣氛下,製備含於1,2-二氯苯(1,2-DCB)中之聚合 物P1及PC60BM(1:2質量比)之30 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至70℃,然後刮塗。將該刮刀片加熱至70℃且以40 mm/s塗佈40 μl溶液。在塗佈後,於70℃下乾燥該薄膜2分鐘。
實例2
於惰性氣氛下,製備含於1,5-二甲基四氫化萘(1,5-DMT)中之聚合物P1及PC60BM(1:2質量比)之30 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至70℃,然後刮塗。將該刮刀片加熱至70℃且以30 mm/s塗佈40 μl溶液。在塗佈後,於70℃下乾燥該薄膜3分鐘。
實例3-比較例
於惰性氣氛下,製備含於四氫化萘中之聚合物P1及PC60BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以40 mm/s塗佈40 μl溶液。在塗佈後,於90℃下乾燥該薄膜5分鐘。
實例4
於惰性氣氛下,製備含於1-甲基萘(1-MN)中之聚合物P1及PC60BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以40 mm/s塗佈60 μl溶液。在塗佈後,於90℃下乾燥該薄膜5分鐘。
實例5-比較例
於惰性氣氛下,製備含於間二甲苯中之聚合物P1及 PC60BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以40 mm/s塗佈60 μl溶液。在塗佈後,於90℃下乾燥該薄膜5分鐘。
可發現自實例2及4之調配物製得的裝置顯示最高Voc值及效率值,其等相當於(或甚至高於)彼等自比較例1之含有DCB之調配物製得的裝置者,而自比較例3及5之調配物製得的裝置顯示較低Voc值及效率值。
圖3顯示如實例1中以1,2-二氯苯作為溶劑所製造的裝置之AFM影像。OPV:PCBM摻合物之平均RMS粗糙度係1.1 nm(1 μm掃描)。
圖4顯示如實例2中以1,5-二甲基四氫化萘作為溶劑所製造的裝置之AFM影像。OPV:PCBM摻合物之平均RMS粗糙度係0.9 nm(1 μm掃描)。
該等圖顯示將溶劑自DCB改變成DMT對RMS粗糙度影響極小,但改良相分離晶粒之均質性。
實例6至16
以下實例顯示自單一及雙重非氯化溶劑調配物製造的聚合物P1及PC60BM及PC70BM之裝置。各實例之性能係匯總於表2中。除非另有說明,否則所有性能值表示自單個基板上的至少5個OPV電池獲得之平均值。該電池面積係0.045 cm2
實例6
於惰性氣氛下,製備含於1,5-二甲基四氫化萘(1,5-DMT)中之聚合物P1及PC70BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以30 mm/s塗佈40 μl溶液。在塗佈後,於90℃下乾燥該薄膜5分鐘。
實例7
以85:15體積%的比例混合1,5-二甲基四氫化萘與間二甲苯並於惰性氣氛下使用該溶劑混合物製備聚合物P1及PC70BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以30 mm/s塗佈60 μl溶液。在塗佈後,於90℃下乾燥該薄膜5分鐘。
實例8
以85:15體積%的比例混合1,5-二甲基四氫化萘與對甲基異丙苯並於惰性氣氛下使用該溶劑混合物製備聚合物P1及PC70BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以30 mm/s塗佈60 μl溶液。在塗佈後, 於90℃下乾燥該薄膜5分鐘。
實例9
以90:10體積%的比例混合1,5-二甲基四氫化萘與茚滿並於惰性氣氛下使用該溶劑混合物製備聚合物P1及PC70BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以30 mm/s塗佈40 μl溶液。在塗佈後,於90℃下乾燥該薄膜5分鐘。
實例10
於惰性氣氛下,製備含於1-甲基萘(1-MN)中之聚合物P1及PC60BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以40 mm/s塗佈40 μl溶液。在塗佈後,於90℃下乾燥該薄膜2分鐘。
實例11
以85:15體積%的比例混合1-甲基萘與間二甲苯並於惰性氣氛下使用該溶劑混合物製備聚合物P1及PC60BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以40 mm/s塗佈40 μl溶液。在塗佈後,於90℃下乾燥該薄膜2分鐘。
實例12
以70:30體積%的比例混合1-甲基萘與茚滿並於惰性氣氛下使用該溶劑混合物製備聚合物P1及PC60BM(1:2質量比) 之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以40 mm/s塗佈40 μl溶液。在塗佈後,於90℃下乾燥該薄膜5分鐘。
實例13
於惰性氣氛下,製備含於1,5-二甲基四氫化萘中之聚合物P1及PC60BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以30 mm/s塗佈40 μl溶液。在塗佈後,於90℃下乾燥該薄膜5分鐘。
實例14
以70:30體積%的比例混合1,5-二甲基四氫化萘與茚滿並於惰性氣氛下使用該溶劑混合物製備聚合物P1及PC60BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以40 mm/s塗佈40 μl溶液。在塗佈後,於90℃下乾燥該薄膜5分鐘。
實例15-比較例
於惰性氣氛下,製備含於間二甲苯中之聚合物P1及PC60BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以40 mm/s塗佈60 μl溶液。在塗佈後,於90℃下乾燥該薄膜3分鐘。
可發現自實例6至9(使用PC70BM摻合物)之調配物製得的裝置顯示最高Voc值及效率值。在使用PC60BM摻合物之裝置中,彼等自實例10至14之調配物製得者顯示更高Voc值及效率值,而自比較例15之調配物製得的裝置顯示較低Voc值及效率值。
實例16-19
以下實例顯示自單一及雙重非氯化溶劑調配物製造的聚 合物P1及PC70BM之裝置。該電池面積係0.045 cm2
實例16
於惰性氣氛下,製備含於1-甲基萘中之聚合物P1及PC70BM(1:2質量比)之30 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以30 mm/s塗佈60 μl溶液。在塗佈後,於90℃下乾燥該薄膜5分鐘。
實例17
以50:50體積%的比例混合1,5-二甲基四氫化萘與間二甲苯並於惰性氣氛下使用該溶劑混合物製備聚合物P1及PC70BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以30 mm/s塗佈60 μl溶液。在塗佈後,於90℃下乾燥該薄膜5分鐘。
實例18
以70:30體積%的比例混合1,5-二甲基四氫化萘與間二甲苯並於惰性氣氛下使用該溶劑混合物製備聚合物P1及PC70BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以30 mm/s塗佈60 μl溶液。在塗佈後,於90℃下乾燥該薄膜5分鐘。
實例19
以85:15體積%的比例混合1,5-二甲基四氫化萘與間二甲苯並於惰性氣氛下使用該溶劑混合物製備聚合物P1及 PC70BM(1:2質量比)之25 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以30 mm/s塗佈60 μl溶液。在塗佈後,於90℃下乾燥該薄膜5分鐘。
圖5至8顯示根據實例16至19製備的裝置活性層之AFM影像。該等影像顯示可使用各種不同的溶劑及溶劑調配物比例來影響自聚合物P1及PC70BM製造的OPV裝置之性能。其亦顯示PCE與平均RMS粗糙度(Rg)之間無顯著關係,如在先前技術(如US 2010/0043876 A1)中所觀察到的結果。
圖5顯示根據實例16製造的裝置之AFM影像。其顯示RMS粗糙度為1.1 nm及PCE為4.07%。
圖6顯示根據實例17製造的裝置之AFM影像。其顯示RMS粗糙度為1.2 nm及PCE為4.90%。
圖7顯示根據實例18製造的裝置之AFM影像。其顯示RMS粗糙度為1.5 nm及PCE為5.44%。
圖8顯示根據實例19製造的裝置之AFM影像。其顯示RMS粗糙度為1.2 nm及PCE為4.46%。
圖9係顯示如圖5至7中所示之實例16至19之裝置中RMS平均粗糙度與PCE之間的關係之圖表。可發現該粗糙度對PCE確實僅具有極小的影響。在聚合物P1實例中,粗糙度範圍係在0.5至2 nm之區域內,此係遠低於先前技術(如US 2010/0043876 A1)中所例示的關於P3HT者(8-10nm)。
實例20-21
以下實例分別顯示自DCB調配物及自雙重非氯化溶劑調 配物製造的聚合物P2及PC70BM之裝置。該電池面積係0.045 cm2
Mn=22300、Mw=46600、PDI=2.09、HOMO=-5.45 eV、LUMO=-3.74 eV、Eg=1.71 eV
實例20-比較例
於惰性氣氛下,製備含於1,2-二氯苯中之聚合物P2及PC60BM(1:2質量比)之30 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至70℃,然後刮塗。將該刮刀片加熱至70℃且以40 mm/s塗佈40 μl溶液。在塗佈後,於70℃下乾燥該薄膜2分鐘。
實例21
以85:15體積%的比例混合1-甲基萘與1,5-二甲基四氫化萘並於惰性氣氛下使用該溶劑混合物製備聚合物P2及PC60BM(1:2質量比)之30 mg/ml調配物。於60℃下加熱該溶液過夜,並歷時1小時加熱至90℃,然後刮塗。將該刮刀片加熱至90℃且以40 mm/s塗佈40 μl溶液。在塗佈後,於90℃下乾燥該薄膜5分鐘。
圖10顯示如實例20中以1,2-二氯苯作為溶劑及聚合物P2 作為供體聚合物所製造的裝置之AFM影像。OPV:PCBM摻合物之平均RMS粗糙度係1.9 nm。
圖11顯示如實例21中以1-甲基萘與1,5-二甲基四氫化萘之85:15體積%比例之混合物作為調配物溶劑所製造的裝置之AFM影像。OPV:PCBM摻合物之平均RMS粗糙度係1.9 nm。
該等圖示顯示將溶劑自DCB改變成MN/DMT對RMS粗糙度影響極小。其亦顯示當使用聚合物P2作為OPV供體聚合物時,如何藉由改良相分離均質性,使PCE自5.3%增加至6.15%。
1‧‧‧基板
2‧‧‧陽極(圖2中為陰極)
3‧‧‧導電層或電洞傳輸層或電子阻擋層
4‧‧‧活性層
5‧‧‧陰極(圖2中為陽極)
6‧‧‧導電層或電子傳輸層或電洞阻擋層
圖1示例性及示意性描述本發明OPV裝置之結構。
圖2示例性及示意性描述本發明倒置式OPV裝置之結構。
圖3顯示實例1裝置之AFM影像。
圖4顯示實例2裝置之AFM影像。
圖5顯示實例16裝置之AFM影像。
圖6顯示實例17裝置之AFM影像。
圖7顯示實例18裝置之AFM影像。
圖8顯示實例19裝置之AFM影像。
圖9顯示一圖表,其顯示如圖5至7所示之實例16至19裝置之RMS平均粗糙度與PCE之間的關係。
圖10顯示實例20裝置之AFM影像。
圖11顯示實例21裝置之AFM影像。
1‧‧‧基板
2‧‧‧陽極
3‧‧‧導電層或電洞傳輸層或電子阻擋層
4‧‧‧活性層
5‧‧‧陰極
6‧‧‧導電層或電子傳輸層或電洞阻擋層

Claims (24)

  1. 一種調配物,其包含:至少一種p型有機半導體;至少一種n型有機半導體;及至少一種選自由烷基化四氫化萘、烷基化萘及烷基化苯甲醚組成之群之第一溶劑。
  2. 如請求項1之調配物,其中其包含至少一種不同於該第一溶劑且選自由以下組成之群之第二溶劑:烷基化苯、烷氧基化苯、茚滿、烷基化茚滿、烷氧基化茚滿、四氫化萘、烷基化四氫化萘、萘、烷基化萘、苯甲醚、烷基化苯甲醚、直鏈或環狀酮、芳族及/或脂族醚、芳族醇、視需要經取代之噻吩、苯并噻吩、烷氧基化萘、經取代之苯并噻唑、苯甲酸烷基酯及苯甲酸芳基酯。
  3. 如請求項2之調配物,其中該(等)第一溶劑之濃度係等於或高於該(等)第二溶劑之濃度。
  4. 如請求項1至3中任一項之調配物,其中該第一溶劑具有150℃之沸點。
  5. 如請求項2或3之調配物,其中該第二溶劑具有100℃之沸點。
  6. 如請求項2至5中任一項之調配物,其中該第一溶劑之沸點係大於該第二溶劑之沸點。
  7. 如請求項2至6中任一項之調配物,其中該n型有機半導體於該第一溶劑中之溶解度係高於於該第二溶劑中者,且該p型有機半導體於該第二溶劑中之溶解度係高於於該第一溶劑中者。
  8. 如請求項2至7中任一項之調配物,其中該n型有機半導 體於該第一溶劑中之溶解度係低於於該第二溶劑中者,且該p型有機半導體於該第二溶劑中之溶解度係低於於該第一溶劑中者。
  9. 如請求項1至8中任一項之調配物,其中其係不含氯化溶劑。
  10. 如請求項1至9中任一項之調配物,其中該第一溶劑係經兩個或多於兩個烷基取代之四氫化萘,較佳係1,5-二甲基四氫化萘。
  11. 如請求項1至10中任一項之調配物,其中該第一溶劑係經一或多個烷基取代之萘,較佳係1-甲基萘。
  12. 如請求項1至11中任一項之調配物,其中該第一溶劑係經一或多個烷基取代之苯甲醚,較佳係二甲基苯甲醚。
  13. 如請求項2至12中任一項之調配物,其中該第二溶劑係選自由以下組成之群:二甲苯(包括呈純異構體或異構體混合物之鄰-、間-及對二甲苯)、甲基異丙苯(包括呈純異構體或異構體混合物之鄰-、間-及對甲基異丙基苯)、茚滿、苯甲醚、藜蘆醚、二甲基苯甲醚、四氫化萘、1,5-二甲基四氫化萘、萘、1-甲基萘、1-乙基萘、2-乙基萘、1,2-二甲基萘、1,3-二甲基萘、1,4-二甲基萘、2,6-二甲基萘、2,7-二異丙基萘、環戊酮及環己酮。
  14. 如請求項2至13中任一項之調配物,其中該第二溶劑係選自由以下組成之群:間二甲苯、對甲基異丙苯、藜蘆醚、1,5-二甲基四氫化萘、1-甲基萘、2,4-二甲基苯甲醚及茚滿。
  15. 如請求項2至14中任一項之調配物,其中該第二溶劑係選自由以下組成之群:1,2-二氫化萘、十氫化萘、二苯醚、環己基苯、苯乙酸甲酯、乙酸苯酯、乙酸苄酯、苯甲酸乙酯、γ-萜品烯、苯并噻吩、噻吩、1-甲氧基萘、苄醇、環己醇、茚、1,4-二噁烷、乙二醇單丁醚、二乙醚、N-甲基吡咯啶酮、鄰苯二甲酸二乙酯、苯甲酸苄酯、苯甲酸乙酯、苯乙酮、苯丙酮、2-庚酮、環己酮、苯并噻唑、苄腈、聯環己烷、甲基異丁基酮。
  16. 如請求項2至15中任一項之調配物,其中該第一溶劑與該第二溶劑之比例係50:50至95:5重量份。
  17. 如請求項1至16中任一項之調配物,其中該p型有機半導體係共軛有機聚合物。
  18. 如請求項1至17中任一項之調配物,其中該p型有機半導體係非結晶或半結晶共軛有機聚合物。
  19. 如請求項1至18中任一項之調配物,其中該p型有機半導體係能帶隙低於2.1 eV之共軛有機聚合物。
  20. 如請求項1至19中任一項之調配物,其中該n型有機半導體係富勒烯或富勒烯衍生物。
  21. 一種如請求項1至20中任一項之調配物於製造有機電子裝置之用途。
  22. 一種製造有機電子裝置之方法,其包括以下步驟:a)提供陽極;b)提供陰極;c)將如請求項1至20中任一項之調配物沈積於該陽極與 該陰極之間,且移除該調配物中存在的任何溶劑,其中步驟a)及b)中之一者亦可於步驟c)之後進行。
  23. 一種有機電子裝置,其包含陽極、陰極及活性層,該活性層係由如請求項1至20中任一項之調配物形成或藉由如請求項22之方法之步驟c)形成。
  24. 如請求項21至23中任一項之用途、方法或裝置,其中該有機電子裝置係塊體異質接面有機光伏打裝置或倒置式塊體異質接面有機光伏打裝置。
TW101130896A 2011-08-26 2012-08-24 有機半導體調配物 TWI565744B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11006995 2011-08-26

Publications (2)

Publication Number Publication Date
TW201313800A true TW201313800A (zh) 2013-04-01
TWI565744B TWI565744B (zh) 2017-01-11

Family

ID=46583955

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101130896A TWI565744B (zh) 2011-08-26 2012-08-24 有機半導體調配物

Country Status (11)

Country Link
US (1) US9805838B2 (zh)
EP (1) EP2748877B1 (zh)
JP (1) JP6265897B2 (zh)
KR (1) KR102071217B1 (zh)
CN (1) CN103748703B (zh)
AU (1) AU2012303847B2 (zh)
BR (1) BR112014003548B1 (zh)
GB (1) GB2509273A (zh)
SG (1) SG2014013650A (zh)
TW (1) TWI565744B (zh)
WO (1) WO2013029733A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11770971B2 (en) 2015-12-15 2023-09-26 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5955228B2 (ja) * 2011-01-18 2016-07-20 保土谷化学工業株式会社 置換されたビピリジル基とピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP6015073B2 (ja) * 2012-04-02 2016-10-26 セイコーエプソン株式会社 機能層形成用インク、発光素子の製造方法
US9293711B2 (en) 2012-08-09 2016-03-22 Polyera Corporation Organic semiconductor formulations
CN104143606A (zh) * 2013-05-06 2014-11-12 3M创新有限公司 集成太阳能电池板的显示装置及其制备方法
FR3012461B1 (fr) * 2013-10-31 2016-01-01 Arkema France Compositions stables de nanotubes de carbone - polymeres electrolytes
WO2015076171A1 (ja) * 2013-11-21 2015-05-28 株式会社ダイセル 有機トランジスタ製造用溶剤
KR101719028B1 (ko) * 2013-12-02 2017-03-22 주식회사 엘지화학 유기 태양 전지 및 이의 제조방법
WO2016009891A1 (ja) * 2014-07-18 2016-01-21 富士フイルム株式会社 有機半導体膜形成用組成物、及び、有機半導体素子の製造方法
WO2016034262A1 (de) * 2014-09-05 2016-03-10 Merck Patent Gmbh Formulierungen und elektronische vorrichtungen
JP6301488B2 (ja) * 2014-09-30 2018-03-28 富士フイルム株式会社 有機半導体膜形成用組成物、並びに、有機半導体素子及びその製造方法
JP6328535B2 (ja) * 2014-10-30 2018-05-23 富士フイルム株式会社 有機半導体膜形成用組成物、有機半導体膜、及び、有機半導体素子
KR101815432B1 (ko) * 2014-11-13 2018-01-04 스미또모 가가꾸 가부시키가이샤 잉크 조성물 및 그것을 사용하여 제조한 광전 변환 소자
BR112017008501A2 (pt) * 2014-11-19 2017-12-26 Merck Patent Gmbh misturas semicondutoras
KR101833096B1 (ko) * 2014-12-23 2018-02-27 주식회사 엘지화학 비수용성 물질 평가 방법 및 평가 시스템
KR102610947B1 (ko) * 2015-01-30 2023-12-06 메르크 파텐트 게엠베하 낮은 입자 함유량을 갖는 조성물
WO2016148184A1 (ja) * 2015-03-17 2016-09-22 日産化学工業株式会社 光センサ素子の正孔捕集層形成用組成物および光センサ素子
KR101666353B1 (ko) * 2015-04-07 2016-10-17 한국화학연구원 중간 밴드갭을 가지는 공액 고분자, 이의 제조방법 및 이를 적용한 유기 전자 소자
KR102376394B1 (ko) * 2015-09-22 2022-03-18 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20180066145A (ko) 2015-10-06 2018-06-18 메르크 파텐트 게엠베하 적어도 2종의 유기 반도체 화합물 및 적어도 2종의 용매를 포함하는 제형
KR20180096676A (ko) * 2015-12-16 2018-08-29 메르크 파텐트 게엠베하 고체 용매를 함유하는 제형
US11407916B2 (en) * 2015-12-16 2022-08-09 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
US10818849B2 (en) 2015-12-29 2020-10-27 The University Of Chicago Electron acceptors based on alpha-position substituted PDI for OPV solar cells
GB2547460A (en) * 2016-02-19 2017-08-23 Cambridge Display Tech Ltd Solvent systems for tuning of the external quantum efficiency of organic photodiodes
GB2551585A (en) * 2016-06-24 2017-12-27 Sumitomo Chemical Co Solvent blends for improved jetting and ink stability for inkjet printing of photoactive layers
GB2554404A (en) * 2016-09-26 2018-04-04 Sumitomo Chemical Co Solvent systems for preparation of photosensitive organic electronic devices
KR102629585B1 (ko) * 2016-10-04 2024-01-25 삼성전자주식회사 광전 변환 소자 및 이를 포함하는 촬상 장치
US10483478B2 (en) * 2017-03-01 2019-11-19 Emagin Corporation Buffer assisted charge generation layer for tandem OLEDs
GB2560934A (en) * 2017-03-28 2018-10-03 Sumitomo Chemical Co Solvent systems for the preparation of photosensitive organic electronic devices
CN109181414B (zh) * 2017-07-14 2022-04-15 苏州星烁纳米科技有限公司 量子点墨水以及发光二极管
CN108032641B (zh) * 2017-12-07 2020-01-17 南京邮电大学 一种印刷制备大面积图案化有机发光薄膜的方法
CN109929328B (zh) * 2017-12-15 2021-10-22 Tcl科技集团股份有限公司 一种复合墨水及其制备方法、器件
TWI652945B (zh) * 2017-12-20 2019-03-01 財團法人工業技術研究院 具有自動曝光偵測能力的輻射影像器以及其方法
JP7404257B2 (ja) * 2018-09-19 2023-12-25 株式会社ダイセル 有機半導体デバイス製造用インク組成物
US20220165953A1 (en) * 2019-03-28 2022-05-26 Raynergy Tek Incorporation Organic semiconductor formulation
FR3097687B1 (fr) * 2019-06-24 2021-09-24 Isorg Formulation comprenant un matériau semiconducteur organique de type p et un matériau semiconducteur de type n
FR3097685A1 (fr) * 2019-06-24 2020-12-25 Isorg Formulation comprenant un matériau semiconducteur organique de type p et un matériau semiconducteur de type n

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4313481A1 (de) 1993-04-24 1994-10-27 Hoechst Ag Fullerenderivate, Verfahren zur Herstellung und deren Verwendung
ATE540913T1 (de) * 2000-02-29 2012-01-15 Japan Science & Tech Agency Polyacen-derivate und ihre produktion
EP1370619B1 (de) * 2001-03-10 2006-06-21 MERCK PATENT GmbH Lösung und dispersionen organischer halbleiter
JP3918617B2 (ja) * 2002-04-16 2007-05-23 株式会社日立製作所 有機elディスプレイおよびその製造方法
JP4160355B2 (ja) * 2002-09-30 2008-10-01 株式会社東芝 有機el素子
EP1447860A1 (en) 2003-02-17 2004-08-18 Rijksuniversiteit Groningen Organic material photodiode
DE102004007777A1 (de) * 2004-02-18 2005-09-08 Covion Organic Semiconductors Gmbh Lösungen organischer Halbleiter
DE102004023276A1 (de) 2004-05-11 2005-12-01 Covion Organic Semiconductors Gmbh Lösungen organischer Halbleiter
DE102005022903A1 (de) 2005-05-18 2006-11-23 Merck Patent Gmbh Lösungen organischer Halbleiter
ES2524253T3 (es) 2006-07-06 2014-12-04 Solenne B.V. I.O. Mezclas de derivados de fullereno y usos de las mismas en dispositivos electrónicos
US8318532B2 (en) * 2006-12-01 2012-11-27 The Regents Of The University Of California Enhancing performance characteristics of organic semiconducting films by improved solution processing
JP2009090637A (ja) * 2007-09-18 2009-04-30 Toppan Printing Co Ltd 有機機能層及び有機機能性素子の製造方法並びに有機機能性素子製造装置
CN101828280B (zh) 2007-10-18 2013-03-27 默克专利股份有限公司 导电配制剂
US8227691B2 (en) * 2007-10-31 2012-07-24 The Regents Of The University Of California Processing additives for fabricating organic photovoltaic cells
US20090194167A1 (en) * 2008-02-05 2009-08-06 Konarka Technologies, Inc. Methods of Forming Photoactive Layer
KR20110058808A (ko) 2008-08-20 2011-06-01 플렉스트로닉스, 인크 유기 태양 전지 제조를 위한 개선된 용매계
CN102378794A (zh) * 2009-03-31 2012-03-14 Dic株式会社 有机半导体墨组合物和使用其的有机半导体图案形成方法
CN102449799B (zh) * 2009-06-01 2016-09-28 日立化成工业株式会社 有机电子材料及含有该有机电子材料的油墨组合物、以及使用它们形成的有机薄膜、有机电子元件、有机电致发光元件、照明装置及显示装置
KR20150055105A (ko) * 2009-10-01 2015-05-20 히타치가세이가부시끼가이샤 유기 일렉트로닉스용 재료, 유기 일렉트로닉스 소자, 유기 일렉트로 루미네센스 소자, 및 그것을 사용한 표시 소자, 조명 장치, 표시 장치
CN102245543B (zh) * 2009-10-30 2014-09-10 三菱化学株式会社 低分子化合物、聚合物、电子器件材料、电子器件用组合物、有机场致发光元件、有机太阳能电池元件、显示装置及照明装置
KR20120123361A (ko) * 2009-12-23 2012-11-08 메르크 파텐트 게엠베하 유기 반도성 화합물을 포함하는 조성물
RU2012139316A (ru) * 2010-02-15 2014-03-27 Мерк Патент Гмбх Полупроводниковые полимеры
US9206352B2 (en) * 2010-05-27 2015-12-08 Merck Patent Gmbh Formulation and method for preparation of organic electronic devices
WO2012147208A1 (ja) 2011-04-28 2012-11-01 パイオニア株式会社 有機電界発光素子用金属錯体組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11770971B2 (en) 2015-12-15 2023-09-26 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations

Also Published As

Publication number Publication date
JP2014534606A (ja) 2014-12-18
GB201405379D0 (en) 2014-05-07
WO2013029733A1 (en) 2013-03-07
EP2748877A1 (en) 2014-07-02
GB2509273A (en) 2014-06-25
BR112014003548B1 (pt) 2021-11-30
EP2748877B1 (en) 2016-02-10
KR102071217B1 (ko) 2020-01-30
KR20140058653A (ko) 2014-05-14
AU2012303847A1 (en) 2014-04-03
AU2012303847B2 (en) 2015-09-10
CN103748703A (zh) 2014-04-23
CN103748703B (zh) 2017-07-21
US9805838B2 (en) 2017-10-31
BR112014003548A2 (pt) 2017-03-14
SG2014013650A (en) 2014-09-26
TWI565744B (zh) 2017-01-11
US20140230900A1 (en) 2014-08-21
JP6265897B2 (ja) 2018-01-24

Similar Documents

Publication Publication Date Title
TWI565744B (zh) 有機半導體調配物
TWI523885B (zh) 製備有機電子裝置之調配物及方法
CN109790176B (zh) 有机半导体化合物
US9722197B2 (en) Inverted organic electronic device and method for manufacturing the same
JP5085805B2 (ja) カルバゾール含有伝導性高分子およびこれを用いた有機光起電力装置
CN107915661B (zh) 有机半导体化合物
CN109563104B (zh) 有机半导体化合物
Xu et al. Solution-processed ambipolar organic thin-film transistors by blending p-and n-type semiconductors: solid solution versus microphase separation
US20190229269A1 (en) Ternary blend organic solar cells based on one donor polymer and two acceptors
KR20170047370A (ko) 유기 전자 장치에 사용하기 위한 풀러렌 혼합물
EP3332432B1 (en) Organic electronic device and the production of organic electronic devices
TW201402779A (zh) 用於電子傳輸層之包含離子有機化合物的調配物
TW201945513A (zh) 電荷輸送性組成物
TW201518306A (zh) 用於有機電子裝置之電子注入層的經改良電子傳遞組合物
JP2011505439A (ja) 共役コポリマー
CN112368316A (zh) 有机半导体聚合物
Matsuo et al. Anthracene-based organic small-molecule electron-injecting material for inverted organic light-emitting diodes
JP2022539124A (ja) P型有機半導体材料及びn型半導体材料を含む組成物
JP2022538858A (ja) P型有機半導体材料及びn型半導体材料を含む組成物
Hoth et al. Printed organic solar cells
JP2022539125A (ja) P型有機半導体材料及びn型半導体材料を含む組成物
JP2022538173A (ja) P型有機半導体材料及びn型半導体材料を含む組成物
Liang et al. Stability of Organic Solar Cells (OSCs)