RU2699127C1 - Способ уменьшения вычисляемой по массе площади удельной поверхности нанесенного на подложку покрытия - Google Patents

Способ уменьшения вычисляемой по массе площади удельной поверхности нанесенного на подложку покрытия Download PDF

Info

Publication number
RU2699127C1
RU2699127C1 RU2018128357A RU2018128357A RU2699127C1 RU 2699127 C1 RU2699127 C1 RU 2699127C1 RU 2018128357 A RU2018128357 A RU 2018128357A RU 2018128357 A RU2018128357 A RU 2018128357A RU 2699127 C1 RU2699127 C1 RU 2699127C1
Authority
RU
Russia
Prior art keywords
coating
substrate
anions
metal oxide
titanium dioxide
Prior art date
Application number
RU2018128357A
Other languages
English (en)
Inventor
Норберт БЕЙЕР
Original Assignee
Кронос Интернациональ, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кронос Интернациональ, Инк. filed Critical Кронос Интернациональ, Инк.
Application granted granted Critical
Publication of RU2699127C1 publication Critical patent/RU2699127C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/006Coating of the granules without description of the process or the device by which the granules are obtained
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение относится к способу покрытия поверхности подложки, например неорганических частиц, оксидом металла. Способ включает осаждение оксида металла из водного раствора, содержащего ионы металлов и поливалентные анионы. В частности, покрытие осуществляют из оксида алюминия на поверхности подложки из диоксида титана. Посредством увеличения на поверхности подложки молярного отношения анионов к ионам металла в указанном растворе по меньшей мере до 3 обеспечивают достижение уменьшения вычисляемой по массе площади удельной поверхности покрытия из указанного оксида металла. Изобретение обеспечивает возможность более автономного регулирования таких свойств указанного покрытия, как площадь удельной поверхности и положение изоэлектрической точки, при исключении необходимости использования дополнительных покрывающих составов для свободных от покрытия участков поверхности. 6 з.п. ф-лы, 2 табл., 4 пр.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к способам покрытия поверхности подложки, например неорганических частиц, оксидом металла, в котором достигается уменьшение вычисляемой по массе площади удельной поверхности покрытия из указанного оксида металла. В частности, данное изобретение относится к созданию покрытия из оксида алюминия на поверхности частиц пигмента из диоксида титана.
Уровень техники
Неорганические частицы, в частности неорганические частицы пигмента, часто служат в качестве подложки для нанесения покрытия с целью модификации некоторых свойств, например стойкости к истиранию, поверхностного заряда, диспергирующей способности, а также кислотостойкости и светостойкости. Так, в документе US 2,885,366 приводится описание применения плотного диоксида кремния в качестве материала покрытия наносимого на поверхность частиц, используемых в качестве подложки, например на поверхность частиц порошкообразного никеля или железа, на поверхность стекловолокна или частиц диоксида титана. При этом, в документах ЕР 0130272 А1 и US Re 27,818 раскрывается нанесение покрытия, состоящего из различных оксидов и гидроксидов, на поверхность подложки из цветного и белого пигментов для регулирования свойств полученных таким образом пигментов.
При осуществлении способа получения пигментов, покрытие из труднорастворимых соединений алюминия, главным образом из безводных и/или водных соединений оксида алюминия, наносится также в особенности на пигменты из диоксида титана. Таким образом, происходит увеличение совместимости указанных пигментов с остальными компонентами из составов композиций пользователя, например композиций покрытий, то есть при этом достигается улучшение таких типовых свойств пигментов как степень дисперсности, способность придавать блеск либо обеспечивать укрывистость.
Из содержания патентной литературы квалифицированным специалистам в данной области техники знакомы различные способы осаждения оксида/гидроксида алюминия. Так, источник информации US 6,616,746 В2 относится к способу осаждения оксида алюминия при изменяющихся значениях величины рН, в котором применяют водную суспензию из диоксида титана при щелочном значении величины рН, с последующим введением сначала алюмината натрия, а затем серной кислоты для получения рН=5.
В источнике информации US Re 27,818 раскрывается аналогичная процедура, в ходе которой сначала вводится сульфат алюминия. Далее, при помощи добавления основания или щелочного реагента добиваются нейтральной величины рН, а осаждение оксида алюминия происходит параллельно.
Однако, осаждение оксида алюминия обычно происходит при постоянном значении величины рН. Так, осаждение оксида алюминия производят путем добавления в суспензию с постоянным значением величины рН водорастворимого щелочного соединения алюминия и кислотного соединения, например кислоты или водорастворимого кислотного соединения алюминия. В альтернативном варианте, оксид алюминия также осаждают при использовании водорастворимого кислотного соединения алюминия и щелочного соединения, например основания, либо водорастворимого щелочного соединения алюминия. Эти варианты способа раскрыты, например, в документах ЕР 1603978 В1 и ЕР 1989264 В1.
Тем не менее, известные способы покрытия поверхности пигментов из диоксида титана оксидом/гидроксидом алюминия позволяют дополнительно модифицировать поверхность частиц пигмента, например добиться увеличения вычисляемой по массе площади удельной поверхности, которую определяют методом БЭТ1(1Метод Брунауэра, Эметта и Тэйлора для определения площади удельной поверхности твердых тел (далее - метод "БЭТ")), либо сдвига изоэлектрической точки. В области технологии нанесения покрытий, дополнительная площадь поверхности соответственно приводит к большей потребности в наличии добавок, таких как диспергаторы и связующие. Это является недостатком, поскольку влечет за собой дополнительные издержки связанные с составом наносимого покрытия и ограничения степеней свободы при оптимизации указанного состава.
Таким образом, с учетом предшествующего уровня техники, существует необходимость в создании способа в соответствии с которым обеспечивается нанесение в виде покрытия требуемого количества оксида алюминия, и при этом с возможностью более автономного регулирования таких свойств указанного покрытия, как площадь удельной поверхности и положение изоэлектрической точки (далее - "ИЭТ"). Кроме того, имеется необходимость в создании систем покрытий, характеризующихся низкой величиной соотношения диспергатора и связующего.
Раскрытие изобретения
Задачей настоящего изобретения является создание способа нанесения покрытия из оксида металла на поверхность подложки, в особенности на поверхность неорганических частиц, с получением при этом более низкой величины вычисляемой по массе площади удельной поверхности покрытия по сравнению с известными из уровня техники способами аналогичного назначения.
Задача настоящего изобретения решается посредством способа уменьшения вычисляемой по массе площади удельной поверхности нанесенного на подложку покрытия, содержащего оксиды металла, причем указанные оксиды металла осаждают из водного раствора, содержащего ионы металлов и поливалентные анионы, посредством увеличения молярного отношения анионов к ионам металла в указанном растворе по меньшей мере до 3.
Согласно настоящему изобретению в качестве указанной подложки могут использовать неорганический пигмент.
Согласно настоящему изобретению в качестве указанного неорганического пигмента могут использовать диоксид титана.
Согласно настоящему изобретению указанный осажденный оксид металла могут выбирать из группы, содержащей оксид алюминия, оксид циркония и оксид кремния.
Согласно настоящему изобретению указанные поливалентные ионы могут выбирать из группы, содержащей сульфат, фосфат, цитрат, аскорбат, изоаскорбат и оксалат.
Согласно настоящему изобретению в качестве указанного оксида металла могут использовать оксид алюминия, а в качестве указанных анионов - сульфат-ионы.
Согласно настоящему изобретению указанные оксиды металла могут осаждать из водного раствора посредством увеличения молярного отношения анионов к ионам металла предпочтительно в интервале значений от 3 до 8, более предпочтительно - от 3,2 до 6, еще более предпочтительно - от 3,5 до 5, и наиболее предпочтительно до 4,2.
Осуществление изобретения
Все раскрываемые далее значения величин, относящиеся к размеру в μм, и.т.д., концентрации в весовых или объемных процентах, величине рН, и.т.д., следует понимать как включающие в себя все свои значения в интервале погрешностей измерения, как это известно квалифицированным специалистам в данной области техники.
Понятие "оксид металла", в том смысле как оно употребляется в настоящей заявке, относится как к чистому оксиду металла, так и ко всем соответствующим водосодержащим фазам оксида металла.
Осаждение оксидов металла, например оксида алюминия, из различных водорастворимых соединений-прекурсоров обычно происходит спонтанно и полностью. В частности, в случае получения пигментов из диоксида титана, первоначально осажденные водосодержащие соединения оксида металла обезвоживаются в ходе последующих технологических операций обработки, например при высушивании пастообразной массы фильтрата суспензии, ее измельчении, со стехиометрическим приближением к безводному оксиду металла.
Исследования, проведенные в рамках создания настоящего изобретения, показали, что некоторые поверхностные свойства осажденного оксида металла, например площадь удельной поверхности либо ИЭТ, зависят от наличия поливалентных анионов в составе суспензии в процессе осаждения. Соответствующие анионы включают в себя, без ограничения, сульфат, фосфат, цитрат, аскорбат, изоаскорбат и оксалат. Эти применяемые в настоящем изобретении поливалентные анионы также еще называются далее "осаждающей добавкой". В частности, свойства осажденного оксида металла могут регулироваться посредством значений величины количественного соотношения имеющихся в суспензии указанных анионов и подлежащих осаждению ионов металла, в соответствии с настоящим изобретением.
Не придерживаясь рамок теории, авторы настоящего изобретения предполагают, что указанные анионы действуют в качестве хелатных лигандов зависимым от концентрации образом, и что вследствие этого осаждение оксида металла происходит посредством стабилизации многоядерных кластеров, выступающих в качестве промежуточных продуктов конденсации. Поэтому, окончательная конденсация в требуемый оксид металла могла бы происходить в среднем гораздо чаще на поверхности подложки (например, на поверхности частиц), чем в жидкой фазе, которой омывается указанная подложка (например, в качестве диспергированных частиц), при этом миграция указанного оксида к данной подложке или поверхности частиц происходит лишь впоследствии. Таким образом для одной и той же композиции покрытия получают улучшенную поверхность слоя из оксида металла, характеризующегося меньшей вычисляемой по массе площадью удельной поверхности, на поверхности подложки. Одновременно, значение величины рН, соответствующее ИЭТ поверхности подложки с покрытием из оксида металла, смещается в сторону ИЭТ чистого оксида металла. Способ, в соответствии с настоящим изобретением, является применимым при осаждении любых оксидов металла из водного раствора на поверхность подложки. Особенно пригодными для этой цели являются оксиды таких металлов, как алюминий, цирконий и кремний. Пригодные для указанной цели поливалентные анионы включают в себя, без ограничения, сульфат, фосфат, цитрат, аскорбат, изоаскорбат и оксалат.
В предпочтительном варианте осуществления изобретения, в качестве указанной подложки используют неорганические частицы. Надлежащим образом подобранные неорганические частицы могут включать в себя неорганические частицы, выбранные из группы, содержащей белые пигменты, например диоксид титана (C.I.2(2С указанием цветового индекса пигмента) пигмент белый 6), цинк белый, свинцовистый оксид цинка; сульфид цинка, литопон; черные пигменты, например оксид железа черный (C.I. пигмент черный 11), железо-марганец черный, шпинель черная (C.I. пигмент черный 27); сажа углеродная (C.I. пигмент черный 7); цветные пигменты, например оксид хрома, гидрат оксида хрома зеленый; хром зеленый (C.I. пигмент зеленый 48); кобальт зеленый (C.I. пигмент зеленый 50); ультрамарин зеленый; кобальт синий (C.I. пигмент синий 28 и 36; C.I. пигмент синий 72); ультрамарин синий; марганец синий; ультрамарин фиолетовый; кобальт и марганец фиолетовые; оксид железа красный (C.I. пигмент красный 101); сульфоселенид кадмия (C.I. пигмент красный 108); сульфид церия (C.I. пигмент красный 265); молибдат красный (C.I. пигмент красный 104); ультрамарин красный; оксид железа коричневый (C.I. пигмент коричневый 6 и 7), смешанные коричневые шпинельные и корундовые фазы (C.I. пигмент коричневый, 29, 31, 33, 34, 35, 37, 39 и 40), крон-титан желтый (C.I. пигмент коричневый 24), хром оранжевый; сульфид церия (C.I. пигмент оранжевый 75); оксид железа желтый (C.I. пигмент желтый 42); никель-титан желтый (C.I. пигмент желтый 53; C.I. пигмент желтый 157, 158, 159, 160, 161, 162, 163, 164 и 189); хром-титан желтый; шпинельные фазы (C.I. пигмент желтый 119); сульфид кадмия и сульфид кадмия-цинка (C.I. пигмент желтый 37 и 35); крон желтый (C.I. пигмент желтый 34), и ванадат висмута (C.I. пигмент желтый 184).
Далее, в качестве указанной подложки могут также применяться неорганические пигменты, которые обычно используются в качестве наполнителей, например такие как сульфид цинка, природный и осажденный мел, сульфат бария.
В предпочтительном варианте, указанный неорганический пигмент выбирают из группы, содержащей карбонат магния, сульфат бария, диоксид титана, оксид цинка, сульфид цинка, гантит, белила свинцовые, литопон, кристобалит, фарфоровую глину, и их смеси. Из всех раскрытых в заявке материалов подложки наиболее предпочтительным является диоксид титана, поскольку данное химическое соединение проявляет свойства пигмента и характеризуется высокой твердостью по шкале Мооса. Диоксид титана может существовать с кристаллической структурой рутильной формы, анатазной формы и брукитной формы. Обычно же диоксид титана встречается с кристаллической структурой рутильной формы или анатазной формы. По сравнению с анатазной формой структуры диоксида титана, его рутильная форма является наиболее подходящей в силу своей низкой фотолитической катализаторной активности.
В частном варианте осуществления изобретения, указанное изобретение вытекает из применения в нем водной суспензии неорганических частиц, характеризующихся предпочтительной величиной диаметра менее 1 мм. В предпочтительном варианте осуществления изобретения, размер этих частиц находится в интервале значений от 0,1 до 5 μм, более предпочтительно от 0,2 до 0,4 μм. Указанная суспензия в предпочтительном варианте характеризуется содержанием твердых частиц в интервале значений от 200 до 800 г/л, в частности от 300 до 500 г/л. В качестве необязательного варианта, может допускаться наличие обычных диспергаторов.
Перед нанесением на поверхность подложки указанного покрытия в соответствии с изобретением на поверхность частиц может наноситься по меньшей мере один слой других неорганических оксидов, например SiO2, ZrO2, ТiO2, SnO2, Al2O3, Р2O5, и.т.д., при необходимости же в необязательном варианте может наноситься слой из смеси таких оксидов и/или выполняться их совместное осаждение.
При этом, в суспензию вводят отобранные ионы металла и отобранные анионы. Введение отобранных ионов металла выполняют при помощи добавления водного раствора соединения-прекурсора оксида металла, предназначенного для осаждения. Указанные анионы вводятся в виде водного раствора соответствующей соли и/или соответствующей кислоты. Кроме того, они могут уже содержаться в указанном соединении-прекурсоре оксида металла. Пригодные для этой цели соединения известны из уровня техники. В частности, если имеет место обработка поверхности диоксида титана, то в способе в соответствии с настоящим изобретением возможно применение широко используемых для данной цели соединений.
Например, при осаждении оксида алюминия в присутствии сульфат-ионов, в качестве соединения-прекурсора оксида алюминия возможно применение раствора сульфата алюминия или раствора алюмината натрия. Пригодные для этого соединения, благодаря котором возможно достигнуть в концентрации указанных анионов в суспензии, как это требуется в соответствии с настоящим изобретением, включают в себя, например, растворимые сульфаты, такие как сульфат алюминия, сульфат натрия и серную кислоту.
Процесс осаждения, включающий регулирование величины рН, выполняют в соответствии с обычными процедурами, которые хорошо известны.
Согласно настоящего изобретения, сульфат, фосфат, цитрат, аскорбат, изоаскорбат и оксалат представляют собой, например, те соединения, которые пригодны для использования в качестве источника поливалентных анионов. Предпочтительным же для этой цели является сульфат. Предназначенные для осаждения оксиды металлов предпочтительно являются оксидами алюминия, циркония и кремния. В частном варианте осуществления изобретения, оксид алюминия осаждают на поверхность частиц диоксида титана в присутствии сульфат-ионов.
В принципе, процесс осаждения оксида алюминия в присутствии сульфат-ионов при проведении обработки поверхности частиц диоксида титана является известным из уровня техники. Однако, молярное отношение сульфат-ионов, присутствующих при проведении реакции осаждения на основе Аl2O3, составляет менее 3 в известных способах осаждения, когда в качестве соединения-прекурсора используют сульфат алюминия, а в качестве средства регулирования величины рН применяют, например, основание NaOH. В настоящее время, из уровня техники не является известным, что регулирование площади удельной поверхности (определяемой методом БЭТ) осажденного оксида алюминия, а стало быть и площади удельной поверхности частиц диоксида титана, прошедших поверхностную обработку, может осуществляться в суспензии посредством молярного отношения сульфат-ионов к ионам алюминия при выполнении указанного осаждения.
Таким образом, оксиды металла предпочтительно осаждают из водного раствора посредством увеличения молярного отношения анионов к ионам металла в интервале значений указанного отношения от 3 до 8, более предпочтительно от 3,2 до 6, еще более предпочтительно от 3,5 до 5, и наиболее предпочтительно до 4,2.
Кроме того, в изобретении заявляется, что имеется возможность селективного сдвига ИЭТ указанных частиц при сохранении при этом почти неизменным их состава. Например, ИЭТ частиц пигмента диоксида титана с покрытием из оксида алюминия сдвигается в сторону более высоких значений посредством увеличения молярного отношения SO4/Al2O3, при этом выгодная особенность состоит еще и в том, что частицы такого пигмента, диспергированные в обычных материалах покрытия, претерпевают более лучшую электростатическую стабилизацию.
Примеры
Для более подробного описания изобретения далее приводятся примеры, которые никоим образом не ограничивают объем притязаний в соответствии с изобретением.
Пример А1
Водную суспензию частиц диоксида титана, полученную сульфатным методом, при концентрации 0,45 кг диоксида титана на литр воды подвергли измельчению в песчаной мельнице с последующим разбавлением до концентрации 0,35 кг диоксида титана на литр воды при регулировании температуры до 60°С, а величина рН составляла около 10 при регулировании последней с помощью основания NaOH. Далее, в течение периода времени 30 минут, вводили водный раствор сульфата алюминия (концентрация 107 г/л в пересчете на Al2O3) в количестве 2,7 вес. % в пересчете на Al2O3 и с учетом ТiO2. Затем, в течение периода времени 45 минут, вводили при перемешивании 30% раствор основания NaOH в определенном количестве при котором полученное значение величины рН составило около 4. После другого цикла перемешивания в течение 120 минут, значение величины рН было доведено до 7,6 добавлением основания NaOH.
После этого, из указанной суспензии выделялись частицы, промывались, высушивались при температуре 160°С с их последующей микронизацией при помощи струйной паровой мельницы, причем площадь удельной поверхности (оцениваемую методом БЭТ) и ИЭТ определяли как функцию величины рН. Измеренные значения указанных величин приведены в Таблице 1.
Пример А2
Данный пример аналогичен Примеру А1, за исключением того, что после доведения температуры до 60°С и величины рН до 10 в рабочую массу дополнительно вводили 0,5 моль Na2SO4 на килограмм диоксида титана.
Figure 00000001
Пример В1
Начальным этапом заявленного способа было получения суспензии диоксида титана с последующим измельчением указанной суспензии в песчаной мельнице и доведением значения величины рН до 10, аналогично тому, как это было выполнено в Примере А1. Далее, параллельно с перемешиванием в течение периода времени 90 минут, осуществляли введение в указанную суспензию водного раствора сульфата алюминия (концентрация 107 г/л в пересчете на Al2O3) и гидроксида натрия в определенных количествах при которых было достигнуто постоянное значение величины рН, составляющее около 4 (обработка для получения постоянного значения величины рН). После другого цикла перемешивания в течение 120 минут, значение величины рН было доведено до 7,6, как описано выше.
После этого, из указанной суспензии выделялись частицы, промывались, высушивались при температуре 160°С с их последующей микронизацией при помощи струйной паровой мельницы, причем площадь удельной поверхности (оцениваемую методом БЭТ) и ИЭТ определяли как функцию величины рН. Измеренные значения указанных величин приведены в Таблице 2.
Пример В2
Данный пример аналогичен Примеру В1, за исключением того, что после доведения температуры до 60°С и величины рН до 10 в рабочую массу дополнительно вводили 0,5 моль Na2SO4 на килограмм диоксида титана.
Figure 00000002
Выводы
Данные примеры демонстрируют, что увеличение значения величины молярного отношения вышеуказанных анионов (сульфат-ионов) к ионам предназначенного для осаждения металла (алюминия) в растворе приводит к уменьшению вычисляемой по массе площади удельной поверхности (определяемой методом БЭТ) покрытых частиц и, следовательно, к получению более компактного покрытия. Данное заключение также можно вывести из найденных значений ИЭТ. По мере возрастания величины молярного отношения SO4/Al2O3 и уменьшения площади удельной поверхности (определяемой методом БЭТ) наблюдается увеличение значения величины рН изоэлектрической точки (ИЭТ), которое таким образом приближается к значению величины рН характерному для поверхности с чистым оксидом алюминия А12O3 (рН составляет около 9). Значения величины рН меньше 9 позволяют сделать вывод о том, что продолжают существовать участки на поверхности вышеуказанных частиц ТiO2 (ИЭТ при значении величины рН около 6), на которых отсутствует покрытие.

Claims (7)

1. Способ уменьшения вычисляемой по массе площади удельной поверхности нанесенного на подложку покрытия, содержащего оксиды металла, где оксиды металла осаждают из водного раствора, содержащего ионы металлов и поливалентные анионы, посредством увеличения молярного отношения анионов к ионам металла в указанном растворе по меньшей мере до 3.
2. Способ по п. 1, отличающийся тем, что в качестве указанной подложки используют неорганический пигмент.
3. Способ по п. 2, отличающийся тем, что в качестве указанного неорганического пигмента используют диоксид титана.
4. Способ по п. 1, отличающийся тем, что указанный осажденный оксид металла выбирают из группы, содержащей оксид алюминия, оксид циркония и оксид кремния.
5. Способ по п. 1, отличающийся тем, что указанные поливалентные ионы выбирают из группы, содержащей сульфат, фосфат, цитрат, аскорбат, изоаскорбат и оксалат.
6. Способ по п. 1, отличающийся тем, что в качестве указанного оксида металла используют оксид алюминия, а в качестве указанных анионов используют сульфат-ионы.
7. Способ по любому из пп. 1-6, отличающийся тем, что указанные оксиды металла осаждают из водного раствора посредством увеличения молярного отношения анионов к ионам металла предпочтительно в интервале значений от 3 до 8, более предпочтительно - от 3,2 до 6, еще более предпочтительно - от 3,5 до 5 и наиболее предпочтительно до 4,2.
RU2018128357A 2016-01-08 2017-01-09 Способ уменьшения вычисляемой по массе площади удельной поверхности нанесенного на подложку покрытия RU2699127C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16000024.6A EP3190159A1 (de) 2016-01-08 2016-01-08 Verfahren zur oberflächenbeschichtung eines substrats
EP16000024.6 2016-01-08
PCT/EP2017/000015 WO2017118608A2 (en) 2016-01-08 2017-01-09 Method for coating the surface of a substrate

Publications (1)

Publication Number Publication Date
RU2699127C1 true RU2699127C1 (ru) 2019-09-03

Family

ID=55077401

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018128357A RU2699127C1 (ru) 2016-01-08 2017-01-09 Способ уменьшения вычисляемой по массе площади удельной поверхности нанесенного на подложку покрытия

Country Status (14)

Country Link
US (1) US10487214B2 (ru)
EP (2) EP3190159A1 (ru)
JP (1) JP7191693B2 (ru)
KR (1) KR20180100420A (ru)
CN (1) CN108137942B (ru)
AU (1) AU2017205246B2 (ru)
BR (1) BR112018007924B1 (ru)
ES (1) ES2795648T3 (ru)
MX (1) MX2018005308A (ru)
MY (1) MY190316A (ru)
RU (1) RU2699127C1 (ru)
SA (1) SA518391484B1 (ru)
TW (1) TWI803452B (ru)
WO (1) WO2017118608A2 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1560944A (en) * 1975-12-23 1980-02-13 Laporte Industries Ltd Slurries of titanium dioxide
DE10332650A1 (de) * 2003-07-18 2005-02-10 Kronos International, Inc. Verfahren zur Oberflächenbehandlung eines Titandioxid-Pigments
RU2443737C2 (ru) * 2006-03-16 2012-02-27 Кронос Интернациональ, Инк. Пигмент на основе диоксида титана, способы получения пигмента на основе диоксида титана и пигмент, полученный одним из этих способов, декоративная бумага, способ изготовления декоративной бумаги, способ изготовления декоративных материалов покрытий и декоративные материалы покрытий
WO2014000873A1 (de) * 2012-06-29 2014-01-03 Kronos International, Inc. Verfahren zur oberflächenbehandlung von anorganischen partikeln
WO2014078046A1 (en) * 2012-11-13 2014-05-22 E. I. Du Pont De Nemours And Company Process for making silica containing self-dispersing pigments
EP2942328A1 (en) * 2012-12-28 2015-11-11 Seiko Epson Corporation Surface coated particles and use of same

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2885366A (en) 1956-06-28 1959-05-05 Du Pont Product comprising a skin of dense, hydrated amorphous silica bound upon a core of another solid material and process of making same
USRE27818E (en) 1972-06-02 1973-11-27 Titanium dioxide pigment coated with silica and alumina
JPS5915154B2 (ja) * 1979-05-21 1984-04-07 東邦顔料工業株式会社 安定な無機顔料組成物を製造する方法
US4375989A (en) * 1981-07-16 1983-03-08 Kemira Oy Coated titanium dioxide pigment and a process for the production of the same
GB2108097B (en) * 1981-10-30 1985-01-03 Tioxide Group Plc Improved pigments and their preparation
ZA83388B (en) 1982-01-21 1984-08-29 Du Pont Alumina coated ti02
JPS6025730Y2 (ja) * 1982-02-09 1985-08-02 ソニー株式会社 テ−プカセツト
JPS59172559A (ja) * 1983-03-22 1984-09-29 Onahama Sakai Kagaku Kk 水系塗料の製造方法
DE3323247A1 (de) 1983-06-28 1985-01-10 Basf Farben + Fasern Ag, 2000 Hamburg Temperaturstabile bleichromat-pigmente und verfahren zu ihrer herstellung
FR2605011B1 (fr) * 1986-10-10 1988-12-30 Rhone Poulenc Chimie Pigments colores, notamment pigments magnetiques, leurs procedes de preparation et leurs applications, notamment a la preparation de poudres de developpement.
JP3485647B2 (ja) * 1994-10-05 2004-01-13 チタン工業株式会社 顔料およびその製造法
JP2735157B2 (ja) * 1996-01-18 1998-04-02 科学技術庁無機材質研究所長 凝集を抑制した超微細粉末の製造方法
JP3332715B2 (ja) * 1996-04-01 2002-10-07 三菱重工業株式会社 ギヤカップリング
JP3670395B2 (ja) * 1996-06-10 2005-07-13 日鉄鉱業株式会社 多層膜被覆粉体およびその製造方法
JP3773220B2 (ja) * 1996-10-28 2006-05-10 石原産業株式会社 二酸化チタン顔料及びその製造方法
US6355260B1 (en) 1996-12-10 2002-03-12 Catalysts & Chemicals Industries Co., Ltd. Inorganic compound-coated pigments and cosmetics using the same
JPH1111948A (ja) * 1997-06-16 1999-01-19 Tohkem Prod:Kk 安定なアナターゼ型二酸化チタン
CN1305976C (zh) 1999-09-14 2007-03-21 石原产业株式会社 二氧化钛颜料,其生产方法和包含二氧化钛颜料的树脂组合物
EP1273555B1 (en) 1999-12-17 2004-06-09 Ishihara Sangyo Kaisha, Ltd. Titanium dioxide pigment and method for production thereof
JP4090405B2 (ja) 2002-08-07 2008-05-28 石原産業株式会社 二酸化チタン顔料の製造方法
DE10236366A1 (de) 2002-08-08 2004-02-19 Kronos International, Inc. Verfahren zur Oberflächenbehandlung eines Titandioxid-Pigments
US20050129634A1 (en) * 2003-12-16 2005-06-16 Frerichs Scott R. Passivated nano-titanium dioxide particles and methods of making the same
JP2005254560A (ja) 2004-03-10 2005-09-22 Seiko Epson Corp インクジェット記録装置およびインクジェット記録方法
WO2006001330A1 (ja) 2004-06-24 2006-01-05 Ishihara Sangyo Kaisha, Ltd 二酸化チタン顔料及びその製造方法並びにそれを含む樹脂組成物
DE102004039554A1 (de) * 2004-08-13 2006-02-23 Merck Patent Gmbh Perlglanzpigmente
JP2007056214A (ja) 2005-08-26 2007-03-08 Toyota Motor Corp 酸化チタン組成物及びその製造方法
US7635729B2 (en) * 2005-09-29 2009-12-22 Raymond Lee Nip Zinc oxide coated particles, compositions containing the same, and methods for making the same
DE102006004344B4 (de) 2006-01-30 2008-11-13 Kronos International, Inc. Titandioxid-Pigment mit hoher Opazität und Verfahren zur Herstellung
CN100545216C (zh) 2006-04-21 2009-09-30 江苏镇钛化工有限公司 一种高耐候性二氧化钛的制备方法
CN101484385A (zh) * 2006-06-21 2009-07-15 马丁斯韦克有限公司 通过喷雾干燥和随后干磨所生产的热稳定的三水合氧化铝颗粒及其应用
GB0808239D0 (en) 2008-05-07 2008-06-11 Tioxide Group Services Ltd Compositions
JP5826453B2 (ja) 2008-06-17 2015-12-02 戸田工業株式会社 黒色磁性酸化鉄粒子粉末
JP5500448B2 (ja) 2010-08-30 2014-05-21 株式会社エコマテリアル 結晶性アルミナ水和物を粒子表面に析出形成する顔料用二酸化チタンの表面コーティング方法
DE102012017854A1 (de) 2012-09-08 2014-05-28 Kronos International, Inc. Infrarot-reflektierendes Pigment auf Basis Titandioxid sowie Verfahren zu seiner Herstellung
TWI651269B (zh) * 2013-09-23 2019-02-21 歐洲泰奧色得有限公司 二氧化鈦粒子及其製備方法
CN104069847B (zh) 2014-04-10 2016-05-25 西安工程大学 稀土铕掺杂纳米TiO2空心玻璃微珠的制备方法
CN104192888A (zh) 2014-09-10 2014-12-10 赵同甫 一种表面包覆硅铝高分散硫酸钡的合成方法
JP6542010B2 (ja) 2015-04-02 2019-07-10 株式会社ナリス化粧品 複合粉体
KR20170099369A (ko) 2016-02-23 2017-08-31 메르크 파텐트 게엠베하 효과 안료

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1560944A (en) * 1975-12-23 1980-02-13 Laporte Industries Ltd Slurries of titanium dioxide
DE10332650A1 (de) * 2003-07-18 2005-02-10 Kronos International, Inc. Verfahren zur Oberflächenbehandlung eines Titandioxid-Pigments
RU2443737C2 (ru) * 2006-03-16 2012-02-27 Кронос Интернациональ, Инк. Пигмент на основе диоксида титана, способы получения пигмента на основе диоксида титана и пигмент, полученный одним из этих способов, декоративная бумага, способ изготовления декоративной бумаги, способ изготовления декоративных материалов покрытий и декоративные материалы покрытий
WO2014000873A1 (de) * 2012-06-29 2014-01-03 Kronos International, Inc. Verfahren zur oberflächenbehandlung von anorganischen partikeln
WO2014078046A1 (en) * 2012-11-13 2014-05-22 E. I. Du Pont De Nemours And Company Process for making silica containing self-dispersing pigments
EP2942328A1 (en) * 2012-12-28 2015-11-11 Seiko Epson Corporation Surface coated particles and use of same

Also Published As

Publication number Publication date
JP7191693B2 (ja) 2022-12-19
EP3400263A2 (en) 2018-11-14
KR20180100420A (ko) 2018-09-10
TWI803452B (zh) 2023-06-01
WO2017118608A2 (en) 2017-07-13
CN108137942A (zh) 2018-06-08
MX2018005308A (es) 2019-04-29
JP2019505634A (ja) 2019-02-28
WO2017118608A3 (en) 2017-08-17
AU2017205246A1 (en) 2018-05-24
CN108137942B (zh) 2020-11-20
EP3400263B1 (en) 2020-03-25
EP3190159A1 (de) 2017-07-12
TW201802195A (zh) 2018-01-16
BR112018007924A2 (pt) 2018-10-30
US10487214B2 (en) 2019-11-26
MY190316A (en) 2022-04-13
SA518391484B1 (ar) 2021-09-06
BR112018007924B1 (pt) 2022-07-26
US20170198148A1 (en) 2017-07-13
ES2795648T3 (es) 2020-11-24
AU2017205246B2 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
ES2357990T3 (es) Proceso mejorado para la fabricación de pigmentos de dióxido de titanio tratado con circonia.
US4851293A (en) Stabilized metallic oxides
RU2135536C1 (ru) Способ получения пигментного композита, пигментный композит
JP5363459B2 (ja) 共沈された混合酸化物で処理された二酸化チタン顔料の製法
KR101687998B1 (ko) 무기 고체 입자, 특히 이산화티타늄 안료 입자의 표면 코팅 방법
US4052223A (en) Treatment of pigment
JPH0212504B2 (ru)
JPH032914B2 (ru)
JP6732781B2 (ja) 水酸化アルミニウム含有複合顔料およびその製造方法
KR100226370B1 (ko) 세라믹물질의 제조용 조성물 및 그 제조방법
US3804655A (en) Pigments
AU2014365857B2 (en) Method for coating the surface of inorganic particles, in particular titanium dioxide pigment particles
RU2699127C1 (ru) Способ уменьшения вычисляемой по массе площади удельной поверхности нанесенного на подложку покрытия
TW201805370A (zh) 處理二氧化鈦顆粒之方法、二氧化鈦顆粒及其用途
JP2002138218A (ja) 二酸化チタン顔料及びその製造方法
JPH09202620A (ja) ルチル型二酸化チタン粒子およびその製造法
UA121972C2 (uk) Спосіб вкривання поверхні неорганічних частинок діоксидом кремнію та принаймні ще однією неорганічною сполукою
JP5288848B2 (ja) 金呈色用顔料および金呈色用顔料の製造方法
US3037876A (en) Process for making greencake
EP0035076A1 (en) High dry hide TiO2 slurries
JP2004256341A (ja) ルチル型棒状二酸化チタンの製造方法
JP3967598B2 (ja) 無機顔料のアルミナ及びシリカ湿式処理方法
JP3579088B2 (ja) 超微粒子褐色系顔料及びその製造方法
JPH08104824A (ja) 顔料およびその製造法