RU2686533C2 - Охлаждающее устройство внутреннего трубопровода - Google Patents

Охлаждающее устройство внутреннего трубопровода Download PDF

Info

Publication number
RU2686533C2
RU2686533C2 RU2016142270A RU2016142270A RU2686533C2 RU 2686533 C2 RU2686533 C2 RU 2686533C2 RU 2016142270 A RU2016142270 A RU 2016142270A RU 2016142270 A RU2016142270 A RU 2016142270A RU 2686533 C2 RU2686533 C2 RU 2686533C2
Authority
RU
Russia
Prior art keywords
heat exchanger
internal heat
cooling
weld
pipes
Prior art date
Application number
RU2016142270A
Other languages
English (en)
Other versions
RU2016142270A (ru
RU2016142270A3 (ru
Inventor
Шанкар РАДЖАГОПАЛАН
Жозе С. БУШЕ
Джейсон В. КЕРБО
Джонатан Б. КЕТТЛКАМП
Брайан Л. КЕРК
Сиддхарт МАЛЛИК
Original Assignee
СиАрСи-ЭВАНС ПАЙПЛАЙН ИНТЕРНЭШНЛ, ИНК.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by СиАрСи-ЭВАНС ПАЙПЛАЙН ИНТЕРНЭШНЛ, ИНК. filed Critical СиАрСи-ЭВАНС ПАЙПЛАЙН ИНТЕРНЭШНЛ, ИНК.
Publication of RU2016142270A publication Critical patent/RU2016142270A/ru
Publication of RU2016142270A3 publication Critical patent/RU2016142270A3/ru
Application granted granted Critical
Publication of RU2686533C2 publication Critical patent/RU2686533C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/003Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/053Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work aligning cylindrical work; Clamping devices therefor
    • B23K37/0531Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work aligning cylindrical work; Clamping devices therefor internal pipe alignment clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0282Seam welding; Backing means; Inserts for curved planar seams for welding tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/10Pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • B23K3/085Cooling, heat sink or heat shielding means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Изобретение относится к внутреннему теплообменнику для сварки трубопровода, который содержит приводную систему, выполненную с возможностью перемещения внутреннего теплообменника в положение внутри по меньшей мере одного участка трубы рядом с местом сварного шва с другим участком трубы. Внутренний теплообменник дополнительно содержит секцию охлаждения, содержащую охлаждающую конструкцию, выполненную с возможностью избирательного охлаждения одной или более частей внутренней поверхности по меньшей мере одного участка трубы, и контроллер, выполненный с возможностью взаимодействия с охлаждающей конструкцией и выполненный с возможностью приведения в действие секции охлаждения при нахождении внутреннего теплообменника в положении внутри по меньшей мере одного участка трубы. 17 з.п. ф-лы, 12 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
[001] Настоящее изобретение направлено на системы сварки трубопровода, в которых сварные швы образованы на концах двух соединяемых труб.
УРОВЕНЬ ТЕХНИКИ
[002] Трубопроводные системы, которые могут содержать длинные отрезки участков трубопровода (например, мили трубопровода), содержащих черный металл (например, сталь, нержавеющую сталь) или другие типы металла, используют для транспортировки текучих сред, таких как вода, нефть и природный газ, между двумя местоположениями (например, от источника происхождения, который может быть расположен на суше или воде, до подходящего места хранения). Строительство трубопроводных систем обычно включает соединение участков трубопровода подходящего диаметра и размеров по длине друг с другом посредством сварных швов, выполненных с возможностью образования герметичного уплотнения для соединенных участков труб.
[003] Во время образования сварного шва между двумя участками трубы (например, двух труб, имеющих одинаковые или подобные размеры по длине и/или размеры поперечного сечения), конец одного участка трубы располагают рядом с концом второго участка трубы, или обеспечивают их контакт. Участки трубы удерживают относительно друг друга и образуют сварной шов для соединения указанных двух концов участков трубы с использованием подходящего процесса сварки. Трубы обычно предварительно нагревают до подходящей температуры перед сваркой, а также во время процесса сварки генерируется значительное количество тепла.
[004] Через некоторое время после завершения и очистки сварки могут осуществлять проверку сварки. Предпочтительно, проверку сварки осуществляют при температуре, максимально приближенной к рабочей температуре, а не при повышенной вследствие сварки температуре. Следовательно, охлаждение после процесса сварки является предпочтительным перед проверкой. После проверки предпочтительным может являться нанесение наружных защитных покрытий на соединение. Для улучшения этого покрытия, на трубу могут воздействовать теплом для повышения температуры трубы, требуемой для нанесения определенных наружных покрытий (например, полипропилена).
[005] После такого нагревания следует обеспечить возможность охлаждения трубного соединения до подходящей температуры перед возможным осуществлением следующих этапов обработки (например, перед намоткой соединенных участков трубопровода или перед манипуляциями/размещением участков трубопровода в воде или определенном другом подходящем местоположении на суше).
[006] Во время некоторых этапов изготовления труб (например, после сварки и перед проверкой) наружные части соединенной трубы являются легкодоступными, и охлаждение на наружной поверхности может быть одним из вариантов, и может являться предпочтительным. Однако во время некоторых составляющих процесса (например, после наружного нанесения определенных материалов на наружную поверхность трубы) наружная поверхность не является доступной для осуществления процесса охлаждения трубы.
[007] Внутреннее охлаждение может являться предпочтительным во время определенных составляющих процесса изготовления (т.е., даже если доступно наружное охлаждение). Внутреннее охлаждение внутри труб может являться затруднительным вследствие размера труб и трудности доступа к внутренней части участка трубопровода, расположенного на сварном шве или рядом с ним. Следовательно, особенно преимущественным является создание такого внутреннего охлаждения, при котором обеспечивается возможность осуществления охлаждения во время составляющих процесса, при которых наружные поверхности трубы являются недоступными, для более быстрой подготовки трубы для дальнейших этапов, требующих более низких температур (например, намотка).
РАСКРЫТИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
[008] Внутренний теплообменник (internal heat exchanger, «IHEX») для сварки трубопровода содержит приводную систему, выполненную с возможностью перемещения внутреннего теплообменника в положение внутри по меньшей мере одного участка трубы рядом с местом сварного шва с другим участком трубы. Внутренний теплообменник дополнительно содержит секцию охлаждения, содержащую охлаждающую конструкцию, выполненную с возможностью избирательного охлаждения одной или более частей внутренней поверхности по меньшей мере одного участка трубы, и контроллер, выполненный с возможностью взаимодействия с охлаждающей конструкцией и выполненный с возможностью расположения и приведения в действие секции охлаждения при нахождении внутреннего теплообменника в месте соединения внутри по меньшей мере одного участка трубы.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[009] На фиг. 1 представлен перспективный вид, изображающий приведенный в качестве примера вариант реализации внутреннего теплообменника для использования для сварки трубопровода в соответствии с настоящим изобретением.
[0010] На фиг. 2 представлен перспективный вид внутреннего теплообменника по фиг. 1 непосредственно перед введением конца участка трубы внутрь в соответствии с приведенным в качестве примера вариантом реализации настоящего изобретения, на котором участок трубы изображен в поперечном разрезе.
[0011] На фиг. 3 представлен перспективный вид внутреннего теплообменника по фиг. 1, расположенного внутри первого участка трубы, соединенного посредством сварного шва со вторым участком трубы, в соответствии с приведенным в качестве примера вариантом реализации настоящего изобретения, на котором оба участка трубы изображены в поперечном разрезе.
[0012] На фиг. 4 представлен перспективный вид фиг. 3 в увеличенном масштабе, на котором внутренний теплообменник расположен внутри первого и второго участков трубы на подходящем участке относительно сварного шва для способствования внутреннему охлаждению на сварном шве в соответствии с приведенным в качестве примера вариантом реализации настоящего изобретения.
[0013] На фиг. 5 представлен перспективный вид приведенного в качестве примера варианта реализации внутреннего теплообменника по фиг. 1, соединенного посредством соединительного зажима в соответствии с настоящим изобретением.
[0014] На фиг. 6 представлен перспективный вид еще одного приведенного в качестве примера варианта реализации внутреннего теплообменника по фиг. 1, соединенного посредством соединительного зажима в соответствии с настоящим изобретением.
[0015] На фиг. 7A представлен перспективный вид, изображающий еще один приведенный в качестве примера вариант реализации внутреннего теплообменника для использования для сварки трубопровода в соответствии с настоящим изобретением.
[0016] На фиг. 7B представлен перспективный вид части внутреннего теплообменника по фиг. 7A в увеличенном масштабе.
[0017] На фиг. 8A представлен частичный перспективный вид другого варианта реализации части внутреннего теплообменника для использования для сварки трубопровода в соответствии с настоящим изобретением, в котором водяной насос содержится на конце части участка трубы, на котором часть участка трубы изображена в поперечном разрезе.
[0018] На фиг. 8B представлен частичный перспективный вид части внутреннего теплообменника по фиг. 8A, в котором часть внутреннего теплообменника находится внутри двух участков труб, соединенных друг с другом посредством сварного шва, и участки трубы изображены в поперечном разрезе.
[0019] На фиг. 9A представлен частичный перспективный вид еще одного варианта реализации части внутреннего теплообменника для использования для сварки трубопровода в соответствии с настоящим изобретением, в котором водяной насос содержится на конце части участка трубы, на котором часть участка трубы изображена в поперечном разрезе.
[0020] На фиг. 9B представлен частичный перспективный вид части внутреннего теплообменника по фиг. 9A, в котором часть внутреннего теплообменника находится внутри двух участков труб, соединенных друг с другом посредством сварного шва, и участки трубы изображены в поперечном разрезе.
[0021] В настоящем описании подобные цифровые обозначения использованы для обозначения подобных элементов.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
[0022] Внутренний теплообменник обеспечивает внутреннее охлаждение внутри участков трубы после соединения участков трубы друг с другом посредством сварного шва. Внутренний теплообменник (также именуемый «IHEX» в настоящем описании) содержит секцию охлаждения для обеспечения прямого охлаждения частей внутренней поверхности участков трубы, и управляющую секцию, осуществляющую управление компонентами секции охлаждения, и дополнительно выполненную с возможностью улучшения мобильности внутреннего теплообменника внутри участков трубы. В определенных приведенных в качестве примера вариантах реализации, в которых секция охлаждения использует охлаждающее вещество для внутреннего охлаждения внутри участков трубы, внутренний теплообменник может дополнительно содержать секцию подачи охлаждающего вещества, содержащую охлаждающее вещество, подлежащее подаче к секции охлаждения во время эксплуатации внутреннего теплообменника.
[0023] Во время операций образования трубопровода (например, для работ в море или на суше), один участок трубы соединяют с другим участком трубы на соединяющем сварном шве (месте, на котором два участка трубы сварены друг с другом) путем выравнивания двух противоположных концов участков трубы друг с другом и образования сварного шва. Такое соединение соединяет указанные два участка трубы на их противоположных концах таким образом, что сварной шов обеспечивает герметичное уплотнение и, следовательно, непрерывное прохождение текучей среды между указанными двумя участками трубы. Каждый участок трубы может быть существенно длинным (например, сотни или тысячи футов или даже 1 миля (1,6 км)), усложняя обеспечение внутреннего охлаждения внутри участков трубы на месте соединяющего сварного шва или рядом с ним после образования сварного шва. В частности, внутреннее расположение охлаждающей конструкции, а также убирание этой конструкции, внутри участков трубы для охлаждения на сварном шве является затрудненным. Варианты реализации внутреннего теплообменника, описанные в настоящем описании, предоставляют полезный механизм для внутреннего охлаждения участков трубы после сваривания друг с другом, а также простой механизм для расположения внутри участков трубы и его убирания из них во время процессов образования трубопровода, который уменьшает время, требуемое на охлаждение участков трубы после нагревания, в также ускоряет прохождение этапов, необходимых для изготовления.
[0024] Приведенный в качестве примера вариант реализации внутреннего теплообменника для использования при операциях сварки трубопровода изображен на фиг. 1. Внутренний теплообменник 10 содержит раму подходящей жесткости, размещающую компоненты внутреннего теплообменника, причем рама содержит множество проходящих в продольном направлении, или направлении в длину, стержней, изготовленных из одного или более подходящих материалов (например, такого металла, как сталь, или других подходящих жестких и прочных материалов), и имеет подходящую конфигурацию для обеспечения возможности введения рамы внутрь участков трубы для способствования внутреннему охлаждению внутри участков трубы, как описано в настоящем описании. Первый участок 11 рамы содержит источник 12 подачи охлаждающего вещества, содержащий один или более резервуаров (изображенных как один резервуар на фиг. 1), закрепленных внутри первого участка. Резервуары источника подачи охлаждающего вещества могут содержать любую подходящую охлаждающую текучую среду, включая воду, криогенную жидкость, такую как жидкий аргон или жидкий азот и т.д., но не ограничиваясь ими. Вторая секция охлаждения 16 закреплена на промежуточном участке рамы, смежном с первым участком 11, и сообщается с источником 12 подачи охлаждающего вещества через подходящую клапанную конструкцию 14 (например, изображенную на фиг. 1 как один или более клапанов, регуляторов, труб и т.д.), способствующую подаче охлаждающего вещества от источника 12 подачи охлаждающего вещества к выпускному соплу секции охлаждения 16 с одним или более подходящими значениями давления и/или расхода.
[0025] Третий участок 18 рамы расположен смежно с охлаждающим участком 16 и содержит множество стержней, образующих огражденное пространство, окружающее контроллер 20. Пневматическая и/или электронная приводная система 22 также по меньшей мере частично расположена внутри третьего участка и содержит один или более управляемых двигателем роликов и/или любую другую подходящую двигательную конструкцию, выполненную с возможностью взаимодействия с частями внутренней поверхности участков трубы при расположении внутреннего теплообменника 10 внутри таких участков трубы для управления движением внутреннего теплообменника 10 в направлении вперед и в обратном направлении внутри трубных конструкций во время выполнения работ, как описано в настоящем описании. Приводная система 22 выполнена с возможностью взаимодействия (например, посредством проводного или беспроводного взаимодействия) с контроллером 20 для способствования управлению движением внутреннего теплообменника 10 по направлению вперед и в обратном направлении посредством контроллера 20 во время выполнения работ (например, управление двигателем приводной системы 22 посредством контроллера 20 управляет вращением ролика (роликов) и, следовательно, движением внутреннего теплообменника по направлению вперед и назад). Приводная система 22 может по существу содержаться внутри рамы внутреннего теплообменника и/или составлять ее часть, или, альтернативно, содержать конструкцию, выступающую за пределы рамы. Например, приводная система 22 может содержать подходящую кабельную конструкцию, проходящую от внутреннего теплообменника и через один или более участков трубы к открытому концу участка трубы, причем кабельную конструкцию используют для способствования движению внутреннего теплообменника вперед и/или в обратном направлении внутри участков трубы (например, посредством конструкции лебедки, содержащейся внутри рамы внутреннего теплообменника и/или в неподвижном положении снаружи участков трубы и соединенной с кабельной конструкцией). Необязательно, ролики могут также содержаться на одном конце внутреннего теплообменника 10 (например, ролики 23, содержащиеся на крайнем конце первого участка 11 рамы, как изображено на фиг. 1) для улучшения мобильности внутреннего теплообменника внутри участков трубы.
[0026] Контроллер 20 содержит по меньшей мере один подходящий процессор, управляющий операциями внутреннего теплообменника 10 посредством подходящих логических команд процесса управления, хранящихся внутри запоминающего устройства контроллера, а также электронных сигналов, подаваемых удаленно через другое управляемое пользователем устройство, расположенное на подходящем расстоянии от внутреннего теплообменника. В частности, контроллер 20 выполнен с возможностью взаимодействия с устройством дистанционного управления, управляемым пользователем (например, компьютером, устройством ручного управления или любым другим подходящим электронным устройством) посредством электронных сигналов, при этом электронные сигналы передают через беспроводную или проводную линию между контроллером 20 и устройством дистанционного управления. Приведенный в качестве примера вариант реализации устройства дистанционного управления изображен на фиг. 1 в качестве компьютера 30 (например, портативного компьютера, записной книжки, карманного персонального компьютера, смартфона и т.д.), выполненного с возможностью взаимодействия с контроллером 20 через беспроводную линию связи (изображенную прерывистой линией на фиг. 1). Взаимодействия посредством электронных сигналов включают двухсторонние взаимодействия между контроллером 20 и устройством дистанционного управления, обеспечивающие предоставление контроллером 20 информации устройству дистанционного управления (такой как информация об измеренной внутренней температуре и/или других типах измеренных условий внутри участков трубы, как описано в настоящем описании), а также полученной управляющей информации для воздействия на операции внутреннего теплообменника с дистанционным управлением.
[0027] Один или более электронных датчиков содержатся на одном или более подходящих участков внутри рамы внутреннего теплообменника и сообщаются (через проводную или беспроводную линию связи) с контроллером 20 для предоставления информации об условиях внутри участков трубы во время выполнения работ. Например, один или более датчиков температуры (например, инфракрасных датчиков температуры, резистивных датчиков температуры, термоэлектрических элементов и т.д.) могут содержаться на одном или более различных участках на первом участке 11, секции охлаждения 16 и/или третьем участке 18 внутреннего теплообменника 10, при этом датчики температуры измеряют температуру и передают эту информацию об измеренной температуре контроллеру 20 во время выполнения работ. В другом примере датчики давления и/или расхода могут содержаться на одном или более подходящих участках внутри резервуара (резервуаров) источника 12 охлаждающего вещества, внутри клапанной конструкции 14 и/или рядом с выпускными соплами секции охлаждения 14, при этом такие датчики передают измеренную информацию о давлении и/или расходе контроллеру 20 во время выполнения работ. Дополнительно, одна или более камер, управляемых контроллером 20 (и дистанционно управляемых устройством дистанционного управления), могут также содержаться на одном или более подходящих участках для улучшения видимости внутри участков трубы (например, для определения подходящего участка для расположения внутреннего теплообменника внутри участков трубы во время выполнения работ). Приведенные в качестве примера датчики температуры/давления и/или камеры в целом изображены на участках 17 на фиг. 1. Однако следует отметить, что любое подходящее количество и другие типы датчиков и камер может быть предоставлено на любом количестве различных участков, в зависимости от конкретного сценария применения внутреннего теплообменника.
[0028] Внутренний теплообменник 10 дополнительно содержит подходящий источник подачи электропитания для подачи электропитания к контроллеру 20, приводной системе 22, электронным датчикам, клапанной конструкции 14 (например, для электронного управления одним или более клапанами и, следовательно, управления потоком охлаждающего вещества из источника 12 подачи охлаждающего вещества к секции охлаждения 16). Источник подачи питания может содержаться внутри рамы внутреннего теплообменника (например, одна или более батарей, расположенных в батарейном блоке, содержащемся внутри третьего участка 18 или на любой другом подходящем участке внутри рамы внутреннего теплообменника). Альтернативно, источник подачи питания может быть расположен снаружи участков трубы, при этом электрический кабель соединяет источник подачи питания с внутренним теплообменником 10 для подачи электропитания к различным компонентам внутреннего теплообменника.
[0029] Секция охлаждения 16 содержит любую подходящую конструкцию, способствующую охлаждению посредством теплообмена с внутренней частью сварного шва, а также с другими частями внутренней стенки участков трубы. В варианте реализации по фиг. 1, в котором охлаждающее вещество от источника 12 подачи охлаждающего вещества подают через клапанный участок 14 к секции охлаждения 16, секция охлаждения содержит множество сопел, расположенных вокруг наружной периферии секции охлаждения 16 для улучшения потока охлаждающего вещества с подходящим расходом (управляемым клапанным участком 14 и конструкцией сопел секции охлаждения) от секции охлаждения по направлению к внутренним поверхностям на сварном шве и других внутренних частях двух соединенных участков трубы.
[0030] Эксплуатация внутреннего теплообменника 10 относительно операций сварки трубопровода далее описана со ссылкой на фиг. 2-4. При подготовке к сварке открытого конца первого участка 50 трубы противоположным ему открытым концом второго участка 52 трубы, положения указанных двух участков трубы выровнены по оси друг с другом и, необязательно, удержаны в таком выравнивании посредством соединительного зажима (не показанного на фиг. 2-4). Подходящий соединительный зажим может быть закреплен снаружи к противоположным концам участков трубы для удержания участков на месте относительно друг друга во время операции сварки. Альтернативно, внутренний соединительный зажим может быть использован для удержания противоположных концов на месте во время операции сварки. Оба типа соединительных зажимов (наружный и внутренний) известны в области техники сварки труб и, следовательно, не описаны в настоящем описании более подробно. После применения соединительного зажима для удержания концов участков трубы на месте относительно друг друга, на месте соединяющего сварного шва (т.е., на двух противоположных открытых концах первого и второго участков трубы) образуют сварной шов 54. Сварной шов 54 образуют известным в области техники сварки трубопровода способом, в котором для обеспечения образования надлежащего сварного шва использованы такие техники как проход при заварке корня шва, горячий проход, проход, заполняющий разделку, и использование заглушки. Образование сварного шва 54 может включать предварительное нагревание противоположных концов первого и второго участков 50, 52 трубы до минимальной температуры, составляющей приблизительно 150°C. Остальной процесс сварки может обеспечивать повышение температуры вокруг сварного шва до приблизительно 300°C. После образования сварного шва, его обычно проверяют ультразвуком (ultrasonic tested, «UT») и/или проверяют рентгеновским лучом для подтверждения качества/целостности сварного шва. Ультразвуковая проверка не может быть осуществлена при температурах, превышающих приблизительно от 50°C до приблизительно 75°C (Tmax), при этом Tmax является наивысшей температурой, при которой проверка может быть выполнена эффективно. Кроме того, фаза проверки ультразвуком процесса изготовления трубы должна быть начаться после уменьшения температур трубы рядом со сварным швом до температуры в пределах этого диапазона температур проверки. Система охлаждения настоящего изобретения отводит тепло от области сварки для уменьшения температуры области сварки трубы по меньшей мере до температуры (Tmax), допустимой для осуществления проверки ультразвуком.
[0031] В некоторых применениях после проверки изоляцию сварного шва (field joint coating, «FJC») также наносят на наружные области участков трубы, окружающие сварной шов 54, для обеспечения изоляционного барьера для предотвращения или уменьшения коррозии на областях сварки. Такую изоляцию обычно эффективно наносят только при превышении температурой трубы минимальной температуры Tmin трубы. Следовательно, тепло применяют к области сварки до повторного увеличения температуры трубы в области, подлежащей изолированию, до приблизительно от 220°C до 240°C (Tmin), при этом Tmin является наименьшей температурой, при которой изоляция может быть эффективно нанесена на область изоляции. После изолирования труба может быть намотана для установки на месте работ. Однако при температурах около Tmin намотка не может быть осуществлена эффективно с поддержанием целостности сварного шва. Следовательно, процесс изготовления снова может быть задержан во время постепенного естественного (относительно окружающей температуры) уменьшения температуры трубы от Tmin до температуры (Tmax), допустимой для намотки, при этом Tmax является наибольшей/максимальной температурой, при которой труба может быть эффективно намотана. Система охлаждения настоящего изобретения снова отводит тепло от области сварки для уменьшения температуры до максимальной температуры, составляющей приблизительно от 50°C до приблизительно 75°C (Tmax), допустимой для эффективной намотки. Следовательно, система охлаждения настоящего изобретения уменьшает температуру перед проверкой и/или уменьшает температуру перед намоткой для уменьшения времени, требуемого для сварки, проверки, изолирования и намотки протяженности участков трубы.
[0032] Во время периода работ, на котором участки 50, 52 трубы сваривают друг с другом (с последующим применением изоляции сварного шва), внутренний теплообменник 10 помещают внутрь открытого конца участка 50 трубы, как показано на фиг. 2. Следует отметить, что один или оба участка 50, 52 трубы могут содержать одну единицу трубы. Альтернативно, один из участков 50, 52 трубы может содержать множество единиц трубы, сваренных друг с другом. В варианте реализации, в котором один из участков трубы содержит множество единиц трубы, сваренных друг с другом, размещение внутреннего теплообменника 10 на участке трубы, содержащем одну единицу трубы (или участке трубы, имеющей меньшую длину), может являться предпочтительным для уменьшения времени, требуемого для перемещения внутреннего теплообменника внутри участка трубы для достижения места соединяющего сварного шва. Таким образом, в приведенном в качестве примера варианте реализации участок 50 трубы может содержать одну единицу трубы, соединенную с более длинным участком трубопровода, представленного участком 52 трубы (например, с двумя или более единицами труб, соединенными посредством сварных швов).
[0033] Внутренний теплообменник 10 помещают в открытый конец участка 50 трубы (т.е., конец, противоположный открытому концу, обращенному к открытому концу участка 52 трубы, определяющему место соединяющего сварного шва) таким образом, что первый участок 11 рамы внутреннего теплообменника функционирует как передний конец и, следовательно, первым проникает внутрь участка 50 трубы. Внутренний теплообменник 10 перемещают (первый участок 11 является ведущим) внутри участка 50 трубы до подходящего положения рядом с местом соединяющего сварного шва, как показано на фиг. 3. В частности, контроллер 20 (который может быть выполнен с возможностью дистанционного управления пользователем) управляет работой приводной системы 22 (например, путем управления одним или более двигателями, перемещающими ролики, контактирующие с внутренними частями стенки участка 50 трубы) для способствования продвижению внутреннего теплообменника 10 внутри участка 50 трубы и по направлению к месту соединяющего сварного шва. После достижения подходящего места рядом с местом соединяющего сварного шва (например, место внутреннего теплообменника, как показано на фиг. 3), контроллер может управлять приводной системой 22 для прекращения дальнейшего перемещения внутреннего теплообменника до необходимости начала операций охлаждения. Например, камера, установленная в подходящем месте на первом участке 11, и управление которой осуществляют посредством контроллера 20, может предоставлять видео изображения устройству дистанционного управления таким образом, чтобы пользователь мог определить, насколько близко к сварному шву 54 находится внутренний теплообменник. Альтернативно, или в сочетании с видео изображениями, предоставляемыми камерой, один или более датчиков температуры, подходящим образом расположенный на раме внутреннего теплообменника, выполнен с возможностью измерения внутренних температур внутри участка 50 трубы и предоставления этой информации о температуре контроллеру 20. При достижении одним или более измеряемыми температурами порогового значения (например, приблизительно 100°C или больше), это может являться указанием достижения внутренним теплообменником 10 места рядом со сварным швом 54. Любой другой подходящий механизм может также быть использован для предоставления подходящего указания места внутреннего теплообменника 10 внутри участка 50 трубы во время его перемещения по направлению к месту соединяющего сварного шва.
[0034] После достижения требуемого места рядом с местом соединяющего сварного шва или возле него, операция охлаждения может быть осуществлена после образования сварного шва 54 и перед осуществлением проверки ультразвуком/рентгеновским лучом (при необходимости). Дополнительно, операция охлаждения может быть осуществлена после повторного нагревания трубы для нанесения наружного покрытия и нанесения изоляции сварного шва (при необходимости). Например, в сценарии, в котором внутренний теплообменник 10 достигает подходящего места внутри участка 50 трубы рядом с местом соединяющего сварного шва и перед завершением операции сварки, внутренний теплообменник 10 удерживают в своем положении, и он готов для использования для охлаждения сразу после завершения операции сварки или повторного нагревания. Операцию охлаждения осуществляют путем изначального расположения секции охлаждения 16 на подходящем месте (например, относительно сварного шва 54, как показано на фиг. 4). Это может быть достигнуто путем продвижения внутреннего теплообменника 10 от его исходного положения на фиг. 3 до его положения на фиг. 4 посредством контроллера 20 (выполненного с возможностью управления пользователем посредством устройства дистанционного управления), управляющего приводной системой 22 до нахождения внутреннего теплообменника 10 в требуемом положении. Перемещение до этого места (например, как показано на фиг. 4) может быть обеспечено на основании предоставления видео изображений внутри участков 50, 52 трубы устройству дистанционного управления, предоставления информации датчика температуры устройству дистанционного управления и/или посредством любого другого подходящего механизма.
[0035] После достижения требуемого места внутри участков 50, 52 трубы (например, в котором секция охлаждения расположен близко к сварному шву 54, как показано на фиг. 4), контроллер 20 (который может быть выполнен с возможностью управления пользователем посредством устройства дистанционного управления) управляет работой клапанной конструкции 14 (например, посредством управления одним или более электронными клапанами) для улучшения потока охлаждающего вещества от источника 12 подачи охлаждающего вещества с подходящим давлением и/или расходом к секции охлаждения 16, на которой охлаждающее вещество вытекает из сопел, расположенных на секции охлаждения 16 и имеющих подходящую ориентацию для направления потока охлаждающего вещества от секции охлаждения 16 и по направлению внутренних частей поверхности стенок внутри участков 50, 52 трубы. Датчик (датчики) температуры наблюдает за внутренней температурой на внутреннем теплообменнике 10 внутри участков 50, 52 трубы и предоставляет информацию об измеренной температуре контроллеру 20. После достижения достаточной температуры внутри участков 50, 52 трубы (в соответствии с измерением датчика (датчиков) температуры, например, температура, составляющая Tmax°C или меньше), контроллер 20 выполнен с возможностью управления клапанной конструкцией 14 для прекращения потока охлаждающего вещества к секции охлаждения 16.
[0036] Внутренний теплообменник 10 может быть перемещен по направлению вперед или в обратном направлении путем управления приводной системой 22 посредством контроллера 20 для обеспечения дополнительных операций охлаждения (при необходимости и на основании измеренных температур внутри трубы) на других участках вдоль внутренних частей поверхности стенки участка 50 трубы и/или участка 52 трубы. При определении достижения достаточного охлаждения, внутренний теплообменник 10 может быть отведен от соединенных участков 50, 52 трубы. Например, внутренний теплообменник 10 может быть перемещен в обратном направлении путем управления приводной системой 22 посредством контроллера 20 для перемещения по направлению к свободному и открытому концу участка 50 трубы таким образом, что третий участок 18 выводят первым из участка 50 трубы. Другой участок трубы может затем может быть повторно выровнен (внутренний теплообменник может оставаться внутри участка 50 при установке нового участка к 50) со свободным и открытым концом участка 50 трубы (теперь соединенным посредством сварного шва 54 с участком 52 трубы) для образования места соединяющего сварного шва, а затем процесс, в котором внутренний теплообменник 10 проникает через свободный и открытый конец другого участка трубы, и его продвигают по направлению к месту соединяющего сварного шва для осуществления операций охлаждения на сварном шве, подлежащем образованию между участками трубы, повторяют.
[0037] Хотя приводная система 22, изображенная в варианте реализации по фиг. 1-4, содержит ролики, управляемые двигательной системой, управляемой контроллером 20, приводная система для внутреннего теплообменника может также реализовывать любой подходящий механизм, выполненный с возможностью обеспечения перемещений внутреннего теплообменника внутри участков трубы, управляемых пользователем. Например, может быть реализована одна или более кабельных/лебедочных систем, в которых одна или более лебедок могут быть предоставлены в качестве части внутреннего теплообменника, и/или расположены на одной или более точках крепления, расположенных снаружи участков трубы. Кабель проходит между каждой лебедкой и соединительной точкой (на внутреннем теплообменнике или соединительной точке снаружи участков трубы) для способствования расположению внутреннего теплообменника внутри и/или выведения внутреннего теплообменника из участков трубы во время выполнения работ.
[0038] Следует отметить, что операции, описанные ранее относительно внутреннего теплообменника, могут быть осуществлены для любых типов применений соединяющего сварного шва между участками трубы в трубопроводной системе. Например, внутренний теплообменник может быть использован при изготовлении трубопроводов для применений на воде, под водой, а также для магистральных применений. В магистральном применении участки трубы длиной от 40 футов (12 метров) до 80 футов (24 метров) сваривают друг с другом для образования длинных «соединенных» участков. В сценариях, в которых для управления перемещением и/или другими операциями внутреннего теплообменника может требоваться кабель жизнеобеспечения, длина кабеля жизнеобеспечения должна составлять по меньшей мере 240 футов (72 метров). Операция помещения внутреннего теплообменника внутрь участка трубы и его перемещения в положение для охлаждения после осуществления операции сварки (с необязательной проверкой ультразвуком/рентгеновским лучом и нанесением изоляции сварного шва) подобна описанному ранее относительно фиг. 1-4.
[0039] Другой приведенный в качестве примера вариант реализации внутреннего теплообменника изображен на фиг. 5. В этом варианте реализации внутренний теплообменник 10-1 имеет конфигурацию, подобную внутреннему теплообменнику 10, изображенному на фиг. 1-4 (на которых подобными цифровыми обозначениями обозначены подобные компоненты, имеющие одинаковую или подобную конструкцию и особенности). Однако внутренний теплообменник 10-1 соединен с внутренним соединительным зажимом 60 на концевом участке 24 третьего участка 18 рамы внутреннего теплообменника. Внутренний соединительный зажим 60 содержит раму 62 с подходящей конфигурацией, позволяющей введение соединительного зажима 60 внутрь участков трубы (например, участки 50 и 52 трубы), и содержит участок 64, выполненный с возможностью выравнивания и удержания двух открытых и противоположных концов участков трубы на месте соединяющего сварного шва (например, путем расширения для образования сцепления силами трения с внутренними частями поверхности стенки участков труб на их противоположных концах при подходящем расположении соединительного зажима 60 внутри участков трубы). Соединительный элемент 80 (например, стержневой или пружинный элемент) соединяет конец 66 соединительного зажима 60 с концевым участком 24 рамы внутреннего теплообменника 10-1.
[0040] В этом варианте реализации внутренний теплообменник 10-1 может являться ведущим элементом для соединительного зажима 60. Например, соединительный зажим 60 с присоединенным к нему внутренним теплообменником 10-1 (посредством соединительного элемента 80) может быть введен на своем конце 65 (т.е., конце рамы, противоположном концу 66 рамы, соединенному с внутренним теплообменником 10-1 посредством соединительного элемента 80) в участок трубы, при этом перемещение соединительного зажима 60 внутри участка трубы также приводит к соответствующему перемещению внутреннего теплообменника 10-1 внутри участка трубы. Альтернативно, внутренний теплообменник 10-1 может быть введен через свой первый участок 11 рамы в участок трубы и затем быть перемещен в положение таким образом, чтобы также обеспечивать подходящее выравнивание соединительного зажима 60 с местом соединяющего сварного шва между указанными двумя выровненными участками трубы. В любом из этих сценариев приводная система 22 внутреннего теплообменника 10-1 может быть использована для перемещения совмещенной конструкции соединительного зажима 60/внутреннего теплообменника 10-1 к подходящему месту внутри участков трубы, или, альтернативно, любой другой подходящий приводной механизм может также быть использован для перемещения этой конструкции внутри участков трубы (например, одна или более систем кабель/лебедка).
[0041] Соединительный зажим 60 удерживает концы участков трубы вместе до образования сварного шва. После образования сварного шва (и образования изоляции сварного шва при необходимости) соединительный зажим 60 может быть выведен из сцепления с внутренними частями поверхности стенки участков трубы для способствования перемещению внутреннего теплообменника 10-1 к подходящему месту (например, чтобы обеспечивать выравнивание секции охлаждения 16 со сварным швом) для начала внутреннего охлаждения внутри участков трубы.
[0042] Улучшенный вариант реализации для соединения внутреннего теплообменника с внутренним соединительным зажимом изображен на фиг. 6, в котором более длинный соединительный элемент 82 (например, продолговатый стержень) предоставлен для соединения внутреннего теплообменника 10-1 с соединительным зажимом 60. Размер соединительного элемента 82 по длине больше размера соединительного элемента 80, изображенного на фиг. 5, по длине, что уменьшает нагревание внутреннего теплообменника 10-1 во время операций сварки (вследствие большего расстояния разделения между внутренним теплообменником и соединительным зажимом).
[0043] Для любого варианта реализации по фиг. 5 и 6 операция содержит помещение соединительного зажима 60 с внутренним теплообменником 10-1 в один из участков трубы и выравнивание таким образом, что соединительный зажим 60 удерживает два противоположных конца участков трубы на месте соединяющего сварного шва. После осуществления определенных операций сварки (например, заварки корня шва, горячего прохода) соединительный зажим 60 с внутренним теплообменником 10-1 могут быть вместе перемещены от места соединяющего сварного шва для предотвращения дальнейшего подвергания теплу от продолжающегося процесса сварки, требуемого для завершения сварного шва. Альтернативно, если соединительный элемент имеет достаточную длину (например, соединительный элемент 82 по фиг. 6), соединительный зажим 60 с внутренним теплообменником 10-1 могут быть перемещены таким образом, что соединительный зажим находится на одной стороне, а внутренний теплообменник находится на другой стороне места соединяющего сварного шва (при этом только соединительный элемент 82 расположен непосредственно под местом соединяющего сварного шва или рядом с ним). После завершения сварки и проверки (проверок) ультразвуком/рентгеновским лучом (при необходимости), и далее после нанесения любой изоляции сварного шва, соединительный зажим 60 с внутренним теплообменником 10-1 могут быть перемещены в положение таким образом, что секция охлаждения 16 внутреннего теплообменника расположен рядом со сварным шов, а операции охлаждения могут быть осуществлены (например, посредством способа, подобного описанному ранее относительно варианта реализации по фиг. 1-4).
[0044] Секция охлаждения внутреннего теплообменника может быть реализован с любым типом охлаждающей конструкции для быстрого и/или эффективного охлаждения участков трубы на новообразованном сварном шве, и, следовательно, не ограничен приведенными в качестве примера вариантами реализации, изображенными на фиг. 1-6. Например, охлаждающая конструкция, выполненная как часть внутреннего теплообменника, может кроме прочего содержать вентиляторы охлаждения, нагнетающие воздух на части внутренней поверхности участков трубы и/или на ребра для отвода тепла или другие элементы охлаждения секции охлаждения внутреннего теплообменника, выдачу жидкости и/или газообразной среды (например, криогенные среды, жидкости, воздух) под подходящим давлением и температурой из сопел секции охлаждения по направлению к частям внутренней поверхности участков трубы, использование охлаждающих текучих сред в замкнутом рециркуляционном контуре и через конструкцию теплообмена секции охлаждения, использование термоэлектрического охлаждения (например, посредством устройств Пельтье в непосредственном контакте с частями внутренней поверхности стенки участков трубы) и т.д.
[0045] Пример другого варианта реализации внутреннего теплообменника 110 изображен на фиг. 7A и 7B. Внутренний теплообменник 110 подобен внутреннему теплообменнику 10 по фиг. 1-4 (на которых подобными цифровыми обозначениями обозначены подобные компоненты, имеющие одинаковую или подобную конструкцию и особенности) с модификацией секции охлаждения 116. В частности, секция охлаждения 116 содержит теплопоглощающую конструкцию, содержащую множество плавниковых элементов 118, расположенных вокруг периферии центрального опорного элемента 120 секции охлаждения 116 и отходящих радиально наружу от него, и содержит изогнутые части наружной поверхности, соответствующие изогнутым частям внутренней поверхности участков трубы, по направлению к которым отходят ребра 118. В частности, каждый элемент 118 в форме ребра содержит множество участков из тонкого материала, отходящих от центрального места теплопоглощающей конструкции секции охлаждения 116 радиально наружу по направлению к изогнутому участку концевой стенки элемента в форме ребра. Элементы 118 в форме ребер изготовлены из материала, имеющего подходящую теплопроводность (например, медь, алюминий и т.д.) для способствования высокой скорости передачи тепла от частей поверхности внутренней стенки участков труб к теплопоглощающей конструкции секции охлаждения 116. Элементы 118 в форме ребер содержат открытые каналы 120, определенные между соседними участками из тонкого материала, при этом открытые каналы 120 проходят в продольном направлении через элементы в форме ребер. Электрические вентиляторы 122 установлены на центральный опорный элемент 123 и расположены рядом с концами элементов 118 в форме ребер и выровнены с каналами 120 ребер. Электрические вентиляторы 122 обеспечивают поток воздуха через каналы 120 ребер для охлаждения элементов 118 в форме ребер и, следовательно, выведения тепла посредством конвективных потоков воздуха из теплопоглощающей конструкции секции охлаждения 116. Дополнительно, вентиляторы 122 выполнены с возможностью взаимодействия (например, посредством проводной или беспроводной линии связи) с контроллером 20 для способствования избирательной работе вентиляторов во время операций охлаждения. Дополнительно, каждый вентилятор 122 может быть реализован с различной скоростью работы таким образом, чтобы избирательно управлять скоростью вентилятора и соответственным расходом воздуха через элементы 118 в форме ребер отлично друг от друга и при необходимости во время операции охлаждения.
[0046] Эксплуатация внутреннего теплообменника 110 по фиг. 7A и 7B подобна ранее описанной для варианта реализации по фиг. 1-4 относительно расположения внутреннего теплообменника во время операции сварки и расположения для охлаждения, после завершения операций сварки. Во время охлаждения вентиляторы 122 могут быть приведены в действие для предоставления потока охлаждающего воздуха с одним или более требуемыми расходами через каналы 120 элементов 118 в форме ребер. Элементы 118 в форме ребер отводят тепло от частей поверхности внутренней стенки участков 50, 52 трубы (на сварном шве 54 включительно) по направлению к центральному опорному элементу 123 секции охлаждения 116, а нагнетенные потоки воздуха, обеспеченные вентиляторами 122, отводят тепло от элементов 118 в форме ребер, таким образом обеспечивая охлаждение участков 50, 52 труб на месте секции охлаждения 116. Как описано в предыдущих вариантах реализации, датчики температуры внутреннего теплообменника могут предоставлять информацию об измеренной температуре контроллеру 20, и эта информация об измеренной температуре может быть использована для управления работой вентиляторов 122 (включая изменение скоростей вращения одного или более вентиляторов 122) во время операции охлаждения. При достижении желаемой температуры внутри участков трубы, вентиляторы 122 могут быть отключены посредством контроллера 20. Внутренний теплообменник 110 может быть дополнительно перемещен в другие требуемые положения внутри участков трубы для изменения охлаждения в других местах.
[0047] В другом альтернативном варианте реализации, изображенном на фиг. 8A и 8B, предложен внутренний теплообменник, содержащий компоненты, одинаковые или по существу подобные варианту реализации, описанному ранее и изображенному на фиг. 1- 4, за исключением модификацией секции охлаждения. В частности, внутренний теплообменник 210 содержит секцию охлаждения 216, содержащую несколько элементов 218 в форме ребер, расположенных вдоль периферии центрального опорного элемента 223 секции охлаждения 216 и отходящих радиально наружу от него, при этом элементы 218 в форме ребер имеют наружную форму и профиль, подобную элементам 118 в форме ребер варианта реализации по фиг. 7A и 7B. Элементы 218 в форме ребер могут также быть изготовлены из материала, имеющего подходящую теплопроводность (например, алюминий или медь). Однако каждый элемент 218 в форме ребра имеет полую и уплотненную внутреннюю часть для улучшения потока охлаждающей текучей среды через элемент в форме ребра. Каждый элемент 218 в форме ребра содержит впускное отверстие на одном конце и выпускное отверстие на другом конце, а подходящая конструкция трубопровода предоставлена для улучшения рециркуляционного контура потока охлаждающего вещества от насоса 212 к элементу в форме ребра, в котором охлаждающее вещество протекает через элемент в форме ребра и назад к насосу 212. Может быть использован любой подходящий тип охлаждающего вещества (например, вода, криогенная среда, такая как жидкий азот или жидкий аргон и т.д.).
[0048] Насос 212 (изображенный на фиг. 8A) может быть расположен снаружи участков трубы, а каналы 214 подачи и возвратного потока проходят между насосом 212 и конструкцией манифольда 220 (изображенной на фиг. 8B). Конструкция манифольда 220 содержит множество трубных соединений, соединенных с впускными и выпускными отверстиями элементов 218 в форме ребер. Таким образом, секция охлаждения 216 способствует теплообмену между циркуляционным потоком охлаждающего вещества внутри элементов 218 в форме ребер и частями поверхности внутренней стенки участков 50, 52 трубы (например, на сварном шве 54 или рядом с ним) во время операций охлаждения.
[0049] Управление насосом 212 может быть осуществлено (посредством подходящей проводной или беспроводной линии связи) посредством контроллера внутреннего теплообменника 210. Альтернативно, управление насосом 212 может быть осуществлено снаружи (так как он является легкодоступным для пользователя). Управление потоком охлаждающего вещества, обусловленного насосом 212, может быть осуществлено на основании информации об измеренной температуре, предоставленной одним или более датчиками температуры на внутреннем теплообменнике 210. После достижения желаемой температуры внутри участков трубы, насос может быть деактивирован или выключен для прекращения рециркуляционного потока охлаждающего вещества и для способствования перемещению внутреннего теплообменника 210 внутри участков трубопровода.
[0050] Другой вариант реализации внутреннего теплообменника 310 изображен на фиг. 9A и 9B. Предоставлен внутренний теплообменник, содержащий компоненты, подобные или по существу одинаковые с вариантом реализации, описанным ранее и изображенным на фиг. 1-4, при этом секция охлаждения 316 описана более подробно. Секция охлаждения 316 предоставляет приведенную в качестве примера конфигурацию распылительных сопел 318, расположенных вокруг центрального опорного элемента 323 секции охлаждения. В частности, распылительные сопла 318 расположены в целом линейными рядами, проходящими по длине вдоль центрального опорного элемента 323. Подходящая трубопроводная конструкция предоставлена на каждом конце каждого линейного ряда распылительных сопел 318, при этом трубопроводная конструкция соединена с манифольдом 320. Манифольд 320 соединен с насосом 312 охлаждающего вещества, расположенным снаружи или за пределами участков трубы, посредством каналов 314 текучей среды. Работа насоса 312 охлаждающего вещества обеспечивает поток охлаждающего вещества (например, воды, криогенной среды, такой как жидкий азот или жидкий аргон и т.д.) от источника охлаждающего вещества через манифольд 320 и из распылительных сопел 318 и по направлению к частям внутренней поверхности участков 50, 52 трубы (на сварном шве 54 включительно). Хотя вариант реализации по фиг. 9A и 9B изображает насос 312, расположенный снаружи участков 50, 52 трубы, следует отметить, что секция охлаждения 316, выровненная с распылительными соплами 318, может также быть легко реализована для варианта реализации по фиг. 1-4 (т.е., в котором манифольд 320 и распылительные сопла 318 принимают охлаждающее вещество от источника 12 охлаждающего вещества). Операции охлаждения внутреннего теплообменника 310 могут быть осуществлены способом, подобным описанным для предыдущих вариантов реализации, в которых управление насосом 312 может быть осуществлено посредством контроллера внутреннего теплообменника 310 и/или наружно, и в которых поток охлаждающего вещества может быть осуществлен на основании информации об измеренной температуре, предоставленной датчиками температуры, расположенными на внутреннем теплообменнике 310.
[0051] Следовательно, варианты реализации внутреннего теплообменника, описанные в настоящем описании, предоставляют улучшения для операций сварки трубопровода, включая улучшение охлаждения соединенных участков трубы после образования сварных швов путем внутреннего обеспечения управляемого охлаждения внутри участков трубы и уменьшения времени изготовления (так как охлаждение может происходить быстрее и более эффективно, увеличивая количество соединительных сварных швов между участками трубы, которые могут быть образованы за определенный период времени). Кроме того, количество рабочего пространства, предназначенного для операций сварки, а также ресурсы, предназначенные для таких операций сварки, могут быть уменьшены. Например, рабочее пространство, требуемое для сварки участков трубы друг с другом, может быть уменьшено, и это может иметь особенно важно в сценариях, в которых рабочее пространство ограничено (например, на баржах или других водных транспортных средствах).
[0052] Хотя настоящее изобретение было описано подробно и со ссылкой на его конкретные варианты реализации, специалисту в данной области техники будет понятно, что в нем могут быть осуществлены различные изменения и модификации без отклонения от его сущности и объема. Следовательно, следует понимать, что настоящее изобретение включает модификации и изменения этого изобретения при условии, что они находятся в пределах объема прилагаемой формулы изобретения, и их эквиваленты. Следует понимать, что такие термины как «верх», «низ», «перед», «зад», «сторона», «высота», «длина», «ширина», «верхний», «нижний», «внутренний», «наружный» и подобные могут быть использованы в настоящем описании только для обозначения исходных точек, и не ограничивают настоящее изобретение конкретной ориентацией или конфигурацией.

Claims (33)

1. Внутренний теплообменник для внутреннего охлаждения двух сварных труб, содержащий:
средство определения места сварного шва или места рядом со сварным швом между двумя трубами;
приводную систему, выполненную с возможностью перемещения внутреннего теплообменника в положение внутри по меньшей мере одной из труб в месте сварного шва или рядом с местом сварного шва между двумя трубами;
секцию охлаждения, содержащую охлаждающую конструкцию, выполненную с возможностью охлаждения частей внутренней поверхности двух труб в месте сварного шва или рядом со сварным швом между двумя трубами; и
контроллер, выполненный с возможностью взаимодействия с указанным средством определения и охлаждающей конструкцией и выполненный с возможностью приведения в действие секции охлаждения при нахождении внутреннего теплообменника в положении внутри по меньшей мере одной из труб в месте сварного шва или рядом со сварным швом между двумя трубами.
2. Внутренний теплообменник по п. 1, дополнительно содержащий
соединительный элемент, выполненный с возможностью закрепления внутреннего теплообменника к внутреннему соединительному зажиму.
3. Внутренний теплообменник по п. 1, в котором приводная система содержит
по меньшей мере один ролик, приводимый в действие двигателем, управляемым контроллером, и выполненный с возможностью перемещения внутреннего теплообменника внутри по меньшей мере одной из труб по направлению вперед и в обратном направлении.
4. Внутренний теплообменник по п. 1, в котором приводная система содержит
систему кабеля и лебедки, в которой лебедка выполнена с возможностью крепления на месте снаружи по меньшей мере одной из труб, а кабель проходит между лебедкой и опорной конструкцией внутреннего теплообменника, содержащей контроллер и секцию охлаждения.
5. Внутренний теплообменник по п. 1, в котором контроллер также выполнен с возможностью взаимодействия с устройством дистанционного управления для способствования избирательного приведения в действие секции охлаждения посредством устройства дистанционного управления.
6. Внутренний теплообменник по п. 1, в котором секция охлаждения содержит:
по меньшей мере одно сопло, выполненное с возможностью распыления охлаждающего вещества по направлению к части внутренней поверхности стенки по меньшей мере одной из труб; и
источник подачи охлаждающего вещества, выполненный с возможностью доставки охлаждающего вещества по меньшей мере к одному соплу.
7. Внутренний теплообменник по п. 6, дополнительно содержащий:
раму, содержащую первый участок, содержащий источник подачи охлаждающего вещества, промежуточный участок, содержащий секцию охлаждения, и третий участок, содержащий контроллер.
8. Внутренний теплообменник по п. 6, в котором источник подачи охлаждающего вещества содержит насос охлаждающего вещества, расположенный на расстоянии от секции охлаждения таким образом, что насос охлаждающего вещества расположен снаружи по меньшей мере одной из труб при расположении секции охлаждения внутри по меньшей мере одной из труб, и насос охлаждающего вещества соединен по меньшей мере с одним соплом через по меньшей мере один канал текучей среды.
9. Внутренний теплообменник по п. 6, в котором по меньшей мере одно сопло содержит множество сопел, расположенных во множестве рядов, а ряды расположены вокруг периферии центрального опорного элемента секции охлаждения.
10. Внутренний теплообменник по п. 1, в котором секция охлаждения содержит
множество элементов в форме ребер, отходящих радиально наружу от периферии центрального опорного элемента секции охлаждения и расположенных на расстоянии друг от друга вокруг периферии центрального опорного элемента.
11. Внутренний теплообменник по п. 10, в котором по меньшей мере один элемент в форме ребра содержит по меньшей мере один канал, проходящий через элемент в форме ребра, а секция охлаждения дополнительно содержит
по меньшей мере один вентилятор, управляемый контроллером и расположенный рядом по меньшей мере с одним элементом в форме ребра и выровненный с ним таким образом, чтобы направлять поток воздуха по меньшей мере через один канал по меньшей мере одного элемента в форме ребра.
12. Внутренний теплообменник по п. 10, в котором по меньшей мере один элемент в форме ребра содержит полое огражденное пространство, содержащее впускное отверстие и выпускное отверстие, и секция охлаждения дополнительно содержит
контур циркуляции потока охлаждающего вещества для избирательного протекания охлаждающего вещества через полое огражденное пространство по меньшей мере одного элемента в форме ребра.
13. Внутренний теплообменник по п. 1, дополнительно содержащий
один или более датчиков температуры, расположенных на одном или более участках вдоль внутреннего теплообменника и выполненных с возможностью взаимодействия с контроллером;
при этом один или более датчиков температуры измеряют температуру на одном или более участках внутри по меньшей мере одной из труб и передают информацию об измеренной температуре контроллеру, а контроллер выполнен с возможностью избирательного управления приведением в действие и работой секции охлаждения на основании информации об измеренной температуре.
14. Внутренний теплообменник по п. 1, в котором средство определения содержит камеру.
15. Внутренний теплообменник по п. 1, в котором средство определения содержит датчик.
16. Внутренний теплообменник по п. 15, в котором датчик содержит датчик температуры.
17. Внутренний теплообменник по п. 1, в котором контролер выполнен с возможностью взаимодействия с приводной системой и с возможностью управления приводной системой для продвижения внутреннего теплообменника в положение внутри по меньшей мере одной из труб в месте сварного шва или рядом со сварным швом между двумя трубами.
18. Внутренний теплообменник по п. 1, в котором охлаждающая конструкция содержит замкнутый рециркуляционный контур для циркуляции через него охлаждающей текучей среды для охлаждения участков внутренней поверхности двух труб в месте сварного шва или рядом со сварным швом между двумя трубами.
RU2016142270A 2014-03-28 2015-03-26 Охлаждающее устройство внутреннего трубопровода RU2686533C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/228,708 2014-03-28
US14/228,708 US9821415B2 (en) 2014-03-28 2014-03-28 Internal pipeline cooler
PCT/US2015/022665 WO2015148765A1 (en) 2014-03-28 2015-03-26 Internal pipeline cooler

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2019111189A Division RU2019111189A (ru) 2014-03-28 2015-03-26 Охлаждающее устройство внутреннего трубопровода

Publications (3)

Publication Number Publication Date
RU2016142270A RU2016142270A (ru) 2018-04-28
RU2016142270A3 RU2016142270A3 (ru) 2018-11-15
RU2686533C2 true RU2686533C2 (ru) 2019-04-29

Family

ID=54189038

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2019111189A RU2019111189A (ru) 2014-03-28 2015-03-26 Охлаждающее устройство внутреннего трубопровода
RU2016142270A RU2686533C2 (ru) 2014-03-28 2015-03-26 Охлаждающее устройство внутреннего трубопровода

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2019111189A RU2019111189A (ru) 2014-03-28 2015-03-26 Охлаждающее устройство внутреннего трубопровода

Country Status (11)

Country Link
US (1) US9821415B2 (ru)
EP (1) EP3123068A4 (ru)
CN (2) CN110076417A (ru)
AU (1) AU2015236037B2 (ru)
BR (1) BR112016022229B1 (ru)
CA (1) CA2942368A1 (ru)
MX (1) MX2016012756A (ru)
MY (1) MY179444A (ru)
RU (2) RU2019111189A (ru)
WO (1) WO2015148765A1 (ru)
ZA (1) ZA201606315B (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9821415B2 (en) 2014-03-28 2017-11-21 Crc-Evans Pipeline International, Inc. Internal pipeline cooler
US10040141B2 (en) 2013-05-23 2018-08-07 Crc-Evans Pipeline International, Inc. Laser controlled internal welding machine for a pipeline
US10480862B2 (en) 2013-05-23 2019-11-19 Crc-Evans Pipeline International, Inc. Systems and methods for use in welding pipe segments of a pipeline
US11767934B2 (en) 2013-05-23 2023-09-26 Crc-Evans Pipeline International, Inc. Internally welded pipes
US10695876B2 (en) 2013-05-23 2020-06-30 Crc-Evans Pipeline International, Inc. Self-powered welding systems and methods
US10589371B2 (en) * 2013-05-23 2020-03-17 Crc-Evans Pipeline International, Inc. Rotating welding system and methods
US10828715B2 (en) 2014-08-29 2020-11-10 Crc-Evans Pipeline International, Inc. System for welding
DE102015120222A1 (de) * 2015-11-23 2017-05-24 Bürkert Werke GmbH Schweißkappen-Kühlwassersteuerung
US20170165779A1 (en) * 2015-12-14 2017-06-15 Hobart Brothers Company Smart hub for a welding electrode feeder
US9939859B2 (en) * 2016-03-17 2018-04-10 Google Llc Electronic device with a cooling structure
US11458571B2 (en) 2016-07-01 2022-10-04 Crc-Evans Pipeline International, Inc. Systems and methods for use in welding pipe segments of a pipeline
US10668577B2 (en) 2016-09-01 2020-06-02 Crc-Evans Pipeline International Inc. Cooling ring
GB2569790B (en) * 2017-12-21 2020-10-21 Technip France Method of Preparing a Pipe-Section
CN108393646B (zh) * 2018-02-12 2019-12-17 四川省自贡市海川实业有限公司 管子对接角度焊焊接机构
US10551179B2 (en) 2018-04-30 2020-02-04 Path Robotics, Inc. Reflection refuting laser scanner
CN110340578B (zh) * 2019-07-23 2021-04-27 安徽伟宏钢结构集团股份有限公司 一种焊接机头
US11344974B2 (en) * 2019-10-16 2022-05-31 Saudi Arabian Oil Company Optimized method and system for internal coating of field girth welds
WO2022016152A1 (en) 2020-07-17 2022-01-20 Path Robotics, Inc. Real time feedback and dynamic adjustment for welding robots
CN112833699B (zh) * 2021-01-25 2022-07-12 九江检安石化工程有限公司 一种换热器焊接工装及换热器管束管板接口焊接工艺
WO2022182896A2 (en) 2021-02-24 2022-09-01 Path Robotics Inc. Autonomous welding robots

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3261529A (en) * 1963-05-21 1966-07-19 American Mach & Foundry Welding back-up device
US4223197A (en) * 1978-04-18 1980-09-16 Hitachi, Ltd. Method of cooling weld in steel piping and apparatus therefor
CN101332550A (zh) * 2008-05-26 2008-12-31 上海宝钢建筑工程设计研究院 细晶粒钢直缝焊管焊缝冷却装置
WO2010002269A1 (en) * 2008-06-30 2010-01-07 Efd Induction As In-line weld seam heat treatment method and apparatus with internal selective heating of the welded joint
WO2013171589A2 (en) * 2012-05-17 2013-11-21 Acergy France Sa Improvements relating to pipe welding

Family Cites Families (208)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1693064A (en) 1927-09-08 1928-11-27 John J Tipton Pipe clamp
US2259367A (en) * 1939-03-08 1941-10-14 Nat Tube Co Apparatus for cooling pipe insides
US2400737A (en) * 1942-07-14 1946-05-21 Brown Fintube Co Finned tube
US2780194A (en) * 1952-07-11 1957-02-05 Smith Corp A O Internal back-up clamp for girth welding
US2936517A (en) * 1955-02-16 1960-05-17 Brown Fintube Co Method and apparatus for brazing fins to tubes
US2833910A (en) * 1956-03-14 1958-05-06 Magnetic Heating Corp Tube welding
US2816208A (en) * 1956-03-30 1957-12-10 Republic Steel Corp Electric weld tube mills inside spreading rolls at electrode
US3009048A (en) 1958-02-27 1961-11-14 Midwestern Welding Company Internal pipe welding apparatus
US3009049A (en) 1958-08-13 1961-11-14 Richard C Stanley Television controlled internal pipe welding apparatus
US3110277A (en) * 1959-03-16 1963-11-12 Crose United Corp Chill ring
US3164712A (en) 1962-03-20 1965-01-05 Inst Elektroswarki Patona Welding head for the electrical contact welding of large diameter tubes circular (annular) joints
GB1014557A (en) * 1963-03-18 1965-12-31 Philips Electronic Associated Improvements in or relating to devices for use in high frequency electric current welding
US3379853A (en) * 1964-05-22 1968-04-23 Park Ohio Industries Inc Impedor for a tube mill
GB1121824A (en) 1965-12-14 1968-07-31 Exxon Research Engineering Co Pipeline leak detector
US3424887A (en) 1966-08-19 1969-01-28 Barry F Fehlman Apparatus for welding pipe joints
US3461264A (en) 1967-01-12 1969-08-12 Crc Crose Int Inc Method and apparatus for welding girth joints in pipe lines
US3539915A (en) 1967-11-03 1970-11-10 American Mach & Foundry Pipeline inspection apparatus for detection of longitudinal defects by flux leakage inspection of circumferential magnetic field
ES370730A1 (es) 1968-08-26 1972-02-16 Crc Crose Int Inc Maquina soldadora intercambiable para usarla en dispositi- vos para sostener tubos.
US3551636A (en) 1968-08-26 1970-12-29 Crc Crose Int Inc Automatic pipeline welding method and apparatus therefor
US3612808A (en) 1969-06-04 1971-10-12 Crc Crose Int Inc Shielding gas pressure actuated pipe-welding device
US3611541A (en) * 1970-01-30 1971-10-12 Smith International Tool joint rebuilding
US3750451A (en) 1970-04-15 1973-08-07 Brown & Root Internal tensioning system for laying pipeline
US3645105A (en) 1970-04-15 1972-02-29 Brown & Root Internal tensioning system for laying pipeline
US3646309A (en) 1971-01-26 1972-02-29 Atomic Energy Commission Self-adaptive welding torch controller
US3668359A (en) 1971-01-29 1972-06-06 John O Emmerson Clamping and welding assembly
US3764056A (en) 1971-11-18 1973-10-09 Mc Vean And Barlow Inc Apparatus for internally welding pipe joints
US3761005A (en) 1972-04-20 1973-09-25 Bell Telephone Labor Inc Apparatus for aligning and joining tubular members
IT967159B (it) 1972-09-06 1974-02-28 Pirelli Attrezzatura associata a mezzi di saldatura per giunzioni di due par ti di cui una almeno e un condutto re per cavo o f
US3961741A (en) * 1972-09-13 1976-06-08 Foster Wheeler Energy Corporation Heat transfer tubes with internal extended surface
US4019016A (en) 1973-12-03 1977-04-19 Dimetrics, Inc. Welding control systems
US3895209A (en) * 1974-02-06 1975-07-15 Maruma Tractor & Equip Metal build-up apparatus
JPS519037A (en) 1974-07-13 1976-01-24 Nippon Kokan Kk Uraateganetsukikanshindashikenkyoseisochi
US3974356A (en) 1974-08-26 1976-08-10 Crc-Crose International, Inc. Multiple arc welding device and method
US4152568A (en) 1975-08-08 1979-05-01 Nippon Kokan Kabushiki Kaisha Method of arc welding with reverse side cooling for obtaining highly tough large-diameter welded steel pipes
US4283617A (en) 1976-02-03 1981-08-11 Merrick Welding International, Inc. Automatic pipe welding system
US4039115A (en) 1976-06-01 1977-08-02 Acf Industries, Incorporated Apparatus for obtaining abutting contact of hollow tank courses to be circumferentially welded
US4101067A (en) 1976-07-23 1978-07-18 Sloan Purge Products Co., Inc. Heat sink welding and purging apparatus
US4092950A (en) 1977-06-20 1978-06-06 Commercial Resins Company Internal pipe coating apparatus
US4218604A (en) 1978-04-19 1980-08-19 Hitachi, Ltd. Method for welding of austenitic stainless steel piping
SU818788A1 (ru) 1978-05-04 1981-04-07 Ордена Ленина И Ордена Трудовогокрасного Знамени Институт Электро-Сварки Им. E.O.Патона Ah Украинскойсср Машина дл контактной стыковойСВАРКи ТРуб
US4285460A (en) 1979-08-13 1981-08-25 Midcon Pipeline Equipment Co. Method and apparatus for double jointing pipe
US4380696A (en) 1980-11-12 1983-04-19 Unimation, Inc. Method and apparatus for manipulator welding apparatus with vision correction for workpiece sensing
US4443677A (en) 1981-02-23 1984-04-17 Bundy Corporation Induction welding impeder apparatus with fluid cooling
US4360961A (en) 1981-03-16 1982-11-30 Uniroyal, Inc. Method of welding lined pipe
US4491718A (en) 1982-05-20 1985-01-01 Crc Welding Systems, Inc. Template-matching adaptive control system for welding
JPS58212890A (ja) 1982-06-02 1983-12-10 Ishikawajima Harima Heavy Ind Co Ltd 管溶接部の溶接中の冷却方法
JPS5930495A (ja) * 1982-08-11 1984-02-18 Mitsubishi Heavy Ind Ltd 配管内部の局部冷却装置
US4531192A (en) 1982-09-23 1985-07-23 Crc Welding Systems, Inc. Apparatus and method for sensing a workpiece with an electrical arc
JPS5992194A (ja) 1982-11-19 1984-05-28 Kawasaki Heavy Ind Ltd 管内面溶接の冷却方法及び装置
US5149940A (en) 1983-02-24 1992-09-22 Beckworth Davis International Inc. Method for controlling and synchronizing a welding power supply
JPS6033313A (ja) 1983-08-05 1985-02-20 Nippon Kokan Kk <Nkk> レ−ル溶接部の冷却装置
JPS6072673A (ja) 1983-09-27 1985-04-24 Nippon Steel Corp 管内面溶接における内面ア−ク溶接頭追縦方法
JPS6082284A (ja) 1983-10-07 1985-05-10 Toshiba Corp レ−ザ溶接方法およびその装置
US4565003A (en) 1984-01-11 1986-01-21 Phillips Petroleum Company Pipe alignment apparatus
DE3447186A1 (de) * 1984-12-22 1986-07-03 Ruhrkohle Ag, 4300 Essen Wirbelschichtfeuerung mit tauchheizflaechen
US4575611A (en) 1984-12-26 1986-03-11 General Electric Company Method of joining pipes
EP0193812A3 (en) 1985-03-04 1987-04-29 CRC Pipeline International, Inc. Internal pipe clamp for inert gas welding
DE3714329A1 (de) 1987-04-29 1988-12-01 Jagenberg Ag Vorrichtung zum auf- oder abwickeln einer materialbahn
DE3866985D1 (de) 1987-07-21 1992-01-30 Mitsubishi Heavy Ind Ltd Laserstrahlschweissverfahren fuer eine innenumfangsflaeche eines rohres.
FR2625932B1 (fr) 1988-01-19 1994-04-15 Expertises Cie Maritime Procede et dispositif pour souder un troncon de tube sur une conduite
CA1252055A (en) 1988-03-05 1989-04-04 Max J. Roach Method of welding flanged pipe sections and apparatus therefor
US4831233A (en) 1988-09-28 1989-05-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optically controlled welding system
JPH02127976A (ja) * 1988-11-04 1990-05-16 Sumitomo Metal Ind Ltd 自動溶接機の制御方法
US4959523A (en) 1988-11-18 1990-09-25 Hydro-Quebec Method and apparatus for automatically sensing the configuration of a surface area and effecting a work function thereon
DK669888D0 (da) 1988-11-30 1988-11-30 Tjaereborg Ind A S Fremgangsmaade og vaerktoej til sammensvejsning af roer
JP2797444B2 (ja) 1989-06-09 1998-09-17 石川島播磨重工業株式会社 管の多周溶接方法
JP2659809B2 (ja) 1989-08-07 1997-09-30 三菱重工業株式会社 レーザ用反射ミラー
JP2719966B2 (ja) 1989-08-31 1998-02-25 三菱重工業株式会社 片面自動溶接の裏面開先情報検出方法
JPH0390282A (ja) 1989-08-31 1991-04-16 Mitsubishi Heavy Ind Ltd 片面自動溶接の開先情報検出方法
DE69030253T2 (de) 1990-01-04 1997-06-26 Crc Pipeline Int Inc Verteiltes steuerungssystem für automatische schweissarbeiten
US5165160A (en) 1991-07-22 1992-11-24 Poncelet George V Apparatus and method for axially aligning straight or curved conduits
US5435478A (en) 1991-08-05 1995-07-25 Wood; J. W. Welding apparatus and method
US5288963A (en) 1993-07-22 1994-02-22 Hobart Brothers Company Actively cooled weld head cassette
JP2632289B2 (ja) 1993-12-01 1997-07-23 株式会社関西テック スパイラル鋼管自動溶接方法
US5435479A (en) 1994-06-29 1995-07-25 The United States Of America As Represented By The National Aeronautics And Space Administration Cylinder rounding and clamping fixture for welded joints
US5474225A (en) 1994-07-18 1995-12-12 The Babcock & Wilcox Company Automated method for butt weld inspection and defect diagnosis
US5481085A (en) 1994-09-09 1996-01-02 University Of Kentucky Research Foundation Apparatus and method for measuring 3-D weld pool shape
DE4433675A1 (de) 1994-09-21 1996-03-28 Fraunhofer Ges Forschung Kompakter Laserbearbeitungskopf zur Lasermaterialbearbeitung
US5593605A (en) * 1994-10-11 1997-01-14 Crc-Evans Pipeline International, Inc. Internal laser welder for pipeline
US5618591A (en) 1995-05-15 1997-04-08 Fuse Co. Method of coating an inside of a pipe or tube
IT237110Y1 (it) 1995-08-10 2000-08-31 Psi Pipeline Service Sa Dispositivo per la saldatura interna di condotte presentantesensori di presenza del tipo ad emissione di un segnale
US5706863A (en) 1995-09-22 1998-01-13 Premiere, Inc. Pipe section having padeye attachments
US5865430A (en) 1995-09-26 1999-02-02 K. C. Welding & Machine Corp. Alignment clamp and method for its use
US5728992A (en) 1996-02-29 1998-03-17 Westinghouse Electric Corporation Apparatus and method for real time evaluation of laser welds especially in confined spaces such as within heat exchanger tubing
US5685996A (en) 1996-05-20 1997-11-11 Ricci; Donato L. Plasma arc pipe cutting apparatus
US5925268A (en) 1996-06-06 1999-07-20 Engauge Inc. Laser welding apparatus employing a tilting mechanism and seam follower
FR2752180B1 (fr) 1996-08-08 1999-04-16 Axal Procede et dispositif de soudage a pilotage du faisceau de soudage
US6044769A (en) 1996-09-27 2000-04-04 Kabushiki Kaisha Toshiba In-pipe work apparatus
US5796069A (en) 1997-01-10 1998-08-18 Crc-Evans Pipeline International, Inc. Arc and laser welding process for pipeline
US6098866A (en) 1997-06-06 2000-08-08 Daido Tokushuko Kabushiki Kaisha Diffusion bonding apparatus for pipes
US6230072B1 (en) 1998-02-09 2001-05-08 John W. Powell Boiler automated welding system (BAWS)
US6075220A (en) 1998-02-12 2000-06-13 Sandia Corporation Optical penetration sensor for pulsed laser welding
US6290786B1 (en) * 1998-06-29 2001-09-18 The Idod Trust Method and apparatus for coating the seams of welded tubes
US6333699B1 (en) 1998-08-28 2001-12-25 Marathon Oil Company Method and apparatus for determining position in a pipe
AT409731B (de) 1998-10-16 2002-10-25 Fronius Schweissmasch Prod Regelvorrichtung für ein schweissgerät
US6188041B1 (en) 1998-11-13 2001-02-13 Korea Atomic Energy Research Institute Method and apparatus for real-time weld process monitoring in a pulsed laser welding
AU1994100A (en) 1999-01-13 2000-08-01 Meltax Gmbh Welding machine
DE19909634C2 (de) 1999-03-05 2002-02-07 Willschuetz Klaus Dieter Pipelinereparatur-Hilfsvorrichtung
JP4300667B2 (ja) 1999-05-20 2009-07-22 大同特殊鋼株式会社 監視装置付き金属管内面肉盛装置
NL1012676C2 (nl) * 1999-07-22 2001-01-23 Spiro Research Bv Werkwijze voor het vervaardigen van een dubbelwandige warmtewisselbuis met lekdetectie alsmede een dergelijke warmtewisselbuis.
US6325277B1 (en) 1999-09-13 2001-12-04 Gary Collie Apparatus and method for aligning tubing segments
NL1013477C2 (nl) 1999-11-03 2001-05-04 Vermaat Technics Bv Werkwijze en inrichting voor het lassen van pijpen.
US7780065B2 (en) 1999-11-03 2010-08-24 Vermaat Technics B.V. Method and device for welding pipes
JP3348350B2 (ja) 1999-12-16 2002-11-20 川崎重工業株式会社 レーザー溶接施工法および装置
ATE296183T1 (de) * 2000-06-27 2005-06-15 Ag Westfalen Verfahren und anordnung zur begrenzung der temperatur beim schweissen der enden eines rohrpaares im schweissnahtnahen bereich des rohrwerkstoffes mittels gas
FR2811427B1 (fr) * 2000-07-06 2002-10-25 Aerospatiale Matra Ccr Procede de detection et d'identification de defauts dans un cordon de soudure realise par faisceau laser
US6850161B1 (en) 2000-10-23 2005-02-01 Verizon Corporate Services Group Inc. Systems and methods for identifying and mapping conduit location
BRPI0114859B1 (pt) * 2000-10-24 2015-12-22 Saipem Spa método de assentamento de uma tubulação submersa
US6583386B1 (en) 2000-12-14 2003-06-24 Impact Engineering, Inc. Method and system for weld monitoring and tracking
EP1373783B1 (en) 2001-03-07 2005-08-03 Carnegie-Mellon University Gas main robotic inspection system
US7014100B2 (en) 2001-04-27 2006-03-21 Marathon Oil Company Process and assembly for identifying and tracking assets
US6596961B2 (en) 2001-09-12 2003-07-22 Fraunhofer Usa, Inc. Method and apparatus for monitoring and adjusting a laser welding process
US7182025B2 (en) 2001-10-17 2007-02-27 William Marsh Rice University Autonomous robotic crawler for in-pipe inspection
ATE506138T1 (de) 2001-11-15 2011-05-15 Precitec Vision Gmbh & Co Kg VERFAHREN UND VORRICHTUNG ZUR ERFASSUNG DER NAHTQUALITÄT EINER SCHWEIßNAHT BEI DER SCHWEIßUNG VON WERKSTÜCKEN
US7032809B1 (en) 2002-01-18 2006-04-25 Steel Ventures, L.L.C. Seam-welded metal pipe and method of making the same without seam anneal
JP3733485B2 (ja) 2002-03-04 2006-01-11 川崎重工業株式会社 自動開先倣い溶接装置および方法
US6904818B2 (en) 2002-04-05 2005-06-14 Vetco Gray Inc. Internal riser inspection device
EP1532474B1 (en) 2002-07-18 2012-08-15 Shell Internationale Research Maatschappij B.V. Marking of pipe joints
US7282663B2 (en) 2002-07-29 2007-10-16 Shell Oil Company Forge welding process
US7484625B2 (en) 2003-03-13 2009-02-03 Varco I/P, Inc. Shale shakers and screens with identification apparatuses
US7159654B2 (en) 2004-04-15 2007-01-09 Varco I/P, Inc. Apparatus identification systems and methods
US7675422B2 (en) 2003-04-09 2010-03-09 Visible Assets, Inc. Networked RF Tag for tracking people by means of loyalty cards
US8378841B2 (en) 2003-04-09 2013-02-19 Visible Assets, Inc Tracking of oil drilling pipes and other objects
US7049963B2 (en) 2003-04-09 2006-05-23 Visible Assets, Inc. Networked RF tag for tracking freight
KR100514311B1 (ko) 2003-05-10 2005-09-13 한국전력기술 주식회사 국부 열제거원 용접장치 및 그 용접방법
JP4130153B2 (ja) 2003-05-27 2008-08-06 大陽日酸株式会社 溶接装置
US7774917B2 (en) 2003-07-17 2010-08-17 Tubefuse Applications B.V. Forge welding tubulars
ATE481203T1 (de) 2003-07-21 2010-10-15 Grant Prideco Lp Vorrichtung mit einer rohr/verbinder-schweissfuge
US7205503B2 (en) 2003-07-24 2007-04-17 Illinois Tool Works Inc. Remotely controlled welding machine
US6909066B2 (en) 2003-07-30 2005-06-21 Edison Welding Institute Adaptive and synergic fill welding method and apparatus
US7077020B2 (en) 2004-04-01 2006-07-18 Crts, Inc. Internal field joint inspection robot
US8016037B2 (en) 2004-04-15 2011-09-13 National Oilwell Varco, L.P. Drilling rigs with apparatus identification systems and methods
US9322763B2 (en) 2004-06-14 2016-04-26 Stylianos Papadimitriou Autonomous non-destructive inspection
US20060070987A1 (en) 2004-09-30 2006-04-06 Lincoln Global, Inc. Monitoring device for welding wire supply
NO330526B1 (no) 2004-10-13 2011-05-09 Trac Id Systems As Anordning ved elektronisk merke og samvirkende antenne
JP4269322B2 (ja) 2005-01-18 2009-05-27 川崎重工業株式会社 開先計測方法および開先計測装置
US8115138B2 (en) 2005-03-15 2012-02-14 Lincoln Global, Inc. Comprehensive identification and designation of welding procedures
WO2006112689A1 (en) 2005-04-20 2006-10-26 Heerema Marine Contractors Nederland B.V. Method and device for positioning ends of pipe sections relative to one another
US20070023185A1 (en) 2005-07-28 2007-02-01 Hall David R Downhole Tool with Integrated Circuit
US7661574B1 (en) 2005-11-09 2010-02-16 Arc Machines, Inc. Orbital tube welding clamping fixture support
GB2432602B (en) 2005-11-28 2011-03-02 Weatherford Lamb Serialization and database methods for tubulars and oilfield equipment
US20070145129A1 (en) 2005-12-27 2007-06-28 Perkin Gregg S System and method for identifying equipment
DE102006033992A1 (de) 2006-01-23 2007-08-02 Schmidt + Clemens Gmbh + Co. Kg Schweißverfahren
DE102006004919A1 (de) 2006-02-01 2007-08-16 Thyssenkrupp Steel Ag Laserstrahlschweißkopf
JP4728822B2 (ja) 2006-02-02 2011-07-20 日立Geニュークリア・エナジー株式会社 画像検査方法、画像検査プログラムおよび画像検査装置
JP5225867B2 (ja) 2006-02-23 2013-07-03 三星重工業株式会社 ウェイトバランサ及びパイプ結合方法
FR2897918B1 (fr) * 2006-02-24 2009-10-30 Saipem S A Sa Element de conduites coaxiales et procede de fabrication
US8658941B2 (en) 2006-09-07 2014-02-25 Illinois Tool Works Inc. Wireless system control and inventory monitoring for welding-type devices
US7915561B2 (en) 2006-09-26 2011-03-29 Matrix Wear Technologies Inc. Apparatus for coating a pipe surface
CA2593894C (en) 2006-12-01 2016-11-08 Roentgen Technische Dienst B.V. A method for configuring an array of transducers in an ultrasonic test apparatus
GB0700148D0 (en) 2007-01-05 2007-02-14 Cummins Turbo Tech Ltd A method and apparatus for detecting the rotational speed of a rotary member
DE102007024789B3 (de) 2007-05-26 2008-10-23 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Erkennen von Fehlern an einer Schweißnaht während eines Laser-Schweißprozesses
DE102007052945B3 (de) * 2007-11-07 2009-07-09 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laserbearbeitungsmaschine
US10546372B2 (en) 2007-12-21 2020-01-28 Kinder Morgan, Inc. Method, machine, and computer medium having computer program to detect and evaluate structural anomalies in circumferentially welded pipelines
GB0801917D0 (en) 2008-02-01 2008-03-12 Saipem Spa Method and apparatus for the welding of pipes
US7798023B1 (en) 2008-02-11 2010-09-21 Electromechanical Technologies, Inc. Linkage assembly for in-line inspection tool
US8208585B2 (en) 2008-09-17 2012-06-26 Qualcomm Incorporated D-PSK demodulation based on correlation angle distribution
GB0819377D0 (en) 2008-10-22 2008-11-26 Saipem Spa Method and apparatus for measuring a pipe weld joint
US7802714B1 (en) 2009-03-11 2010-09-28 E.O. Paton Electric Welding Institute Of The National Academy Of Sciences Of Ukraine Machine for butt welding of pipes
GB2468664B (en) 2009-03-17 2011-02-23 Aflex Hose Ltd Flexible conduit labelling
WO2010109837A1 (ja) 2009-03-27 2010-09-30 新日本製鐵株式会社 レール溶接部の冷却装置および冷却方法
DE202009009456U1 (de) 2009-07-15 2010-11-25 Novopress Gmbh Pressen Und Presswerkzeuge & Co. Kommanditgesellschaft Presswerkzeug zum Verbinden von insbesondere rohrförmigen Werkstücken
GB0913219D0 (en) 2009-07-30 2009-09-02 Tubefuse Applic V O F Cooling apparatus
GB0917950D0 (en) 2009-10-13 2009-11-25 Shawcor Ltd X-ray inspection method and apparatus for pipeline girth weld inspection
US9643316B2 (en) 2009-10-27 2017-05-09 Battelle Memorial Institute Semi-autonomous multi-use robot system and method of operation
NO335278B1 (no) 2009-11-12 2014-11-03 Trac Id Systems As Festing av ID merke til sylindrisk objekt
GB0921078D0 (en) 2009-12-01 2010-01-13 Saipem Spa Pipeline welding method and apparatus
US20110155711A1 (en) 2009-12-31 2011-06-30 Thomas Edward Doyle Adaptive control of arc welding parameters
US8389902B2 (en) 2010-02-06 2013-03-05 Fast Fusion, LLC. Portable weld cooling systems
JP5847697B2 (ja) 2010-02-18 2016-01-27 株式会社東芝 溶接装置および溶接方法
US8857700B2 (en) 2010-06-04 2014-10-14 Shawcor Ltd. Low temperature method for forming field joints on undersea pipelines
US9013274B2 (en) 2010-09-22 2015-04-21 3M Innovative Properties Company Magnetomechanical markers for marking stationary assets
FR2965198B1 (fr) 2010-09-24 2012-09-07 Serimax Bride comportant un chemin de guidage en plusieurs parties.
FR2965199B1 (fr) 2010-09-24 2012-09-07 Serimax Bride d'aide au travail de tubes comportant plusieurs parties.
FR2965197B1 (fr) 2010-09-24 2012-09-07 Serimax Procede et dispositif de positionnement d'un premier tube vis-a-vis d'un deuxieme tube
KR101277966B1 (ko) 2010-10-27 2013-06-27 현대제철 주식회사 일렉트로 가스 용접의 용접부 이면 냉각 장치
EP2453264B1 (fr) 2010-11-10 2021-09-01 Elydan Tube polymère comportant un capteur d'identification, ainsi que son procédé de fabrication
US20120126008A1 (en) 2010-11-23 2012-05-24 Merrick Systems Inc. Thin mount rfid tagging systems
FR2970307B1 (fr) 2011-01-11 2012-12-28 Serimax Procede ameliore de positionnement de tubes bout a bout
WO2012112843A2 (en) 2011-02-17 2012-08-23 National Oilwell Varco, L.P. System and method for tracking pipe activity on a rig
CA3024816C (en) 2011-02-17 2021-05-18 Lavalley Industries, Llc Position adjustable grapple attachment
ITMI20110565A1 (it) 2011-04-06 2012-10-07 Saipem Spa Metodo e sistema di posa di una tubazione sul letto di un corpo d'acqua
US20120257042A1 (en) 2011-04-08 2012-10-11 Fer-Pal Construction Ltd System for scanning, mapping and measuring conduits
US8534530B2 (en) 2011-04-27 2013-09-17 Blue Origin, Llc Inflatable ring for supporting friction welding workpieces, and associated systems and methods
WO2012153329A1 (en) 2011-05-12 2012-11-15 Petratec International Ltd. Rfid collar
US9770794B2 (en) * 2011-06-03 2017-09-26 Holtec International Vertical bundle air cooled heat exchanger, method of manufacturing the same, and power generation plant implementing the same
FR2977181B1 (fr) 2011-07-01 2014-04-18 Serimax Dispositif d'aide au travail de pieces mecaniques de grandes dimensions
US9862051B2 (en) 2011-09-27 2018-01-09 Illinois Tool Works Inc. Welding system and method utilizing cloud computing and data storage
US9403234B2 (en) 2011-11-07 2016-08-02 Illinois Tool Works Inc. Wire feeding systems and devices
JP5992194B2 (ja) 2012-04-03 2016-09-14 アドバンス理工株式会社 熱電材料測定装置
US10183351B2 (en) 2012-06-27 2019-01-22 Lincoln Global, Inc. Parallel state-based controller for a welding power supply
US9304204B2 (en) 2012-08-10 2016-04-05 Sms Meer Gmbh Method and device for optically measuring the interior of a pipe
US20140091129A1 (en) 2012-09-28 2014-04-03 Lincoln Global, Inc. Self-leveling welding tractor
US8955733B2 (en) 2012-09-28 2015-02-17 Tri Tool Inc. Internal pipe line-up clamping module
US9869749B2 (en) 2013-01-09 2018-01-16 Baker Hughes, A Ge Company, Llc System and method to generate three-dimensional mapping of a tubular component layout
EP2778339A1 (en) 2013-03-11 2014-09-17 Welltec A/S A completion component with position detection
US8714433B1 (en) 2013-03-13 2014-05-06 Lincoln Global, Inc. Welder track ring clamp
US9728817B2 (en) 2013-03-14 2017-08-08 Invodane Engineering Ltd. Apparatus and method for in-line charging of a pipeline tool
US10040141B2 (en) * 2013-05-23 2018-08-07 Crc-Evans Pipeline International, Inc. Laser controlled internal welding machine for a pipeline
US9821415B2 (en) 2014-03-28 2017-11-21 Crc-Evans Pipeline International, Inc. Internal pipeline cooler
US20150034629A1 (en) 2013-08-01 2015-02-05 Illinois Tool Works Inc. Systems, devices, and methods for heating an inside wall of a pipe or a vessel
US9476535B2 (en) 2013-10-30 2016-10-25 Warren Environmental, Inc. System for inspecting and coating the interior of a pipe
US9183222B2 (en) 2014-01-28 2015-11-10 Gas Technology Institute Mapping and asset lifecycle tracking system
US20150248569A1 (en) 2014-03-03 2015-09-03 Berntsen International, Inc. Advanced System for Navigating Between, Locating and Monitoring Underground Assets
US8973244B2 (en) 2014-04-17 2015-03-10 Lavalley Industries, Llc Pipe processing tool with pipe deformation members
NL2012839C2 (en) 2014-05-19 2014-12-17 Rüntgen Technische Dienst B.V. Tool, method, and system for in-line inspection or treatment of a pipeline.
GB2544671A (en) 2014-07-30 2017-05-24 Spm Flow Control Inc Band with RFID chip holder and identifying component
EP3274125A4 (en) 2015-03-26 2018-12-12 CRC-Evans Pipeline International, Inc. Systems and methods for use in welding pipe segments of a pipeline

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3261529A (en) * 1963-05-21 1966-07-19 American Mach & Foundry Welding back-up device
US4223197A (en) * 1978-04-18 1980-09-16 Hitachi, Ltd. Method of cooling weld in steel piping and apparatus therefor
CN101332550A (zh) * 2008-05-26 2008-12-31 上海宝钢建筑工程设计研究院 细晶粒钢直缝焊管焊缝冷却装置
WO2010002269A1 (en) * 2008-06-30 2010-01-07 Efd Induction As In-line weld seam heat treatment method and apparatus with internal selective heating of the welded joint
WO2013171589A2 (en) * 2012-05-17 2013-11-21 Acergy France Sa Improvements relating to pipe welding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CN 101,332,550A1/B1, 25.01.2011. *

Also Published As

Publication number Publication date
EP3123068A1 (en) 2017-02-01
RU2019111189A3 (ru) 2022-01-31
BR112016022229B1 (pt) 2021-06-01
RU2016142270A (ru) 2018-04-28
CN106164556A (zh) 2016-11-23
CA2942368A1 (en) 2015-10-01
RU2019111189A (ru) 2019-06-28
AU2015236037A1 (en) 2016-09-29
ZA201606315B (en) 2019-11-27
MX2016012756A (es) 2017-04-27
CN110076417A (zh) 2019-08-02
CN106164556B (zh) 2019-01-29
US20150273636A1 (en) 2015-10-01
MY179444A (en) 2020-11-06
RU2016142270A3 (ru) 2018-11-15
WO2015148765A1 (en) 2015-10-01
EP3123068A4 (en) 2017-11-22
AU2015236037B2 (en) 2019-08-01
US9821415B2 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
RU2686533C2 (ru) Охлаждающее устройство внутреннего трубопровода
TWI660096B (zh) Site freezing method and site freezing system
US20130114777A1 (en) Apparatus and method for detecting position of annulus spacer between concentric tubes
CN106288901B (zh) 环路热管系统及其用不锈钢毛细管无塌陷焊接工艺方法
JP2006170571A (ja) 二重多管式熱交換器
JP3957706B2 (ja) 放熱管への電熱線挿入方法とその装置、及びその端部の密閉装置
JP2005069620A (ja) 熱交換器
ES2717289T3 (es) Método y aparato para controlar la evaporación de un gas licuado
CN211233402U (zh) 一种具有双层加热结构的液体加热设备
US10935321B2 (en) Energy transfer systems and energy transfer methods
EP3220092B1 (en) Bent pipe and a semiconductor refrigeration refrigerator with bent pipe
WO2019019269A1 (zh) 一种法兰式蒸汽伴行管及其安装方法
KR20140129630A (ko) 배관 급속 결빙 모듈
JP6296306B2 (ja) 熱交換器および水素ガス冷却装置
US20160288278A1 (en) Heat exchanger assembly process and system
KR20170082671A (ko) 온수 무한 공급형 전기순간온수기
JP2010069493A (ja) 循環式スポット溶接ガン冷却システム
KR101321205B1 (ko) 벨로우즈 타입용 동파 방지구와 이를 적용한 수도계량기 및 열교환기
JP2008175450A (ja) 熱交換器
CN105987460A (zh) 冷媒传热毛细管网组件
WO2017089626A1 (es) Máquina y método de aplicación de pintura en el interior de tuberias.
JP2018088389A (ja) 燃料電池システム
EP4015973B1 (en) Extraplanetary heat exchanger
CN109357433B (zh) 换热装置、空调器及控制空调器的方法
WO2024062337A1 (en) Cooling system and method for dissipating heat from an annular portion of a pipeline