RU2598072C2 - Новые кристаллические формы ингибиторов дипептидилпептидазы-iv - Google Patents

Новые кристаллические формы ингибиторов дипептидилпептидазы-iv Download PDF

Info

Publication number
RU2598072C2
RU2598072C2 RU2014102773/04A RU2014102773A RU2598072C2 RU 2598072 C2 RU2598072 C2 RU 2598072C2 RU 2014102773/04 A RU2014102773/04 A RU 2014102773/04A RU 2014102773 A RU2014102773 A RU 2014102773A RU 2598072 C2 RU2598072 C2 RU 2598072C2
Authority
RU
Russia
Prior art keywords
crystalline form
crystalline
difluorophenyl
pyran
methylsulfonyl
Prior art date
Application number
RU2014102773/04A
Other languages
English (en)
Other versions
RU2014102773A (ru
Inventor
Ициа АРРОЙО
Давида КРЮГЕР
Пин Чэнь
Аарон МОМЕНТ
Тесфайе Бифту
Фэй ШИН
Яньфын ЧЖАН
Original Assignee
Мерк Шарп И Доум Корп.
Мерк Шарп И Доум Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мерк Шарп И Доум Корп., Мерк Шарп И Доум Лтд. filed Critical Мерк Шарп И Доум Корп.
Publication of RU2014102773A publication Critical patent/RU2014102773A/ru
Application granted granted Critical
Publication of RU2598072C2 publication Critical patent/RU2598072C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/41621,2-Diazoles condensed with heterocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Child & Adolescent Psychology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к новой кристаллической форме (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-с]пиразол-5(4Н)-ил]тетрагидро-2Н-пиран-3-амина соединения I, характеризующегося тем, что имеет по меньшей мере четыре пика в его картине дифракции рентгеновского излучения на порошках, выбранных из группы, состоящей из 10,3+0,1 2θ, 12,7±0,1 2θ, 14,6±0,1 2θ, 16,1±0,1 2θ, 17,8±0,1 2θ, 19,2±0,1 2θ, 22,2±0,1 2θ, 24,1±0,1 2θ и 26,9±0,1 2θ, который является сильнодействующим ингибитором дипептидилпептидазы-IV. Изобретение также относится к применению этого соединения при лечении неинсулинзависимого сахарного диабета (Типа 2), также к фармацевтическим композициям на его основе. 4 н. и 8 з.п. ф-лы, 16 ил., 6 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к новым кристаллическим формам ингибитора дипептидилпептидазы-IV. Более конкретно, настоящее изобретение относится к новым кристаллическим формам (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина, который представляет собой сильнодействующий, имеющий долговременное действие ингибитор дипептидилпептидазы-IV. Эти новые кристаллические формы являются пригодными при лечении и предотвращении заболеваний и состояний, для которых показан ингибитор дипептидилпептидазы-IV, в частности, диабета 2 типа, тучности и высокого давления крови. Кроме того, настоящее изобретение относится к фармацевтическим композициям, содержащим новые кристаллические формы по настоящему изобретению, пригодным для использования при лечении диабета 2 типа, тучности и высокого давления крови, а также к способам получения таких форм и их фармацевтических композиций.
Уровень техники
Ингибирование дипептидилпептидазы-IV (DP-IV), фермента, который дезактивирует как глюкозазависимый инсулинотропный пептид (GIP), так и глюкагоноподобный пептид 1 (GLP-1), представляет собой новый подход к лечению и предотвращению диабета 2 типа, также известного как не-инсулинзависимый сахарный диабет (NIDDM). Терапевтический потенциал ингибиторов DP-IV для лечения диабета 2 типа рассмотрен в C.F. Deacon and J.J. Hoist, "Dipeptidyl paptidase IV inhibition as an approach to treatment and prevention of Type 2 diabetes: historical perspective," Biochem. Biophys. Res. Commun., 294: 1-4 (2000); K. Augustyns, et al., "Dipeptidyl paptidase IV inhibitors as new therapeutic agents for the treatment of Type 2 diabetes," Expert. Opin. Ther. Patents. 13: 499-510 (2003); D.J. Drucker, "Therapeutic potential dipeptidyl paptidase IV inhibitors for the treatment of Type 2 diabetes," Expert Opin. Investig. Drugs. 12: 87-100 (2003); и M.A. Nauck et al., "Incretins and Their Analogues as New Antidiabetic Drugs," Drug News Perspect. 16: 413-422 (2003).
WO 2010/056708 (опубликованная 20 мая 2010), Merck & Co., описывает класс аминотетрагидропиранов, которые представляют собой сильнодействующие ингибиторы DP-IV и по этой причине пригодны для лечения диабета 2 типа. Конкретно в WO 2010/056708 описывается (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амин.
Однако авторы обнаружили теперь новые кристаллические формы (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина (Соединение I).
Сущность изобретения
Настоящее изобретение относится к новым кристаллическим формам ингибитора дипептидилпептидазы-IV (DP-IV) (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина (Соединение I). Определенные кристаллические формы имеют преимущества при получении фармацевтических композиций (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина, таких как простота обработки и кристаллизации, манипуляций, стабильность в стрессовых условиях и дозировании. В частности, они демонстрируют улучшенные физико-химические свойства, такие как стабильность в стрессовых условиях, которые делают их особенно пригодными для использования при изготовлении разнообразных фармацевтических дозированных форм. Настоящее изобретение также относится к фармацевтическим композициям, содержащим их новые формы, а также к способам их использования в качестве ингибиторов DP-IV, в частности, для предотвращения или лечения диабета 2 типа, тучности и высокого давления крови.
В определенных вариантах осуществления, в настоящем документе описаны фармацевтические композиции, содержащие кристаллический (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амин и фармацевтически приемлемый носитель.
Краткое описание фигур
Фиг.1 представляет собой картину дифракции рентгеновского излучения для кристаллической формы I Соединения I.
Фиг.2 представляет собой кривую термогравиметрического анализа (TGA) для кристаллической формы I Соединения I.
Фиг.3 представляет собой кривую дифференциальной сканирующей калориметрии (DSC) для кристаллической формы I Соединения I.
Фиг.4 представляет собой спектр твердотельного ЯМР для кристаллической формы I Соединения I.
Фиг.5 представляет собой ИК-спектры для кристаллической формы II Соединения I.
Фиг.6 представляет собой картину дифракции рентгеновского излучения для кристаллической формы II Соединения I.
Фиг.7 представляет собой кривую термогравиметрического анализа (TGA) для кристаллической формы II Соединения I.
Фиг.8 представляет собой кривую дифференциальной сканирующей калориметрии (DSC) для кристаллической формы II Соединения I.
Фиг.9 представляет собой спектр твердотельного ЯМР для кристаллической формы II Соединения I.
Фиг.10 представляет собой ИК спектр кристаллической формы II Соединения I.
Фиг.11 представляет собой картину дифракции рентгеновского излучения для кристаллической формы ΙII Соединения I.
Фиг.12 представляет собой кривую термогравиметрического анализа (TGA) для кристаллической формы III Соединения I.
Фиг.13 представляет собой кривую дифференциальной сканирующей калориметрии (DSC) для кристаллической формы III Соединения I.
Фиг.14 представляет собой картину дифракции рентгеновского излучения для кристаллической формы IV Соединения I.
Фиг.15 представляет собой кривую термогравиметрического (TGA) для кристаллической формы IV Соединения I.
Фиг.16 представляет собой кривую дифференциальной сканирующей калориметрии (DSC) для кристаллической формы IV Соединения
Подробное описание изобретения
Настоящее изобретение относится к кристаллическому (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амину Соединения I:
Figure 00000001
Если не приводится конкретного обозначения формы, термин "кристаллический (2R,35',5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амин" относится ко всем кристаллическим формам (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина, описанного в настоящем документе. Кристаллические формы, описанные в настоящем документе, существуют в виде безводного свободного основания (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина.
Один из вариантов осуществления кристаллических форм, описанных в настоящем документе, представляет собой (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амин (Форма I). Форма I дополнительно описывается ниже.
Другой вариант осуществления кристаллических форм, описанных в настоящем документе, представляет собой (2R,3S,5R)-2-(2,5- дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амин (Форма II). Форма II дополнительно описывается ниже.
Еще один вариант осуществления кристаллических форм, описанный в настоящем документе, представляет собой (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амин (Форма III). Форма III дополнительно описывается ниже.
Еще один вариант осуществления кристаллических форм, описанный в настоящем документе, представляет собой (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амин (Форма IV). Форма IV дополнительно описывается ниже.
Другой вариант осуществления настоящего изобретения предлагает конкретное лекарственное вещество, которое содержит, по меньшей мере, одну из кристаллических форм, описанных в настоящем документе. Под "лекарственным веществом" подразумевается активный фармацевтический ингредиент. Количество кристаллической формы в лекарственном веществе может количественно определяться посредством использования физических методов, таких как дифракция рентгеновского излучения на порошках, спектроскопия твердотельного ядерного магнитного резонанса фтора-19 с вращением образца под магическим углом (MAS), спектроскопия твердотельного ядерного магнитного резонанса углерода-13 с вращением образца под магическим углом и кросс-поляризацией (CPMAS), твердотельная инфракрасная спектроскопия с Фурье-преобразованием и Рамановская спектроскопия.
В некотором классе этого варианта осуществления, кристаллическая форма по настоящему изобретению составляет примерно от 5% примерно до 100% масс. от лекарственного вещества. Во втором классе этого варианта осуществления, кристаллическая форма по настоящему изобретению составляет примерно от 10% примерно до 100% масс. лекарственного вещества. В третьем классе этого варианта осуществления, кристаллическая форма по настоящему изобретению составляет примерно от 25% примерно до 100% масс. лекарственного вещества. В четвертом классе этого варианта осуществления, кристаллическая форма по настоящему изобретению составляет примерно от 50% примерно до 100% масс. лекарственного вещества. В пятом классе этого варианта осуществления, кристаллическая форма по настоящему изобретению составляет примерно от 75% примерно до 100% масс. лекарственного вещества. В шестом классе этого варианта осуществления, по существу все лекарственное вещество находится в кристаллической форме по настоящему изобретению, то есть, лекарственное вещество представляет собой по существу фазово-чистый кристалл.
В другом классе этого варианта осуществления, по меньшей мере, 5% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. Еще в одном классе этого варианта осуществления, по меньшей мере, 10% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. Еще в одном классе этого варианта осуществления, по меньшей мере, 15% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. В другом классе этого варианта осуществления, по меньшей мере, 20% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. Еще в одном классе этого варианта осуществления, по меньшей мере, 25% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. Еще в одном классе этого варианта осуществления, по меньшей мере, 30% масс лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. В другом классе этого варианта осуществления, по меньшей мере, 35% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. Еще в одном классе этого варианта осуществления, по меньшей мере, 40% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. Еще в одном классе этого варианта осуществления, по меньшей мере, 45% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. В другом классе этого варианта осуществления, по меньшей мере, 50% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. Еще в одном классе этого варианта осуществления, по меньшей мере, 55% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. Еще в одном классе этого варианта осуществления, по меньшей мере, 60% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. В другом классе этого варианта осуществления, по меньшей мере, 65% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. Еще в одном классе этого варианта осуществления, по меньшей мере, 70% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. Еще в одном классе этого варианта осуществления, по меньшей мере, 75% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. В другом классе этого варианта осуществления, по меньшей мере, 80% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. Еще в одном классе этого варианта осуществления, по меньшей мере, 85% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. Еще в одном классе этого варианта осуществления, по меньшей мере, 90% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. В другом классе этого варианта осуществления, по меньшей мере, 95% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению. Еще в одном классе этого варианта осуществления, по меньшей мере, 100% масс. лекарственного вещества представляет собой кристаллическую форму по настоящему изобретению.
Кристаллические формы по настоящему изобретению демонстрируют фармацевтические преимущества по сравнению с аморфным свободным основанием Соединения I, как описано в WO 2010/056708, при получении продукта фармацевтического лекарственного препарата, содержащего фармакологически активный ингредиент. В частности, улучшенная химическая и физическая стабильность кристаллических форм составляют преимущественные свойства при получении твердых фармацевтических дозированных форм, содержащих фармакологически активный ингредиент.
Кристаллические формы по настоящему изобретению, которые демонстрируют имеющие продолжительное действие, сильнодействующие свойства ингибирования DP-IV, являются особенно пригодными для использования при предотвращении или лечении диабета 2 типа, тучности и высокого давления крови.
Другой аспект настоящего изобретения предлагает способ предотвращения или лечения клинических состояний, для которых показан ингибитор DP-IV, этот способ включает введение пациенту, нуждающемуся в таком предотвращении или лечении, профилактически или терапевтически эффективного количества кристаллической формы по настоящему изобретению или его гидрата. Такие клинические состояние включают диабет, в частности, диабет 2 типа, гипергликемию, стойкость к инсулину и тучность.
Настоящее изобретение также предлагает использование кристаллической формы Соединения I по настоящему изобретению для предотвращения или лечения у млекопитающих клинических состояний, для которых показан ингибитор DP-IV, в частности, диабета 2 типа, гипергликемии, стойкости к инсулину и тучности.
Настоящее изобретение также предлагает использование кристаллической формы Соединения I по настоящему изобретению для получения лекарственного препарата для предотвращения или лечения у млекопитающих клинических состояний, для которых показан ингибитор DP-IV, в частности, диабета 2 типа, гипергликемии, стойкости к инсулину и тучности.
Настоящее изобретение также предлагает фармацевтические композиции, содержащие кристаллическую форму, описанную в настоящем документе, в ассоциации с одним или несколькими фармацевтически приемлемыми носителями или наполнителями. В одном из вариантов осуществления фармацевтическая композиция содержит терапевтически эффективное количество активного фармацевтического ингредиента в смеси с фармацевтически приемлемыми наполнителями, где активный фармацевтический ингредиент содержит детектируемое количество кристаллического (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина.
Во втором варианте осуществления фармацевтическая композиция содержит терапевтически эффективное количество активного фармацевтического ингредиента в смеси с фармацевтически приемлемыми наполнителями, где активный фармацевтический ингредиент составляет примерно от 1% примерно до 100% масс. кристаллического (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина. В одном из классов этого второго варианта осуществления, активный фармацевтический ингредиент в таких композициях составляет примерно от 5% примерно до 100% масс. кристаллического (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)- ил]тетрагидро-2H-пиран-3-амина. Во втором классе этого варианта осуществления, активный фармацевтический ингредиент в таких композициях составляет примерно от 10% примерно до 100% масс. кристаллического (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина. В третьем классе этого варианта осуществления, активный фармацевтический ингредиент в таких композициях составляет примерно 25% примерно до 100% масс. кристаллического (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина. В четвертом классе этого варианта осуществления, активный фармацевтический ингредиент в таких композициях составляет примерно от 50% примерно до 100% масс. кристаллического (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина.
В третьем варианте осуществления фармацевтическая композиция содержит терапевтически эффективное количество активного фармацевтического ингредиента в смеси с фармацевтически приемлемыми наполнителями, где активный фармацевтический ингредиент составляет, по меньшей мере, 1% масс. кристаллического (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина. В одном из классов этого второго варианта осуществления, активный фармацевтический ингредиент в таких композициях составляет примерно 5% масс. кристаллического (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина. Во втором классе этого варианта осуществления, активный фармацевтический ингредиент в таких композициях составляет, по меньшей мере, 10% масс. кристаллического (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина. В третьем классе этого варианта осуществления, активный фармацевтический ингредиент в таких композициях составляет, по меньшей мере, 25% масс. кристаллического (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина. В четвертом классе этого варианта осуществления, активный фармацевтический ингредиент в таких композициях составляет, по меньшей мере, 50% масс. кристаллического (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина.
Композиции в соответствии с настоящим изобретением являются удобными в стандартных дозированных формах, таких как таблетки, пилюли, капсулы, порошки, гранулы, стерильные растворы или суспензии, отмеряемые аэрозольные или жидкие спреи, капли, ампулы, аутоинжекторные устройства или суппозитории. Композиции предназначены для перорального, парентерального, интраназального, сублингвального или ректального введения, или для введения посредством ингаляции или инсуфляции. Приготовление композиций в соответствии с настоящим изобретением может быть удобным осуществлять с помощью способов, известных в данной области, например, как описано в Remington's Pharmaceutical Sciences. 17th ed., 1995.
Режим дозирования выбирают в соответствии с разнообразными факторами, включая тип, вид, возраст, массу тела, пол и медицинское состояние пациента; тяжесть состояния, которое должно лечиться; способ введения и функционирование почек и печени пациента. Обычный врач, ветеринар или клиницист может легко определить и прописать эффективное количество лекарственного средства, необходимое для предотвращения, противодействия или приостановки развития состояния.
Пероральные дозировки по настоящему изобретению, когда их используют для указанных воздействий, будут находиться в пределах примерно от 0,01 мг на кг массы тела в день (мг/кг/день) примерно до 100 мг кг/день, предпочтительно, от 0,01 до 10 мг/кг/день, а наиболее предпочтительно, от 0,1 до 5,0 мг кг/день. Для перорального введения, композиции предпочтительно предусматриваются в форме таблеток, содержащих 0,01, 0,05, 0,1, 0,5, 1,0, 2,5, 5,0, 10,0, 15,0, 25,0, 50,0, 100 и 500 миллиграмм активного ингредиента, для симптоматического установления дозы для пациента, который должен лечиться. Лекарственный препарат, как правило, содержит примерно от 0,01 мг примерно до 500 мг активного ингредиента, предпочтительно, примерно от 1 мг примерно до 200 мг активного ингредиента. При внутривенном введении, наиболее предпочтительные дозы будут находиться в пределах примерно от 0,1 примерно до 10 мг/кг/минут при постоянной скорости вливания. Кристаллические формы по настоящему изобретению могут вводиться в виде одной ежедневной дозы, или общая ежедневная доза может вводиться в разделенных дозах - два, три или четыре раза в день. Однако, (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амин представляет собой ингибитор DPP-IV, имеющий продолжительное действие. Преимущественно, кристаллические формы по настоящему изобретению могут вводиться в виде одной еженедельной дозы.
Кроме того, кристаллические формы по настоящему изобретению могут вводиться в интраназальной форме посредством местного применения соответствующих интраназальных носителей, или посредством трансдермальных способов, с использованием таких форм трансдермальных кожных пластырей, которые хорошо известны специалистам в данной области. При введении в форме трансдермальной системы доставки, введение дозы будет, разумеется, непрерывным, а не периодическим в течение всего режима дозирования.
В способах по настоящему изобретению, кристаллические формы, описанные в настоящем документе, могут образовывать активный фармацевтический ингредиент, и, как правило, вводятся в смеси с соответствующими фармацевтическими разбавителями, наполнителями или носителями (совместно упоминаемыми в настоящем документе как материалы 'носители'), соответствующим образом выбираемыми в соответствии с предполагаемой формой введения, то есть, как пероральные таблетки, капсулы, эликсиры, сиропы, и тому подобное, и в соответствии с обычной фармацевтической практикой.
Например, для перорального введения в форме таблетки или капсулы, компонент активного лекарственного средства может объединяться с пероральным нетоксичным, фармацевтически приемлемым, инертным носителем, таким как лактоза, крахмал, сахароза, глюкоза, метилцеллюлоза, стеарат магния, дикальций фосфат, сульфат кальция, маннитол, сорбитол, и тому подобное; для перорального введения в жидкой форме, компонент перорального лекарственного средства может объединяться с любым пероральным нетоксичным, фармацевтически приемлемым инертным носителем, таким как этанол, глицерол, вода, и тому подобное. Кроме того, когда это желательно или необходимо, соответствующие связующие вещества, смазывающие вещества, разрыхляющие агенты и окрашивающие агенты также могут включаться в смесь. Соответствующие связующие вещества включают крахмал, желатин, природные сахара, такие как глюкоза или бета-лактоза, кукурузные подсластители, природные и синтетические смолы, такие как смола акации, трагаканта или альгинат натрия, карбоксиметилцеллюлозу, полиэтиленгликоль, воски, и тому подобное. Смазывающие вещества, используемые в этих дозированных формах, включают олеат натрия, стеарат натрия, стеарат магния, бензоат натрия, ацетат натрия, хлорид натрия, и тому подобное. Разрыхлители включают, без ограничения, крахмал, метилцеллюлозу, агар, бентонит, ксантановую смолу, и тому подобное.
Кристаллические формы Соединения I по настоящему изобретению, как обнаружено, обладают относительно высокой растворимостью в воде (примерно 2 мг/мл), что делает их особенно пригодными для приготовления препаратов, в особенности, интраназальных и внутривенных препаратов, которые требуют относительно концентрированных водных растворов активного фармацевтического ингредиента.
В другом аспекте, настоящее изобретение предлагает способ лечения и/или предотвращения клинических состояний, для которых показан ингибитор DP-IV, этот способ включает введение пациенту, нуждающемуся в таком предотвращении или лечении, профилактически или терапевтически эффективного количества кристаллической формы Соединения I, как определено выше, в сочетании с другим агентом, пригодным для лечения диабета 2 типа, тучности и высокого давления крови.
Соединения, описанные в настоящем документе, могут существовать как таутомеры, такие как кето-енольные таутомеры. Индивидуальные таутомеры, а также их смеси охватываются соединениями структурной формулы I.
Термин "% энантиомерный избыток" (сокращенно "ee") должен означать, что % главного энантиомера уменьшает % дополнительного энантиомера. Таким образом, 70% энантиомерный избыток соответствует образованию 85% одного энантиомера и 15% другого. Термин "энантиомерный избыток" является синонимом термина "оптическая чистота".
Соединение I может быть получено с помощью следующих способов:
ПРОМЕЖУТОЧНОЕ СОЕДИНЕНИЕ 1
Figure 00000002
трет-Бутил [(2R,3S)-5-оксо-2-(2,5-дифторфенил)тетрагидро-2H-пиран-3-ил]карбамат
Стадия A: трет-Бутил (1-[метокси(метил)амино]-1-оксопент-4-ин-2-ил)карбамат
В емкость с инертным газом загружают сложный этиловый эфир N,N-дифенил глицина (105,45 кг, 394,5 моль), тетрабутиламмоний бромид (14 кг, 43,4 моль) и пропаргилбензолсульфонат (94,45 кг, 481 моль), а затем MTBE (750 кг). Затем добавляют карбонат цезия (мелкодисперсный сорт, 390 кг, 1197 моль), и реакционную смесь перемешивают при 50-60°C в течение 1 дня. Затем загрузку охлаждают до 0-5°C, и медленно добавляют воду (422 кг). Далее, добавляют простой трет-бутилметиловый эфир (170 кг), и загрузку концентрируют до 473-578 л. Затем добавляют 462 кг раствора HCl (43 кг конц. HCl в 420 кг воды) для установления pH 1-2 при температуре ниже комнатной температуры. После 7 часов перемешивания, pH составляет 1,5, и органический слой отделяют и сливают.
Затем водный слой охлаждают до 5-10°C и медленно добавляют 28% водный раствор NaOH (151 кг) до достижения pH 13. Затем добавляют раствор Boc2O (136 кг, 624 моль в 243 кг простого трет-бутилметилового эфира) при 5-10°C. Затем раствор перемешивают при комнатной температуре в течение 4 часов (pH 8), и медленно добавляют 17% водный раствор NaOH (126 кг), а затем дополнительный раствор Boc2O (30,7 кг, 141 моль в 60 кг простого трет-бутилметилового эфира). Затем раствор перемешивают при комнатной температуре в течение 4 часов (pH 9), и медленно добавляют 17% водный раствор NaOH (98 кг) (pH 13) и перемешивают в течение дополнительных 12 часов (pH 10), а затем добавляют дополнительный Boc2O (11 кг, 50 моль). После 4 часов перемешивания при комнатной температуре, слои разделяют (оставляют водный слой), и органические вещества экстрагируют 3% водным раствором NaOH (136 кг). Водные слои объединяют и добавляют к простому трет-бутилметиловому эфиру (338 кг). Затем добавляют 17% водный раствор HCl (362 кг) до тех пор, пока не достигнут pH 2. Слои разделяют, и водный слой экстрагируют простым трет-бутилметиловым эфиром (420 кг). Объединенные органические слои промывают 10% соляным раствором (139 кг), сушат с помощью Na2SO4, фильтруют и концентрируют до 105-158 л. Отгонка при постоянном объеме с помощью простого трет-бутилметилового эфира продолжается до достижения KF=0,4%.
К этому раствору добавляют карбонилдиимидазол (90 кг, 548 моль), и перемешивают в течение 2 часов при комнатной температуре. Затем добавляют (MeO)MeNH2Cl (48 кг, 492 моль), и реакционную смесь перемешивают в течение 6 часов. Затем загрузку охлаждают до 0-5°C, и добавляют воду (80 кг). Затем загрузку затравливают с помощью 100 г затравки, и добавляют воду (450 кг). Суспензию перемешивают при 0-5°C в течение 3 часов, а затем фильтруют. Осадок на фильтре сушат в вакууме при 45-60°C в течение 2 дней с получением трет-бутил-(1-[метокси(метил)амино]-1-оксопент-4-ин-2-ил)карбамата.
Стадия B: трет-Бутил [1-(2,5-дифторфенил)-1-оксопент-4-ин-2-ил]карбамат
В емкость с инертным газом загружают дихлорметан (866 кг), и охлаждают ее до -20 - -10°C. Затем медленно добавляют раствор изопропилмагния хлорида в ТГФ (2M, 326,1 кг, 669 моль), а затем 1-бром-2,5-дифторбензол (120,1 кг, 622 моль). После 2 часов при этой температуре, медленно добавляют дополнительную загрузку изопропилмагния хлорида в ТГФ растворе (2M, 58,65 кг, 121 моль), и реакционную смесь состаривают в течение 1 часа. Затем осуществляют добавление по каплям дихлорметанового раствора трет-бутил(1-[метокси(метил)амино]-1-оксопент-4-ин-2-ил)карбамата (70,8 кг, 276 моль в 292 кг дихлорметана) в течение 2 часов при температуре от -20 до -20°C. Затем смесь нагревают до комнатной температуры и перемешивают в течение 10 часов. Затем осуществляют медленное гашение обратной реакции в водном растворе хлорида аммония а(175,6 кг в 1550 кг воды) при 5-10°C. Затем pH раствора доводят до ~7 посредством добавления 68 кг конц. HCl. Затем слои разделяют, и водный слой экстрагируют дихлорметаном (414 кг). Затем объединенные органические слои сушат с помощью Na2SO4, фильтруют, обрабатывают активированным углем (10 кг), фильтруют и концентрируют до 71-141 л. Затем осуществляют замену растворителя вакуумной отгонки при постоянном объеме (71-141 л) на н-гептан для кристаллизации продукта. Затем суспензию охлаждают до 0°C и перемешивают 2 часа. Суспензию фильтруют, и осадок на фильтре промывают н-гептаном, 2-пропанолом, а затем водой. Твердые продукты сушат в вакууме при 40-50°C в течение ночи с получением трет-бутил[1-(2,5-дифторфенил)-1-оксопент-4-ин-2-ил]карбамата.
Стадия C: трет-Бутил[(1S,2S)-1-(2,5-дифторфенил)-1-гидроксипент-4-ин-2-ил]карбамат
В перемешиваемую емкость при продувке азотом загружают трет-бутил[1-(2,5-дифторфенил)-1-оксопент-4-ин-2-ил]карбамат (35,0 кг, 113 моль), 1,4-диазабицикло[2,2,2]октан (38,0 кг, 339 моль) и ТГФ (465 кг). После растворения, добавляют хлор{[(1R,2R)-(-)-2-амино-1,2-дифенилэтил](пентафторфенил-сульфонил)амидо}-(п-цимен)рутений (II) (410 г, 576 ммоль). Емкость продувают вакуумом и обратно заполняют азотом, три раза. Затем добавляют муравьиную кислоту (26,7 кг, 580 моль), и реакционную смесь нагревают до 45°C в течение ночи.
Затем смесь концентрируют в вакууме до 210-280 л, а затем добавляют простой трет-бутилметиловый эфир (210 кг). После охлаждения до 0-10°C, добавляют 0,4% водный раствор HCl (52 кг) до достижения pH 4-6. После перемешивания и разделения слоев, водный слой опять экстрагируют простым трет-бутилметиловым эфиром (87 кг). Затем объединенные органические слои промывают 4% водным раствором NaHCO3 (291 кг), а затем соляным раствором (216 кг). Полученные органические вещества сушат над Na2SO4, фильтруют через слой диоксида кремния и концентрируют до 70-105 л. Затем добавляют простой трет-бутилметиловый эфир (132 кг), с последующим дополнительным концентрированием загрузки до достижения KF (содержания воды по Карлу Фишеру)=0,1%. Далее, добавляют ДМФ (133 кг), и загрузку дополнительно концентрируют до 70-105 л. Полученный раствор в ДМФ составляет 165,6 кг, он содержит 19,4% трет-бутил[(1S,2S)-1-(2,5-дифторфенил)-1-гидроксипент-4-ин-2-ил]карбамата (диастереомерное отношение 8,1/1 и ee 97,9%).
Стадия D: трет-Бутил[(1S,2R)-1-(2,5-дифторфенил)-1-гидроксипент-4-ин-2-ил]карбамат
Это соединение получают, следуя такому же способу, как описано для Промежуточного соединения 1, Стадия C.
Стадия E: трет-Бутил [(1R,2R)-1-(2,5-дифторфенил)-1-гидроксипент-4-ин-2-ил]карбамат
Это соединение получают, следуя такому же способу, как описано для Промежуточного соединения 1, Стадия D.
Стадия F: трет-Бутил [(1R,2R)-1-(2,5-дифторфенил)-1- гидроксипент-4-ин-2-ил]карбамат
Это соединение получают, следуя такому же способу, как описано для Промежуточного соединения 1, Стадия E.
Стадия G: трет-Бутил [(2R,3S)-2-(2,5-дифторфенил)-3,4-дигидро-2H-пиран-3-ил]карбамат
К 165,6 кг раствора трет-бутил[(1S,2S)-1-(2,5-дифторфенил)-1-гидроксипент-4-ин-2-ил]карбамата (19,4% масс./масс. в ДМФ, 103 моль) добавляют ДМФ (70 кг), 1-гидроксипирролидин-2,5-дион (5,95 кг, 51 моль), тетрабутиламмоний гексафторфосфат (5,20 кг, 13 моль) и NaHCO3 (4,50 кг, 54 моль). Полученную реакционную смесь продувают вакуумом с обратным заполнением азотом, три раза, а затем перемешивают в течение 30-40 мин. Затем добавляют хлор(циклопентадиенил)бис(трифенилфосфин)рутений (II) (823 г, 1,13 моль) и трифенилфосфин (892 г, 3,40 моль), и реакционную смесь продувают вакуумом с обратным заполнением азотом, три раза. Затем реакционную смесь нагревают до 75-85°C в течение ночи. Для завершения реакции, добавляют дополнительный хлор(циклопентадиенил)бис-(трифенилфосфин)рутений (II) (826 г, 1,14 моль) и трифенилфосфин (892 г, 3,40 моль), и реакционную смесь нагревают при 75-85°C в течение дополнительных 12-16 часов.
После охлаждения до комнатной температуры, добавляют воду (250 кг) и простой трет-бутилметиловый эфир (210 кг). После перемешивания, слои отделяют и полученный водный слой экстрагируют простым трет-бутилметиловым эфиром (2 x 150 кг). Объединенные органические слои промывают соляным раствором (4 x 220 кг). Затем органические вещества сушат с помощью Na2SO4, фильтруют и концентрируют. Сырой продукт пропускают через слой диоксида кремния с использованием простого трет-бутилметилового эфира и н-гептана. Затем в полученном растворе осуществляют замену растворителя с помощью вакуумной отгонки и введения н-гептана в суспензию, 64-128 л в н-гептане. Эту суспензию нагревают для растворения при 90-110°C. Затем ее охлаждают в течение 2-3 часов до 0-10°C. Затем суспензию фильтруют, и полученный влажный осадок на фильтре сушат при 40-50°C и в вакууме с получением трет-бутил[(2R,3S)-2-(2,5-дифторфенил)-3,4-дигидро-2H-пиран-3-ил]карбамата.
Стадия H: трет-Бутил [(2R,3R)-(2,5-дифторфенил)-3,4-дигидро-2H-пиран-3-ил]карбамат
Это соединение получают, следуя такому же способу, как описано для Промежуточного соединения 1, Стадия G.
Стадия I: трет-Бутил [(2S,3S)-2-(2,5-дифторфенил)-3,4-дигидро-2H-пиран-3-ил]карбамат
Это соединение получают, следуя такому же способу, как описано для Промежуточного соединения 1, Стадия H.
Стадия J: трет-Бутил [(2S,3R)-2-(2,5-дифторфенил)-3,4-дигидро-2H-пиран-3-ил]карбамат
Это соединение получают, следуя такому же способу, как описано для Промежуточного соединения 1, Стадия I.
Стадия K: трет-Бутил [(2S,3R)-2-(2,5-дифторфенил)-5-гидрокситетрагидро-2H-пиран-3-ил]карбамат
К 64,0 кг (206 моль) трет-бутил[(2R,3S)-2-(2,5-дифторфенил)-3,4-дигидро-2H-пиран-3-ил]карбамата в перемешиваемой емкости добавляют простой трет-бутилметиловый эфир (500 кг). После растворения, раствор охлаждают до 0-5°C и добавляют 10M раствор комплекса боран-диметилсульфид (39 кг, 515 моль). После 1-3 часов перемешивания при этой температуре, медленно добавляют воду (35 кг), и раствор перемешивают в течение 2 часов при 0-10°C. Затем добавляют 3% водный раствор NaHCO3 (900 кг) и 1% водный раствор NaOH (582 кг). Далее, добавляют порциями NaBO3∙4H2O (115,6 кг, 751 моль) в течение 1 часа при 0-10°C. После перемешивания реакционной смеси в течение ночи при комнатной температуре, добавляют порциями дополнительный NaBO3∙4H2O (25,7 кг, 167 моль) в течение 1 часа при 0-10°C. Затем реакционную смесь перемешивают в течение дополнительных 6 часов при комнатной температуре.
Затем реакционную смесь экстрагируют этилацетатом (230 кг), и полученные органические вещества промывают 3% водным раствором NaHCO3 (500 кг), а затем соляным раствором (376 кг). Объединенные водные слои дополнительно экстрагируют этилацетатом (2×325 кг). Затем органические вещества обрабатывают активированным углем (14,4 кг) в течение 2 часов при 50-60°C. После фильтрования, органические вещества концентрируют и осуществляют замену растворителя на н-гептан для образования суспензии кристаллов. Затем эту суспензию фильтруют, и осадок на фильтре промывают н-гептаном. Затем этот влажный осадок на фильтре растворяют в этилацетате (99 кг) при 50-60°C. Затем добавляют н-гептан (251 кг), и загрузку охлаждают до 0°C. Затем полученную суспензию фильтруют, и осадок на фильтре промывают н-гептаном. Затем твердые продукты сушат при 40-50°C в вакууме с получением трет-бутил[(2R,3S)-2-(2,5-дифторфенил)-5-гидрокситетрагидро-2H-пиран-3-ил]карбамата.
Стадия L: трет-Бутил [(2R,3R)-2-(2,5-дифторфенил)-5-гидрокситетрагидро-2H-пиран-3-ил]карбамат
Это соединение получают, следуя такому же способу, как описано для Промежуточного соединения 1, Стадия K.
Стадия M: трет-Бутил [(2S,3R)-2-(2,5-дифторфенил)-5- гидрокситетрагидро-2H-пиран-3-ил]карбамат
Это соединение получают, следуя такому же способу, как описано для Промежуточного соединения 1, Стадия L.
Стадия N: трет-Бутил [(2S,3S)-2-(2,5-дифторфенил)-5- гидрокситетрагидро-2H-пиран-3-ил]карбамат
Это соединение получают, следуя такому же способу, как описано для Промежуточного соединения 1, Стадия M.
Стадия O: трет-Бутил [(2R,3S)-2-(2,5-дифторфенил)-5-оксотетрагидро-2H-пиран-3-ил]карбамат
К 46,8 кг (142 моль) трет-бутил[(2R,3S)-2-(2,5-дифторфенил)-5-гидрокситетрагидро-2H-пиран-3-ил]карбамата в перемешиваемой емкости добавляют ацетонитрил (150 кг), уксусную кислоту (50 кг) и воду (25 кг). После растворения при комнатной температуре, раствор охлаждают до 0°C, и в воду добавляют RuCl3∙3H2O (250 г, 956 ммоль) (50 кг) в атмосфере азота. Затем добавляют NaBrO3 (11,7 кг, 77,5 моль) в шести порциях, каждые 1,5 часа, в атмосфере азота. После перемешивания при 0°C в течение 6 часов, добавляют 2-пропанол (31 кг) в течение 30 мин при 0°C. Затем при этой температуре добавляют воду (720 кг) в течение 5 часов. Полученную суспензию перемешивают в течение ночи, фильтруют, и осадок на фильтре промывают водой. Затем твердые продукты сушат в вакууме при 40-60°C с получением трет-бутил[(2R,3S)-2-(2,5-дифторфенил)-5-оксотетрагидро-2H-пиран-3-ил]карбамата.
ПРОМЕЖУТОЧНОЕ СОЕДИНЕНИЕ 2
Figure 00000003
2-(метилсульфонил)-2,4,5,6-тетрагидропирроло[3,4-c]пиразол-5-ий бензолсульфонат
Стадия A: трет-Бутил (3Z)-3-[(диметиламино)метилен]-4-оксопирролидин-1-карбоксилат
Раствор трет-бутил 3-оксопирролидин-1-карбоксилата (53,4 кг, 288 моль) в ТГФ (133 кг) обрабатывают ДМФ-DMA (103 кг, 864 моль) в ТГФ (472 кг) и нагревают при 65-70°C в атмосфере азота в течение 20 часов. Раствор охлаждают, выпаривают при пониженном давлении, и осуществляют замену растворителя на циклогексан при отгонке. Затем полученную суспензию фильтруют, осадок на фильтре промывают циклогексаном, а затем водой. Затем твердые продукты сушат в вакууме при 35-40°C с получением трет-бутил(3Z)-3-[(диметиламино)метилен]-4-оксопирролидин-1-карбоксилата.
Стадия B: трет-Бутил 6a-гидрокси-3a,4,6,6a-тетрагидропирроло[3,4-c]пиразол-5(1H)-карбоксилат
К раствору трет-бутил(3Z)-3-[(диметиламино)метилен]-4-оксопирролидин-1-карбоксилата (58,2 кг, 242 моль) в толуоле (251 кг) при 35-45°C добавляют гидразин гидрат (14,6 кг, 290 моль) посредством добавления по каплям в течение дополнительных 2 часов. Затем смесь перемешивают в течение 10 часов при этой температуре. Затем загрузку охлаждают до 0-10°C, и суспензию перемешивают в течение 6 часов. Затем эту суспензию фильтруют, и осадок на фильтре промывают н-гептаном. Затем твердые продукты сушат в вакууме в течение ночи при 35-50°C с получением трет-бутил 6a-гидрокси-3a,4,6,6a-тетрагидропирроло[3,4-c]пиразол-5(1H)-карбоксилата.
Стадия C: трет-Бутил 4,6-дигидропирроло[3,4-c]пиразол-5(1H)-карбоксилат
К раствору трет-бутил 6a-гидрокси-3a,4,6,6a-тетрагидропирроло[3,4-c]пиразол-5(1H)-карбоксилата (47,0 кг, 207 моль) в дихлорметане (669 кг) при 0°C добавляют по каплям метанольный раствор моногидрата толуол-4-сульфоновой кислоты (3,7 кг, 20 моль в 38 кг MeOH) в течение 2 часов. Затем реакционную смесь состаривают в течение 4 часов при этой температуре. Затем добавляют 5% водный раствор NaHCO3 (91 кг) и перемешивают при комнатной температуре в течение 30 мин. Затем слои разделяют, и водный слой экстрагируют дихлорметаном (312 кг). Объединенные органические слои промывают 5% соляным раствором (190 кг, а затем 483 кг), обрабатывают активированным углем (2,7 кг) и фильтруют. Полученные органические вещества сушат с помощью Na2SO4, фильтруют и концентрируют до 71-118 л. Затем добавляют н-гептан (238 кг), и загрузку дополнительно концентрируют до 188-235 л. Суспензию охлаждают до 10-20°C, фильтруют, и осадок на фильтре промывают н-гептаном. Твердые продукты сушат в вакууме при 40-50°C в течение ночи с получением трет-бутил 4,6-дигидропирроло[3,4-c]пиразол-5(1H)-карбоксилата.
Стадия D: трет-Бутил 2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-карбоксилат
Раствор трет-бутил 4,6-дигидропирроло[3,4-c]пиразол-5(1H)-карбоксилата (30,0 кг, 143 моль) в 2-метилтетрагидрофуране (384 мг) продувают вакуумом и обратно заполняют азотом, три раза. Добавляют триэтиламин (25,0 кг, 247 моль), и загрузку охлаждают до -10 - 5°C. Затем в течение 2 часов медленно добавляют метансульфонилхлорид (21,4 кг, 187 моль). После перемешивания в течение 1 часа при комнатной температуре, добавляют по каплям воду (150 кг) при 5-15°C. После этого следует добавление 1 н раствора HCl до достижения pH 7. Полученные слои разделяют и водный слой экстрагируют 2-метилтетрагидрофураном (106 кг). Объединенные органические слои промывают насыщенным соляным раствором (2×150 кг), сушат с помощью Na2SO4, фильтруют и концентрируют до 60-90 л.
Полученный сырой продукт растворяют в 2-метилтетрагидрофуране (381 кг) и загружают раствором трет-бутоксида калия в ТГФ (805 г в 6,6 кг ТГФ). После перемешивания в течение 1 часа при комнатной температуре в атмосфере азота, добавляют дополнительный трет-бутоксид калия в ТГФ (329 г в 3,0 кг ТГФ) и перемешивают в течение 1 часа. Аналитический анализ показывает, что трет-бутил 2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-карбоксилат представляет собой главный региоизомер, так что затем добавляют насыщенный соляной раствор (154 кг). После короткого перемешивания, слои разделяют и органические вещества промывают насыщенным соляным раствором (2×155 кг). Затем объединенные водные слои отходов экстрагируют 2-метилтетрагидрофураном (103 кг). Объединенные органические слои обрабатывают активированным углем (8,75 кг), фильтруют и сушат с помощью Na2SO4. Затем их фильтруют и концентрируют до 60-90 л. Затем эту суспензию нагревают для растворения твердых продуктов при 40-50°C и добавляют н-гептан (34 кг). После охлаждения до комнатной температуры в течение 2-4 часов, добавляют н-гептан (156 кг), и затем суспензию состаривают в течение 2-4 часов при 0-5°C. Суспензию фильтруют, и осадок на фильтре промывают н-гептаном. Твердые продукты сушат в вакууме при 45-55°C с получением трет-бутил 2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-карбоксилата.
Стадия E: трет-Бутил 1-(метилсульфонил)-4,6-дигидропирроло[3,4-c]пиразол-5(1H)карбоксилат
Это соединение получают, следуя такому же способу, как описано для Промежуточного соединения 1, Стадия D.
Стадия F: 2-(метилсульфонил)-2,4,5,6-тетрагидропирроло[3,4-c]пиразол-5-иний бензолсульфонат
К раствору трет-бутил 2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-карбоксилата (32,1 кг, 111 моль) в изопропилацетате (289 кг) добавляют бензолсульфоновую кислоту (35,35 кг, 223 моль). Реакционную смесь перемешивают в течение 3 дней при комнатной температуре, а затем охлаждают до 0-10°C и перемешивают дополнительно 1 час. Полученную суспензию фильтруют, и осадок на фильтре промывают изопропилацетатом. Твердые продукты сушат в течение ночи в вакууме при комнатной температуре с получением 2-(метилсульфонил)-2,4,5,6-тетрагидропирроло[3,4-c]пиразол-5-ия бензолсульфоната.
[(2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амин
Figure 00000004
Стадия A: трет-Бутил {(2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-ил}карбамат
Емкость загружают Ν,Ν-диметилацетамидом (520,6 кг), 2-(метилсульфонил)-2,4,5,6-тетрагидропирроло[3,4-c]пиразол-5-ием бензолсульфонатом (промежуточное соединение 2, 30,0 кг, 86,8 моль) и трет-бутил[(2R,3S)-2-(2,5-дифторфенил)-5-оксотетрагидро-2H-пиран-3-ил]карбаматом (промежуточное соединение 1, 31,2 кг, 95,3 моль). После растворения при комнатной температуре, раствор охлаждают до 0-10°C и добавляют натрий триацетоксиборогидрид (24 кг, 1 13 моль) в четырех равных порциях, каждые 40 мин. Затем реакционной смеси позволяют нагреться до комнатной температуры и перемешивают в течение дополнительных 5 часов. Затем раствор охлаждают до 5-15°C и добавляют воду (672 кг) в течение 1-2 часов. Полученную суспензию фильтруют, и осадок на фильтре промывают последовательно N,N-диметилацетамидом, дважды водой, а затем н-гептаном. Твердые продукты сушат в вакууме при 40-60°C с получением трет-бутил {(2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-ил}карбамата.
Стадия B: {(2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амин
Бензолсульфоновую кислоту (32,95 кг, 271 моль) растворяют в дихлорметане (1020 кг) в атмосфере азота. Затем добавляют 880 г воды, так что KF раствора составляет 0,2%. Далее добавляют трет-бутил {(2R,35,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-ил}карбамат (38,4 кг, 100 моль) в трех равных порциях в течение 30 мин. Затем реакционную смесь состаривают в течение ночи при комнатной температуре. Далее, добавляют воду (733 кг) в течение 1 часа и реакционную смесь быстро перемешивают в течение 1 часа. Затем слои разделяют, выливая полученный слой органических веществ. В водный слой загружают дихлорметан (510 кг), а затем триэтиламин (22,4 кг, 592 моль). После перемешивания, слои разделяют, и водный слой экстрагируют дихлорметаном (510 кг). Объединенные органические слои промывают с помощью 7% водного раствора NaHCO3 (2×410 кг) и 5% соляным раствором (386 кг). Затем органические вещества сушат с помощью Na2SO4, фильтруют и обрабатывают активированным углем (6,2 кг C-941). Уголь отфильтровывают, и фильтрат концентрируют в вакууме до 154-193 л. Затем этот раствор нагревают до 30-35°C для растворения твердых продуктов (может добавляться дополнительный дихлорметан для растворения твердых продуктов). Далее, добавляют изопропилацетат (338 кг), и раствор перемешивают при комнатной температуре в течение 1,5 часа. Затем н-гептан (159 кг) загружают в емкость по каплям и перемешивают в течение 3 часов. Затем суспензию фильтруют, и осадок на фильтре промывают н-гептаном. Затем этот влажный осадок на фильтре опять перекристаллизовывают посредством растворения его в дихлорметане и добавления изопропилацетата и н-гептана, как перед этим, фильтрования и промывки н-гептаном. Твердые продукты сушат в вакууме при 40-50°C в течение ночи с получением кристаллического (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амина, который промывают холодным EtOAc/гексаном, 2:1, с получением указанного в заголовке соединения в виде беловатого твердого продукта. 1H ЯМР (500 МГц, CD3OD): 1,71 (кв, 1H, J=12 Гц), 2,56-2,61 (м, 1H), 3,11-3,18 (м, 1H), 3,36-3,40 (м, 1H), 3,48 (т, 1H, J=12 Гц), 3,88-3,94 (м, 4H), 4,30-4,35 (м, 1H), 4,53 (д, 1H, J=12 Гц), 7,14-7,23 (м, 2H), 7,26-7,30 (м, 1H), 7,88(с, 1H). LC-MS: 399,04 [M+1].
Форма I
Форму I получают посредством непосредственной кристаллизации аморфного свободного основания Соединения I в этилацетате. Результаты характеризации для XRPD, ssNMR, DSC, TGA и IR показаны ниже.
Форма II
Кристаллическую Форму II получают посредством перекристаллизации Формы I в изопропилацетате и гептане, 1:1, при комнатной температуре. Форму II характеризуют с использованием XRPD, ssNMR, DSC, TGA и IR. Преобразование Формы II в Форму I является медленным, но наблюдается во всех циклах экспериментов с затравкой, 50-50, содержащей DCM-гептан, при 25°C в течение двух дней, IPAc, при 25°C в течение 17 часов, IPAc, при 60°C в течение одного дня, H2O, при 60°C в течение двух недель, трех дней, NMP-воду, 1-1, при 35°C в течение трех дней. Соотношение между Формой I и Формой II является энантиотропным, при этом Форма I является наиболее стабильной фазой при температуре выше 13°C.
Форма III
Форму III получают посредством растворения Формы I в MeOH и выпаривания растворителя, с последующим нагревом до 140°C и выдерживанием при этой температуре в течение 10 мин. Эта фаза является метастабильной по отношению к Форме I и II, и ее характеризация ограничена доступным количеством образца. Форму III анализируют с помощью XRPD и DSC.
Форма IV
Форма IV получают посредством растворения Формы I в ТГФ-воде 1:1 и выпаривания растворителя. Безводная Форма IV является метастабильной по отношению к Форме I и II, и по этой причине ее характеризация ограничена доступным количеством образца. Форму IV анализируют с использованием XRPD, DSC и TGA.
Дифракция рентгеновского излучения на порошках
Исследования дифракции рентгеновского излучения на порошках широко используются для характеризации молекулярных структур, кристалличности и полиморфизма. Картины дифракции рентгеновского излучения на порошках для твердых фаз, для кристаллических форм Соединения I, генерируются на Philips Analytical X'Pert PRO X-ray Diffraction System с приставкой PW3040/60. K-альфа излучение рентгеновской трубки PW3373/00 с керамической Cu LEF используют в качестве источника. Положения дифракционных пиков сравнивают с кремнием (внутренний стандарт), который имеет значение 2 тэта 28,443 градуса. Эксперименты анализируют при условиях окружающей среды.
Кристаллические формы, описанные в настоящем документе, имеют фазовую чистоту, по меньшей мере, примерно 5% формы с указанными выше физическими характеристиками дифракции рентгеновского излучения на порошках и DSC. В одном из вариантов осуществления чистота фазы составляет, по меньшей мере, примерно 10% для формы с указанными выше физическими характеристиками твердого состояния. Во втором варианте осуществления чистота фазы составляет, по меньшей мере, примерно 25% для формы с указанными выше физическими характеристиками твердого состояния. В третьем варианте осуществления чистота фазы составляет, по меньшей мере, примерно 50% для формы с указанными выше физическими характеристиками твердого состояния. В четвертом варианте осуществления чистота фазы составляет, по меньшей мере, примерно 75% для формы с указанными выше физическими характеристиками твердого состояния. В пятом варианте осуществления чистота фазы составляет, по меньшей мере, примерно 90% для формы с указанными выше физическими характеристиками твердого состояния. В шестом варианте осуществления кристаллические формы по настоящему изобретению представляют собой по существу чистые фазовые формы с указанными выше физическими характеристиками твердого состояния. Под термином "фазовая чистота" подразумевается чистота твердого состояния конкретной формы по отношению к конкретной кристаллической форме, как определено с помощью твердотельных физических методов, описанных в настоящей заявке.
Фиг.1 представляет собой картину дифракции рентгеновского излучения на порошках (XRPD) для Формы I Соединения I с выбранными d - расстояниями между слоями, приведенными в Таблице 1.
Таблица 1
XRPD: Форма I Соединения I
2θ (2 тэта)(градусы) d - расстояние между слоями (Ǻ)
10,3 8,63
12,7 6,99
14,6 6,07
16,1 5,51
17,8 4,97
19,2 4,61
22,2 4,01
24,1 3,70
26,9 3,31
Кристаллический (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амин (Форма I) характеризуется тем, что он имеет, по меньшей мере, четыре пика в его картине дифракции рентгеновского излучения на порошках, выбранных из группы, состоящей из 10,3±0,1 2θ, 12,7±0,1 2θ, 14,6±0,1 2θ, 16,1±0,1 2θ, 17,8±0,1 2θ, 19,2±0,1 2θ, 22,2±0,1 2θ, 24,1±0,1 2θ и 26,9±0,1 2θ. Кристаллическая форма 1 может характеризоваться с помощью следующих четырех пиков в ее картине дифракции рентгеновского излучения на порошках 17,8±0,1 2θ, 19,2±0,1 2θ, 22,2±0,1 2θ и 24,1±0,1 2θ. Кристаллическая форма 1 может характеризоваться с помощью следующих четырех пиков в ее картине дифракции рентгеновского излучения на порошках на Фиг.3.
Фиг.6 представляет собой картину дифракции рентгеновского излучения на порошках (XRPD) для Формы II Соединения I с выбранными d - расстояниями между слоями, приведенными в Таблице 2.
Таблица 2
Дифракция рентгеновского излучения на порошках: Форма II Соединения I
2θ (2 тэта)(градусы) d - расстояние между слоями (Ǻ)
7,5 11,81
15,0 5,91
16,2 5,49
20,9 4,25
22,0 4,04
27,0 3,30
27,6 3,24
33,3 2,69
Кристаллический (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амин (Форма II) может характеризоваться тем, что он имеет, по меньшей мере, четыре пика в его картине дифракции рентгеновского излучения на порошках, выбранных из группы, состоящей из 7,5±0,1 2θ, 15,0±0,1 2θ, 16,2±0,1 2θ, 20,9±0,1 2θ, 22,0±0,1 2θ, 27,0±0,1 2θ, 27,6±0,1 2θ, 33,3±0,1 2θ. Кристаллическая форма II может характеризоваться с помощью следующих четырех пиков в ее картине дифракции рентгеновского излучения на порошках 20,9±0,1 2θ, 22,0±0,1 2θ, 27,0±0,1 2θ и 27,6±0,1 2θ. Кристаллическая форма II может характеризоваться с помощью картины дифракции рентгеновского излучения на порошках на Фиг.6.
Фиг.11 представляет собой картину дифракции рентгеновского излучения на порошках (XRPD) для Формы III Соединения I с выбранными d - расстояниями между слоями, приведенными в Таблице 3.
Таблица 3
Дифракция рентгеновского излучения на порошках: Форма III Соединения I
2θ (2 тэта)(градусы) d - расстояние между слоями (Ǻ)
14,5 6,09
15,9 5,58
17,3 5,11
18,7 4,76
19,5 4,56
21,2 4,19
22,0 4,05
23,2 3,83
Кристаллический (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амин (Форма III) может характеризоваться тем, что он имеет, по меньшей мере, четыре пика в его картине дифракции рентгеновского излучения на порошках, выбранных из группы, состоящей из 14,5±0,1 2θ, 15,9±0,1 2θ, 17,3±0,1 2θ, 18,7±0,1 2θ, 19,5±0,1 2θ, 19,5±0,1 2θ, 21,2±0,1 2θ, 22,0±0,1 2θ и 23,2±0,1 2θ. Кристаллическая форма III может характеризоваться с помощью следующих четырех пиков в ее картине дифракции рентгеновского излучения на порошках 19,5±0,1 2θ, 21,2±0,1 2θ, 22,0±0,1 2θ и 23,2±0,1 2θ. Кристаллическая форма III может характеризоваться с помощью картины дифракции рентгеновского излучения на порошках на Фиг.11.
Фиг.14 представляет собой картину дифракции рентгеновского излучения на порошках (XRPD) для Формы IV Соединения I с выбранными d - расстояниями между слоями, приведенными в Таблице 4.
Таблица 4
Дифракция рентгеновского излучения на порошках: безводная Форма IV Соединения I
2θ (2 тэта)(градусы) d - расстояние между слоями (Ǻ)
8,1 10,98
10,6 8,33
16,0 5,55
16,9 5,24
19,5 4,56
21,3 4,18
23,3 3,82
Кристаллический (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-c]пиразол-5(4H)-ил]тетрагидро-2H-пиран-3-амин (Форма IV) может характеризоваться тем, что он имеет, по меньшей мере, четыре пика в его картине дифракции рентгеновского излучения на порошках, выбранных из группы, состоящей из 8,1±0,1 2θ, 10,6±0,1 2θ, 16,0±0,1 2θ, 16,9±0,1 2θ, 19,5±0,1 2θ, 21,3±0,1 2θ, 23,3±0,1 2θ и 25,4±0,1 2θ.
Кристаллическая форма IV может характеризоваться с помощью следующих четырех пиков в ее картине дифракции рентгеновского излучения на порошках 16,9±0,1 2θ, 19,5±0,1 2θ, 21,3±0,1 2θ и 23,3±0,1 2θ. Кристаллическая форма IV может характеризоваться с помощью картины дифракции рентгеновского излучения на порошках на Фиг.14.
Спектры ssNMR
Спектр ядерного магнитного резонанса твердотельного углерода-13 регистрируют на ЯМР-спектрометре Bruker AV400 с использованием датчика Bruker 4 мм H/F/X BB двойного резонанса CPMAS. Спектр получают с использованием кросс-поляризации с переменной амплитудой протон/углерод-13 (VACP) при 10 кГц, при времени контакта 3 мсек. Другие экспериментальные параметры, используемые для получения данных, представляют собой 90-градусный импульс протона 100 кГц, развязку SPINAL64 на 100 кГц, задержку импульса 5 сек и усреднение сигнала по 1024 сканированиям. Скорость вращения под магическим углом (MAS) устанавливают на 10 кГц. Лоренцево уширение линии 10 Гц используют для спектра перед преобразованием Фурье. Химические сдвиги выражаются по сравнению с TMS, используя карбонильный углерод глицина (176,70 м.д.) в качестве вторичного эталона.
Кристаллическая форма I может дополнительно характеризоваться с помощью спектров ядерного магнитного резонанса (ЯМР) на Фиг.4, Фиг.4 представляет собой спектры ssNMR для Формы I Соединения I с выбранными пиками, приведенными в Таблице 5.
Таблица 5
Выбранные пики ssNMR для Формы I Соединения I
Пик (м.д.) Относительная интенсивность
124,3 100
42,6 91
119,0 67
48,6 56
128,9 53
90,1 50
73,2 46
163,6 44
59,9 42
157,9 38
Кристаллическая форма II может дополнительно характеризоваться с помощью спектров ядерного магнитного резонанса (ЯМР) на Фиг.9. Фиг.9 представляет собой спектр ssNMR для Формы Π Соединения I с выбранными пиками, приведенными в Таблице 6.
Таблица 6
Выбранные пики ssNMR для Формы II Соединения I
Пик (м.д.) Относительная интенсивность
116,9 100
127,5 82
42,2 78
132,1 61
73,5 60
79,0 59
62,3 57
165,3 57
53,0 56
56,3 56
ИК-Спектры
Инфракрасный спектр получают с использованием затухающего полного внутреннего отражения (ATR). Образец помещают непосредственно в устройство для отбора образцов для ATR-FTIR и регистрируют инфракрасный спектр с использованием спектрометра FTIR Nicolet Nexus 670.
Фиг.5 представляет собой ИК-спектр формы I Соединения I. Кристаллическая форма I может дополнительно характеризоваться с помощью ИК спектра на Фиг.5.
Фиг.10 представляет собой ИК-спектр формы II Соединения I. Кристаллическая форма II может дополнительно характеризоваться с помощью ИК спектра на Фиг.10.
В дополнение к картинам дифракции рентгеновского излучения на порошках, описанных выше, кристаллические формы Соединения I по настоящему изобретению дополнительно характеризуются посредством их кривых дифференциальной сканирующей калориметрии (DSC) и их кривых термогравиметрического анализа (TGA).
DSC
Данные дифференциальной сканирующей калориметрии получают с использованием DSC 2910 или DSC2000, TA Instruments. Образец, в пределах между 2 и 6 мг, отвешивают в поддон и прикрывают. Затем этот поддон закрывают и помещают в положение для образца в ячейке калориметра. Пустой поддон помещают в положение для эталона. Ячейку калориметра закрывают, и через ячейку пропускают поток азота. Программу нагрева устанавливают для нагрева образца при скорости нагрева 10°C/мин до температуры приблизительно 250°C. Данные анализируют с использованием Universal Analysis 2000 Version 3,9A. Термические события интегрируют между фоновыми температурными точками, которые находятся выше и ниже диапазона температур, в котором наблюдают термическое событие. Регистрируемые данные представляют собой температуру начала события, пиковую температуру и энтальпию.
Кристаллическая форма I может дополнительно характеризоваться с помощью кривой дифференциальной сканирующей калориметрии (DSC) на Фиг.3. Кристаллическая форма II может дополнительно характеризоваться с помощью кривой дифференциальной сканирующей калориметрии (DSC) на Фиг.8. Кристаллическая форма III может дополнительно характеризоваться с помощью кривой дифференциальной сканирующей калориметрии (DSC) на Фиг.13. Кристаллическая форма IV может дополнительно характеризоваться с помощью кривой дифференциальной сканирующей калориметрии (DSC) на Фиг.16.
TGA
Термогравиметрические данные регистрируют с использованием Perkin Elmer, модель TGA 7. Эксперименты осуществляют в потоке азота и с использованием скорости нагрева 10°C/мин до максимальной температуры приблизительно 250°C. После автоматического тарирования весов, на платиновый поддон добавляют 5-20 мг образца, включают печь и запускают программу нагрева. Данные масса/температура собираются инструментом автоматически. Анализы результатов осуществляют, выбирая функцию Delta Y в программном обеспечении инструмента и выбирая температуры, между которыми должна вычисляться потеря массы. Потери массы регистрируются до наступления разложения/испарения. Кристаллическая форма I может дополнительно характеризоваться с помощью кривой термогравиметрического анализа (TGA) на Фиг.2. Кристаллическая форма II может дополнительно характеризоваться с помощью кривой термогравиметрического анализа (TGA) на Фиг.7. Кристаллическая форма III может дополнительно характеризоваться с помощью кривой термогравиметрического анализа (TGA) на Фиг.12. Кристаллическая форма IV может дополнительно характеризоваться с помощью кривой термогравиметрического анализа (TGA) на Фиг.15.
Репрезентативный образец формы I анализируют с помощью DSC и TGA в соответствии со способами, описанными выше. Форма 1 демонстрирует одну эндотерму (плавление Формы I подтверждается с помощью микроскопии на горячем столике) при Tonset=173,48°C, Tpeak=175,32°C и ΔΗ=82,28 Дж/г (Фиг.3). Термогравиметрический анализ демонстрирует незначительные потери массы между комнатной температурой и температурой плавления Формы I (Фиг.2).
Репрезентативный образец формы II анализируют с помощью DSC (Фиг.8) и TGA (Фиг.7) в соответствии со способами, описанными выше. Первая эндотерма на кривой DSC связана с плавлением Формы II при Tonset=144,75°C, Tpeak=147,59°C и ΔΗ=23,41 Дж/г (Фиг.11). После первой эндотермы следует событие перекристаллизации с получением Формы I при ~150°C и, наконец, плавление Формы I при Tonset=170,18°, 172,95°C и ΔΗ=57,45 Дж/г. TG анализ демонстрирует минимальные потери массы (захваченный растворитель) между комнатной температурой и плавлением Формы I.
DSC Формы III (Фиг.13) демонстрируют одну эндотерму, связанную с плавлением Формы III при Tonset=164,30°C, Tpeak=169,38°C и ΔΗ=23,41 Дж/г. Термогравиметрический анализ (Фиг.12) показывает ~1% масс./масс. остаточного растворителя в исходном материале, который удаляется посредством нагрева при 140°C и выдерживания в течение 10 мин.
DSC Формы IV (Фиг.16) демонстрируют одну эндотерму, связанную с плавлением Формы IV, при Tonset=171,25°C, Tpeak=172,30°C и ΔΗ=84,64 Дж/г. При использовании TGA наблюдают менее 1% потери массы при плавлении (Фиг.15).

Claims (12)

1. Кристаллический (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-с]пиразол-5(4Н)-ил]тетрагидро-2Н-пиран-3-амин Соединения I:
Figure 00000005

характеризующийся тем, что имеет по меньшей мере четыре пика в его картине дифракции рентгеновского излучения на порошках, выбранных из группы, состоящей из 10,3+0,1 2θ, 12,7±0,1 2θ, 14,6±0,1 2θ, 16,1±0,1 2θ, 17,8±0,1 2θ, 19,2±0,1 2θ, 22,2±0,1 2θ, 24,1±0,1 2θ и 26,9±0,1 2θ.
2. Кристаллическая форма по п. 1, отличающаяся следующими четырьмя пиками в ее картине дифракции рентгеновского излучения на порошках: 17,8±0,1 2θ, 19,2±0,1 2θ, 22,2±0,1 2θ и 24,1±0,1 2θ.
3. Кристаллическая форма по п. 2, отличающаяся кривой дифференциальной сканирующей калориметрии (DSC), которая показывает максимальный эндотермальный пик при или около 175,32°С.
4. Применение кристаллической формы по п. 1, в качестве активного ингредиента, для получения лекарственного средства для лечения диабета 2 типа у млекопитающего.
5. Фармацевтическая композиция, являющаяся ингибитором дипептидилпептидазы-IV (DPP-IV), содержащая лекарственное вещество, которое содержит кристаллический (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-с]пиразол-5(4Н)-ил]тетрагидро-2Н-пиран-3-амин по п. 1 и фармацевтически приемлемый носитель.
6. Фармацевтическая композиция по п. 5, где в лекарственном веществе присутствует по меньшей мере 50% масс. кристаллической формы.
7. Фармацевтическая композиция по п. 5, где в лекарственном веществе присутствует по меньшей мере 5% масс. кристаллической формы.
8. Кристаллическая форма по п. 1 или 2, отличающаяся кривой термогравиметрического анализа (TGA), характеризующейся незначительной потерей массы между комнатной температурой и температурой плавления.
9. Кристаллический (2R,3S,5R)-2-(2,5-дифторфенил)-5-[2-(метилсульфонил)-2,6-дигидропирроло[3,4-с]пиразол-5(4Н)-ил]тетрагидро-2Н-пиран-3-амин Соединения I:
Figure 00000006

характеризующийся тем, что имеет спектр твердотельного ядерного магнитного резонанса углерода-13 (ЯМР), имеющий химические сдвиги при 163,6, 157,9, 128,9, 124,3 и 119,0 м.д.
10. Кристаллическая форма по п. 9, дополнительно отличающаяся спектром твердотельного ядерного магнитного резонанса углерода-13 (ЯМР), имеющим химические сдвиги при 163,6, 157,9, 128,9, 124,3, 119,0, 90,1, 73,2, 59,9, 48,6 и 42,6 м.д.
11. Кристаллическая форма по п. 9 или 10, дополнительно отличающаяся кривой дифференциальной сканирующей калориметрии (DSC), которая показывает максимальный эндотермальный пик при или около 175,32°С.
12. Кристаллическая форма по п. 9 или 10, отличающаяся кривой термогравиметрического анализа (TGA), характеризующейся незначительной потерей массы между комнатной температурой и температурой плавления.
RU2014102773/04A 2011-06-29 2012-06-25 Новые кристаллические формы ингибиторов дипептидилпептидазы-iv RU2598072C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161502497P 2011-06-29 2011-06-29
US61/502,497 2011-06-29
PCT/US2012/043922 WO2013003249A1 (en) 2011-06-29 2012-06-25 Novel crystalline forms of a dipeptidyl peptidase-iv inhibitor

Publications (2)

Publication Number Publication Date
RU2014102773A RU2014102773A (ru) 2015-08-10
RU2598072C2 true RU2598072C2 (ru) 2016-09-20

Family

ID=47424494

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2014102764/04A RU2014102764A (ru) 2011-06-29 2012-06-25 Способ получения хиральных ингибиторов дипептидилпептидазы iv
RU2014102773/04A RU2598072C2 (ru) 2011-06-29 2012-06-25 Новые кристаллические формы ингибиторов дипептидилпептидазы-iv

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2014102764/04A RU2014102764A (ru) 2011-06-29 2012-06-25 Способ получения хиральных ингибиторов дипептидилпептидазы iv

Country Status (12)

Country Link
US (4) US9187488B2 (ru)
EP (2) EP2726075A4 (ru)
JP (4) JP5873554B2 (ru)
KR (2) KR20140034862A (ru)
CN (3) CN103702562A (ru)
AR (1) AR089554A1 (ru)
AU (2) AU2012275637B2 (ru)
CA (2) CA2838748A1 (ru)
MX (2) MX2013014892A (ru)
RU (2) RU2014102764A (ru)
TW (1) TWI574965B (ru)
WO (2) WO2013003249A1 (ru)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2726075A4 (en) 2011-06-29 2014-11-19 Merck Sharp & Dohme NEW CRYSTALLINE FORMS OF A DIPEPTIDYL-PEPTIDASE IV HEMMER
EP2814485A4 (en) 2012-02-17 2015-08-26 Merck Sharp & Dohme DIPEPTIDYL PEPTIDASE-IV INHIBITORS FOR THE TREATMENT OR PREVENTION OF DIABETES
EP2874626A4 (en) 2012-07-23 2016-03-23 Merck Sharp & Dohme TREATMENT OF DIABETES BY ADMINISTRATION OF DIPEPTIDYL PEPTIDASE-IV INHIBITORS
US9315508B2 (en) 2012-07-23 2016-04-19 Merck Sharp & Dohme Corp. Treating diabetes with dipeptidyl peptidase-IV inhibitors
TWI500613B (zh) 2012-10-17 2015-09-21 Cadila Healthcare Ltd 新穎之雜環化合物
WO2015031228A1 (en) * 2013-08-30 2015-03-05 Merck Sharp & Dohme Corp. Oral pharmaceutical formulation of omarigliptin
ES2587585T3 (es) 2014-03-20 2016-10-25 F.I.S.- Fabbrica Italiana Sintetici S.P.A. Procedimiento para la preparación de intermedios clave de omarigliptina
CN105037367A (zh) * 2014-04-18 2015-11-11 四川海思科制药有限公司 氨基六元环类衍生物及其在医药上的应用
CN105085528A (zh) * 2014-05-15 2015-11-25 成都贝斯凯瑞生物科技有限公司 作为二肽基肽酶-iv抑制剂的氨基四氢吡喃衍生物
JP6574474B2 (ja) * 2014-07-21 2019-09-11 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. キラルジペプチジルペプチダーゼ−iv阻害剤の製造方法
WO2016015596A1 (en) * 2014-07-29 2016-02-04 Sunshine Lake Pharma Co., Ltd. Process for preparing 2, 3-disubstituted-5-oxopyran compound
CN106316888B (zh) * 2015-06-29 2018-05-18 深圳翰宇药业股份有限公司 一种手性氨基吡喃酮类化合物的合成方法
WO2017032705A1 (en) 2015-08-25 2017-03-02 Sandoz Ag Crystalline form of omarigliptin
CN105130995B (zh) * 2015-09-09 2017-08-11 杭州成邦医药科技有限公司 吡咯酮类化合物及其制备方法和应用
WO2017081590A1 (en) * 2015-11-09 2017-05-18 Sun Pharmaceutical Industries Limited Process for the preparation of omarigliptin
CN105348286B (zh) * 2015-11-25 2018-12-18 中山奕安泰医药科技有限公司 一种2-甲基磺酰基-2,4,5,6-四氢吡咯[3,4-c]吡唑苯磺酸盐的制备方法
EP3271344B1 (en) 2015-12-03 2020-08-26 F.I.S.- Fabbrica Italiana Sintetici S.p.A. Process for preparing aminotetrahydropyrans
CN105399744B (zh) * 2015-12-17 2017-07-18 黄燕鸽 一种奥格列汀的合成方法
EP3181565A1 (en) 2015-12-18 2017-06-21 Sandoz Ag Crystalline omarigliptin salts
PT3395819T (pt) * 2015-12-25 2023-07-05 Sichuan Haisco Pharmaceutical Co Ltd Forma cristalina de derivado de aminopirano substituído
CN106928228B (zh) * 2015-12-29 2019-08-30 杭州普晒医药科技有限公司 奥格列汀盐及其晶型、它们的制备方法和药物组合物
CN107652291B (zh) * 2016-07-26 2020-07-14 中国科学院上海药物研究所 一种制备手性四氢吡喃衍生物的方法
CN109874304B (zh) * 2016-08-12 2021-06-25 正大天晴药业集团股份有限公司 Dpp-iv长效抑制剂的结晶及其盐
CN107793389B (zh) * 2016-09-05 2021-06-29 中国科学院上海药物研究所 手性四氢吡喃衍生物及其制备与用途
KR102599958B1 (ko) * 2016-09-28 2023-11-09 (주)아모레퍼시픽 (r)-n-[4-(1-아미노-에틸)-2,6-다이플루오로-페닐]-메테인설폰아마이드의 제조방법
CN106674227B (zh) * 2016-12-06 2019-03-19 上海博志研新药物技术有限公司 一种奥格列汀及其中间体的制备方法
EP3335701A1 (en) 2016-12-16 2018-06-20 Hexal AG Pharmaceutical composition comprising omarigliptin
EP3335704A1 (en) 2016-12-16 2018-06-20 Hexal AG Pharmaceutical composition comprising omarigliptin
EP3335703A1 (en) 2016-12-16 2018-06-20 Hexal AG Pharmaceutical composition comprising omarigliptin
NZ763766A (en) 2017-03-20 2023-07-28 Novo Nordisk Healthcare Ag Pyrrolopyrrole compositions as pyruvate kinase (pkr) activators
BR112021005188A2 (pt) 2018-09-19 2021-06-08 Forma Therapeutics, Inc. tratamento de anemia falciforme com um composto de ativação de piruvato cinase r
EP3852791B1 (en) 2018-09-19 2024-07-03 Novo Nordisk Health Care AG Activating pyruvate kinase r
CN109651203B (zh) * 2019-01-22 2021-10-15 河南医学高等专科学校 Dp-iv抑制剂奥格列汀中间体的制备方法
CN110453177A (zh) * 2019-08-06 2019-11-15 太仓碧奇新材料研发有限公司 一种柔性有机整流器的制备方法
CN111793071B (zh) * 2020-07-06 2021-06-04 四川凯科医药科技有限公司 奥格列汀的合成工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041442A (en) * 1990-07-31 1991-08-20 Syntex (U.S.A.) Inc. Pyrrolo(1,2-a)pyrazines as inhibitors of gastric acid secretion
UA63013C2 (en) * 1998-06-19 2004-01-15 Pfizer Prod Inc Pyrolo[2,3-d]pyrimidin derivatives, a pharmaceutical composition (alternatives), a method for inhibition of protein tyrosine kinases such as janus kinase 3 in mammals (alternatives) and a method for treatment (alternatives)
US20050003804A1 (en) * 2003-04-03 2005-01-06 Nokia Corporation System, mobile station, method and computer program product for managing context-related information
US20100120863A1 (en) * 2008-11-13 2010-05-13 Tesfaye Biftu Aminotetrahydropyrans as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ337164A (en) 1997-03-21 2001-05-25 Du Pont Pharm Co Method of preparing 4-arylamino-1-alkyl-[1,2,3]-triazolo][4,5-c]pyridine derivatives
CN1243707C (zh) * 2000-09-14 2006-03-01 国家海洋局第一海洋研究所 共轭亚油酸的制造方法
EP1385508B1 (en) 2001-03-27 2008-05-21 Merck & Co., Inc. Dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
EP1406622B1 (en) 2001-06-20 2006-02-22 Merck & Co., Inc. Dipeptidyl peptidase inhibitors for the treatment of diabetes
CA2450579A1 (en) 2001-06-20 2003-01-03 Merck & Co., Inc. Dipeptidyl peptidase inhibitors for the treatment of diabetes
UA74912C2 (en) 2001-07-06 2006-02-15 Merck & Co Inc Beta-aminotetrahydroimidazo-(1,2-a)-pyrazines and tetratriazolo-(4,3-a)-pyrazines as inhibitors of dipeptylpeptidase for the treatment or prevention of diabetes
CN1212303C (zh) * 2001-12-31 2005-07-27 中国科学院新疆理化技术研究所 使用混合溶剂合成共轭亚油酸的方法
WO2003082817A2 (en) 2002-03-25 2003-10-09 Merck & Co., Inc. Beta-amino heterocyclic dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
WO2004007468A1 (en) 2002-07-15 2004-01-22 Merck & Co., Inc. Piperidino pyrimidine dipeptidyl peptidase inhibitors for the treatment of diabetes
WO2004032836A2 (en) 2002-10-07 2004-04-22 Merck & Co., Inc. Antidiabetic beta-amino heterocylcic dipeptidyl peptidase inhibitors
JP4352001B2 (ja) 2002-10-18 2009-10-28 メルク エンド カムパニー インコーポレーテッド 糖尿病の治療または予防のためのベータ−アミノ複素環式ジペプチジルペプチダーゼ阻害剤
ES2278213T3 (es) 2002-11-07 2007-08-01 MERCK & CO., INC. Derivados de fenilamina como inhibidores de la dipeptidilpeptidasa en el tratamiento o la prevencion de la diabetes.
CA2508487A1 (en) 2002-12-04 2004-06-17 Merck & Co., Inc. Phenylalanine derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
CA2508947A1 (en) 2002-12-20 2004-07-15 Merck & Co., Inc. 3-amino-4-phenylbutanoic acid derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
US7265128B2 (en) 2003-01-17 2007-09-04 Merck & Co., Inc. 3-amino-4-phenylbutanoic acid derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
EP1592689A4 (en) 2003-01-31 2008-12-24 Merck & Co Inc 3-AMINO-4-PHENYLBUTANOIC ACID DERIVATIVES AS INHIBITORS OF DIPEPTIDYL PEPTIDASE FOR THE TREATMENT OR PREVENTION OF DIABETES
WO2004103276A2 (en) 2003-05-14 2004-12-02 Merck & Co., Inc. 3-amino-4-phenylbutanoic acid derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
CN1798556A (zh) 2003-06-06 2006-07-05 麦克公司 作为治疗或者预防糖尿病的二肽基肽酶抑制剂的稠合吲哚
WO2004112701A2 (en) 2003-06-17 2004-12-29 Merck & Co., Inc. Cyclohexylglycine derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
JO2625B1 (en) * 2003-06-24 2011-11-01 ميرك شارب اند دوم كوربوريشن Phosphoric acid salts of dipeptidyl betidase inhibitor 4
WO2005011581A2 (en) 2003-07-31 2005-02-10 Merck & Co., Inc. Hexahydrodiazepinones as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
US7238683B2 (en) 2003-11-04 2007-07-03 Merck & Co., Inc. Fused phenylalanine derivatives as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
CA2564264A1 (en) 2004-05-04 2005-11-17 Merck & Co., Inc. 1,2,4-oxadiazole derivatives as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
CA2564884A1 (en) 2004-05-18 2005-12-08 Merck & Co., Inc. Cyclohexylalanine derivatives as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
CN101014598B (zh) 2004-06-21 2012-06-13 默沙东公司 作为用于治疗或预防糖尿病的二肽基肽酶-ⅳ抑制剂的氨基环己烷化合物
CA2576465A1 (en) 2004-08-23 2006-03-02 Merck & Co., Inc. Fused triazole derivatives as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
EP1796669B1 (en) 2004-10-01 2010-09-22 Merck Sharp & Dohme Corp. Aminopiperidines as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
WO2006065826A2 (en) 2004-12-15 2006-06-22 Merck & Co., Inc. Process to chiral beta amino acid derivatives by asymmetric hydrogenation
CN101107251A (zh) 2005-01-19 2008-01-16 默克公司 用于治疗或预防糖尿病的作为二肽基肽酶-ⅳ抑制剂的双环嘧啶类
WO2006104997A2 (en) 2005-03-29 2006-10-05 Merck & Co., Inc. Tartaric acid salts of a dipeptidyl peptidase-iv inhibitor
CA2606188A1 (en) 2005-05-02 2006-11-09 Merck & Co., Inc. Combination of dipeptidyl peptidase-iv inhibitor and a cannabinoid cb1 receptor antagonist for the treatment of diabetes and obesity
CN101500573A (zh) 2005-05-25 2009-08-05 默克公司 用于糖尿病治疗或者预防的作为二肽基肽酶-ⅳ抑制剂的氨基环己烷
EP1909776A2 (en) 2005-07-25 2008-04-16 Merck & Co., Inc. Dodecylsulfate salt of a dipeptidyl peptidase-iv inhibitor
CA2619111C (en) 2005-08-26 2013-04-09 Merck & Co., Inc. Fused aminopiperidines as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
AU2006326564B2 (en) 2005-12-14 2011-06-23 Merck Sharp & Dohme Corp. Fused aminopiperidines as dipeptidyl peptidase-4 inhibitors for the treatment or prevention of diabetes
CN101365432B (zh) 2005-12-16 2011-06-22 默沙东公司 二肽基肽酶-4抑制剂与二甲双胍的组合的药物组合物
AU2007208405B2 (en) 2006-01-25 2011-05-26 Merck Sharp & Dohme Corp. Aminocyclohexanes as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
CA2640924C (en) 2006-02-15 2013-10-08 Merck & Co., Inc. Aminotetrahydropyrans as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
TW200806669A (en) * 2006-03-28 2008-02-01 Merck & Co Inc Aminotetrahydropyrans as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
EP2019677B1 (en) 2006-05-16 2013-08-14 Merck Sharp & Dohme Corp. Aminotetrahydropyrans as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
JP5232160B2 (ja) 2006-11-14 2013-07-10 メルク・シャープ・アンド・ドーム・コーポレーション 糖尿病の治療又は予防のためのジペプチジルペプチダーゼivインヒビターとしての三環式芳香族複素環化合物
US8653059B2 (en) 2007-08-21 2014-02-18 Merck Sharp & Dohme Corp. Heterocyclic compounds as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
EP2228366B1 (de) 2009-03-12 2011-12-28 Archimica GmbH Verfahren zur Herstellung von 2-Amino-4-(halogenalkyl)pyridin-Derivaten durch Cyclisierung geeigneter Nitril-Vorstufen mit Stickstoff-Verbindungen
CA2771352A1 (en) 2009-09-02 2011-03-10 Merck Sharp & Dohme Corp. Aminotetrahydropyrans as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
EP2480082A4 (en) * 2009-09-25 2014-01-15 Merck Sharp & Dohme SUBSTITUTED AMINOPIPERIDINES AS DIPEPTIDYLPEPTIDASE IV INHIBITORS FOR THE TREATMENT OF DIABETES
WO2011146358A1 (en) 2010-05-21 2011-11-24 Merck Sharp & Dohme Corp. Substituted seven-membered heterocyclic compounds as dipeptidyl peptidase-iv inhibitors for the treatment of diabetes
WO2012078448A1 (en) 2010-12-06 2012-06-14 Schering Corporation Tricyclic heterocycles useful as dipeptidyl peptidase-iv inhibitors
WO2012118945A2 (en) 2011-03-03 2012-09-07 Merck Sharp & Dohme Corp. Fused bicyclic heterocycles useful as dipeptidyl peptidase-iv inhibitors
EP2726075A4 (en) 2011-06-29 2014-11-19 Merck Sharp & Dohme NEW CRYSTALLINE FORMS OF A DIPEPTIDYL-PEPTIDASE IV HEMMER
EP2729468A4 (en) 2011-07-05 2015-03-18 Merck Sharp & Dohme TRICYCLIC HETEROCYCLES AS DIPEPTIDYLPEPTIDASE IV INHIBITORS
JP6480788B2 (ja) * 2015-04-07 2019-03-13 株式会社マキタ 打撃工具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041442A (en) * 1990-07-31 1991-08-20 Syntex (U.S.A.) Inc. Pyrrolo(1,2-a)pyrazines as inhibitors of gastric acid secretion
UA63013C2 (en) * 1998-06-19 2004-01-15 Pfizer Prod Inc Pyrolo[2,3-d]pyrimidin derivatives, a pharmaceutical composition (alternatives), a method for inhibition of protein tyrosine kinases such as janus kinase 3 in mammals (alternatives) and a method for treatment (alternatives)
US20050003804A1 (en) * 2003-04-03 2005-01-06 Nokia Corporation System, mobile station, method and computer program product for managing context-related information
US20100120863A1 (en) * 2008-11-13 2010-05-13 Tesfaye Biftu Aminotetrahydropyrans as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes

Also Published As

Publication number Publication date
US20140080884A1 (en) 2014-03-20
US8895603B2 (en) 2014-11-25
US20150099891A1 (en) 2015-04-09
KR20140034862A (ko) 2014-03-20
EP2725905A4 (en) 2014-11-26
TW201302759A (zh) 2013-01-16
WO2013003249A1 (en) 2013-01-03
EP2725905A1 (en) 2014-05-07
AR089554A1 (es) 2014-09-03
WO2013003250A1 (en) 2013-01-03
AU2012275638A1 (en) 2013-11-14
CN103987388A (zh) 2014-08-13
RU2014102764A (ru) 2015-08-10
MX2013014892A (es) 2014-02-17
MX341299B (es) 2016-08-11
EP2726075A1 (en) 2014-05-07
CN103702562A (zh) 2014-04-02
JP2017039752A (ja) 2017-02-23
US9187488B2 (en) 2015-11-17
US9181262B2 (en) 2015-11-10
MX2013014891A (es) 2014-02-17
TWI574965B (zh) 2017-03-21
JP5873554B2 (ja) 2016-03-01
CA2838738A1 (en) 2013-01-03
US20160024100A1 (en) 2016-01-28
JP2014520802A (ja) 2014-08-25
KR20140034861A (ko) 2014-03-20
RU2014102773A (ru) 2015-08-10
US20140107346A1 (en) 2014-04-17
AU2012275637A1 (en) 2013-11-14
JP2018115191A (ja) 2018-07-26
US9527855B2 (en) 2016-12-27
CN106946886A (zh) 2017-07-14
JP2014518266A (ja) 2014-07-28
EP2726075A4 (en) 2014-11-19
AU2012275637B2 (en) 2016-05-12
CA2838748A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
RU2598072C2 (ru) Новые кристаллические формы ингибиторов дипептидилпептидазы-iv
CA2529400C (en) Phosphoric acid salt of a dipeptidyl peptidase-iv inhibitor
US7612072B2 (en) Amorphous form of a phosphoric acid salt of a dipeptidyl peptidase-IV inhibitor
AU2004268024B2 (en) Novel crystalline forms of a phosphoric acid salt of a dipeptidyl peptidase-IV inhibitor
US20080227786A1 (en) Novel Crystalline Salts of a Dipeptidyl Peptidase-IV Inhibitor
US20070021430A1 (en) Novel crystalline form of a phosphoric acid salt of a dipeptidyl peptidase-iv inhibitor
WO2009014676A1 (en) Novel crystalline form of a dihydrochloride salt of a dipeptidyl peptidase-iv inhibitor
EP1659123A1 (en) Bicyclic pyrazole derivative
US20140336196A1 (en) Phosphoric acid salts of sitagliptin
TW201722960A (zh) 經取代的氨基吡喃衍生物之晶型

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180626