RU2581397C2 - Поликристаллический алмаз - Google Patents

Поликристаллический алмаз Download PDF

Info

Publication number
RU2581397C2
RU2581397C2 RU2014116561/05A RU2014116561A RU2581397C2 RU 2581397 C2 RU2581397 C2 RU 2581397C2 RU 2014116561/05 A RU2014116561/05 A RU 2014116561/05A RU 2014116561 A RU2014116561 A RU 2014116561A RU 2581397 C2 RU2581397 C2 RU 2581397C2
Authority
RU
Russia
Prior art keywords
diamond
grain diameter
average grain
polycrystalline diamond
polycrystalline
Prior art date
Application number
RU2014116561/05A
Other languages
English (en)
Other versions
RU2014116561A (ru
Inventor
Такеси САТО
Кацуко ЯМАМОТО
Наохиро ТОДА
Хитоси СУМИЯ
Ютака КОБАЯСИ
Original Assignee
Сумитомо Электрик Индастриз, Лтд.
Сумитомо Электрик Хардметал Корп.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сумитомо Электрик Индастриз, Лтд., Сумитомо Электрик Хардметал Корп. filed Critical Сумитомо Электрик Индастриз, Лтд.
Publication of RU2014116561A publication Critical patent/RU2014116561A/ru
Application granted granted Critical
Publication of RU2581397C2 publication Critical patent/RU2581397C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/004Severing by means other than cutting; Apparatus therefor by means of a fluid jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/10Glass-cutting tools, e.g. scoring tools
    • C03B33/105Details of cutting or scoring means, e.g. tips
    • C03B33/107Wheel design, e.g. materials, construction, shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank
    • Y10T428/218Aperture containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Nozzles (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

Изобретение относится к поликристаллическому алмазу для использования в различных инструментах. Поликристаллический алмаз характеризуется тем, что содержит алмазные спеченные зерна, имеющие средний диаметр зерна более 50 нм и менее 2500 нм, чистоту 99% или более и диаметр зерна D90, составляющий (средний диаметр зерна + средний диаметр зерна × 0,9) или менее, причем поликристаллический алмаз обладает пластинчатой структурой и имеет твердость 100 ГПа или более. Водоструйное сопло, гравировальный резец для глубокой печати, скрайбер, режущий инструмент и скрайбирующий ролик из такого материала обеспечивают стабильную обработку в течение длительного периода времени по сравнению с обычными инструментами, включающими монокристаллические алмазы и спеченные алмазные прессовки, содержащие металлические связующие. 6 н. и 7 з.п. ф-лы, 5 табл., 62 пр.

Description

Область техники
[0001] Настоящее изобретение относится к поликристаллическому алмазу, полученному превращением и спеканием неалмазного углерода без добавления спекающей добавки или катализатора.
Уровень техники
[0002] Природные и искусственные монокристаллические алмазы до сих пор используют по различным назначениям благодаря их превосходным свойствам. Инструментом, включающим монокристаллический алмаз, является, например, водоструйное сопло (патентный документ 1), гравировальный резец для глубокой печати (патентные документы 2 и 3), скрайбер (патентный документ 4), алмазный режущий инструмент (патентные документы 5 и 6) или скрайбирующий ролик (патентный документ 7).
[0003] Однако такой монокристаллический алмаз обладает свойством, состоящим в том, что потери на истирание различаются (неравномерный износ) в зависимости от ориентаций кристаллов алмаза. Например, потеря на истирание значительно меняется между плоскостью (111) и плоскостью (100). По данной причине монокристаллический алмаз, используемый в таких описанных выше инструментах, изнашивается только в конкретной плоскости за короткое время по мере того, как эти инструменты применяют, и заданные эффекты не обеспечиваются, что являлось проблемой.
Монокристаллический алмаз также имеет свойство раскалывания вдоль плоскости (111). По этой причине, когда монокристаллический алмаз применяют в инструменте, подвергаемом при использовании механическому напряжению, инструмент ломается или трескается, что также являлось проблемой.
[0004] Чтобы бороться со свойством неравномерного износа и свойством раскалывания монокристаллического алмаза, можно использовать спеченный алмаз. Такой спеченный алмаз получают спеканием мелких кристаллических алмазов («алмазных зерен») с металлическим связующим, таким как кобальт, и, следовательно, это металлическое связующее присутствует среди алмазных зерен. Область металлического связующего мягче, чем алмазные зерна, и поэтому за короткое время изнашивается. Поскольку количество связующего уменьшается, алмазные зерна отрываются и эффекты не обеспечиваются стабильно в течение длительного периода времени. Также существует проблема, состоящая в том, что происходит адгезионный износ между областью металлического связующего и обрабатываемым металлическим материалом, и поэтому невозможно проводить обработку в течение длительного периода времени.
[0005] Чтобы решить такую проблему, вызванную металлическим связующим, можно получить не содержащий связующего спеченный алмаз путем растворения металлического связующего кислотой, тем самым удаляя металлическое связующее. Однако удаление металлического связующего снижает способность связывания алмазных зерен, что, наиболее вероятно, увеличивает потерю на истирание.
Что касается поликристаллического алмаза, не содержащего металлического связующего, то существует поликристаллический алмаз, полученный химическим осаждением из газовой или паровой фазы (CVD). Однако данный поликристаллический алмаз имеет небольшую прочность связывания между кристаллами и, следовательно, страдает от больших потерь на истирание, что являлось проблемой.
[0006] Далее конкретно описываются вышеописанные инструменты.
Водоструйное сопло, включающее монокристаллический алмаз, имело проблему, состоящую в том, что целевая ширина резания больше не достигалась после истечения времени использования.
Это обусловлено следующим механизмом. В таком сопле, состоящем из монокристаллического алмаза, кристаллы алмаза на внутренней поверхности канала сопла имеют различную ориентацию кристаллов относительно окружения. Сопло, имеющее форму цилиндра на начальной стадии использования, страдает от истирания в чувствительной к истиранию плоскости за короткое время. В результате цилиндрическая форма сопла теряется и внутренняя поверхность расширяется до формы многоугольника, такого как шестиугольник.
[0007] Чтобы бороться с такой деформацией до формы многоугольника, вызванной неравномерным износом, можно использовать спеченный алмаз (патентный документ 8). Однако это вызывает отрыв алмазных зерен при снижении количества связующего, как описано выше, и канал сопла расширяется. Таким образом, ширина резания не обеспечивается стабильно в течение длительного периода времени, что является проблемой. В частности, водоструйное сопло, предназначенное для обеспечения увеличенной эффективности резания, сконструировано для выброса содержащей воду и жесткие частицы (оксида алюминия или т.п.) жидкости под высоким давлением. В результате область металлического связующего, которая мягче, чем алмазные зерна, изнашивается за короткое время, и ширина резания не обеспечивается стабильно в течение длительного периода времени, что является проблемой.
Для покрытия внутренней поверхности сопла поликристаллическим алмазом, не содержащим металлического связующего, можно использовать способ, в котором внутреннюю поверхность канала металлического сопла покрывают не содержащей металлического связующего тонкой алмазной пленкой методом CVD (химическим осаждением из газовой фазы), как описано выше (смотри патентный документ 9). Однако такая тонкая алмазная пленка имеет короткий срок службы до износа и обладает небольшой прочностью связывания зерен и, следовательно, обладает коротким сроком службы до износа, что являлось проблемой.
[0008] Другим примером является гравировальный резец для глубокой печати, в котором природный или синтетический монокристаллический алмаз используют в качестве материала гравировального резца (см. патентные документы 2 и 3). Однако, возможно из-за того, что такой алмаз обладает свойством раскалывания, при использовании такой инструмент ломается или трескается под нагрузкой, что является проблемой. Из-за свойства неравномерного износа такой алмаз изнашивается только в определенной плоскости за короткое время по мере использования инструмента, и поэтому обработку нельзя проводить в течение длительного периода времени, что также являлось проблемой.
[0009] Еще одним примером является скрайбер (разметочный инструмент), включающий монокристаллический алмаз. Например, как показано в патентном документе 4, имеющий форму многоугольника монокристаллический алмаз используют для разметки монокристаллических подложек, стеклянных подложек и т.п. вершиной многоугольника, служащей в качестве лезвия. Такой скрайбер, состоящий из монокристаллического алмаза, изготавливают обработкой монокристаллического алмаза так, что плоскость (111), которая является наиболее устойчивой к истиранию об обрабатываемую заготовку, которую необходимо разметить и которая состоит из монокристаллического материала, такого как сапфир, располагают особым образом, устанавливая параллельно заготовке, которую необходимо разметить.
Однако, возможно из-за того, что монокристаллический алмаз обладает свойством раскалывания вдоль плоскости (111), как описано выше, скрайберы, состоящие из монокристаллического алмаза, трескаются или неравномерно изнашиваются, когда используемая для разметки плоскость лишь незначительно отклоняется от плоскости (111), что являлось проблемой.
[0010] Еще одним примером является алмазный режущий инструмент, в котором природный или синтетический монокристаллический алмаз используют в качестве материала для инструмента (смотри патентные документы 5 и 6). Однако из-за проблем, связанных со свойствами раскалывания и неоднородного износа монокристаллического алмаза, как описано выше, такой состоящий из монокристаллического алмаза инструмент обладает проблемой, состоящей в том, что при использовании инструмент ломается или трескается из-за нагрузки, изнашивается только в конкретной плоскости за короткое время по мере использования инструмента, и обработку в течение длительного времени проводить невозможно.
[0011] Еще одним примером является скрайбирующий ролик, в котором монокристаллический алмаз используют в качестве материала скрайбирующего ролика. Например, как показано в патентном документе 7, линии разметки формируют на хрупком материале, таком как стекло для жидкокристаллических панелей, с помощью V-образной кромки ролика, служащей в качестве режущей кромки.
[0012] Однако, как и в случае с другими инструментами, при использовании такой скрайбирующий ролик ломается или трескается вследствие нагрузки из-за проблемы, связанной со свойством раскалывания монокристаллического алмаза, что являлось проблемой.
Из-за свойства неравномерного износа такой инструмент изнашивается только в конкретной плоскости за короткое время по мере использования инструмента, и при этом невозможно использование инструмента в течение длительного периода времени, что являлось проблемой. Состоящий из монокристаллического алмаза скрайбирующий ролик имеет V-образную кромку, в которой кристаллы имеют различные ориентации в окружном направлении. Таким образом, кромка, имеющая форму правильного круга на начальной стадии использования, изнашивается в подверженной износу плоскости за короткое время, и правильная круговая форма деформируется в форму многоугольника. В результате ролик больше не может катиться, что являлось проблемой.
[0013] Чтобы бороться со свойствами раскалывания и неравномерного износа в вышеописанных различных инструментах, в качестве материала для таких инструментов можно использовать спеченную алмазную прессовку, содержащую металл, служащий в качестве связующего (патентные документы 7 и 10).
Однако, даже несмотря на то, что используется спеченный алмаз, склонны возникать следующие проблемы: область металлического связующего, содержащая кобальт или т.п., мягче, чем алмазные зерна, и, следовательно, изнашивается за короткое время, и происходит адгезионный износ между областью металлического связующего и обрабатываемым металлическим материалом, таким как медь, и обработка в течение длительного времени становится невозможной. Такое металлическое связующее в спеченной алмазной прессовке можно удалить, растворяя металлическое связующее кислотой. Однако это снижает способность к связыванию алмазных зерен, что, весьма вероятно, увеличивает потерю на истирание.
Поликристаллический алмаз, который получают методом CVD и который не содержит металлического связующего, имеет маленькую прочность сцепления между зернами и, следовательно, вероятно имеет проблему, состоящую в том, что такой алмаз имеет короткий срок службы до износа.
[0014] Цитированные документы
Патентный документ 1: публикация нерассмотренной заявки на патент Японии № 2000-061897
Патентный документ 2: публикация нерассмотренной заявки на патент Японии № 2006-123137
Патентный документ 3: публикация нерассмотренной заявки на патент Японии № 2006-518699
Патентный документ 4: публикация нерассмотренной заявки на патент Японии № 2005-289703
Патентный документ 5: публикация нерассмотренной заявки на патент Японии № 2004-181591
Патентный документ 6: публикация нерассмотренной заявки на патент Японии № 2003-025118
Патентный документ 7: публикация нерассмотренной заявки на патент Японии № 2007-031200
Патентный документ 8: публикация нерассмотренной заявки на патент Японии № 10-270407
Патентный документ 9: публикация нерассмотренной заявки на патент Японии № 2006-159348
Патентный документ 10: Международная публикация № 2003/051784.
Раскрытие изобретения
Проблемы, решаемые изобретением
[0015] Принимая во внимание описанные выше проблемы, задача настоящего изобретения состоит в том, чтобы предложить поликристаллический алмаз, применимый в разнообразных областях использования, а также водоструйное сопло, гравировальный резец для глубокой печати, скрайбер, алмазный режущий инструмент и скрайбирующий ролик, которые включают такой поликристаллический алмаз.
В частности, задача настоящего изобретения состоит в том, чтобы предложить водоструйное сопло, которое обеспечивает ширину резания стабильно в течение длительного периода времени, гравировальный резец для глубокой печати, скрайбер, алмазный режущий инструмент и скрайбирующий ролик, которые делают возможной стабильную обработку в течение длительного периода времени по сравнению с обычными инструментами, включающими монокристаллические алмазы и спеченные алмазные прессовки, содержащие металлические связующие.
Средства решения проблем
[0016] Для решения описанных выше проблем авторы настоящего изобретения провели всесторонние исследования. В результате они обнаружили, что поликристаллический алмаз, не содержащий металлического связующего, такого как кобальт, имеющий средний диаметр зерна больше 50 нм и меньше 2500 нм, чистоту 99% или выше и диаметр зерна D90 спека, составляющий (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, выгодно применим в разнообразных областях использования. Таким образом, они осуществили настоящее изобретение.
Конкретно, настоящее изобретение нацелено, как описано ниже, на поликристаллический алмаз, водоструйное сопло, гравировальный резец для глубокой печати, скрайбер, алмазный режущий инструмент и скрайбирующий ролик, которые включают такой поликристаллический алмаз и позволяют выполнять стабильную обработку в течение длительного периода времени.
[0017] <Поликристаллический алмаз>
(1) Поликристаллический алмаз, полученный превращением и спеканием неалмазного углерода под сверхвысоким давлением и при высокой температуре без добавления спекающей добавки или катализатора, причем спеченные алмазные зерна, составляющие поликристаллический алмаз, имеют средний диаметр зерна более 50 нм и менее 2500 нм и чистоту 99% или более, и алмаз имеет диаметр зерна D90, составляющий (средний диаметр зерна + средний диаметр зерна × 0,9) или менее.
(2) Поликристаллический алмаз по вышеприведенному пункту (1), причем спеченные алмазные зерна имеют диаметр зерна D90, составляющий (средний диаметр зерна + средний диаметр зерна × 0,7) или менее.
(3) Поликристаллический алмаз по вышеприведенному пункту (1), причем спеченные алмазные зерна имеют диаметр зерна D90, составляющий (средний диаметр зерна + средний диаметр зерна × 0,5) или менее.
(4) Поликристаллический алмаз по любому из вышеприведенных пунктов (1)-(3), причем поликристаллический алмаз имеет твердость 100 ГПа или более.
(5) Поликристаллический алмаз по любому из вышеприведенных пунктов (1)-(4), причем неалмазный углерод представляет собой углеродный материал, имеющий графитоподобную слоистую структуру.
[0018] <Водоструйное сопло>
(6) Водоструйное сопло, включающее поликристаллический алмаз по любому из вышеприведенных пунктов (1)-(5).
(7) Водоструйное сопло по вышеприведенному пункту (6), причем внутренняя поверхность сформированного в поликристаллическом алмазе канала сопла, через который проходит водоструйная текучая среда, имеет поверхностную шероховатость Ra в 300 нм или менее.
(8) Водоструйное сопло по вышеприведенному пункту (6) или (7), причем сформированный в поликристаллическом алмазе канал сопла имеет диаметр, составляющий 10 мкм или более и 500 мкм или менее.
(9) Водоструйное сопло по любому из вышеприведенных пунктов (6)-(8), причем отношение (L/D) размера сопла (L) к диаметру сформированного в поликристаллическом алмазе канала сопла (D) составляет от 10 до 500.
(10) Водоструйное сопло по вышеприведенному пункту (6) или (7), причем сформированный в поликристаллическом алмазе канал сопла имеет диаметр, составляющий более 500 мкм и 5000 мкм или менее.
(11) Водоструйное сопло по любому из вышеприведенных пунктов (6), (7) и (10), причем отношение (L/D) размера сопла (L) к диаметру сформированного в поликристаллическом алмазе канала сопла (D) составляет от 0,2 до 10.
[0019] <Гравировальный резец для глубокой печати>
(12) Гравировальный резец для глубокой печати, включающий поликристаллический алмаз по любому из вышеприведенных пунктов (1)-(5).
[0020] <Скрайбер>
(13) Скрайбер, включающий поликристаллический алмаз по любому из вышеприведенных пунктов (1)-(5).
(14) Скрайбер по вышеприведенному пункту (13), причем режущая кромка на наконечнике скрайбера имеет форму многоугольника, включающего три или более грани, и эти грани многоугольника, частично или полностью, используются в качестве лезвия.
[0021] <Алмазный режущий инструмент>
(15) Алмазный режущий инструмент, включающий поликристаллический алмаз по любому из вышеприведенных пунктов (1)-(5).
[0022] <Скрайбирующий ролик>
(16) Скрайбирующий ролик, включающий поликристаллический алмаз по любому из вышеприведенных пунктов (1)-(5).
Преимущества
[0023] Поликристаллический алмаз по настоящему изобретению не подвержен неравномерному износу и поэтому применим в различных областях использования.
Водоструйное сопло по настоящему изобретению может обеспечить стабильную ширину резания в течение длительного периода времени по сравнению с обычными соплами, включающими монокристаллические алмазы и спеченные алмазные прессовки, содержащие металлические связующие.
Гравировальный резец для глубокой печати, скрайбер, алмазный режущий инструмент и скрайбирующий ролик по настоящему изобретению делают возможной стабильную обработку в течение длительного периода времени по сравнению с обычными инструментами, включающими монокристаллические алмазы и спеченные алмазные прессовки, содержащие металлические связующие.
Лучшие варианты осуществления изобретения
[0024] Ниже подробно описывается поликристаллический алмаз по настоящему изобретению.
Поликристаллический алмаз по настоящему изобретению представляет собой по существу однофазный алмаз (чистотой 99% или более) и не содержит металлического связующего, такого как кобальт. Такой поликристаллический алмаз можно получить, непосредственно превращая и одновременно спекая служащий в качестве исходного материала неалмазный углерод, такой как графит, стеклоуглерод или аморфный углерод, в алмаз под сверхвысоким давлением и при высокой температуре (температура: от 1800°C до 2600°C, давление: от 12 до 25 ГПа) без катализатора или растворителя. Полученный в результате поликристаллический алмаз не подвергается неравномерному износу, который действительно происходит в монокристаллах.
[0025] Следует отметить, что известен способ, при котором поликристаллический алмаз получают из алмазного порошка или графита, служащих в качестве исходного материала. Конкретно, способы, которыми получают поликристаллические алмазы из алмазного порошка, служащего в качестве исходного материала, и поликристаллические алмазы, полученные данными способами, раскрыты в приведенных ниже ссылках 1-4.
Ссылка 1: публикация нерассмотренной заявки на патент Японии № 2006-007677
Ссылка 2: публикация нерассмотренной заявки на патент Японии № 2002-187775
Ссылка 3: патент Японии № 3855029
Ссылка 4: публикация нерассмотренной заявки на патент Японии № 2004-168554.
[0026] Ссылка 1 описывает поликристаллический алмаз, и составляющие этот поликристаллический алмаз алмазные зерна имеют средний диаметр зерна от 80 нм до 1 мкм, что находится в диапазоне, определенном настоящим изобретением. Однако в ссылке 1 указывается, что поликристаллический алмаз был получен способом, описанным в ссылке 2. В ссылке 2 указывается, что поликристаллический алмаз получают способом спекания алмазного порошка с карбонатом, служащим в качестве спекающей добавки, и этот карбонат остается в полученном в результате поликристаллическом алмазе после спекания. Следовательно, структура поликристаллического алмаза, описанного в ссылке 1, отличается от структуры поликристаллического алмаза по настоящему изобретению.
[0027] Другой способ спекания алмазного порошка со спекающей добавкой описан в ссылке 3. Однако в ссылке 3 указывается, что с помощью ИК спектров было установлено, что спекающая добавка частично остается в полученном этим способом поликристаллическом алмазе. Следовательно, структура данного поликристаллического алмаза также отличается от структуры поликристаллического алмаза по настоящему изобретению. В ссылке 4 указывается, что спеки из ссылок 2 и 3 по прочности хуже, чем спек без спекающей добавки по настоящему изобретению. Таким образом, ссылка 4 показывает, что спек по настоящему изобретению является превосходным.
[0028] Приведенная выше ссылка 4 также описывает способ получения поликристаллического алмаза, в котором не используют спекающую добавку. Данный способ использует алмазный микропорошок в качестве исходного материала, и диаметр зерна полученного в результате спека составляет 100 нм или менее, что находится в диапазоне, определенном настоящим изобретением. Однако в настоящем изобретении в качестве исходного материала используется неалмазный углерод. В частности, когда в качестве исходного материала используется углеродный материал, имеющий графитоподобную слоистую структуру, может быть обеспечен поликристаллический алмаз, имеющий особую структуру, называемую пластинчатой или тонкослоистой структурой (от англ. «lamellar structure»), которая не присутствует в поликристаллическом алмазе по ссылке 4. В нижеупомянутой ссылке 5 указывается, что в области, имеющей такую пластинчатую структуру, распространение трещин подавляется. Это демонстрирует, что поликристаллический алмаз по настоящему изобретению меньше предрасположен к разрушению, чем алмаз, описанный в ссылке 4.
В заключение поликристаллический алмаз по настоящему изобретению полностью отличен по структуре от алмазных спеков, которые были описаны ранее, и в результате обладает механическими характеристиками, которые намного превосходят характеристики последних.
[0029] Ниже следуют примеры ссылок, описывающих способы получения поликристаллических алмазов, в которых неалмазный углеродный материал, служащий в качестве исходного материала, превращают и спекают без добавления спекающей добавки или катализатора при сверхвысоком давлении в 12 ГПа или более и при высокой температуре в 2200°C или более, как и в настоящем изобретении.
Ссылка 5: технический обзор SEI, 165 (2004) 68 (Sumiya et al.).
Ссылка 6: публикация нерассмотренной заявки на патент Японии № 2007-22888
Ссылка 7: публикация нерассмотренной заявки на патент Японии № 2003-292397.
[0030] Из алмазов, полученных способами, описанными в вышеприведенных ссылках 5-7, изготавливали различные инструменты и оценивали эксплуатационные характеристики полученных в результате инструментов. Возможно из-за того, что алмаз, описанный в ссылке 5, содержит аномально выросшие зерна, имеющие диаметр примерно в 10 раз больше среднего диаметра зерна, а алмаз, описанный в ссылке 6, содержит крупные алмазные зерна, которые преобразовались из добавленного крупнозернистого материала, оценка выявила, что участки с такими крупными зернами изнашивались крайне быстро.
Затем были проведены тщательные исследования относительно того, как исключить такие изнашивающиеся крайне быстро участки, и было обнаружено, что необходимо контролировать распределение диаметров спеченных зерен, составляющих поликристаллический алмаз. Соответственно, различные инструменты, полученные с контролируемыми распределениями диаметров зерна, не имели крайне быстро изнашивающихся зерен и проявили стабильные эксплуатационные характеристики в течение длительного периода времени. Алмаз, описанный в ссылке 7, обладает аномальным ростом зерен, вероятно из-за того, что способ его получения аналогичен способу из ссылки 5. Алмаз, описанный в ссылке 7, также имеет проблему, аналогичную отмеченной в ссылке 5.
[0031] Вышеописанную проблему можно решить, используя поликристаллический алмаз, в котором спеченные зерна, составляющие поликристаллический алмаз, имеют средний диаметр зерна более 50 нм и менее 2500 нм и чистоту 99% или более, а спек имеет диаметр зерна D90, составляющий (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее. Это обусловлено тем, что аномальный износ подавляется при выполнении диаметра зерна D90 спеченных зерен поликристаллического алмаза составляющим (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее.
[0032] Средний диаметр зерна в настоящем изобретении представляет собой среднечисленный диаметр зерна, определенный с помощью просвечивающего электронного микроскопа (ПЭМ). Средний диаметр зерна и диаметр зерна D90 можно контролировать, регулируя диаметр зерна исходного материала или условия спекания.
[0033] Далее следуют конкретные значения для среднего диаметра зерна и диаметра зерна D90, которые удовлетворяют вышеописанному соотношению в поликристаллическом алмазе.
Пример 1: когда средний диаметр зерна составляет 60 нм, диаметр зерна D90 составляет 114 нм или менее.
Пример 2: когда средний диаметр зерна составляет 100 нм, диаметр зерна D90 составляет 190 нм или менее.
Пример 3: когда средний диаметр зерна составляет 500 нм, диаметр зерна D90 составляет 950 нм или менее.
[0034] Диаметр зерна D90 более предпочтительно составляет (средний диаметр зерна + 0,7 × средний диаметр зерна) или менее, а еще более предпочтительно - (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее.
Когда средний диаметр зерна составляет 50 нм или менее или 2500 нм или более, твердость становится меньшей чем 100 ГПа и изнашивание вызывается в течение короткого периода времени, а следовательно, ширину резания не получают со стабильностью в течение длительного периода времени.
[0035] Далее будет подробно описано водоструйное сопло по настоящему изобретению.
Поскольку материал сопла по настоящему изобретению представляет собой вышеописанный поликристаллический алмаз по настоящему изобретению, водоструйное сопло по настоящему изобретению не подвергается неравномерному износу, как это происходит в соплах, состоящих из монокристаллов.
[0036] Авторы настоящего изобретения изготовили сопла из алмазов, полученных способами, описанными в вышеприведенных ссылках 5-7, и определили ширины резания данных сопел. Это определение выявило, что алмазы, полученные в соответствии с данными ссылками, содержат крупные зерна, как описано выше, и, следовательно, участки, соответствующие таким крупным зернам, изнашиваются крайне быстро. В данном случае на таких участках скорость потока водной струи уменьшается и изменяется направление потока. В результате ширина резания уменьшается или увеличивается с течением времени резания, и ширина резания не является стабильной, и, следовательно, не обеспечивается желательная ширина резания, что являлось проблемой.
[0037] Авторы изобретения обнаружили, что для получения стабильной желаемой ширины резания необходимо исключить такие изнашивающиеся крайне быстро участки, и это достигается контролем распределения диаметров зерен спека. Конкретнее, изнашивающиеся крайне быстро зерна исключаются в соплах, состоящих из алмаза с контролируемым распределением диаметров зерен, причем этот алмаз является поликристаллическим алмазом по настоящему изобретению, в котором поликристаллический алмаз имеет средний диаметр зерна более 50 нм и менее 2500 нм и чистоту 99% или более, а спек имеет диаметр зерна D90, составляющий (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее. Таким образом, вышеуказанная проблема была решена с помощью такого сопла, и использование такого сопла может обеспечить желаемую ширину резания стабильно в течение длительного периода времени.
[0038] Поликристаллический алмаз, используемый для водоструйного сопла по настоящему изобретению, предпочтительно имеет средний диаметр зерна и диаметр зерна D90, которые соответственно удовлетворяют вышеописанным диапазонам.
Диаметр зерна D90 спека желательно выбирают в соответствии со средним диаметром жестких частиц, содержащихся в текучей среде, используемой для обработки напорной водной струей. Когда средний диаметр жестких частиц по существу равен или меньше среднего диаметра зерна структуры спека, стабильная ширина резания не обеспечивается в течение длительного периода времени. Это происходит потому, что при соударении со структурой спека жесткие частицы соударяются не с множеством, а с одной единственной поверхностью зерна спека, и когда эта поверхность имеет подверженную износу ориентацию кристалла, зерно изнашивается крайне быстро. По данной причине диаметр зерен D90 спека сопла выбирают так, чтобы он составлял 1/10 или менее от диаметра жестких частиц.
Это показано следующим ниже примером с конкретными значениями.
Пример 4: когда диаметр жестких частиц составляет 50 мкм, D90 составляет 5 мкм или менее.
[0039] Поликристаллический алмаз, образующий водоструйное сопло, предпочтительно имеет твердость 100 ГПа или более. Когда поликристаллический алмаз имеет твердость менее 100 ГПа, сопло имеет более короткий срок службы.
Внутренняя поверхность канала сопла, через который проходит водоструйная текучая среда, имеет поверхностную шероховатость Ra в 300 нм или менее. Когда поверхностная шероховатость Ra составляет более 300 нм, сопло имеет более короткий срок службы.
[0040] Когда сформированный в поликристаллическом алмазе канал сопла имеет диаметр 10 мкм или более и 500 мкм или менее, отношение (L/D) размера сопла (L) к диаметру канала сопла (D) предпочтительно составляет от 10 до 500.
Когда сформированный в поликристаллическом алмазе канал сопла имеет диаметр более чем 500 мкм и 5000 мкм или менее, отношение (L/D) размера сопла (L) к диаметру канала сопла (D) предпочтительно составляет от 0,2 до 10.
[0041] Далее будет подробно описан гравировальный резец для глубокой печати по настоящему изобретению.
Поскольку материал гравировального резца для глубокой печати по настоящему изобретению представляет собой вышеописанный поликристаллический алмаз по настоящему изобретению, гравировальный резец для глубокой печати по настоящему изобретению не подвергается неравномерному износу, что происходит в гравировальных резцах для глубокой печати, состоящих из монокристаллов.
[0042] Авторы настоящего изобретения изготовили гравировальные резцы с алмазами, полученными способами, описанными в вышеприведенных ссылках 5-7, и проверили работоспособность данных гравировальных резцов. Эта проверка выявила, что алмазы, полученные способами, описанными в данных ссылках, содержат крупные зерна, как описано выше, и, следовательно, участки, соответствующие таким крупным зернам, изнашиваются крайне быстро. В данном случае такие участки вызывают полосчатые царапины на обрабатываемом металле, и, следовательно, желаемая обработка невозможна, что представляло собой проблему.
[0043] Авторы изобретения обнаружили, что для обеспечения возможности желаемой стабильной обработки необходимо исключить такие крайне быстро изнашивающиеся участки, и это достигается контролем распределения диаметров зерен спека. Соответственно, изготавливали гравировальный резец, включающий поликристаллический алмаз с контролируемым распределением диаметров зерен по настоящему изобретению. Изнашивающиеся крайне быстро зерна в данном гравировальном резце исключили и добились желаемой стабильной обработки гравировальным резцом в течение длительного периода времени.
[0044] Поликристаллический алмаз по настоящему изобретению включает спеченные алмазные зерна, имеющие диаметр зерна D90, составляющий (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее. В результате можно подавить аномальный износ.
Поликристаллический алмаз, составляющий гравировальный резец для глубокой печати, предпочтительно имеет твердость 100 ГПа или более. Когда поликристаллический алмаз имеет твердость менее 100 ГПа, гравировальный резец имеет более короткий срок службы. Когда средний диаметр зерна составляет 50 нм или менее или 2500 нм или более, твердость становится меньшей, чем 100 ГПа, и изнашивание происходит за короткий период времени, и, следовательно, стабильная обработка в течение длительного периода времени невозможна.
[0045] Далее будет подробно описан скрайбер по настоящему изобретению.
Поскольку материал скрайбера по настоящему изобретению представляет собой вышеописанный поликристаллический алмаз по настоящему изобретению, скрайбер по настоящему изобретению не подвергается неравномерному износу, что происходит в скрайберах, состоящих из монокристаллов.
[0046] Приведенная выше ссылка 1 описывает скрайбер, состоящий из поликристаллического алмаза, и составляющие поликристаллический алмаз алмазные зерна данного скрайбера имеют средний диаметр зерна от 80 нм до 1 мкм, что находится в диапазоне, определенном настоящим изобретением. Однако, как описано выше, поликристаллический алмаз, изготовленный способом получения, описанным в ссылке 1 (ссылке 2), содержит остающийся после спекания карбонат. Поэтому такой поликристаллический алмаз отличается по структуре от поликристаллического алмаза по настоящему изобретению.
[0047] Авторы настоящего изобретения изготовили скрайберы из алмазов, полученных способами, описанными в вышеприведенных ссылках 5-7, и проверили работоспособность данных скрайберов. Эта проверка выявила, что алмазы, полученные способами, описанными в данных ссылках, содержат крупные зерна, как описано выше, и, следовательно, участки, соответствующие таким крупным зернам, изнашиваются крайне быстро.
Авторы изобретения обнаружили, что для обеспечения возможности желаемой стабильной обработки необходимо исключить такие изнашивающиеся крайне быстро участки, и это достигается контролем распределения диаметров зерен спека. Соответственно, изготавливали скрайбер, включающий поликристаллический алмаз с контролируемым распределением диаметров зерен по настоящему изобретению. Изнашивающиеся крайне быстро зерна в данном скрайбере исключили и добились желаемой стабильной обработки скрайбером в течение длительного периода времени.
[0048] Поликристаллический алмаз, составляющий скрайбер, предпочтительно имеет твердость 100 ГПа или более. Когда средний диаметр зерна составляет 50 нм или менее или 2500 нм или более, твердость становится меньшей, чем 100 ГПа. Когда твердость составляет менее 100 гПа, изнашивание происходит за короткий период времени, следовательно, стабильная обработка в течение длительного периода времени невозможна, и такой скрайбер имеет более короткий срок службы.
[0049] Далее будет подробно описан алмазный режущий инструмент по настоящему изобретению.
Поскольку поликристаллический алмаз, служащий в качестве материала алмазного инструмента по настоящему изобретению, представляет собой вышеописанный поликристаллический алмаз по настоящему изобретению, поликристаллический алмаз является по существу однофазным алмазом (чистота 99% или более) и не содержит металлического связующего, такого как кобальт. По этой причине алмазный режущий инструмент по настоящему изобретению не подвергается неравномерному износу, что происходит в алмазных инструментах, включающих монокристаллы.
[0050] Авторы настоящего изобретения изготовили алмазные режущие инструменты из алмазов, полученных способами, описанными в вышеприведенных ссылках 5-7, и проверили работоспособность данных инструментов. Эта проверка выявила, что алмазы, полученные способами, описанными в данных ссылках, содержат крупные зерна, как описано выше, и, следовательно, участки, соответствующие таким крупным зернам, изнашиваются крайне быстро. В данном случае такие участки вызывают полосчатые царапины или т.п. на обрабатываемом металле, и, следовательно, желаемая обработка невозможна, что представляло собой проблему.
[0051] Авторы изобретения обнаружили, что для обеспечения возможности желаемой стабильной обработки необходимо исключить такие крайне быстро изнашивающиеся участки, и это достигается контролем распределения диаметров зерен спека. Соответственно, изготавливали алмазный инструмент, включающий поликристаллический алмаз с контролируемым распределением диаметров зерен по настоящему изобретению. Изнашивающиеся крайне быстро зерна в данном инструменте исключили и добились желаемой стабильной обработки инструментом в течение длительного периода времени.
[0052] Поликристаллический алмаз, составляющий алмазный режущий инструмент, предпочтительно имеет твердость 100 ГПа или более. Когда поликристаллический алмаз имеет твердость менее 100 ГПа, изнашивание происходит за короткий период времени, и, следовательно, стабильная обработка в течение длительного периода времени невозможна, и такой алмазный инструмент имеет более короткий срок службы.
По этой причине спеченные зерна поликристаллического алмаза делают имеющими средний диаметр зерна более 50 нм и менее 2500 нм и твердость 100 ГПа или более. Когда средний диаметр зерна составляет 50 нм или менее или 2500 нм или более, твердость становится меньшей чем 100 ГПа.
Зерна спека делают имеющими диаметр зерна D90, составляющий (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, чтобы подавить аномальный износ.
[0053] Далее будет подробно описан скрайбирующий ролик по настоящему изобретению.
Поскольку поликристаллический алмаз, служащий в качестве материала скрайбирующего ролика по настоящему изобретению, представляет собой вышеописанный поликристаллический алмаз по настоящему изобретению, поликристаллический алмаз является по существу однофазным алмазом (чистота 99% или более) и не содержит металлического связующего, такого как кобальт. По этой причине скрайбирующий ролик по настоящему изобретению не подвергается неравномерному износу, что происходит в скрайбирующих роликах, включающих монокристаллы.
[0054] Авторы настоящего изобретения изготовили скрайбирующие ролики из поликристаллических алмазов, полученных способами, описанными в вышеприведенных ссылках 5-7, и проверили работоспособность данных скрайбирующих роликов. Эта проверка выявила, что алмазы, полученные способами, описанными в данных ссылках, содержат крупные зерна, как описано выше, и, следовательно, участки, соответствующие таким крупным зернам, изнашиваются крайне быстро.
[0055] Авторы изобретения обнаружили, что для обеспечения возможности желаемой стабильной обработки необходимо исключить такие изнашивающиеся крайне быстро участки, и это достигается контролем распределения диаметров зерен спека. Соответственно, изготавливали скрайбирующий ролик, включающий поликристаллический алмаз с контролируемым распределением диаметров зерен по настоящему изобретению. Изнашивающиеся крайне быстро зерна в данном скрайбирующем ролике исключили и добились желаемой стабильной обработки скрайбирующим роликом в течение длительного периода времени.
[0056] Поликристаллический алмаз, составляющий скрайбирующий ролик, предпочтительно имеет твердость 100 ГПа или более. Когда средний диаметр зерна составляет 50 нм или менее или 2500 нм или более, твердость становится меньшей, чем 100 ГПа. Когда твердость составляет менее 100 ГПа, изнашивание происходит за короткий период времени, и, следовательно, стабильная обработка в течение длительного времени не достигается, и скрайбирующий ролик имеет более короткий срок службы.
Примеры
[0057] Далее настоящее изобретение описывается с отсылкой к примерам, в которых поликристаллический алмаз по настоящему изобретению используют в качестве материалов для водоструйных сопел, гравировальных резцов для глубокой печати, скрайберов, алмазных режущих инструментов и скрайбирующих роликов.
Методы измерения и методы оценки, используемые в примерах и сравнительных примерах, будут описаны.
[0058] <Средний диаметр зерна и диаметр зерна D90>
Диаметры зерна D50 (средние диаметры зерна) и диаметры зерна D90 зерен графита в обожженном графитовом материале и спеченных алмазных зерен в поликристаллическом алмазе в настоящем изобретении получают, проводя анализ изображений на основе фотографических изображений, полученных с помощью просвечивающего электронного микроскопа при увеличении от 100000 до 500000.
Далее данный метод описывается подробно.
Во-первых, распределение диаметров составляющих спек кристаллических зерен определяют на основе изображения, полученного просвечивающим электронным микроскопом. Конкретно, каждое зерно отбирают, отобранное зерно подвергают бинаризации (преобразованию в двоичную форму) и рассчитывают площадь (S) каждого зерна с помощью программы анализа изображений (например, Scion Image, изготовленной корпорацией Scion Corporation). Диаметр (D) каждого зерна рассчитывают как диаметр (D=2√(S/π)) круга, имеющего такую же площадь, как и у зерна.
Во-вторых, полученное таким образом распределение диаметров зерен обрабатывают программой анализа данных (например, Origin, изготовленной корпорацией OriginLab, Mathchad, изготовленной корпорацией Parametric Technology Corporation, или аналогичной) для вычисления диаметра зерна D50 и диаметра зерна D90.
Просвечивающий электронный микроскоп, использованный в описанных ниже примерах и сравнительных примерах, представлял собой H-9000, изготовленный Hitachi, Ltd.
[0059] <Твердость>
Твердость в примерах и сравнительных примерах измеряли индентором Кнупа с нагрузкой измерения 4,9 Н.
< Поверхностная шероховатость >
Поверхностную шероховатость внутренней поверхности канала сопла корректировали посредством регулирования диаметров частиц полирующего состава для полировки внутренней поверхности. Поверхностную шероховатость измеряли в соответствии с JIS B0601 измерителем шероховатости поверхности контактного типа. Поскольку измеряющий щуп нельзя вставить в канал сопла, разрезали и измеряли другое сопло, отдельно изготовленное тем же самым способом.
[ПРИМЕР 1] Водоструйное сопло
[0060] Примеры сопел согласно вариантам осуществления настоящего изобретения описываются ниже.
Примеры 1-1 - 1-3 представляют собой примеры, в которых варьировали шероховатость поверхности. Примеры 1-4 - 1-6 представляют собой примеры, в которых варьировали диаметр канала сопла. Примеры 1-7 - 1-12 представляют собой примеры, в которых варьировали средний диаметр зерна и диаметр зерна D90. Примеры 1-13 - 1-14 представляют собой примеры, в которых увеличивали как средний диаметр зерна, так и диаметр канала сопла.
[Пример 1-1]
[0061] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 370 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 110 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 200 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 290 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 300 мкм, и оно оказалось длительным, составив 160 часов. Для целей сравнения на такое же свойство резки также оценивали сопло, состоящее из спеченного алмаза, имеющего средний диаметр кристаллических зерен 5 мкм (содержащего кобальтовое связующее), и это время составляло примерно 50 часов, которое являлось очень коротким.
[Пример 1-2]
[0062] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 370 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 110 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 200 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 50 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 300 мкм, и оно оказалось длительным, составив 240 часов. Для целей сравнения на такое же свойство резки также оценивали сопло, состоящее из спеченного алмаза, имеющего средний диаметр кристаллических зерен 5 мкм (содержащего кобальтовое связующее), и это время составляло примерно 70 часов, которое являлось очень коротким.
[Пример 1-3]
[0063] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 370 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 110 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 200 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 5 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 300 мкм, и оно оказалось длительным, составив 520 часов. Для целей сравнения на такое же свойство резки также оценивали сопло, состоящее из спеченного алмаза, имеющего средний диаметр кристаллических зерен 5 мкм (содержащего кобальтовое связующее), и это время составляло примерно 90 часов, которое являлось очень коротким.
[Пример 1-4]
[0064] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 370 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 110 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 450 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 290 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 550 мкм, и оно оказалось длительным, составив 165 часов. Для целей сравнения на такое же свойство резки также оценивали сопло, состоящее из спеченного алмаза, имеющего средний диаметр кристаллических зерен 5 мкм (содержащего кобальтовое связующее), и это время составляло примерно 55 часов, которое являлось очень коротким.
[Пример 1-5]
[0065] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 370 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 110 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 50 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 290 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 100 мкм, и оно оказалось длительным, составив 210 часов. Для целей сравнения на такое же свойство резки также оценивали сопло, состоящее из спеченного алмаза, имеющего средний диаметр кристаллических зерен 5 мкм (содержащего кобальтовое связующее), и это время составляло примерно 75 часов, которое являлось очень коротким.
[Пример 1-6]
[0066] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 370 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 110 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 15 мкм, размер сопла 7 мм и поверхностную шероховатость Ra 290 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 30 мкм, и оно оказалось длительным, составив 230 часов. Для целей сравнения на такое же свойство резки также оценивали сопло, состоящее из спеченного алмаза, имеющего средний диаметр кристаллических зерен 5 мкм (содержащего кобальтовое связующее), и это время составляло примерно 80 часов, которое являлось очень коротким.
[Пример 1-7]
[0067] Графит, имеющий средний диаметр зерна 110 нм и диаметр зерна D90 175 нм, что составляет (средний диаметр зерна + 0,7 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 230 нм и диаметр зерна D90 380 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 115 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 200 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 280 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 300 мкм, и оно оказалось длительным, составив 180 часов.
[Пример 1-8]
[0068] Графит, имеющий средний диаметр зерна 95 нм и диаметр зерна D90 135 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 180 нм и диаметр зерна D90 260 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 125 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 200 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 280 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 300 мкм, и оно оказалось длительным, составив 210 часов.
[Пример 1-9]
[0069] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 55 нм и диаметр зерна D90 80 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 105 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 200 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 250 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 300 мкм, и оно оказалось длительным, составив 130 часов.
[Пример 1-10]
[0070] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 9, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 560 нм и диаметр зерна D90 830 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 120 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 200 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 240 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 300 мкм, и оно оказалось длительным, составив 160 часов.
[Пример 1-11]
[0071] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 9, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 1100 нм и диаметр зерна D90 1600 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 112 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 200 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 250 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 300 мкм, и оно оказалось длительным, составив 150 часов.
[Пример 1-12]
[0072] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 9, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 2400 нм и диаметр зерна D90 3500 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 102 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 200 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 270 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 300 мкм, и оно оказалось длительным, составив 110 часов.
[Пример 1-13]
[0073] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 9, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 2400 нм и диаметр зерна D90 3500 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 102 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 1500 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 270 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 2000 мкм, и оно оказалось длительным, составив 210 часов.
[Пример 1-14]
[0074] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 9, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 2400 нм и диаметр зерна D90 3500 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 102 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 3500 мкм, размер сопла 0,7 мм и поверхностную шероховатость Ra 270 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 4500 мкм, и оно оказалось длительным, составив 160 часов.
[Сравнительный Пример 1-1]
[0075] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 370 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 110 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 200 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 350 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 300 мкм, и оно оказалось коротким, составив 95 часов.
[Сравнительный Пример 1-2]
[0076] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 210 нм, что составляет примерно (средний диаметр зерна + 1,1 × средний диаметр зерна), готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 400 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 112 ГПа. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 200 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 290 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 300 мкм, и оно оказалось коротким, составив 90 часов.
[Сравнительный Пример 1-3]
[0077] Графит, имеющий средний диаметр зерна 20 нм и диаметр зерна D90 37 нм, что составляет примерно (средний диаметр зерна + 0,9 × средний диаметр зерна), готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 45 нм и диаметр зерна D90 80 нм. Полученный таким образом поликристаллический алмаз имел твердость 95 ГПа и был слегка мягким. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 200 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 250 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 300 мкм, и оно оказалось коротким, составив 80 часов.
[Сравнительный Пример 1-4]
[0078] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет примерно (средний диаметр зерна + 0,9 × средний диаметр зерна), готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым, в течение длительного периода времени. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 2700 нм и диаметр зерна D90 3900 нм. Полученный таким образом поликристаллический алмаз имел твердость 91 ГПа и был слегка мягким. Из данного поликристаллического материала изготовили сопло, причем сопло имело диаметр канала сопла 200 мкм, размер сопла 5 мм и поверхностную шероховатость Ra 240 нм на поверхности канала сопла. Данное сопло оценивали на свойство водоструйной резки. Определяли время резки, за которое диаметр канала сопла расширялся до 300 мкм, и оно оказалось коротким, составив 85 часов.
[0079] Таблица I показывает величины спеченных зерен поликристаллических алмазов в приведенных выше примерах и сравнительных примерах в показателях среднего диаметра зерна, диаметра зерна D90, коэффициента (K), твердости и срока службы до износа. Следует отметить, что коэффициент (K) определяется приведенным ниже уравнением (1).
Диаметр зерна D90 = средний диаметр зерна + средний диаметр зерна × K …(1).
[0080] Таблица I
Средний диаметр зерна (нм) D90 (нм) Коэффициент Твердость (ГПа) Поверхностная шерохова-тость (нм) Диаметр канала сопла (D) (мкм) Размер сопла (L) (мм) L/D*1) Срок службы (ч) Срок службы Co-содержащего алмаза (ч)
Пример 1-1 200 370 0,85 110 290 200 5 25 160 50
Пример 1-2 200 370 0,85 110 50 200 5 25 240 70
Пример 1-3 200 370 0,85 110 5 200 5 25 520 90
Пример 1-4 200 370 0,85 110 290 450 5 11 165 55
Пример 1-5 200 370 0,85 110 290 50 5 100 210 75
Пример 1-6 200 370 0,85 110 290 15 7 467 230 80
Пример 1-7 230 380 0,65 115 280 200 5 25 180 -
Пример 1-8 180 260 0,44 125 280 200 5 25 210 -
Пример 1-9 55 80 0,45 105 250 200 5 25 130 -
Пример 1-10 560 830 0,48 120 240 200 5 25 160 -
Пример 1-11 1100 1600 0,45 112 250 200 5 25 150 -
Пример 1-12 2400 3500 0,46 102 270 200 5 25 110 -
Пример 1-13 2400 3500 0,46 102 270 1500 5 3 210 -
Пример 1-14 2400 3500 0,46 102 270 3500 0,7 0,2 160 -
Сравнительный пример 1 -1 200 370 0,85 110 350 200 5 25 95 -
Сравнительный пример 1 -2 200 400 1,00 112 290 200 5 25 90 -
Сравнительный пример 1-3 45 80 0,78 95 250 200 5 25 80 -
Сравнительный пример 1-4 2700 3900 0,44 91 240 200 5 25 85 -
*1) L/D = размер сопла (L)/диаметр канала сопла (D)
[ПРИМЕР 2] Гравировальный резец для глубокой печати
[0081] Примеры гравировальных резцов для глубокой печати по настоящему изобретению и сравнительные примеры описываются ниже.
Метод оценки гравировальных резцов будет описан в показателях износостойкости.
<Оценка износостойкости>
Из полученного поликристаллического алмаза изготавливали гравировальный резец, имеющий прилежащий угол 120°. Медную заготовку обрабатывали данным гравировальным резцом, приводимым с частотой 8 кГц, и определяли время обработки, за которое глубина износа на краевой линейной части на одной стороне увеличивалась до 10 мкм. Износостойкость гравировального резца оценивали на основе данного времени обработки, определенного как срок службы гравировального резца до износа.
[Пример 2-1]
[0082] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 370 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 110 ГПа. Гравировальный резец, полученный из данного поликристаллического алмаза, имел длительный срок службы до износа 240 часов. Для целей сравнения оценивали такое же рабочее свойство гравировального резца, состоящего из монокристаллического алмаза, и это время составляло примерно 60 часов, которое являлось крайне коротким.
[Пример 2-2]
[0083] Графит, имеющий средний диаметр зерна 110 нм и диаметр зерна D90 175 нм, что составляет (средний диаметр зерна + 0,7 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 230 нм и диаметр зерна D90 380 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 115 ГПа. Гравировальный резец, полученный из данного поликристаллического алмаза, имел длительный срок службы до износа 280 часов.
[Пример 2-3]
[0084] Графит, имеющий средний диаметр зерна 95 нм и диаметр зерна D90 135 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 180 нм и диаметр зерна D90 260 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 125 ГПа. Гравировальный резец, полученный из данного поликристаллического алмаза, имел длительный срок службы до износа 320 часов.
[Пример 2-4]
[0085] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 55 нм и диаметр зерна D90 80 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 105 ГПа. Из полученного поликристаллического алмаза изготовили гравировальный резец, имеющий прилежащий угол 120°. Данный гравировальный резец, полученный из поликристаллического алмаза, имел длительный срок службы до износа 200 часов.
[Пример 2-5]
[0086] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 4, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 560 нм и диаметр зерна D90 830 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 120 ГПа. Гравировальный резец, изготовленный из данного поликристаллического алмаза, имел длительный срок службы до износа 180 часов.
[Пример 2-6]
[0087] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 5, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 1100 нм и диаметр зерна D90 1600 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 112 ГПа. Гравировальный резец, изготовленный из данного поликристаллического алмаза, имел длительный срок службы до износа 170 часов.
[Пример 2-7]
[0088] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 6, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 2400 нм и диаметр зерна D90 3500 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 102 ГПа. Гравировальный резец, изготовленный из данного поликристаллического алмаза, имел длительный срок службы до износа 150 часов.
[Сравнительный Пример 2-1]
[0089] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 210 нм, что составляет (средний диаметр зерна + 1,1 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 400 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 112 ГПа. Гравировальный резец, изготовленный из данного поликристаллического алмаза, имел короткий срок службы до износа 90 часов.
[Сравнительный Пример 2-2]
[0090] Графит, имеющий средний диаметр зерна 20 нм и диаметр зерна D90 37 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 45 нм и диаметр зерна D90 80 нм. Полученный таким образом поликристаллический алмаз имел твердость 95 ГПа и был слегка мягким. Гравировальный резец, изготовленный из данного поликристаллического алмаза, имел короткий срок службы до износа 85 часов.
[Сравнительный Пример 2-3]
[0091] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 2700 нм и диаметр зерна D90 3900 нм. Полученный таким образом поликристаллический алмаз имел твердость 91 ГПа и был слегка мягким. Гравировальный резец, изготовленный из данного поликристаллического алмаза, имел короткий срок службы до износа 70 часов.
[Сравнительный Пример 2-4]
[0092] Гравировальный резец, изготовленный из монокристаллического алмаза, служащего в качестве материала, испытывали на износостойкость таким же методом, как в примере 1, и данный гравировальный резец имел срок службы до износа 60 часов.
[0093] Таблица II показывает величины спеченных зерен поликристаллических алмазов в приведенных выше примерах и сравнительных примерах в показателях среднего диаметра зерна, диаметра зерна D90, коэффициента (K), твердости и срока службы до износа. Следует отметить, что коэффициент (K) определяется вышеприведенным уравнением (1).
[0094] Таблица II
Средний диаметр зерна (нм) D90 (нм) Коэффициент (K) Твердость (ГПа) Срок службы до износа (ч)
Пример 2-1 200 370 0,85 110 240
Пример 2-2 230 380 0,65 115 280
Пример 2-3 180 260 0,44 125 320
Пример 2-4 55 80 0,45 105 200
Пример 2-5 560 830 0,48 120 180
Пример 2-6 1100 1600 0,45 112 170
Пример 2-7 2400 3500 0,46 102 150
Сравнительный пример 2-1 200 400 1,00 112 90
Сравнительный пример 2-2 45 80 0,78 95 85
Сравнительный пример 2-3 2700 3900 0,44 91 70
Сравнительный пример 2-4 - - - - 60
[Пример 3] Скрайбер
[0095] Примеры скрайберов по настоящему изобретению и сравнительные примеры описываются ниже.
Метод оценки скрайберов будет описан в показателях износостойкости.
<Оценка износостойкости>
4-Точечный скрайбер изготавливали из полученного поликристаллического материала и подвергали его испытанию на износостойкость, где сапфировую подложку размечали скрайбером при нагрузке 50 г, при скорости скрайбирования 1 см/мин и на расстоянии скрайбирования 1 м. Износостойкость скрайбера оценивали на основе потерь на истирание в этом испытании.
[Пример 3-1]
[0096] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 370 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 110 ГПа. Потери на истирание скрайбера, изготовленного из данного поликристаллического алмаза, были крайне незначительными и составляли примерно 1/70 от потерь скрайбера, состоящего из монокристаллического алмаза.
[Пример 3-2]
[0097] Графит, имеющий средний диаметр зерна 110 нм и диаметр зерна D90 175 нм, что составляет (средний диаметр зерна + 0,7 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 230 нм и диаметр зерна D90 380 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 115 ГПа. Потери на истирание скрайбера, изготовленного из данного поликристаллического алмаза, были крайне незначительными и составляли примерно 1/80 от потерь скрайбера, состоящего из монокристаллического алмаза.
[Пример 3-3]
[0098] Графит, имеющий средний диаметр зерна 95 нм и диаметр зерна D90 135 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 180 нм и диаметр зерна D90 260 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 125 ГПа. Потери на истирание скрайбера, изготовленного из данного поликристаллического алмаза, были крайне незначительными и составляли примерно 1/90 от потерь скрайбера, состоящего из монокристаллического алмаза.
[Пример 3-4]
[0099] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 55 нм и диаметр зерна D90 80 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 105 ГПа. Потери на истирание скрайбера, изготовленного из данного поликристаллического алмаза, были крайне незначительными и составляли примерно 1/60 от потерь скрайбера, состоящего из монокристаллического алмаза.
[Пример 3-5]
[0100] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 4, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 560 нм и диаметр зерна D90 830 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 120 ГПа. Потери на истирание скрайбера, изготовленного из данного поликристаллического алмаза, были крайне незначительными и составляли примерно 1/50 от потерь скрайбера, состоящего из монокристаллического алмаза.
[Пример 3-6]
[0101] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 5, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 1100 нм и диаметр зерна D90 1600 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 112 ГПа. Потери на истирание скрайбера, изготовленного из данного поликристаллического алмаза, были крайне незначительными и составляли примерно 1/50 от потерь скрайбера, состоящего из монокристаллического алмаза.
[Пример 3-7]
[0102] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 6, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 2400 нм и диаметр зерна D90 3500 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 102 ГПа. Потери на истирание скрайбера, изготовленного из данного поликристаллического алмаза, были крайне незначительными и составляли примерно 1/40 от потерь скрайбера, состоящего из монокристаллического алмаза.
[Сравнительный Пример 3-1]
[0103] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 210 нм, что составляет (средний диаметр зерна + 1,1 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 400 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 112 ГПа. Потери на истирание скрайбера, изготовленного из данного поликристаллического алмаза, составляли примерно 1/4 от потерь скрайбера, состоящего из монокристаллического алмаза.
[Сравнительный Пример 3-2]
[0104] Графит, имеющий средний диаметр зерна 20 нм и диаметр зерна D90 37 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 45 нм и диаметр зерна D90 80 нм. Полученный таким образом поликристаллический алмаз имел твердость 95 ГПа и был слегка мягким. Потери на истирание скрайбера, изготовленного из данного поликристаллического алмаза, составляли примерно 1/3 от потерь скрайбера, состоящего из монокристаллического алмаза.
[Сравнительный Пример 3-3]
[0105] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 2700 нм и диаметр зерна D90 3900 нм. Полученный таким образом поликристаллический алмаз имел твердость 91 ГПа и был слегка мягким. Потери на истирание скрайбера, изготовленного из данного поликристаллического алмаза, составляли примерно 1/2 от потерь скрайбера, состоящего из монокристаллического алмаза.
[0106] Таблица III показывает величины спеченных зерен поликристаллических алмазов в приведенных выше примерах и сравнительных примерах в показателях среднего диаметра зерна, диаметра зерна D90, коэффициента (K), твердости и потерь на истирание. Следует отметить, что коэффициент (K) определяется вышеприведенным уравнением (1).
[0107] Таблица III
Средний диаметр зерна (нм) D90 (нм) Коэффициент (K) Твердость (ГПа) Потери на истирание
Отношение к монокристаллу (обратное)
Пример 3-1 200 370 0,85 110 68,0
Пример 3-2 230 380 0,65 115 79,3
Пример 3-3 180 260 0,44 125 90,7
Пример 3-4 55 80 8 105 56,7
Пример 3-5 560 830 0,4B 120 51,0
Пример 3-6 1100 1600 0,45 112 48,2
Пример 3-7 2400 3500 0,46 102 42,5
Сравнительный пример 3-1 200 400 1,00 112 3,6
Сравнительный пример 3-2 45 80 0,78 95 3,4
Сравнительный пример 3-3 2700 3900 0,44 91 2,8
[Пример 4] Алмазный режущий инструмент
[0108] Примеры алмазных режущих инструментов согласно вариантам осуществления настоящего изобретения описываются ниже.
Метод оценки алмазных режущих инструментов будет описан в показателях износостойкости.
<Оценка износостойкости (срок службы инструмента)>
Режущие инструменты, имеющие прилегающий угол кромки 90° и кромку R 100 нм, изготавливали из поликристаллических алмазов, полученных в примерах и сравнительных примерах, и данные режущие инструменты использовали для формирования канавок глубиной 5 мкм и шагом 5 мкм в металлической пластине, которая представляла собой медную пластину, на которую был нанесен слой никеля. Износостойкость режущих инструментов оценивали на основе времени (срока службы инструмента), за которое кромки режущих инструментов изнашивались до примерно 1 мкм.
[Пример 4-1]
[0109] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 370 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 110 ГПа. Изготовленный из данного поликристаллического алмаза режущий инструмент обладал очень большим сроком службы 15 часов.
[Пример 4-2]
[0110] Графит, имеющий средний диаметр зерна 110 нм и диаметр зерна D90 175 нм, что составляет (средний диаметр зерна + 0,7 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 230 нм и диаметр зерна D90 380 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 115 ГПа. Изготовленный из данного поликристаллического алмаза режущий инструмент обладал очень большим сроком службы 18 часов.
[Пример 4-3]
[0111] Графит, имеющий средний диаметр зерна 95 нм и диаметр зерна D90 135 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 180 нм и диаметр зерна D90 260 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 125 ГПа. Изготовленный из данного поликристаллического алмаза режущий инструмент обладал очень большим сроком службы 20 часов.
[Пример 4-4]
[0112] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 55 нм и диаметр зерна D90 80 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 105 ГПа. Изготовленный из данного поликристаллического алмаза режущий инструмент обладал очень большим сроком службы 13 часов.
[Пример 4-5]
[0113] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 4, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 560 нм и диаметр зерна D90 830 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 120 ГПа. Изготовленный из данного поликристаллического алмаза режущий инструмент обладал очень большим сроком службы 11 часов.
[Пример 4-6]
[0114] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 5, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 1100 нм и диаметр зерна D90 1600 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 112 ГПа. Изготовленный из данного поликристаллического алмаза режущий инструмент обладал очень большим сроком службы 10 часов.
[Пример 4-7]
[0115] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 6, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 2400 нм и диаметр зерна D90 3500 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 102 ГПа. Изготовленный из данного поликристаллического алмаза режущий инструмент обладал очень большим сроком службы 9 часов.
[Сравнительный Пример 4-1]
[0116] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 210 нм, что составляет (средний диаметр зерна + 1,1 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 400 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 112 ГПа. Изготовленный из данного поликристаллического алмаза режущий инструмент имел срок службы 6 часов.
[Сравнительный Пример 4-2]
[0117] Графит, имеющий средний диаметр зерна 20 нм и диаметр зерна D90 37 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 45 нм и диаметр зерна D90 80 нм. Полученный таким образом поликристаллический алмаз имел твердость 95 ГПа и был слегка мягким. Изготовленный из данного поликристаллического алмаза режущий инструмент имел срок службы 5 часов.
[Сравнительный Пример 4-3]
[0118] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве неалмазного углерода, служащего в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 2700 нм и диаметр зерна D90 3900 нм. Полученный таким образом поликристаллический алмаз имел твердость 91 ГПа и был слегка мягким. Изготовленный из данного поликристаллического алмаза режущий инструмент имел срок службы 4 часа.
[Сравнительный Пример 4-4]
[0119] Инструмент, изготовленный из монокристаллического алмаза, служащего в качестве материала, испытывали на износостойкость таким же методом, как в примере 1, и данный инструмент имел срок службы 3 часа.
[0120] Таблица IV показывает величины спеченных зерен поликристаллических алмазов в приведенных выше примерах и сравнительных примерах в показателях среднего диаметра зерна, диаметра зерна D90, коэффициента (K), твердости и срока службы инструмента. Следует отметить, что коэффициент (K) определяется вышеприведенным уравнением (1).
[0121] Таблица IV
Средний диаметр зерна (нм) Диаметр зерна D90 (нм) Коэффициент (K) Твердость (ГПа) Срок службы инструмента (час)
Пример 4-1 200 370 0,85 110 15
Пример 4-2 230 380 0,65 115 18
Пример 4-3 180 260 0,44 125 20
Пример 4-4 55 80 0,45 105 13
Пример 4-5 560 830 0,48 120 11
Пример 4-6 1100 1600 0,45 112 10
Пример 4-7 2400 3500 0,46 102 9
Сравнительный пример 4-1 200 400 1,00 112 6
Сравнительный 45 80 0,78 95 5
пример 4-2
Сравнительный пример 4-3 2700 3900 0,44 91 4
Сравнительный пример 4-4 - - - - 3
[Пример 5] Скрайбирующий ролик
[0122] Ниже описываются примеры скрайбирующих роликов согласно вариантам осуществления настоящего изобретения.
Метод оценки скрайбирующих роликов будет описан в показателях свойства скрайбирования.
<Оценка свойства скрайбирования>
Скрайбирующие ролики, имеющие диаметр 3 мм, толщину 0,8 мм и прилежащий угол кромки 120°, изготавливали из поликристаллических алмазов, полученных в примерах и сравнительных примерах. Данные скрайбирующие ролики использовали для скрайбирования стеклянных подложек, и свойство скрайбирования скрайбирующих роликов оценивали, определяя пройденные при скрайбировании расстояния.
[Пример 5-1]
[0123] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 370 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 110 ГПа. Полученный в результате поликристаллический материал оценивали в показателях скрайбирования. В результате с данным поликристаллическим алмазом достигали скрайбирования на длинное расстояние, составляющее примерно 300 км.
[Пример 5-2]
[0124] Графит, имеющий средний диаметр зерна 110 нм и диаметр зерна D90 175 нм, что составляет (средний диаметр зерна + 0,7 × средний диаметр зерна) или менее, готовили в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 230 нм и диаметр зерна D90 380 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 115 ГПа. Полученный в результате поликристаллический материал оценивали в показателях скрайбирования. В результате с данным поликристаллическим алмазом достигали скрайбирования на длинное расстояние, составляющее примерно 350 км.
[Пример 5-3]
[0125] Графит, имеющий средний диаметр зерна 95 нм и диаметр зерна D90 135 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 180 нм и диаметр зерна D90 260 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 125 ГПа. Полученный в результате поликристаллический материал оценивали в показателях скрайбирования. В результате с данным поликристаллическим алмазом достигали скрайбирования на длинное расстояние, составляющее примерно 400 км.
[Пример 5-4]
[0126] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 55 нм и диаметр зерна D90 80 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 105 ГПа. Полученный в результате поликристаллический материал оценивали в показателях скрайбирования. В результате с данным поликристаллическим алмазом достигали скрайбирования на длинное расстояние, составляющее примерно 250 км.
[Пример 5-5]
[0127] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 4, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 560 нм и диаметр зерна D90 830 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 120 ГПа. Полученный в результате поликристаллический материал оценивали в показателях скрайбирования. В результате с данным поликристаллическим алмазом достигали скрайбирования на длинное расстояние, составляющее примерно 230 км.
[Пример 5-6]
[0128] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 5, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 1100 нм и диаметр зерна D90 1600 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 112 ГПа. Полученный в результате поликристаллический материал оценивали в показателях скрайбирования. В результате с данным поликристаллическим алмазом достигали скрайбирования на длинное расстояние, составляющее примерно 210 км.
[Пример 5-7]
[0129] Графит, имеющий средний диаметр зерна 30 нм и диаметр зерна D90 40 нм, что составляет (средний диаметр зерна + 0,5 × средний диаметр зерна) или менее, готовили в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз в течение более длительного времени, чем в примере 6, при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 2400 нм и диаметр зерна D90 3500 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 102 ГПа. Полученный в результате поликристаллический материал оценивали в показателях скрайбирования. В результате с данным поликристаллическим алмазом достигали скрайбирования на длинное расстояние, составляющее примерно 190 км.
[Сравнительный Пример 5-1]
[0130] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 210 нм, что составляет (средний диаметр зерна + 1,1 × средний диаметр зерна) или менее, готовили в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 200 нм и диаметр зерна D90 400 нм. Полученный таким образом поликристаллический алмаз имел крайне высокую твердость 112 ГПа. Полученный в результате поликристаллический материал оценивали в показателях скрайбирования. В результате с данным поликристаллическим алмазом проводили скрайбирование только на короткое расстояние, составляющее примерно 120 км.
[Сравнительный Пример 5-2]
[0131] Графит, имеющий средний диаметр зерна 20 нм и диаметр зерна D90 37 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 45 нм и диаметр зерна D90 80 нм. Полученный таким образом поликристаллический алмаз имел твердость 95 ГПа и был слегка мягким. Полученный в результате поликристаллический материал оценивали в показателях скрайбирования. В результате с данным поликристаллическим алмазом проводили скрайбирование только на короткое расстояние, составляющее примерно 110 км.
[Сравнительный Пример 5-3]
[0132] Графит, имеющий средний диаметр зерна 100 нм и диаметр зерна D90 180 нм, что составляет (средний диаметр зерна + 0,9 × средний диаметр зерна) или менее, готовили в качестве исходного материала для алмаза. Данный материал непосредственно превращали и спекали в алмаз при давлении, при котором алмаз является термодинамически устойчивым. В результате получали поликристаллический алмаз, имеющий средний диаметр зерна 2700 нм и диаметр зерна D90 3900 нм. Полученный таким образом поликристаллический алмаз имел твердость 91 ГПа. Полученный в результате поликристаллический материал оценивали в показателях скрайбирования. В результате с данным поликристаллическим алмазом проводили скрайбирование только на короткое расстояние, составляющее примерно 90 км.
[Сравнительный Пример 5-4]
[0133] Скрайбирующий ролик изготавливали из монокристаллического алмаза и оценивали в показателях скрайбирования. В результате с данным монокристаллическим алмазом проводили скрайбирование на короткое расстояние, составляющее только 100 км.
[Сравнительный Пример 5-5]
[0134] Скрайбирующий ролик изготавливали из спеченной алмазной прессовки с металлическим связующим и оценивали в показателях скрайбирования. В результате с данной спеченной алмазной прессовкой проводили скрайбирование на короткое расстояние, составляющее только 6 км.
[0135] Таблица V показывает величины спеченных зерен поликристаллических алмазов в приведенных выше примерах и сравнительных примерах в показателях среднего диаметра зерна, диаметра зерна D90, коэффициента твердости и срока службы инструмента. Следует отметить, что коэффициент (K) определяется вышеприведенным уравнением (1).
[0136] Таблица V
Средний диаметр зерна (нм) Диаметр зерна D90 (нм) Коэффициент (K) Твердость (ГПа) Расстояние скрайбирования (км)
Пример 5-1 200 370 0,85 110 300
Пример 5-2 230 380 0,65 115 350
Пример 5-3 180 260 0,44 125 400
Пример 5-4 55 80 0,45 105 250
Пример 5-5 560 830 0,48 120 230
Пример 5-6 1100 1600 0,45 112 210
Пример 5-7 2400 3500 0,46 102 190
Сравнительный 200 400 1,00 112 120
пример 5-1
Сравнительный пример 5-2 45 80 0,78 95 110
Сравнительный пример 5-3 2700 3900 0,44 91 90
Сравнительный пример 5-4 - - - - 100
Сравнительный пример 5-5 - - - - 6
Промышленная применимость
[0137] Поликристаллический алмаз, используемый в настоящем изобретении, менее склонен к неравномерному износу и делает возможной стабильную обработку в течение длительного периода времени по сравнению с обычными монокристаллическими алмазами и спеченными алмазными прессовками, содержащими металлические связующие. Поэтому такой поликристаллический алмаз можно подходящим образом использовать в водоструйных соплах, гравировальных резцах для глубокой печати, скрайберах, алмазном режущем инструменте и скрайбирующих роликах.
[0138] Водоструйное сопло по настоящему изобретению может обеспечить стабильную ширину резания в течение длительного периода времени по сравнению с обычными соплами, и, следовательно, его можно подходящим образом использовать в качестве сопла для водяной струи, предназначенного для выталкивания содержащей жесткие частицы (оксида алюминия или т.п.) текучей среды под высоким давлением, чтобы посредством этого резать или обрабатывать заготовки.

Claims (13)

1. Поликристаллический алмаз, содержащий спеченные алмазные зерна, имеющие средний диаметр зерна более 50 нм и менее 2500 нм, чистоту 99% или более и диаметр зерна D90, составляющий (средний диаметр зерна + средний диаметр зерна × 0,9) или менее, причем поликристаллический алмаз обладает пластинчатой структурой и имеет твердость 100 ГПа или более.
2. Поликристаллический алмаз по п. 1, причем спеченные алмазные зерна имеют диаметр зерна D90, составляющий (средний диаметр зерна + средний диаметр зерна × 0,7) или менее.
3. Поликристаллический алмаз по п. 1, причем спеченные алмазные зерна имеют диаметр зерна D90, составляющий (средний диаметр зерна + средний диаметр зерна × 0,5) или менее.
4. Водоструйное сопло, содержащее поликристаллический алмаз по любому из пп. 1-3, причем внутренняя поверхность сформированного в поликристаллическом алмазе канала сопла, через который проходит водоструйная текучая среда, имеет поверхностную шероховатость Ra в 300 нм или менее.
5. Водоструйное сопло по п. 4, причем сформированный в поликристаллическом алмазе канал сопла имеет диаметр 10 мкм или более и 500 мкм или менее.
6. Водоструйное сопло по п. 4, причем отношение (L/D) размера сопла (L) к диаметру сформированного в поликристаллическом алмазе канала сопла (D) составляет от 10 до 500.
7. Водоструйное сопло по п. 4 или 5, причем сформированный в поликристаллическом алмазе канал сопла имеет диаметр более чем 500 мкм и 5000 мкм или менее.
8. Водоструйное сопло по п. 4, причем отношение (L/D) размера сопла (L) к диаметру сформированного в поликристаллическом алмазе канала сопла (D) составляет от 0,2 до 10.
9. Гравировальный резец для глубокой печати, содержащий поликристаллический алмаз по любому из пп. 1-3.
10. Скрайбер, содержащий поликристаллический алмаз по любому из пп. 1-3.
11. Скрайбер по п. 10, причем режущая кромка на наконечнике скрайбера имеет форму многоугольника, включающего три или более грани, и эти грани многоугольника, частично или полностью, используются в качестве лезвия.
12. Алмазный режущий инструмент, содержащий поликристаллический алмаз по любому из пп. 1-3.
13. Скрайбирующий ролик, содержащий поликристаллический алмаз по любому из пп. 1-3.
RU2014116561/05A 2008-02-06 2009-02-05 Поликристаллический алмаз RU2581397C2 (ru)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2008-026505 2008-02-06
JP2008026505 2008-02-06
JP2008118377 2008-04-30
JP2008118378 2008-04-30
JP2008118375 2008-04-30
JP2008-118378 2008-04-30
JP2008-118375 2008-04-30
JP2008118376 2008-04-30
JP2008-118376 2008-04-30
JP2008-118377 2008-04-30
JP2008244329 2008-09-24
JP2008-244329 2008-09-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2009142848/05A Division RU2522028C2 (ru) 2008-02-06 2009-02-05 Поликристаллический алмаз

Publications (2)

Publication Number Publication Date
RU2014116561A RU2014116561A (ru) 2015-10-27
RU2581397C2 true RU2581397C2 (ru) 2016-04-20

Family

ID=40952203

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2014116561/05A RU2581397C2 (ru) 2008-02-06 2009-02-05 Поликристаллический алмаз
RU2009142848/05A RU2522028C2 (ru) 2008-02-06 2009-02-05 Поликристаллический алмаз

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2009142848/05A RU2522028C2 (ru) 2008-02-06 2009-02-05 Поликристаллический алмаз

Country Status (10)

Country Link
US (2) US20100146865A1 (ru)
EP (1) EP2239228B1 (ru)
JP (1) JP5466506B2 (ru)
KR (1) KR101604730B1 (ru)
CN (2) CN101679041B (ru)
ES (1) ES2816179T3 (ru)
PL (1) PL2239228T3 (ru)
RU (2) RU2581397C2 (ru)
TW (1) TWI455881B (ru)
WO (1) WO2009099130A1 (ru)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0700984D0 (en) * 2007-01-18 2007-02-28 Element Six Ltd Polycrystalline diamond elements having convex surfaces
CN101679041B (zh) 2008-02-06 2014-01-29 住友电气工业株式会社 多晶金刚石
SA110310235B1 (ar) 2009-03-31 2014-03-03 بيكر هوغيس انكوربوريتد طرق لترابط مناضد التقطيع مسبقة التشكيل بركائز عامل القطع وعامل القطع المكونة بهذه العمليات
JP5416507B2 (ja) * 2009-08-07 2014-02-12 住友電気工業株式会社 回転切削工具
JP5397403B2 (ja) * 2011-03-31 2014-01-22 三星ダイヤモンド工業株式会社 スクライビングホイールおよびスクライブ装置
JP2012250352A (ja) * 2011-05-31 2012-12-20 Mitsuboshi Diamond Industrial Co Ltd スクライビングホイールおよびスクライブ装置
CN103732535B (zh) 2011-07-28 2016-07-06 住友电气工业株式会社 多晶金刚石及其制造方法
JP5891634B2 (ja) * 2011-07-28 2016-03-23 住友電気工業株式会社 多結晶ダイヤモンドおよびその製造方法
JP5891636B2 (ja) * 2011-07-28 2016-03-23 住友電気工業株式会社 多結晶ダイヤモンドおよびその製造方法
JP5891635B2 (ja) * 2011-07-28 2016-03-23 住友電気工業株式会社 多結晶ダイヤモンドおよびその製造方法
US9193038B2 (en) 2011-12-09 2015-11-24 Smith International Inc. Method for forming a cutting element and downhole tools incorporating the same
US9254554B1 (en) 2012-02-16 2016-02-09 Us Synthetic Corporation Polycrystalline diamond compact including substantially single-phase polycrystalline diamond body, methods of making same, and applications therefor
JP5468100B2 (ja) * 2012-03-26 2014-04-09 オグラ宝石精機工業株式会社 スタイラス
US20140013913A1 (en) * 2012-07-11 2014-01-16 Smith International, Inc. Thermally stable pcd with pcbn transition layer
US20140110180A1 (en) * 2012-10-22 2014-04-24 Smith International, Inc. Ultra-hard material cutting elements, methods of forming the same and bits incorporating the same
US9808909B2 (en) 2014-01-20 2017-11-07 Kmt Waterjet Systems Inc. Orifice for a waterjet cutter
JP6390151B2 (ja) 2014-04-30 2018-09-19 住友電気工業株式会社 複合焼結体
JP6390152B2 (ja) 2014-04-30 2018-09-19 住友電気工業株式会社 複合焼結体
CN106163652B (zh) * 2014-10-11 2019-02-01 河南飞孟金刚石工业有限公司 一种表面粗糙金刚石的合成方法
JP6112177B1 (ja) 2015-10-30 2017-04-12 住友電気工業株式会社 複合多結晶体およびその製造方法
JP6741016B2 (ja) * 2015-10-30 2020-08-19 住友電気工業株式会社 複合多結晶体
CN107108231B (zh) * 2015-10-30 2021-06-25 住友电气工业株式会社 复合多晶体
ES2821651T3 (es) * 2015-10-30 2021-04-27 Sumitomo Electric Industries Compuesto policristalino
CN105500120B (zh) * 2015-11-25 2018-05-22 厦门市三安光电科技有限公司 一种晶圆研磨的控制方法
CN105561882A (zh) * 2015-12-28 2016-05-11 河南广度超硬材料有限公司 一种多晶金刚石的制造方法
JP6746128B2 (ja) * 2016-05-24 2020-08-26 三星ダイヤモンド工業株式会社 カッターホイール
CN106761429A (zh) * 2016-12-07 2017-05-31 四川大学 一种金刚石钻齿
CN106625896A (zh) * 2017-01-11 2017-05-10 四川大学 一种新型超硬刀具
GB201802112D0 (en) * 2018-02-09 2018-03-28 Element Six Uk Ltd Tool cutting element
JP6521206B1 (ja) * 2018-10-01 2019-05-29 住友電気工業株式会社 ダイヤモンド多結晶体、ダイヤモンド多結晶体を備える工具及びダイヤモンド多結晶体の製造方法
CN111635231B (zh) * 2020-06-05 2021-12-17 四川大学 一种多晶金刚石透明陶瓷的制备方法
GB2609893A (en) * 2021-07-07 2023-02-22 Element Six Uk Ltd Polycrystalline diamond scriber cutting wheel and its method of construction
CN115228373A (zh) * 2022-05-09 2022-10-25 蒋孟瑶 一种多晶金刚石及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU368937A1 (ru) * 1971-02-05 1973-02-08 Всесоюзный научно исследовательский , проектный инстд тугоплавких металлов , твердых сплавов ЯНАЯ''tШ

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2090371A1 (en) * 1992-03-27 1993-09-28 William Frank Banholzer Water jet mixing tubes used in water jet cutting devices and method of preparation thereof
CN1036061C (zh) * 1993-08-23 1997-10-08 复旦大学 一种从石墨或含碳固体物制备金刚石的方法
JP3832923B2 (ja) 1997-03-28 2006-10-11 株式会社ディスコ 洗浄装置
JPH10310838A (ja) * 1997-05-12 1998-11-24 Sumitomo Electric Ind Ltd 超硬質複合部材およびその製造方法
JP2890193B1 (ja) 1998-04-13 1999-05-10 株式会社 ディアックス ダイヤモンドスタイラス
JP2000061897A (ja) 1998-08-20 2000-02-29 Osaka Diamond Ind Co Ltd ウォータージェット用ノズル
JP3550587B2 (ja) 2000-12-18 2004-08-04 独立行政法人 科学技術振興機構 微粒ダイヤモンド焼結体の製造方法
JP2003025118A (ja) 2001-07-13 2003-01-29 Allied Material Corp 切削用ダイヤモンド工具
JP3958040B2 (ja) * 2001-12-17 2007-08-15 京セラ株式会社 セラミック製ノズルの製造方法
KR100609756B1 (ko) 2001-12-18 2006-08-08 미쓰보시 다이야몬도 고교 가부시키가이샤 팁용 홀더와 그 제조방법 및 그 팁용 홀더를구비하는 스크라이브 장치와 수동 커터
JP2003192435A (ja) * 2001-12-25 2003-07-09 Kyocera Corp セラミック製ノズル
JP4275896B2 (ja) * 2002-04-01 2009-06-10 株式会社テクノネットワーク四国 ダイヤモンド多結晶体およびその製造方法
JP4203900B2 (ja) * 2002-10-11 2009-01-07 住友電気工業株式会社 ダイヤモンド多結晶体およびその製造方法
JP3855029B2 (ja) 2002-11-15 2006-12-06 独立行政法人科学技術振興機構 透光性超微粒ダイヤモンド焼結体の製造法
JP3992595B2 (ja) 2002-11-15 2007-10-17 独立行政法人科学技術振興機構 高純度高硬度超微粒ダイヤモンド焼結体の製造法
JP2004181591A (ja) 2002-12-04 2004-07-02 Sanko Seiki Kk 単結晶ダイヤモンド切削工具
GB0303860D0 (en) 2003-02-19 2003-03-26 Element Six Ltd CVD diamond in wear applications
JP4252394B2 (ja) 2003-07-30 2009-04-08 並木精密宝石株式会社 ダイヤモンドスクライバー
EP2641868B1 (en) * 2003-12-11 2018-04-11 Sumitomo Electric Industries, Ltd. High-hardness conductive diamond polycrystalline body and method for producing same
JP4365251B2 (ja) 2004-03-31 2009-11-18 旭ダイヤモンド工業株式会社 ダイヤモンドスクライバー及びダイヤモンドスクライバーの製造方法
JP2006007677A (ja) 2004-06-29 2006-01-12 National Institute For Materials Science ダイヤモンド多結晶体スクライバー
JP2006123137A (ja) 2004-11-01 2006-05-18 Sadao Takeuchi 単結晶ダイヤモンド工具
JP5048922B2 (ja) 2004-12-07 2012-10-17 株式会社Rosecc 超高圧水用ノズルの製造方法
JP5076300B2 (ja) * 2005-10-04 2012-11-21 住友電気工業株式会社 高硬度ダイヤモンド多結晶体
JP5013156B2 (ja) * 2005-07-21 2012-08-29 住友電気工業株式会社 高硬度ダイヤモンド多結晶体およびその製造方法
US9227166B2 (en) * 2005-07-21 2016-01-05 Sumitomo Electric Industries, Ltd. High-hardness polycrystalline diamond and method of preparing the same
JP2007031200A (ja) 2005-07-27 2007-02-08 Allied Material Corp カッターホイール
CN101062472A (zh) * 2006-04-27 2007-10-31 彭国强 高透明度优质细-微细粒人造金刚石的生产工艺
CN101679041B (zh) 2008-02-06 2014-01-29 住友电气工业株式会社 多晶金刚石

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU368937A1 (ru) * 1971-02-05 1973-02-08 Всесоюзный научно исследовательский , проектный инстд тугоплавких металлов , твердых сплавов ЯНАЯ''tШ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HITOSHI SUMIYA et al., High Pressure Synthesis of High-Purity Polycrystalline Diamonds by Direct Conversion from Various Carbon Materials and their Characterization, "The Review of High Pressure Science and Technology", 2006, vol.16, no.3, pp.207-215. *

Also Published As

Publication number Publication date
CN101679041A (zh) 2010-03-24
TW200951069A (en) 2009-12-16
CN103752220A (zh) 2014-04-30
RU2009142848A (ru) 2012-03-20
JPWO2009099130A1 (ja) 2011-05-26
US9630853B2 (en) 2017-04-25
US20150274535A1 (en) 2015-10-01
RU2522028C2 (ru) 2014-07-10
JP5466506B2 (ja) 2014-04-09
EP2239228A1 (en) 2010-10-13
TWI455881B (zh) 2014-10-11
EP2239228B1 (en) 2020-06-24
PL2239228T3 (pl) 2020-11-30
EP2239228A4 (en) 2015-09-30
KR101604730B1 (ko) 2016-03-18
ES2816179T3 (es) 2021-03-31
CN101679041B (zh) 2014-01-29
KR20100110721A (ko) 2010-10-13
RU2014116561A (ru) 2015-10-27
US20100146865A1 (en) 2010-06-17
WO2009099130A1 (ja) 2009-08-13

Similar Documents

Publication Publication Date Title
RU2581397C2 (ru) Поликристаллический алмаз
US9403215B2 (en) Cutting tool and method for producing same
EP2879164B1 (en) Dicing device and dicing method
CN102341214B (zh) 玻璃基板及其制造方法
KR101773267B1 (ko) 그린 시트 절단날
CN107262751B (zh) 刀具
JP2011126754A (ja) ダイヤモンド被覆切断刃
JP4711691B2 (ja) 表面被覆部材および切削工具
JP5871353B1 (ja) 表面被覆切削工具
CN102626853B (zh) 金刚石包覆切削工具
KR101891189B1 (ko) 연마 공구 및 그 제조방법 그리고 연마물의 제조방법
TW202012309A (zh) 鑽石多晶體及具備其之工具
TWI690488B (zh) 鑽石多晶體及具備其之工具
JP2008238314A (ja) 切削工具およびその製造方法並びに切削方法
JP2006205300A (ja) 表面被覆部材および切削工具
JP2017064840A (ja) ダイヤモンド被覆超硬合金製切削工具
KR20150111476A (ko) 절삭공구용 초경합금 소결체
JP2004255482A (ja) 被覆エンドミル
WO2022264782A1 (ja) 刃物および刃物の製造方法
JP2022173105A (ja) 刃物および刃物の製造方法
JP2004314185A (ja) 被覆超硬ドリル
JP2004277782A (ja) 被覆摺動部材
Miletic et al. Precision grinding with CVD diamond coated dicing blades
KR20160015849A (ko) Lcd 패널의 절단을 위한 다이아몬드 피복 스크라이빙휠