JP5891634B2 - 多結晶ダイヤモンドおよびその製造方法 - Google Patents

多結晶ダイヤモンドおよびその製造方法 Download PDF

Info

Publication number
JP5891634B2
JP5891634B2 JP2011165744A JP2011165744A JP5891634B2 JP 5891634 B2 JP5891634 B2 JP 5891634B2 JP 2011165744 A JP2011165744 A JP 2011165744A JP 2011165744 A JP2011165744 A JP 2011165744A JP 5891634 B2 JP5891634 B2 JP 5891634B2
Authority
JP
Japan
Prior art keywords
diamond
polycrystalline diamond
graphite
sims
gpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011165744A
Other languages
English (en)
Other versions
JP2013028495A (ja
Inventor
和寛 池田
和寛 池田
桂子 有元
桂子 有元
山本 佳津子
佳津子 山本
角谷 均
均 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011165744A priority Critical patent/JP5891634B2/ja
Priority to PCT/JP2012/068930 priority patent/WO2013015347A1/ja
Priority to CN201280037414.0A priority patent/CN103732535B/zh
Priority to EP12817420.8A priority patent/EP2738139B1/en
Priority to US14/235,758 priority patent/US9850135B2/en
Publication of JP2013028495A publication Critical patent/JP2013028495A/ja
Application granted granted Critical
Publication of JP5891634B2 publication Critical patent/JP5891634B2/ja
Priority to US15/131,971 priority patent/US9878914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、多結晶ダイヤモンドおよびその製造方法に関し、特に、ナノサイズの結晶粒を持つ多結晶ダイヤモンド(以下、「ナノ多結晶ダイヤモンド」と称する)およびその製造方法に関する。
近年、ナノ多結晶ダイヤモンド焼結体が、天然の単結晶ダイヤモンドを超える硬さを有し、工具として優れた性質を備えるということが明らかになってきた。該ナノ多結晶ダイヤモンド焼結体の硬度は、ヌープ硬度でおよそ120〜130GPa程度である。このような多結晶ダイヤモンドの一例が、たとえば特開2003−292397号公報やDiamond and Related Materials,15 (2006) p.1576〜1579に記載されている。
その一方で、微小工具や耐摩耗性の高い工具へのニーズは高まっており、より高硬度のダイヤモンド材料が望まれるようになってきている。
特開2003−292397号公報
Diamond and Related Materials,15 (2006) p.1576〜1579
ところで、単結晶ダイヤモンドには、いわゆるIIa型ダイヤモンドやIb型ダイヤモンドと呼ばれるものがある。IIa型ダイヤモンドは、不純物である窒素を殆ど含まない高純度なダイヤモンドであり、Ib型ダイヤモンドは、不純物である窒素を0.1%程度含む不純物含有ダイヤモンドである。これらの硬度を比較すると、IIa型ダイヤモンドの方が、Ib型ダイヤモンドよりも硬くなることが知られている。このことから、単結晶ダイヤモンド中の不純物量を減じて高純度化することで、該単結晶ダイヤモンドの硬度を高くすることができるものと推察される。
ナノ多結晶ダイヤモンドの場合も単結晶ダイヤモンドの場合と同様であると考えられるが、ナノ多結晶ダイヤモンドの場合には、単結晶ダイヤモンドの場合と同様の高純度化を行うことが困難である。その理由は、ナノ多結晶ダイヤモンドの合成工程において、通常はSi、B、H,Nを代表とする多くの不純物がダイヤモンド中に混入するからである。
たとえば黒鉛を直接ダイヤモンドに変換することでナノ多結晶ダイヤモンドを作製することができるが、市販の黒鉛はコークスやピッチから作製されるため、黒鉛中への不純物の取込みを回避するのは困難である。そのため、当該方法で合成されたナノ多結晶ダイヤモンド中にも不純物が取り込まれてしまう。また、たとえ黒鉛の高純度化を行ったとしても、現状の技術では、黒鉛の製造中に混入する不純物を除去するのは困難である。この除去しきれなかった不純物が、合成後のナノサイズのダイヤモンド結晶の結晶粒界に偏析し、ダイヤモンド結晶が結晶粒界で滑りやすくなる。このことが、ナノ多結晶ダイヤモンドの硬度を高める際の障害となる。以上のように、従来の技術では、ナノ多結晶ダイヤモンドの高純度化および高硬度化には限界があった。
本発明は、上記のような課題に鑑みなされたものであり、高純度かつ高硬度のナノ多結晶ダイヤモンドおよびその製造方法を提供することを目的とする。
本発明に係る多結晶ダイヤモンドは、従来にないレベルの高純度なダイヤモンドである。具体的には、多結晶ダイヤモンドは、炭素と、該炭素以外の複数の不純物とで構成される。複数の不純物の濃度は、それぞれ0.01質量%以下であり、多結晶ダイヤモンドの結晶粒径(最大長さ)は500nm以下である。
上記多結晶ダイヤモンドは、全体にわたって不純物濃度の極めて低いものである。本発明の多結晶ダイヤモンドには、従来のような不純物の偏析も見られず、いずれの部分の不純物濃度も極めて低いものである。また、結晶粒界における不純物の濃度も、0.01質量%以下程度である。このように不純物濃度が極めて低いことから、該多結晶ダイヤモンドのヌープ硬度も高く、たとえばヌープ硬度は150GPa以上である。
上記複数の不純物は、水素、酸素、窒素、シリコンおよび硼素を含む。多結晶ダイヤモンド中の水素の濃度は、例えば2×1018/cm以下程度であり、酸素の濃度は、例えば2×1017/cm以下程度であり、窒素の濃度は、例えば4×1016/cm以下程度であり、シリコンの濃度は、例えば1×1016/cm以下程度であり、硼素の濃度は、例えば2×1015/cm以下程度である。
上記多結晶ダイヤモンドは、1500℃以上の温度で99.99%以上の純度の炭化水素から直接熱分解された黒鉛を焼結することで作製可能である。
本発明に係る多結晶ダイヤモンドの製造方法は、不純物の濃度が0.01質量%以下である黒鉛を準備する工程と、上記黒鉛に超高圧、高温の熱処理を施して該黒鉛をダイヤモンドに変換する工程とを備える。
上記黒鉛をダイヤモンドに変換する工程では、焼結助剤や触媒を添加することなく、高温高圧下で黒鉛をダイヤモンドに変換することが好ましい。また、上記黒鉛を準備する工程は、真空チャンバ内に導入した99.99%以上の純度の炭化水素ガスを1500℃以上の温度で熱分解して基材上に黒鉛を形成する工程を含むものであってもよい。さらに、黒鉛をダイヤモンドに変換する工程では、まず上記基材上に形成された黒鉛を真空チャンバ内に搬入し、該真空チャンバ内で黒鉛に熱処理を施し、次に、熱処理を施した黒鉛を、12GPa以上の高圧力、1500℃以上の高温条件下に保つことで、ダイヤモンドを合成可能である。
上記黒鉛中の不純物としては、たとえば水素、酸素、窒素、シリコンおよび硼素を挙げることができる。これらの不純物の濃度は、理論的には、変換後の多結晶ダイヤモンドに含まれる不純物濃度と同濃度である。
本発明に係る多結晶ダイヤモンドでは、該多結晶ダイヤモンドに含まれる不純物の濃度が0.01質量%以下であるので、従来にない高硬度のナノ多結晶ダイヤモンドとなる。
本発明に係る多結晶ダイヤモンドの製造方法では、不純物の濃度が0.01質量%以下である黒鉛に熱処理を施してダイヤモンドに変換するので、従来にない高純度かつ高硬度のナノ多結晶ダイヤモンドを作製することができる。
本発明の1つの実施の形態におけるナノ多結晶ダイヤモンドを、基材上に形成した黒鉛から作製している様子を示す斜視図である。 本発明の1つの実施の形態におけるナノ多結晶ダイヤモンド中の不純物分布の一例を示す図である。 従来の高純度黒鉛材料を使用して作製されたナノ多結晶ダイヤモンド中の不純物分布の一例を示す図である。
以下、本発明の実施の形態について図1〜図3を用いて説明する。
本実施の形態におけるナノ多結晶ダイヤモンドは、不純物量が極めて少ないものである。ここで、本明細書において「不純物」とは、炭素以外の元素をいう。典型的には、ナノ多結晶ダイヤモンドには複数の不可避不純物が含まれるが、本実施の形態におけるナノ多結晶ダイヤモンドでは、各不純物の濃度が、それぞれ0.01質量%以下である。
図1に示すように、本実施の形態のナノ多結晶ダイヤモンド1は、基材2上に形成される。該ナノ多結晶ダイヤモンド1は、基材2上に形成された黒鉛10に熱処理を施すことで作製可能である。黒鉛10は、一体の固体であり、結晶化部分を含む。図1の例では、多結晶ダイヤモンド1および黒鉛10は、平板状の形状を有しているが、任意の形状、厚みとすることが考えられる。
黒鉛中に混入する不純物としては、たとえば窒素、水素、酸素、硼素、シリコン、結晶粒の成長を促進するような遷移金属などが挙げられる。窒素は、結晶粒界への析出量が多く、また該結晶粒界における濃度も、従来例では、通常は数100ppmに及ぶ。これによって結晶粒界で結晶粒が滑り易くなる。水素については、結晶粒界でのsp2結合によって安定するため、結果的に黒鉛の硬度を低下させる。従来の黒鉛を用いて作製したダイヤモンド焼結体では、上述のように黒鉛の原料がコークスやピッチであるため、高純度化処理を行っているにもかかわらず、必ず数100ppm程度の量の水素が黒鉛に混入してしまう。酸素は、炭素と反応しやすい上、硼素と酸化物を形成し、局所的な結晶粒の成長を促す。また、窒素と硼素は、結晶粒界での結晶粒の滑りを引き起こし、硬度を本質的な限界硬さにまで高める際の障害となる。
本実施の形態のナノ多結晶ダイヤモンドを作製するために使用する黒鉛では、窒素、水素、酸素、硼素、シリコン、遷移金属等の不純物量が、0.01質量%以下である。つまり、黒鉛中の不純物濃度が、SIMS(Secondary Ion Mass Spectrometry)分析での検出限界以下程度である。また、遷移金属については、黒鉛中の濃度が、ICP(Inductively Coupled Plasma)分析やSIMS分析における検出限界以下程度である。
このように、黒鉛中の不純物量をSIMS分析やICP分析での検出限界レベルにまで低下させることで、該黒鉛を用いてダイヤモンドを作製した場合に、極めて高純度で高硬度のダイヤモンドを作製することができる。なお、SIMS分析やICP分析での検出限界より若干多い不純物を含む黒鉛を用いた場合でも、従来と比較すると格段に優れた特性のダイヤモンドが得られる。
本実施の形態のナノ多結晶ダイヤモンドでは、全体にわたって不純物濃度が極めて低くなる。また、該ナノ多結晶ダイヤモンドには、従来のような不純物の偏析も見られず、いずれの部分の不純物濃度も極めて低い。また、結晶粒界における不純物の濃度も、0.01質量%以下程度である。このように結晶粒界における不純物濃度が極めて低いことから、結晶粒界での結晶粒の滑りを抑制することができ、結晶粒同士の結合を強化することができる。それにより、多結晶ダイヤモンドのヌープ硬度を高くすることができる。また、結晶粒の異常成長をも効果的に抑制することができ、結晶粒のサイズのバラツキも低減することができる。
本実施の形態のナノ多結晶ダイヤモンドが、たとえば、水素、酸素、窒素、シリコンおよび硼素を含む場合、ナノ多結晶ダイヤモンド中の水素の濃度は2×1018/cm以下程度であり、酸素の濃度は2×1017/cm以下程度であり、窒素の濃度は4×1016/cm以下程度であり、シリコンの濃度は1×1016/cm以下程度であり、硼素の濃度は2×1015/cm以下程度である。好ましくは、ナノ多結晶ダイヤモンド中の水素の濃度は5×1017/cm以下程度であり、酸素の濃度は1×1017/cm以下程度であり、窒素の濃度は1×1016/cm以下程度であり、シリコンの濃度は5×1015/cm以下程度であり、硼素の濃度は7×1014/cm以下程度である。
本実施の形態のナノ多結晶ダイヤモンドの結晶粒径(最大長さ)は、500nm以下である。より詳しくは、ナノ多結晶ダイヤモンドの結晶粒径(最大長さ)は、10〜100nm程度である。
図2に、本発明の1つの実施の形態におけるナノ多結晶ダイヤモンド中の不純物分布の一例を示す。図3に、比較例として、従来の高純度黒鉛材料を使用して作製したナノ多結晶ダイヤモンド中の不純物分布の一例を示す。
図2および図3に示されるように、いずれのダイヤモンドの場合も、ダイヤモンドの深さ方向の各不純物の濃度のばらつきは比較的小さいが、本実施の形態におけるナノ多結晶ダイヤモンド中の不純物量が極めて低い値となっていることがわかる。このようにナノ多結晶ダイヤモンド中の不純物量を低くできるので、後述する各実施例に記載のように、ナノ多結晶ダイヤモンドのヌープ硬度をたとえば150GPa以上程度と極めて高くすることができる。
黒鉛のかさ密度は、たとえば0.8g/cm以上であればよい。好ましくは、黒鉛のかさ密度は、1.4g/cm以上である。この程度の密度とすることにより、高温高圧プロセス時の圧縮による体積変化を小さく抑えることができ、温度制御が容易となるばかりでなく、歩留まりをも向上させることができる。
次に、本実施の形態におけるナノ多結晶ダイヤモンドの製造方法について説明する。
本実施の形態に係るナノ多結晶ダイヤモンドは、たとえば真空チャンバ内で、不純物の濃度が0.01質量%以下である黒鉛に熱処理を施し、該黒鉛をダイヤモンドに変換することで作製可能である。つまり、本実施の形態に係るナノ多結晶ダイヤモンドは、真空雰囲気で極めて低不純物濃度の固相の炭素に熱処理を施して作製することができる。
上記黒鉛は、ナノ多結晶ダイヤモンドの作製前に、真空チャンバ内で作製するようにしてもよく、基材等の上に予め形成した黒鉛を別途準備して保管等するようにしてもよい。ナノ多結晶ダイヤモンドの作製前に、真空チャンバ内で黒鉛を作製する場合、まず基材を真空チャンバ内に設置して該基材上に黒鉛を作製し、これに引き続き同じ真空チャンバ内で黒鉛に熱処理を施してもよい。さらに、この黒鉛を、真空チャンバーにつながっているグローブボックスに搬送し、その中で圧力セルに詰め、封じることができる。この場合には、真空チャンバ内で、連続的に黒鉛とナノ多結晶ダイヤモンドの原料を封じることができ、ダイヤモンドへの不純物の混入を更に効果的に抑制することができる。
上記黒鉛は、真空チャンバ内に導入した99.99%以上の純度の炭化水素ガスを1500℃以上3000℃以下程度の温度で熱分解して基材上に形成することができる。このとき、真空チャンバ内の真空度は、20〜100Torr程度とすればよい。それにより、気相の炭化水素から直接基材上に、一体の結晶状あるいは多結晶である固相の黒鉛を形成することができる。また、不純物量の極めて少ない黒鉛を基材上に作製することができる。なお、炭化水素ガスとしては、メタンガスを使用することが好ましい。
黒鉛を基材上に作製する際には、真空チャンバ内に設置した基材を1500℃以上の温度に加熱する。加熱方法としては周知の手法を採用することができる。たとえば、基材を直接あるいは間接的に1500℃以上の温度に加熱可能なヒータを真空チャンバに設置することが考えられる。
黒鉛の作製用の基材としては、1500℃から3000℃程度の温度に耐え得る材料であればいかなる固相材料であってもよい。具体的には、金属、無機セラミック材料、炭素材料を基材として使用可能である。黒鉛中への不純物混入を抑制するという観点からは、上記基材を炭素で構成することが好ましい。固相の炭素材料としてはダイヤモンドや黒鉛を挙げることができる。黒鉛を基材として使用する場合、上述の手法で作製した不純物量の極めて少ない黒鉛を基材として使用することが考えられる。基材の材料としてダイヤモンドや黒鉛のような炭素材料を使用する場合、基材の少なくとも表面を炭素材料で構成すればよい。たとえば、基材の表面のみを炭素材料で構成し、基材の残りの部分を炭素材料以外の材料で構成してもよく、基材全体を炭素材料で構成してもよい。
黒鉛の結晶粒径は、本実施の形態のダイヤモンドの合成がマルテンサイト変態ではないため、特に制限はない。
上記黒鉛中の不純物としては、たとえば水素、酸素、窒素、シリコンおよび硼素を挙げることができる。これらの不純物の濃度は、理論的には、変換後の多結晶ダイヤモンドに含まれる上記不純物の濃度と同程度である。
上記黒鉛をダイヤモンドに変換する工程では、焼結助剤や触媒を添加することなく、高圧下で黒鉛に熱処理を施すことが好ましい。ダイヤモンドの合成条件として、温度は1200℃から2500℃程度、圧力は7GPaから25GPa程度とすればよい。好ましくは、合成温度は1900℃以上、合成圧力は12GPa以上である。
ダイヤモンドの合成には、一軸性の圧力を加えてもよく、等方的な圧力を加えてもよい。しかし、等方的な圧力によって、結晶粒径や、結晶の異方性の程度を揃えるという観点から、静水圧下での合成が好ましい。
次に、本発明の実施例について説明する。
真空チャンバー内で99.999%の純度のメタンガスを1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛(グラファイト)が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2200℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
(比較例1)
コークスやピッチから作製された黒鉛を3度にわたる高温ハロゲン処理によって高純度化したものを原料として、超高圧装置を用い、温度2200℃、圧力15GPaで上記黒鉛から直接多結晶ダイヤモンドを得た。この多結晶ダイヤモンドの結晶粒径は、各々50〜300nmの大きさであった。SIMS分析によると、H,N,B,O,Siが検出され、その程度は実施例1の10倍から1000倍であった。Siも5×1016/cm以上検出された。この多結晶ダイヤモンドのヌープ硬度は120GPaであった。
(比較例2)
特開2009−67609号公報に示される方法で、非ダイヤモンド状炭素物質を出発物質とし、温度2200℃、圧力15GPaで直接多結晶ダイヤモンドを得た。この多結晶ダイヤモンドの結晶粒径は、各々50〜300nmの大きさであった。水素と酸素については、それぞれ200ppm以下、50ppm以下であったが、ヌープ硬度は120GPaであった。また、SIMS分析によると、N,B,Siが検出され、その程度は実施例1の10倍から1000倍であった。このことから、N,B,Siの除去は硬度に対する影響が大きいと考えられる。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2300℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2400℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2500℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2000℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2100℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2200℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2200℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は150GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2300℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は150GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2400℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は150GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2500℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は150GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2000℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は150GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2100℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は150GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2200℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は170GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2200℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は205GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2300℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は200GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2400℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は200GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2500℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は205GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2000℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は205GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2100℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2200℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は198GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2200℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は160GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2300℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は160GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2400℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は160GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2500℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は160GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2000℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は160GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2100℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は160GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は20〜30Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2200℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は160GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2200℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2300℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2400℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2500℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2000℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2100℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2200℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2200℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は150GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2300℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は150GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2400℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は150GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2500℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は150GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2000℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は150GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2100℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は150GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2200℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は170GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2200℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は205GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2300℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は200GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2400℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は200GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2500℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は205GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2000℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は205GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2100℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は190GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1900℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は2.0g/cmであった。
上記の黒鉛を、温度2200℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は198GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2300℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は160GPaであった。
真空チャンバー内で99.999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2300℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は160GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2400℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は160GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2500℃、圧力15GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は160GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2000℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は160GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2100℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は160GPaであった。
真空チャンバー内で99.9999%の純度のメタンガスを、600℃に熱した多孔質チタン中を通して、1500℃に加熱したダイヤモンド基板上に吹きつけた。このとき、真空チャンバー内の真空度は90〜100Torrとした。すると、ダイヤモンド基板上に黒鉛が堆積した。黒鉛のかさ密度は1.6g/cmであった。
上記の黒鉛を、温度2200℃、圧力16GPaの条件下で直接多結晶ダイヤモンドに変換した。この多結晶ダイヤモンドの結晶粒径は、各々10〜100nm程度の大きさであった。上記多結晶ダイヤモンドをSIMS分析したところ、H,N,B,O,Siの含有量は検出限界以下であった。また、上記多結晶ダイヤモンドのX線回折パターンから、多結晶ダイヤモンド中にはダイヤモンド以外の成分は見られなかった。このナノ多結晶ダイヤモンドのヌープ硬度は160GPaであった。
以上の実施例では、99.999%以上の純度の炭化水素ガスを熱分解して作製され、固相で、かさ密度が1.6g/cmから2.0g/cmである極めて高純度の黒鉛に、2000℃〜2500℃程度の温度、15〜16GPa程度の圧力で熱処理を行うことで、ヌープ硬度が150GPaから205GPa程度である高純度かつ高硬度のナノ多結晶ダイヤモンドを作製できることを確認できた。しかし、これ以外の範囲の条件であっても、特許請求の範囲に記載の範囲であれば、同等の特性を有するナノ多結晶ダイヤモンドを作製できるものと考えられる。
以上のように本発明の実施の形態および実施例について説明を行なったが、上述の実施の形態および実施例を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態および実施例に限定されるものではない。本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。
1 ナノ多結晶ダイヤモンド、2 基材、10 黒鉛。

Claims (9)

  1. 炭素構成され、
    水素、酸素、窒素、シリコンおよび硼素二次イオン質量分析法(SIMS)に基づく濃度がそれぞれ0.01質量%以下であり、結晶粒径が500nm以下である、多結晶ダイヤモンド。
  2. 前記多結晶ダイヤモンドの結晶粒界における前記水素、前記酸素、前記窒素、前記シリコンおよび前記硼素二次イオン質量分析法(SIMS)に基づく濃度がそれぞれ0.01質量%以下である、請求項1に記載の多結晶ダイヤモンド。
  3. ヌープ硬度が150GPa以上である、請求項1または請求項2に記載の多結晶ダイヤモンド。
  4. 記水素の二次イオン質量分析法(SIMS)に基づく濃度が2×1018/cm以下であり、
    前記酸素の二次イオン質量分析法(SIMS)に基づく濃度が2×1017/cm以下であり、
    前記窒素の二次イオン質量分析法(SIMS)に基づく濃度が4×1016/cm以下であり、
    前記シリコンの二次イオン質量分析法(SIMS)に基づく濃度が1×1016/cm以下であり、
    前記硼素の二次イオン質量分析法(SIMS)に基づく濃度が2×1015/cm以下である、請求項1から請求項3のいずれかに記載の多結晶ダイヤモンド。
  5. 99.99%以上の純度の炭化水素ガスを熱分解して得られ、水素、酸素、窒素、シリコンおよび硼素二次イオン質量分析法(SIMS)に基づく濃度が0.01質量%以下である黒鉛を準備する工程と、
    前記黒鉛に超高圧、高温を施して前記黒鉛をダイヤモンドに変換する工程と、
    を備えた、多結晶ダイヤモンドの製造方法。
  6. 前記黒鉛をダイヤモンドに変換する工程では、焼結助剤や触媒を添加することなく、高温高圧合成によって前記黒鉛をダイヤモンドに変換する、請求項に記載の多結晶ダイヤモンドの製造方法。
  7. 前記黒鉛を準備する工程は、空チャンバ内に導入した99.99%以上の純度の炭化水素ガスを1500℃以上の温度で熱分解して基材上に黒鉛を形成する工程を含む、請求項に記載の多結晶ダイヤモンドの製造方法。
  8. 前記黒鉛をダイヤモンドに変換する工程では、前記基材上に形成された前記黒鉛に7GPa以上の高圧下で1500℃以上の熱処理を施す、請求項に記載の多結晶ダイヤモンドの製造方法。
  9. 前記黒鉛において、
    記水素の二次イオン質量分析法(SIMS)に基づく濃度が2×1018/cm以下であり、
    前記酸素の二次イオン質量分析法(SIMS)に基づく濃度が2×1017/cm以下であり、
    前記窒素の二次イオン質量分析法(SIMS)に基づく濃度が4×1016/cm以下であり、
    前記シリコンの二次イオン質量分析法(SIMS)に基づく濃度が1×1016/cm以下であり、
    前記硼素の二次イオン質量分析法(SIMS)に基づく濃度が2×1015/cm以下である、請求項から請求項のいずれかに記載の多結晶ダイヤモンドの製造方法。
JP2011165744A 2011-07-28 2011-07-28 多結晶ダイヤモンドおよびその製造方法 Active JP5891634B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011165744A JP5891634B2 (ja) 2011-07-28 2011-07-28 多結晶ダイヤモンドおよびその製造方法
PCT/JP2012/068930 WO2013015347A1 (ja) 2011-07-28 2012-07-26 多結晶ダイヤモンドおよびその製造方法
CN201280037414.0A CN103732535B (zh) 2011-07-28 2012-07-26 多晶金刚石及其制造方法
EP12817420.8A EP2738139B1 (en) 2011-07-28 2012-07-26 Polycrystalline diamond and manufacturing method therefor
US14/235,758 US9850135B2 (en) 2011-07-28 2012-07-26 Polycrystalline diamond and manufacturing method thereof
US15/131,971 US9878914B2 (en) 2011-07-28 2016-04-18 Polycrystalline diamond and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011165744A JP5891634B2 (ja) 2011-07-28 2011-07-28 多結晶ダイヤモンドおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2013028495A JP2013028495A (ja) 2013-02-07
JP5891634B2 true JP5891634B2 (ja) 2016-03-23

Family

ID=47785920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011165744A Active JP5891634B2 (ja) 2011-07-28 2011-07-28 多結晶ダイヤモンドおよびその製造方法

Country Status (1)

Country Link
JP (1) JP5891634B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6232817B2 (ja) * 2013-08-05 2017-11-22 住友電気工業株式会社 ナノ多結晶ダイヤモンドおよびこれを備える工具
CN110023238B (zh) * 2016-11-30 2022-10-25 住友电气工业株式会社 多晶金刚石及其制法
WO2018101346A1 (ja) * 2016-11-30 2018-06-07 住友電気工業株式会社 多結晶ダイヤモンドおよびその製造方法、スクライブツール、スクライブホイール、ドレッサー、回転工具、伸線ダイス、切削工具、電極、ならびに多結晶ダイヤモンドを用いた加工方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388707A (ja) * 1989-08-31 1991-04-15 Mitsubishi Materials Corp 高純度人工ダイヤモンド粉末の製造法
CA2070436A1 (en) * 1991-07-08 1993-01-09 Harold P. Bovenkerk Isotopically-pure carbon-12 or carbon-13 polycrystalline diamond possessing enhanced thermal conductivity
JP3452665B2 (ja) * 1994-11-22 2003-09-29 東京瓦斯株式会社 ダイヤモンド単結晶の合成方法及び単結晶ダイヤモンド
JPH1045473A (ja) * 1996-08-01 1998-02-17 Toyo Tanso Kk 耐酸化性に優れた熱分解炭素被覆黒鉛材
WO2003014427A1 (en) * 2001-08-08 2003-02-20 Apollo Diamond, Inc. System and method for producing synthetic diamond
JP4275896B2 (ja) * 2002-04-01 2009-06-10 株式会社テクノネットワーク四国 ダイヤモンド多結晶体およびその製造方法
JP2009067609A (ja) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd 高純度ダイヤモンド多結晶体およびその製造方法
JP5466506B2 (ja) * 2008-02-06 2014-04-09 住友電気工業株式会社 ダイヤモンド多結晶体

Also Published As

Publication number Publication date
JP2013028495A (ja) 2013-02-07

Similar Documents

Publication Publication Date Title
WO2013015347A1 (ja) 多結晶ダイヤモンドおよびその製造方法
JP5891636B2 (ja) 多結晶ダイヤモンドおよびその製造方法
KR101766500B1 (ko) 탄화탄탈 피복 탄소재료 및 그 제조방법
US9487405B2 (en) Method for manufacturing SiC powders with high purity
TW202413743A (zh) 使用得自聚合物之高純度碳化矽之氣相沉積設備與技術
Lopes Synthesis of hexagonal boron nitride: From bulk crystals to atomically thin films
KR102187817B1 (ko) 증착공정에서 발생되는 탄화규소 부산물을 단결정 원료로 재생하는 방법
CN102958834A (zh) 碳化硅粉末和制造碳化硅粉末的方法
KR20080030570A (ko) AlN 결정 및 그 성장 방법과 AlN 결정 기판
EP0899358A2 (en) Silicon carbide fabrication
JP2007273524A (ja) 複層構造炭化シリコン基板の製造方法
JP2005132637A (ja) SiC被覆炭素系材料及びSiC被覆用炭素系材料
JP5891634B2 (ja) 多結晶ダイヤモンドおよびその製造方法
JP2009280431A (ja) 炭化珪素単結晶の製造方法
JP6609300B2 (ja) 特定形状の炭化ケイ素の育成装置
Kim et al. Quality improvement of single crystal 4H SiC grown with a purified β-SiC powder source
JP5987629B2 (ja) 多結晶ダイヤモンドおよびその製造方法
WO2012086238A1 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用シード材及び単結晶炭化ケイ素の液相エピタキシャル成長方法
WO2012086239A1 (ja) 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法
WO2012086237A1 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用ユニット及び単結晶炭化ケイ素の液相エピタキシャル成長方法
JP5776415B2 (ja) 黒鉛の製造方法
WO2009098997A1 (ja) 炭化ケイ素単結晶の製造方法
JP5793816B2 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用シード材及び単結晶炭化ケイ素の液相エピタキシャル成長方法
JP5891635B2 (ja) 多結晶ダイヤモンドおよびその製造方法
JP2003286023A (ja) シリコン焼結体の製造方法およびシリコン焼結体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5891634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250