RU2564052C2 - Способ получения материала для изготовления материала для термохромных контактных линз - Google Patents

Способ получения материала для изготовления материала для термохромных контактных линз Download PDF

Info

Publication number
RU2564052C2
RU2564052C2 RU2012148121/28A RU2012148121A RU2564052C2 RU 2564052 C2 RU2564052 C2 RU 2564052C2 RU 2012148121/28 A RU2012148121/28 A RU 2012148121/28A RU 2012148121 A RU2012148121 A RU 2012148121A RU 2564052 C2 RU2564052 C2 RU 2564052C2
Authority
RU
Russia
Prior art keywords
compound
wavelength
thermochromic
temperature
photochromic
Prior art date
Application number
RU2012148121/28A
Other languages
English (en)
Other versions
RU2012148121A (ru
Inventor
Найиби АЛЬВАРЕС-КАРРИГАН
Донни Дж. ДЬЮИС
Холли Л. ГРЭММЕР
Туре КИНДТ-ЛАРЗЕН
Фрэнк Ф. Мл. МОЛОК
Якунда ПЭТТОН
Ким Сандер ПЕДЕРСЕН
Эрик Р. ДЖОРДЖ
Original Assignee
Джонсон Энд Джонсон Вижн Кэа, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Джонсон Энд Джонсон Вижн Кэа, Инк. filed Critical Джонсон Энд Джонсон Вижн Кэа, Инк.
Publication of RU2012148121A publication Critical patent/RU2012148121A/ru
Application granted granted Critical
Publication of RU2564052C2 publication Critical patent/RU2564052C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00125Auxiliary operations, e.g. removing oxygen from the mould, conveying moulds from a storage to the production line in an inert atmosphere
    • B29D11/00134Curing of the contact lens material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00125Auxiliary operations, e.g. removing oxygen from the mould, conveying moulds from a storage to the production line in an inert atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00894Applying coatings; tinting; colouring colouring or tinting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0032Pigments, colouring agents or opacifiyng agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/002Coloured

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)
  • Optical Filters (AREA)

Abstract

Изобретение относится к области производства контактных линз и касается способа получения термохромных контактных линз. При осуществлении способа формируют реакционную смесь, которая включает в себя полимеризируемый мономер, фотоинициатор и термохромное соединение. Термохромное соединение демонстрирует существенное поглощение излучения при первой температуре и снижение способности к поглощению излучения, по меньшей мере, на 80% при второй температуре. Реакционную смесь заливают в форму при первой температуре и выдерживают для достижения второй температуры. Отверждение реакционной смеси осуществляют при заданной второй температуре путем воздействия на смесь излучением на выбранной длине волны. Технический результат заключается в улучшении оптических и механических свойств контактных линз. 4 н. и 26 з.п. ф-лы, 20 ил., 4 табл.

Description

СМЕЖНЫЕ ЗАЯВКИ
Настоящая заявка претендует на приоритет на основании предварительной заявки на патент США за № 61/323,426, поданной 13 апреля 2010 г., и заявки на патент США за № 13/082,517, поданной 8 апреля 2011 г.
ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Предметом данного изобретения является, в одном из вариантов его осуществления, способ получения контактных линз, в состав которых входит, по меньшей мере, одно термохромное соединение. В частности, способ включает технологию изготовления фотоотверждаемых полимеризуемых смесей в присутствии термохромных соединений для производства контактных линз из термохромных соединений.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Точные спектральные фильтры фильтруют видимое или ультрафиолетовое излучение с определенной длиной волны. Это позволяет производить оптические изделия, такие как очки, которые могут быть адаптированы для блокировки определенных длин световых волн, создавая возможность для получения оптических изделий различного предназначения, в том числе для защиты роговицы, хрусталика и сетчатки от вредного излучения волн конкретных длин. Например, для защиты человеческого глаза от яркого света используются различные солнцезащитные очки, включая фотохромные очки, поляризованные очки и очки для конкретных видов деятельности, в том числе очки для охоты и рыбалки. Фотохромные очки темнеют под воздействием света с определенной длиной волны и, как правило, ультрафиолетового (УФ) излучения, и светлеют при устранении источника УФ излучения. Часто такие фотохромные очки назначаются для коррекции зрения.
Внедрение определенных технологий, в том числе фотохромных технологий, в производство контактных линз гораздо сложнее, чем адаптация той же технологии для изготовления очков. При этом необходимо учитывать дополнительные факторы, такие как проницаемость линз для кислорода, удобство и посадку полученной линзы. Способ получения контактных линз также является более сложным. Как правило, контактные линзы получают облучением фотоинициатора в присутствии одного или нескольких полимеризуемых материалов. В случае фотохромных контактных линз желательно включать фотохромные красители в реактивную смесь, содержащую фотоинициатор и полимеризуемые материалы, которые по окончании полимеризации придают форму контактным линзам. К сожалению, некоторые красители, в том числе фотохромные красители, могут препятствовать активации фотоинициатора.
Полимеризуемые смеси могут также отверждаться с помощью другого процесса радикальной полимеризации, в основе которой лежит цепная реакция, протекающая через образование свободных радикалов, включая тепловую полимеризацию.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Предметом изобретения в одном из вариантов его осуществления является способ получения контактных линз, содержащих по меньшей мере одно термохромное соединение. Процесс включает в себя (1) выбор фотоинициатора, который поглощает излучение первой длины волны, и термохромного соединения, которое поглощает излучение той же первой длины волны, но не достигает существенного поглощения излучения на этой длине волны под воздействием второй температуры, (2) выдерживание реакционной смеси при второй температуре и (3) облучение реакционной смеси излучением с длиной волны, соответствующей первой длине волны.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Описание настоящего изобретения опирается на сопровождающие чертежи, где:
Фиг.1 представляет собой технологическую схему одного из вариантов процесса по данному изобретению.
Фиг.2A и 2B предлагают перспективное и профильное представление одного поддона для использования в рамках данного изобретения.
Фиг.3 показывает спектры поглощения фотохромного красителя, фотоинициатора и фильтров в одном из вариантов осуществления.
На фиг.4A и 4B показаны спектры поглощения красителя в активированном и неактивированном состоянии.
Фиг.5 представляет профили различных контактных линз, отвержденных под действием разных температур.
На фиг.6 представлена схема аппарата для отверждения контактной линзы.
На фиг.7A-7D показаны различные контактные линзы, отвержденные в разных условиях, описанных в Примерах 5-8.
На фиг.8A и 8B показаны графики количества остаточного мономера в контактных линзах.
На фиг.9А и 9B показаны спектры поглощения и реологические кривые одного из процессов формования контактной линзы.
На фиг.10А и 10B показаны спектры поглощения и реологические кривые другого процесса формования контактной линзы.
На фиг.11А и 11B показаны спектры поглощения и реологические кривые еще одного процесса формования контактной линзы.
Для указания аналогичных элементов на различных изображениях используются аналогичные цифровые обозначения. Примеры, приведенные в настоящем документе, иллюстрируют нескольких вариантов осуществления настоящего изобретения, но не должны рассматриваться как ограничивающие, каким бы то ни было образом, объем настоящего изобретения.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Любое химическое вещество, в названии которого первым идет корень(мет), например (мет)акрилат, включает в себя как незамещенные, так и метилзамещенные соединения.
Устойчивые светопоглощающие соединения - это соединения, которые демонстрируют светопогощение, не зависящее от температуры.
На фиг.1 изображен один из вариантов осуществления процесса (100), который начинается со стадии (102), на которой выбирается фотоинициатор и фотохромный краситель. Хотя теоретически можно подобрать пару из инициатора и фотохромного красителя с неперекрывающимся спектром поглощения, такие пары трудно найти для использования в контактных линзах. В одном из вариантов осуществления настоящее изобретение включает использование пар инициатор/термохромное соединение, в которых оба элемента поглощают в перекрывающемся диапазоне длин волн по меньшей мере под действием одного значения температуры. В одном из вариантов осуществления пара инициатор/краситель демонстрирует перекрывающееся поглощение по меньшей мере на одной длине волны в диапазоне от примерно 380 нм до примерно 780 нм.
Инициаторы создают свободные радикалы, которые могут инициировать химическую цепную реакцию. Фотоинициатор представляет собой соединение, которое при воздействии волны света определенной длины генерирует свободные радикалы, обладающие способностью инициировать химическую цепную реакцию. В одном из вариантов осуществления изобретения фотоинициатор поглощает видимую область (около 380 нм до 780 нм) электромагнитного спектра. Применимые фотоинициаторы видимого света известны в данной области науки и включают в себя, без ограничения, ароматические альфа-гидроксильные кетоны, алкоксиоксибензолы, ацетофеноны, оксиды ацилфосфина, оксиды бисацилфосфина и третичный амин плюс дикетон, их смеси и т.п. Примерами фотоинициаторов являются 1-гидроксициклогексилфенилкетон, 2-гидрокси-2-метил-1-фенил-пропан-1-он, бис(2,6-диметоксибензоил)-2,4-4-триметилфенилфосфиноксид (DMBAPO), бис(2,4,6-триметилбензоил)-фенилфосфиноксид (Irgacure 819), 2,4,6-триметилбензилдифенилфосфиноксид и 2,4,6-триметилбензоилдифенил-фосфиноксид, бензоинметиловый эфир и комбинация камфорахинона и этил 4-(N,N-диметиламино)бензоата. К имеющимся в продаже инициаторам видимого света относятся Irgacure 819, Irgacure 1700, Irgacure 1800, Irgacure 819, Irgacure 1850 (все - производства Ciba Specialty Chemicals) и инициатор Lucirin TPO (производства BASF). Эти и другие применимые фотоинициаторы перечислены в издании J.V. Crivello & K. Dietliker “Photoinitiators for Free Radical Cationic & Anionic Photopolymerization”, 2nd Edition, Volume III; edited by G. Bradley; John Wiley and Sons; New York; 1998. Инициатор используется в реакционной смеси в эффективных количествах для инициации фотополимеризации реакционной смеси, например, от примерно 0,1 до примерно 2 весовых частей на 100 частей вступающего в реакцию мономера.
В одном из вариантов осуществления видимые фотоинициаторы света включают в себя альфа-гидрокси кетоны, такие как Irgacure® (например, Irgacure 1700 или 1800) производства CIBA; различные оксиды органического фосфина, 2,2'-азо-бис-изобутиро-нитрил; диэтоксиацетофенон; 1-гидроксициклогексил фенил кетон; 2,2-диметокси-2-фенилацетофенон; фенотиацин; дисульфид диизопропилксантоген; бензоин или производные бензоина и т.п. В одном из вариантов осуществления инициатор поглощает свет и активируется при длинах волн ниже примерно 420 нм.
В другом варианте осуществления вместо или в сочетании с фотоинициированием используется термическое инициирование. Примеры тепловых инициаторов включают в себя лауроилпероксид, перекись бензоила, изопропиловый перкарбонат, азобисизобутиронитрил, их смеси и т.п.
Термохромные соединения - это соединения, которые демонстрируют температурозависимое поглощение света. К термохромным соединениям относятся лейкокрасители и жидкие частицы кристаллов, которые обычно используются благодаря их способности изменять свою структуру в зависимости от температуры при поглощении света, а также такие соединения, как фотохромные соединения, которые демонстрируют изменения в скорости и степени поглощения света в активированном состоянии.
Примеры жидких термохромных кристаллов включают в себя холестерина нонаноат и цианобифенилы. Дополнительные примеры приводятся в книге D. Demus & H. Sackman “Liquid Crystals”, Gordon and Breach 1967. Примеры лейкокрасителей включают в себя спиролактоны, фтораны, спиропираны, фульгиды и их комбинации. Жидкие кристаллы и лейкокрасители могут быть включены в полимеризуемые смеси в виде микрокапсул.
Фотохромный краситель - это любое соединение, способное трансформироваться из первого «прозрачного», «отбеленного» или «неактивированного» состояния во второе «окрашенное», затемненное или «активированное» состояние в ответ на поглощение волн электромагнитного излучения определенных длин (или «актинического излучения»). В одном из вариантов осуществления фотохромный краситель в активированном состоянии поглощает в видимой области (380 нм до 780 нм) электромагнитного спектра. Примеры применимых фотохромных красителей известны в данной области науки и включают, без ограничения, следующие классы материалов: хромены, такие как нафтопираны, бензопираны, инденонафтопираны и фенантропираны; спиропираны, такие как спиро(бензиндолин)нафтопираны, спиро(индолин)бензопиран, спиро(индолин)нафтопираны, спиро(индолин)кинопираны и спиро(индолин)пираны; оксазины, такие как спиро(индолин)нафтоксазины, спиро(индолин)пирилобензоксазины, спиро(бензиндолин)пиридобензоксазины, спиро(бензиндолин)нафтоксазины и спиро(индолин)бензоксазины; дитизонаты ртути, фульгиды, фульгимиды и смеси таких фотохромных соединений.
Дополнительные применимые фотохромные красители включают, без ограничения, металлоорганические дитиозонаты, такие как (арилазо)-тиоформильные арилгидразидаты, например дитизонаты ртути, а также фульгиды и фульгимиды, нафтоксазины, спиробезопираны; полимеризуемые спиробензопираны и спиробензопираны; полимеризуемые фульгиды; полимеризуемые нафтаценедионы; полимеризуемые спирооксазины а также полимеризуемые полиалкоксилановые нафтопираны. Фотохромные красители могут использоваться сами по себе или в комбинации с одним или несколькими другими применимыми и совместимыми фотохромными красителями.
Другие применимые красители включают в себя инден-конденсированные нафтопираны, выбранные из индено[2', 3':3,4]нафто[1,2-b]пирана и индено[1',2':4,3]нафто[2,1-b]пирана, которые более подробно описаны в US 2009/0072206 и US 2006/0226401, представленные в патенте США US 7364291 соединения и их сочетания. Другие применимые фотохромные соединения представлены в US7556750, содержание которого включено в настоящий документ посредством ссылки. Примеры применимых красителей включают в себя, без ограничения, фотохромные нафтопираны, подобные показанным в Таблице 1. Красители могут включать в себя полимеризуемые функциональные группы, где они сополимеризуются в готовой контактной линзе. Примеры полимеризуемых функциональных групп включают в себя (мет)акрилаты, (мет)акриламиды, винилы и тому подобные. В одном из вариантов осуществления фотохромные красители выбираются таким образом, что в активированном состоянии они поглощают всю видимую часть спектра, а в неактивированном состоянии поглощают менее примерно 430 нм и примерно 10% всей видимой части спектра.
Количество используемого термохромного соединения должно быть достаточным для достижения желаемого снижения процента передачи на волнах определенных длин, при которых выбранное термохромное соединение активно. Конкретное используемое количество также будет зависеть от силы окраски и молярного коэффициента поглощения выбранного соединения (соединений), выбранного материала линзы, а также толщины линзы.
В другом варианте осуществления контактные линзы могут содержать смесь термохромных соединений из по меньшей мере одного термохромного соединения в смеси с другими устойчивыми светопоглощающими соединениями, включая пигменты, красители и УФ-поглощающие соединения; в состав также могут входить несколько слоев термохромных соединений, какие, например, используются для получения поляризующих линз. После выбора фотоинициатора и термохромного соединения выполняется стадия (104), во время которой смесь материалов для формования контактных линз заливается в форму. Дополнительные подробности о стадии (104) предлагаются на фиг.2A и 2B.
На фиг.2A реакционная смесь (200) заливается в форму (202), которая опирается на поддон (204). В одном из вариантов осуществления форма представляет собой термопластичную оптическую форму, изготовленную из любого подходящего материала, включая, без ограничения, полипропилен, полистирол и/или Zeonor®: полимерные смолы циклического олефина. В некоторых вариантах осуществления выбирается форма, прозрачная для длин волн, которые активируют фотоинициатор, что позволяет осуществлять облучение с нижней части формы. В других вариантах осуществления, например, с использованием термического инициирования форма (202) является оптически непрозрачной. «Реакционная смесь» представляет собой смесь компонентов, включая реактивные компоненты, растворитель (если используется), инициаторы, сшивающие агенты и добавки, которые под действием условий, формирующих полимеры, образуют полимер. Реакционно-способными являются те компоненты реакционной смеси, которые в процессе полимеризации становятся неотъемлемой частью полимера либо путем образования химических связей, либо путем механической фиксации в полимерной матрице. Например, реакционно-способные мономеры становятся частью полимера в ходе реакции полимеризации, тогда как не проявляющие химическую активность агенты для внутреннего смачивания полимера, такие как PVP, становятся частью полимера путем механического захвата в матрице. Разбавитель (если используется) и любые дополнительные технологические добавки не становятся частью структуры полимера и не принадлежат к реакционно-способным компонентам. Смесь (200) включает в себя один или несколько полимеризуемых мономеров, пригодных для формования контактных линз. Такие мономеры известны в данной области науки и, как правило, выбираются для изготовления продуктов полимеризации с высокой проницаемостью для воды и кислорода.
Изобретение может быть использовано для получения жестких или мягких контактных линз из любого известного материала для линз либо из материала, пригодного для получения таких линз. Предпочтительно изобретение используется для получения мягких контактных линз с содержанием воды от 0 до около 90%, а в другом варианте осуществления - с содержанием от 20 до около 75% воды. В еще одном варианте осуществления контактные линзы согласно данному изобретению содержат не менее чем примерно 25% воды. Линзы по настоящему изобретению могут иметь и другие желательные свойства, включая модуль упругости при растяжении ниже примерно 1379,0 кПа (200 фунтов на квадратный дюйм), в некоторых вариантах - ниже 1034,2 кПа (150 фунтов на квадратный дюйм), а в других вариантах - ниже 689,5 кПа (100 фунтов на квадратный дюйм). Кроме того, линзы могут иметь дополнительную проницаемость для кислорода, превышающую примерно 344,7 кПа (50 фунтов на квадратный дюйм), а в некоторых вариантах - превышающую примерно 689,5 кПа (100 фунтов на квадратный дюйм). Следует понимать, что комбинация вышеописанных свойств является желательной, и вышеупомянутые диапазоны могут быть объединены в любом сочетании.
В одном из вариантов осуществления, линзы изготавливаются из гидрофильных компонентов, силиконсодержащих компонентов и их смесей с образованием полимеров, таких как силоксаны, гидрогели, силикон-гидрогели и их комбинации. Материал, пригодный для формования линз согласно настоящему изобретению, может быть изготовлен из реакционных смесей на основе макромеров, мономеров, полимеров и их комбинаций, а также добавок, таких как инициаторы полимеризации. Пригодными материалами являются, помимо прочего, силиконовые гидрогели, выполненные из силиконовых макромеров и гидрофильных мономеров.
Реакционные смеси для получения контактных линз хорошо известны, и компоненты таких смесей имеются в продаже в свободном доступе. Примеры полимеров, пригодных для формования контактных линз, включают в себя, без ограничения, этафилкон А, генфилкон А, ленефилкон А, полимакон, балафилкон, аквафилкон, комфилкон, галифилкон, сенофилкон, нарафилкон и лотрафилкон. В другом варианте осуществления изобретения для формования контактных линз используются этафилкон, сенофилкон, балафилкон, галифилкон, лотрафилкон, комфилкон, филкон II 3, асмофилкон и силиконовые гидрогели, приготовленные согласно патенту США № 5998498; заявке на патент США № 09/532,943; частичному продолжению заявки на патент США № 09/532,943, поданной 30 августа 2000 г., и патентам США № 6087415, US 6087415, US 5760100, US 5776999, US 5789461, US 5849811, US 5965631, US 7553880, WO 2008/061992, US 2010/048847. Содержание указанных патентов включено в настоящее изобретение по ссылке в части составов гидрогелей, являющихся предметом этих патентов.
В одном из вариантов осуществления реакционной смеси используется гидрогель на основе HEMA, как, например, этафилкон А. Эталфилкон, описанный в патентах США за № 4680336 и 4495313, влюченных в настоящий документ во всей своей полноте посредством ссылки, как правило, представляет собой композицию из 100 частей по весу («масс.ч.») HEMA, от около 1,5 до около 2,5 масс.ч. MAA, от около 0,3 до около 1,3 масс.ч. диметакрилата этиленгликоля, от около 0,05 до около 1,5 масс.ч. 1,1,1,-триметилолпропантриметакрилата, а также от около 0,017 до около 0,024 масс.ч. оттенка контактных линз. Фраза «полимеризуемые мономеры» подразумевает мономеры с большим молекулярным весом, которые иногда называют макромерами. Также может использоваться реакционная смесь различных полимеризуемых мономеров в результате чего образуется сополимер.
В одном из вариантов осуществления смесь (200) также включает в себя один или несколько выбранных фотоинициаторов видимого света, которые активируются под воздействием видимого света, вызывая цепную реакцию, которая приводит к полимеризации вышеупомянутых мономеров.
Кроме того, смесь (200) включает в себя выбранные термохромные соединения и в одном из вариантов осуществления - фотохромный краситель, который становится цветным под воздействием света, но возвращается к своему первоначальному цвету вскоре после прекращения воздействия света. В неактивированном (прозрачном) состоянии краситель поглощает излучение менее 430 нм и становится активным. После активации диапазон поглощения меняется, перекрывается видимым спектром (380-780 нм) и приобретает окраску. В свою очередь, эта окраска блокирует длины волн, которые в противном случае активировали бы фотоинициатор, который, как правило, поглощает длину менее 420 нм.
Наличие термохромного соединения и фотоинициатора в одной реакционной смеси может привести к проблемам контролируемой активации фотоинициатора. Не желая связывать себя рамками какой-либо конкретной теории, заявители считают, что активация термохромного соединения в той же спектральной области, что и фотоинициатор, приводит к тому, что краситель по меньшей мере отчасти «экранирует» фотоинициатор. Неполная активация инициатора предотвращает отверждение и/или приводит к неоднородному и анизотропному отверждению, что вызывает дефекты материала и напряжения в линзе. Эти дефекты отрицательно сказываются на механических и оптических свойствах получаемой контактной линзы. В одном из вариантов реализации настоящего изобретения, где термохромное соединение содержит по меньшей мере одно фотохромное соединение, в технологическом процессе используются фильтры для удаления по меньшей мере части диапазона волн, что приводит к возбуждению красителя при передаче волн таких длин, которые активируют фотоинициатор. См. стадию (106) на фиг.1. Более подробно стадия (106) показана на фиг.3.
Применимые фильтры выбираются в зависимости от спектра фотохромного красителя и фотоинициатора. На фиг.3 спектр красителя (300) можно сравнить со спектром фотоинициатора (302), а также со спектром света от конкретного источника света (304). Используется фильтр, позволяющий передачу волн выбранной длины (линия (306)). В примере, показанном на фиг.3, используется фотоинициатор Irgacure® 1700, источник света - лампа TL 03 и фотохромный краситель «Краситель-1». В этом примере можно избирательно активировать фотоинициатор (302) в присутствии красителя (300) путем подачи отверждающего света на смесь на длине волны выше 400 нм.
Несмотря на то что краситель (300) показывает некоторую активность в диапазоне волн между 400 нм и 420 нм, фотоинициатор (302) реагирует с большей интенсивностью (т.е. имеет большую молярную поглощаемость), чем краситель на таких длинах волн. Опускается по меньшей мере часть диапазона длин волн, активирующих краситель (например, ниже 400 нм). В одном из вариантов осуществления используется длинноволновый фильтр, препятствующий пропусканию волны длиной ниже 400 нм и способствующий передаче волны длиной выше 400 нм. В другом варианте осуществления используется фильтр с другой шириной полосы для передачи только волн в диапазоне длин от 400 нм до 420 нм, не пропускающий волн с длиной вне этого диапазона. В еще одном варианте осуществления полосовой фильтр выбирает длины волн в диапазоне от примерно 420 до примерно 440 нм. Эти волны отобраны на основе спектров, представленных на фиг.3, для конкретного фотохромного красителя и фотоинициатора, показанных на этой фигуре. В других вариантах осуществления различные частоты выбираются так, чтобы обеспечить возбуждение фотоинициаторов с разными спектрами поглощения. Примеры применимых фильтров включают фильтры SCHOTT GG420 или фильтры Encapsulite C20. В других вариантах осуществления источник света выбирается таким образом, чтобы обеспечить отверждение светом, который не излучается в диапазоне поглощения длин волны неактивированного красителя и потому не требует фильтрации. Примеры таких источников света включают индивидуальные типы светоизлучающих диодов (светодиодов).
Заявителями было обнаружено, что оптические и механические свойства полученных линз можно улучшить путем отверждения при температуре, когда термохромный краситель не активен или наименее активен (стадия (108) на фиг.1). В качестве примера, вне рамок какой-либо конкретной теории, в варианте осуществления, где термохромные соединения представляют собой фотохромные соединения, считается, что повышенная температура поддерживает фотохромные красители в закрытом (не активированном) состоянии. Таким образом, спектр поглощения фотохромных красителей отличается при комнатной температуре по сравнению с тем же спектром, но при повышенной температуре. Для фотохромных красителей это, как правило, приводит к уменьшению молярной способности к поглощению в диапазоне самых длинных волн, которые совпадают с λмакс фототинициатора. Поддержание повышенной температуры во время светоотверждения увеличивает количество неактивного красителя; таким образом, эффективно снижается активация красителя, который участвует в процессе полимеризации. На фиг.4А показан нафтопирановый «Краситель-1» в неактивном состоянии, а на фиг.4В - тот же краситель в активированном состоянии. Из фиг.4А ясно, что закрытый краситель относительно неактивен на длинах волн выше 420 нм. В отличие от этого на фиг.4В активированный краситель поглощает длины волн выше 420 нм. Серия фотохромных контактных линз была отверждена при различных температурах с использованием светофильтра. См. Примеры 1-4, описанные ниже. На фиг.5 показаны профили таких линз.
В еще одном варианте осуществления, где в качестве термохромного красителя используется лейкокраситель, например спиролактоны (например, кристаллический фиолетовый лактон), флуораны, спиропираны и фульгиды, в сочетании со слабыми кислотами, такими как бисфенол А, парабены, 1,2,3-триазол производные и 4-гидроксикумарин, отверждение может проводиться при температуре от 5 до 60°C. В еще одном варианте осуществления, где термохромный краситель - это жидкий кристалл, например, холестерина нонаноат или цианобифенил, отверждение может выполняться при температуре от около 10 до около 80°C.
Что касается серии линз с сечениями, показанными на фиг.5, линзы, отвержденные при 45°C (первое изображение слева), продемонстрировали плохое отверждение и имели перевернутое сечение, что неприемлемо для использования для коррекции зрения человека. Линзы, отвержденные при 50°С, показали некоторую степень улучшения (второе изображение слева). Линзы, отвержденные при 55°С, показали еще более значительное улучшение (третье сечение). Линзы, отвержденные при 65°С, показали одно незначительное утончение в сечении и были признаны обеспечивающими приемлемые оптические свойства. Эти результаты показывают, что можно добиться улучшения профиля и оптических свойств контактной линзы, когда линзы отверждаются при повышенной температуре. Соответственно, с учетом опыта этого применения, можно выбрать желательный температурный диапазон для получения приемлемых профилей и оптических свойств для ряда конкретных реакционных смесей.
В качестве примера, при использовании фотохромного красителя (например, «Красителя-1», который представляет собой фотохромное соединение нафтопирана, показанное в Таблице 1), можно отверждать линзы в диапазоне температур от около 55°C до около 90°C. В другом варианте осуществления используется температурный диапазон от около 65°C до около 80°C. В еще одном варианте осуществления используется температура около 80°C. Другие красители могут иметь разные предпочтительные температурные диапазоны.
Кроме того, заявителем было обнаружено, что, хотя фильтрация света и повышение температуры улучшают свойства полученных линз (по меньшей мере в некоторых случаях), это не единственные факторы, оказывающие влияние на процесс и его результаты. Свойства контактной линзы могут быть улучшены за счет балансировки света, полученного смесью (200) на открытой стороне (206) и сторонах, контактирующих с формой (208). См. фиг.2B. Точные условия, необходимые для балансировки интенсивности, будут зависеть от состава и толщины реакционной смеси, состава поддона и характера фильтра(-ов) и источника(-ов) света. На основе использования данных спецификаций специалист сможет определить оптимальные условия балансировки для конкретного состава.
В некоторых вариантах осуществления, например, для контактных линз с низкой концентрацией термохромного соединения специальная балансировка интенсивности света может быть необязательна. Смесь достаточно тонкая, чтобы интенсивность света на открытой поверхности и на сторонах, контактирующих с формой, была практически одинаковой. В этих случаях полученная в результате отверждения контактная линза соответствует техническим условиям. Похожим образом, в некоторых вариантах осуществления можно пренебречь специальной балансировкой за счет ограничения термохромного соединения до конкретного участка линзы (например, термохромная линза только на зрачок).
В некоторых случаях интенсивность света на стороне, контактирующей с формой, существенно меньше, чем интенсивность на открытой поверхности - предположительно из-за поглощения света термохромным соединением по мере прохождения света через смесь. В таких случаях получаются линзы менее желательного профиля. Можно добавить дополнительный источник света для освещения снизу оптически прозрачной формы, чтобы правильно сбалансировать интенсивность света. Такая система показана на фиг.6.
На фиг.6 используется два или более фильтров (600) и (602) как для фильтрации длиной волны, так и для балансировки интенсивности света, излучаемого одним или несколькими источниками света (604), (606) до того, как такой свет попадет на реакционную смесь (200). Поддон (204) позволяет используемым длинам волн активировать фотоинициатор, проходя через его нижнюю часть, тем самым позволяя освещать реакционную смесь в форме (202) с обеих сторон - с открытой стороны (206) и со стороны, контактирующей с формой (208) (см. фиг.2B). Источники света, фильтры и поддоны расположены таким образом, чтобы свет равной интенсивности попадал как на открытую сторону смеси, так и на сторону, контактирующую с формой. В одном из (не показанных) вариантов осуществления поддон (204) функционирует в качестве фильтра и удаляет определенные длины волн, тем самым устраняя необходимость в применении фильтра (602).
В некоторых вариантах осуществления интенсивность одного из источников света увеличивается для компенсации потери интенсивности света между источником света и смесью (200). Например, в таком варианте осуществления нижний источник света (606) может иметь интенсивность больше, чем верхний источник света (604) для компенсации потерь света из-за прохождения света от нижнего источника насквозь или из-за экранирования поддоном (204). В целях иллюстрации, без ограничения, интенсивность верхнего источника света (604) может быть около 1 мВт/см2, тогда как интенсивность нижнего источника света может быть около 2 мВт/см2. Различные значения интенсивности выбираются в зависимости от количества света, блокируемого соответствующими фильтрами, а также способностью поддона (204) к пропусканию или экранированию света. Похожим образом, фильтры, которые уменьшают интенсивность света, можно использовать для балансировки интенсивности света, фактически поступающего на реакционную смесь.
На фиг.7A-7D показано действие сбалансированного или несбалансированного освещения. На фиг.7A показан желаемый профиль сформованной надлежащим образом контактной линзы без фотохромного красителя. На фиг.7B показаны профили контактных линз, полученных без использования фильтра и отверждаемых только сверху. На фиг.7C показаны профили контактных линз, полученных с использованием фильтра и отверждаемых только сверху. Хотя это и не очевидно, на фиг.7C линза перевернута. На фиг.7D показаны профили контактных линз, полученных при отверждении с обеих сторон, с использованием фильтра, но со светом несбалансированной интенсивности. См. примеры 5-8.
По завершении полимеризации линза извлекается из формы и может быть обработана растворителем для удаления разбавителя (если он использовался) или любых следов непрореагировавших компонентов. В одном из вариантов осуществления растворитель удаляется с помощью водного раствора. Затем линза гидратируется для получения гидрогелевой линзы.
Описанные выше способы позволяют получить линзы различной формы. В некоторых вариантах осуществления термохромное соединение однородно диспергируется по всей площади готовой контактной линзы. В таком варианте вся контактная линза является термохромной. В других вариантах осуществления термохромное соединение присутствует только в центральной части готовой контактной линзы. Так как центральная часть располагается поверх зрачка, готовая контактная линза представляет собой термохромную контактную линзу только на зрачок. Центральная часть или центральная круглая часть может совпадать по размеру с оптической зоной, которая на типичной контактной линзе имеет диаметр около 9 мм или меньше. В одном из вариантов осуществления диаметр центральной окружности составляет от около 4 до около 9 мм, в другом варианте - от 6 до около 9 мм, а в еще одном варианте - от около 6 до около 8 мм.
Краситель можно разными способами разместить на определенном участке конкретного диаметра. Например, композицию красителя можно нанести на меньшую часть формуемой поверхности с помощью тампопечати, струйных чернил, нанесения покрытия методом центрифугирования и т.п. В этих вариантах осуществления красящие составы могут содержать дополнительные компоненты, которые могут быть полезными, в том числе связующие полимеры, которые могут быть реактивными или нереактивными, растворитель и, как вариант, полимеризуемые компоненты, агенты цепной реакции, инициаторы и их комбинации. Композиция красителя может вступать в реакцию с реакционной смесью или же набухать и захватываться в реакционной смеси. Если красящий состав реактивно-способен, он может частично или полностью затвердеть до подачи реакционной смеси в форму. Если красящий состав реактивно-способен, то может оказаться целесообразным выпаривание части или всего растворителя до заливки реакционной смеси. В данном изобретении можно использовать композиции красителя из некрасящих компонентов известных в этой области типов и концентраций. Примеры приводятся в документах EP 1448725, WO 01/40846, US 5658376, US 2009/0244479, WO 2006/110306 и 6337040.
Если в состав красителя входит инициатор, инициатор и термохромное соединение выбираются по профилям поглощения, которые существенно не перекрываются при выбранной температуре отверждения. На форму можно наносить несколько слоев красящего состава; эти слои могут содержать не термохромное, аналогичное термохромное или другие термохромные соединения. Примером этого варианта осуществления является применение чередующихся слоев красящего состава, каждый из которых содержит жидкий кристалл для формования поляризованных контактных линз. В этом варианте осуществления чередующиеся слои отверждаются в разных условиях, чтобы получить слои, в которых жидкие кристаллы имеют чередующиеся направления, создавая желаемый эффект поляризации. В другом варианте осуществления используется несколько слоев одного и того же термохромного соединения; каждый выровнен по центру, но имеет разный диаметр, тем самым создавая линзу с градуированной концентрацией термохромного соединения.
После предварительного отверждения композиции или выпаривания растворителя реакционная смесь дозируется в форму, как описано выше. Реакционная смесь может содержать по меньшей мере одно дополнительное термохромное соединение, которое может совпадать или не совпадать с термохромным соединением, используемым в слое красящего состава. В качестве альтернативы, в состав реакционной смеси могут не входить термохромные соединения. Реакционная смесь отверждается после заливки в форму.
Примеры применимых диаметров: 4 мм, 6 мм, 9 мм и 11,4 мм. В одном из вариантов осуществления реакционная смесь, содержащая термохромный краситель, наносится или заливается методом микродозирования, как описано в US7560056 и заявке на патент США 13/082,447 под названием “Pupil-Only Photochromic Contact Lenses Displaying Desirable Optics and Comfort” «Фотохромные контактные линзы только на зрачок, отличающиеся оптимальными оптическими свойствами и удобством применения», поданной совместно 8 апреля 2011 г.
Для обоснования теоретического принципа действия было проведено несколько экспериментов, в которых время, необходимое для отверждения смеси, измерялось как функция повышенной концентрации красителя. Результаты этих экспериментов показали, что более высокие концентрации красителя приводили к более длительному времени отверждения. При концентрации красителя около 3% (краситель MXP7-1631) смесь не отверждалась при температуре 40°C. См. пример 9. Это подтверждает гипотезу, что краситель препятствует активации фотоинициатора.
Для дальнейшего обоснования теоретического принципа действия из остаточной концентрации мономера была получена серия линз с тампопечатью и без тампопечати фотохромным красителем. Линзы отверждались без гидратирования, по мере прохождения реакционной смеси через туннель отверждения, где они облучались светом, проходя через различные зоны. Образцы были извлечены из аппарата и проверены на остатки фотоинициатора и мономера после прохождения определенного количества зон. Таким образом, для образца, который был извлечен после прохождения через пять зон отверждения, наблюдалось большее время, чем для образца, который был удален после прохождения через две зоны отверждения. См. пример 11.
Результаты, показанные на фиг.8A, демонстрируют, что фотохромный краситель ингибирует инициатор, начиная с полимеризации свободного радикала. Образцы с фотохромным красителем продемонстрировали значительно большую концентрацию неполимеризованного мономера по сравнению с соответствующим контрольным образцом, в котором не было фотохромного красителя. Аналогичным образом, на фиг.8B показано, что концентрация фотоинициатора выше при наличии фотохромного красителя. Следует отметить, что при использовании фотохромного красителя концентрация фотоинициатора достигает устойчивого состояния, при котором никогда не доходит до нуля и не объединяется с контрольным образцом никаким иным способом.
Аналогичным образом были получены данные по реологии фотохромных линз, полученных с фильтрами и без них. См. пример 11. Результаты (фиг.9A и 9B) показывают разные температуры гелеобразования для линз, полученных с фотохромным красителем и без него.
На фиг.9A показаны спектры неактивированного фотохромного красителя (строка (900)), фотоинициатора (строка (904)) и отфильтрованного источника света, где удалены длины волн ниже 380 нм (строка (902), λмакс около 400 нм). На фиг.9B показаны данные реологии от фотохромной линзы (строка (906)) и не фотохромного контрольного образца (строка (908)), отвержденного при условиях на фиг.9A. Вмешательство фотохромного красителя приводит к тому, что модуль (G) строится медленнее, чем соответствующий мономер, отвержденный без красителя (строки (906) и (908), соответственно). Контрольный образец (908) продемонстрировал на 95% точку гелеобразования 37 секунд (точка (908a)) и 99% гелеобразования в точке (908b). Эта разница в % гелеобразования демонстрирует значительную разницу между фотохромной линзой и целевой контрольной линзой. Полученные фотохромные полимеры были признаны не подходящими для получения контактных линз.
Фиг.10A аналогична фиг.9A, разница лишь в использовании разных фильтров. На фиг.10A длины волн профильтрованного света 1000 составляли ниже 400 нм. На фиг.10B показаны данные реологии фотохромной линзы (строка (1002)) и не фотохромного контрольного образца (строка (908)), отвержденного при условиях, показанных на фиг.10A. По сравнению с фиг.9B две строки - (1002) и (908) - расположены существенно ближе друг другу, и таким образом готовые фотохромные линзы показывают более тесное совпадение с контрольной линзой. Полученные фотохромные линзы были признаны удовлетворительными. Показаны точка гелеобразования 95% (1002a) и точка гелеобразования 99%.
На фиг.11A показаны спектры неактивированного фотохромного красителя (строка (900)), фотоинициатора (строка (904)) и источника света (строка (1100), λмакс около 440 нм). Источник света (1100) удаляет длины волн менее 420 нм. На фиг.11B показаны данные реологии фотохромной линзы (строка (904)) и не фотохромного контрольного образца (строка (900)), отвержденного с использованием компонентов, показанных на фиг.11A. Таким образом, источник света и фильтры удалили длины волн менее 420 нм, при которых краситель имеет наибольшую способность к реакции. При удалении более низких длин волн с помощью фильтра активация красителя уменьшилась, а модуль фотохромной линзы (904) стал наиболее приближенным к контрольному образцу (900).
ПРИМЕРЫ
Таблица 1
Общие сокращения
Сокращение Вещество
Краситель-1
Figure 00000001
Краситель-2
Figure 00000002
Краситель-3
Figure 00000003
Краситель-4
Figure 00000004
TMPTMA триметилолпропантриметакрилат
EDGMA этиленгликоль диметакрилат
MAA метакриловая кислота
HEMA 2-гидроксиэтилметакрилат
Norbloc 2-(2'-гидрокси-5-метакрилилоксиэтилфенил)-2H-бензотриазол
Glucam 20 этоксилированный эфир метил глюкозы
В примерах ниже использовалось пять формул. Процентный состав каждого образца показан в таблице 2:
Таблица 2
Компонент A
(контрольный образец)
B C D E
Краситель-1 0 2,1 2,8 1,2 2,8
Irgacure® 1700 (инициатор) 1,33 1,33 1,33 0 0
Irgacure® 819 (инициатор) 0 0 0 0,28 0,28
TMPTMA 0,09 0,09 0,09 0,09 0,09
EDGMA 0,77 0,77 0,77 0,77 0,77
MAA 1,94 1,94 1,94 1,94 1,94
HEMA 94,92 93,72 92,12 94,77 93,17
Norbloc 0,95 0,95 0,95 0,95 0,95
Компоненты, перечисленные в Таблице 2, смешивались с Glucam 20 в следующей пропорции: 55% по массе мономера с 45% по массе растворителя.
Пример 1 - Температура отверждения 45°C
На изогнутую форму (Zeonor) был нанесен тампопечатью краситель на основе 7% Красителя-1 и 93% чистой основы (49,4 массовой доли % изопропилактата, 12,4 массовой доли % 1-этокси-2-пропанола, 0,9 массовой доли % 1-октанетиола, 1,63 массовой доли % глицерола, 35 массовой доли % HEMA, 0,48% метакриловой кислоты и 0,21% массовой доли азобис-(2-метилбутиронитрил) (AMBM). Чистая основа готовилась путем добавления 1-октнетиола, мономеров и растворителей, за исключением около 50-100 куб. см изопропилактата, смешивалась в 5 л емкости с синей крышкой и перемешивалась в течение 10 минут. Затем смесь залили в 5-литровый реактор из нержавеющей стали, оборудованный мешалкой и содержащий азотную атмосферу. Смесь перемешивалась и нагревалась в течение примерно 25 мин до температуры 68°C. После стабилизации температуры 68°C AMBN растворялся в оставшемся изопропилактате и добавлялся при открытии вентиля стравливания азота. Полимеризация проходила в течение 16-24 часов, после чего температура увеличивалась до 80°C и реакция завершалась. Далее смеси дали достигнуть равновесного состояния при комнатной температуре.
Диаметр печати был 11,44 мм. Передняя и задняя части кривой формы дегазировались азотом. На переднюю часть кривой формы подавалась реакционная смесь мономера, содержащая контрольный образец A (см. Таблицу 2) без красителя в RMM. Основная кривая форма помещалась на переднюю кривую форму с мономером, после чего собранные формы перемещались в камеру отверждения, где нагревались до температуры отверждения 45°C. На достижение равновесия системе отводилось пять минут. После достижения равновесного состояния система отверждалась при 3,5 мВт/см2 с помощью ламп Philips TL03 с использованием фильтра CG420 в течение десяти минут. Кривая форма основания снималась, а передняя кривая гидратировалась в дистиллированной воде при 70°C в течение десяти минут. Готовые линзы подвергались процессам упаковки и стерилизации. Было сделано поперечное сечение линз и получено изображение. Изображение показано на фиг.5.
Пример 2 - Температура отверждения 50°C
Пример 2 проводился, по сути, аналогично примеру 1, за исключением того, что температура отверждения была 50°C. Было сделано поперечное сечение линз и получено изображение. Изображение показано на фиг.5.
Пример 3 - Температура отверждения 55°C
Пример 3 проводился, по сути, аналогично примеру 1, за исключением того, что температура отверждения была 55°C. Было сделано поперечное сечение линз и получено изображение. Изображение показано на фиг.5.
Пример 4 - Температура отверждения 65°C
Пример 4 проводился, по сути, аналогично примеру 1, за исключением того, что температура отверждения была 65°C. Было сделано поперечное сечение линз и получено изображение. Изображение показано на фиг.5.
Примеры 5-8
Передняя и задняя части кривой формы (Zeonor) дегазировались азотом. Для примеров 6-8 передняя кривая часть формы заполнялась реакционной смесью мономера, содержащей 2,1% Красителя-1 (состав B, Таблица 2). Для примера 5 (контрольный образец) состав A заливался в переднюю часть кривой формы. Основание кривой формы помещалось на переднюю часть кривой формы, содержащую смесь мономера. Собранные формы помещались в камеру отверждения и нагревались до 65°C. На достижение равновесия собранной форме отводилось пять минут. После достижения равновесия система отверждалась с помощью ламп Philips TL03 и фильтра CG420 в течение десяти минут при интенсивности света отверждения и заданных параметрах отверждения, показанных в Таблице 3. Основание кривой формы извлекалось, а передняя часть кривой формы гидратировалась в дистиллированной воде при 70°C в течение десяти минут. Готовые линзы подвергались процессам упаковки и стерилизации.
Таблица 3
№ примера Фильтр Интенсивность света в верхней части (мВт/см2) Интенсивность света в нижней части (мВт/см2) Фиг. # Вид поперечного сечения
5 ДА 3 0 7A Обычное
6 ДА 0 7B Под углом
7 ДА 2,8 0,8 7C Перевернутое расширенной стороной
8 ДА 2,8 2,8 7D
Поперечные сечения линз, полученных в примерах 5-8, показаны на фиг.7A-D. На фиг.7A показано сечение линзы примера 5, сформованной без фотохромного красителя, демонстрирующее гладко искривленное сечение, показательное для хорошо сформованной сферической контактной линзы. На фиг.7B показано сечение линзы, полученной с добавлением фотохромного красителя и отвержденной только сверху. Сечение линзы наклонено под углом в трубке. Это указывает на неравномерное отверждение и показывает, что влияние фотохромного красителя на отверждение в этом примере не контролируется при использовании одних только фильтров. На фиг.7C (пример 7) и D (пример 8) показаны сечения для линз, полученных с отверждением с обеих сторон. В случае 7C линза перевернута, но демонстрирует гладкую дугу, значительное улучшение по сравнению с фиг.7B. На фиг.7D сечение линзы, отвержденной при сбалансированной интенсивности света и фильтрах с обеих сторон; получены линзы с гладкими, искривленными сечениями.
Пример 9 - Высокие концентрации красителя препятствуют отверждению
Реакция фотополимеризации составов A-E наблюдалась с помощью реометра ATS StressTech (от компании ATS RheoSystems, 52 Georgetown Road, Bordentown, NJ 08505), оснащенного фотоотверждающим устройством, включающим в себя ячейку с регулируемой температурой с нижней кварцевой пластиной и алюминиевой верхней пластиной, а также дуговой ртутной лампой OmniCure (от компании EXFO Photonic Solutions Inc., 2260 Argentia Rd., Mississauga, ON L5N 6H7 КАНАДА) с фильтром пропускной способностью 420 нм полосы (от компании Andover Corporation, 4 Commercial Drive, Salem, NH 03079-2800 США), расположенным под кварцевой пластиной. Интенсивность излучения, измеренная на поверхности кварцевого окна радиометром IL1400A и датчиком XRL140A (от компании Light, Inc., 17 Graf Road, Newburyport, MA 01950), регулировалась на уровне 4,5±0,5 мВт/см2. Каждый состав оценивался при 40°C, 55°C и 70°C.
После того как примерно 0,25 мл реакционной смеси мономера помещалось на нижнюю пластину реометра, верхняя пластина диаметром 25 мм опускалась до 0,500±0,001 мм над нижней пластиной, где удерживалась до достижения точки гелеобразования в процессе реакции. Образцу давалось время на достижение теплового равновесия (~5 минут), определяемое выравниваем по уровню постоянного сдвига вязкости по мере нагревания) до того, как включалась лампа OmniCure и начиналась реакция. В это же время, пока образец достигал теплового равновесия, камера образца продувалась азотом со скоростью 400 куб. см/мин. После этой первичной продувки уровень кислорода в камере образца наблюдался на уровне 0,5±0,1% с помощью датчика кислорода CheckPoint O2 (от компании PBI Dansensor, Topac, 101 Derby St., #203 Hingham, MA 02043). Во время реакции реометр постоянно контролировал прилагаемую динамическую нагрузку (режим быстрых колебаний), когда сегменты времени меньше полного цикла использовались для измерения натяжения при приложении синусоидальной нагрузки (прилагаемой с частотой 1,0 Гц). Динамический модуль сдвига (G'), модуль потерь (G”) и высота зазора наблюдались в качестве функции времени воздействия. По ходу реакции модуль сдвига увеличивался с <1 Па до >0,1 мПа, а тангенс δ (=G”/G') опускался от почти бесконечности до значения менее 1. Для многих систем реакции с поперечными связями точка гелеобразования определяется как время, за которое тангенс δ=1 (точка пересечения, когда G'=G”). На момент, когда G' достигает 100 Па (вскоре после точки гелеобразования), ограничение по высоте зазора на верхней пластине снималось (режим автонатяжения: натяжение =0) так, чтобы зазор между верхней и нижней пластинами мог меняться по мере усадки реакционной смеси мономера во время отверждения, а напряжение по причине усадки оставалось минимальным. Измерение изменения зазора дает возможность оценить количество усадки по причине реакции полимеризации. После 10-минутного воздействия лампа OmniCure выключалась (т.е. отверждение прекращалось).
Результаты реологии для каждого состава оценивались, как показано в Таблице 4 ниже.
Таблица 4
Результаты реологии
Температура Данные A (контрольный образец) B C D E
40°C Точка гелеобразования (секунды) 30,5 32,7 Нет 99,0 Нет
Модуль (×105) 3,745 1,837 Нет 1,050 Нет
55°C Точка гелеобразования (секунды) 29,0 69,0 128,5 68,5 141,5
Модуль (×105) 2,529 1,678 0,430 1,676 0,277
70°C Точка гелеобразования (секунды) 18,0 57,0 101,5 62,0 95,5
Модуль (×105) 2,216 1,972 0,597 1,705 0,393
Образцы C и E не отвердели при 40°C. Эти образцы содержали 2,8% фотохромный краситель.
Пример 10 - Наблюдение хода полимеризации с помощью туннельной зоны
Согласно протоколу были выполнены действия для определения скорости потребления для линз, на которые методом тампопечати наносился красящий состав, содержащий около 7% Красителя-1 и 93% массовой доли чистой основы, описанный в примере 2 по сравнению с линзами без тампопечати красящим составом. Состав A из Таблицы 2 наносился в форму тампопечати. Для сравнения линзы отверждались с высокой (8 мВт/см2) и низкой (4 мВт/см2) интенсивностью.
Эксперимент проводился следующим образом. Закрытые формы линз с тампопечатью, содержащие мономерные смеси, загружались в отверждающий туннель. После заполнения туннеля машина полностью выключалась и поддоны для каждого ряда извлекались из туннеля, после чего маркировались с указанием их места нахождения. Место нахождения поддона соответствует количеству света, которому подвергалась линза в процессе отверждения. Процесс повторялся до тех пор пока не получалось желаемое количество образцов для каждой из испытуемых смесей мономеров и интенсивностей света. Результаты показаны на фиг.8A и 8B.
Пример 11
Реакция фотополимеризации для каждого состава C, перечисленного в Таблице 2, наблюдалась на реометре ATS StressTech (ATS RheoSystems, 52 Georgetown Road, Bordentown, NJ 08505), оснащенным устройством для фотоотверждения, состоящим из ячейки с регулируемой температурой с кварцевой нижней пластиной и алюминиевой верхней пластиной, а также ртутной дуговой лампой OmniCure (EXFO Photonic Solutions Inc., 2260 Argentia Rd., Mississauga, ON L5N 6H7 КАНАДА) с фильтром пропускания полосы (Andover Corporation, 4 Commercial Drive, Salem, NH 03079-2800 США), расположенным под кварцевой пластиной. Интенсивность излучения, измеренная на поверхности кварцевого окна радиометром IL1400A и датчиком XRL140A (от компании Light, Inc., 17 Graf Road, Newburyport, MA 01950), регулировалась на уровне 4,5±0,5 мВт/см2. Температура регулировалась на уровне 60,0±0,1°C.
После того как примерно 0,25 мл реакционной смеси мономера помещалось на нижнюю пластину реометра, верхняя пластина диаметром 25 мм опускалась до 0,500±0,001 мм над нижней пластиной, где удерживалась до достижения точки гелеобразования в процессе реакции. Образцу давалось время на достижение теплового равновесия (~5 минут), определяемое выравниваем по уровню постоянного сдвига вязкости по мере нагревания), до того как включалась лампа OmniCure и начиналась реакция. В это же время, пока образец достигал теплового равновесия, камера с образцом продувалась азотом со скоростью 400 куб. см/мин. После этой первичной продувки уровень кислорода в камере образца наблюдался на уровне 0,5±0,1% с помощью датчика кислорода CheckPoint O2 (от компании PBI Dansensor Topac, 101 Derby St., #203 Hingham, MA 02043). Во время реакции реометр постоянно контролировал прилагаемую динамическую нагрузку (режим быстрых колебаний), когда сегменты времени меньше полного цикла использовались для измерения натяжения при приложении синусоидальной нагрузки (прилагаемой с частотой 1,0 Гц). Динамический модуль сдвига (G'), модуль потерь (G”) и высота зазора наблюдались в качестве функции времени воздействия. По ходу реакции модуль сдвига увеличивался с <1 Па до >0,1 мПа, а тангенс δ (=G”/G') опускался от почти бесконечности до значения менее 1. Для многих систем реакции с поперечными связями точка гелеобразования определяется как время, за которое тангенс δ=1 (точка пересечения, когда G'=G”). На момент, когда G' достигает 100 Па (вскоре после точки гелеобразования), ограничение по высоте зазора на верхней пластине снималось (режим автонатяжения: натяжение =0) так, чтобы зазор между верхней и нижней пластинами мог меняться по мере усадки реакционной смеси мономера во время отверждения, а напряжение по причине усадки оставалось минимальным. Измерение изменения зазора дает возможность оценить количество усадки по причине реакции полимеризации. После 10-минутного воздействия лампа OmniCure выключалась (т.е. отверждение прекращалось).
Результаты показаны на фиг.9-11, где показаны разницы точки гелеобразования и времени до преобразования 95% между линзами, полученными с одним и тем же инициатором, но разными фильтрами и концентрациями фотохромного красителя. Как видно при сравнении фиг.9B, 10B и 11B, где показано нарастание модуля для разных полимеров, полученных в примере 11 (G' по сравнению со временем), когда используются фильтры, блокирующие длины вол, при которых фотохромный краситель демонстрирует способность к поглощению, эффективность преобразования улучшается.
Хотя изобретение описано со ссылкой на предпочтительные варианты, оно будет понятно специалистам в данной области, что возможны различные изменения и эквиваленты могут быть заменены на их элементы для адаптации к конкретной ситуации, не выходя за рамки изобретения. Таким образом, предполагается, что изобретение не ограничивается конкретными вариантами осуществления, как лучшими из предполагаемых для реализации этого изобретения, но что изобретение будет включать все варианты, входящие в данную область, и прилагаемые формулы изобретения.

Claims (30)

1. Способ получения контактных линз, содержащих по меньшей мере одно термохромное соединение, включающий следующие стадии:
выбор фотоинициатора, поглощающего первую длину волны;
выбор термохромного соединения, демонстрирующего поглощение первой длины волны при воздействии первой температуры на соединение и, кроме того, демонстрирующего снижение поглощающей способности, по меньшей мере, на 80% при первой длине волне и второй температуре;
заливка реакционной смеси в форму; смесь, содержащая по меньшей мере один полимеризуемый мономер, фотоинициатор и термохромное соединение;
выдерживание реакционной смеси до указанной второй температуры, в результате чего снижается способность молярного поглощения термохромного соединения на первой длине волны;
отверждение реакционной смеси при заданной второй температуре для формования термохромной контактной линзы путем воздействия на смесь излучения, включающего первую длину волны.
2. Способ по п. 1, в котором первая температура составляет около 25°C, а вторая температура - по меньшей мере около 40°C.
3. Способ по п. 1, в котором термохромное соединение представляет собой полимеризуемое фотохромное соединение, которое сополимеризуется с по меньшей мере одним полимеризуемым мономером на стадии отверждения смеси.
4. Способ по п. 1, в котором термохромное соединение однородно распределяется по всей поверхности контактной линзы.
5. Способ по п. 1, в котором термохромное соединение распределяется в центральной круглой области диаметром примерно от 1 до 9 мм с центром в геометрическом центре контактной линзы и центральный круглый участок окружен областью, которая практически не содержит термохромного соединения, таким образом создавая контактную линзу только в районе зрачка.
6. Способ по п. 1, в котором первая длина волны составляет от 380 нм до 780 нм.
7. Способ по п. 1, в котором первая длина волны составляет от 400 нм до 500 нм.
8. Способ по п. 1, в котором первая длина волны составляет от 420 нм до 480 нм.
9. Способ по п. 1, в котором на стадии выдерживания реакционная смесь нагревается до температуры от 55°C до 75°C.
10. Способ по п. 1, в котором на стадии выдерживания реакционная смесь нагревается до температуры от 60°C до 70°C.
11. Способ получения фотохромной контактной линзы, включающий следующие стадии:
выбор фотоинициатора, поглощающего первую длину волны в диапазоне от 420 нм до 480 нм;
выбор фотохромного соединения, демонстрирующего поглощение первой длины волны при воздействии температуры 25°C на соединение и, кроме того, демонстрирует снижение поглощающей способности, по меньшей мере, на 80% при первой длине волны и температуре соединения 70°C;
заливка реакционной смеси на форму; в состав смеси входит по меньшей мере один полимеризуемый силоксановый мономер, фотоинициатор и фотохромное соединение;
нагревание реакционной смеси до температуры от 40°C до 90°C; нагревание приводит к снижению способности фотохромного соединения молярного поглощения при первой длине волны;
отверждение нагретой реакционной смеси с формованием материала фотохромной контактной линзы путем освещения смеси светом с первой длиной волны.
12. Способ по п. 11, в котором фотохромное соединение однородно распределяется по всей поверхности контактной линзы.
13. Способ по п. 11, в котором фотохромное соединение распределяется в центре фотохромной контактной линзы, а центр окружен участком, который практически не содержит фотохромное соединение, таким образом создавая контактную линзу только в районе зрачка.
14. Способ получения фотохромной контактной линзы, включающий в себя следующие стадии:
выбор фотоинициатора, поглощающего первую длину волны в диапазоне от 400 нм до 480 нм;
выбор фотохромного соединения, демонстрирующего поглощение первой длины волны при воздействии температуры 25°C на соединение и, кроме того, демонстрирует снижение поглощающей способности, по меньшей мере, на 80% при первой длине волны и температуре соединения 80°C;
заливка реакционной смеси на форму; в состав смеси входит по меньшей мере один полимеризуемый силоксановый мономер, фотоинициатор и фотохромное соединение;
нагревание реакционной смеси до температуры от 50°C до 90°C; нагревание приводит к снижению способности фотохромного соединения молярного поглощения при первой длине волны;
предоставление источника света для отверждения, который включает свет первой длины волны, опуская, по меньшей мере, часть длин волн, которые активируют фотохромное соединение, нагретый до температуры 80°C;
отверждение нагретой реакционной смеси с формованием материала фотохромной контактной линзы путем освещения смеси светом для отверждения.
15. Способ по п. 14, в котором фотохромное соединение однородно распределяется по всей поверхности контактной линзы.
16. Способ по п. 14, в котором фотохромное соединение распределяется в центральной круглой области диаметром примерно от 1 до 9 мм с центром в геометрическом центре контактной линзы и центральный круглый участок окружен областью, которая практически не содержит термохромного красителя, таким образом создавая контактную линзу только в районе зрачка.
17. Способ по п. 14, в котором часть длин волн, которые опускаются из-за активации фотохромного соединения, включает все длины волн ниже 400 нм.
18. Способ по п. 2, в котором указанная вторая температура составляет по меньшей мере приблизительно 70°C.
19. Способ по п. 1, в котором указанное термохромное соединение выбирается из жидких кристаллов, лейкокрасителей, поляризующих покрытий и фотохромных соединений.
20. Способ получения контактной линзы, содержащей как минимум одно термохромное соединение, включает следующие стадии:
(a) выбор фотоиницатора, который поглощает при первой длине волны;
(b) выбор термохромного соединения, которое демонстрирует поглощение под действием первой длины волны, когда соединение нагрето до первой температуры, и демонстрирует потерю способности поглощения, по меньшей мере, на 80% при воздействии первой длины волны при второй температуре;
(c) заливка в форму контактной линзы смеси термохромного состава, состоящего по меньшей мере из одного термохромного соединения;
(d) заливка в форму контактной линзы реакционной смеси, включающей указанный фотоинициатор и, по меньшей мере, один полимеризуемый компонент;
(e) выдерживание реакционной смеси и термохромного соединения до заданной второй температуры, приводя к снижению способности молярного поглощения термохромного соединения при воздействии первой длины волны;
(f) отверждение реакционной смеси и термохромного соединения при заданной второй температуре для формования термохромной контактной линзы путем воздействия на смесь излучением, включающим первую длину волны.
21. Способ по п. 20, в котором указанный термохромный состав дополнительно включает по меньшей мере один связующий полимер и по меньшей мере один растворитель.
22. Способ по п. 21, в котором указанный связующий полимер по существу является нереакционно-способным.
23. Способ по п. 22, в котором указанный растворитель испаряется из заданного красящего состава до заливки указанной реакционной смеси.
24. Способ по п. 21, в котором термохромный состав включает по меньшей мере полимеризуемый компонент и по меньшей мере один фотоинициатор, который поглощает первую длину волны.
25. Способ по п. 24 дополнительно включает следующие стадии:
выдерживание термохромного состава до заданной второй температуры, приводя к снижению способности молярного поглощения термохромного соединения при воздействии первой длины волны; и
отверждение термохромного состава при заданной второй температуре для формования, по меньшей мере, части полимеризованного термохромного слоя путем воздействия на смесь излучением первой длины волны.
26. Способ по п. 20 или 25, в котором состав реакционной смеси дополнительно включает второе термохромное соединение, которое может совпадать или не совпадать с указанным первым термохромным соединением.
27. Способ по п. 26, в котором второе термохромное соединение отличается от указанного первого термохромного соединения.
28. Способ по п. 27, в котором второе термохромное соединение демонстрирует значительную абсорбцию света при первой длине волны, когда соединение нагрето до первой температуры, но демонстрирует снижение способности к поглощению, по меньшей мере, на 80% под действием первой длины волны при третьей температуре, которая отличается от заданной второй температуры.
29. Способ по п. 5, в котором диаметр указанной центральной круглой области составляет от около 4 до около 9 мм.
30. Способ по п. 5, в котором диаметр указанной центральной круглой области составляет от около 6 до около 9 мм.
RU2012148121/28A 2010-04-13 2011-04-11 Способ получения материала для изготовления материала для термохромных контактных линз RU2564052C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US32342610P 2010-04-13 2010-04-13
US61/323,426 2010-04-13
US13/082,517 US8877103B2 (en) 2010-04-13 2011-04-08 Process for manufacture of a thermochromic contact lens material
US13/082,517 2011-04-08
PCT/US2011/031878 WO2011130137A2 (en) 2010-04-13 2011-04-11 Process for manufacture of a thermochromic contact lens material

Publications (2)

Publication Number Publication Date
RU2012148121A RU2012148121A (ru) 2014-05-20
RU2564052C2 true RU2564052C2 (ru) 2015-09-27

Family

ID=44760344

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012148121/28A RU2564052C2 (ru) 2010-04-13 2011-04-11 Способ получения материала для изготовления материала для термохромных контактных линз

Country Status (13)

Country Link
US (4) US8877103B2 (ru)
EP (1) EP2558888A2 (ru)
JP (1) JP5897547B2 (ru)
KR (1) KR101834734B1 (ru)
CN (2) CN102834741B (ru)
AR (1) AR080896A1 (ru)
AU (1) AU2011240892B2 (ru)
CA (1) CA2795802C (ru)
HK (2) HK1175255A1 (ru)
RU (1) RU2564052C2 (ru)
SG (1) SG184420A1 (ru)
TW (1) TWI527893B (ru)
WO (1) WO2011130137A2 (ru)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9139552B2 (en) * 2005-04-08 2015-09-22 Transitions Optical, Inc. Indeno-fused naphthopyrans having ethylenically unsaturated groups
US8647538B2 (en) 2005-04-08 2014-02-11 Transitions Optical, Inc. Photochromic compounds having at least two photochromic moieties
US9028728B2 (en) 2005-04-08 2015-05-12 Transitions Optical, Inc. Photochromic materials that include indeno-fused naphthopyrans
US8877103B2 (en) 2010-04-13 2014-11-04 Johnson & Johnson Vision Care, Inc. Process for manufacture of a thermochromic contact lens material
US8697770B2 (en) 2010-04-13 2014-04-15 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort
JP2015069045A (ja) * 2013-09-30 2015-04-13 タレックス光学工業株式会社 複合機能性偏光レンズ
US10001661B1 (en) 2014-03-06 2018-06-19 Verily Life Sciences Llc Body-mountable devices having an optical polarizer
US10096802B2 (en) 2014-04-08 2018-10-09 International Business Machines Corporation Homogeneous solid metallic anode for thin film microbattery
US10105082B2 (en) 2014-08-15 2018-10-23 International Business Machines Corporation Metal-oxide-semiconductor capacitor based sensor
US9508566B2 (en) 2014-08-15 2016-11-29 International Business Machines Corporation Wafer level overmold for three dimensional surfaces
WO2016031415A1 (ja) * 2014-08-27 2016-03-03 富士フイルム株式会社 組成物、膜、光学機器、化合物
WO2016111969A1 (en) * 2015-01-05 2016-07-14 E-Vision Smart Optics, Inc. Methods and systems for mold releases
JP6629981B2 (ja) 2016-02-22 2020-01-15 ノバルティス アーゲー Uv/可視吸収ビニルモノマーおよびその使用
CA3010331C (en) 2016-02-22 2021-06-22 Novartis Ag Uv-absorbing vinylic monomers and uses thereof
WO2017167670A1 (en) * 2016-03-31 2017-10-05 Koninklijke Philips N.V. A contact lens, a system and a method of measuring a physiological characteristic of an eye of a subject
US10267966B2 (en) 2016-04-13 2019-04-23 Talex Optical Co., Ltd. Composite functional polarized lens
US10466506B2 (en) 2016-12-21 2019-11-05 Johnson & Johnson Vision Care, Inc. Methods and apparatus for biomedical devices with customized appearance
JP7002413B2 (ja) 2017-06-23 2022-01-20 星歐光學股▲ふん▼有限公司 コンタクトレンズ及びその製品
DE102017117478A1 (de) 2017-08-02 2019-02-07 Joanneum Research Forschungsgesellschaft Mbh Sensormaterial mit temperaturabhängiger Färbung
CN107463001A (zh) * 2017-08-18 2017-12-12 深圳先进技术研究院 一种结构色太阳隐形眼镜及其制备方法
JP6553157B2 (ja) * 2017-12-04 2019-07-31 タレックス光学工業株式会社 複合機能性偏光レンズの製造方法
EP3770648A4 (en) * 2018-03-22 2022-01-05 Tokuyama Corporation PROCESS FOR PRODUCING A PLASTIC LENS WITH A COATING LAYER
ES2930973T3 (es) 2018-04-17 2022-12-22 Tokuyama Corp Compuesto fotocrómico, composición curable que contiene dicho compuesto fotocrómico y artículo óptico
JP2019117390A (ja) * 2019-03-01 2019-07-18 タレックス光学工業株式会社 複合機能性偏光レンズ
US11724471B2 (en) * 2019-03-28 2023-08-15 Johnson & Johnson Vision Care, Inc. Methods for the manufacture of photoabsorbing contact lenses and photoabsorbing contact lenses produced thereby
CN112123684B (zh) * 2019-06-25 2022-04-15 江苏想靓眼镜有限公司 一种多种变色太阳镜加工工艺
US20230296807A1 (en) * 2021-12-20 2023-09-21 Johnson & Johnson Vision Care, Inc. Contact lenses containing light absorbing regions and methods for their preparation
KR20230149009A (ko) * 2022-04-19 2023-10-26 경북대학교 산학협력단 동공부 크기 가변형 광변색 기반 인공홍채 콘택트렌즈 및 이의 제조방법
CN114721166A (zh) * 2022-04-26 2022-07-08 东南大学 一种包含热致变色胆甾相液晶材料的隐形眼镜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060227287A1 (en) * 2005-04-08 2006-10-12 Frank Molock Photochromic ophthalmic devices made with dual initiator system
WO2006110306A1 (en) * 2005-04-08 2006-10-19 Johnson & Johnson Vision Care, Inc. Photochromic contact lenses and methods for their production

Family Cites Families (261)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034403A (en) 1959-04-03 1962-05-15 Neefe Hamilton Res Company Contact lens of apparent variable light absorption
US3808178A (en) 1972-06-16 1974-04-30 Polycon Laboratories Oxygen-permeable contact lens composition,methods and article of manufacture
US4073577A (en) * 1973-02-19 1978-02-14 Titmus Eurocon Kontaktlinsen Kg Contact lenses of hydrophilic polymers made by photopolymerization
US4120570A (en) 1976-06-22 1978-10-17 Syntex (U.S.A.) Inc. Method for correcting visual defects, compositions and articles of manufacture useful therein
CA1099546A (en) 1976-10-28 1981-04-21 Donald R. Korb Contact lens
US4343927A (en) 1976-11-08 1982-08-10 Chang Sing Hsiung Hydrophilic, soft and oxygen permeable copolymer compositions
US4182822A (en) 1976-11-08 1980-01-08 Chang Sing Hsiung Hydrophilic, soft and oxygen permeable copolymer composition
US4390676A (en) 1976-11-15 1983-06-28 Schering Corporation Ultraviolet absorbing lenses
US4136250A (en) 1977-07-20 1979-01-23 Ciba-Geigy Corporation Polysiloxane hydrogels
US4153641A (en) 1977-07-25 1979-05-08 Bausch & Lomb Incorporated Polysiloxane composition and contact lens
US4189546A (en) 1977-07-25 1980-02-19 Bausch & Lomb Incorporated Polysiloxane shaped article for use in biomedical applications
JPS5455455A (en) 1977-10-12 1979-05-02 Toyo Contact Lens Co Ltd Contact lens
JPS5466853A (en) 1977-11-08 1979-05-29 Toyo Contact Lens Co Ltd Soft contact lens
US4330383A (en) 1978-07-18 1982-05-18 Polymer Technology Corporation Dimensionally stable oxygen permeable hard contact lens material and method of manufacture
US4261875A (en) 1979-01-31 1981-04-14 American Optical Corporation Contact lenses containing hydrophilic silicone polymers
US4301012A (en) 1979-04-25 1981-11-17 Purolator Technologies, Inc. Welded stainless steel mesh cleanable filter
US4254248A (en) 1979-09-13 1981-03-03 Bausch & Lomb Incorporated Contact lens made from polymers of polysiloxane and polycyclic esters of acrylic acid or methacrylic acid
US4276402A (en) 1979-09-13 1981-06-30 Bausch & Lomb Incorporated Polysiloxane/acrylic acid/polcyclic esters of methacrylic acid polymer contact lens
US4260725A (en) 1979-12-10 1981-04-07 Bausch & Lomb Incorporated Hydrophilic contact lens made from polysiloxanes which are thermally bonded to polymerizable groups and which contain hydrophilic sidechains
US4259467A (en) 1979-12-10 1981-03-31 Bausch & Lomb Incorporated Hydrophilic contact lens made from polysiloxanes containing hydrophilic sidechains
US4341889A (en) 1981-02-26 1982-07-27 Bausch & Lomb Incorporated Polysiloxane composition and biomedical devices
US4355147A (en) 1981-02-26 1982-10-19 Bausch & Lomb Incorporated Polysiloxane with polycyclic modifier composition and biomedical devices
US4327203A (en) 1981-02-26 1982-04-27 Bausch & Lomb Incorporated Polysiloxane with cycloalkyl modifier composition and biomedical devices
US4495313A (en) 1981-04-30 1985-01-22 Mia Lens Production A/S Preparation of hydrogel for soft contact lens with water displaceable boric acid ester
JPS607094B2 (ja) 1981-06-19 1985-02-22 五洋建設株式会社 捨石基礎マウンド形成工法
US4436887A (en) 1981-11-12 1984-03-13 Bausch & Lomb Incorporated N-Vinyl lactam based biomedical devices
US4661575A (en) 1982-01-25 1987-04-28 Hercules Incorporated Dicyclopentadiene polymer product
US4952046A (en) 1982-02-26 1990-08-28 Stephens James B Optical lenses with selective transmissivity functions
US4463149A (en) 1982-03-29 1984-07-31 Polymer Technology Corporation Silicone-containing contact lens material and contact lenses made thereof
US4450264A (en) 1982-08-09 1984-05-22 Polymatic Investment Corp., N.V. Siloxane-containing polymers and contact lenses therefrom
US4973493A (en) 1982-09-29 1990-11-27 Bio-Metric Systems, Inc. Method of improving the biocompatibility of solid surfaces
US4486577A (en) 1982-10-12 1984-12-04 Ciba-Geigy Corporation Strong, silicone containing polymers with high oxygen permeability
JPS59185310A (ja) 1983-04-06 1984-10-20 Toyo Contact Lens Co Ltd 酸素透過性軟質コンタクトレンズ用組成物
US4543398A (en) 1983-04-28 1985-09-24 Minnesota Mining And Manufacturing Company Ophthalmic devices fabricated from urethane acrylates of polysiloxane alcohols
US4891046A (en) 1984-03-15 1990-01-02 Coopervision, Inc. Tinted contact lens and method for preparation with dichlorotriazine reactive dye
ZA855083B (en) 1984-07-05 1987-03-25 Du Pont Acrylic star polymers
US4576453A (en) 1984-08-03 1986-03-18 Richard Borowsky Light-occluding contact lens
US4707236A (en) 1984-08-03 1987-11-17 Richard Borowsky Method of farbricating an optically graded light occluding gel
US4605712A (en) 1984-09-24 1986-08-12 Ciba-Geigy Corporation Unsaturated polysiloxanes and polymers thereof
US4681412A (en) 1984-10-01 1987-07-21 Lemelson Jerome H Contact lens containing light sensitive material
US4680336A (en) 1984-11-21 1987-07-14 Vistakon, Inc. Method of forming shaped hydrogel articles
US4711943A (en) 1985-04-26 1987-12-08 Sola U.S.A. Inc. Hydrophilic siloxane monomers and dimers for contact lens materials, and contact lenses fabricated therefrom
US4669834A (en) 1985-04-30 1987-06-02 Richter Judy C Light reflective contact lens
JPS6258604A (ja) 1985-09-09 1987-03-14 Mitsui Toatsu Chem Inc 磁気記録用磁性鉄粉の製造方法
DE3708308A1 (de) 1986-04-10 1987-10-22 Bayer Ag Kontaktoptische gegenstaende
US4725277A (en) 1986-05-14 1988-02-16 Precision-Cosmet Co., Inc. Intraocular lens with tapered haptics
US4871785A (en) 1986-08-13 1989-10-03 Michael Froix Clouding-resistant contact lens compositions
US4731079A (en) 1986-11-26 1988-03-15 Kingston Technologies, Inc. Intraocular lenses
JPS63264719A (ja) 1986-12-08 1988-11-01 Toyo Contact Lens Co Ltd ソフトコンタクトレンズの染色方法
JP2699334B2 (ja) 1986-12-25 1998-01-19 株式会社島津製作所 コンタクトレンズ
AU616650B2 (en) 1987-02-02 1991-11-07 Toray Industries, Inc. Spirooxazine photochromic compounds and resins
US5270418A (en) 1987-04-02 1993-12-14 Bausch & Lomb Incorporated Polymer compositions for contact lenses
US5006622A (en) 1987-04-02 1991-04-09 Bausch & Lomb Incorporated Polymer compositions for contact lenses
US5236969A (en) 1987-04-02 1993-08-17 Bausch & Lomb Incorporated Polymer compositions for contact lenses
US4837289A (en) 1987-04-30 1989-06-06 Ciba-Geigy Corporation UV- and heat curable terminal polyvinyl functional macromers and polymers thereof
US4863464A (en) 1988-01-26 1989-09-05 The Cooper Companies, Inc. Intraocular lens
US4872876A (en) 1988-05-11 1989-10-10 Nestle S.A. Universal fit intraocular lens
US4954587A (en) 1988-07-05 1990-09-04 Ciba-Geigy Corporation Dimethylacrylamide-copolymer hydrogels with high oxygen permeability
DE3837884A1 (de) 1988-11-08 1990-05-10 Mutzhas Maximilian F Lichtfilter zur verbesserung des sehens
US4889664A (en) 1988-11-25 1989-12-26 Vistakon, Inc. Method of forming shaped hydrogel articles including contact lenses
US5039459A (en) 1988-11-25 1991-08-13 Johnson & Johnson Vision Products, Inc. Method of forming shaped hydrogel articles including contact lenses
US4954586A (en) 1989-01-17 1990-09-04 Menicon Co., Ltd Soft ocular lens material
US5070215A (en) 1989-05-02 1991-12-03 Bausch & Lomb Incorporated Novel vinyl carbonate and vinyl carbamate contact lens material monomers
US5034461A (en) 1989-06-07 1991-07-23 Bausch & Lomb Incorporated Novel prepolymers useful in biomedical devices
US5115056A (en) 1989-06-20 1992-05-19 Ciba-Geigy Corporation Fluorine and/or silicone containing poly(alkylene-oxide)-block copolymers and contact lenses thereof
US5010141A (en) 1989-10-25 1991-04-23 Ciba-Geigy Corporation Reactive silicone and/or fluorine containing hydrophilic prepolymers and polymers thereof
DE69018269T2 (de) 1989-11-01 1995-07-27 Schering Corp Kontaktlinse mit natürlichem erscheinen.
US6337040B1 (en) 1990-01-29 2002-01-08 Pbh, Inc Colored contact lenses and method of making same
US5275838A (en) 1990-02-28 1994-01-04 Massachusetts Institute Of Technology Immobilized polyethylene oxide star molecules for bioapplications
US4997897A (en) 1990-04-03 1991-03-05 Bausch & Lomb Incorporated Polymerizable dye
US5244981A (en) 1990-04-10 1993-09-14 Permeable Technologies, Inc. Silicone-containing contact lens polymers, oxygen permeable contact lenses and methods for making these lenses and treating patients with visual impairment
US5314960A (en) 1990-04-10 1994-05-24 Permeable Technologies, Inc. Silicone-containing polymers, oxygen permeable hydrophilic contact lenses and methods for making these lenses and treating patients with visual impairment
US5057578A (en) 1990-04-10 1991-10-15 E. I. Du Pont De Nemours And Company Silicone-containing block copolymers and macromonomers
FR2664991B1 (fr) 1990-07-19 1992-11-13 Capez Pierre Lentille de contact anti-eblouissement.
US5371147A (en) 1990-10-11 1994-12-06 Permeable Technologies, Inc. Silicone-containing acrylic star polymers, block copolymers and macromonomers
GB9023498D0 (en) 1990-10-29 1990-12-12 Biocompatibles Ltd Soft contact lens material
US5135297A (en) 1990-11-27 1992-08-04 Bausch & Lomb Incorporated Surface coating of polymer objects
CA2116849C (en) 1991-09-12 2001-06-12 Yu-Chin Lai Wettable silicone hydrogel compositions and methods
JP3078363B2 (ja) 1991-09-13 2000-08-21 ホーヤ株式会社 サーモクロミック高分子ゲル
JP3354571B2 (ja) 1991-11-05 2002-12-09 ボシュ・アンド・ロム・インコーポレイテッド ぬれ性のシリコーンヒドロゲル組成物およびその製造方法
US5358995A (en) 1992-05-15 1994-10-25 Bausch & Lomb Incorporated Surface wettable silicone hydrogels
GEP20002074B (en) 1992-05-19 2000-05-10 Westaim Tech Inc Ca Modified Material and Method for its Production
JP2774233B2 (ja) 1992-08-26 1998-07-09 株式会社メニコン 眼用レンズ材料
US5433898A (en) 1992-09-11 1995-07-18 Pilkington Barnes Hind, Inc. Method of manufacturing a contact lens
US5944853A (en) 1992-10-26 1999-08-31 Johnson & Johnson Vision Products, Inc. Method for preparing halotriazine dye- and vinyl sulfone dye-monomer compounds
US5298533A (en) 1992-12-02 1994-03-29 Bausch & Lomb Incorporated Polymer compositions for contact lenses
JP3107121B2 (ja) 1992-12-18 2000-11-06 矢崎総業株式会社 フラット電線とコネクタのロック構造
US5336797A (en) 1992-12-30 1994-08-09 Bausch & Lomb Incorporated Siloxane macromonomers
ES2116582T3 (es) 1993-01-28 1998-07-16 Pilkington Barnes Hind Inc Material para la fabricacion de articulos de polimeros.
JPH06258604A (ja) 1993-03-03 1994-09-16 Nissha Printing Co Ltd 絵付コンタクトレンズとその製造方法
KR100304799B1 (ko) 1993-08-18 2001-11-22 히드베기 가보르 색각을수정하거나개선하기위한광학수단및방법과상기광학수단을제조하는방법
FR2723218A1 (fr) 1994-07-29 1996-02-02 Essilor Internal Cie Gle Optique Composes photochromiques de structure spiro (indoline-(2,3')-benzoxazine) a groupement cyano en 6', et leur utilisation dans le domaine de l'optique ophtalmique
US5760100B1 (en) 1994-09-06 2000-11-14 Ciba Vision Corp Extended wear ophthalmic lens
US7468398B2 (en) 1994-09-06 2008-12-23 Ciba Vision Corporation Extended wear ophthalmic lens
US5846457A (en) 1994-10-28 1998-12-08 Hoffman; William C. Light filtering contact lens method
US5617154A (en) 1994-10-28 1997-04-01 Flexlens Light filtering contact lens
US5645767A (en) 1994-11-03 1997-07-08 Transitions Optical, Inc. Photochromic indeno-fused naphthopyrans
JP3542425B2 (ja) 1994-11-17 2004-07-14 キヤノン株式会社 インクジェット記録用水系分散インク、これを用いるインクジェット記録方法、インクカートリッジ、記録ユニットおよび記録装置
US5973039A (en) 1994-12-12 1999-10-26 Corning Incorporated Temperature stable and sunlight protected photochromic articles
ATE185737T1 (de) 1995-02-02 1999-11-15 Novartis Erfind Verwalt Gmbh Verfahren zur herstellung von partiell oder bereichsweise unterschiedlich gefärbten formkörper
TW585882B (en) 1995-04-04 2004-05-01 Novartis Ag A method of using a contact lens as an extended wear lens and a method of screening an ophthalmic lens for utility as an extended-wear lens
AU5194896A (en) 1995-05-04 1996-11-14 Johnson & Johnson Vision Products, Inc. Concentric annular ring lens designs with minimal angles between adjacent annular ring segments
JPH08319481A (ja) * 1995-05-26 1996-12-03 Tokuyama Corp フォトクロミック硬化体の製造方法
US5824719A (en) 1995-06-07 1998-10-20 Bausch & Lomb Incorporated Polymer compositions for contact lenses
AUPN354595A0 (en) 1995-06-14 1995-07-06 Ciba-Geigy Ag Novel materials
GB2305256A (en) 1995-07-19 1997-04-02 Peter John Mckay Photochromic or polarising contact lens
US5789462A (en) 1995-09-13 1998-08-04 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Photocured crosslinked-hyaluronic acid contact lens
JP4006039B2 (ja) 1995-09-13 2007-11-14 生化学工業株式会社 光架橋ヒアルロン酸コンタクトレンズ
WO1997020852A1 (en) 1995-12-07 1997-06-12 Bausch & Lomb Incorporated Monomeric units useful for reducing the modulus of silicone hydrogels
DE69625941T2 (de) 1995-12-07 2003-06-18 Bausch & Lomb Polysiloxanzusammensetzungen mit niedrigem wassergehalt und reduziertem modul
FR2743154B1 (fr) 1995-12-29 1998-03-06 Essilor Int Lentille oculaire artificielle multifocale a transparence variable avec l'eclairement
US5716540A (en) 1996-02-09 1998-02-10 Johnson & Johnson Vision Products, Inc. Apparatus and method for producing center gated lens molds for contact lens manufacture
US5779943A (en) 1996-03-19 1998-07-14 Johnson & Johnson Vision Products, Inc. Molded polymeric object with wettable surface made from latent-hydrophilic monomers
JP2974607B2 (ja) 1996-04-05 1999-11-10 ホーヤ株式会社 反応性染料及びそれを用いたレンズ
US6022498A (en) 1996-04-19 2000-02-08 Q2100, Inc. Methods for eyeglass lens curing using ultraviolet light
US5807944A (en) 1996-06-27 1998-09-15 Ciba Vision Corporation Amphiphilic, segmented copolymer of controlled morphology and ophthalmic devices including contact lenses made therefrom
US6020445A (en) 1997-10-09 2000-02-01 Johnson & Johnson Vision Products, Inc. Silicone hydrogel polymers
EP0968727B1 (en) 1997-12-02 2008-07-30 Hoya Corporation Intraocular lenses and process for producing molded-in type intraocular lenses
FR2772033A1 (fr) 1997-12-05 1999-06-04 Essilor Int Procede de fabrication d'un materiau polymere transparent resistant au depot de proteines, materiau obtenu par ce procede, lentilles de contact et implants intraoculaires faits de ce materiau
ES1039419Y (es) 1998-01-19 1999-05-16 Catalan Gutierrez Javier Lentilla iris solar
US5962548A (en) 1998-03-02 1999-10-05 Johnson & Johnson Vision Products, Inc. Silicone hydrogel polymers
US6849671B2 (en) 1998-03-02 2005-02-01 Johnson & Johnson Vision Care, Inc. Contact lenses
US7052131B2 (en) 2001-09-10 2006-05-30 J&J Vision Care, Inc. Biomedical devices containing internal wetting agents
US6367929B1 (en) 1998-03-02 2002-04-09 Johnson & Johnson Vision Care, Inc. Hydrogel with internal wetting agent
US5998498A (en) 1998-03-02 1999-12-07 Johnson & Johnson Vision Products, Inc. Soft contact lenses
US6822016B2 (en) 2001-09-10 2004-11-23 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US6943203B2 (en) 1998-03-02 2005-09-13 Johnson & Johnson Vision Care, Inc. Soft contact lenses
US20030030773A1 (en) 1998-03-12 2003-02-13 Ocampo Gerardo J. Colored contact lens with a more natural appearance
BR9910345A (pt) 1998-05-05 2001-01-09 Bausch & Lomb Método para tratar a superfìcie de uma lente de contato de hidrogel de silicone e lente de contato de hidrogel de silicone
US6087415A (en) 1998-06-11 2000-07-11 Johnson & Johnson Vision Care, Inc. Biomedical devices with hydrophilic coatings
DE69929555T8 (de) * 1998-06-17 2007-05-31 Nipro Corp. Verwendung einer Flüssigkeit zur Herstellung einer Dialyselösung für die kontinuierliche rezirkulierende Peritonealdialyse
US6039913A (en) 1998-08-27 2000-03-21 Novartis Ag Process for the manufacture of an ophthalmic molding
AU761180B2 (en) 1998-09-11 2003-05-29 Transitions Optical, Inc Polymerizable polyalkoxylated naphthopyrans
SE9803481D0 (sv) 1998-10-13 1998-10-13 Pharmacia & Upjohn Ab Photocurable siloxane polymers
CN1173194C (zh) 1998-10-13 2004-10-27 法玛西雅格罗宁根有限公司 可注射的眼内镜片
EP1137956A1 (en) 1998-10-29 2001-10-04 Allergan Sales, Inc. Intraocular lenses made from polymeric compositions
US5981675A (en) 1998-12-07 1999-11-09 Bausch & Lomb Incorporated Silicone-containing macromonomers and low water materials
ATE260306T1 (de) 1998-12-11 2004-03-15 Biocompatibles Uk Ltd Vernetzte polymere und refraktionsvorrichtung aus diesen geformt
US6213604B1 (en) 1999-05-20 2001-04-10 Bausch & Lomb Incorporated Plasma surface treatment of silicone hydrogel contact lenses with a flexible carbon coating
US6200626B1 (en) 1999-05-20 2001-03-13 Bausch & Lomb Incorporated Surface-treatment of silicone medical devices comprising an intermediate carbon coating and graft polymerization
JP4219485B2 (ja) 1999-05-21 2009-02-04 株式会社メニコン 光学性含水ゲルからなる眼科用材料
MXPA01012785A (es) * 1999-06-11 2002-07-22 Ppg Ind Ohio Inc Dispositivo electro-optico y articulo transparente variable con un dispositivo de este tipo.
JP2003534562A (ja) 1999-10-22 2003-11-18 ノバルティス アクチエンゲゼルシャフト 滅菌した光互変性親水性コンタクトレンズ
WO2001040846A2 (en) 1999-11-01 2001-06-07 Praful Doshi Tinted lenses and methods of manufacture
US6305801B1 (en) 1999-12-02 2001-10-23 Peakvision, Llc Contact lens with filtering for outdoor sporting and recreational activities
ATE441132T1 (de) 1999-12-16 2009-09-15 Asahikasei Aime Co Ltd Zum tragen über lange zeiträume geeignete weiche kontaktlinsen
KR20020064982A (ko) 2000-01-03 2002-08-10 웨슬리 제슨 코포레이션 청록색 착색제로 착색된 콘택트렌즈
US6572794B1 (en) 2000-07-24 2003-06-03 Essilor International Compagnie Generale D'optique Method of manufacturing a photochromic molded article
AU6475400A (en) * 2000-08-11 2002-02-25 Tokuyama Corp Process for producing cured photochromic
WO2002026121A1 (en) 2000-09-26 2002-04-04 Calhoun Vision, Inc. Power adjustment of adjustable lens
US6746120B2 (en) 2000-10-30 2004-06-08 Novartis Ag Method and system for ordering customized cosmetic contact lenses
US6813082B2 (en) 2000-11-27 2004-11-02 Ophthonix, Inc. Wavefront aberrator and method of manufacturing
EP1337395B1 (en) 2000-11-29 2006-08-23 Zms, Llc Photochromic articles and methods for making them
US6863843B2 (en) 2000-12-21 2005-03-08 Vision-Ease Lens, Inc. Naphthopyran compounds, photoresponsive compositions and lenses
ATE424784T1 (de) 2001-03-16 2009-03-15 Novartis Ag Verfahren zur herstellung einer gefärbten kontaktlinse
DE10122188B4 (de) 2001-05-08 2007-04-12 Ems-Chemie Ag Polyamidformmassen zur Herstellung optischer Linsen
US7241125B2 (en) 2001-05-25 2007-07-10 Johnson & Johnson Vision Care, Inc. Center touch method and apparatus for forming contact lenses
US20030020870A1 (en) 2001-06-27 2003-01-30 Zms, Llc Biomedical molding materials from semi-solid precursors
US7879267B2 (en) 2001-08-02 2011-02-01 J&J Vision Care, Inc. Method for coating articles by mold transfer
AU2002337822A1 (en) 2001-10-05 2003-04-22 Superior Micropowders Llc Low viscosity precursor compositions and methods for the deposition of conductive electronic features
US20030103188A1 (en) 2001-12-04 2003-06-05 Zeltzer Harry I. Contact lens
US7368072B2 (en) 2001-12-10 2008-05-06 Ppg Industries Ohio, Inc. Photochromic contact lenses and methods of manufacturing
EP1497375B1 (en) 2002-04-15 2007-12-26 Solvay Advanced Polymers, LLC Polysulfone compositions exhibiting very low color and high light transmittance properties and articles made therefrom
AU2003234848C1 (en) * 2002-05-27 2009-04-09 Tokuyama Corporation Process for producing photochromic layered product
DE10252838A1 (de) 2002-11-13 2004-06-03 Wellomer Gmbh Verfahren zur Herstellung einer Klebeverbindung
US7175712B2 (en) 2003-01-09 2007-02-13 Con-Trol-Cure, Inc. Light emitting apparatus and method for curing inks, coatings and adhesives
US7399982B2 (en) 2003-01-09 2008-07-15 Con-Trol-Cure, Inc UV curing system and process with increased light intensity
EP1437392B9 (de) 2003-01-10 2006-08-23 Wellomer GmbH Kontrolle der Härtung von strahlungshärtbaren Klebemitteln
WO2004068215A1 (ja) 2003-01-27 2004-08-12 Menicon Co., Ltd. 消色性に優れたフォトクロミックコンタクトレンズ
US20040186241A1 (en) 2003-03-20 2004-09-23 Gemert Barry Van Photochromic ocular devices
US6811257B1 (en) 2003-04-15 2004-11-02 Douglas Lehat Contact lens including elements for filtering ultraviolet light, blue light, and polarized light
WO2005032791A1 (ja) 2003-10-06 2005-04-14 Menicon Co., Ltd. 眼用レンズ物品の製造方法及びそれに用いられる製造装置
US7165839B2 (en) 2003-12-19 2007-01-23 Novartis Ag Method for producing tinted contact lenses
US7786185B2 (en) 2004-03-05 2010-08-31 Johnson & Johnson Vision Care, Inc. Wettable hydrogels comprising acyclic polyamides
US8147728B2 (en) 2004-04-01 2012-04-03 Novartis Ag Pad transfer printing of silicone hydrogel lenses using colored ink
EP2574976B1 (en) 2004-04-30 2021-08-11 Johnson & Johnson Surgical Vision, Inc. Ophthalmic devices having a highly selective violet light transmissive filter
US7641336B2 (en) 2004-05-12 2010-01-05 Johnson & Johnson Vision Care, Inc Tinted contact lenses with combined limbal ring and iris patterns
US8133274B2 (en) 2004-06-18 2012-03-13 Medennium, Inc. Photochromic intraocular lenses and methods of making the same
JP5064218B2 (ja) 2004-07-28 2012-10-31 ノバルティス アーゲー ハイドロゲルレンズ用水性インク
JP3107121U (ja) 2004-08-09 2005-01-27 友子 越智 ネックレス等の装身具の留め具のズレ落ち防止具兼アクセサリー
US20060050232A1 (en) 2004-08-19 2006-03-09 Jerry Dukes Tinted contact lenses with gradient ring patterns
AR052008A1 (es) 2004-09-01 2007-02-28 Novartis Ag Metodo para hacer lentes de contacto de hidrogel de silicon a color
US7249848B2 (en) 2004-09-30 2007-07-31 Johnson & Johnson Vision Care, Inc. Wettable hydrogels comprising reactive, hydrophilic, polymeric internal wetting agents
US7473738B2 (en) 2004-09-30 2009-01-06 Johnson & Johnson Vision Care, Inc. Lactam polymer derivatives
US7247692B2 (en) 2004-09-30 2007-07-24 Johnson & Johnson Vision Care, Inc. Biomedical devices containing amphiphilic block copolymers
US9297928B2 (en) 2004-11-22 2016-03-29 Johnson & Johnson Vision Care, Inc. Ophthalmic compositions comprising polyether substituted polymers
US7556750B2 (en) 2005-04-08 2009-07-07 Transitions Optical, Inc. Photochromic materials with reactive substituents
US9052438B2 (en) * 2005-04-08 2015-06-09 Johnson & Johnson Vision Care, Inc. Ophthalmic devices comprising photochromic materials with reactive substituents
US20060226402A1 (en) 2005-04-08 2006-10-12 Beon-Kyu Kim Ophthalmic devices comprising photochromic materials having extended PI-conjugated systems
US7785092B2 (en) 2005-08-09 2010-08-31 Coopervision International Holding Company, Lp Systems and methods for producing contact lenses from a polymerizable composition
US20120075577A1 (en) 2006-03-20 2012-03-29 Ishak Andrew W High performance selective light wavelength filtering providing improved contrast sensitivity
US8113651B2 (en) 2006-03-20 2012-02-14 High Performance Optics, Inc. High performance corneal inlay
US8360574B2 (en) 2006-03-20 2013-01-29 High Performance Optics, Inc. High performance selective light wavelength filtering providing improved contrast sensitivity
US7364291B2 (en) 2006-06-29 2008-04-29 Johnson & Johnson Vision Care, Inc. Contact lenses with light blocking rings
US7717556B1 (en) 2006-07-05 2010-05-18 Jon Scott Walker Visual enhancement lens and associated methods
JP5070770B2 (ja) 2006-08-30 2012-11-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7838698B2 (en) 2006-09-29 2010-11-23 Johnson & Johnson Vision Care, Inc. Hydrolysis-resistant silicone compounds
US8507577B2 (en) 2006-10-31 2013-08-13 Johnson & Johnson Vision Care, Inc. Process for forming clear, wettable silicone hydrogel articles
GB0623299D0 (en) 2006-11-22 2007-01-03 Sauflon Cl Ltd Contact lens
WO2008067109A1 (en) 2006-11-28 2008-06-05 High Performance Optics, Inc. High performance selective light wavelength filtering providing improved contrast sensitivity
WO2008078804A1 (ja) 2006-12-27 2008-07-03 Hoya Corporation 多焦点眼用レンズ
US8026326B2 (en) 2007-03-05 2011-09-27 Benz Research And Development Corp. Light filters comprising a naturally occurring chromophore and derivatives thereof
JP2008233476A (ja) * 2007-03-20 2008-10-02 Sharp Corp 感光性樹脂組成物、ブラックマトリクスおよびその製造方法、トランジスタアレイ基板およびその製造方法、並びに、カラーフィルタ基板およびその製造方法
CN101686679B (zh) 2007-04-12 2014-04-30 日本农药株式会社 杀线虫剂组合物及其使用方法
UY31056A1 (es) 2007-05-01 2008-10-31 Alcon Res Ltd Fromulaciones aminocido n-halogenado y metodos de limpieza y desinfeccion
US7759433B2 (en) 2007-06-20 2010-07-20 Essilor International (Compagnie Generale D'optique) High adhesion acrylate coating for a photochromic ophthalmic lens
US7931369B2 (en) 2007-07-13 2011-04-26 David Andrew Harris Tinted lens and method of making same
US8317505B2 (en) 2007-08-21 2012-11-27 Johnson & Johnson Vision Care, Inc. Apparatus for formation of an ophthalmic lens precursor and lens
US8318055B2 (en) 2007-08-21 2012-11-27 Johnson & Johnson Vision Care, Inc. Methods for formation of an ophthalmic lens precursor and lens
US8974526B2 (en) 2007-08-27 2015-03-10 Amo Groningen B.V. Multizonal lens with extended depth of focus
KR20090021445A (ko) 2007-08-27 2009-03-04 하재상 변색 콘택트 렌즈
JP2009067680A (ja) * 2007-09-10 2009-04-02 Tokuyama Corp クロメン化合物
JP2009094446A (ja) 2007-09-19 2009-04-30 Toshiba Tec Corp パターン形成方法およびパターン形成装置
US7934830B2 (en) 2007-12-03 2011-05-03 Bausch & Lomb Incorporated High water content silicone hydrogels
US8138290B2 (en) 2008-01-25 2012-03-20 Bausch & Lomb Incorporated High water content ophthalmic devices
KR101580246B1 (ko) 2008-02-07 2015-12-24 신닛테츠 수미킨 가가쿠 가부시키가이샤 실리콘 수지 및 그 제조방법 그리고 이 실리콘 수지를 포함한 경화형 수지 조성물
HUE047093T2 (hu) 2008-03-18 2020-04-28 Novartis Ag Bevonatoló eljárás szemészeti lencsékhez
US20090244479A1 (en) 2008-03-31 2009-10-01 Diana Zanini Tinted silicone ophthalmic devices, processes and polymers used in the preparation of same
JP2010018686A (ja) 2008-07-09 2010-01-28 Fujifilm Corp 紫外線吸収剤およびこれを含む高分子材料
US8470906B2 (en) 2008-09-30 2013-06-25 Johnson & Johnson Vision Care, Inc. Ionic silicone hydrogels having improved hydrolytic stability
US20100149483A1 (en) 2008-12-12 2010-06-17 Chiavetta Iii Stephen V Optical Filter for Selectively Blocking Light
US7911676B2 (en) * 2008-12-16 2011-03-22 Transitions Optical, Inc. Photochromic optical articles prepared with reversible thermochromic materials
SG168419A1 (en) 2009-07-10 2011-02-28 Menicon Co Ltd Systems and methods for the production of contact lenses
GB0917806D0 (en) 2009-10-12 2009-11-25 Sauflon Cl Ltd Fluorinated silicone hydrogels
DE102009055080B4 (de) 2009-12-21 2019-11-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Herstellen einer Struktur, Abformwerkzeug
US8877103B2 (en) 2010-04-13 2014-11-04 Johnson & Johnson Vision Care, Inc. Process for manufacture of a thermochromic contact lens material
US8697770B2 (en) 2010-04-13 2014-04-15 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort
US9690115B2 (en) 2010-04-13 2017-06-27 Johnson & Johnson Vision Care, Inc. Contact lenses displaying reduced indoor glare
HUE038021T2 (hu) 2010-07-30 2018-09-28 Novartis Ag Eljárás UV-abszorbeáló szemészeti lencsék elõállítására
ES2441385T3 (es) 2011-02-28 2014-02-04 Coopervision International Holding Company, Lp Lentes de contacto de hidrogel de silicona humectables
US9170349B2 (en) 2011-05-04 2015-10-27 Johnson & Johnson Vision Care, Inc. Medical devices having homogeneous charge density and methods for making same
US9156934B2 (en) 2011-12-23 2015-10-13 Johnson & Johnson Vision Care, Inc. Silicone hydrogels comprising n-vinyl amides and hydroxyalkyl (meth)acrylates or (meth)acrylamides
US8937110B2 (en) 2011-12-23 2015-01-20 Johnson & Johnson Vision Care, Inc. Silicone hydrogels having a structure formed via controlled reaction kinetics
US8937111B2 (en) 2011-12-23 2015-01-20 Johnson & Johnson Vision Care, Inc. Silicone hydrogels comprising desirable water content and oxygen permeability
US9140825B2 (en) 2011-12-23 2015-09-22 Johnson & Johnson Vision Care, Inc. Ionic silicone hydrogels
US9125808B2 (en) 2011-12-23 2015-09-08 Johnson & Johnson Vision Care, Inc. Ionic silicone hydrogels
US8940812B2 (en) 2012-01-17 2015-01-27 Johnson & Johnson Vision Care, Inc. Silicone polymers comprising sulfonic acid groups
US10209534B2 (en) 2012-03-27 2019-02-19 Johnson & Johnson Vision Care, Inc. Increased stiffness center optic in soft contact lenses for astigmatism correction
SG193768A1 (en) 2012-03-30 2013-10-30 Johnson & Johnson Vision Care Methods and apparatus for forming a translating multifocal contact lens
US9244196B2 (en) 2012-05-25 2016-01-26 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
US9297929B2 (en) 2012-05-25 2016-03-29 Johnson & Johnson Vision Care, Inc. Contact lenses comprising water soluble N-(2 hydroxyalkyl) (meth)acrylamide polymers or copolymers
WO2016100457A1 (en) 2014-12-17 2016-06-23 Novartis Ag Reusable lens molds and methods of use thereof
WO2017093835A1 (en) 2015-12-02 2017-06-08 Novartis Ag Water-soluble uv-absorbing compounds and uses thereof
EP3390025B1 (en) 2015-12-17 2023-09-06 Alcon Inc. Reusable lens molds and methods of use thereof
US11125916B2 (en) 2016-07-06 2021-09-21 Johnson & Johnson Vision Care, Inc. Silicone hydrogels comprising N-alkyl methacrylamides and contact lenses made thereof
US11021558B2 (en) 2016-08-05 2021-06-01 Johnson & Johnson Vision Care, Inc. Polymer compositions containing grafted polymeric networks and processes for their preparation and use
WO2019043577A1 (en) 2017-08-29 2019-03-07 Novartis Ag CASTING MOLDING PROCESS FOR PRODUCING CONTACT LENSES
US11609442B2 (en) 2017-12-27 2023-03-21 Transitions Optical, Ltd. System and method for customization of a photochromic article
WO2019142132A1 (en) 2018-01-22 2019-07-25 Novartis Ag Cast-molding process for producing uv-absorbing contact lenses
US11034789B2 (en) 2018-01-30 2021-06-15 Johnson & Johnson Vision Care, Inc. Ophthalmic devices containing localized grafted networks and processes for their preparation and use
US10961341B2 (en) 2018-01-30 2021-03-30 Johnson & Johnson Vision Care, Inc. Ophthalmic devices derived from grafted polymeric networks and processes for their preparation and use
EP3770648A4 (en) 2018-03-22 2022-01-05 Tokuyama Corporation PROCESS FOR PRODUCING A PLASTIC LENS WITH A COATING LAYER
US11029534B2 (en) 2018-10-08 2021-06-08 Johnson & Johnson Vision Care, Inc. Multiple-wavelength lens forming system and method
US11724471B2 (en) 2019-03-28 2023-08-15 Johnson & Johnson Vision Care, Inc. Methods for the manufacture of photoabsorbing contact lenses and photoabsorbing contact lenses produced thereby
TWI779275B (zh) 2020-03-31 2022-10-01 望隼科技股份有限公司 防藍光隱形眼鏡、其組合物及製備方法
US20210347929A1 (en) 2020-05-07 2021-11-11 Alcon Inc. Method for producing silicone hydrogel contact lenses
EP4158392A1 (en) 2020-06-02 2023-04-05 Alcon Inc. Method for making photochromic contact lenses
US11364696B2 (en) 2020-09-18 2022-06-21 Johnson & Johnson Vision Care, Inc Apparatus for forming an ophthalmic lens
US11975499B2 (en) 2020-11-04 2024-05-07 Alcon Inc. Method for making photochromic contact lenses
WO2022097048A1 (en) 2020-11-04 2022-05-12 Alcon Inc. Method for making photochromic contact lenses
MX2023005405A (es) 2020-11-10 2023-07-04 Transitions Optical Ltd Metodo para preparar un articulo recubierto.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060227287A1 (en) * 2005-04-08 2006-10-12 Frank Molock Photochromic ophthalmic devices made with dual initiator system
WO2006110306A1 (en) * 2005-04-08 2006-10-19 Johnson & Johnson Vision Care, Inc. Photochromic contact lenses and methods for their production

Also Published As

Publication number Publication date
RU2012148121A (ru) 2014-05-20
US20110248415A1 (en) 2011-10-13
US8877103B2 (en) 2014-11-04
KR20130092404A (ko) 2013-08-20
CN105278008A (zh) 2016-01-27
CN102834741A (zh) 2012-12-19
CN102834741B (zh) 2015-11-25
JP5897547B2 (ja) 2016-03-30
WO2011130137A2 (en) 2011-10-20
US9975301B2 (en) 2018-05-22
HK1220773A1 (zh) 2017-05-12
CN105278008B (zh) 2018-04-13
AR080896A1 (es) 2012-05-16
CA2795802A1 (en) 2011-10-20
WO2011130137A3 (en) 2012-01-05
HK1175255A1 (zh) 2013-06-28
JP2013524296A (ja) 2013-06-17
US20210101352A1 (en) 2021-04-08
US11724472B2 (en) 2023-08-15
AU2011240892A1 (en) 2012-10-25
TWI527893B (zh) 2016-04-01
US20180229457A1 (en) 2018-08-16
TW201207095A (en) 2012-02-16
US20150115484A1 (en) 2015-04-30
US10894374B2 (en) 2021-01-19
EP2558888A2 (en) 2013-02-20
AU2011240892B2 (en) 2015-10-29
CA2795802C (en) 2018-09-04
SG184420A1 (en) 2012-11-29
KR101834734B1 (ko) 2018-03-06

Similar Documents

Publication Publication Date Title
RU2564052C2 (ru) Способ получения материала для изготовления материала для термохромных контактных линз
RU2577800C2 (ru) Зрачковые фотохромные контактные линзы, обладающие желаемыми оптическими свойствами и комфортом при ношении
JP5016278B2 (ja) シリコーンヒドロゲルコンタクトレンズ製造のための組成物及び方法
JP2007079564A5 (ru)
US11724471B2 (en) Methods for the manufacture of photoabsorbing contact lenses and photoabsorbing contact lenses produced thereby
CA2849981A1 (en) Method of creating a visible mark on lens using a leuco dye
RU2779564C1 (ru) Способы изготовления фотопоглощающих контактных линз и фотопоглощающие контактные линзы, полученные посредством их
CN118055850A (zh) 眼科镜片及其通过模内修改的制造