RU2556687C2 - Способ обработки серосодержащего газа и используемый для данных целей катализатор гидрирования - Google Patents

Способ обработки серосодержащего газа и используемый для данных целей катализатор гидрирования Download PDF

Info

Publication number
RU2556687C2
RU2556687C2 RU2013114393/04A RU2013114393A RU2556687C2 RU 2556687 C2 RU2556687 C2 RU 2556687C2 RU 2013114393/04 A RU2013114393/04 A RU 2013114393/04A RU 2013114393 A RU2013114393 A RU 2013114393A RU 2556687 C2 RU2556687 C2 RU 2556687C2
Authority
RU
Russia
Prior art keywords
sulfur
mass
gas
containing gas
hydrogenation catalyst
Prior art date
Application number
RU2013114393/04A
Other languages
English (en)
Other versions
RU2013114393A (ru
Inventor
Айхуа ЛЮ
Илин ЧЖАН
Синчжун СЮЙ
Цзяньли ЛЮ
Вэйдун ТАО
Цзиньшань СЮЙ
Original Assignee
Чайна Петролеум Энд Кемикал Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Чайна Петролеум Энд Кемикал Корпорейшн filed Critical Чайна Петролеум Энд Кемикал Корпорейшн
Publication of RU2013114393A publication Critical patent/RU2013114393A/ru
Application granted granted Critical
Publication of RU2556687C2 publication Critical patent/RU2556687C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • B01D53/8615Mixtures of hydrogen sulfide and sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0408Pretreatment of the hydrogen sulfide containing gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0456Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process the hydrogen sulfide-containing gas being a Claus process tail gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/164Preparation by reduction of oxidic sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Изобретение относится к способу обработки серосодержащего газа и к катализатору гидрирования, используемому для этого. Описан катализатор гидрирования, который включает в качестве активного компонента оксид никеля, оксид кобальта, а также оксид молибдена или оксид вольфрама. В качестве вспомогательного агента дезоксидации добавляют один или несколько соединений из сульфата двухвалентного железа, нитрата трехвалентного железа и сульфата трехвалентного железа. TiO2 и γ-Al2O3 добавляют в виде сухого коллоида соединения титан-алюминий. Также описан способ обработки серосодержащего газа катализатором гидрирования. Технический результат - катализатор имеет высокую активность гидрирования диоксида серы и низкую рабочую температуру. 2 н. и 10 з.п. ф-лы, 2 ил., 14 табл., 11 пр.

Description

Область техники
Настоящее изобретение относится к способу обработки серосодержащего газа, в частности топочного газа, восстанавливаемого путем абсорбционной десульфуризации топлива, и к катализатору гидрирования, используемому для данных целей.
Предшествующий уровень техники
В целях повышения качества автомобильного бензина, SINOPEC осуществляет повторную разработку патента на технологию абсорбционной десульфуризации бензина, покупаемого у ConocoPhillips, для производства чистого бензина с низким содержанием серы, имеющего содержание серы ниже 10 ч/млн. SINOPEC создал на первом этапе восемь технологических установок для абсорбционной десульфуризации бензина и построит несколько технологических установок на втором этапе. Переработка регенерированного топочного газа стала важной частью, неотъемлемой при разработке оборудования.
Адсорбент для абсорбционной десульфуризации бензина необходимо восстанавливать путем кальцинирования после насыщения при абсорбции, а восстановленный топочный газ содержит диоксид серы в большем количестве. В оригинальном патенте диоксид серы удаляют абсорбцией щелочным раствором. Однако переработка отработанного щелочного раствора приведет к вторичному загрязнению и одновременно потере источника серы.
В настоящее время не было предоставлено ни одного патента, относящегося к топочному газу, восстановленному абсорбционной десульфуризацией бензина в установке Клауса для гидрирования отходящего газа в блоке обессеривания. Это связано прежде всего с тем, что регенерированный топочный газ включает SO2 в максимальной объемной концентрации 5,4% и O2 в максимальной объемной концентрации 3,0% и имеет температуру только 160°C, в то время как катализатор гидрирования отходящего газа для процесса Клауса в существующем уровне техники требует объемного содержания SO2 менее 0,5%, объемного содержания O2 менее 0,05% и температуры более 280°C. Таким образом, катализатор процесса Клауса гидрирования отходящего газа в существующем уровне техники не может удовлетворить требованиям гидрирования топочного газа, восстановленного абсорбционной десульфуризацией бензина.
Краткое изложение сущности изобретения
Настоящее изобретение решает вышеизложенные технические проблемы путем обеспечения катализатора гидрирования и дезоксидации специально для серосодержащего газа и способа обработки такого серосодержащего газа. Катализатор по настоящему изобретению имеет высокую активность гидрирования диоксида серы и низкую рабочую температуру. Кроме того, способ переработки серосодержащего газа по настоящему изобретению может не только восстановить источник серы, но также позволяет избежать загрязнения окружающей среды.
В одном из вариантов осуществления настоящего изобретения катализатор гидрирования для гидрирования серосодержащего газа по настоящему изобретению характеризуется тем, что содержит от 0,5 до 3 масс. % оксида никеля в качестве активного компонента, от 1 до 4 масс. % оксида кобальта в качестве активного компонента, от 8 до 20 масс. % оксида молибдена или оксида вольфрама в качестве активного компонента, от 1 до 5 масс. % вспомогательного агента дезоксидации, от 10 до 40 масс. % TiO2, а остальное составляет γ-Al2O3, в расчете на массу катализатора.
В другом варианте осуществления изобретения вспомогательным агентом дезоксидации является один или более, выбранный из группы, состоящей из сульфата двухвалентного железа, нитрата трехвалентного железа, сульфата трехвалентного железа, дихлорида палладия, хлорида платины, предпочтительным является сульфат двухвалентного железа.
В другом варианте осуществления изобретения катализатор включает от 1,0 до 1,5 масс. % в качестве активного компонента оксида никеля, от 2,0 до 3,0 масс. % в качестве активного компонента оксида кобальта, от 12 до 15 масс. % в качестве активного компонента оксида молибдена или оксида вольфрама, от 2 до 4 масс. % вспомогательного агента дезоксидации, от 20 до 30 масс. % TiO2, а остальное приходится на γ-Al2O3, в расчете на массу катализатора. В другом варианте осуществления изобретения серосодержащий газ содержит от 0 до 6 об. % диоксида серы и от 0 до 3 об. % кислорода, и имеет температуру предпочтительно от 100 до 200°C.
В другом варианте осуществления изобретения катализатор получают при использовании сухого коллоида соединения титан-алюминий, как основного сырьевого материала, экструзии бруска, сушки, кальцинирования с получением носителя; упомянутый носитель импрегнируют вспомогательным агентом дезоксидации, высушивают, кальцинируют с получением полуфабриката; упомянутый полуфабрикат импрегнируют пропитывающим раствором активного компонента, затем сушат и кальцинируют.
Указанный сухой коллоид соединения титан-алюминий получают путем размещения раствора металюмината натрия, разбавленного до содержания 5-60 г Al2O3/л в емкости для получения коллоидной системы, регулирования температуры коллоидообразования на уровне 0-30°C, введения CO2, имеющего объемную концентрацию 3-40%, для нейтрализации, закачки метатитановой кислоты, медленного добавления суспензии метатитановой кислоты в течение определенного времени, которое устанавливается равным 10-20 мин, когда начинается загрузка CO2, таким образом, чтобы достичь массового содержания оксида титана 30-60% в сухом коллоиде, контроля значения pH клеевого раствора на уроне 10-12, остановки процесса образования коллоидной системы, фильтрации, промывания, сушки и измельчения до 180 меш с получением сухого коллоида соединения титан-алюминий.
Сухой коллоид соединения титан-алюминий имеет объем пор более 0,6 мл/г, удельную поверхность более 250 м2/г, массовую долю натрия менее 0,1%, и массовое содержание S O 4 2
Figure 00000001
менее 0,2%. Предпочтительно, сухой коллоид соединения титан-алюминий имеет объем пор от 0,60 до 0,90 мл/г, удельную поверхность от 270 до 380 м2/г, массовое содержание натрия менее 0,1% и массовое содержание S O 4 2
Figure 00000002
менее 0,2%.
Активный компонент является трехкомпонентным, состоящим из одного элемента, выбранного из группы VIB элементов, и двух элементов, выбранных из металлов группы VIII элементов.
Катализатор обладает такими преимуществами, как высокая активность гидролиза COS и CS2 и активность гидрирования SO2 при более низкой температуре реакции, удаление кислорода из серосодержащего газа при добавлении вспомогательного агента дезоксидации, использование в качестве трехкомпонентного активного компонента металлов из групп VIB и VIII элементов для увеличения активности гидрирования SO2.
В другом варианте осуществления изобретения катализатор по настоящему изобретению получают следующим способом:
перемешивают и смешивают сухой коллоид соединения титан-алюминий, имеющий объем пор более 0,6 мл/г, удельную поверхность более 250 м2/г, содержание натрия менее 0,1% (м/м) и содержание S O 4 2
Figure 00000002
менее 0,2% (м/м), вспенивающий агент и связующий агент, экструдируют брусок, сушат, кальцинируют и получают носитель;
носитель импрегнируют вспомогательным агентом дезоксидации, сушат, кальцинируют и получают полуфабрикат;
полуфабрикат импрегнируют пропитывающим раствором активного компонента, дополнительно сушат, кальцинируют и получают низкотемпературный, устойчивый к кислороду катализатор гидрирования, обладающий высокой активностью к серосодержащему газу.
Вспенивающий агент выбирают из группы, состоящей из поливинилового спирта, полиакриламидов, порошка сесбании, лимонной кислоты, крахмала и т.п., предпочтительным является порошок сесбании.
Связующий агент выбирают из группы, состоящей из воды, уксусной кислоты, лимонной кислоты, щавелевой кислоты и азотной кислоты, предпочтительной является лимонная кислота.
Носитель кальцинируют при температуре от 500 до 600°C, предпочтительно 550°C.
Носитель предпочтительно имеет внешний вид типа трилистника или внешний вид типа четырехлистника.
Носитель имеет объем пор более 0,4 мл/г, предпочтительно более 0,45 мл/г, удельную поверхность более 280 м2/г, предпочтительно более 300 м2/г.
Вспомогательным агентом дезоксидации является один или более, выбранный из группы, состоящей из сульфата двухвалентного железа, нитрата трехвалентного железа, сульфата трехвалентного железа, хлорида палладия, хлорида платины, предпочтительным является сульфат двухвалентного железа.
Полуфабрикат кальцинируют при температуре от 350 до 450°C, предпочтительно 400°C.
Активным компонентом является тройной компонент, выбранный из элементов группы VIB и/или элементов группы VIII металлов, а количество оксидов металлов группы VIB составляет от 8 до 20% (м/м), предпочтительно от 12% до 15% (м/м), а количество оксидов металлов группы VIII составляет от 1,5 до 7% (м/м), предпочтительно от 2,5% до 3,5% (м/м) в расчете на массу катализатора. Вспомогательный агент дезоксидации содержится в количестве от 1 до 5%.
Металлом группы VIB элементов является молибден или вольфрам, предпочтительно молибден, и предшественником является оксид молибдена; элементом группы VIII металлов является кобальт и никель, и предшественником является карбонат никеля и основной карбонат кобальта. Так как никакой нитрат металла не используют при получении, то в ходе процесса кальцинирования NOx не образуется, так что данный способ получения является чистым и безвредным для окружающей среды.
Катализатор кальцинируют при температуре от 200 до 500°C, предпочтительно 400°C.
Способ получения по настоящему изобретению более конкретно можно сформулировать следующим образом.
1. Получение носителя
Сухой коллоид соединения алюминий-титан, имеющий объем пор более 0,6 мл/г, удельную поверхность более 250 м2/г, содержание натрия менее 0,1% и содержание S O 4 2
Figure 00000002
менее 0,2%, связующий агент (например, вода, азотная кислота, уксусная кислота, щавелевая кислота и лимонная кислота), вспенивающий агент (например, поливиниловый спирт, полиакриламиды, порошок сесбании, лимонная кислота, крахмал и т.п.) загружают в смеситель. Смесь смешивают, формуют экструзией через пластину с отверстиями в форме трилистника Ф3mm (или других форм), сушат в термостате при 110-150°C в течение 2-4 ч, кальцинируют при 500-600°C в течение 2-5 ч с получением носителя, включающего от 10 до 40% (м/м), предпочтительно от 20 до 30% (м/м) TiO2, и от 40 до 90% (м/м), предпочтительно от 65 до 75% (м/м) Al2O3.
Процесс абсорбции N2 используют для определения удельной поверхности и объема пор полученного носителя.
2. Получение полуфабриката
Стабилизатор (лимонную кислоту, уксусную кислоту, соляную кислоту или сернистую кислоту) добавляют в деионизованную воду, растворяют при взбалтывании и перемешивании. Добавляют вспомогательный агент дезоксидации в необходимом количестве с получением стабильного импрегнирующего раствора. Количество стабилизатора составляет от 1/10 до 1/5 от общей массы вспомогательного агента дезоксидации. Взбалтывание продолжают до полного растворения с получением стабильного раствора. Носитель импрегнируют названным стабильным импрегнирующим раствором, содержащим вспомогательный агент дезоксидации, в течение промежутка времени от 10 мин до 2 ч, предпочтительно от 0,5 до 1 ч, сушат в термостате при 110-150°C в течение 2-6 ч, кальцинируют при 200-500°C в течение 2-5 ч с получением полуфабриката катализатора по настоящему изобретению. Катализатор по настоящему изобретению включает от 1 до 5 масс. %., предпочтительно от 2 до 4 масс. % FeSO4.
3. Получение катализатора
В качестве активного компонента добавляют комплексообразующий агент (лимонную кислоту или фосфорную кислоту) в деионизированную воду и нагревают до температуры более 70°C. Соль кобальта, соль молибдена и соль никеля в необходимом количестве добавляют при непрерывном перемешивании, с получением стабильного раствора. Комплексообразующий агент используют в количестве от 1/5 до 1/2, предпочтительно 1/3 от общей массы активного компонента соли металла. Перемешивание осуществляют до полного растворения и получения раствора активного компонента для ко-импрегнирования.
Полуфабрикат импрегнируют названным раствором активного компонента для ко-импрегнирования в течение промежутка времени от 10 мин до 3 ч, предпочтительно от 0,5 до 1 ч, высушивают в термостате при 110-150°C в течение 2-6 ч, кальцинируют при 200-500°C в течение 2-5 ч с получением катализатора по настоящему изобретению. Катализатор по настоящему изобретению включает от 0,5 до 3 масс. %, предпочтительно от 1,0 до 1,5 масс. % оксида никеля, от 1 до 4 масс. %, предпочтительно от 2,0 до 3,0 масс. % оксида кобальта, от 8 до 20 масс. %, предпочтительно от 12 до 15 масс. % оксида молибдена, от 1 до 5 масс. %, предпочтительно от 2 до 4 масс. % FeSO4, от 10 до 40 масс. %, предпочтительно от 20 до 30 масс. % TiO2, а остальное составляет γ-Al2O3, в расчете на массу катализатора.
Способ обработки серосодержащего газа с использованием катализатора гидрирования, полученного по настоящему изобретению, включает введение серосодержащего газа в блок гидрирования отходящего газа устройства для извлечения серы, обработку в присутствии катализатора гидрирования по настоящему изобретению, абсорбцию гидрированного отходящего газа растворителем, а затем регенерацию (так же, как в исходном процессе), регенерированный сероводород направляют на рецикл в блок Клауса с извлечением серы, а очищенный отходящий газ сжигают в печи с достижением стандартов и выбрасывают в атмосферу.
Где (1) катализатор гидрирования по настоящему изобретению подвергают предварительной технологической обработке традиционным отходящим газом процесса Клауса в условиях температуры от 220 до 280°C, при часовой объемной скорости от 400 до 1500 ч-1, от 3 до 8 об. % водорода в исходном газе; предварительная обработка заканчивается, когда содержание H2S на выходе из реактора превысит или станет равным содержанию на входе в реактор; и
(2) после предварительной обработки температуру на входе в реактор гидрирования доводят до величины от 220 до 280°C, при которой вводят серосодержащий топливный газ.
Серосодержащим газом по настоящему изобретению является газ, образующийся в процессе нефтепереработки и химической переработки угля, и содержащий одно или несколько соединений серы, выбранных из диоксида серы, меркаптана, простого тиоэфира, CS2 и COS, включая топочный газ, регенерированный при абсорбционной десульфуризации бензина, топочный газ, регенерированный при десульфуризации сжиженного газа, топочный газ, регенерированный при каталитическом крекинге, отходящий газ процесса Клауса, котельный газ, предпочтительно один или более серосодержащий газ, выбранный из топочного газа, регенерированного при абсорбционной десульфуризации бензина, топочного газа, регенерированного при десульфуризации сжиженного газа и отходящего газа процесса Клауса.
Названный серосодержащий газ включает от 0 до 6 об. % диоксида серы и от 0 до 3 об. % кислорода и имеет температуру предпочтительно от 100 до 200°C.
Преимущества настоящего изобретения
Способ и катализатор по настоящему изобретения могут быть использованы для гидрирования серосодержащего газа при температуре на входе от 220-280°C, где названный серосодержащий газ может быть переработан прямым введением в блок переработки отходящего газа установки обессеривания без необходимости добавления любого другого оборудования. До сих пор это является наиболее желательным путем переработки серосодержащего газа, и данный способ позволяет не только восстановить источник серы, но также позволяет избежать загрязнения окружающей среды. Катализатор гидрирования по настоящему изобретению обладает активностью, которая на 30% выше, чем активность катализатора гидрирования отходящего газа традиционного процесса Клауса, рабочая температура которого более чем на 60°C ниже, характеризуется заметным сокращением энергозатрат и эффектом снижения потребления и более высокими технико-экономическими показателями и преимуществами по защите окружающей среды.
Описание чертежей
На фиг. 1 представлена технологическая схема процесса по настоящему изобретению.
На фиг. 2 представлена схема лабораторного микрореактора объемом 10 мл для оценки серы по настоящему изобретению.
На Фиг. 1. 1 - серосодержащий газ; 2 - водородосодержащий отходящий газ процесса Клауса; 3 - реактор гидрирования; 4 - башенный охладитель; 5 - абсорбционная колонна; 6 регенерационная колонна; 7 - сероводород, возвращенный в блок получения серы; 8 - печь для сжигания; 9 - трубка для удаления дыма в чистом отходящем газе.
На Фиг. 2, BV1-BV22 - шаровые клапаны; 3BV1-3BV2 - трехходовые шаровые клапаны; CV1-CV6 - одноходовые клапаны; EPC - электронный регулятор давления; F1-F8 - фильтры; GC - газовый хроматограф; MFC 1-MFC 6 - регулятор массового расхода; NV1-NV8 запорный клапан; P - насос-дозатор; PIB - устройство для измерения стандартного давления, PI01-PI013 - устройство для измерения давления; PRV1-PRV6 - клапаны для снижения давления; RHC - низкотемпературная ванна; TIC01 - контроль температуры; TI01 - дисплей температуры реакции; V1 - резервуар для сырья; V2 - барботер; V3 - слив; V4 - аппарат очищения щелочью. Варианты осуществления настоящего изобретения
Пример 1: Получение сухого коллоида соединения титан-алюминий
Раствор металюмината натрия, содержащий 40 г Al2O3/л помещали в емкость для получения коллоида, и температуру образования коллоида поддерживали на уровне 20°C. CO2, имеющий объемную концентрацию 35%, подавали для нейтрализации, и закачивали метатитановую кислоту. Когда начинали загружать CO2, суспензию метатитановой кислоты медленно добавляли в течение определенного периода времени, который удерживали на уровне 10-20 минут, таким образом, чтобы достичь массового содержания диоксида титана 50% в сухом коллоиде, и поддерживали значение pH клеевого раствора на уровне 10-12. После остановки коллоидизации получали сухой коллоид 1 соединения титан-алюминий фильтрацией, промывкой, высушиванием и измельчением до 180 меш. Таким же образом получали сухой коллоид 2 соединения титан-алюминий, имеющий содержание диоксида титана 40%, сухой коллоид 3 соединения титан-алюминий, имеющий содержание диоксида титана 30%, сухой коллоид 4 соединения титан-алюминий, имеющий содержание диоксида титана 20%, сухой коллоид 5 соединения титан-алюминий, имеющий содержание диоксида титана 10% и сухой коллоид 6 соединения титан-алюминий, имеющий содержание диоксида титана 0%. Физико-химические свойства сухих коллоидов, имеющих разное содержание диоксида титана, представлены в таблице 1.
Figure 00000003
Пример 2: Получение носителя на основе сухого коллоида соединения титан-алюминий
100 г сухих коллоидов соединений титан-алюминий с различным содержанием TiO2 соответственно взвешивали и загружали в смеситель. Также загружали 5 г порошка сесбании и гомогенно смешивали. 4 г азотной кислоты (65% м/м) растворяли в 80 мл деионизированной воды с получением раствора азотной кислоты. Раствор азотной кислоты вводили в смеситель. Смесь перемешивали до образования комков, формовали экструзией на брусочном экструдере Ф3mm через пластину с отверстиями в форме трилистника или четырехлистника, высушивали при 110°C в течение 4 часов, кальцинировали при 550°C в течение 4 ч с получением серии носителей TiO2-Al2O3. Их свойства приведены в таблице 2.
Figure 00000004
Пример 3: Получение полуфабриката катализатора
70 г деионизированной воды и 3 г лимонной кислоты вводили в реакционную колбу, смешивали и взбалтывали. Затем туда же загружали 50 г сульфата двухвалентного железа, растворяли при перемешивании до состояния прозрачного раствора с получением стабильного импрегнирующего раствора. 10 г носителей №1-6 из таблицы 1 соответственно импрегнировали в течение 1 часа при сохранении такого же содержания сульфата двухвалентного железа, высушивали в термостате при 110°C в течение 4 ч, кальцинировали при 400°C в течение 4 ч и получали полуфабрикаты 1-1, 2-1, 3-1 4-1, 5-1 и 6-1. Их свойства приведены в таблице 3.
Figure 00000005
Figure 00000006
Пример 4; Получение серии катализаторов 1-2, 2-2, 3-2, 4-2, 5-2 и 6-2
100 г деионизированной воды и 18 г фосфорной кислоты
загружали в реакционную емкость и нагревали. Затем в ней растворяли 54 г молибдата аммония и 11 г основного карбоната кобальта при перемешивании до состояния прозрачного раствора. Добавляли 9 г карбоната никеля, растворяли при перемешивании до состояния прозрачного раствора с получением пурпурного прозрачного импрегнирующего раствора кобальта, молибдена и никеля. В соответствии с абсорбцией воды полуфабрикатами катализаторов из таблицы 2, 10 г полуфабрикатов 1-1, 2-1, 3-1, 4-1, 5-1 и 6-1 соответственно импрегнировали в течение 1 ч, высушивали в термостате при 110°C в течение 4 ч, кальцинировали при 400°C в течение 4 ч с получением серий катализаторов 1-2, 2-2, 3-2, 4-2, 5-2 и 6-2. Их свойства приведены в таблице 4.
Figure 00000007
Figure 00000008
Пример 5: Оценка активности катализатора
Оценку активности катализаторов проводили в 10 мл микрореакторе. Реактор изготавливали из трубки из нержавеющей стали, имеющей внутренний диаметр 20 мм, помещали в термостат с электрическим нагревом, аналогичным печи с эквивалентным нагревом. Количество загружаемого катализатора составляло 10 мл при размере частиц 20-40 меш. Кварцевый песок, имеющий такой же размер частиц, загружали сверху катализатора, смешивали и предварительно нагревали. Использовали газовый хроматограф SHIMUZU GC-2014 для анализа в реальном времени содержания H2S, SO2 и CS2 в газе на входе и выходе из реактора; для анализа сульфида использовали хроматографическую колонку, в которую загружали носитель GDX-301, где температура колонки составляла 120°C; использовали детектор теплопроводности; в качестве газа-Носителя использовали водород; скорость потока после колонки составляла 28 мл/мин.
Технологический процесс лабораторного микрореакторного устройства для оценки показан на фиг. 2.
Моделировали газовую композицию отходящего газа процесса Клаус и отходящего газа, регенерированного абсорбционной десульфуризацией бензина, и контролировали регулированием скоростей потоков N2, воздуха, CO2, H2S, SO2, CS2, O2, H2 и водяного пара, предварительно нагревали до определенной температуры (200-260°C), а затем загружали в реактор с неподвижным слоем, заполненный катализаторами и фильтрами. После гидрирования газа и абсорбции серосодержащих соединений щелочным раствором (10% гидроксидом натрия) очищенный отходящий газ выпускали в воздух. Проводили анализ состава группы сырьевого газа и отходящего газа в час, а результаты использовали в качестве основы для расчета активностей катализаторов.
После того, как испытательное оборудование прошло тест на герметичность, катализатор предварительно обрабатывали традиционным процессом сушки при нормальном давлении и объемной часовой скорости 1250 ч-1, где газом для сульфуризации был водород плюс 2 (v)% сульфида водорода.
Стадии сульфуризации: нагрев газообразного азота до 200°C со скоростью 50°C/ч регулированием скорости потока газообразного азота в соответствии с объемной скоростью, переключение на газ сульфуризации и регулирование скорости газа, продолжение нагрева до 240°C, поддерживание температуры в течение 3 ч, завершение сульфуризации после достижения равновесия между сульфидом водорода на выходе и входе реактора, затем переключение на реакционный газ, включающий 1,2 об. % SO2, 10 об. % H2, 0,4 об. % O2, 0,5 об. % CS2, 30 об. % H2O, и остальное составляет газообразный водород. Гидрирующую активность катализаторов относительно SO2 оценивали с использованием 3H2+SO2→H2S+2H2O в качестве реакции-индикатора; активность катализатора к гидролизу органической серы оценивали с использованием CS2+H2O→CO2+H2S в качестве реакции-индикатора; активность катализаторов относительно удаления O2 оценивали при использовании реакции-индикатора 2H2+O2→2H2O. Объемная скорость потока газа составляла 1250 ч-1, а температура реакции составляла 240°C. Активность катализаторов к гидрированию рассчитывали в соответствии со следующей формулой:
Figure 00000009
где M0 и M1 соответственно представляют объемные концентрации SO2, O2 или CS2 на входах и выходах из реактора.
Значения активностей катализаторов из таблицы 4 относительно гидрирования SO2 и гидролиза CS2 приведены в таблице 5.
Figure 00000010
Пример 6: Получение серии катализаторов, имеющих разное содержание металла
Носитель №3, полученный в соответствии с примером 2, использовали для получения полуфабриката в соответствии с примером 3, а затем дополнительно получали катализаторы 3-2, 3-3, 3-4, 3-5 и 3-6, имеющие различное содержание металла в соответствии с примером 4. Их физико-химические свойства приведены в таблице 6.
Figure 00000011
В соответствии с методом оценки активности катализаторов из примера 5 производили оценку активностей для 5 катализаторов из таблицы 6, а активности по гидрированию SO2 и гидролизу CS2 приведены в таблице 7.
Figure 00000012
Пример 7: Сравнительный пример
В соответствии со способом получения катализатора по примеру 4, носитель №3, полученный в соответствии с примером 2, получали без стадии получения из полуфабриката по примеру 3 в катализаторы 3-7 гидрирования, не содержащие вспомогательного агента дезоксидации. Сравнение физико-химических свойств катализатора и катализатора по настоящему изобретению приведено в таблице 8.
Figure 00000013
В соответствии со способом оценки активности катализаторов из примера 5, сравнение активностей гидрирования катализатора 3-7 и катализаторов по настоящему изобретению приведено в таблице 9.
Figure 00000014
Таблица 9 показывает, что добавление вспомогательного агента дезоксидации значительно увеличивает активность катализатора дезоксидации по настоящему изобретению, а также увеличивает активность к низкотемпературному гидрированию SO2 и активность катализатора к гидролизу органической серы, что показывает, что вспомогательный агент дезоксидации и активные компоненты обладают более сильным синергетическим действием.
Пример 8: Сравнение физико-химических свойств традиционного катализатора гидрирования отходящего газа процесса Клауса и катализатора по настоящему изобретению
Сравнение физико-химических свойств традиционного катализатора гидрирования отходящего газа процесса Клауса и катализатора по настоящему изобретению представлено в таблице 10.
Figure 00000015
В соответствии со способом оценки активности катализаторов из примера 5, сравнительные данные по активности традиционного катализатора гидрирования отходящего газа процесса Клауса и активности катализатора по настоящему изобретению приведены в таблице 11.
Figure 00000016
Таблица 11 показывает, что катализатор по настоящему изобретению имеет лучшую низкотемпературную активность при гидрировании SO2, активность при гидролизе органической серы и активность при дезоксидации, в то время как традиционный катализатор гидрирования отходящего газа процесса Клауса не может удовлетворить требованиям к гидрированию SO2, гидролизу органической серы и дезоксидации, пока не будет достигнута более высокая температура реакции. Более того, когда серосодержащий газ имеет более высокое содержание SO2, традиционный катализатор
гидрирования отходящего газа процесса Клауса можно легко сульфурировать, так что SO2 проникает внутрь каталитического слоя.
Пример 9: Испытания промышленной применимости катализаторов Катализатор 3-2 по настоящему изобретению получали и загружали в реактор гидрирования отходящего газа промышленной установки для обессеривания. Схема процесса для обработки регенерированного топочного газа приведена на фиг. 1.
Катализатор 3-2 предварительно обрабатывали традиционным отходящим газом процесса Клауса при температуре 220-280°C, объемной часовой скорости 400-1500 ч-1, где количество водорода составляло 3-8 об. % сырьевого газа. Когда содержание H2S на выходе из реактора превышало или было равным содержанию на входе, сульфуризацию останавливали. После сульфуризации температуру на входе в реактор гидрирования доводили до 220-280°C. Во время введения отходящего газа процесса Клауса также вводили топочный газ, регенерированный абсорбционной десульфуризацией бензина. Состав, расход и температура топочного газа, регенерированного абсорбционной десульфуризацией бензина, приведены в таблице 12.
Figure 00000017
Figure 00000018
В соответствии с данными из таблицы 12 можно увидеть, что расход топочного газа, регенерированного абсорбционной десульфуризацией бензина, обладает значительной флуктуацией; содержание SO2 в топочном газе, регенерированном абсорбционной десульфуризацией бензина, обладает значительной флуктуацией с максимумом 3,32% и минимумом 0,09%; содержание кислорода в топочном газе, регенерированном абсорбционной десульфуризацией бензина, обладает значительной флуктуацией с максимумом 3,42% и минимумом 0,00%; топочной газ, регенерированный абсорбционной десульфуризацией бензина, входящий в реактор, имеет более низкую температуру, причем температура составляет всего 12 6-133°C в летнее время и будет значительно ниже зимой.
Пример 10: Влияние повышения температуры на слой катализатора до и после введения топочного газа, регенерированного абсорбционной десульфуризацией бензина
Нормальное повышение температуры слоя для гидрирования отходящего газа процесса Клауса составляло 30-40°C. После введения топочного газа, регенерированного абсорбционной десульфуризацией бензина, расход отходящего газа процесса Клауса составлял 2000-3000 Нм3/ч; расход топочного газа, регенерированного абсорбционной десульфуризацией бензина, составлял приблизительно 300-1000 Нм3/ч, причем расход топочного газа, регенерированного абсорбционной десульфуризацией бензина, составлял 30% от нормального расхода отходящего газа процесса Клауса. Влияние на слой катализатора до и после введения регенерированного топочного газа представлено в таблице 13.
Figure 00000019
В соответствии с результатами, представленными в таблице 13, можно видеть, что нормальное повышение температуры слоя при гидрировании отходящего газа процесса Клауса составляло 30-40°C, и возрастало до 50-80°C после введения топочного газа, регенерированного абсорбционной десульфуризацией бензина. Так как катализатор по настоящему изобретению имеет лучшую низкотемпературную активность гидрирования, температуру на входе в реактор гидрирования регулировали на уровне 240-250°C, а максимум температуры слоя может составлять 325°C, тогда как нормальная температура применения катализатора по настоящему изобретению составляет 220-360°C. Из-за нестабильного расхода и состава топочного газа, регенерированного абсорбционной десульфуризацией бензина, повышение температуры каталитического слоя может варьироваться, но без превышения допустимой температуры или значительной флуктуации слоя, что показывает, что катализатор по настоящему изобретению может удовлетворять требованиям по флуктуации расхода и состава топочного газа, регенерированного абсорбционной десульфуризацией бензина.
Пример 11. Состав газа на выходе из реактора гидрирования после введения топочного газа, регенерированного абсорбционной десульфуризацией бензина
Состав газа на выходе из реактора гидрирования после введения топочного газа, регенерированного абсорбционной десульфуризацией бензина, представлен в таблице 14.
Figure 00000020
Figure 00000021
В соответствии с данными из таблицы 14, можно видеть, что присутствие SO2 или O2 не зафиксировано в гидрированном отходящем газе, что показывает, что катализатор по настоящему изобретению имеет лучший эффект гидрирования. При условиях, где SO2 присутствует в большем количестве в обрабатываемом газе, а также присутствует кислород, катализатор по настоящему изобретению может удовлетворять требованиям по флуктуации расхода и состава топочного газа, регенерированного абсорбционной десульфуризацией бензина.

Claims (12)

1. Катализатор гидрирования, отличающийся тем, что катализатор включает от 0,5 до 3 масс. % оксида никеля в качестве активного компонента; от 1 до 4 масс. % оксида кобальта в качестве активного компонента; от 8 до 20 масс. % оксида молибдена или оксида вольфрама в качестве активного компонента; от 1 до 5 масс. % вспомогательного агента дезоксидации, выбранного из одного или нескольких соединений, выбранных из сульфата двухвалентного железа, нитрата трехвалентного железа и сульфата трехвалентного железа; от 10 до 40 масс. % TiO2; а остальное составляет γ-Al2O3, в расчете на массу катализатора, при этом TiO2 и γ-Al2O3 добавляют в виде сухого коллоида соединения титан-алюминий.
2. Катализатор гидрирования по п. 1, отличающийся тем, что вспомогательным агентом дезоксидации является сульфат двухвалентного железа.
3. Катализатор гидрирования по пп. 1 или 2, отличающийся тем, что катализатор включает от 1,0 до 1,5 масс. % оксида никеля в качестве активного компонента, от 2,0 до 3,0 масс. % оксида кобальта в качестве активного компонента, от 12 до 15 масс. % оксида молибдена или оксида вольфрама в качестве активного компонента, от 2 до 4 масс. % вспомогательного агента дезоксидации, от 20 до 30 масс. % TiO2, а остальное составляет γ-Al2O3, в расчете на массу катализатора.
4. Катализатор гидрирования по п. 1, полученный на следующих стадиях: использование сухого коллоида соединения титан-алюминий в качестве основного сырьевого материала, экструзия бруска, сушка, кальцинирование с получением носителя; упомянутый носитель импрегнируют стабильным импрегнирующим раствором, содержащим вспомогательный агент дезоксидации, сушат, кальцинируют и получают полуфабрикат; упомянутый выше полуфабрикат импрегнируют раствором активного компонента для ко-импрегнирования, содержащим активные компоненты на основе соединений никеля, кобальта и молибдена, дополнительно сушат и кальцинируют.
5. Катализатор гидрирования по п. 4, отличающийся тем, что указанный сухой коллоид соединения титан-алюминий получают подачей CO2, имеющего объемную концентрацию 3-40%, в раствор металюмината натрия 5-60 г Al2O3/л для нейтрализации, одновременным добавлением суспензии метатитановой кислоты, так чтобы получить массовое содержание диоксида титана 30-60% в сухом коллоиде, доведением величины pH клеевого раствора до 10-12, остановкой процесса коллоидизации, фильтрованием, промыванием, сушкой и измельчением с получением сухого коллоида соединения титан-алюминий.
6. Катализатор гидрирования по п. 5, отличающийся тем, что сухой коллоид соединения титан-алюминий имеет объем пор больше 0,60 мл/г, удельную поверхность более 250 м2/г, массовое содержание натрия менее 0,1% и массовое содержание S O 4 2
Figure 00000022
менее 0,2%.
7. Катализатор гидрирования по п. 6, отличающийся тем, что сухой коллоид соединения титан-алюминий имеет размер пор от 0,60 до 0,90 мл/г и удельную поверхность от 270 до 380 м2/г.
8. Способ обработки серосодержащего газа катализатором гидрирования по п. 1, отличающийся тем, что вводят серосодержащий газ в блок гидрирования отходящего газа установки по извлечению серы, обрабатывают его указанным катализатором гидрирования, абсорбируют гидрированный отходящий газ растворителем, а затем регенерируют, регенерированный сульфид водорода повторно используют в блоке Клауса с извлечением серы, чистый отходящий газ сжигают в устройстве для сжигания и выбрасывают в атмосферу после достижения требований стандартов.
9. Способ обработки серосодержащего газа по п. 8, отличающийся тем, что серосодержащий газ является одним или нескольким газами, выбранными из топочного газа, регенерированного абсорбционной десульфуризацией бензина, топочного газа, регенерированного десульфуризацией сжиженного газа и отходящего газа процесса Клауса.
10. Способ обработки серосодержащего газа по п. 8, отличающийся тем, что
(1) катализатор гидрирования предварительно обрабатывают отходящим газом процесса Клауса в условиях температуры от 220 до 280°C, объемной скорости потока от 400 до 1500 ч-1, от 3 до 8 об. % водорода в сырьевом газе, обработку заканчивают, когда содержание H2S на выходе из реактора превышает или становится равным содержанию на входе в реактор; и
(2) после обработки задают температуру на входе в реактор гидрирования от 220 до 280°C, при которой вводят серосодержащий газ.
11. Способ обработки серосодержащего газа по п. 8, отличающийся тем, что серосодержащий газ включает от 0 до 6 об. % диоксида серы и от 0 до 3 об. % кислорода.
12. Способ обработки серосодержащего газа по п. 8, отличающийся тем, что серосодержащий газ поступает в устройство для обессеривания при температуре от 100 до 200°C.
RU2013114393/04A 2010-09-01 2011-08-04 Способ обработки серосодержащего газа и используемый для данных целей катализатор гидрирования RU2556687C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2010102691237A CN102380311B (zh) 2010-09-01 2010-09-01 汽油吸附脱硫再生烟气处理方法及其尾气加氢催化剂制法
CN201010269123.7 2010-09-01
PCT/CN2011/001283 WO2012027948A1 (zh) 2010-09-01 2011-08-04 含硫气体的处理方法及用于该方法的加氢催化剂

Publications (2)

Publication Number Publication Date
RU2013114393A RU2013114393A (ru) 2014-10-10
RU2556687C2 true RU2556687C2 (ru) 2015-07-20

Family

ID=45772105

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013114393/04A RU2556687C2 (ru) 2010-09-01 2011-08-04 Способ обработки серосодержащего газа и используемый для данных целей катализатор гидрирования

Country Status (5)

Country Link
US (1) US8668894B2 (ru)
CN (2) CN102380311B (ru)
RU (1) RU2556687C2 (ru)
SA (1) SA111320727B1 (ru)
WO (1) WO2012027948A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2600375C1 (ru) * 2015-08-13 2016-10-20 Публичное акционерное общество "Газпром" Способ низкотемпературного разложения сероводорода с получением водорода и серы

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359691B (zh) * 2012-03-30 2015-10-21 中国石油化工股份有限公司 一种低纯氢用作硫回收装置氢源的方法
CN103480355B (zh) * 2012-06-12 2015-07-15 中国石油化工股份有限公司 适用于天然气大型硫回收装置的有机硫水解催化剂及其制备方法
US9652376B2 (en) 2013-01-28 2017-05-16 Radian Memory Systems, Inc. Cooperative flash memory control
CN111362771A (zh) 2013-11-20 2020-07-03 鲁姆斯科技公司 具有高耐毒性的烯烃双键异构化催化剂
CN103949280B (zh) * 2014-05-14 2016-04-13 武汉凯迪工程技术研究总院有限公司 适于生物质费托合成油生产航空煤油的催化剂及其制备方法
CN105316030B (zh) * 2014-07-18 2017-06-30 中国石油化工股份有限公司 一种加氢脱氧方法
US9542118B1 (en) 2014-09-09 2017-01-10 Radian Memory Systems, Inc. Expositive flash memory control
US10552085B1 (en) 2014-09-09 2020-02-04 Radian Memory Systems, Inc. Techniques for directed data migration
CN104923193B (zh) * 2015-06-15 2017-10-10 中国石油大学(华东) S‑Zorb废吸附剂的酸碱处理复活方法
CN105126573B (zh) * 2015-07-22 2017-10-13 江苏新世纪江南环保股份有限公司 一种炼油装置多种酸性气一体化氨法脱硫方法
CN106467292B (zh) * 2015-08-19 2018-09-25 中国石油化工股份有限公司 一种硫磺回收方法
CN107233794B (zh) * 2016-03-29 2020-04-10 中国石油天然气集团有限公司 一种去除气体中硫化氢的方法
CN107281914A (zh) * 2016-04-05 2017-10-24 中国石油天然气集团公司 一种再生烟气的处理装置及方法
CN106698360B (zh) * 2016-12-14 2019-04-09 山东迅达化工集团有限公司 低浓度酸性气的硫磺回收工艺
CN108246303B (zh) * 2016-12-28 2021-03-30 中国石油天然气股份有限公司 用于克劳斯尾气加氢水解的催化剂及其制备方法、应用
CN109382109B (zh) * 2017-08-02 2021-08-10 中国石油化工股份有限公司 硫磺尾气加氢催化剂及其制备方法
CN110732238A (zh) * 2018-07-19 2020-01-31 中国石油天然气股份有限公司 一种含硫尾气处理方法和系统
CN110756195A (zh) * 2018-07-27 2020-02-07 中国石油化工股份有限公司 硫化型加氢催化剂及制备方法和硫磺装置绿色开工方法
CN111068642B (zh) * 2018-10-22 2022-08-12 中国石油化工股份有限公司 一种脱除天然气中硫醇催化剂及其制备方法
EP3973039A1 (en) * 2019-05-23 2022-03-30 Evonik Operations GmbH Reactivated hydroprocessing catalysts for use in sulfur abatement
CN112642397B (zh) * 2019-10-11 2023-06-16 中国石油化工股份有限公司 复合材料及其制备方法和应用
CN112642396B (zh) * 2019-10-11 2022-05-03 中国石油化工股份有限公司 改性活性炭与复合材料及其制备方法和应用
CN112642395A (zh) * 2019-10-11 2021-04-13 中国石油化工股份有限公司 分子筛复合物与复合材料及其制备方法和应用
US11586385B1 (en) 2020-05-06 2023-02-21 Radian Memory Systems, Inc. Techniques for managing writes in nonvolatile memory
CN111822051B (zh) * 2020-05-11 2023-03-14 天津市众天科技发展有限公司 络合铁脱硫催化剂
CN114433110B (zh) * 2020-10-31 2024-01-09 中国石油化工股份有限公司 一种油品液相加氢催化剂组合物及其制备方法和应用
CN114713240B (zh) * 2020-12-22 2023-10-10 中国石油化工股份有限公司 一种用于液相加氢的催化剂级配方法
CN115228480A (zh) * 2021-04-23 2022-10-25 中国石油天然气股份有限公司 加氢水解催化剂及其制备方法
CN113731391A (zh) * 2021-08-27 2021-12-03 江苏朗润环保科技有限公司 一种高抗氧低温有机硫水解催化剂及其制备方法
CN114196449A (zh) * 2021-12-08 2022-03-18 浙江三龙催化剂有限公司 高炉煤气的前脱硫工艺及其应用
CN114558622B (zh) * 2022-03-22 2024-01-05 东南大学 一种协同脱除硫化氢和羰基硫的脱硫催化剂及其制备方法
CN117463263B (zh) * 2023-12-27 2024-03-01 山东久元新材料有限公司 加氢催化剂再生重生活化硫化的装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114580A (en) * 1976-03-24 1977-09-26 Babcock Hitachi Kk Purification of tail gas from sulfur recovery unit
US4192857A (en) * 1975-10-17 1980-03-11 Societe Nationale Elf Aquitaine (Production) Sulphur production
CN1040610A (zh) * 1988-08-20 1990-03-21 北京大学 烃类加氢脱硫催化剂
CN1336252A (zh) * 2000-08-09 2002-02-20 中国石化集团齐鲁石油化工公司 一种双功能硫磺回收催化剂及其制备方法
CN1511781A (zh) * 2002-12-31 2004-07-14 中国石油化工股份有限公司齐鲁分公司 一种多功能硫磺回收催化剂及其制备方法
RU2369436C1 (ru) * 2008-08-14 2009-10-10 Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (статус государственного учреждения) Катализатор, способ его приготовления и способ очистки газовых выбросов от диоксида серы

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175928A (en) * 1975-12-05 1979-11-27 Conoco Methanation Company Hydrodesulfurization purification process for coal gasification
FR2740704B1 (fr) * 1995-11-03 1997-12-26 Elf Aquitaine Procede d'elimination quasi totale des composes soufres h2s, so2, cos et/ou cs2 contenus dans un gaz residuaire d'usine a soufre, avec recuperation desdits composes sous la forme de soufre
JP4096128B2 (ja) * 1997-08-21 2008-06-04 大阪瓦斯株式会社 脱硫剤の製造方法および炭化水素の脱硫方法
CN100441272C (zh) * 2002-11-06 2008-12-10 中国石油化工股份有限公司 硫磺尾气加氢催化剂及其制备方法
CN100340638C (zh) * 2004-10-29 2007-10-03 中国石油化工股份有限公司 一种烃类加氢处理催化剂的制备方法
CN100441274C (zh) * 2005-03-25 2008-12-10 中国石油化工股份有限公司 克劳斯尾气加氢催化剂
CN100469441C (zh) * 2005-11-18 2009-03-18 中国石油化工股份有限公司 多功能硫磺回收催化剂及其制备方法
EP1900428B1 (en) * 2006-08-09 2016-01-06 Mitsubishi Gas Chemical Company, Inc. Production method of primary amines and catalysts for producing primary amines
CN101108348A (zh) * 2007-07-19 2008-01-23 武汉理工大学 一种镍基克劳斯尾气加氢催化剂及其制备方法
CN101835537B (zh) * 2007-09-17 2013-05-22 国际壳牌研究有限公司 用于使气体物流中含有的硫化合物催化还原的催化剂组合物及其制备方法和用途
FR2922783B1 (fr) * 2007-10-31 2010-11-19 Inst Francais Du Petrole Traitements de gaz de queue d'une unite claus sur un enchainement optimise de catalyseurs
CN101434856B (zh) * 2007-11-15 2012-11-21 中国石油化工股份有限公司 一种汽油脱硫工艺方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4192857A (en) * 1975-10-17 1980-03-11 Societe Nationale Elf Aquitaine (Production) Sulphur production
JPS52114580A (en) * 1976-03-24 1977-09-26 Babcock Hitachi Kk Purification of tail gas from sulfur recovery unit
CN1040610A (zh) * 1988-08-20 1990-03-21 北京大学 烃类加氢脱硫催化剂
CN1336252A (zh) * 2000-08-09 2002-02-20 中国石化集团齐鲁石油化工公司 一种双功能硫磺回收催化剂及其制备方法
CN1511781A (zh) * 2002-12-31 2004-07-14 中国石油化工股份有限公司齐鲁分公司 一种多功能硫磺回收催化剂及其制备方法
RU2369436C1 (ru) * 2008-08-14 2009-10-10 Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (статус государственного учреждения) Катализатор, способ его приготовления и способ очистки газовых выбросов от диоксида серы

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2600375C1 (ru) * 2015-08-13 2016-10-20 Публичное акционерное общество "Газпром" Способ низкотемпературного разложения сероводорода с получением водорода и серы

Also Published As

Publication number Publication date
CN102380311B (zh) 2013-12-25
US20130216462A1 (en) 2013-08-22
CN103282118B (zh) 2015-03-25
SA111320727B1 (ar) 2014-08-06
WO2012027948A1 (zh) 2012-03-08
US8668894B2 (en) 2014-03-11
CN103282118A (zh) 2013-09-04
RU2013114393A (ru) 2014-10-10
CN102380311A (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
RU2556687C2 (ru) Способ обработки серосодержащего газа и используемый для данных целей катализатор гидрирования
RU2377067C2 (ru) Высокоактивный катализатор гидрообессеривания, способ его изготовления и способ получения среднего топливного дистиллята с ультранизким содержанием серы
US5045522A (en) Absorption composition comprising zinc titanate for removal of hydrogen sulfide from fluid streams
CN103272610B (zh) 一种钛基精脱硫催化剂及其制备方法和使用方法
CN107469803B (zh) 硫磺回收催化剂及其制备方法
CN103028368B (zh) 气体脱硫吸附剂及其制备方法和含硫气体的脱硫方法
CN103028363B (zh) 气体脱硫吸附剂及其制备方法和含硫气体的脱硫方法
CN112569953A (zh) 一种脱硫催化剂及其制备方法
CN111068746B (zh) 一种多功能硫磺回收催化剂及其制备方法
CN105289632A (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN106492797B (zh) 一种Ag2O@Ti-Ce-O双功能催化吸附脱硫剂及其制备方法和应用
CN105038863B (zh) 一种精脱硫剂及其制备方法
CN104511282A (zh) 一种脱硫催化剂及其制备方法和烃油脱硫的方法
CN105582943B (zh) 一种脱硫催化剂及其制备方法和烃油脱硫的方法
RU2610869C2 (ru) Катализатор гидропереработки и способы получения и применения такого катализатора
CN103028367B (zh) 气体脱硫吸附剂及其制备方法和含硫气体的脱硫方法
CN103028365B (zh) 气体脱硫吸附剂及其制备方法和含硫气体的脱硫方法
JP3990676B2 (ja) 軽油の水素化脱硫方法
CN105582944A (zh) 一种脱硫催化剂及其制备方法和烃油脱硫的方法
CN105289681A (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN109486509A (zh) 一种吸附脱硫催化剂及其制备方法
CN105312073B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
CN105582941B (zh) 一种脱硫催化剂及其制备方法和烃油脱硫的方法
UA78844C2 (en) Method for hydrohenysation of aromatics in hydrocarbon reagent comprising thiopheneic compounds
JP2000042408A (ja) 水素化処理用触媒およびこれを使用する炭化水素油の水素化処理方法