RU2528049C2 - Способ получения циклогексилалкилкетонов - Google Patents

Способ получения циклогексилалкилкетонов Download PDF

Info

Publication number
RU2528049C2
RU2528049C2 RU2012115454/04A RU2012115454A RU2528049C2 RU 2528049 C2 RU2528049 C2 RU 2528049C2 RU 2012115454/04 A RU2012115454/04 A RU 2012115454/04A RU 2012115454 A RU2012115454 A RU 2012115454A RU 2528049 C2 RU2528049 C2 RU 2528049C2
Authority
RU
Russia
Prior art keywords
catalyst
reaction
carbon atoms
group
saturated aliphatic
Prior art date
Application number
RU2012115454/04A
Other languages
English (en)
Other versions
RU2012115454A (ru
Inventor
Дзуния НИСИУТИ
Original Assignee
Мицубиси Гэс Кемикал Компани, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мицубиси Гэс Кемикал Компани, Инк. filed Critical Мицубиси Гэс Кемикал Компани, Инк.
Publication of RU2012115454A publication Critical patent/RU2012115454A/ru
Application granted granted Critical
Publication of RU2528049C2 publication Critical patent/RU2528049C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/62Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Настоящее изобретение относится к способу получения насыщенного алифатического кетона, представленного общей формулой (2):
Figure 00000015
(где n указывает целое число от 1 до 3; R представляет гидроксильную группу, циклогексильную группу, алкильную группу, имеющую от 1 до 4 атомов углерода, или ацильную группу, имеющую от 1 до 4 атомов углерода), используемого в качестве исходного материала для производства лекарств, агрохимических средств, оптических функциональных материалов и функциональных материалов для электроники. Способ заключается в гидрировании по ядру ароматического кетона, представленного общей формулой (1):
Figure 00000014
(где n указывает целое число от 1 до 3; R представляет гидроксильную группу, фенильную группу, алкильную группу, имеющую от 1 до 4 атомов углерода, или ацильную группу, имеющую от 1 до 4 атомов углерода), водородом под давлением в присутствии растворителя при температуре от 20 до 120°С и в присутствии катализатора, который несет от 0,1 до 20% масс. атома рутения на носителе. Способ позволяет получить целевой продукт с высокой селективностью. 5 з.п. ф-лы, 24 пр.

Description

Область изобретения
Настоящее изобретение относится к превосходному по селективности методу получения насыщенных алифатических кетонов, имеющих циклогексановое кольцо (иногда сокращенно называемых циклогексилалкилкетонами), используемых в качестве различных исходных материалов для производства лекарств, агрохимических средств, оптических функциональных материалов и функциональных материалов для электроники.
Предпосылки создания изобретения
До сих пор в качестве способа приготовления циклогексилалкилкетонов был известен способ получения их из реактива Гриньяра, синтезированного из бромциклогексенов, и хлорида жирной кислоты (см. непатентный документ 1). Известен также способ получения их путем синтеза циклогексанкарбонитрила, за которым следует также реакция его с этилброммагнием (см. непатентный документ 2). Однако вышеупомянутый метод предшествующего уровня техники связан с некоторыми осложнениями, состоящими в том, что процесс является длительным, а удаление отходов, таких как соли металлов и другие, является трудным. Кроме того, в случае, когда ароматический кетон гидрируют водородом под давлением согласно методу прототипа (см. непатентный документ 3), недостатком способа является то, что в результате восстановления карбонильной группы синтезируются не циклогексилалкилкетоны, а алифатические спирты или алкилциклогексаны. Далее, патентный документ 1 описывает способ получения циклогексилалкилкетона, в котором циклогексильная группа имеет алкильный заместитель в результате гидрирования фенилалкилкетона, в котором фенильная группа имеет алкильный заместитель; однако выход в этом процессе составляет примерно 30% или менее.
Документы предшествующего уровня техники
Патентные документы
Патентный документ 1: GP A 61-260.032
Непатентные документы
Непатентный документ 1: Rouzaud J., et al., Bull. Soc. Chim. Fr., 1964, 2908-2916
Непатентный документ 2: Doucet, Rumpf, Bull. Soc. Chim. Fr., 1954, 610-613
Непатентный документ 3: Elwin E. Harris, James D'Lanni and Homer Adkins, J. Am. Chem. Soc., 60, 1938, 1467-1470
Сущность изобретения
Задачи, которые должны быть решены изобретением
Целью настоящего изобретения является предложить более технологичный способ получения циклогексилалкилкетонов, который решает проблемы в отношении процесса восстановления и вывода отходов, таких как металлы и другие, и который имеет высокую селективность при гидрировании ядра.
Способы решения проблем
Авторы настоящего изобретения тщательно изучали более технологичный способ получения циклогексилалкилкетонов и в результате нашли, что, когда ароматический кетон гидрируют по ядру водородом под давлением в присутствии катализатора, который несет атом рутения, то можно получить циклогексилалкилкетон, в то же время сохраняя в нем структуру карбонильной группы, и пришли к настоящему изобретению.
Конкретно, настоящее изобретение относится к способу получения насыщенного алифатического кетона, в котором ароматический кетон, представленный общей формулой (1), гидрируют по ядру водородом под давлением в присутствии растворителя при температуре от 20 до 120°С в присутствии катализатора, который несет от 0,1 до 20% масс. атома рутения на носителе, благодаря чему получают циклогексилалкилкетон, представленный общей формулой (2).
Химическая формула (1):
Figure 00000001
(1)
(в химической формуле (1) n указывает целое число от 1 до 3; R представляет гидроксильную группу, фенильную группу, алкильную группу, имеющую от 1 до 4 атомов углерода, или ацильную группу, имеющую от 1 до 4 атомов углерода);
Химическая формула (2):
Figure 00000002
(2)
(в химической формуле (2) n указывает целое число от 1 до 3; R представляет гидроксильную группу, циклогексильную группу, алкильную группу, имеющую от 1 до 4 атомов углерода, или ацильную группу, имеющую от 1 до 4 атомов углерода).
Эффект изобретения
Согласно способу по изобретению циклогексилалкилкетон может быть получен технологически эффективным способом, имеющим высокую селективность гидрирования ядра.
Способ осуществления изобретения
Ароматический кетон
Ароматический кетон для использования в качестве исходного материала в изобретении представляет собой двузамещенное ароматическое соединение, в котором, как показано в общей формуле (1), гидроксильная группа, фенильная группа, алкильная группа, имеющая от 1 до 4 атомов углерода, или ацильная группа, имеющая от 1 до 4 атомов углерода, прикреплена в виде R к ароматической группе в дополнение к присоединенной к ней ацильной группе. С точки зрения селективности получения намеченного продукта без гидрирования ацильной группы предпочтительной в качестве R является гидроксильная группа, фенильная группа или ацильная группа, представленная следующей общей формулой (3).
Химическая формула (3):
Figure 00000003
(3)
(в общей формуле (3) В указывает целое число от 1 до 3).
В общей формуле (1) n указывает целое число от 1 до 3, и с точки зрения переработки соединения в процессе n предпочтительно равно 1 или 2.
В качестве ароматического кетона, представленного общей формулой (1), могут быть приведены, как конкретный пример, п-гидроксиацетофенон, м-гидроксиацетофенон, о-гидроксиацетофенон, п-гидроксипропиофенон, м-гидроксипропиофенон, о-гидроксипропиофенон, п-гидроксибутирофенон, м-гидроксибутирофенон, о-гидроксибутирофенон, п-гидроксиизобутирофенон, м-гидроксиизобутирофенон, о-гидроксиизобутирофенон, 2-ацетилбифенил, 3-ацетилбифенил, 4-ацетилбифенил, 2-пропионилбифенил, 3-пропионилбифенил, 4-пропионилбифенил, п-фенилбутирофенон, м-фенилбутирофенон, о-фенилбутирофенон, п-фенилизобутирофенон, м-фенилизобутирофенон, о-фенилизобутирофенон, п-метилацетофенон, м-метилацетофенон, о-метилацетофенон, п-метилпропиофенон, м-метилпропиофенон, о-метилпропиофенон, п-метилбутирофенон, м-метилбутирофенон, о-метилбутирофенон, п-метилизобутирофенон, м-метилизобутирофенон, о-метилизобутирофенон, п-этилацетофенон, м-этилацетофенон, о-этилацетофенон, п-этилпропиофенон, м-этилпропиофенон, о-этилпропиофенон, п-этилбутирофенон, м-этилбутирофенон, о-этилбутирофенон, п-этилизобутирофенон, м-этилизобутирофенон, о-этилизобутирофенон, п-пропилацетофенон, м-пропилацетофенон, о-пропилацетофенон, 4-н-бутилацетофенон, 4-изобутилацетофенон, 4-третбутилацетофенон, 4-ацетилацетофенон, 4-пропионилацетофенон и 4-ацетилбутиропропиофенон и т.д.
Из вышеупомянутых ароматических кетонов, с точки зрения реакционной способности и использования, предпочтительным является гидроксиацетофенон или гидроксипропиофенон. В частности, с точки зрения скорости реакции, являются предпочтительными п-гидроксиацетофенон и м-гидроксиацетофенон с присоединенной к ним гидроксильной группой вместо п-метилацетофенона с присоединенной к нему метильной группой и 4-ацетилбифенила с присоединенной к нему фенильной группой.
Катализатор
Катализатор для использования в настоящем изобретении содержит от 0,1 до 20% масс. атомов рутения на его носителе.
Катализатор для использования в настоящем изобретении, в котором количество нанесенных атомов рутения составляет от 0,1 до 20% масс., не является специально определенным в способе получения. Например, катализатор может быть приготовлен способом нанесения содержащего атомы рутения соединения на носитель по методу пропитки, методу высушивания, методу осаждения и т.п., и затем обработкой его восстановлением, например, восстановлением водородом или химическим восстановлением с боргидридом натрия, гидразином, муравьиной кислотой или тому подобным, или без обработки восстановлением с получением намеченного катализатора.
При этом содержащее атом рутения соединение включает, например, гидрат хлорида рутения, гидрат бромида рутения, гидрат оксида рутения, хлорид гексаминрутения, бромид гексаминрутения, диакварутенийтринитратонитрозил, триацетонат рутения, трирутенийдодекакарбонил и т.д.
Носителем может быть любой носитель, инертный по отношению к заместителям ароматического соединения, которое является исходным материалом для гидрирования при условиях реакции, и может быть органический или неорганический носитель, включая, например, активированный уголь, ионообменную смолу, диоксид кремния, α-оксид алюминия, γ-оксид алюминия, кремнезем-глинозем, цеолит, а также различные типы оксидов металлов, композиты оксидов и т.д. Особенно предпочтительными, с точки зрения селективности, являются оксид алюминия и активированный уголь.
Количество рутения, наносимое на катализатор для использования в изобретении, лежит в интервале от 0,1 до 20% масс. от общей массы катализатора. Когда количество меньше чем 0,1% масс., очень большое количество катализатора должно быть использовано для достижения удовлетворительной степени гидрирования ядра, и промышленное использование его было бы затруднительным. Когда количество больше чем 20% масс., то доля рутения, принимаемого порами, может излишне увеличиться, и, если это так, может происходить гидрогенолиз или восстановление ацильной группы в порах, где диффузия недостаточна, и в связи с этим может понизиться селективность. С этой точки зрения наносимое количество составляет предпочтительно от 0,5 до 10% масс., более предпочтительно от 2 до 5% масс.
Количество катализатора, используемого в настоящем изобретении, может сильно варьироваться в зависимости от количества нанесенного активного ингредиента, типа гидрируемого исходного материала, условий реакции и другого, но обычно количество предпочтительно лежит в интервале от 0,05 до 0,5 в единицах отношения к массе исходного материала (1). С технологической точки зрения более предпочтительно количество лежит в интервале от 0,1 до 0,3.
Гидрирование
Согласно способу получения по изобретению насыщенный алифатический кетон получают гидрированием ядра вышеупомянутого ароматического кетона, представленного общей формулой (1), водородом под давлением в присутствии растворителя при температуре от 20 до 120°С.
Гидрирование в настоящем изобретении может быть достигнуто в отсутствие растворителя в зависимости от типа гидрируемого исходного материала и условий реакции, однако гидрирование предпочтительно проводят в растворителе, исходя из того, что селективность может быть повышена при выборе растворителя, наиболее подходящего для намеченной реакции, и что время реакции может быть сокращено.
Не будучи определенным конкретно, растворитель для использования в данном изобретении может быть соединением, мало активным при гидрировании и способным растворять исходный материал. В качестве конкретных примеров могут быть упомянуты углеводороды, не имеющие двойной связи, такие как н-пентан, н-гексан, циклогексан; простые эфиры, такие как диэтиловый эфир, дибутиловый эфир, тетрагидрофуран; спирты, такие как метанол, этанол, н-пропанол, изопропанол, н-бутанол, изобутанол, 2-бутанол, трет-бутанол, н-гексанол, циклогексанол; галогеноуглеводороды, такие как четыреххлористый углерод, дихлорметан, трихлорэтан.
В настоящем изобретении из числа упомянутых выше растворителей предпочтительными являются насыщенные алифатические спирты, имеющие от 2 до 5 атомов углерода, линейные или разветвленные простые эфиры или насыщенные алифатические углеводороды, имеющие от 5 до 10 атомов углерода с точки зрения отсутствия побочных реакций и удобства обращения с ними при производстве.
Вышеупомянутые растворители могут быть использованы поодиночке или могут быть использованы в виде комбинации двух или нескольких из них.
Более предпочтительными являются диэтиловый эфир, тетрагидрофуран, метанол, этанол, н-пропанол, циклогексанол, н-гексан, гептан, и еще более предпочтительным является тетрагидрофуран.
Не будучи конкретно определенным, отношение растворителя, которое должно быть использовано, в расчете на его массу, находится предпочтительно в интервале от 0,05 до 100, более предпочтительно от 0,1 до 20 в величинах массового отношения относительно исходного материала (1).
Водород, используемый в реакции, может быть любым водородом, обычно используемым в промышленности, однако, когда используют водород, в котором количество примеси моноксида углерода мало, активность катализатора может быть превосходной. Соответственно, содержание моноксида углерода в водороде предпочтительно составляет самое большее 1%.
Не будучи конкретно определенным, давление водорода во время реакции может быть любым повышенным давлением, однако, если давление слишком низкое, реакция может занимать более продолжительное время, чем требуется, а если давление слишком высокое, скорость потребления водорода может возрасти. Соответственно, давление предпочтительно лежит в интервале от 0,5 до 20 МПа, более предпочтительно в интервале от 1 до 10 МПа.
Температура во время реакции может сильно варьироваться в зависимости от типа гидрируемого исходного материала, условий реакции и времени реакции, и может быть должным образом определена в интервале от 0 до 200°С, но предпочтительно лежит в интервале от 20 до 120°С с точки зрения селективности и экономических соображений. В особенности, для исходного материала, имеющего заместители с высокой реакционной способностью, селективность может повышаться, когда температуру выбирают предпочтительно в интервале от 20 до 100°С, более предпочтительно от 30 до 80°С, еще более предпочтительно от 30 до 60°С.
Время реакции может быть временем, за которое завершается поглощение водорода. Время может варьироваться в зависимости от типа гидрируемого исходного материала, количества катализатора и других условий реакции и поэтому не может быть определено без разброса. Обычно время может составлять от 0,5 до 20 часов.
Как описано выше, гидрирование ядра замещенного ароматического кетона легко дает намеченный гидрированный продукт с высокой селективностью.
Более точно, преимуществом способа является то, что гидрирование ядра обеспечивает очень высокую селективность.
В дополнение, вышеупомянутый рутениевый катализатор доступен по весьма недорогим ценам. Далее, катализатор может быть использован повторно, и поэтому способ гидрирования ядра является способом, дополнительно выгодным с точки зрения снижения затрат на катализатор.
Оборудование для проведения реакции, не описанное конкретно, может быть любым оборудованием, устойчивым к необходимому давлению водорода.
Способом проведения реакции предпочтительно является периодический способ с той точки зрения, что использованный катализатор должен быть отделен в жидкой фазе при температуре реакции.
Например, исходный материал из ароматического кетона, рутениевый катализатор и растворитель подают в автоклав, оборудованный электромагнитной мешалкой, затем содержимое перемешивают и устанавливают температуру жидкости, после чего давление повышают до 0,5-20 МПа вводимым в реактор водородом, затем при условиях, где давление и температуру жидкости поддерживают таковыми, дополнительно вводят водород так, чтобы поддерживать давление постоянным, затем автоклав выдерживают сам по себе до тех пор, пока водород больше не поглощается, после чего масляную фазу отбирают фильтрацией или подобным методом и затем анализируют газовой хроматографией, определяя этим образовавшийся циклогексилалкилкетон.
Циклогексилалкилкетоны
Настоящее изобретение относится к способу получения насыщенного алифатического кетона, по которому получают циклогексилалкилкетон, представленный вышеупомянутой общей формулой (2). В общей формуле (2) n указывает целое число от 1 до 3; R представляет гидроксильную группу, циклогексильную группу, алкильную группу, имеющую от 1 до 4 атомов углерода, или ацильную группу, имеющую от 1 до 4 атомов углерода. R и n в общей формуле (2) являются такими же, как упомянутые здесь выше для исходного материала - ароматического кетона.
Гидрированный по ядру продукт - циклогексилалкилкетон, который получен согласно настоящему изобретению, может быть целевым продуктом, имеющим высокую чистоту, даже если катализатор удален фильтрацией или подобным методом, и затем просто удален один растворитель, однако продукт может быть дополнительно очищен согласно обычному известному методу дистилляции, кристаллизации и т.д. Катализатор, извлеченный к этому времени, может быть повторно использован в реакции.
Селективность по циклоалкилкетону, полученному согласно способу производства по настоящему изобретению, выше, чем в обычных способах, и обычно составляет, по меньшей мере, 50%, более предпочтительно, по меньшей мере, 85%, еще более предпочтительно, по меньшей мере, 90%, и еще более предпочтительно, по меньшей мере, 95%.
Выход циклогексилалкилкетона может быть обычно по меньшей мере 50%, но предпочтительно составляет по меньшей мере 60%, более предпочтительно по меньшей мере 85%, еще более предпочтительно по меньшей мере 90%, и еще более предпочтительно по меньшей мере 95%.
Настоящее изобретение будет описано более конкретно ниже, но настоящее изобретение не ограничено примерами.
Условия газохроматографического анализа
Результаты реакции оценивали газовой хроматографией. Для газовой хроматографии использовали прибор GC-17A, доступный от Shimadzu Corporation с капиллярной колонкой HR-1 (⌀ 0,32 мм × 25 м), доступной от Shinwa Chemical Industries Ltd. Что касается условий нагрева, то систему нагревали от 100°С до 320°С со скоростью 5°С/мин. Соотношение цис/транс-изомера циклогексанового кольца определяли, используя капиллярную колонку Xylene Master (⌀ 0,32 мм × 50 м), доступную от Shinwa Chemical Industries Ltd. Что касается условий нагрева, то систему нагревали от 70°С до 120°С со скоростью 2°С/мин.
Пример 1
Химическая формула (4)
Figure 00000004
2 г катализатора 5% Ru/оксид алюминия, доступного от N.E. CHEMIKAT, 10 г п-гидроксипропиофенона (химический реагент, доступный от Wako Pure Chemicals) и 100 мл тетрагидрофурана (химический реагент, доступный от Wako Pure Chemicals) вводили в 200 мл автоклав, газ в реакторе выдували газообразным азотом, реактор устанавливали на 50°С и затем в него добавляли водород так, чтобы давление в реакторе могло равняться 4 МПа, и продолжали реакцию в течение 5 часов, после чего подачу водорода прекращали. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионилциклогексанолу составляла 98%, и выход составил 98%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 64/36.
Пример 2
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 1, за исключением того, что растворителем был этанол (химический реагент, доступный от Wako Pure Chemicals). После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионилциклогексанолу составляла 96%, и выход составил 96%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 64/36.
Пример 3
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 1, за исключением того, что растворителем был метанол (химический реагент, доступный от Wako Pure Chemicals). После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионилциклогексанолу составляла 96%, и выход составил 96%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 66/34.
Пример 4
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 1, за исключением того, что растворителем был н-бутанол (химический реагент, доступный от Wako Pure Chemicals). После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионилциклогексанолу составляла 89%, и выход составил 89%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 64/36.
Пример 5
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 1, за исключением того, что здесь повторно использовали катализатор, использованный в примере 1. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионилциклогексанолу составляла 93%, и выход составил 93%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 66/34.
Пример 6
70 г катализатора 5% Ru/оксид алюминия, доступного от N.E. CHEMIKAT, 350 г п-гидроксипропиофенона и 1750 мл этанола вводили в 10-литровый автоклав, газ в реакторе выдували газообразным азотом, реактор устанавливали на 50°С и затем в него добавляли водород так, чтобы давление в реакторе могло равняться 4 МПа, и продолжали реакцию в течение 10 часов, после чего подачу водорода прекращали. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионилциклогексанолу составляла 93%, и выход составил 93%. Соотношение цис/транс- изомеров циклогексанового кольца составляло 64/36.
Пример 7
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 1, за исключением того, что вместо катализатора 5% Ru/оксид алюминия, использованного в примере 1, использовали катализатор 5% Ru/уголь (гидрат) типа А, доступный от N.E. CHEMIKAT, и время реакции составляло 6 часов. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионилциклогексанолу составляла 54%, и выход составил 54%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 69/31.
Пример 8
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 1, за исключением того, что вместо катализатора 5% Ru/оксид алюминия, использованного в примере 1, использовали катализатор 5% Ru/уголь (гидрат) типа В, доступный от N.E. CHEMIKAT, и время реакции составляло 6 часов. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионилциклогексанолу составляла 90%, и выход составил 90%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 64/36.
Пример 9
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 1, за исключением того, что вместо катализатора 5% Ru/оксид алюминия, использованного в примере 1, использовали катализатор 5% Ru/уголь (гидрат) типа К, доступный от N.E. CHEMIKAT, и время реакции составляло 6 часов. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионилциклогексанолу составляла 60%, и выход составил 60%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 67/33.
Пример 10
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 1, за исключением того, что вместо катализатора 5% Ru/оксид алюминия, использованного в примере 1, использовали катализатор 5% Ru/уголь (гидрат) типа R, доступный от N.E. CHEMIKAT, и время реакции составляло 6 часов. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионилциклогексанолу составляла 90%, и выход составил 90%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 68/32.
Пример 11
Химическая формула (5)
Figure 00000005
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 2, за исключением того, что вместо п-гидроксипропиофенона, использованного в примере 2, использовали п-гидроксиацетофенон (химический реагент, доступный от Wako Pure Chemicals), и время реакции составляло 4 часа. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-ацетилциклогексанолу составляла 96%, и выход составил 96%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 64/36.
Пример 12
Химическая формула (6)
Figure 00000006
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 2, за исключением того, что вместо п-гидроксипропиофенона, использованного в примере 2, использовали м-гидроксиацетофенон (химический реагент, доступный от Wako Pure Chemicals), и время реакции составляло 5 часов. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 3-ацетилциклогексанолу составляла 97%, и выход составил 97%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 40/60.
Пример 13
Химическая формула (7)
Figure 00000007
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 2, за исключением того, что вместо п-гидроксипропиофенона, использованного в примере 2, использовали о-гидроксиацетофенон (химический реагент, доступный от Wako Pure Chemicals), и время реакции составляло 5 часов. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 2-ацетилциклогексанолу составляла 96%, и выход составил 96%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 60/40.
Пример 14
Химическая формула (8)
Figure 00000008
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 2, за исключением того, что вместо п-гидроксипропиофенона, использованного в примере 2, использовали 4-пропионил-1,1'-бифенил (химический реагент, доступный от Tokyo Chemical Industry), и время реакции составляло 11 часов. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионил-1,1'-бициклогексану составляла 96%, и выход составил 96%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 72/28.
Пример 15
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 14, за исключением того, что растворителем был гексан (химический реагент, доступный от Wako Pure Chemicals). После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионил-1,1'-бициклогексану составляла 96%, и выход составил 96%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 72/28.
Пример 16
Химическая формула (9)
Figure 00000009
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 2, за исключением того, что вместо п-гидроксипропиофенона, использованного в примере 2, использовали 1,4-диацетилбензол (химический реагент, доступный от Tokyo Chemical Industry). После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 1,4-диацетилциклогексану составляла 97%, и выход составил 97%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 76/24.
Пример 17
Химическая формула (10)
Figure 00000010
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 2, за исключением того, что вместо п-гидроксипропиофенона, использованного в примере 2, использовали 4'-метилацетофенон (химический реагент, доступный от Wako Pure Chemicals), и время реакции составляло 6 часов. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 1-ацетил-4-метилциклогексану составляла 96%, и выход составил 96%. Соотношение цис/транс-изомеров циклогексанового кольца составляло 22/78.
Сравнительный пример 1
Химическая формула (11)
Figure 00000011
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 2, за исключением того, что вместо п-гидроксипропиофенона, использованного в примере 2, использовали ацетофенон, и время реакции составляло 6 часов. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100% и селективность по этилциклогексану составляла 99%.
Сравнительный пример 2
Химическая формула (12)
Figure 00000012
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 2, за исключением того, что вместо п-гидроксипропиофенона, использованного в примере 2, использовали 4'-фторацетофенон (химический реагент, доступный от Wako Pure Chemicals), и время реакции составляло 3,5 часа. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по этилциклогексану составляла 74% и селективность по 1-этил-4-фторциклогексану составляла 26%.
Сравнительный пример 3
Химическая формула (13)
Figure 00000013
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 2, за исключением того, что вместо п-гидроксипропиофенона, использованного в примере 2, использовали п-аминоацетофенон (химический реагент, доступный от Wako Pure Chemicals). После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 58%, и реакционная жидкость была жидкой смесью 4-амино-1-винилбензола (селективность 22%), 1-(4-аминоциклогексил)этанола (селективность 27%) и 1-(4-аминофенил)этанола (селективность 41%).
Сравнительный пример 4
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 1, за исключением того, что вместо катализатора 5% Ru/оксид алюминия, использованного в примере 1, использовали медно-хромовый катализатор (203S), доступный от JGS Catalysts and Chemicals, время реакции составляло 3 часа и температура реакции была 140°С. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионилциклогексанолу составляла 0%, и селективность по 4-пропилфенолу была 100%.
Сравнительный пример 5
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 1, за исключением того, что вместо катализатора 5% Ru/оксид алюминия, использованного в примере 1, использовали катализатор 2% Ru/уголь (гидрат), доступный от N.E. CHEMIKAT, время реакции составляло 2 часа и температура реакции была 140°С. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионилциклогексанолу составляла 0%, и селективность по 4-пропилциклогексанолу была 93%. Соотношение цис/транс-изомеров циклогексанового кольца 4-пропилциклогексанола составляло 53/47.
Сравнительный пример 6
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 1, за исключением того, что вместо катализатора 5% Ru/оксид алюминия, использованного в примере 1, использовали катализатор 5% Ru/уголь (гидрат), тип STD, доступный от N.E. CHEMIKAT, температура реакции была 140°С, а растворителем был циклогексан. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионилциклогексанолу составляла 0%, и селективность по 4-пропилциклогексанолу была 95%. Соотношение цис/транс-изомеров циклогексанового кольца 4-пропилциклогексанола составляло 55/45.
Сравнительный пример 7
Гидрирование и обработку реакционной жидкости проводили таким же образом, как в примере 7, за исключением того, что температура реакции была 140°С. После реакции катализатор удаляли фильтрацией, и полученный фильтрат анализировали газовой хроматографией. Было подтверждено, что конверсия сырья составляла 100%, селективность по 4-пропионилциклогексанолу составляла 14%, и селективность по 4-пропилциклогексанолу была 82%.
Промышленная применимость
Циклогексилалкилкетоны, полученные в настоящем изобретении, используют в качестве исходных материалов для красок, душистых веществ, лекарств, агрохимических средств, функциональных материалов для электроники и оптических функциональных материалов.

Claims (6)

1. Способ получения насыщенного алифатического кетона, в котором ароматический кетон, представленный общей формулой (1):
[химическая формула (1)]
Figure 00000014

(где в химической формуле (1) n указывает целое число от 1 до 3; R представляет гидроксильную группу, фенильную группу, алкильную группу, имеющую от 1 до 4 атомов углерода, или ацильную группу, имеющую от 1 до 4 атомов углерода),
гидрируют по ядру водородом под давлением в присутствии растворителя при температуре от 20 до 120°С и в присутствии катализатора, который несет от 0,1 до 20% масс. атома рутения на носителе, благодаря чему получают циклогексилалкилкетон, представленный общей формулой (2):
[химическая формула (2)]
Figure 00000015

(где в химической формуле (2) n указывает целое число от 1 до 3; R представляет гидроксильную группу, циклогексильную группу, алкильную группу, имеющую от 1 до 4 атомов углерода, или ацильную группу, имеющую от 1 до 4 атомов углерода).
2. Способ получения насыщенного алифатического кетона согласно п.1, в котором носителем является оксид алюминия или активированный уголь.
3. Способ получения насыщенного алифатического кетона согласно п.2, в котором носителем является оксид алюминия.
4. Способ получения насыщенного алифатического кетона по любому из пп.1-3, в котором ароматическим кетоном, представленным общей формулой (1), является п-гидроксиацетофенон или гидроксипропиофенон.
5. Способ получения насыщенного алифатического кетона по любому из пп.1-3, в котором растворителем является насыщенный алифатический спирт, имеющий от 2 до 5 атомов углерода, линейный или циклический простой эфир, или насыщенный алифатический углеводород, имеющий от 5 до 10 атомов углерода.
6. Способ получения насыщенного алифатического кетона по любому из пп.1-3, в котором давление водорода составляет от 0,5 до 20 МПа.
RU2012115454/04A 2009-09-18 2010-09-16 Способ получения циклогексилалкилкетонов RU2528049C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009217202 2009-09-18
JP2009-217202 2009-09-18
PCT/JP2010/066078 WO2011034144A1 (ja) 2009-09-18 2010-09-16 シクロヘキシルアルキルケトン類の製造方法

Publications (2)

Publication Number Publication Date
RU2012115454A RU2012115454A (ru) 2013-10-27
RU2528049C2 true RU2528049C2 (ru) 2014-09-10

Family

ID=43758745

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012115454/04A RU2528049C2 (ru) 2009-09-18 2010-09-16 Способ получения циклогексилалкилкетонов

Country Status (10)

Country Link
US (1) US8507727B2 (ru)
EP (1) EP2479163B1 (ru)
JP (1) JP5742716B2 (ru)
KR (1) KR101728186B1 (ru)
CN (1) CN102548943B (ru)
ES (1) ES2592177T3 (ru)
IN (1) IN2012DN02204A (ru)
RU (1) RU2528049C2 (ru)
TW (1) TWI483929B (ru)
WO (1) WO2011034144A1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2102377C1 (ru) * 1993-11-22 1998-01-20 Российский научный центр "Прикладная химия" Способ получения 4-циклогексил-4-метилпентанона-2
JP2005187352A (ja) * 2003-12-25 2005-07-14 New Japan Chem Co Ltd シクロヘキサンカルバルデヒドの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH617648A5 (en) * 1975-02-12 1980-06-13 Givaudan & Cie Sa Process for the preparation of substituted cyclohexanes.
US4187251A (en) * 1976-12-16 1980-02-05 Schleppnik Alfred A Malodor counteractants
DE3124013A1 (de) * 1981-06-19 1982-12-30 Kali-Chemie Pharma Gmbh, 3000 Hannover 2-acylaminomethyl-1,4-benzodiazepin-verbindungen sowie verfahren und zwischenprodukte zu ihrer herstellung und diese verbindungen enthaltende arzneimittel
JPS59225134A (ja) * 1983-06-06 1984-12-18 Towa Kasei Kogyo Kk 1−(1−ヒドロキシエチル)−4−イソブチルシクロヘキサンの製造方法
DE3517106A1 (de) * 1985-05-11 1986-11-13 Basf Ag, 6700 Ludwigshafen Cyclohexanderivate
DE3537228A1 (de) * 1985-10-19 1987-04-23 Huels Chemische Werke Ag Verfahren zur herstellung von cyclohexylverbindungen
JPS62185032A (ja) * 1986-02-06 1987-08-13 Taiho Yakuhin Kogyo Kk 1−(1−ヒドロキシエチル)−アルキルシクロヘキサンの製造方法
JPH1045646A (ja) 1996-08-01 1998-02-17 New Japan Chem Co Ltd 1,4−シクロヘキサンジメタノールの製造方法
WO2002014253A1 (en) * 2000-08-14 2002-02-21 Quest International B.V. Cyclohexyl ethers as fragrance compounds
DE102004063673A1 (de) * 2004-12-31 2006-07-13 Oxeno Olefinchemie Gmbh Verfahren zur kontinuierlichen katalytischen Hydrierung von hydrierbaren Verbindungen an festen, im Festbett angeordneten Katalysatoren mit einem wasserstoffhaltigen Gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2102377C1 (ru) * 1993-11-22 1998-01-20 Российский научный центр "Прикладная химия" Способ получения 4-циклогексил-4-метилпентанона-2
JP2005187352A (ja) * 2003-12-25 2005-07-14 New Japan Chem Co Ltd シクロヘキサンカルバルデヒドの製造方法

Also Published As

Publication number Publication date
IN2012DN02204A (ru) 2015-08-21
KR20120082871A (ko) 2012-07-24
TWI483929B (zh) 2015-05-11
KR101728186B1 (ko) 2017-04-18
ES2592177T3 (es) 2016-11-28
EP2479163A4 (en) 2015-08-19
WO2011034144A1 (ja) 2011-03-24
EP2479163B1 (en) 2016-06-29
EP2479163A1 (en) 2012-07-25
CN102548943B (zh) 2014-07-02
JPWO2011034144A1 (ja) 2013-02-14
US20120178970A1 (en) 2012-07-12
CN102548943A (zh) 2012-07-04
US8507727B2 (en) 2013-08-13
TW201127803A (en) 2011-08-16
JP5742716B2 (ja) 2015-07-01
RU2012115454A (ru) 2013-10-27

Similar Documents

Publication Publication Date Title
US20170283342A1 (en) Organic compounds
WO2004050591A1 (ja) アルコールの製造方法
US9056820B2 (en) Alicyclic alcohol
EP1968925B1 (fr) Procede de preparation de difluoroethanol
RU2528049C2 (ru) Способ получения циклогексилалкилкетонов
JP4349227B2 (ja) 1,3−シクロヘキサンジオールの製造方法
WO2013161594A1 (ja) ヒドロキシフェニルシクロヘキサノール化合物の製造方法
JPH0639409B2 (ja) オクタン誘導体の製造法
KR101659163B1 (ko) 알칸올의 제조방법
JP4519255B2 (ja) 光学活性3,7−ジメチル−6−オクテノールの製造方法
EP2269971B1 (en) Process for producing a 2-alkyl-2-cycloalkene-1-one
JP2015500846A (ja) トリメチロールプロパン製造の副流からトリメチロールプロパンが富化された生成物流を得る方法
EP2799417B1 (en) METHOD OF PRODUCING 1-(2-t-BUTYL CYCLOHEXYLOXY)-2-ALKANOL
KR101662875B1 (ko) 네오펜틸글리콜의 제조방법
JP2009173553A (ja) 2−(イソプロピルアミノ)エタノールの製造方法
JP4386977B2 (ja) α−位がメチル化されたケトン類の製造方法
SU992507A1 (ru) Способ получени этиленовых спиртов с @ -с @
JP2004506034A (ja) 3−アルキルシクロアルカノールの製造
JP2004051597A (ja) フッ素化ベンゾニトリルの製造方法
Takasaki et al. Supporting Information for Chemoselective Hydrogenation of Nitroarenes with Carbon Nanofiber-Supported Platinum and Palladium Nanoparticles
JP2005022982A (ja) シクロヘキサンカルバルデヒドの製造方法
KR20090057337A (ko) 테트라플루오로벤젠 카르발데히드 알킬아세탈의 제조 방법
Ming et al. Asymmetric Hydrogenation of Acetonaphthone Catalyzed by RuCl2 [P (C6H5) 3] 2-(R, R)-DPEN
CN102140061A (zh) 环烷基丙酸的制备方法
JPS60104044A (ja) Ν−アルキル−1,2−ジメチルプロピルアミンの製造法