RU2430169C2 - Способ производства нанометрического, монодисперсного и стабильного металлического серебра и продуктов из него - Google Patents

Способ производства нанометрического, монодисперсного и стабильного металлического серебра и продуктов из него Download PDF

Info

Publication number
RU2430169C2
RU2430169C2 RU2009127785/02A RU2009127785A RU2430169C2 RU 2430169 C2 RU2430169 C2 RU 2430169C2 RU 2009127785/02 A RU2009127785/02 A RU 2009127785/02A RU 2009127785 A RU2009127785 A RU 2009127785A RU 2430169 C2 RU2430169 C2 RU 2430169C2
Authority
RU
Russia
Prior art keywords
silver
solution
reaction
reducing agent
silver salt
Prior art date
Application number
RU2009127785/02A
Other languages
English (en)
Other versions
RU2009127785A (ru
Inventor
МАРТИНЕС Хесус Мануэль МАРТИНЕС (MX)
МАРТИНЕС Хесус Мануэль МАРТИНЕС
ПЕРЕС Рикардо БЕНАВИДЕС (MX)
ПЕРЕС Рикардо БЕНАВИДЕС
РОХАС Хосе Гертрудис БОКАНЕГРА (MX)
РОХАС Хосе Гертрудис БОКАНЕГРА
Факундо РУИС (MX)
Факундо РУИС
ДУРАН Алма Гвадалупе ВАСКЕС (MX)
ДУРАН Алма Гвадалупе ВАСКЕС
КАСТАНЬОН Габриэль Алехандро МАРТИНЕС (MX)
КАСТАНЬОН Габриэль Алехандро МАРТИНЕС
Original Assignee
Сервисьос Административос Пеньолес С.А. Де К.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сервисьос Административос Пеньолес С.А. Де К.В. filed Critical Сервисьос Административос Пеньолес С.А. Де К.В.
Publication of RU2009127785A publication Critical patent/RU2009127785A/ru
Application granted granted Critical
Publication of RU2430169C2 publication Critical patent/RU2430169C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

Изобретение относится к способу производства наночастиц металлического серебра диаметром от 1 до 100 нм и средним диаметром от 20 до 40 нм, характеризующихся монодисперсностью, стабильностью в течение более 12 месяцев, в широком диапазоне концентраций. Способ включает приготовление водного раствора соли серебра, содержащего от 0,01% до 20% вес. растворимой соли серебра, приготовление водного раствора восстановителя, содержащего от 0,01% до 20% вес. соединения из группы танинов, смешивание этих водных растворов для проведения реакции между ними, отделение маточного раствора от наночастиц серебра, полученных в упомянутой реакции. При этом упомянутую реакцию осуществляют путем смешивания этих растворов и регулирования рН в диапазоне величин от 10,5 до 11,5. Получаемые частицы могут быть повторно диспергированы в различных средах, таких как вода, алкидалевые и фенольные смолы, нитроцеллюлоза, полиуретан, виниловые и акриловые соединения, спирты, и во множестве органических материалов и полимеров, таких как полиэтилены высокой и низкой плотности, нейлон, акрилонитрил-бутадиен-стирольная смола и/или их смеси. Техническим результатом является получение наночастиц металлического серебра, характеризующихся монодисперсностью, стабильностью в течение более 12 месяцев, в широком диапазоне концентраций. 6 н. и 14 з.п. ф-лы, 5 ил., 1 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к способу производства металлических наночастиц, а именно способу производства нанометрического, монодисперсного, стабильного металлического серебра в различных средах.
Уровень техники
Хорошо известно, что частицы серебра используются в качестве бактерицидных и противовирусных средств, и их бактерицидная активность увеличивается обратно пропорционально размеру частиц, поэтому наночастицы вызывают особый интерес. Этот материал также применяют, в частности, в качестве катализатора гидрирования органических соединений.
Чтобы избежать путаницы в использовании некоторых терминов, в настоящем документе термин «наночастицы», как правило, используется в отношении частиц с диаметром меньше или равным 100 нм; термин «монодисперсный» используется для определения частиц с низкой вариативностью размеров; термин «стабильность» понимается как качество материала, выражающееся в отсутствии изменения размера частиц и монодисперсности без применения механических или химических средств в течение срока хранения.
По существу, существует два типа уже известных способов производства наночастиц металлического серебра:
а) при помощи плазмы, когда полосу металлического серебра нагревают до испарения, затем испарившееся серебро охлаждают в соответствующей атмосфере, получая тонкую пыль металлического серебра (в инертной атмосфере) или содержащий серебро композиционный материал, состав которого определяется природой используемой атмосферы;
b) путем измельчения в жидкой среде, когда раствор ионов серебра подвергают процессу восстановления в присутствии поверхностно-активных веществ и стабилизаторов с целью регулирования размера продукта.
Недавно появились сообщения о влиянии света на восстановление серебра способом измельчения в жидкой среде ("Preparation of silver nanoparticles by photo-reduction for surface-enhances Raman scattering" («Производство наночастиц серебра для поверхностно усиленного рамановского рассеяния путем фотовосстановления»; Huiying Jia, Jiangbo Zeng, Wei Song, Jing An, Bing Zhao; Thin Solid Films 496 (2006) 281-287. "Photochemical preparation of nanoparticles of Ag in aqueous solution and on the surface of mesoporous silica" («Фотохимическое производство наночастиц серебра в водном растворе и на поверхности мезопор оксида кремния»); G.V.Krylova, A.M.Eremenko, N.P.Smirnova, S.Eustis; Theoretical and experimental chemistry (2005) 41(2) 105-110), когда добавление поверхностно-активных веществ и стабилизаторов не является необходимым, поскольку частицы металлического серебра образуются на поверхности подложки; реакция длится 3 часа.
Xuelin ("Seedless, surfactantless photoreduction synthesis of silver nanoplates" («Синтез нанопластинок серебра путем фотовосстановления без использования затравочных кристаллов и поверхностно-активных веществ»); Xuelin Tian, Kai Chen, Gengyu Cao; Materials Letters 60 (2006) 828-830) сообщает об использовании цитрата натрия в качестве восстановителя для получения наночастиц серебра в присутствии света.
В других статьях упоминается осаждение наночастиц металлического серебра, когда реакция может продолжаться от 8 до 24 часов (CN 1810422, Gao, 2006). В других публикациях для ускорения реакции смесь нагревают до температуры, близкой к 100°С (CN 1676646, Liu, 2005; CN 1669914, Luo, 2005).
Ясно, что в случае процесса измельчения в жидкой среде имеется серьезная проблема, заключающаяся в выборе добавок, так как они должны быть совместимы с поверхностно-активным веществом, используемым при проведении реакции, и соответствовать назначению наночастиц, или, напротив, обеспечивать производство продукта способом, исключающим применение поверхностно-активного вещества; кроме того, необходимо регулировать концентрацию добавки в реакционной смеси с целью управления размером наночастиц серебра; с другой стороны, важно подчеркнуть, что время реакции довольно большое, поэтому наблюдается широкий разброс распределения частиц по размерам.
Цели изобретения
Ввиду проблем, обнаруженных в опубликованных статьях, целью настоящего изобретения является обеспечение нового способа производства частиц металлического серебра.
Другой целью настоящего изобретения является обеспечение способа измельчения в жидкой среде, облегчающего регулирование размера получаемых наночастиц.
Еще одной целью настоящего изобретения является производство монодисперсных наночастиц металлического серебра.
Еще одной целью настоящего изобретения является производство наночастиц металлического серебра со средним диаметром от 1 до 100 нм.
Еще одной целью настоящего изобретения является производство наночастиц металлического серебра со средним диаметром от 5 до 60 нм.
Еще одной целью настоящего изобретения является производство наночастиц металлического серебра, стабильных в течение более 12 месяцев.
Еще одной целью настоящего изобретения является обеспечение продукта, представляющего собой наночастицы серебра, который легко диспергируется в соответствии с различным целевым назначением.
Еще одной целью настоящего изобретения является обеспечение способа, заключающегося в снижении начальной влажности (при измельчении в жидкой среде) с целью производства наночастиц металлического серебра в больших концентрациях.
Сущность изобретения
Настоящее изобретение относится к способу получения нанометрических частиц металлического серебра путем измельчения в жидкой среде, имеющих диаметр в диапазоне от 1 до 100 нм, средний диаметр частиц составляет от 20 до 40 нм, причем частицы характеризуются следующими отличительными особенностями: являются монодисперсными и стабильными в течение более 12 месяцев в широком диапазоне концентраций.
Данный способ состоит из 4 стадий: а) приготовление водного раствора восстановителя, выбираемого из группы таннинов, предпочтительно являющегося дубильной кислотой; b) приготовление водного раствора соли серебра; с) проведение реакции и d) разделение твердой и жидкой фаз, при этом размер частиц определяется природой восстановителя и регулированием pH реагентов. Последняя стадия введена с целью отделения и концентрирования материала, после чего пользователь может получить продукт, который может быть интегрирован в желаемую среду. Получаемые частицы могут быть редиспергированы в различных средах, таких как вода, спирты, алкидалевые и фенольные смолы, нитроцеллюлоза, полиуретан, виниловые и акриловые смолы, и в широком спектре органических материалов и полимеров, таких как, например, полиэтилены высокой и низкой плотности, нейлон, акрилонитрил-бутадиен-стирольная смола (АБС), и/или их смесях.
Краткое описание чертежей
Для лучшего понимания настоящего изобретения описание сопровождается рядом фигур, носящих иллюстративный характер. Далее следует их описание:
Фиг.1 представляет собой блок-схему способа получения наночастиц металлического серебра по настоящему изобретению.
Фиг.2 представляет собой график распределения по размерам нанометрических частиц серебра в продукте, получаемом способом по настоящему изобретению.
Фиг.3 представляет собой график распределения по размерам нанометрических частиц серебра в другом продукте, получаемом способом по настоящему изобретению.
Фиг.4 представляет собой микрофотографию нанометрического монодисперсного металлического серебра в продукте, полученном способом по настоящему изобретению.
Фиг.5 представляет собой микрофотографию нанометрического монодисперсного металлического серебра в другом продукте, полученном способом по настоящему изобретению.
Подробное описание изобретения
Настоящее изобретение относится к способу получения монодисперсных и стабильных наночастиц металлического серебра и к продукту, получаемому данным способом. Частицы имеют диаметр в диапазоне от 1 до 100 нм, средний диаметр частиц составляет от 20 до 40 нм и частицы имеют следующие отличительные особенности: являются монодисперсными, стабильными в течение срока хранения, превышающего 12 месяцев, без повторного диспергирования частиц.
Исходным материалом для способа согласно настоящему изобретению является раствор растворимых солей серебра, таких как сульфаты, нитраты и др., с pH, отрегулированным в щелочном диапазоне путем управляемого добавления щелочей, таких как гидроксид натрия, калия, аммония и аммиак. В качестве восстановителей используют таннины, в том числе дубильную кислоту.
Важный аспект настоящего изобретения связан с адекватным регулированием pH раствора до, во время и после осуществления реакции, поскольку он существенно влияет на размер частиц и его вариативность.
Основным отличием способа настоящего изобретения от способов известного уровня техники является использование таннинов и предпочтительно дубильной кислоты в качестве восстановителя, что, помимо регулирования размера частиц на уровне менее 100 нм, имеет дополнительное преимущество, заключающееся в том, что указанные вещества выполняют роль поверхностно-активных веществ и стабилизаторов, используемых в известных способах, добавление которых становится ненужным, следовательно, упрощается процесс производства и в то же время задерживается слипание наночастиц, образовавшихся в ходе реакции, и повторное слипание после стадий очистки.
Способ получения монодисперсных и стабильных наночастиц металлического серебра по настоящему изобретению включает следующие стадии: приготовление водного раствора солей серебра, содержащего от 0,01% до 20% вес. растворимой соли серебра; приготовление водного раствора восстановителя, содержащего от 0,01% до 20% вес. соединения из группы таннинов; смешивание указанных водных растворов для проведения реакции между ними; отделение маточного раствора от наночастиц серебра, полученных в упомянутой реакции, и данный способ характеризуется тем, что реакцию осуществляют путем смешивания указанных растворов и регулирования pH в диапазоне величин от 10,5 до 11,5.
В одном из вариантов реализации реакцию в смеси раствора восстановителя и раствора соли серебра проводят на свету, предпочтительно при дневном свете.
Как было отмечено ранее, использование таннинов или дубильной кислоты в качестве восстановителя устраняет необходимость применения добавки другого типа для регулирования размера получаемых наночастиц, тем не менее, существуют варианты описанного выше способа, которые, дополнительно к использованию таннинов, позволяют регулировать диапазон среднего размера частиц, как описано далее.
В одном из вариантов изобретения управление размером наночастиц осуществляют посредством регулирования pH раствора соли серебра, поддерживая щелочную среду до значения pH, равного 11,5, путем добавления гидроксида аммония. Отмечено, что если pH раствора не регулировать, наночастицы в продукте, полученном в данном способе, имеют средний размер около 40-50 нм из-за образования в нем оксида серебра.
Отмечено, что если до начала реакции pH раствора не отрегулирован, в результате реакции образуются наночастицы со средним размером около 40-50 нм и регистрируется образование оксида серебра. Образование оксида серебра снижает выход процесса.
В другом варианте изобретения регулируют pH раствора восстановителя, поддерживая щелочную среду до значения pH, равного 11,5, путем добавления гидроксида аммония.
Изменение pH одного или обоих растворов перед их смешиванием, как описано в предыдущих вариантах, оказывает заметное влияние на размер наночастиц в конечном продукте.
Разделение фаз с целью получения наночастиц без маточного раствора облегчается, если дзэта-потенциал (электрохимический потенциал, отражающий электрический заряд поверхности частиц и степень их интеграции с другими частицами) изменен либо путем добавления флоккулянтов, либо путем подкисления раствора до начала флоккуляции наночастиц.
Продукт, получаемый данным способом или любым другим из его вариантов, представляет собой влажную пасту, частицы которой могут быть повторно диспергированы в различных средах, таких как вода, спирты, алкидалевые и фенольные смолы, нитроцеллюлоза, полиуретан, виниловые и акриловые соединения, и во множестве органических материалов и полимеров, таких как полиэтилены высокой и низкой плотности, нейлон, ABS (акрилонитрилбутадиенстироловые полимеры) или их смеси.
Настоящее изобретение относится к способу измельчения в жидкой среде с целью получения нанометрических частиц металлического серебра в ходе реакции двух растворов, один из которых представляет собой водный раствор некоторых растворимых солей серебра, подбираемых из группы, в которую входят сульфаты и нитраты, а второй представляет собой раствор восстановителя, подбираемого из группы таннинов, предпочтительно являющегося дубильной кислотой. Основное преимущество использования таннинов и дубильной кислоты, в частности, в качестве восстановителя в водном растворе заключается в том, что, помимо регулирования размера частиц на уровне менее 100 нм, таннины заменяют поверхностно-активные вещества и стабилизаторы, используемые в известных способах, что ведет к упрощению процесса, и в то же время препятствуют слипанию образующихся в ходе реакции наночастиц и их повторному слипанию после стадий очистки.
Необходимо надлежащим образом регулировать pH этих растворов до, во время и после реакции, чтобы гарантировать образование наночастиц со средним размером частиц, соответствующим заданному диапазону, и с небольшой вариативностью размеров (монодисперсных), как видно из таблицы 1, в которой приведены типичные результаты для различных вариантов настоящего изобретения.
Таблица 1
Влияние pH раствора восстановителя и раствора соли серебра на средний размер наночастиц
Раствор восстановителя При регулировании pH Без регулирования pH
Раствор соли серебра
При регулировании pH 10-20 нм 20-30 нм
40-50 нм 40-50 нм
Без регулирования pH образование оксида серебра образование оксида серебра
Как явствует из приведенных в таблице 1 данных, при отсутствии регулирования pH раствора соли серебра в диапазоне величин, которые будут сообщены позже, образуется продукт с относительно большим средним размером частиц, содержащий оксид серебра, что, с одной стороны, снижает выход процесса и, с другой стороны, дает «загрязненный» продукт со сниженной эффективностью в некоторых случаях конечного использования.
Далее следует подробное описание способа настоящего изобретения, поясняемое фигурой 1, в нем номера операций и линий указаны цифрой в скобках.
Стадия 1. Приготовление раствора восстановителя (100)
Растворение восстановителя (5), подбираемого из группы, включающей таннины, и предпочтительно представляющего собой дубильную кислоту, в воде (10), не содержащей галогенов, с образованием водного раствора (35) с концентрацией от 0,01% до 20% вес.
В альтернативном варианте и согласно установленному в таблице 1 регулирование pH раствора восстановителя в диапазоне щелочной среды до достижения максимальной величины 11,5 путем добавления гидроксида (25), подбираемого из группы, в которую входят гидроксиды натрия, калия, аммония и аммиак, предпочтительно гидроксида аммония.
Стадия 2. Приготовление раствора серебра (200)
Растворение соли серебра (15), подбираемой из группы, в которую входят сульфаты и нитраты, предпочтительно нитрата серебра в воде (20), не содержащей галогенов, с образованием водного раствора (40) с концентрацией от 0,01% до 20% вес.
В альтернативном варианте и согласно установленному в таблице 1 регулирование pH раствора соли серебра в диапазоне щелочной среды до достижения максимальной величины 11,5 путем добавления гидроксида (30), подбираемого из группы, в которую входят гидроксиды натрия, калия, аммония и аммиак, предпочтительно гидроксида аммония, так как он обладает способностью замедлять старение раствора. Водный раствор серебра предпочтительно следует готовить непосредственно перед началом реакции, максимально за 15 минут до начала его использования.
Стадия 3. Проведение реакции и получение наночастиц металлического серебра (300)
Смешивание в реакторе раствора восстановителя (35) и раствора серебра (40) при эффективном перемешивании, комнатных температуре и давлении в течение, по меньшей мере, 15 минут, какового времени достаточно для достижения степени конверсии более 95%; в результате лабораторных испытаний было показано, что на свету скорость реакции увеличивается, поэтому рекомендуется использовать реактор со стенками, через которые может проходить свет.
Сразу же после добавления раствора восстановителя (35) и раствора серебра (40) регулирование pH смеси путем добавления гидроксида аммония (50) до достижения величины pH от 10,5 до 11,5, предпочтительно 10,5.
В результате реакции образуется суспензия (45) монодисперсных наночастиц металлического серебра.
Стадия 4. Отделение от маточного раствора (400)
Для отделения маточного раствора (55) от суспензии наночастиц серебра (45) может быть использован любой способ разделения твердой и жидкой фаз, такой как осаждение, фильтрация или центрифугирование. Для облегчения разделения фаз могут быть использованы флоккулянты или кислоты (65), изменяющие дзэта-потенциал. Предпочтительно использовать кислоту с той же функциональной группой, что и в используемой соли серебра. Полученный таким образом продукт (60) представляет собой влажную пасту, нанометрического, стабильного легко диспергируемого металлического серебра с небольшой вариативностью распределения частиц по размерам (монодисперсного) и со средним размером частиц в диапазоне от 1 до 100 нм в зависимости от условий процесса, определяемых регулированием pH до начала реакции.
Содержащий наночастицы серебра продукт (60) может быть подвергнут иной промывке водой или другими органическими растворителями, мономерами или смолами в соответствии с условиями его конечного использования.
Как было указано ранее, продукт, получаемый описываемым способом, включая предпочтительные варианты, представляет собой влажную пасту, частицы которой могут быть повторно диспергированы в различных средах, таких как вода, спирт, алкидалевые и фенольные смолы, нитроцеллюлоза, полиуретан, виниловые и акриловые соединения, и во множестве органических материалов и полимеров, таких как полиэтилены высокой и низкой плотности, нейлон, ABS или их смеси.
На фиг.2 представлен график распределения по размерам нанометрических частиц серебра в пасте, получаемой способом настоящего изобретения, на котором показан гранулометрический состав, где средний размер частиц (D50) составляет 47,0 нм, 90% частиц имеют размер (D10) более 41,5 нм, и 90% частиц имеют размер (D90) менее 56,0 нм. Эти измерения были выполнены на основании дифракции лазерного излучения на оборудовании марки Coulter LS230.
Фиг.3 представляет собой график распределения по размерам нанометрических частиц серебра, полученных способом настоящего изобретения, на котором показан следующий гранулометрический состав: D10, 4,7 нм; D50, 21,0 нм; D90, 40,7. Эти измерения были сделаны на основании ослабления ультразвукового излучения на оборудовании марки AcoustoSizer II.
Фиг.4 представляет собой микрофотографию нанометрического монодисперсного металлического серебра с размером частиц от 10 до 20 нм в продукте, полученном способом настоящего изобретения.
Фиг.5 представляет собой микрофотографию нанометрического монодисперсного металлического серебра с размером частиц от 5 до 20 нм в продукте, полученном способом настоящего изобретения, которая подтверждает, что диапазон размеров частиц составляет от 1 до 100 нм.
В приведенном описании способа по настоящему изобретению отражены стадии, необходимые для того, чтобы получаемый продукт наверняка обладал следующими качествами наночастиц металлического серебра: гомогенность, стабильность, монодисперсность и другие, которые уже были описаны, включая, кроме того, предпочтительные варианты; тем не менее, указанное описание и прилагаемые фигуры должны рассматриваться как иллюстрация способа и продукта, не имеющая ограничительного характера. Для специалистов в данной области очевидно, что в порядок осуществления способа настоящего изобретения могут быть внесены изменения, однако указанные изменения не могут рассматриваться как выходящие за пределы объема настоящего изобретения, дополнительно описанного в формуле изобретения.

Claims (20)

1. Способ получения монодисперсных и стабильных наночастиц металлического серебра, включающий приготовление водного раствора соли серебра, содержащего от 0,01% до 20 вес.% растворимой соли серебра, приготовление водного раствора восстановителя, содержащего от 0,01% до 20 вес.% соединения из группы танинов, смешивание этих водных растворов для проведения реакции между ними, отделение маточного раствора от наночастиц серебра, полученных в упомянутой реакции, отличающийся тем, что реакцию осуществляют путем смешивания этих растворов и регулирования рН в диапазоне величин от 10,5 до 11,5.
2. Способ по п.1, отличающийся тем, что перед смешиванием растворов рН раствора восстановителя регулируют в диапазоне щелочной среды, предпочтительно в диапазоне вплоть до величины 11,5.
3. Способ по п.2, отличающийся тем, что для регулирования рН раствора восстановителя используют гидроксид, выбираемый из группы, в которую входят гидроксиды натрия, калия, аммония и аммиак.
4. Способ по п.3, отличающийся тем, что для изменения рН раствора восстановителя используют гидроксид аммония.
5. Способ по п.1 или 2, отличающийся тем, что при регулировании рН раствора восстановителя и регулировании рН раствора соли серебра в диапазоне щелочной среды с рН вплоть до величины 11,5 получаемый продукт имеет средний размер частиц около 10-20 нм.
6. Способ по п.1, отличающийся тем, что при регулировании рН раствора соли серебра в диапазоне щелочной среды с рН вплоть до величины 11,5 в отсутствие регулирования рН раствора восстановителя получаемый продукт имеет средний размер частиц около 20-30 нм.
7. Способ по п.1, отличающийся тем, что рН раствора соли серебра регулируют в диапазоне щелочной среды, предпочтительно, до величины 11,5.
8. Способ по п.7, отличающийся тем, что для регулирования рН раствора соли серебра используют гидроксид, выбираемый из группы, в которую входят гидроксиды натрия, калия, аммония и аммиак.
9. Способ по п.8, отличающийся тем, что для регулирования рН восстанавливаемого раствора соли серебра используют гидроскид аммония.
10. Способ по п.1, отличающийся тем, что при отсутствии регулирования рН раствора соли серебра получаемый продукт имеет средний размер частиц около 40-50 нм из-за образования в нем оксида серебра.
11. Способ по п.1, отличающийся тем, что раствор соли серебра готовят не более, чем за 15 мин до осуществления реакции с раствором восстановителя для избегания его старения.
12. Способ по п.1, отличающийся тем, что реакцию в смеси раствора восстановителя и раствора соли серебра проводят на свету, предпочтительно, при дневном свете.
13. Способ по п.1, отличающийся тем, что смешивание реакционной смеси осуществляют предпочтительно в течение менее 30 мин.
14. Способ по п.13, отличающийся тем, что смешивание реакционной смеси осуществляют в течение, по меньшей мере, 15 мин.
15. Способ по п.14, отличающийся тем, что степень протекания реакции через 15 мин составляет по меньшей мере 95%.
16. Паста из наночастиц металлического серебра, полученная способом по п.1, характеризующаяся тем, что частицы в ней имеют монодисперсное распределение по размерам.
17. Паста из наночастиц металлического серебра, полученная способом по п.1, характеризующаяся тем, что размер частиц в ней находится в диапазоне от 1 до 100 нм.
18. Паста из наночастиц металлического серебра, полученная способом по п.1, характеризующаяся тем, что средний размер частиц (D50) составляет, предпочтительно, от 20 до 40 нм.
19. Паста из наночастиц металлического серебра, полученная способом по п.1, характеризующаяся тем, что наночастицы металлического серебра в ней способны легко диспергироваться в воде, спиртах, алкидалевых и фенольных смолах, нитроцеллюлозе, полиуретане, виниловых и акриловых смолах, органических материалах и полимерах, таких как полиэтилены высокой и низкой плотности, нейлон, акрилонитрил-бутадиен-стирольная смола, и/или их смесях.
20. Паста из наночастиц металлического серебра, полученная способом по п.1, характеризующаяся тем, что она является стабильной в течение срока хранения, превышающего 12 мес, без повторного диспергирования частиц.
RU2009127785/02A 2006-12-20 2007-04-03 Способ производства нанометрического, монодисперсного и стабильного металлического серебра и продуктов из него RU2430169C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXNL/A/2006/000107 2006-12-20
MXNL06000107A MXNL06000107A (es) 2006-12-20 2006-12-20 Proceso para la fabricacion de plata metalica nanometrica, monodispersa y estable y producto obtenido.

Publications (2)

Publication Number Publication Date
RU2009127785A RU2009127785A (ru) 2011-01-27
RU2430169C2 true RU2430169C2 (ru) 2011-09-27

Family

ID=39536498

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009127785/02A RU2430169C2 (ru) 2006-12-20 2007-04-03 Способ производства нанометрического, монодисперсного и стабильного металлического серебра и продуктов из него

Country Status (10)

Country Link
US (1) US9371572B2 (ru)
EP (1) EP2103364B1 (ru)
JP (1) JP5335688B2 (ru)
KR (2) KR101197386B1 (ru)
CN (1) CN101610865B (ru)
BR (1) BRPI0719483A8 (ru)
CA (1) CA2673259C (ru)
MX (1) MXNL06000107A (ru)
RU (1) RU2430169C2 (ru)
WO (1) WO2008075933A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2547982C1 (ru) * 2013-10-21 2015-04-10 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Способ получения наночастиц серебра
RU2587446C1 (ru) * 2015-01-12 2016-06-20 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ получения ультрадисперсного порошка серебра и ультрадисперсный порошок серебра, полученный этим способом
RU2638716C2 (ru) * 2016-04-28 2017-12-15 Общество с ограниченной ответственностью "М9" Способ получения гидрозоля серебра

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXNL06000107A (es) 2006-12-20 2008-10-08 Ind Penoles Sa De Cv Proceso para la fabricacion de plata metalica nanometrica, monodispersa y estable y producto obtenido.
US8361188B2 (en) * 2009-04-03 2013-01-29 Indian Institute Of Science Methods for preparing metal and metal oxide nanoparticles
WO2011155134A1 (ja) * 2010-06-11 2011-12-15 日本板硝子株式会社 貴金属微粒子、貴金属微粒子の回収方法、および回収した貴金属微粒子を用いる貴金属微粒子分散体の製造方法
DE102010033924A1 (de) * 2010-08-03 2012-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Nanopartikeln aus einem Edelmetall und die Verwendung der so hergestellten Nanopartikel
CN102000832A (zh) * 2010-12-01 2011-04-06 中国人民解放军济南军区第四零一医院 一种纳米银的制备方法及纯化工艺
GB2486190A (en) * 2010-12-06 2012-06-13 P V Nano Cell Ltd Concentrated dispersion of nanometric silver particles
CN102102198B (zh) * 2011-02-12 2013-08-07 南京大学 一种调控金属纳米颗粒在树脂载体内分布的方法
CN103624249B (zh) * 2013-03-29 2015-10-07 中南大学 一种高振实密度银粉的制备方法
CN103302306A (zh) * 2013-06-19 2013-09-18 东南大学 一种基于多酚还原制备功能化纳米银的方法
CA2926945A1 (en) 2013-06-25 2014-12-31 Ricardo Benavides Perez Bacteriostatic and fungistatic additive in masterbatch for application in plastics, and method for producing same
JP6587616B2 (ja) * 2013-12-31 2019-10-09 ローディア オペレーションズ 銀ナノ構造体の作製方法
JP2017524829A (ja) * 2014-06-20 2017-08-31 ローディア オペレーションズ 安定剤を含まない金属ナノ粒子合成およびそれから合成される金属ナノ粒子の使用
US20160001370A1 (en) * 2014-07-03 2016-01-07 Carestream Health, Inc. Reducing agents for silver morphology control
MX2015001206A (es) 2015-01-26 2016-07-25 Schulman A Inc Composicion antibacteriana de nanoparticulas de plata unidas a un agente dispersante.
CN106312087B (zh) * 2015-07-03 2019-02-22 王东 纳米金属颗粒及其制备方法
CN105834449B (zh) * 2016-05-04 2017-09-22 苏州思美特表面材料科技有限公司 一种利用微纳米气泡作为晶种诱导生产银粉的制备方法
CN105817645A (zh) * 2016-05-13 2016-08-03 溧阳市立方贵金属材料有限公司 一种可控粒度的超纯银粉的制备方法
CN107363268B (zh) * 2017-08-24 2023-04-18 深圳原驰三维技术有限公司 一种连续制备高固含量纳米银的装置与方法
CN107377994B (zh) * 2017-08-24 2023-04-18 深圳原驰三维技术有限公司 一种纳米银浆的规模化生产装置与方法
CN109021836A (zh) * 2018-07-03 2018-12-18 肇庆市华莱特复合新型材料有限公司 一种抗菌水性鞋油及其制备方法
CN110883340A (zh) * 2018-09-10 2020-03-17 河南金渠银通金属材料有限公司 一种负电性超细银粉及其制备方法
CN109332723A (zh) * 2018-12-10 2019-02-15 西安宏星电子浆料科技有限责任公司 一种低温导电胶用银粉的制备方法
CN111020209B (zh) * 2019-12-13 2022-03-01 招金矿业股份有限公司蚕庄金矿 一种从冶金废液中提银的方法
CN113787194B (zh) * 2021-09-16 2022-10-25 齐鲁工业大学 利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法
CN115300459B (zh) * 2022-08-11 2023-07-18 山东第一医科大学附属眼科研究所(山东省眼科研究所山东第一医科大学附属青岛眼科医院) 纳米酶复合水凝胶滴眼液的制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES342382A1 (es) * 1966-06-28 1968-07-16 Ciba Geigy Procedimiento para la preparacion de plata coloidal enri- quecida.
JP4197250B2 (ja) * 2002-11-22 2008-12-17 バンドー化学株式会社 金属コロイド液、その製造方法及びその利用
CN1232377C (zh) * 2003-06-05 2005-12-21 中国科学院理化技术研究所 立方体银纳米晶颗粒的制备方法
JP2005019028A (ja) 2003-06-23 2005-01-20 Bando Chem Ind Ltd 金属コロイド液およびそれを用いた導電インク
JP4771366B2 (ja) 2003-07-17 2011-09-14 旭化成メディカル株式会社 金属コロイド溶液
KR100554207B1 (ko) * 2003-10-28 2006-02-22 대주전자재료 주식회사 은 나노 입자의 제조방법
JP2005254179A (ja) * 2004-03-12 2005-09-22 Bando Chem Ind Ltd 合成方法及び合成装置
CN1669914A (zh) 2004-03-16 2005-09-21 中国乐凯胶片集团公司 一种纳米银溶胶的制备方法
CN1686646A (zh) 2005-04-26 2005-10-26 四川大学 一种粒径可控的单分散纳米银粉的制备方法
JP2006328532A (ja) 2005-05-10 2006-12-07 Samsung Electro-Mechanics Co Ltd 金属ナノ粒子、これを製造する方法及び導電性インク
CN1709618A (zh) * 2005-07-08 2005-12-21 昆明理工大学 一种纳米、亚微米银粉的制备方法
CN1810422A (zh) * 2006-02-24 2006-08-02 中国科学院上海硅酸盐研究所 一种纳米银溶胶的制备方法
US7842274B2 (en) * 2006-03-31 2010-11-30 Umicore, S.A. Process for manufacture of silver-based particles and electrical contact materials
MXNL06000107A (es) 2006-12-20 2008-10-08 Ind Penoles Sa De Cv Proceso para la fabricacion de plata metalica nanometrica, monodispersa y estable y producto obtenido.
WO2008100163A1 (en) 2007-02-13 2008-08-21 Instytut Wlókien Naturalnych Method of manufacturing silver nanoparticles, cellulosic fibers and nanofibers containing silver nanoparticles, fibers and nanofibers containing silver nanoparticles, use of silver nanoparticles to the manufacture of cellulosic fibers and nanofibers, and wound dressing containing silver nanoparticles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Materials Science and Engineering A. vol.379, p.378-383, 2004. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2547982C1 (ru) * 2013-10-21 2015-04-10 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Способ получения наночастиц серебра
RU2587446C1 (ru) * 2015-01-12 2016-06-20 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ получения ультрадисперсного порошка серебра и ультрадисперсный порошок серебра, полученный этим способом
RU2638716C2 (ru) * 2016-04-28 2017-12-15 Общество с ограниченной ответственностью "М9" Способ получения гидрозоля серебра

Also Published As

Publication number Publication date
RU2009127785A (ru) 2011-01-27
EP2103364A4 (en) 2010-05-19
US20100143183A1 (en) 2010-06-10
KR101197186B1 (ko) 2012-11-02
JP2010513718A (ja) 2010-04-30
BRPI0719483A2 (pt) 2013-01-01
BRPI0719483A8 (pt) 2016-04-12
EP2103364B1 (en) 2013-02-13
US9371572B2 (en) 2016-06-21
CA2673259A1 (en) 2008-06-26
CN101610865B (zh) 2015-04-01
JP5335688B2 (ja) 2013-11-06
WO2008075933A1 (es) 2008-06-26
MXNL06000107A (es) 2008-10-08
EP2103364A1 (en) 2009-09-23
KR20090092313A (ko) 2009-08-31
CA2673259C (en) 2016-10-25
KR101197386B1 (ko) 2012-11-05
KR20120079164A (ko) 2012-07-11
CN101610865A (zh) 2009-12-23

Similar Documents

Publication Publication Date Title
RU2430169C2 (ru) Способ производства нанометрического, монодисперсного и стабильного металлического серебра и продуктов из него
Kundu et al. Anisotropic growth of gold clusters to gold nanocubes under UV irradiation
US8084140B2 (en) Silver platelets comprising palladium
US4979985A (en) Process for making finely divided particles of silver metal
KR101400005B1 (ko) 표면적이 넓은 귀금속 나노입자 및 그 제조방법
JPH0781935A (ja) ZnS粒子の製造方法
JP3820018B2 (ja) 粒状銀粉の製造方法
JP2008031526A (ja) 銀微粒子の製造方法
CN116037949A (zh) 一种电子浆料用微米级球形铂粉的制备方法
KR20080017838A (ko) 입자 크기의 제어가 가능한 나노 은 콜로이드 용액의제조방법 및 이로부터 얻어지는 나노 은
KR100473478B1 (ko) 은 콜로이드 및 그 제조 방법
Jang et al. Nonionic brij surfactant-mediated synthesis of raspberry-like gold nanoparticles with high surface area
KR20070082729A (ko) 은 콜로이드의 제조 방법
Kumar et al. Tuning of morphology and stability of gold nanostars through pH adjustment
KR100490678B1 (ko) 습식환원법에 의한 극미세 니켈분말의 제조방법
KR100551979B1 (ko) 고농도 은 콜로이드의 제조 방법
HU194758B (en) Method for producing silver powder
CN109290588B (zh) 一种单分散性三角纳米银的制备方法
Mikhailov Achievements in the synthesis of elemental silver nanoparticles with various geometric forms
Tran et al. Synthesis of nano-silver by spinning disc reaction method
JP6110105B2 (ja) 銀微粒子の製造方法
JPH0211707A (ja) 銀微粒子の製造方法
Al-Juaid et al. EFFECT OF WATER SOLUBLE POLYVINYL ALCOHOL IN THE FORMATION AND STABILISATION OF SILVER NANOPARTILCES. A KINETIC STUDY.
POTAPENKO et al. PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES, 1999 THE PARTICLE SIZE CONTROL OF HIGHLY DISPERSED SILVER IN CHEMICAL AND SONOCHEMICAL REDUCTION OF Ag* IONS IN AQUEOUS SOLUTIONS
JPH01225707A (ja) パラジウム微粒子の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120404

NF4A Reinstatement of patent

Effective date: 20131020

MM4A The patent is invalid due to non-payment of fees

Effective date: 20180404