RU2357947C2 - Способ получения [18f]фторорганических соединений в спиртовых растворителях - Google Patents

Способ получения [18f]фторорганических соединений в спиртовых растворителях Download PDF

Info

Publication number
RU2357947C2
RU2357947C2 RU2007126814/04A RU2007126814A RU2357947C2 RU 2357947 C2 RU2357947 C2 RU 2357947C2 RU 2007126814/04 A RU2007126814/04 A RU 2007126814/04A RU 2007126814 A RU2007126814 A RU 2007126814A RU 2357947 C2 RU2357947 C2 RU 2357947C2
Authority
RU
Russia
Prior art keywords
fluoride
formula
alcohol
reaction
butanol
Prior art date
Application number
RU2007126814/04A
Other languages
English (en)
Other versions
RU2007126814A (ru
Inventor
Дае Хиук МООН (KR)
Дае Хиук МООН
Дае Йоон ТИ (KR)
Дае Йоон ТИ
Донг Воок КИМ (KR)
Донг Воок КИМ
Сеунг Дзун ОХ (KR)
Сеунг Дзун ОХ
Дзин-соок РИУ (KR)
Дзин-соок РИУ
Original Assignee
Фьючеркем Ко., Лтд.
Дзе Эйшн Фаундейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фьючеркем Ко., Лтд., Дзе Эйшн Фаундейшн filed Critical Фьючеркем Ко., Лтд.
Publication of RU2007126814A publication Critical patent/RU2007126814A/ru
Application granted granted Critical
Publication of RU2357947C2 publication Critical patent/RU2357947C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/007Preparation of halogenated hydrocarbons from carbon or from carbides and halogens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/02Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of hydrogen atoms by amino groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1282Devices used in vivo and carrying the radioactive therapeutic or diagnostic agent, therapeutic or in vivo diagnostic kits, stents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B3/00Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B3/003Filling medical containers such as ampoules, vials, syringes or the like
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B39/00Halogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/002Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/40Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton with quaternised nitrogen atoms bound to carbon atoms of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/42Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by singly-bound nitrogen atoms, not being further bound to other hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/30Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reactions not involving the formation of esterified sulfo groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/72Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/73Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/91Nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D451/00Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof
    • C07D451/02Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H5/00Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium
    • C07H5/02Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J1/00Normal steroids containing carbon, hydrogen, halogen or oxygen, not substituted in position 17 beta by a carbon atom, e.g. estrane, androstane
    • C07J1/0051Estrane derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pyrrole Compounds (AREA)
  • Steroid Compounds (AREA)

Abstract

Изобретение относится к способу получения [18F]фторорганических соединений путем взаимодействия [18F]фторида с соответствующим галогенидом или сульфонатом в присутствии в качестве растворителя спирта формулы 1
Figure 00000001
в которой R1, R2 и R3 представляют атом водорода или С118 алкил. Технический результат - возможность проведения процесса в мягких условиях, снижение продолжительности реакции и получение высокого выхода продукта. 20 з.п. ф-лы, 2 табл., 2 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится способу получения фторорганических соединений, содержащих фтор-18, радиоактивный изотоп фтора. Конкретнее, настоящее изобретение относится к способу получения фторорганических соединений с обеспечением фторорганических соединений с высоким выходом взаимодействием фторида, содержащего радиоактивный фтор-18, с алкилгалогенидом или алкилсульфонатом в присутствии спирта формулы 1 в качестве растворителя.
Формула 1
Figure 00000001
(в которой R1, R2 и R3 представляют атом водорода или С118 алкил).
Уровень техники
Атом фтора обладает высокой полярностью и гидрофобными свойствами и имеет почти такой же размер, как атом водорода. Такие фторорганические соединения, содержащие атомы фтора, обладают уникальными химическими и физиологическими свойствами по сравнению с вообще органическими соединениями и применяются в области медицины, в качестве агрохимикатов, красителей, полимеров и тому подобное [Gerstenberger M.R.С., Haas A., Angew. Chem., Int. Ed. Engl. 1981, 20, 647; Filler R., In Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications; Filler R., Ed., Studies in Organic Chemistry 48, Elsevier, New York, NY, 1993, p.1-23].
Как правило, фторорганические соединения получают по реакции замещения атома фтора взаимодействием алкилгалогенида или алкилсульфоната с фторидом, как представлено на схеме реакции 1.
Схема реакции 1
Figure 00000002
Галогенид в алкилгалогениде выбран из группы, состоящей из Cl, Br и I, за исключением F. Сульфонат в алкилсульфонате представляет собой SO3R12, где R12 является алкилом или арилом. Алкил предпочтительно представляет С112 алкилгалогенид или С112 алкилсульфонат.Например, алкилсульфонат выбран из группы, состоящей из метансульфоната, этансульфоната, изопропансульфоната, хлорметансульфоната, трифторметансульфоната и хлорэтансульфоната. Арил предпочтительно выбран из группы, состоящей из фенила, С14 алкилфенила, галогенфенила, С14 алкоксифенила и нитрофенила. Предпочтительными примерами являются метилфенилсульфонат, этилфенилсульфонат, хлорфенилсульфонат, бромфенилсульфонат, метоксифенилсульфонат или нитрофенилсульфонат.
Фторид (MFn), в качестве источника атомов фтора, выбран из группы, состоящей из фторида щелочных металлов, содержащего щелочные металлы, такие как литий, натрий, калий, рубидий или цезий; и фторида щелочно-земельных металлов, содержащего щелочно-земельные металлы, такие как магний, кальций, стронций или барий; и фторида аммония, содержащего аммоний или его производные, такие как тетраалкиламмоний.
Как правило, реакцию нуклеофильного фторирования проводят в полярном апротонном растворителе, таком как ацетонитрил (CH3CN), ДМФА или ДМСО, для повышения растворимости фторида и реакционной способности фторида. Известно, что спирт, будучи протонным растворителем, не подходит для проведения реакции нуклеофильного фторирования. Также известно, что спирт образует водородные связи с фторидом, который является источником атомов фтора, и тем самым снижает его реакционную способность в реакции нуклеофильного фторирования [Smith M.D.; March J. Advanced Organic Chemistry, 5th ed., Wiley Interscience: New York, NY, 2001, pp.389-674].
Сообщалось, что в способе получения вышеуказанных фторорганических соединений алкилфторид получают взаимодействием фторида калия с алкилгалогенидом в растворителе этиленгликоле [Hoffmann, F.W., J. Am. Chem. Soc., 1948, 70, 2596]. Однако данный способ получения имеет недостатки, заключающиеся в низком выходе и большой продолжительности реакции при высокой температуре реакции выше 140°С за счет низкой реакционной способности в результате низкой растворимости фторида калия.
Сообщалось, что 18-краун-6-эфир, который образует сильные связи с ионами металлов, использовали в качестве катализатора для получения фторорганических соединений для повышения растворимости фторида и реакционной способности фторида при относительно низкой температуре в пределах 80-90°С и мягких условиях реакции, и при этом выход продукта был высоким [Liotta, C.L.; Harris H.P., J. Am. Chem. Soc., 1974, 96, 2250]. Однако данный способ имеет недостатки, заключающиеся в том, что 18-краун-6-эфир является дорогостоящим соединением, требуется большая продолжительность реакции, и образуется большое количество алкена в качестве побочного продукта, поскольку фторид функционирует в качестве основания.
Известно, что, когда фторид используется в получении фторорганических соединений, то имеет место побочная реакция, представленная в схеме реакции 2.
Схема реакции 2
Figure 00000003
В качестве примера, сообщалось об использовании фторида тетрабутиламмония в качестве фторида, для получения фторорганических соединений с высоким выходом в мягких условиях реакции [Cox, D.P.; Terpinsky, J.; Lawrynowicz, W.J. Org. Chem. 1984, 49, 3216]. Однако для фторида тетрабутиламмония гидрата свойственна проблема, заключающаяся в том, что образуется большое количество спирта, который является побочным продуктом, вызванным присутствием воды, и образуется алкен в качестве другого побочного продукта за счет высокой основности фторида тетрабутиламмония.
Следовательно, для получения фторорганических соединений взаимодействием фторида с алкилгалогенидом или алкилсульфонатом требуется способ получения, который может привести к снижению продолжительности реакции за счет повышения реакционной способности фторида и может уменьшить образование побочных продуктов, таких как алкен или спирт, посредством устранения влияния влаги и сведения до минимума основности самого фторида.
Заявители попытались решить указанные выше проблемы. В способе получения фторорганических соединений взаимодействием алкилгалогенида или алкилсульфоната с фторидом заявители установили, что настоящее изобретение следует рассматривать как следующее из реакции, представленной на фигуре 1, но теоретически не всегда ограничивающееся этим. Заявители обнаружили, что спиртовой растворитель повышает реакционную способность фторида к нуклеофильному замещению посредством ослабления ионных связей во фториде между катионами металла и анионами фтора за счет образования водородных связей с фторидами металла и снижает побочные реакции за счет подавления влияния основности на реакцию фторирования путем уменьшения основности фторида через образование водородных связей фторида, и так было выполнено настоящее изобретение.
Раскрытие
Техническое решение
Целью настоящего изобретения является обеспечение способа получения фторорганических соединений с высоким выходом посредством взаимодействия фторида с алкилгалогенидом или алкилсульфонатом при повышении растворимости фторида за счет ослабления ионных связей во фториде между катионами металла и анионами фтора и одновременном уменьшении продолжительности реакции в результате повышенной реакционной способности фторида. Способ получения может привести к повышению реакционной способности фторида к нуклеофильному замещению и одновременному уменьшению образования побочных продуктов устранением влияния влаги или снижением основности самого фторида.
Преимущественные эффекты настоящего изобретения
По настоящему изобретению фторорганические соединения можно избирательно получить, в качестве основных продуктов, с выходом, составляющим более 90%, посредством подавления образования побочных продуктов при использовании спирта в качестве растворителя реакции. Спиртовой растворитель повышает реакционную способность фторида к нуклеофильному замещению посредством ослабления ионных связей между катионами металла и анионами фтора за счет образования водородных связей с фторидами металла, посредством чего можно преодолеть проблему низкой реакционной способности в результате сильных ионных связей атома фтора обычным способом, сократить время реакции за счет повышения реакционной способности и скорости реакции фторида и уменьшить образование побочных продуктов за счет подавления влияния основности посредством ослабления основности фторида через образование водородных связей фторида.
Описание чертежей
Фигура 1 представляет схематичное изображение принципа того, как спирт приводит к ослаблению ионных связей между катионами металла и анионами фтора посредством образования водородных связей с фторидом металла согласно примерному варианту осуществления настоящего изобретения.
Фигура 2 представляет схематичное изображение одноразовой кассеты согласно примерному варианту осуществления настоящего изобретения.
Описание предпочтительного варианта осуществления
Настоящее изобретение относится к способу получения фторорганических соединений применением спирта формулы 1 в качестве растворителя, в котором фторорганические соединения получают взаимодействием фторида с алкилгалогенидом или алкилсульфонатом.
Формула 1
Figure 00000001
(в которой R1, R2 и R3 представляют атом водорода или С118 алкил).
Фторорганические соединения в настоящем изобретении представляют фторорганические соединения, содержащие фтор-18 и/или фтор-19.
В способе получения фторорганических соединений по настоящему изобретению предпочтительно R1 представляет атом водорода или С118 алкил, предпочтительно
R2 является атомом водорода или С118 алкилом, предпочтительно R3 представляет атом водорода или С118 алкил, более предпочтительно R1 является метилом или этилом, более предпочтительно R2 представляет метил или этил, более предпочтительно R3 является метилом или этилом.
В способе получения фторорганических соединений по настоящему изобретению спирт формулы 1 предпочтительно выбран из группы, состоящей из первичных спиртов, таких как метанол, этанол, н-пропанол, н-бутанол, амиловый спирт, н-гексиловый спирт, н-гептанол или н-октанол; вторичных спиртов, таких как изопропанол, изобутанол, изоамиловый спирт, 3-пентанол; и третичных спиртов, таких как трет-бутанол, трет-амиловый спирт, 2,3-диметил-2-бутанол, 2-(трифторметил)-2-пропанол, 3-метил-3-пентанол, 3-этил-3-пентанол, 2-метил-2-пентанол, 2,3-диметил-3-пентанол, 2,4-диметил-2-пентанол, 2-метил-2-гексанол, 2-циклопропил-2-пропанол, 2-циклопропил-2-бутанол, 2-циклопропил-3-метил-2-бутанол, 1-метилциклопентанол, 1-этилциклопентанол, 1-пропилциклопентанол, 1-метилциклогексанол, 1-этилциклогексанол и 1-метилциклогептанол. Более предпочтительно спирт выбран из группы, состоящей из третичных спиртов, таких как трет-бутанол, трет-амиловый спирт, 2,3-диметил-2-бутанол и 2-(трифторметил)-2-пропанол.
Соль фторида предпочтительно выбрана из группы, состоящей из фторидов щелочных металлов, содержащих щелочные металлы, выбранные из группы, состоящей из лития, натрия, калия, рубидия и цезия; фторидов щелочно-земельных металлов, содержащих щелочно-земельные металлы, выбранные из группы, состоящей из магния, кальция, стронция и бария; и фторида аммония. Более предпочтительно в способе получения фторорганических соединений по настоящему изобретению желательными являются фторид цезия и фторид аммония.
Указанный выше фторид аммония предпочтительно выбран из группы, состоящей из фторидов четвертичного аммония, включающих фторид тетрабутиламмония и фторид бензилтриметиламмония; фторидов третичного аммония, включающих фторид триэтиламмония и фторид трибутиламмония; фторидов вторичного аммония, включающих фторид дибутиламмония и фторид дигексиламмония; и фторидов первичного аммония, включающих фторид бутиламмония и фторид гексиламмония, более предпочтительно в способе получения фторорганических соединений по настоящему изобретению желательным является фторид тетрабутиламмония.
В способе получения фторорганических соединений по настоящему изобретению фторид тетраалкиламмония или фторид щелочного металла, включая цезий, предпочтительно адсорбирован на подложках, выбранных из группы, состоящей из целита, молекулярного сита, оксида алюминия и силикагеля.
В способе получения фторорганических соединений по настоящему изобретению в наиболее предпочтительной комбинации фторида и спирта фторид представляет собой фторид металла или фторид тетраалкиламмония, конкретнее фторид цезия или фторид тетрабутиламмония, и предпочтительным спиртом является третичный спирт, такой как трет-бутанол и трет-амиловый спирт.
В способе получения фторорганических соединений по настоящему изобретению количество указанного выше фторида предпочтительно составляет 1,0-10 экв. к алкилгалогениду или алкилсульфонату.
В способе получения фторорганических соединений по настоящему изобретению фторорганическое соединение, полученное с использованием спирта формулы 1 в качестве растворителя, представляет [18F]фтордезоксиглюкозу формулы 2.
Формула 2
Figure 00000004
В способе получения фторорганических соединений по настоящему изобретению фторорганическое соединение, полученное с использованием спирта формулы 1 в качестве растворителя, представляет [18F]фтормизонидазол формулы 3.
Формула 3
Figure 00000005
В способе получения фторорганических соединений по настоящему изобретению фторорганическое соединение, полученное с использованием спирта формулы 1 в качестве растворителя, представляет [18F]фторэстрадиол формулы 4.
Формула 4
Figure 00000006
В способе получения фторорганических соединений по настоящему изобретению фторорганическое соединение, полученное с использованием спирта формулы 1 в качестве растворителя, представляет [18F]фторпропилкарбометокситропан формулы 5.
Формула 5
Figure 00000007
В способе получения фторорганических соединений по настоящему изобретению фторорганическое соединение, полученное с использованием спирта формулы 1 в качестве растворителя, представляет [18F]фторDDNP формулы 6.
Формула 6
Figure 00000008
В способе получения фторорганических соединений по настоящему изобретению фторорганическое соединение, полученное с использованием спирта формулы 1 в качестве растворителя, представляет [18F]фтортимидин формулы 7.
Формула 7
Figure 00000009
В способе получения фторорганических соединений по настоящему изобретению фторорганическое соединение, полученное с использованием спирта формулы 1 в качестве растворителя, представляет [18F]фторхолин формулы 8.
Формула 8
Figure 00000010
В способе получения фторорганических соединений по настоящему изобретению фторорганическое соединение, полученное с использованием спирта формулы 1 в качестве растворителя, представляет [18F]фторэтилхолин формулы 9.
Формула 9
Figure 00000011
В способе получения фторорганических соединений по настоящему изобретению фторорганическое соединение, полученное с использованием спирта формулы 1 в качестве растворителя, представляет [18F]фторпропилхолин формулы 10.
Формула 10
Figure 00000012
В способе получения по настоящему изобретению спиртовой растворитель образует водородные связи с фторидом и тем самым усиливает реакцию нуклеофильного замещения фторида. Таким образом, можно преодолеть проблему низкой реакционной способности фторида за счет образования теионных связей во фториде между катионами металла и анионами фтора, можно уменьшить время реакции и можно получить конечный продукт фторорганического соединения с высоким выходом при одновременном подавлении побочных реакций.
Способ по изобретению
Ниже будут подробно описаны примерные варианты осуществления настоящего изобретения.
В способе получения фторорганического соединения посредством взаимодействия фторида с алкилгалогенидом или алкилсульфонатом спирт формулы 1 используют в качестве растворителя. Предпочтительно реакцию проводят при 0-150°С в течение 0,5-24 ч, более предпочтительно реакцию проводят в течение 1-10 ч при 20-120°С, еще более предпочтительно реакцию проводят при 40-100°С в течение 1,5-6 ч.
Точка кипения, сродство к воде, химическая стабильность и реакционная способность спирта зависят от состава алкильной группы в спирте формулы 1.
По мере возрастания числа атомов углерода в спирте и алкильных заместителей точка кипения и плавления спирта увеличивается. Спирт, имеющий высокую точку кипения и плавления, не подходит в качестве растворителя или находится в твердом состоянии. Спирт, имеющий низкое число атомов углерода в алкиле или меньшее количество алкильных заместителей, не подходит в качестве растворителя, поскольку реакционная способность самого спирта возрастает за счет уменьшения стерического препятствия спирта.
С учетом данных эффектов R1 предпочтительно представляет атом водорода или С118 алкил, более предпочтительно С16 алкил, еще более предпочтительно метил или этил.
R2 предпочтительно является атомом водорода или С118 алкилом, более предпочтительно С16 алкилом, еще более предпочтительно метилом или этилом.
R3 предпочтительно представляет атом водорода или С118 алкил, более предпочтительно С16 алкил, еще более предпочтительно метил или этил.
В качестве примеров спирта, описанного выше, предпочтительно спирт выбран из группы, состоящей из первичных спиртов, таких как метанол, этанол, н-пропанол, н-бутанол, амиловый спирт, н-гексиловый спирт, н-гептанол или н-октанол; и вторичных спиртов, таких как изопропанол, изобутанол, изоамиловый спирт, 3-пентанол; и третичных спиртов, таких как трет-бутанол, трет-амиловый спирт, 2,3-диметил-2-бутанол, 2-(трифторметил)-2-пропанол, 3-метил-3-пентанол, 3-этил-3-пентанол, 2-метил-2-пентанол, 2,3-диметил-3-пентанол, 2,4-диметил-2-пентанол, 2-метил-2-гексанол, 2-циклопропил-2-пропанол, 2-циклопропил-2-бутанол, 2-циклопропил-3-метил-2-бутанол, 1-метилциклопентанол, 1-этилциклопентанол, 1-пропилциклопентанол, 1-метилциклогексанол, 1-этилциклогексанол и 1-метилциклогептанол. Более предпочтительно спирт выбран из группы, состоящей из третичных спиртов, таких как трет-бутанол, трет-амиловый спирт, 2,3-диметил-2-бутанол и 2-(трифторметил)-2-пропанол.
Спиртовой растворитель по настоящему изобретению повышает реакционную способность фторида к нуклеофильному замещению ослаблением ионных связей во фториде между катионами металла и анионами фтора посредством образования водородных связей с фторидом металла и фторидом тетраалкиламмония и также подавляет образование побочных продуктов за счет ослабления основности фторида.
Способ по настоящему изобретению следует рассматривать в соответствии со схемой реакций, представленной на фигуре 1, но теоретически не всегда ограничивающийся этим. Кроме того, было установлено, что реакция с алкилсульфонатом является более эффективной по сравнению с алкилгалогенидом, поскольку спирт образует водородные связи с алкилсульфонатом.
В способе получения фторорганических соединений по настоящему изобретению фторид, являющийся источником ионов фтора, можно выбрать из группы, состоящей из фторидов щелочных металлов, содержащих щелочные металлы, выбранные из группы, состоящей из лития, натрия, калия, рубидия и цезия; и фторидов щелочно-земельных металлов, содержащих щелочно-земельные металлы, выбранные из группы, состоящей из магния, кальция, стронция и бария; и фторида аммония.
Указанный выше фторид аммония предпочтительно выбран из группы, состоящей из фторидов четвертичного аммония, таких как фторид тетрабутиламмония и фторид бензилтриметиламмония; и фторидов третичного аммония, таких как фторид триэтиламмония и фторид трибутиламмония; фторидов вторичного аммония, таких как фторид дибутиламмония и фторид дигексиламмония; и фторидов первичного аммония, таких как фторид бутиламмония и фторид гексиламмония, наиболее предпочтительно можно использовать фторид цезия или фторид тетрабутиламмония.
Фторид щелочного металла, включая цезий, и фторид тетраалкиламмония можно использовать в формах, адсорбированных на различных подложках. Например, фторид цезия и фторид тетрабутиламмония адсорбируют на подложках, таких как целит, молекулярное сито, оксид алюминия и силикагель. Когда используют фтор-19, то количество фторида предпочтительно составляет 1,0-10 экв. к алкилгалогениду или алкилсульфонату, более предпочтительно 3,0-6,0 экв. Когда добавляют меньшее количество фторида, чем указанные пределы, то выход реакции становится меньше. Когда добавляют большее количество фторида, чем указанные пределы, то выход реакции становится выше, но имеет место перерасход фторида.
По той же причине в случае фтора-18 предпочтительно используют следовое количество [18F]фторида в качестве фторида по сравнению с количеством алкилгалогенида или алкилсульфоната. Более предпочтительно используют 1 пкг-100 нг [18F]фторида на 1 мг алкилгалогенида или алкилсульфоната.
С другой стороны, можно получить фторорганическое соединение, включающее метку фтор-18, взаимодействием алкилгалогенида или алкилсульфоната с фторидом с испускающим позитроны радиоактивным изотопом фтором-18. В данном случае фтор во фториде, который является радиоактивным изотопом, представляет фтор-18, конкретнее [18F]фторид.
В способе получения фторорганического соединения взаимодействием фторида с алкилгалогенидом или алкилсульфонатом фторорганическое соединение избирательно получают с высоким выходом, составляющим более 90%, в качестве основного продукта при подавлении побочных реакций и использовании третичного спирта в качестве растворителя реакции.
В противоположность согласно варианту осуществления настоящего изобретения, в случае ацетонитрила или ДМФА, представляющих собой полярные апротонные растворители, обычно применяемые для получения фторорганических соединений, выход является низким за счет низкой растворимости фторида. Когда реакцию проводят при использовании 1,4-диоксана или бензола, которые являются неполярными растворителями, то вообще не получают фторорганические соединения (смотри таблицу 1).
В заключение спиртовой растворитель, используемый в настоящем изобретении, приводит к повышению реакционной способности фторида к нуклеофильному замещению посредством ослабления ионных связей между катионами металла и анионами фтора за счет образования водородных связей с фторидом щелочных металлов и фторидом тетраалкиламмония, и таким образом обычным способом можно преодолеть проблему низкой реакционной способности фторида в результате сильных ионных связей во фториде, сократить время реакции повышением реакционной способности и скорости реакции фторида и получить фторорганическое соединение по настоящему изобретению с высоким выходом.
Кроме того, спирт, будучи протонным растворителем, может подавлять образование побочных продуктов за счет влияния на основность во время реакции фторирования путем снижения основности фторида в результате образования водородных связей с фторидом. Следовательно, может снизиться образование побочных продуктов, таких как спирты и алкены.
По настоящему изобретению с использованием способа получения фторорганических соединений при применении спирта формулы 1 в качестве растворителя можно получить фторорганические соединения с более высоким выходом, при меньшей продолжительности реакции и в более мягких условиях по сравнению с обычным способом получения. Было показано, что фторорганические соединения можно получить с высоким выходом с помощью другого способа получения, уже раскрытого заявителями (Kim, D.W.; Song, C.E.; Chi, D.Y. J. Am. Chem. Soc., 2002, 124, 10278-10279). Однако способ, описанный в приведенной выше работе, имеет экономические недостатки, поскольку необходима дорогостоящая ионная жидкость, в то время как в настоящем изобретении используются дешевые спирты.
Представленный выше обычный способ является очень пригодным для получения неполярных фторорганических соединений. Например, можно получить 18F-меченные фторорганические соединения с высоким выходом (Kim, D.W.; Choe, Y.S.; Chi, D.Y. Nucl. Med. Biol., 2003, 30, 345-350). В тех случаях, когда действительно синтезируют 18F-меченные радиоактивные лекарственные препараты, то данный способ имеет недостаток, заключающийся в том, что очень затруднительно их отделение от ионной жидкости, поскольку большинство 18F-меченных радиоактивных лекарственных препаратов являются полярными. Следовательно, приведенный выше способ нельзя использовать для получения 18F-меченных радиоактивных лекарственных препаратов.
В этом отношении настоящее изобретение имеет большую применимость в получении 18F-меченных радиоактивных лекарственных препаратов. Настоящее изобретение обеспечивает различные применения для получения 18F-меченных радиоактивных лекарственных препаратов. Примерные варианты осуществления по настоящему изобретению предназначены для применений в отношении существующих 18F-меченных радиоактивных лекарственных препаратов.
Настоящее изобретение будет более подробно описано при обращении к последующим примерам. Последующие варианты осуществления являются примерами настоящего изобретения, и настоящее изобретение не следует рассматривать как ограничивающееся представленными ниже вариантами осуществления; а в большей степени данные варианты осуществления представлены для описания принципа изобретения для специалистов в данной области. Очевидно, специалистам в данной области понятно, что можно сделать различные изменения, касающиеся формы и деталей, не отступая от сущности и объема изобретения, определенных прилагаемой формулой изобретения.
Пример 1
Получение фторорганических соединений 1
280 мг (1,0 ммоль) 2-(3-метансульфонилоксипропокси)нафталина и 456 мг (3,0 ммоль) фторида цезия добавляют к растворителю, 4,0 мл трет-бутанола. Реакционную смесь перемешивают в течение 6 ч при 80°С. В реакционную смесь вносят 7 мл простого этилового эфира для удаления солей металлов. После фильтрования фильтрат концентрируют при пониженном давлении. 188 мг (выход 92%) 2-(3-фторпропокси)нафталина получают колоночной хроматографией (смесь этилацетат:н-гексан = 1:20).
Пример 2
Получение фторорганических соединений 2-7
Реакции проводят таким же способом, как описан в примере 1, за исключением того, что спиртовые растворители, температура реакции и время являются такими, как представлены в таблице 1. Фторорганические соединения получают, как представлено в таблице 1. На схеме реакции 3 показаны 2-(3-фторпропокси)нафталин (А), 2-(3-гидроксипропокси)нафталин (В), 2-(3-аллилокси)нафталин (С) и 2-(3-алкоксипропокси)нафталин (D), которые являются продуктами, полученными при получении фторорганических соединений.
Сравнительный пример 1
Получение фторорганических соединений 1
280 мг (1,0 ммоль) 2-(3-метансульфонилоксипропокси)нафталина и 456 мг (3,0 ммоль) фторида цезия добавляют к 4,0 мл ацетонитрила, используемого вместо спирта. Реакционную смесь перемешивают в течение 6 ч при 80°С.
Реакция почти не протекает, и таким образом показана важная роль спирта для получения фторорганических соединений.
Сравнительный пример 2
Получение фторорганических соединений 2
280 мг (1,0 ммоль) 2-(3-метансульфонилоксипропокси)нафталина и 456 мг (3,0 ммоль) фторида цезия добавляют к 4,0 мл ДМФА, используемого вместо спирта. Реакционную смесь перемешивают в течение 6 ч при 80°С.
После реакции по-прежнему остается 33% реагирующих веществ. Образуется большое количество спирта и алкена в качестве побочных продуктов. Показана важная роль спирта для получения фторорганических соединений.
Сравнительные примеры 3-4
Получение фторорганических соединений 3-4
280 мг (1,0 ммоль) 2-(3-метансульфонилоксипропокси)нафталина и 456 мг (3,0 ммоль) фторида цезия добавляют к 4,0 мл бензола или 1,4-диоксана, используемым вместо спирта. Реакционную смесь перемешивают в течение 6 ч при 80°С.
Реакция почти не протекает, и таким образом показана важная роль спирта для получения фторорганических соединений.
Сравнительные примеры 5-6
Получение фторорганических соединений 5-6
Для подтверждения повышения реакционной способности за счет образования водородных связей между фторидом и спиртом реакцию проводят таким же способом, как описан в примере 1, с использованием бромида калия, который не образует водородные связи со спиртом, вместо фторида.
Реакция бромирования почти не протекает, и таким образом показано, что образование водородных связей между спиртом и фторидом является важным для повышения реакционной способности фторида.
Figure 00000013
Схема реакции 3
Figure 00000014
Данные, представленные в таблице 1, показывают, что 2-(3-фторпропокси)нафталин (А) получают (выход 92%), когда используют фторид цезия в качестве источника атомов фтора, и третичные спирты, трет-бутанол или трет-амиловый спирт используют в качестве растворителя (примеры 1, 3 и 4).
В тех случаях, когда в качестве источника атомов фтора используют фторид тетрабутиламмония вместо фторида цезия, то выход основного продукта составляет более 90% (пример 7). Когда используют фторид рубидия, то реакция фторирования протекает, но для реакции требуется большее время (пример 5).
В случае сравнительных примеров 1 и 2 при использовании полярного апротонного растворителя, который обычно применяют для получения фторорганических соединений, и в случае использования неполярного растворителя реакционную смесь обрабатывают в течение 6 ч. Реакция совсем не протекает или образуются большие количества побочных продуктов, и выход продукта составляет только 48%. Данный результат свидетельствует, что использование спирта является важным для получения фторорганических соединений. 2-(3-н-бутоксипропокси)нафталин (D), побочный продукт эфир, образуется (30%), когда в качестве растворителя используют н-бутанол, первичный спирт. Данный результат показывает, что применение третичного спирта вместо первичного или вторичного спиртов подавляет образование эфиров в качестве побочных продуктов.
В сравнительных примерах 5 и 6 бромид калия, не способный к образованию водородных связей, используют вместо фторида для подтверждения повышения реакционной способности за счет образования водородных связей между спиртом и фторидом. Установлено, что реакция бромирования почти не протекает, и образование водородных связей между спиртом и фторидом является важным для повышения реакционной способности фторида при получении фторорганических соединений.
Пример 8
Получение фторорганических соединений 8
356 мг (1,0 ммоль) 2-(3-толуолсульфонилоксипропокси)нафталина и 456 мг (3,0 ммоль) фторида цезия добавляют к 4,0 мл трет-амилового спирта в реакционном сосуде. Реакционную смесь перемешивают в течение 2 ч при 90°С. Добавляют 7 мл простого этилового эфира для удаления соли металла. После фильтрования фильтрат концентрируют при пониженном давлении. 190 мг (выход 93%) 2-(3-фторпропокси)нафталина получают колоночной хроматографией (смесь этилацетат:н-гексан = 1:20).
Примеры 9-14
Получение фторорганических соединений 9-14
Реакции проводят таким же способом, как описан в примере 8, за исключением того, что используют 1,0 ммоль нескольких алкилгалогенидов или алкилсульфонатов, представленных в таблице 2, вместо 2-(3-толуолсульфонилоксипропокси)нафталина.
Таблица 2
Алкилгалогенид или алкилсульфонат Температура (°С) Время (ч) Выход (%)
Пример 8
Figure 00000015
90 2 93
Пример 9
Figure 00000016
90 24 73
Пример 10
Figure 00000016
Кипение 12 72
Пример 11
Figure 00000017
Кипение 18 88
Пример 12
Figure 00000018
90 3,5 81
Пример 13
Figure 00000019
90 2,5 92
Пример 14
Figure 00000020
25 1,5 69
Как представлено в таблице 2, реакции проводят в течение 1,5-24 ч при 25-110°С в зависимости от используемых алкилгалогенидов или алкилсульфонатов. Установлено, что фторорганические соединения получают с высоким выходом.
Пример 15
Получение фторорганических соединений 15
Получение [18F]фтордезоксиглюкозы (FDG)
Способ получения [18F]фтордезоксиглюкозы представлен на схеме реакции 4. 10 мкКи [18F]фторида адсорбируют на ионообменной смоле. Адсорбированный [18F]фторид элюируют в реакционный сосуд смешанным раствором карбоната цезия (16 мг в 300 мкл воды) и Kryptofix 222 (22 мг в 300 мкл ацетонитрила) или раствором тетрабутиламмония. [18F]фторид высушивают ацетонитрилом (500 мкл × 3). К раствору добавляют 20 мг трифлата маннозы. И затем к реакционной смеси добавляют смешанный раствор из 300 мкл трет-бутилового спирта или трет-амилового спирта и 300 мкл ацетонитрила. Реакцию проводят при 100°С в течение 15 мин. Растворитель удаляют при 95°С с использованием газообразного азота и затем вносят 500 мкл 2 н. раствора NaOH. Гидролиз проводят в течение 2 мин при комнатной температуре и затем вносят 3 мл воды для разбавления. Реакционную смесь последовательно пропускают через картридж с нейтральным оксидом алюминия, картридж tC18 и картридж IC-H+ с получением чистой [18F]фтордезоксиглюкозы. В опыте, проведенном в указанных выше условиях, с поправкой на ослабление радиохимический выход составляет 95,1±2,7%, и радиохимическая чистота равняется 98,2±1,3%.
Схема реакции 4
Figure 00000021
Пример 16
Получение фторорганических соединений 16
Автоматизированное получение [18F]фтордезоксиглюкозы (FDG)
Автоматизированное получение [18F]фтордезоксиглюкозы проводят в условиях реакции, описанных в примере 15. Устройство для автоматизированного получения представляет собой GE TracerLab MX, и рабочую программу модифицируют для получения [18F]фтордезоксиглюкозы. Используют одноразовую кассету для получения, и схематичное изображение кассеты показано на фигуре 2.
После вставки одноразового картриджа для GE TracerLab MX в автоматическое оборудование вносят химические реактивы следующим образом: 7 мл ацетонитрила во флакон V1 емкостью 10 мл, 20 мг трифлата маннозы (1,2 мл трет-бутилового спирта или трет-амилового спирта и 0,8 мл ацетонитрила) во флакон V2 емкостью 10 мл, 5 мл этанола во флакон V3 емкостью 10 мл, 5 мл 1 н. раствора HCl и буфер во флакон V4 и 2 мл 2 н раствора NaOH в шприц объемом 2 мл.
1,000 мкКи [18F]фторида получают из меченной кислородом-18 воды в циклотроне и затем [18F]фторид переносят в автоматическое устройство GE TracerLab MX под давлением газообразного гелия. Перенесенный [18F]фторид адсорбируют на картридже с ионообменной смолой и кислород-18 удаляют в резервуар для меченной кислородом-18 воды. Адсорбированный [18F]фторид элюируют в реакционный сосуд смешанным раствором карбоната цезия (16 мг в 300 мкл воды) и Kryptofix 222 (22 мг в 300 мкл ацетонитрила) или раствором тетрабутиламмония. Элюированный [18F]фторид полностью высушивают 1 мл ацетонитрила во флаконе V1. После добавления трифлата маннозы во флаконе V2 в реакционный сосуд, содержащий высушенный [18F]фторид, реакцию проводят при 100°С в течение 15 мин, и затем растворитель полностью удаляют. В реакционный сосуд добавляют 1 мл ацетонитрила во флаконе V1 и затем смесь переносят в шприц 1 на фигуре 2. Промежуточный продукт реакции разбавляют добавлением 25 мл воды и затем адсорбируют на картридже tC18. После добавления 2 н. раствора NaOH в 2 мл шприце к адсорбированному промежуточному продукту для гидролиза чистую [18F]фтордезоксиглюкозу получают после очистки пропусканием через картридж с нейтральным оксидом алюминия и картридж tC18. Когда автоматизированное получение проводят в указанных выше условиях, то с поправкой на ослабление радиохимический выход составляет 75,1±7,4%, и радиохимическая чистота равняется 98,2±1,2%.
Пример 17
Получение фторорганических соединений 17
Получение [18F]фтормизонидазола (FMISO) 1
Способ получения [18F]фтормизонидазола представлен на схеме реакции 5. 10 мкКи [18F]фторида адсорбируют на ионообменной смоле. Адсорбированный [18F]фторид элюируют в реакционный сосуд смешанным раствором карбоната цезия (2 мг в 300 мкл воды) и Kryptofix 222 (22 мг в 300 мкл ацетонитрила) или раствором тетрабутиламмония. [18F]фторид высушивают ацетонитрилом (500 мкл×3). К данному раствору добавляют 10 мг 1-(1,2-эпоксипропил)-2-нитроимидазола. После добавления смешанного раствора, содержащего 500 мкл трет-бутилового спирта или трет-амилового спирта и 100 мкл ацетонитрила, к указанной выше реакционной смеси реакцию проводят при 100°С в течение 15 мин. Растворитель удаляют с использованием газообразного азота при 95°С и затем в реакционный сосуд вносят 200 мкл ацетонитрила и 1000 мкл воды. Чистый [18F]фтормизонидазол получают высокоэффективной жидкостной хроматографией (ВЭЖХ). Условия проведения ВЭЖХ являются следующими: используют колонку Alltech Econosil C18, смесь вода:этанол = 95:5 используют со скоростью потока 5 мл/мин, и прибор имеет УФ-детектор при 254 нм и радиоактивный детектор. В опыте, проведенном в указанных выше условиях, с поправкой на ослабление радиохимический выход составляет 75,4±3,1%, и радиохимическая чистота равняется 98,1±0,7%.
Схема реакции 5
Figure 00000022
Пример 18
Получение фторорганических соединений 18
Получение [18F]фтормизонидазола (FMISO) 2
Другой способ получения [18F]фтормизонидазола представлен на схеме реакции 6. 10 мкКи [18F]фторида адсорбируют на ионообменной смоле. Адсорбированный [18F]фторид элюируют в реакционный сосуд смешанным раствором карбоната цезия (16 мг в 300 мкл воды) и Kryptofix 222 (22 мг в 300 мкл ацетонитрила) или раствором тетрабутиламмония. [18F]фторид высушивают ацетонитрилом (500 мкл × 3). К данному раствору добавляют 10 мг 1-(2-нитро-1-имидазоил)-2-О-тетрагидропиранил-3-О-толуолсульфонилоксипропандиола. После добавления смешанного раствора, содержащего 500 мкл трет-бутилового спирта или трет-амилового спирта и 100 мкл ацетонитрила, к указанной выше реакционной смеси реакцию проводят при 100°С в течение 10 мин. Растворитель полностью удаляют с использованием газообразного азота при 95°С и затем в реакционный сосуд вносят 200 мкл ацетонитрила и 500 мкл 1 н. раствора HCl. Гидролиз проводят при 100°С в течение 5 мин. Чистый [18F]фтормизонидазол получают ВЭЖХ. Условия проведения ВЭЖХ являются следующими: используют колонку Alltech Econosil C18, смесь вода:этанол = 95:5 используют со скоростью потока 5 мл/мин, и прибор имеет УФ-детектор при 254 нм и радиоактивный детектор. В опыте, проведенном в указанных выше условиях, с поправкой на ослабление радиохимический выход составляет 82,1±1,1%, и радиохимическая чистота равняется 98,1±1,5%.
Схема реакции 6
Figure 00000023
Пример 19
Получение фторорганических соединений 19
Получение [18F]фторэстрадиола (FES)
Способ получения [18F]фторэстрадиола представлен на схеме реакции 7.
10 мкКи [18F]фторида адсорбируют на ионообменной смоле. Адсорбированный [18F]фторид элюируют в реакционный сосуд смешанным раствором карбоната цезия (16 мг в 300 мкл воды) и Kryptofix 222 (22 мг в 300 мкл ацетонитрила) или раствором тетрабутиламмония. [18F]фторид высушивают ацетонитрилом (500 мкл × 3). К раствору добавляют 3 мг 3-О-метоксиметил-16β,17β-эпиэстриол-О-циклосульфона. После добавления смешанного раствора, содержащего 400 мкл трет-бутилового спирта или трет-амилового спирта и 100 мкл ацетонитрила, к указанной выше реакционной смеси реакцию проводят при 100°С в течение 15 мин.
Растворитель полностью удаляют с использованием газообразного азота при 95°С и затем в реакционный сосуд вносят 200 мкл ацетонитрила и 50 мкл 1 н. раствора HCl и гидролиз проводят в атмосфере азота при 100°С в течение 5 мин. Указанную выше методику проводят три раза. Чистый [18F]фторэстрадиол получают ВЭЖХ. Условия проведения ВЭЖХ являются следующими: используют колонку Nucleosil C18 120-5А С18, смесь вода:этанол = 40:60 используют со скоростью потока 4 мл/мин, и прибор имеет УФ-детектор при 280 нм и радиоактивный детектор. В опыте, проведенном в указанных выше условиях, с поправкой на ослабление радиохимический выход составляет 72,1±1,1%, и радиохимическая чистота равняется 98,4±1,2%.
Схема реакции 7
Figure 00000024
Пример 20
Получение фторорганических соединений 20
Автоматизированное получение [18F]фторэстрадиола (FES)
Автоматизированное получение [18F]фторэстрадиола проводят в условиях реакции, описанных в примере 19. Устройство для автоматизированного получения представляет собой GE TracerLab MX, и рабочую программу модифицируют для получения [18F]фторэстрадиола. Используют одноразовую кассету для получения, и схематичное изображение кассеты показано на фигуре 2.
После вставки одноразового картриджа для GE TracerLab MX в автоматическое оборудование вносят химические реактивы следующим образом: 7 мл ацетонитрила во флакон V1 емкостью 10 мл, 3 мг 3-О-метоксиметил-16β,17β-эпиэстриол-О-циклосульфона (1,5 мл трет-бутилового спирта или трет-амилового спирта и 0,5 мл ацетонитрила) во флакон V2 емкостью 10 мл, 3 мл этанола и смешанный раствор 500 мкл 2 н. раствора NaOH и 1 мл воды во флакон V3 емкостью 10 мл, 0,63 мл 2 н. раствора HCl и 6 мл ацетонитрила во флакон V4 и флаконы помещают в одноразовую кассету.
1,0 Ки [18F]фторида получают из меченной кислородом-18 воды в циклотроне и затем полученный [18F]фторид переносят в автоматическое устройство GE TracerLab MX под давлением газообразного гелия. Перенесенный [18F]фторид адсорбируют на картридже с ионообменной смолой и кислород-18 удаляют в резервуар для меченной кислородом-18 воды. Адсорбированный [18F]фторид элюируют в реакционный сосуд смешанным раствором карбоната цезия (16 мг в 300 мкл воды) и Kryptofix 222 (22 мг в 300 мкл ацетонитрила) или раствором тетрабутиламмония. Элюированный [18F]фторид полностью высушивают 1 мл ацетонитрила во флаконе V1. После добавления 3-О-метоксиметил-16β,17β-эпиэстриол-О-циклосульфона во флаконе V2 в реакционный сосуд, содержащий высушенный [18F]фторид, реакцию проводят при 95°С в течение 5 мин и затем растворитель удаляют. Гидролиз проводят при 90°С добавлением смешанного раствора 2 мл HCl и ацетонитрила во флаконе V4 в реакционный сосуд. Данную методику повторяют три раза. Растворители удаляют после гидролиза. Смешанный раствор во флаконе V3 добавляют в реакционный сосуд для растворения реакционной смеси. Чистый [18F]фторэстрадиол получают ВЭЖХ. Условия проведения ВЭЖХ являются следующими: используют колонку Nucleosil C18 120-5А С18, смесь вода:этанол = 40:60 используют со скоростью потока 4 мл/мин, и прибор имеет УФ-детектор при 280 нм и радиоактивный детектор. В опыте, проведенном в указанных выше условиях, с поправкой на ослабление радиохимический выход составляет 42,1±5,1%, и радиохимическая чистота равняется 98,0±1,1%.
Пример 21
Получение фторорганических соединений 21
Получение [18F]фторпропилкарбометокситропана (FP-CIT)1
Способ получения [18F]фторпропилкарбометокситропана представлен на схеме реакции 8. 10 мкКи [18F]фторида адсорбируют на ионообменной смоле. Адсорбированный [18F]фторид элюируют в реакционный сосуд смешанным раствором карбоната цезия (16 мг в 300 мкл воды) и Kryptofix 222 (22 мг в 300 мкл ацетонитрила) или раствором тетрабутиламмония. [18F]фторид высушивают ацетонитрилом (500 мкл × 3). К данному раствору добавляют 10 мг 1,3-дитозилпропана. После добавления смешанного раствора, содержащего 500 мкл трет-бутилового спирта или трет-амилового спирта и 100 мкл ацетонитрила, к указанной выше реакционной смеси реакцию проводят при 95°С в течение 15 мин. Растворитель удаляют с использованием газообразного азота при 95°С и затем вносят 5 мг нор-β-CIT в смеси 300 мкл ацетонитрила и 500 мкл трет-бутилового спирта. Реакцию проводят при 135°С в течение 40 мин. Чистый [18F]фторпропилкарбометокситропан получают ВЭЖХ. Условия проведения ВЭЖХ являются следующими: используют колонку µ-Bondapack C18, смесь фосфорная кислота:ацетонитрил = 40:60 используют со скоростью потока 5 мл/мин, и прибор имеет УФ-детектор при 220 нм и радиоактивный детектор. В опыте, проведенном в указанных выше условиях, с поправкой на ослабление радиохимический выход составляет 25,3±2,1%, и радиохимическая чистота равняется 97,2±1,3%.
Схема реакции 8
Figure 00000025
Пример 22
Получение фторорганических соединений 22
Получение [18F]фторпропилкарбометокситропана (FP-CIT)2
Способ получения [18F]фторпропилкарбометокситропана представлен на схеме реакции 9. 10 мкКи [18F]фторида адсорбируют на ионообменной смоле. Адсорбированный [18F]фторид элюируют в реакционный сосуд смешанным раствором карбоната цезия (16 мг в 300 мкл воды) и Kryptofix 222 (22 мг в 300 мкл ацетонитрила).
[18F]фторид высушивают ацетонитрилом (500 мкл × 3). К реакционному раствору добавляют 5 мг (3-метансульфонилоксипропил)-2β-карбометокси-3β-(4-йодфенил)тропана или (3-толуолсульфонилоксипропил)-2β-карбометокси-3β-(4-йодфенил)тропана и смешанный раствор, содержащий 100 мкл ацетонитрила и 500 мкл трет-бутилового спирта или трет-амилового спирта. Реакцию проводят при 95°С в течение 10 мин. Растворитель полностью удаляют с использованием газообразного азота при 95°С и затем в реакционный сосуд вносят 300 мкл ацетонитрила и 500 мкл воды. Чистый [18F]фторпропилкарбометокситропан получают ВЭЖХ. Условия проведения ВЭЖХ являются следующими: используют колонку µ-Bondapack C18, смесь фосфорная кислота:ацетонитрил = 40:60 используют со скоростью потока 5 мл/мин, и прибор имеет УФ-детектор при 220 нм и радиоактивный детектор. В опыте, проведенном в указанных выше условиях, с поправкой на ослабление радиохимический выход составляет 25,3±2,1%, и радиохимическая чистота равняется 97,2±1,3%.
Схема реакции 9
Figure 00000026
Пример 23
Получение фторорганических соединений 23
Получение [18F]фторDDNP (FDDNP)
Способ получения [18F]фторDDNP представлен на схеме реакции 10. 10 мкКи [18F]фторида адсорбируют на ионообменной смоле. Адсорбированный [18F]фторид элюируют в реакционный сосуд смешанным раствором карбоната цезия (16 мг в 300 мкл воды) и Kryptofix 222 (22 мг в 300 мкл ацетонитрила) или раствором тетрабутиламмония. [18F]фторид высушивают ацетонитрилом (500 мкл × 3). К раствору добавляют 4 мг тозил-предшественника, представленного на схеме реакции 9. После добавления смешанного раствора, содержащего 500 мкл трет-бутилового спирта или трет-амилового спирта и 100 мкл ацетонитрила, к указанной выше реакционной смеси реакцию проводят при 95°С в течение 10 мин. Растворитель удаляют с использованием газообразного азота при 95°С. Реакционную смесь растворяют в ацетонитриле и радиохимический выход продукта определяют с использованием радиоизотопной ТСХ. В опыте, проведенном в указанных выше условиях, с поправкой на ослабление радиохимический выход составляет 42,3±4,1%, и радиохимическая чистота равняется 97,2±1,3%.
Схема реакции 10
Figure 00000027
Пример 24
Получение фторорганических соединений 24
Получение [18F]фтортимидина (FLT)
Другой способ получения [18F]фтортимидина представлен на схеме реакции 11. 10 мкКи [18F]фторида адсорбируют на ионообменной смоле. Адсорбированный [18F]фторид элюируют в реакционный сосуд смешанным раствором карбоната цезия (16 мг в 300 мкл воды) и Kryptofix 222 (22 мг в 300 мкл ацетонитрила) или раствором тетрабутиламмония. [18F]фторид высушивают ацетонитрилом (500 мкл × 3). К раствору добавляют 10-40 мг 3-N-трет-бутоксикарбонил-(5'-О-(4,4'-диметокситрифенилметил)-2-дезокси-3'-О-(4-нитробензолсульфонил)-β-D-треопентофуранозил)тимина или 3-N-трет-бутоксикарбонил-(5'-О-(трифенилметил)-2-дезокси-3'-О-(4-нитробензолсульфонил)-β-D-треопентофуранозил)тимина и затем добавляют смесь 100 мкл ацетонитрила и 500 мкл трет-бутилового спирта или трет-амилового спирта. Реакцию проводят при 100-150°С в течение 10 мин. Растворитель удаляют с использованием газообразного азота при 95°С и затем добавляют 200 мкл ацетонитрила и 500 мкл 1 н. раствора HCl. Гидролиз проводят при 100°С в течение 5 мин. Чистый [18F]фтортимидин получают ВЭЖХ. Условия проведения ВЭЖХ являются следующими: используют колонку Alltech Econosil C18, смесь вода:этанол = 90:10 используют со скоростью потока 5 мл/мин, и прибор имеет УФ-детектор при 267 нм и радиоактивный детектор. В опыте, проведенном в указанных выше условиях, с поправкой на ослабление радиохимический выход составляет 85,6±3,1%, и радиохимическая чистота равняется 98,5±1,2%.
Схема реакции 11
Figure 00000028
Пример 25
Получение фторорганических соединений 25
Получение [18F]фторхолина (Fхолина)
Другой способ получения [18F]фторхолина представлен на схеме реакции 12. 10 мкКи [18F]фторида адсорбируют на ионообменной смоле. Адсорбированный [18F]фторид элюируют в реакционный сосуд смешанным раствором карбоната цезия (16 мг в 300 мкл воды) и Kryptofix 222 (22 мг в 300 мкл ацетонитрила) или раствором тетрабутиламмония. [18F]фторид высушивают ацетонитрилом (500 мкл × 3). К раствору добавляют 10 мг 1,1-ди-п-толуолсульфонилоксиметана и затем добавляют смешанный раствор, содержащий 500 мкл трет-бутилового спирта или трет-амилового спирта и 100 мкл ацетонитрила. Реакцию проводят при 100-150°С в течение 10 мин. После окончания реакции добавляют N,N-диметиламиноэтанол для алкилирования. Чистый [18F]фторхолин получают ВЭЖХ. В опыте, проведенном в указанных выше условиях, с поправкой на ослабление радиохимический выход составляет 75,7±3,1%, и радиохимическая чистота равняется 97,5±1,2%.
Схема реакции 12
Figure 00000029
Пример 26
Получение фторорганических соединений 26
Получение [18F]фторэтилхолина (FEхолина)
Другой способ получения [18F]фторэтилхолина представлен на схеме реакции 13. 10 мкКи [18F]фторида адсорбируют на ионообменной смоле. Адсорбированный [18F]фторид элюируют в реакционный сосуд смешанным раствором карбоната цезия (16 мг в 300 мкл воды) и Kryptofix 222 (22 мг в 300 мкл ацетонитрила) или раствором тетрабутиламмония. [18F]фторид высушивают ацетонитрилом (500 мкл × 3). К раствору добавляют 10 мг 1,2-ди-п-толуолсульфонилоксиметана и затем добавляют смешанный раствор, содержащий 500 мкл трет-бутилового спирта или трет-амилового спирта и 100 мкл ацетонитрила. Реакцию проводят при 100-150°С в течение 10 мин. После окончания реакции добавляют N,N-диметиламиноэтан для алкилирования. Чистый [18F]фторэтилхолин получают ВЭЖХ. В опыте, проведенном в указанных выше условиях, с поправкой на ослабление радиохимический выход составляет 67,7±8,1%, и радиохимическая чистота равняется 98,2±2,3%.
Схема реакции 13
Figure 00000030
Пример 27
Получение фторорганических соединений 27
Получение [18F]фторпропилхолина (FPхолина)
Способ получения [18F]фторпропилхолина представлен на схеме реакции 14. 10 мкКи [18F]фторида адсорбируют на ионообменной смоле. Адсорбированный [18F]фторид элюируют в реакционный сосуд смешанным раствором карбоната цезия (16 мг в 300 мкл воды) и Kryptofix 222 (22 мг в 300 мкл ацетонитрила) или раствором тетрабутиламмония. [18F]фторид высушивают ацетонитрилом (500 мкл × 3). К раствору добавляют 10 мг 1,3-ди-п-толуолсульфонилоксипропана и затем добавляют смешанный раствор, содержащий 500 мкл трет-бутилового спирта или трет-амилового спирта и 100 мкл ацетонитрила. Реакцию проводят при 100-150°С в течение 10 мин. После окончания реакции добавляют N,N-диметиламиноэтанол для алкилирования. Чистый [18F]фторпропилхолин получают ВЭЖХ. В опыте, проведенном в указанных выше условиях, с поправкой на ослабление радиохимический выход составляет 72,4±6,1%, и радиохимическая чистота равняется 98,1±1,3%.
Схема реакции 14
Figure 00000031

Claims (21)

1. Способ получения [18F]фторорганических соединений взаимодействием [18F]фторида с соответствующим галогенидом или сульфонатом в присутствии спирта формулы 1 в качестве растворителя
Формула 1
Figure 00000032

(в которой R1, R2 и R3 представляют атом водорода или C1-C18 алкил).
2. Способ по п.1, в котором R1 представляет атом водорода или C1-C18 алкил; R2 является атомом водорода или C1-C18 алкилом; и R3 представляет атом водорода или
C1-C18 алкил.
3. Способ по п.1, в котором R1 представляет метил или этил; R2 представляет метил или этил; и R3 является метилом или этилом.
4. Способ по п.1, в котором спирт формулы 1 выбран из группы, состоящей из первичных спиртов, таких как метанол, этанол, н-пропанол, н-бутанол, амиловый спирт, н-гексиловый спирт, н-гептанол или н-октанол; вторичных спиртов, таких как изопропанол, изобутанол, изоамиловый спирт и 3-пентанол; и третичных спиртов, таких как трет-бутанол, трет-амиловый спирт, 2,3-диметил-2-бутанол, 2-(трифторметил)-2-пропанол, 3-метил-3-пентанол, 3-этил-3-пентанол, 2-метил-2-пентанол, 2,3-диметил-3-пентанол, 2,4-диметил-2-пентанол, 2-метил-2-гексанол, 2-циклопропил-2-пропанол, 2-циклопропил-2-бутанол, 2-циклопропил-3-метил-2-бутанол, 1-метилциклопентанол, 1-этилциклопентанол, 1-пропилциклопентанол, 1-метилциклогексанол, 1-этилциклогексанол и 1-метилциклогептанол.
5. Способ по п.1, в котором спирт формулы 1 выбран из группы, состоящей из трет-бутанола, трет-амилового спирта, 2,3-диметил-2-бутанола и 2-(трифторметил)-2-пропанола.
6. Способ по п.1, в котором [18F]фторид представляет [18F]фторид цезия или [18F]фторид тетраалкиламмония, и спирт выбран из группы, состоящей из трет-бутанола, трет-амилового спирта, 2,3-диметил-2-бутанола и 2-(трифторметил)-2-пропанола.
7. Способ по п.1, в котором [18F]фторид предпочтительно выбран из группы, состоящей из [18F]фторидов щелочных металлов, включающих щелочные металлы, выбранные из группы, состоящей из лития, натрия, калия, рубидия и цезия; [18F]фторидов щелочно-земельных металлов, включающих щелочно-земельные металлы, выбранные из группы, состоящей из магния, кальция, стронция и бария; и [18F]фторида аммония.
8. Способ по п.7, в котором [18F]фторид аммония предпочтительно выбран из группы, состоящей из [18F]фторидов четвертичного аммония, включая [18F]фторид тетрабутиламмония и [18F]фторид бензилтриметиламмония; [18F]фторидов третичного аммония, включая [18F]фторид триэтиламмония и [18F]фторид трибутиламмония; [18F]фторидов вторичного аммония, включая [18F]фторид дибутиламмония и [18F]фторид дигексиламмония; и [18F]фторидов первичного аммония, включая [18F]фторид бутиламмония и [18F]фторид гексиламмония.
9. Способ по п.1, в котором [18F]фторид представляет [18F]фторид цезия или [18F]фторид тетраалкиламмония.
10. Способ по п.9, в котором [18F]фторид цезия или [18F]фторид тетраалкиламмония адсорбирован на подложках, выбранных из группы, состоящей из целита, молекулярного сита, оксида алюминия и силикагеля.
11. Способ по п.1, в котором количество [18F]фторида является следовым количеством [18F]фторида к соответствующему галогениду или сульфонату.
12. Способ по п.11, в котором используют 1 пкг - 100 нг [18F]фторида на 1 мг соответствующего галогенида или сульфоната.
13. Способ по п.1, в котором [18F]фторорганическое соединение представляет [18F]фтордезоксиглюкозу формулы 2.
Формула 2
Figure 00000033
14. Способ по п.1, в котором [18F]фторорганическое соединение представляет [18F]фтормизонидазол формулы 3.
Формула 3
Figure 00000034
15. Способ по п.1, в котором [18F]фторорганическое соединение представляет [18F]фторэстрадиол формулы 4.
Формула 4
Figure 00000035
16. Способ по п.1, в котором [18F]фторорганическое соединение представляет [18F]фторпропилкарбометокситропан формулы 5.
Формула 5
Figure 00000036
17. Способ по п.1, в котором [18F]фторорганическое соединение представляет [18F]фторDDNP формулы 6.
Формула 6
Figure 00000037
18. Способ по п.1, в котором [18F]фторорганическое соединение представляет [18F]фтортимидин формулы 7.
Формула 7
Figure 00000038
19. Способ по п.1, в котором [18F]фторорганическое соединение представляет [18F]фторхолин формулы 8.
Формула 8
Figure 00000039
20. Способ по п.1, в котором [18F]фторорганическое соединение представляет [18F]фторэтилхолин формулы 9.
Формула 9
Figure 00000040
21. Способ по п.1, в котором [18F]фторорганическое соединение представляет [18F]фторпропилхолин формулы 10.
Формула 10
Figure 00000041
RU2007126814/04A 2004-12-15 2005-12-09 Способ получения [18f]фторорганических соединений в спиртовых растворителях RU2357947C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20040106553 2004-12-15
KR10-2004-0106553 2004-12-15
KR1020050084411A KR100789847B1 (ko) 2004-12-15 2005-09-10 알코올 용매하에서 유기플루오로 화합물의 제조방법
KR10-2005-0084411 2005-09-10

Publications (2)

Publication Number Publication Date
RU2007126814A RU2007126814A (ru) 2009-01-27
RU2357947C2 true RU2357947C2 (ru) 2009-06-10

Family

ID=36588062

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007126814/04A RU2357947C2 (ru) 2004-12-15 2005-12-09 Способ получения [18f]фторорганических соединений в спиртовых растворителях

Country Status (14)

Country Link
US (2) US7847092B2 (ru)
EP (1) EP1824805B1 (ru)
JP (1) JP4981683B2 (ru)
KR (1) KR100789847B1 (ru)
CN (1) CN101094824B (ru)
AU (1) AU2005317370B8 (ru)
CA (1) CA2590014C (ru)
HK (1) HK1108683A1 (ru)
IL (1) IL183548A (ru)
NO (1) NO345018B1 (ru)
NZ (1) NZ555538A (ru)
RU (1) RU2357947C2 (ru)
UA (1) UA83324C2 (ru)
WO (1) WO2006065038A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2631500C2 (ru) * 2010-02-08 2017-09-25 Лантеус Медикал Имаджинг, Инк. Способы и устройство для синтезирования радиофармацевтических препаратов и их промежуточных продуктов
RU2710558C2 (ru) * 2014-11-07 2019-12-27 Дзе Асан Фаундейшн Способ получения фторзамещенного органического алифатического соединения и способ очистки фторзамещенного органического алифатического соединения

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344702B2 (en) 2004-02-13 2008-03-18 Bristol-Myers Squibb Pharma Company Contrast agents for myocardial perfusion imaging
US7485283B2 (en) * 2004-04-28 2009-02-03 Lantheus Medical Imaging Contrast agents for myocardial perfusion imaging
SI2213652T1 (sl) * 2004-12-17 2015-03-31 The Trustees Of The University Of Pennsylvania Derivati stilbena in njihova uporaba za vezavo in prikaz amiloidnih plakov
EP2017359A3 (en) 2007-06-11 2009-08-05 Trasis S.A. Method for the elution of 18F fluoride trapped on an anion-exchange resin in a form suitable for efficient radiolabeling without any evaporation step
KR101009712B1 (ko) * 2007-02-22 2011-01-19 재단법인 아산사회복지재단 양성자성 용매와 이에 녹는 염들을 이용한 음이온 교환고분자 지지체로부터의 플루오린-18 플루오라이드 용리와이를 이용한 플루오린-18의 표지방법
EP2062630A1 (en) 2007-11-20 2009-05-27 Trasis S.A. Method for the direct elution of reactive 18F fluoride from an anion exchange resin in an organic medium by the use of strong organic bases
CA2967254C (en) 2008-02-29 2019-03-26 Lantheus Medical Imaging, Inc. Contrast agents for applications including imaging cancer
KR100891700B1 (ko) * 2008-04-22 2009-04-03 한국원자력연구원 방사선을 이용한 플루오로알킬 화합물의 제조방법
GB0812923D0 (en) * 2008-07-15 2008-08-20 Isis Innovation Preparation of flourine-labelled compounds
EP2419096B1 (en) 2009-04-15 2019-11-13 Lantheus Medical Imaging, Inc. Stabilization of radiopharmaceutical compositions using ascorbic acid
WO2011003591A1 (en) * 2009-07-10 2011-01-13 Bayer Schering Pharma Aktiengesellschaft Usage of low to medium-pressure liquid chromatography for the purification of radiotracers
EP2821395B1 (en) * 2009-08-07 2017-06-21 Wako Pure Chemical Industries, Ltd. Novel disulfonic acid ester as an additive for an electrolyte for a lithium secondary battery
GB0922023D0 (en) * 2009-12-17 2010-02-03 Ge Healthcare Ltd Preparation of n-monofluoroalkyl compounds
BR112012030935B1 (pt) * 2010-04-06 2020-11-17 Life Molecular Imaging Sa método para a produção de ligantes de beta-amiloide marcados com f-18
KR101430422B1 (ko) 2010-04-08 2014-08-14 지멘스 메디컬 솔루션즈 유에스에이, 인크. 함수 유기 용매에서 18f-표지된 트레이서의 합성
EP2569071B1 (en) 2010-05-10 2015-07-08 Technische Universität München Method for the direct elution of reactive [18f]fluoride from an anion exchange resin in an organic medium suitable for radiolabelling without any evaporation step by the use of alkalimetal and alkaline earth metal cryptates
JP2013532136A (ja) * 2010-06-04 2013-08-15 ピラマル イメージング ソシエテ アノニム F−18標識アミロイド・ベータ・リガンドの製造方法
KR20130088118A (ko) * 2010-06-04 2013-08-07 피라말 이미징 에스에이 F-18 표지된 아밀로이드 베타 리간드의 제조 방법
TWI504414B (zh) * 2010-06-04 2015-10-21 Bayer Schering Pharma Ag 生產F-18標記之Aβ配位體之方法
DE102010036356A1 (de) * 2010-07-12 2012-01-12 Abx Advanced Biochemical Compounds Gmbh Vorrichtung zur Synthese radioaktiv markierter Verbindungen
US20140039074A1 (en) 2010-09-09 2014-02-06 Piramal Imaging Sa Method for rapid preparation of suitable [18f]fluoride for nucleophilic [18f]fluorination
KR101269588B1 (ko) * 2010-10-13 2013-06-05 (주)퓨쳐켐 Fp―cit 전구체로서의 아제티디늄 염, 이의 선택적 제조방법 및 fp―cit의 합성
KR101351878B1 (ko) 2010-12-14 2014-02-06 서강대학교산학협력단 18f 방사성의약품 제조를 위한 고체 지지체에 연결된 전구체 화합물, 이의 제조방법 및 응용
WO2012157900A2 (ko) * 2011-05-13 2012-11-22 서강대학교산학협력단 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법
GB201117786D0 (en) * 2011-10-14 2011-11-30 Ge Healthcare Ltd Eluent vial
GB201117785D0 (en) 2011-10-14 2011-11-30 Ge Healthcare Ltd Improved radiosynthesis method
IN2014MN00875A (ru) 2011-10-19 2015-04-17 Piramal Imaging Sa
GB201120586D0 (en) * 2011-11-30 2012-01-11 Ge Healthcare Ltd Solid phase extraction neutralisation
KR101326000B1 (ko) * 2012-01-30 2013-11-07 재단법인 아산사회복지재단 수소이온 농도가 조절된 플루오린-18의 용리액 제조 및 이를 이용한 플루오린-18의 표지방법
AU2013203000B9 (en) 2012-08-10 2017-02-02 Lantheus Medical Imaging, Inc. Compositions, methods, and systems for the synthesis and use of imaging agents
CN104109111B (zh) * 2013-04-22 2019-02-12 江苏豪森药业集团有限公司 托西酸贝格列汀及其中间体的制备方法
AU2014326601B2 (en) * 2013-09-25 2018-01-18 SpecGx LLC Preparation of radioiodinated 3-fluoropropyl-nor-beta-CIT
KR20160078965A (ko) * 2013-10-31 2016-07-05 사빅 글로벌 테크놀러지스 비.브이. 축방향으로 불소화된―프탈로시아닌들의 제조방법 및 광전지 기기들에서 그 용도
CN103645254B (zh) * 2013-11-28 2015-01-07 江苏省原子医学研究所 一种Aβ斑块显像剂前体AV45的含量分析方法
BE1023674B1 (fr) * 2015-12-11 2017-06-12 Out And Out Chemistry Sprl Actionneur rotatif a positionnement multiple controle par un fluide
KR20170076933A (ko) * 2015-12-24 2017-07-05 (의료)길의료재단 불소-18 동위원소를 함유하는 방사성 화합물의 제조방법
WO2018089491A1 (en) * 2016-11-08 2018-05-17 The Regents Of The University Of California Methods for multi-dose synthesis of [f-18]fddnp for clinical settings
KR101842989B1 (ko) * 2018-01-02 2018-03-28 (주)퓨쳐켐 카보닐기를 갖는 알코올 용매를 이용한 플루오르화 화합물의 제조방법
KR102063498B1 (ko) 2019-06-25 2020-01-08 (주)퓨쳐켐 불포화 탄화수소기를 갖는 알코올 용매를 이용한 플루오로 화합물의 제조방법
CN115160308A (zh) * 2022-08-08 2022-10-11 江苏华益科技有限公司 一种18f-fpcit的自动化合成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE710129C (de) * 1936-12-24 1941-09-04 Dr Alfred Gnuechtel Verfahren zur Herstellung fluorierter aliphatischer Kohlenwasserstoffe
US2980670A (en) * 1959-11-02 1961-04-18 Pfizer & Co C Fluorinated corticosteroids
EP0355774B1 (en) * 1988-08-26 1995-04-26 Asahi Glass Company Ltd. Nucleus-fluorinated aromatic carboxylates and processes for their production
JPH05301844A (ja) * 1992-04-22 1993-11-16 Idemitsu Kosan Co Ltd 2−フルオロイソ酪酸エステルの製造方法
WO1995009844A1 (en) * 1993-10-04 1995-04-13 Board Of Regents, The University Of Texas System Rapid synthesis and use of 18f-fluoromisonidazole and analogs
AU759945B2 (en) * 1998-08-20 2003-05-01 Regents Of The University Of California, The Methods for labeling beta-amyloid plaques and neurofibrillary tangles
DE10104250A1 (de) * 2001-01-31 2002-08-14 Deutsches Krebsforsch Markierungsfähige Verbindungen zur einfachen Synthese von 3'-[18F]Fluor-3'-deoxythymidin und Verfahren zu deren Herstellung
GB0115927D0 (en) * 2001-06-29 2001-08-22 Nycomed Amersham Plc Solid-phase nucleophilic fluorination
KR100441153B1 (ko) * 2002-03-14 2004-07-21 주식회사 씨트리 유기 불소화합물의 제조방법
US7858072B2 (en) * 2004-12-17 2010-12-28 The Trustees Of The University Of Pennsylvania Stilbene derivatives and their use for binding and imaging amyloid plaques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM DONG WOOK et al. A new nucleophilic fluorine-18 labeling method for aliphatic mesylates, Nuclear Medicine and Biology, 2003, 30(4), р.345-350. KIM DONG WOOK et al. New method of fluorination using potassium fluoride in ionic liquid, Journal of the American chemical society, 2002, 124(35), р.10278-10279. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2631500C2 (ru) * 2010-02-08 2017-09-25 Лантеус Медикал Имаджинг, Инк. Способы и устройство для синтезирования радиофармацевтических препаратов и их промежуточных продуктов
RU2710558C2 (ru) * 2014-11-07 2019-12-27 Дзе Асан Фаундейшн Способ получения фторзамещенного органического алифатического соединения и способ очистки фторзамещенного органического алифатического соединения

Also Published As

Publication number Publication date
JP2008524205A (ja) 2008-07-10
HK1108683A1 (en) 2008-05-16
NO20072570L (no) 2007-09-04
US20100113763A1 (en) 2010-05-06
AU2005317370B2 (en) 2006-06-22
KR20060067808A (ko) 2006-06-20
JP4981683B2 (ja) 2012-07-25
CN101094824A (zh) 2007-12-26
IL183548A0 (en) 2007-09-20
AU2005317370A1 (en) 2007-06-14
EP1824805B1 (en) 2020-02-12
CA2590014A1 (en) 2006-06-22
US7847092B2 (en) 2010-12-07
RU2007126814A (ru) 2009-01-27
EP1824805A1 (en) 2007-08-29
UA83324C2 (ru) 2008-06-25
CA2590014C (en) 2010-05-25
WO2006065038A1 (en) 2006-06-22
NZ555538A (en) 2010-10-29
KR100789847B1 (ko) 2007-12-28
IL183548A (en) 2011-04-28
AU2005317370B8 (en) 2008-12-11
NO345018B1 (no) 2020-08-24
US20080171863A1 (en) 2008-07-17
CN101094824B (zh) 2011-07-27
EP1824805A4 (en) 2010-01-06

Similar Documents

Publication Publication Date Title
RU2357947C2 (ru) Способ получения [18f]фторорганических соединений в спиртовых растворителях
KR101009712B1 (ko) 양성자성 용매와 이에 녹는 염들을 이용한 음이온 교환고분자 지지체로부터의 플루오린-18 플루오라이드 용리와이를 이용한 플루오린-18의 표지방법
CN102884043A (zh) 合成方法
KR101605291B1 (ko) 유기 플루오르화 지방족 화합물의 제조방법 및 정제방법
KR20130087816A (ko) 방사성 동위원소 플루오린-18이 표지된 유기플루오로화합물의 제조방법
AU2015343906B2 (en) Method for preparing organic fluoride-aliphatic compound and method for purifying organic fluoride-aliphatic compound
US10392344B2 (en) Method for preparing fluorine-18 eluent with adjusted PH, and method for labelling fluorine-18 using same
US8076499B2 (en) Method for preparing precursor of radioactive 3-iodobenzylguanidine
US20210205482A1 (en) Method for preparing fluorine-18-labeled fluoromethyl-substituted radiopharmaceuticals using selective azide substitution reaction and precursor scavenging
KR20120026461A (ko) 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체, 그 제조방법 및 이를 사용하는 분자내 친핵성 플루오르화반응
KR101214942B1 (ko) 1,2,3-트리아졸기를 갖는 설포네이트 전구체, 이의 제조방법 및 이의 응용
JP4716708B2 (ja) ペナム化合物の製造方法
JP7440208B2 (ja) アルキル化の方法
KR101195898B1 (ko) 염기를 고체 상태로 이용하는 불균일상 [18f]유기플루오로 화합물의 제조방법
JP2020011928A (ja) 4−ボロノフェニルアラニン前駆体、2−[18f]フルオロ−4−ボロノフェニルアラニン前駆体の製造方法、2−[18f]フルオロ−4−ボロノフェニルアラニンの製造方法
JP7159157B2 (ja) 放射性フッ素標識化合物の製造方法および放射性医薬の製造方法
JPWO2018164043A1 (ja) 放射性フッ素標識前駆体化合物及びそれを用いた放射性フッ素標識化合物の製造方法
JP2013095725A (ja) トリアゾール化合物のエナンチオマーの製造方法
US20130005972A1 (en) Application of Staudinger Ligation in PET Imaging