RU2261871C2 - Низкотемпературные фторуглеродные эластомеры - Google Patents

Низкотемпературные фторуглеродные эластомеры Download PDF

Info

Publication number
RU2261871C2
RU2261871C2 RU2001105952/04A RU2001105952A RU2261871C2 RU 2261871 C2 RU2261871 C2 RU 2261871C2 RU 2001105952/04 A RU2001105952/04 A RU 2001105952/04A RU 2001105952 A RU2001105952 A RU 2001105952A RU 2261871 C2 RU2261871 C2 RU 2261871C2
Authority
RU
Russia
Prior art keywords
perfluorinated
ocf
polymer
repeating units
fluorocarbon polymer
Prior art date
Application number
RU2001105952/04A
Other languages
English (en)
Other versions
RU2001105952A (ru
Inventor
Аллан Т. ВОРМ (US)
Аллан Т. ВОРМ
Н.В. Веретенников (RU)
Н.В. Веретенников
М.А. Волкова (RU)
М.А. Волкова
С.В. Соколов (RU)
С.В. Соколов
Original Assignee
Дайнион Ллс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22269374&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2261871(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Дайнион Ллс filed Critical Дайнион Ллс
Publication of RU2001105952A publication Critical patent/RU2001105952A/ru
Application granted granted Critical
Publication of RU2261871C2 publication Critical patent/RU2261871C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • C08F214/222Vinylidene fluoride with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1408Monomers containing halogen

Abstract

Изобретение относится к фторуглеродному полимеру, включающему повторяющиеся звенья, полученные из одного или нескольких перфторированных простых эфиров общей формулы (Формула 1): CF2=CFO-(CF2)m-(O(CF2)p)n-ORf1, где Rf1 - перфторированная алкильная группа (С1-С4), m=1-4, n=0-6, р=1-2; а также повторяющиеся звенья, полученные из винилиденфторида; и, кроме того, возможно достаточное количество группировок центров сшивки, полученных из одного или нескольких соединений общих формул: (1)СХ2=СХ(Z), где (i) Х - это Н или F; и (ii) Z - это Br, I или Rf2U, где U - это Br, I или CN, a Rf2 - это двухвалентная перфторированная связующая группа, возможно содержащая атомы О; и (2) Y(CF2)qY, где (i) Y - это Br или I; и (ii) q=1-6, при этом температура стеклования полимера составляет - 50°С или ниже, а соотношение кислород/углерод - по крайней мере, около 0,2. Также изобретение относится к полимерному эластомеру, изделию и способу получения полимерного эластомера. Изобретение позволяет получить фторуглеродные эластомеры, обладающие улучшенными эксплуатационными характеристиками, в частности гибкостью, при низких температурах. 5 н. и 7 з.п. ф-лы, 5 табл.

Description

Настоящее изобретение относится к получению фторуглеродных полимерных и вулканизованных эластомерных материалов, содержащих перфторированные простые эфирные звенья и, в частности повторяющиеся звенья, полученные из перфорированных алкилвиниловых простых эфиров.
Фторуглеродные эластомеры - это синтетические полимерные эластомеры с высоким одержанием фтора. См., например, У.М.Грутерт и др., "Фторуглеродные эластомеры", Энциклопедия химической технологии (W.M.Grootaert et al., Kirk-Othmer, Encyclopedia of Chemical Technology, Vol.8, pp.900-1005, 4th ed. John Willey & Sons, 1993). Фторуглеродные эластомеры, в частности сополимеры винилиденфторида (ВДФ) с другими этиленовыми ненасыщенными галогенированными мономерами, такими как С3F6 (гексафторпропилен или ГФП), были отобраны в качестве полимерных материалов для применения при высоких температурах, например, для сальников, уплотнительных прокладок или покрытий, особенно в тех случаях, если сформованные их них изделия подвергаются воздействию агрессивных или жестких сред, таких как растворители, смазки, окислители или восстановители. См., например, патент США №4912171 (Грутерт и др.) (Grootaert et al), в котором описан фторсодержащий полимерный эластомер, полученный из ВДФ, тетрафторэтилена (ТФЭ) и сополимеризуемого с ними олефинового углеводорода.
Во многих областях основным недостатком изделий, формованных из таких фторуглеродных эластомеров, являются их неудовлетворительные эксплуатационные характеристики при низких температурах. Как правило, при температурах лишь немного ниже 0°С изделия, формованные из сополимеров ВДФ и ГФП, становятся жесткими и перестают удовлетворять эксплуатационным требованиям.
Низкотемпературную гибкость сополимеров ВДФ можно повысить, заменив ГФП в сополимерах ВДФ/ГФП/ТФЭ на перфторированные алкилвиниловые простые эфиры, описанные в патенте США №5214106 (Карлсон и др.) (Carlson et al.). В патенте США №3817960 (Резник) (Resnick) также описаны полимеры перфорированных простых виниловых эфиров или сополимеры с ТФЭ.
Вулканизованные перфторированные эластомеры с улучшенными низкотемпературными свойствами можно получить обычными методами компаундирования, вводя в перфторированную эластомерную композицию отобранный перфторированный простой полиэфир, описанный в патенте США №5268405 (Оякар и др.) (Ojakaar et al.). Содержание таких добавок можно повысить с помощью улучшающего совместимость наполнителя, описанного в патенте США №3632788 (Стиверс и др.) (Stivers et al.). Эти добавки не остаются навсегда в полимерах, а могут теряться в ходе последующей переработки и эксплуатации формованных изделий.
В литературе описаны многие другие фторсодержащие простые эфиры. Для одного вида характерны один из нескольких гомополимерных сегментов или блоков повторяющихся звеньев общей формулы -CF(CF3)CF2-O-, полученных из окиси гексафторпропилена. Другой вид характеризуется блоками повторяющихся звеньев общей формулы -CF2CF2-O-, полученных из окиси тетрафторэтилена. Еще одни, полученные при взаимодействии кислорода с тетрафторэтиленом или гексафторпропиленом, характеризуются основной цепью из повторяющихся звеньев -CF2O-, -CF(CF3)CF2O- или
-CF(CF3)O-, основной цепью из статистически распределенных звеньев -CF2O- и
-CF2CF2-O-, основной цепью из звеньев -CF(CF3)CF2O- и -CF2CF2-O- и, возможно, звеньев -CF2O- и -CF(CF3)O-. Для еще одного вида фторсодержащих простых эфиров характерна основная цепь из звеньев общей формулы -(CF2)aO(CF2)b-, полученная фотополимеризацией.
Вулканизуемый пероксидными соединениями фторсодержащий эластомер можно получить сополимеризацией перфторированного простого винилового эфира общей формулы: CF2=CFO(CF2CF(CF3)O)m(CF2)nX, где Х - атом брома или атом йода, a m и n могут быть равны 1, 2 или 3; и фторолефина, содержащего от 2 до 8 атомов углерода, в присутствии йод- или бромсодержащего соединения, представленного общей формулой: RBrnIm, где R - фтороуглеводородная группа, хлорфтороуглеводородная группа, хлороуглеводородная группа или углеводородная группа, а m и n могут быть равны 1 или 2, описанного в патенте США №5225504 (Татсу и др.) (Tatsu et al.).
Сшиваемые пероксидными соединениями фторсодержащие полимеры, получаемые полимеризацией винилиденфторида с фторированным пропиленом, фторированным простым эфиром и, возможно, с тетрафторэтиленом и реакционными центрами, участвующими в процессе сшивки, описаны в патенте США №5696216 (Крюгер и др.) (Kruger et al.)
Тем не менее, ни один из этих материалов не обладает достаточной гибкостью при низких температурах, в частности при температурах -50°С и ниже.
Простые фторвиниловые эфиры, содержащие перфторалкильную группу, из которых при сополимеризации с ненасыщенным виниловым соединением получается полимер с низкой температурой стеклования и улучшенными низкотемпературными свойствами, описаны в европейском патенте №0290828 (Ока и др.) (Oka et al.).
В настоящем изобретении предлагается фторуглеродный полимер, включающий: повторяющиеся звенья, полученные из одного или нескольких перфторированных простых эфиров общей формулы CF2=CFO-(CF2)m-(O(CF2)p)n-ORf1, где Rf1 - перфторированная алкильная группа (С1-С4), m=1-4, n=0-6, a p=1-2; и повторяющиеся звенья, полученные из винилиденфторида; причем температура стеклования полимера составляет -50°С или ниже, а соотношение кислород/углерод - по крайней мере, около 0,2. Если m в приведенной выше формуле равно 2 или 3, желательно, чтобы n не было равно 0.
Кроме того, фторуглеродный полимер предпочтительно содержит достаточное количество (желательно 0,2-5 мол.%) группировок центров сшивки, полученных из одного или нескольких соединений общих формул: (a) CX2=CX(Z), где (i) Х - это Н или F; и (ii) Z - это Br, I или Rf2U, где U - это Br, I или CN, а Rf2 - это двухвалентная перфторированная связующая группа, возможно содержащая атомы О; и (б) Y(CF2)4Y, где (i) Y - это Br или I; и (ii) q=1-6.
В настоящем изобретении предлагается также полимерный эластомер, полученный из вулканизуемой композиции, включающей описанный выше фторуглеродный полимер. Кроме того, вулканизуемая композиция может содержать инициатор радикальной полимеризации, например пероксидный инициатор, совулканизующий агент, например триаллилизоцианурат, и/или один или несколько наполнителей. Полимерный эластомер может быть использован для изготовления сальников, шлангов, диафрагм, покрытий и т.д.
Помимо этого, в настоящем изобретении предложены способы получения описанного выше полимерного эластомера. Предпочтительный метод включает в себя: (а) создание вулканизуемой композиции, в которую входит фторуглеродный полимер, состоящий из: i) повторяющихся звеньев, полученных из одного или нескольких перфторированных простых эфиров общей формулы (Формула I): CF2=CFO-(CF2)m-(O(CF2)p)n-ORf1, где Rf1 - перфторированная алкильная группа (С1-C4), m=1-4, n=0-6, a p=1-2; ii) повторяющихся звеньев, полученных из винилиденфторида; и iii) 0,2-5 мол.% группировок центров сшивки, полученных из одного или нескольких соединений общих формул: a) CX2=CX(Z), где (i) Х - это Н или F; и (ii) Z - это Br, I или Rf2U, где U - это Br, I или CN, а Rf2 - это двухвалентная перфторированная сшивающая группа, возможно, содержащая атомы О; и (б) Y(CF2)4Y, где (i) Y - это Br или I; и (ii) q=1-6; причем температура стеклования полимера составляет -50°С или ниже, а соотношение кислород/углерод - по крайней мере, около 0,2; и б) воздействие на вулканизуемую композицию условий, приводящих к, по крайней мере, частичной ее вулканизации. Стадия воздействия на вулканизуемую композицию условий, приводящих к, по крайней мере, частичной ее вулканизации, предпочтительно включает в себя использование тепла и давления и/или облучение композиции.
Настоящее изобретение относится к получению фторуглеродных полимеров, в частности вулканизуемых фторуглеродных полимеров, содержащих центры сшивки, вулканизованных эластомеров, и к способам их вулканизации. Эти материалы могут быть использованы в различных областях. В результате вулканизации фторуглеродных полимеров образуются фторуглеродные эластомеры, которые можно использовать для изготовления сальников, прокладок, шлангов, диафрагм, облицовок и других формованных изделий, обладающих улучшенными эксплуатационными характеристиками, в частности гибкостью при низких температурах. Их также можно применять в виде покрытий. Даже если их не вулканизовать, эти материалы можно использовать в герметиках или в качестве разбавителей в термопластах, например, для улучшения низкотемпературных свойств.
Фторуглеродные полимеры предпочтительно получать из перфторалкилвинилового простого эфира и винилиденфторида. Их температура стеклования предпочтительно должна быть ниже -50°С, а еще предпочтительнее -ниже -60°С. В настоящем изобретении, в частности, в Формуле изобретения, температуру стеклования (Tg) определяют как среднюю точку на аналитической кривой дифференциальной сканирующей калориметрии (ДСК) полимера согласно методу ASTM E1356-91 (подтвержденному в 1995 г.). Для некоторых примеров в разделе Примеры значения Tg несколько ниже, чем были бы получены при использовании этого метода. Эти величины получены в соответствии с российским стандартным методом по ГОСТ 12254-66, который определяет Тg по началу деформации при размораживании образца под нагрузкой 5 кг. Как правило, такие значения на 5-10°С ниже, чем полученные по методу ASTM.
В настоящем изобретении предлагается фторуглеродный полимер (предпочтительно вулканизуемый фторуглеродный эластомер), включающий повторяющиеся звенья (т.е. сополимеризованные звенья), полученные из винилиденфторида и перфторированного простого эфира, общей формулы (Формула 1):
CF2=CFO-(CF2)m-(O(CF2)p)n-ORf1,
где Rf1 - перфторированная алкильная группа (C1-C4), m=1-4 (предпочтительно m=2-4, еще предпочтительнее - 2 для некоторых примеров и 1-2 для других примеров осуществления изобретения), n=0-6 (предпочтительно 1-5, еще предпочтительнее 2-4), а р=1-2 (предпочтительно 1). Для некоторых аспектов настоящего изобретения если m>2, n предпочтительно больше или равно 1. В настоящем изобретении эти перфторированные простые эфиры называются также перфтор(алкоксиалкилвиниловыми) эфирами ("ПФААВЭ"). В отношении получения соединений согласно Формуле 1, см. "Роль поверхности реактора в жидкофазном окислении гексафторпропилена" /С.В.Карцов, П.И.Валов, Л.Ф.Соколов и С.В.Соколов/ Институт химической физики АН СССР, Москва /перевод статьи из "Известия АН СССР", серия Химическая, №10, c.2268-2272, октябрь, 1978, а также патенты США №№3817960 (Резник) (Resnick) и 5696216 (Крюгер и др.) (Kruger et al.).
Перфторированный простой эфир согласно Формуле 1 не содержит боковых алкильных групп (например, -CF(CF3)-CF2-O-), которые могут уменьшить низкотемпературную гибкость вулканизованного материала. Кроме того, во фторуглеродном полимере соотношение кислород/углерод должно быть, по крайней мере, около 0,2, что, как выяснилось, играет важную роль в низкотемпературных свойствах конечного вулканизованного эластомерного материала.
Соотношение кислород/углерод (О/С) определяют, как частное от деления общего числа молей кислорода в полимере на общее число молей углеродных атомов в полимере. Чем выше соотношение кислород/углерод, тем лучше низкотемпературные характеристики вулканизованного эластомера. В частности, чем выше соотношение О/С, тем ниже температура стеклования (Тg), и, соответственно, тем ниже температура, при которой полимер остается эластичным, и ниже температура, при которой вулканизованный эластомер сохраняет гибкость. Тем не менее, зависимость от изменения соотношения О/С носит качественный, а не количественный характер, поскольку влияние на Тg могут оказывать и многие другие факторы. К таким факторам относятся общий молекулярный вес и присутствие возможных сомономеров, таких как ТФЭ, а также длина блоков звеньев сомономеров.
Соотношение О/С меняется, по крайней мере, двумя способами, которыми можно пользоваться в сочетании. Один способ увеличения соотношения О/С заключается в удлинении каких-либо боковых групп в полимере (как правило, это кислородсодержащие алкильные группы) посредством прибавления перфторалкоксильных фрагментов с высоким содержанием атомов кислорода. Второй способ состоит в повышении в общем составе мольного процента перфторалкоксиалкилвиниловых эфиров с высоким содержанием атомов кислорода. Тем не менее, наиболее действенный способ повышения соотношения О/С - это увеличение числа перфторметилвинилэфирных (-CF2O-) или перфторэтилвинилэфирных (-CF2CF2O-) сегментов в виниловом эфире. Использование перфторпропилвиниловых эфиров - это менее эффективный способ увеличения соотношения О/С.
Примеры подходящих фторуглеродных полимеров по Формуле 1 со значениями Тg и соотношения О/С приведены в нижеследующей Таблице 1 (m+n=1).
Таблица 1
nCF2=CH2+mCF2=CFR→-(CF2CH2)n-(CF2C(R))m-
Пример № Группа R m Тg1, °С Соотношение О/С2
1. -OCF2CF2OCF2OCF3 0,3 -70 0,25
2. -OCF2CF2-(OCF2)4-OCF3 0,3 -95 0,40
3. -OCF2CF2-(OCF2CF2)4OCF3 0,2 -70 0,29
4. -OCF2CF2-(OCF2CF2)4OCF3 0,3 -75 0,34
5. -OCF2CF2-(OCF2CF2)4OCF3 0,4 -80 0,37
6. -OCF2CF2-(OCF2)2-OCF3 0,2 -75 0,27
7. -OCF2CF2-(OCF2)2-OCF3 0,3 -79 0,34
8. -OCF2CF2-(OCF2)2-OCF3 0,4 -86 0,40
9. -OCF2CF2-(OCF2CF2)4-OCF3 0,2 -91 0,35
10. -OCF2CF2-(OCF2CF2)4-OCF3 0,3 -100 0,44
11. -OCF2CF2-(OCF2CF2)4-OCF3 0,4 -109 0,50
12. -OCF2CF2-(OCF2CF2)6-OCF3 0,2 -90 0,42
13. -OCF2CF2-(OCF2CF2)6-OCF3 0,3 -107 0,51
14. -OCF2CF2-(OCF2CF2)6-OCF3 0,4 -119 0,66
1 Определено российским стандартным методом по ГОСТ 12254-66 (точность 3°С)
2 Соотношение О/С=[Число атомов O* Доля CF2=CF-R]/[(Число атомов С в ВДФ*Доля ВДФ)+(Число атомов С в CF2=CF-R*Доля CF2=CF-R)]
Невулканизованные фторуглеродные полимеры настоящего изобретения могут быть использованы в различных областях. Тем не менее, их особое преимущество состоит в том, что после вулканизации из них получаются эластомеры, обладающие важными низкотемпературными свойствами (например гибкостью). Их можно вулканизовать различными способами. Тем не менее, полимеры предпочтительно должны содержать в молекуле галогенный (как правило, бромный или йодный) центр сшивки или нитрильный центр сшивки.
Таким образом, фторуглеродный полимер предпочтительно и желательно должен содержать повторяющиеся звенья, полученные из перфторированного простого эфира общей формулы CF2=CFO-(CF2)m-(O(CF2)p)n-ORf1, где Rf1 - перфторированная алкильная группа (C1-C4), m=1-4, n=0-6, a p=1-2, повторяющиеся звенья, полученные из винилиденфторида; и достаточное количество (т.е., количество, достаточное для обеспечения вулканизации эластомера) группировок центров сшивки, полученных из одного или нескольких соединений, содержащих галоген или нитрильную группу. Используемые в настоящем изобретении группировки центров сшивки при необходимости могут иметь боковые группы, такие как алкильные группировки. Примеры таких соединений, используемых для получения группировки центра сшивки, описаны в патентах США №№5696216 (Крюгер и др.) (Kruger et al.) и 5679851 (Сэйто и др.) (Saito et al.). Группировки центров сшивки получают предпочтительно из одного или нескольких соединений общей формулы: CX2=CX(Z), где Х - это Н или F (предпочтительно F), Z - это Br, I или Rf2U, где U=Br, I или CN, a Rf2 - это двухвалентная перфторированная связующая группа, возможно содержащая атомы О; и Y(CF2)qY, где Y - это Br или I и q=1-6. Предпочтительная концентрация этих группировок центров сшивки составляет 0,2-5 мол.%. К числу предпочтительных группировок центров сшивки относятся группировки, полученные из таких соединений, как CF2=CFBr, CF2=CHBr, CF2=CHCF2CF2Br, ICF2CF2CF2CF2I, BrCF2CF2Br, CF2=CFO(CF2)3-OCF2CF2Br, и их смесей. Получение таких соединений описано в патентах США №№4418186 (Ямабе и др.) (Yamabe et al.), 5225504 (Татсу и др.) (Tatsu et al.) и 5214106 (Карлсон и др.) (Carlson et al.). К числу других предпочтительных группировок центров сшивки относятся группировки, полученные из таких соединений, как CF2=CFO(CF2)rOCF(CF3)CN, где r=2-5. Получение таких соединений описано в патентах США №№5679851 (Сэйто и др.) (Saito et al.), 5717037 (Сэйто и др.) (Saito et al.) и 5736614 (Сэйто и др.) (Saito et al.), а также в монографии "Синтез фторорганических соединений. Мономеры и полупродукты" /Акад. И.Л.Кнунянц и проф. Г.Г.Якобсон, М.: Химия, 1997.
Фторуглеродные полимеры настоящего изобретения предпочтительно содержат около 50-80 мол.% повторяющихся звеньев, полученных из винилиденфторида, и около 10-50 мол.% повторяющихся звеньев, полученных из перфторированного простого эфира, и могут содержать или не содержать галогенный центр сшивки. Они могут содержать также около 30 мол.% повторяющихся звеньев, полученных из фторированного моноолефина, отличного от перфторированного простого эфира и винилиденфторида. К таким фторированным моноолефинам относятся, например, гексафторпропен, хлортрифторэтилен, тетрафторэтилен, 1-гидропентафторпропен, перфторированный метилвиниловый эфир, перфторированный пропилвиниловый эфир, перфторированный циклобутен и перфторированный метилциклопропен. Упомянутые выше один или несколько фторированных моноолефинов можно сополимеризовать с такими не содержащими фтор мономерами, как этилен или пропилен.
Предпочтительными эластомерами являются сополимеры винилиденфторида, соединения Формулы I и, по крайней мере, одного фторированного моноолефина с концевой ненасыщенной группой, содержащего в качестве заместителя, по крайней мере, один атом фтора на каждый атом углерода с двойной связью; при этом при каждом углеродном атоме названного фторированного моноолефина заместителями могут быть только фтор, хлор, водород, низший фторалкильный радикал или низший фторалкоксильный радикал. К таким фторированным моноолефинам, в частности, относятся гексафторпропен, тетрафторэтилен, хлортрифторэтилен, тетрафторэтилен, 1-гидро-пентафторпропен. Если включаются другие сополимеризуемые мономеры, такие как тетрафторэтилен (ТФЭ) и при этом желательно сохранить превосходные низкотемпературные свойства, то эти мономеры следует брать в таких количествах и с такими блоками звеньев, чтобы они не могли существенно изменить низкотемпературные свойства.
В настоящем изобретении также предлагается полимерный эластомер, полученный из сшиваемой композиции, включающей описанный выше вулканизуемый фторуглеродный полимер. В случае соединений, содержащих галоидные группировки центров сшивки, сшиваемая композиция может включать также какой-либо инициатор радикальной полимеризации и какой-либо совулканизующий агент.Такие добавки предпочтительны, но не обязательны, поскольку сшивание может осуществляться, например, и при воздействии электронно-лучевой радиации.
Предпочтительным инициатором радикальной полимеризации является пероксид. К таким пероксидным вулканизующим агентам относятся органические и неорганические пероксиды. Предпочтительны органические пероксиды, в частности такие, которые не разлагаются при температурах динамического перемешивания. К числу приемлемых пероксидов относятся пероксид дикумила, 2,5-диметил-2,5-ди(трет-бутилперокси)гексан, ди-трет-бутилпероксид, трет-бутилпероксибензоат, 2,5-диметил-2,5-ди(трет-бутилперокси)гекс-3-ин и пероксид лауроила. Другие приемлемые вулканизующие агенты приведены в патенте США №5225504 (Татсу и др.) (Tatsu et al.). Используемые концентрации пероксидного вулканизующего агента, вообще говоря, лежат в интервале от 0,1 до 5 частей, а предпочтительно - от 1 до 3 частей на 100 частей невулканизованного фторполимера (т.е. фторуглеродного полимера).
При пероксидной вулканизации фторуглеродного полимера с использованием органического пероксида часто возникает необходимость в применении совулканизующего агента (например, соагента или сосшивающего агента). Использование такого совулканизующего агента хорошо известно специалистам в данной области. Примерами таких агентов могут служить три(метил)аллилизоцианурат, N,N'-м-фениленбисмалеимид, диаллилфталат, трис(диаллиламин)-сим-триазин, триаллилфосфит, 1,2-полибутадиен, диакрилат этилен гликоля, диакрилат диэтиленгликоля и т.д. Еще один используемый совулканизующий агент может быть представлен общей формулой CH2=CH-Rf1-СН=СН2, где Rf1 такой же, как описано выше. Такие совулканизующие агенты придают конечным вулканизованным эластомерам повышенную механическую прочность. Обычно их используют в количестве от 1 до 10 частей, а предпочтительно от 1 до 5 частей на 100 частей фторуглеродного полимера.
В случае нитрильных группировок центров сшивки сшиваемая композиция может содержать также одно или более веществ, активирующих тримеризацию нитрилов под действием тепла с образованием триазиновых колец. К их числу относятся металлоорганические соединения мышьяка, сурьмы и олова, описанные в патентах США №№3470176 (Золингер и др.) (Zollinger et al.) и 3546186 (Глэддинг и др.) (Gladding et al.), а также оксиды металлов, описанные в патенте США №3523118 (Эмерсон и др.) (Emerson et al.).
К другим соединениям, которые можно использовать для вулканизации фторуглеродных полимеров, содержащих нитрильные группировки центров сшивки, относятся бис(аминофенолы) общей формулы:
Figure 00000001
и тетрамины общей формулы
Figure 00000002
где А - это SO2, О, СО, алкильная группа (C1-C6), перфторированная алкильная группа (С110) или углерод-углеродная связь, связывающая два ароматических кольца. Такие соединения описаны в патенте США №4525539 (Файринг) (Feiring). Другие вулканизующие агенты или активаторы, которые могут быть использованы в композициях, содержащих фторуглеродные полимеры с нитрильными группировками центров сшивки, описаны в патентах США №№4005142 (Эверс) (Evers) и 4434106 (Россер и др.) (Rosser et al.).
Еще одним произвольным компонентом (предпочтительным компонентом для соединений, содержащих галоидные группировки центров сшивки) в вулканизуемой композиции является акцептор кислоты. Акцепторами кислоты могут быть неорганические или органические соединения. К числу органических акцепторов кислоты относятся стеарат натрия и оксалат магния. Тем не менее, обычно акцепторами кислоты служат неорганические основания, к которым относятся оксид магния, оксид свинца, оксид кальция, гидроокись кальция, двухосновный оксид свинца, оксид цинка, карбонат бария, гидроокись стронция, карбонат кальция и т.д. Предпочтительными акцепторами кислоты являются оксид цинка и гидроокись кальция. Акцепторы кислоты могут быть использованы сами по себе или в сочетании с другими соединениями и берутся в концентрациях от 1 до примерно 25 весовых частей на 100 частей полимера.
Вулканизуемая композиция может содержать также наполнители и красители. Наполнители можно смешивать с фторуглеродным полимером для улучшения литьевых характеристик и других свойств. Если используется наполнитель, то его можно добавлять в вулканизуемую композицию в количествах до 100 весовых частей на сто частей фторуглеродного полимера, а предпочтительно от 15 до 50 весовых частей на сто частей фторуглеродного полимера. Примерами используемых наполнителей могут служить, но ими не ограничиваются, активные термические сажи или несажевые пигменты со сравнительно низким усиливающим действием, такие как глины и тяжелые шпаты.
Вулканизуемые фторуглеродные полимерные композиции можно компаундировать или смешивать в одну или несколько стадий с помощью любых известных смесителей, таких как закрытые резиносмесители (например смесители Бенбери), валковые мельницы и т.д. Наилучшие результаты получаются, если температура смеси не поднимается выше 120°С. Для эффективного проведения вулканизации необходимо равномерно распределить компоненты и добавки в процессе перемешивания.
Затем смесь перерабатывают и формуют, например, экструзией (например, в форме шланга или камеры рукава) или литьем (например, в форме кольцевой прокладки). Потом формованное изделие можно нагреть с тем, чтобы вулканизовать резиновую смесь и получить вулканизованное каучуковое изделие.
Прессование компаундированной смеси (т.е. вулканизацию под давлением), как правило, проводят при температуре 95-230°С, предпочтительно 150-205°С, за время от 1 минуты до 15 часов, обычно от 1 до 10 минут. При формовании композиции, как правило, используют давление от 700 до 20000 кПа, предпочтительно около 3400-6800 кПа. Предварительно литьевые формы можно покрыть смазкой или термообработать.
Затем формованный вулканизат обычно довулканизовывают в печи при температуре 150-315°С, предпочтительно при температуре 200-260°С, в течение 2-50 часов или более, в зависимости от толщины поперечного сечения образца. Обычно для толстого сечения в ходе довулканизации температуру плавно повышают от нижнего предела интервала до нужной максимальной температуры. Предпочтительно использовать максимальную температуру 260°С и поддерживать ее около 4 часов или больше.
Ниже приводится описание изобретения со ссылками на следующие подробные примеры. Эти примеры призваны показать различные конкретные и иллюстративные примеры осуществления и методы настоящего изобретения. Тем не менее, следует понимать, что возможны многие изменения и отклонения в пределах существа настоящего изобретения.
Примеры
Следующие примеры описывают получение и исследование эластомерных сополимерных материалов, содержащих перфторированные эфирные звенья, и вулканизованных композиций настоящего изобретения. Приведенные результаты получены с помощью следующих методов испытаний.
Методы испытаний
Вязкость по Муни определяют методом ASTM 1646-94 (ML 1+10 при 121°С). Результаты представлены в единицах вязкости по Муни.
Исследование реологии вулканизации проводят на невулканизованных, компаундированных смесях с помощью вибрационного реометра Монсанто (с движущейся головкой), модель 2000, в соответствии с ASTM D 5289-95 при 177°С, без предварительного нагревания, с продолжительностью испытания 12 минут (если не указано другое) и дугой 0,5°. Представлены минимальный момент сопротивления сдвигу (ML), максимальный момент сопротивления сдвигу (МН), т.е. наивысший крутящий момент, достигнутый за указанный интервал времени, в течение которого не получено плато или максимума, и перепад моментов сопротивления сдвигу, ΔТ, т.е. (МH-ML). Кроме того, представлены: ts2 (время, за которое момент сопротивления сдвигу становится больше ML на 2 единицы), t'50 (время, за которое момент сопротивления сдвигу достигает значения ML+0,5[МН-ML]) и t'90 (время, за которое момент сопротивления сдвигу достигает значения ML+0,5[МН-ML]).
Для определения физических свойств смесей, вулканизованных под давлением (пластины 150×75×2,0 мм, если не указано другое), образцы отливают под давлением 6,9×103 кПа за указанное время и при указанной температуре.
Довулканизованные образцы получают, помещая образцы, вулканизованные под давлением, в воздушную сушилку. В этой сушилке поддерживают температуру 232°С и образцы в ней выдерживают в течение 16 часов.
Предел прочности при растяжении, относительное удлинение при разрыве и напряжение при удлинении на 100% определяют в соответствии с ASTM D 412-75 на образцах, вырубленных из 2-мм пластины с помощью штанцевого ножа D согласно ASTM. Результаты приведены в мегапаскалях (МПа).
Твердость определяют в соответствии с методом A ASTM D 2240-85 с помощью склероскопа Шора типа А-2. Результаты приведены в делениях.
Сокращение при низких температурах (TR-10) определяют в соответствии с ASTM D 1329-88 (подтвержден в 1993 г.), в качестве охлаждающей среды используют этанол. Результаты приведены в °С.
Остаточную деформацию при сжатии измеряют в соответствии с методом В ASTM D 395-89 на кольцевых образцах 0,139 дюйма (3,5 мм), вулканизованных под давлением в течение 70 часов при 200°С. Результаты приведены в %.
Температура стеклования
Температуру стеклования определяют в соответствии с ASTM E 1356-91 (подтвержденным в 1995 г.) или по российскому стандартному методу ГОСТ 12254-66, который коротко описан ниже. Этот метод предписывает измерение в условиях статического нагружения. Каучуковый цилиндр охлаждают со скоростью 1-5°С/мин до температуры на 10-20 градусов ниже ожидаемой температуры стеклования. Образец выдерживают при этой температуре до тех пор, пока он не замерзает, на что, как правило, уходит около 10 минут. Затем прикладывают нагрузку 5 кг и нагревают образцы со скоростью 1°С/мин. Температуру и деформацию регистрируют каждую минуту. Температуру, при которой начинается систематический прирост деформации, отмечают как температуру стеклования. За результат принимают значение, среднее по 5-10 измерениям.
Сополимер 1
Сополимер 1 получают в литровом реакторе из нержавеющей стали, снабженном магнитной мешалкой (3000 об/мин), двумя прецизионными клапанами для подачи компонентов в реактор, сифоном для отбора проб, термопарой, вакуумметром и термостатируемой рубашкой. Реактор вакуумируют и загружают в него 225 г деионизированной воды. Затем из стеклянной ампулы добавляют следующие ингредиенты: 92 г CF2=CFOCF2CF2(OCF2)4OCF3 (эфир), 2,0 г CF2=CFOCF2CF2 CF2OCF2CF2Br (галогенный центр сшивки); кроме того, в реактор загружают раствор 0,45 г инициатора [CF3CF2CF2OCF(CF3)СОО]2 в 6,9 г хладона 113. Затем из металлического цилиндра при перемешивании добавляют 23,8 г мономера ТФЭ и 30,1 г мономера ВДФ. Мольное соотношение загруженных мономеров ВДФ/ТФЭ/эфир/галогенный центр сшивки составляет 53,6/26,7/19,2/0,5 соответственно.
Реактор нагревают до 24°С и поднимают в нем давление до 16 атм. Полимеризацию проводят при 21-22°С. По ходу полимеризации давление снижается, и процесс останавливают, когда давление достигает постоянного значения 1,3 атм. Реактор охлаждают до комнатной температуры, прекращают перемешивание и выдувают газообразные продукты. Открывают реактор и отделяют сополимер, который весь коагулирует в ходе полимеризации. Сополимер тщательно промывают горячей водой, затем один раз промывают этанолом и высушивают при 60°С. Выход сополимера составляет 130 г. Свойства Сополимера 1 приведены в Таблице 2.
Сополимер 2
Сополимер 2 получают в литровом реакторе из нержавеющей стали, снабженном магнитной мешалкой (3000 об/мин), двумя прецизионными клапанами для подачи компонентов в реактор, сифоном для отбора проб, термопарой, вакуумметром и рубашкой, подсоединенной к термостату. Реактор вакуумируют и загружают в него 230 г деионизированной воды. Затем из стеклянной ампулы добавляют следующие ингредиенты: 93,6 г CF2=CFOCF2CF2(OCF2)4OCF3 (эфир), 1,98 г CF2=CFOCF2CF2 CF2OCF2CF2Br (галогенный центр сшивки); кроме того, в реактор загружают раствор 0,45 г инициатора [CF3CF2CF2OCF(CF3)СОО]2 в 6,9 г хладона 113. Затем из металлического цилиндра при перемешивании добавляют 24,0 г мономера ТФЭ и 30,7 г мономера ВДФ. Мольное соотношение загруженных мономеров ВДФ/ТФЭ/эфир/галогенный центр сшивки составляет 53,6/26,7/19,2/0,5 соответственно.
Реактор нагревают до 24°С и поднимают в нем давление до 17 атм. Полимеризацию проводят при 21-24°С. По ходу полимеризации давление снижается, и процесс останавливают, когда давление достигает постоянного значения 2,6 атм. Реактор охлаждают до комнатной температуры, прекращают перемешивание и выдувают газообразные продукты. Открывают реактор и отделяют сополимер, который весь коагулирует в ходе полимеризации. Сополимер тщательно промывают горячей водой, затем один раз промывают этанолом и высушивают при 60°С. Выход сополимера составляет 110 г. Свойства Сополимера 2 приведены в Таблице 2.
Сополимер 3
Сополимер 3 получают в 40-литровом реакторе из нержавеющей стали, снабженном предохранительным клапаном на давление 40 кг/см2, рубашкой для терморегулирования, мешалкой со скоростью вращения от 180 до 220 об/мин, сифоном для загрузки мономеров, термопарой, вакуумметром и нижним выпускным клапаном. Реактор вакуумируют и загружают в него 22,1 кг деионизированной воды, 1,4 кг хладона 113 и 8 г [CF3CF2CF2OCF(CF3)СОО]2 в 39 г хладона 113. Затем из цилиндра из нержавеющей стали в течение одного часа при перемешивании, постоянной температуре 30°С и давлении 17,5 атм. добавляют смесь 3,25 кг ВДФ, 1,55 кг ТФЭ, 7,27 кг CF2=CFOCF2CF2(OCF2)4OCF3 и 0,065 кг CF2=CFBr. Мольное соотношение загруженных мономеров ВДФ/ТФЭ/эфир/галогенный центр сшивки составляет 61,7/19,1/18,7/0,5 соответственно. Реакция протекает при этой температуре до тех пор, пока давление не упадет до 1 атм. Общая продолжительность реакции составляет 19 часов.
Реактор охлаждают до комнатной температуры и выдувают газообразные продукты. Открывают реактор и отделяют сополимер, который весь коагулирует в ходе полимеризации. Сополимер тщательно промывают горячей водой (70°С) и высушивают под вакуумом при 60°С. Выход сополимера составляет 7,7 кг. Свойства Сополимера 3 приведены в Таблице 2.
Сополимер 4
Сополимер 4 получают в 40-литровом реакторе из нержавеющей стали, снабженном предохранительным клапаном на давление 40 кг/см2, рубашкой для терморегулирования, мешалкой со скоростью вращения от 180 до 220 об/мин, сифоном для загрузки мономеров, термопарой, вакуумметром и нижним выпускным клапаном. Реактор вакуумируют и загружают в него 22,1 кг деионизированной воды, 1,4 кг хладона 113 и 8 г [CF3CF2CF2OCF(CF3)СОО]2 в 39 г хладона 113. Затем из цилиндра из нержавеющей стали в течение одного часа при перемешивании, постоянной температуре 35°С и давлении 17,5 атм. добавляют смесь 3,25 кг ВДФ, 1,55 кг ТФЭ, 7,27 кг CF2=CFOCF2CF2(OCF2)4OCF3 и 0,065 кг CF2=CFBr. Мольное соотношение загруженных мономеров ВДФ/ТФЭ/эфир/галогенный центр сшивки составляет 61,7/19,1/18,7/0,5 соответственно. Реакция протекает при этой температуре до тех пор, пока давление не упадет до 1 атм. Общая продолжительность реакции составляет 16 часов.
Реактор охлаждают до комнатной температуры и выдувают газообразные продукты. Открывают реактор и отделяют сополимер, который весь коагулирует в ходе полимеризации. Сополимер тщательно промывают горячей водой (70°С) и высушивают под вакуумом при 60°С. Выход сополимера составляет 9,7 кг. Свойства Сополимера 4 приведены в Таблице 2.
Таблица 2
Полимер 1 2 3 4
Tg(a),°С -92 -90 -83 -81
Tg(b), °C -80 -80 -78 -72
Соотношение О/С 0,33 0,31 0,28 0,28
Вязкость по Муни 35 29 37 48
Состав, мол.%
ВДФ 53,6 55,5 58,8 61,8
ТФЭ 28,0 28,0 23,7 20,9
Эфир 18,0 16,0 17,0 16,7
Группировка центра сшивки 0,4 0,5 0,5 0,6
а) в соответствии с российским стандартным методом по ГОСТ 12254-66
b) в соответствии c ASTM E1356-91 при скорости сканирования 20°С/мин
Примеры 1-4
В нижеследующих примерах составы приведены в пересчете на 100 частей сополимера. Количества вулканизующих агентов и других добавок приведены в частях на сто частей каучука или сополимера. Рецептуры и результаты испытаний сведены в Таблицу 3.
Figure 00000003
Figure 00000004
Сополимер 5
Сополимер 5 получают в 40-литровом реакторе из нержавеющей стали, снабженном предохранительным клапаном на давление 40 кг/см2, рубашкой для терморегулирования, мешалкой со скоростью вращения от 180 до 220 об/мин, сифоном для загрузки мономеров, термопарой, вакуумметром и нижним выпускным клапаном. Реактор вакуумируют и загружают в него 13 кг деионизированной воды и водный раствор, содержащий, в общей сложности, 190 г перфторгептаноата аммония и перфтороктаноата аммония, взятых в весовом соотношении 60/40. Затем добавляют водный раствор 13 г персульфата аммония. Затем из цилиндра из нержавеющей стали при перемешивании добавляют смесь 2,1 кг ВДФ, 4,27 кг CF2=CFOCF2CF2(OCF2)4OCF3 и 0,17 кг CF2=CFO(CF2)3OCF(CF3)CN. Мольное соотношение загруженных мономеров ВДФ / эфир / нитрильный центр сшивки составляет 75,3/23,7/1,0 соответственно. Затем температуру повышают до 60°С, отчего давление повышается до 28,7 атм. Реакция протекает до тех пор, пока давление не упадет до 1 атм. Общая продолжительность реакции составляет 12 часов.
Реактор охлаждают до комнатной температуры и выдувают газообразные продукты. Латекс удаляют через нижний выпускной клапан, коагулируют раствором MgCl2, промывают горячей водой (70°С) и высушивают под вакуумом при 60°С. Выход полимера составляет 4,0 кг. Свойства Сополимера 5 приведены в Таблице 4.
Сополимер 6
Сополимер 6 получают в 40-литровом реакторе из нержавеющей стали, снабженном предохранительным клапаном на давление 40 кг/см2, рубашкой для терморегулирования, мешалкой со скоростью вращения от 180 до 220 об/мин, сифоном для загрузки мономеров, термопарой, вакуумметром и нижним выпускным клапаном. Реактор вакуумируют и загружают в него 13 кг деионизированной воды и водный раствор, содержащий, в общей сложности, 190 г перфторгептаноата аммония и перфтороктаноата аммония, взятых в весовом соотношении 60/40. Затем добавляют водный раствор 13 г персульфата аммония. Затем из цилиндра из нержавеющей стали при перемешивании добавляют смесь 2,0 кг ВДФ, 4,1 кг CF2=CFOCF2CF2(OCF2)4OCF3 и 0,24 кг CF2=CFO(CF2)3OCF(CF3)CN. Мольное соотношение загруженных мономеров ВДФ / эфир / нитрильный центр сшивки составляет 74,8/23,7/1,5 соответственно. Затем температуру повышают до 60°С, отчего давление повышается до 23,6 атм. Реакция протекает до тех пор, пока давление не упадет до 1 атм. Общая продолжительность реакции составляет 19 часов.
Реактор охлаждают до комнатной температуры и выдувают газообразные продукты. Латекс удаляют через нижний выпускной клапан, коагулируют раствором MgCl2, промывают горячей водой (70°С) и высушивают под вакуумом при 60°С. Выход полимера составляет 3,9 кг. Свойства Сополимера 6 приведены в Таблице 4.
Сополимер 7
Сополимер 7 получают в 40-литровом реакторе из нержавеющей стали, снабженном предохранительным клапаном на давление 40 кг/см2, рубашкой для терморегулирования, мешалкой со скоростью вращения от 180 до 220 об/мин, сифоном для загрузки мономеров, термопарой, вакуумметром и нижним выпускным клапаном. Реактор вакуумируют и загружают в него 21 кг деионизированной воды и водный раствор, содержащий, в общей сложности, 315 г перфторгептаноата аммония и перфтороктаноата аммония, взятых в весовом соотношении 60/40. Затем добавляют водный раствор 21 г персульфата аммония. Затем из цилиндра из нержавеющей стали при перемешивании и температуре 65°С добавляют смесь 2,6 кг ВДФ, 1,1 кг ТФЭ, 6,5 кг CF2=CFOCF2CF2(OCF2)4OCF3 и 0,39 кг CF2=CFO(CF2)3OCF(CF3)CN. Мольное соотношение загруженных мономеров ВДФ/ТФЭ/эфир/нитрильный центр сшивки составляет 59,4/16,1/23,0/1,5 соответственно. В процессе полимеризации давление 4 атм. поддерживают, регулируя скорость подачи мономеров. После того, как добавляют весь мономер и давление падает до 1 атм., реакцию останавливают. Общая продолжительность реакции составляет 57 часов.
Реактор охлаждают до комнатной температуры и выдувают газообразные продукты. Латекс удаляют через нижний выпускной клапан, коагулируют раствором MgCl2, промывают горячей водой (70°С) и высушивают под вакуумом при 60°С. Выход полимера составляет 6,0 кг. Свойства Сополимера 7 приведены в Таблице 4.
Таблица 4
Полимер 5 6 7
Tg(a), °С -73 -76 -79
Tg(b), °C -66 -66 -66
Соотношение О/С 0,29 0,29 0,31
Вязкость по Муни 11 4 2
Состав, мол.%
ВДФ 76,2 76,2 60,0
ТФЭ - - 14,2
Эфир 22,7 22,5 24,0
Группировка центра сшивки 1,1 1,3 1,8
а) в соответствии с российским стандартным методом по ГОСТ 12254-66
b) в соответствии c ASTM E1356-91 при скорости сканирования 20°С/мин
Примеры 5-7
В нижеследующих примерах составы приведены в пересчете на 100 частей сополимера. Количества вулканизующих агентов и других добавок приведены в частях на сто частей каучука или сополимера. Рецептуры и результаты испытаний сведены в Таблицу 5.
Figure 00000005
Figure 00000006
Figure 00000007
Результаты, приведенные в Таблицах 3 и 5, показывают, что композиции настоящего изобретения могут быть использованы для получения вулканизованных образцов, имеющих практическую ценность.
Полное описание всех процитированных здесь патентов, патентной документации и публикаций инкорпорированы путем отсылки. Представленные выше подробное описание и примеры приведены только для ясности и лучшего понимания. Из них не следует выводить необязательных ограничений. Настоящее изобретение не ограничивается описанными конкретными подробностями, поскольку различные изменения, очевидные специалистам в данной области, включены в настоящее изобретение и определены Формулой изобретения.

Claims (12)

1. Фторуглеродный полимер, включающий
повторяющиеся звенья, полученные из одного или нескольких перфторированных простых эфиров общей формулы I:
CF2=CFO-(CF2)m-(O(CF2)p)n-ORf1,
где Rf1 - перфторированная алкильная группа (С1-С4);
m=1-4;
n-0-6;
р=1-2,
а также повторяющиеся звенья, полученные из винилиденфторида; и, кроме того, возможно достаточное количество группировок центров сшивки, полученных из одного или нескольких соединений общих формул:
(1) СХ2=СХ(Z), где
(i) X - H или F;
(ii) Z - Br, I или Rf2U, где U - это Br, I или CN, a Rf2 - это двухвалентная перфторированная связующая группа, возможно содержащая атомы О;
(2) Y(CF2)qY, где
(i) Y - Br или I;
(ii) q=1-6
при этом температура стеклования полимера составляет -50°С или ниже, а соотношение кислород:углерод, по крайней мере, около 0,2.
2. Фторуглеродный полимер по п.1, отличающийся тем, что содержит 0,2 - 5 мол.% группировок центров сшивки.
3. Фторуглеродный полимер по п.1 или 2, отличающийся тем, что содержит 50-80 мол.% повторяющихся звеньев, полученных из винилиденфторида, и 10-50 мол.% повторяющихся звеньев, полученных из перфторированного простого эфира по Формуле I.
4. Фторуглеродный полимер по п.1 или 2, отличающийся тем, что содержит не более 30 мол.% повторяющихся звеньев, полученных из фторированного моноолефина, отличного от винилиденфторида и перфторированного винилового простого эфира по формуле I.
5. Фторуглеродный полимер по п.4, отличающийся тем, что в качестве фторированного моноолефина использован тетрафторэтилен.
6. Фторуглеродный полимер по п.2, отличающийся тем, что содержит группировки центров сшивки, полученные из одного или нескольких соединений, отобранных из группы, включающей: CF2=CFBr, ICF2CF2CF2CF2I, BrCF2CF2Br, CF2=CFO(CF2)3-CF2CF2Br, CH2=CHCF2CF2Br, и их смеси, и из одного или нескольких соединений общей формулы: CF2=CFO(CF2)rOCF(CF3)CN, где r=2-5.
7. Полимерный эластомер, полученный из вулканизуемой композиции, включающей фторуглеродный полимер по п.2, инициатор свободно радикальной полимеризации и, возможно, совулканизующий агент.
8. Полимерный эластомер по п.7, отличающийся тем, что инициатор свободно радикальной полимеризации содержит пероксидный инициатор, а совулканизующий агент содержит триаллилизоцианурат.
9. Изделие, включающее полимерный эластомер по п.7 и имеющее форму сальника, шланга, диафрагмы или покрытия.
10. Способ получения полимерного эластомера, включающий следующие стадии:
(а) создание вулканизуемой композиции, включающей фторуглеродный полимер по п.2, возможно, инициатор свободно радикальной полимеризации и, возможно, совулканизующий агент;
(б) воздействие на вулканизуемую композицию условий, приводящих к, по крайней мере, частичной ее вулканизации, включая воздействие радиацией, или нагреванием, или, возможно, давлением.
11. Способ по п.10, отличающийся тем, что стадия (б) включает нагревание и прессование или включает облучение композиции.
12. Полимерный эластомер, включающий, по крайней мере, частично сшитый фторуглеродный полимер по п.1 или 2.
RU2001105952/04A 1998-08-31 1999-07-21 Низкотемпературные фторуглеродные эластомеры RU2261871C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9846198P 1998-08-31 1998-08-31
US60/098,461 1998-08-31

Publications (2)

Publication Number Publication Date
RU2001105952A RU2001105952A (ru) 2003-11-20
RU2261871C2 true RU2261871C2 (ru) 2005-10-10

Family

ID=22269374

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001105952/04A RU2261871C2 (ru) 1998-08-31 1999-07-21 Низкотемпературные фторуглеродные эластомеры

Country Status (8)

Country Link
US (1) US6294627B1 (ru)
EP (1) EP1117710B1 (ru)
JP (1) JP4570780B2 (ru)
CN (1) CN1147514C (ru)
CA (1) CA2341460A1 (ru)
DE (1) DE69913550T2 (ru)
RU (1) RU2261871C2 (ru)
WO (1) WO2000012574A1 (ru)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255536B1 (en) 1999-12-22 2001-07-03 Dyneon Llc Fluorine containing vinyl ethers
US20030153702A1 (en) * 1999-12-29 2003-08-14 Ameduri Bruno Michel Fluorinated elastomers with low glass transition temperatures based on vinylidene fluoride and free of tetrafluoroethylene or siloxane group
US7534845B2 (en) 2000-04-21 2009-05-19 Solvay Solexis S.P.A. Fluorovinyl ethers and polymers obtainable therefrom
IT1318487B1 (it) * 2000-04-21 2003-08-25 Ausimont Spa Fluoroelastomeri.
IT1318488B1 (it) 2000-04-21 2003-08-25 Ausimont Spa Fluorovinileteri e polimeri da essi ottenibili.
US7351471B2 (en) 2000-12-06 2008-04-01 3M Innovative Properties Company Fluoropolymer coating compositions with multifunctional fluoroalkyl crosslinkers for anti-reflective polymer films
CA2328433A1 (fr) * 2000-12-20 2002-06-20 Hydro-Quebec Elastomeres nitriles fluorosulfones reticulables a faible tg a base de fluorure de vinylidene et ne contenant ni du tetrafluoroethylene ni de groupement siloxane
US6730760B2 (en) * 2001-01-31 2004-05-04 3M Innovative Properties Company Perfluoroelastomers having a low glass transition temperature and method of making them
US6890995B2 (en) * 2001-01-31 2005-05-10 3M Innovative Properties Company Fluoropolymer compositions
US6794457B2 (en) * 2001-04-30 2004-09-21 3M Innovative Properties Company Fluoropolymer curing system containing a nitrogen cure site monomer
US7060772B2 (en) * 2001-09-20 2006-06-13 3M Innovative Properties Company Fluoropolymers from tetrafluoroethylene and perfluoro(alkoxyalkyl vinyl) ether
ITMI20012165A1 (it) * 2001-10-18 2003-04-18 Ausimont Spa Perfluoroelastomeri
ITMI20012164A1 (it) * 2001-10-18 2003-04-18 Ausimont Spa Fluoroelastomeri
US6995121B1 (en) 2002-06-24 2006-02-07 Seagate Technology Llc Stability polymeric lubricants and thin film recording media comprising same
JP4430541B2 (ja) * 2002-09-12 2010-03-10 スリーエム イノベイティブ プロパティズ カンパニー 耐透過性が改良されたフルオロエラストマーおよびその製造方法
US6846542B1 (en) 2002-09-30 2005-01-25 Seagate Technology Llc UV treatment for improving performance of lubricated thin film recording media and media obtained thereby
US7304115B2 (en) * 2003-12-30 2007-12-04 3M Innovative Properties Company Fluoropolymer coagulation method and composition
ITMI20041573A1 (it) 2004-07-30 2006-01-31 Solvay Solexis Spa Fluoroelastomeri
JP2006117745A (ja) * 2004-10-20 2006-05-11 Three M Innovative Properties Co フルオロエラストマー含有組成物からなるシール材料
US20060105285A1 (en) * 2004-11-17 2006-05-18 Naiyong Jing Nonelastomeric dental article with a protective fluoropolymer layer
US20060105179A1 (en) * 2004-11-17 2006-05-18 Hofman Gerald R A Elastomeric dental article with a protective fluoropolymer layer
US20060104806A1 (en) * 2004-11-18 2006-05-18 Giesler William L Low friction O-ring for use in a carbon face seal
US7402630B2 (en) * 2004-12-16 2008-07-22 3M Innovative Properties Company Curing compositions for fluoropolymers
US7300985B2 (en) * 2004-12-21 2007-11-27 3M Innovative Properties Company Fluoropolymers having pendant amidoxime or amidrazone structures
US7323514B2 (en) 2004-12-30 2008-01-29 3M Innovative Properties Company Low refractive index fluoropolymer coating compositions for use in antireflective polymer films
DE102005039145A1 (de) * 2005-05-20 2006-11-23 Grünenthal GmbH Substituierte benzokondensierte Cyclohexanon-Derivate und deren Verwendung zur Herstellung von Arzneimitteln
US7294677B2 (en) * 2005-08-25 2007-11-13 3M Innovative Properties Company Catalyst for making fluoroelastomer compositions and methods of using the same
US20070088143A1 (en) * 2005-10-19 2007-04-19 Ming-Hong Hung Alpha, alpha-dihydrofluorovinyl ethers, homopolymers and copolymers thereof
TW200734699A (en) 2005-11-05 2007-09-16 3M Innovative Properties Co Optical films comprising high refractive index and antireflective coatings
ITMI20060083A1 (it) * 2006-01-19 2007-07-20 Solvay Solexis Spa Fluoroelastomeri
US9134461B2 (en) * 2006-03-27 2015-09-15 Essilor International (Compagnie Generale D'optique) Edging process of lens using transparent coating layer for protecting lens
US8044125B2 (en) * 2007-04-06 2011-10-25 Unimatec Co., Ltd. Fluorine-containing polyethel compound, process for producing the same, and curable composition containing the same
JP5439915B2 (ja) 2009-04-09 2014-03-12 ユニマテック株式会社 硬化性含フッ素ポリエーテル組成物
WO2010151610A2 (en) 2009-06-25 2010-12-29 3M Innovative Properties Company Curing compositions for fluoropolymers
EP2278325A1 (en) * 2009-07-13 2011-01-26 Spark Holland B.V. Flow through cartridge for selecting an analyte online with high performance liquid chromatography
GB0917450D0 (en) * 2009-10-06 2009-11-18 3M Innovative Properties Co Triazine containing fluoropolyether elastomers having very low glass transition temperatures, compositions containing them and methods of making them
US9110200B2 (en) 2010-04-16 2015-08-18 Flex Lighting Ii, Llc Illumination device comprising a film-based lightguide
WO2013070723A1 (en) 2011-11-09 2013-05-16 3M Innovative Properties Company Curing compositions for fluoropolymers
CN105683307A (zh) 2013-04-18 2016-06-15 3M创新有限公司 内埋的粘土/纳米二氧化硅静电耗散涂层
US20150073111A1 (en) * 2013-09-10 2015-03-12 E I Du Pont De Nemours And Company Fluoroelastomers having secondary cyano group cure sites
JP6773560B2 (ja) * 2014-03-06 2020-10-21 スリーエム イノベイティブ プロパティズ カンパニー 高フッ素化エラストマー
CN107001761B (zh) 2014-12-08 2020-06-16 3M创新有限公司 丙烯酸聚乙烯醇缩醛膜、组合物以及热粘结性制品
EP3256499B1 (en) 2015-02-12 2018-12-05 3M Innovative Properties Company Tetrafluoroethylene copolymers having sulfonyl groups
DK3256501T3 (en) 2015-02-12 2019-03-18 3M Innovative Properties Co TETRAFLUORETHYLEN / HEXAFLUORPROPYLEN COPOLYMERS INCLUDING PERFLUORAL COXYALKYL GROUPS AS PREPARATIONS AND METHODS OF PRODUCTION AND USE PROCEDURES
US10730980B2 (en) 2015-02-12 2020-08-04 3M Innovative Properties Company Tetrafluoroethylene/hexafluoropropylene copolymers including perfluoroalkoxyalkyl pendant groups
WO2016160252A1 (en) 2015-03-30 2016-10-06 3M Innovative Properties Company Microstructured optical film comprising low refractive index layer disposed on base film substrate
EP3337844A1 (en) 2015-08-20 2018-06-27 3M Innovative Properties Company Functionalized polyester polymers and film articles
EP3353221B1 (en) 2015-09-23 2023-06-07 3M Innovative Properties Company Method of making a copolymer of tetrafluoroethylene having sulfonyl pendant groups
CN108137880A (zh) 2015-10-13 2018-06-08 3M创新有限公司 含氟聚合物加工添加剂、组合物和方法
EP3365389A4 (en) 2015-10-23 2019-05-29 3M Innovative Properties Company COMPOSITION WITH AMORPHIC FLUOROPOLYMER AND FLUOROON PLASTIC PARTICLES AND METHOD FOR THE PRODUCTION THEREOF
EP3374429A1 (en) 2015-11-13 2018-09-19 3M Innovative Properties Company Compositions including a bimodal blend of amorphous fluoropolymers and their uses
JP6920303B2 (ja) 2015-12-22 2021-08-18 スリーエム イノベイティブ プロパティズ カンパニー 構造化層を備えたアクリルフィルム
JP2019502574A (ja) 2015-12-22 2019-01-31 スリーエム イノベイティブ プロパティズ カンパニー 第2の層を備えたアクリルポリビニルアセタールフィルム
WO2017112537A1 (en) 2015-12-22 2017-06-29 3M Innovative Properties Company Acrylic polyvinyl acetal films comprising an adhesive layer
AU2016378200B2 (en) 2015-12-22 2019-08-15 3M Innovative Properties Company Acrylic polyvinyl acetal graphic films
WO2017127569A1 (en) 2016-01-21 2017-07-27 3M Innovative Properties Company Additive processing of fluoroelastomers
TW201815845A (zh) 2016-05-17 2018-05-01 3M新設資產公司 包括二氟亞乙烯與四氟乙烯的共聚物之組成物及其使用方法
US20190344496A1 (en) 2016-12-20 2019-11-14 3M Innovative Properties Company Composition including fluoropolymer and inorganic filler and method of making a three-dimensional article
EP3681949A4 (en) 2017-09-14 2021-07-14 3M Innovative Properties Company FLUORINATED COPOLYMER AND COMPOSITIONS AND ARTICLES USING IT
EP3728177B1 (en) 2017-12-21 2022-04-20 3M Innovative Properties Company Methods of making polyfunctional polyfluorinated compounds
RU2018141773A (ru) 2018-11-27 2020-05-27 3М Инновейтив Пропертиз Компани Композиции полимерных процессинговых добавок и изделия, полученные с использованием указанных композиций
TW202033573A (zh) 2018-12-17 2020-09-16 美商3M新設資產公司 包括可固化氟聚合物及固化劑之組成物及製造及使用其之方法
WO2020183306A1 (en) 2019-03-12 2020-09-17 3M Innovative Properties Company Dispersible perfluorosulfonic acid ionomer compositions
EP3980433A1 (en) 2019-06-04 2022-04-13 3M Innovative Properties Company Multifunctional fluorinated compound, fluorinated polymers made from the compound, and related methods
CN114302913A (zh) 2019-09-05 2022-04-08 3M创新有限公司 包含含氟聚合物和支链倍半硅氧烷聚合物的组合物和制品
WO2021111342A1 (en) 2019-12-02 2021-06-10 3M Innovative Properties Company Dispersible particles of perfluorosulfonic acid ionomer
WO2021127074A1 (en) * 2019-12-17 2021-06-24 The Chemours Company Fc, Llc Ultra-low temperature elastomeric fluoropolymer compositions and processes for preparing the same
WO2021127346A1 (en) 2019-12-20 2021-06-24 3M Innovative Properties Company Fluorinated copolymer and compositions and articles including the same
EP4081498A1 (en) 2019-12-23 2022-11-02 3M Innovative Properties Company Process of making fluoroolefins by thermal decomposition of fluorinated ionomers
US20230026338A1 (en) 2019-12-30 2023-01-26 3M Innovative Properties Company Composition Including Fluoropolymer, Benzoyl Peroxide, and Crosslinker and Related Articles and Methods
WO2021205406A1 (en) 2020-04-09 2021-10-14 3M Innovative Properties Company Composite including fluorinated polymer and salt nanoparticles and articles including the same
WO2021214664A1 (en) 2020-04-21 2021-10-28 3M Innovative Properties Company Particles including polytetrafluoroethylene and process for making a three-dimensional article
US20230279192A1 (en) 2020-06-08 2023-09-07 3M Innovative Properties Company Process for recycling a solid article including a fluorinated polymer
WO2022180547A1 (en) 2021-02-26 2022-09-01 3M Innovative Properties Company Process for making a fluoropolymer and fluoropolymer made therefrom
WO2022189938A1 (en) 2021-03-10 2022-09-15 3M Innovative Properties Company Branched silsesquioxane polymer and compositions and articles including the same
WO2023057926A1 (en) 2021-10-07 2023-04-13 3M Innovative Properties Company Composite including fluorinated polymer and lithium fluoride nanoparticles and articles including the same
WO2023111750A1 (en) 2021-12-13 2023-06-22 3M Innovative Properties Company Process for recycling a solid article including a fluorinated polymer
WO2023224824A1 (en) 2022-05-17 2023-11-23 Dupont Specialty Products Usa, Llc Method of making halo (alkyl vinyl) ether monomers and fluorinated polymers made with the halo (alkyl vinyl) ether monomer

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3450684A (en) * 1963-07-24 1969-06-17 Du Pont Fluorocarbon polyethers
GB1145445A (en) 1966-02-16 1969-03-12 Du Pont Fluorinated perfluorovinylethers, their preparation and copolymers thereof
US3470176A (en) 1967-03-10 1969-09-30 Minnesota Mining & Mfg Catalyzed nitrile trimerization process
US3523118A (en) 1967-05-01 1970-08-04 Hooker Chemical Corp Perfluoroalkyl-s-triazines
US3632788A (en) 1968-11-25 1972-01-04 Minnesota Mining & Mfg Perfluoro olefin vinylidene fluoride elastomer product and process
CA950923A (en) 1971-03-29 1974-07-09 E. I. Du Pont De Nemours And Company Polymers of perfluorovinyl ethers
US4005142A (en) 1975-09-04 1977-01-25 The United States Of America As Represented By The Secretary Of The Air Force Fluorocarbon ether bis(o-aminophenol) compounds
JPS5718710A (en) * 1980-07-08 1982-01-30 Asahi Glass Co Ltd Copolymer capable of giving elastomer containing fluorine having improved cold and oil resistance
JPS57109810A (en) 1980-12-26 1982-07-08 Asahi Glass Co Ltd Copolymer giving fluorine-containing elastomer with cold and alcohol resistance
US4434106A (en) 1982-04-06 1984-02-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Process for preparing perfluorotriazine elastomers and precursors thereof
US4525539A (en) 1982-12-02 1985-06-25 E. I. Du Pont De Nemours And Company Vulcanizable nitrile-containing perfluoroelastomer
US4529784A (en) * 1983-07-11 1985-07-16 E. I. Du Pont De Nemours And Company Fluorinated copolymers with improved cure site
JPS6150486A (ja) * 1984-08-20 1986-03-12 Victor Co Of Japan Ltd 円盤状情報信号記録媒体再生装置
DE3863965D1 (de) 1987-04-25 1991-09-05 Daikin Ind Ltd Fluorierte vinylaether.
JPH0822829B2 (ja) * 1987-04-25 1996-03-06 ダイキン工業株式会社 新規フルオロビニルエーテル及びその共重合体
US4912171A (en) 1988-04-01 1990-03-27 Minnesota Mining And Manufacturing Company Fluoroelastomer curing process with phosphonium compound
US5214106A (en) 1991-05-22 1993-05-25 E. I. Du Pont De Nemours And Company Cured fluoroelastomer compositions
JP3259317B2 (ja) 1992-02-14 2002-02-25 日本メクトロン株式会社 パ−オキサイド加硫可能な含フッ素エラストマ−の製造方法
US5268405A (en) 1993-03-31 1993-12-07 E. I. Du Pont De Nemours And Company Low temperature perfluoroelastomers
JP3599390B2 (ja) 1994-11-04 2004-12-08 日本メクトロン株式会社 パーフルオロ不飽和ニトリル化合物およびその製造法
JP3327016B2 (ja) * 1994-12-06 2002-09-24 ダイキン工業株式会社 低温シール性に優れたフッ素ゴム共重合体及びその硬化用組成物
DE19542501A1 (de) * 1995-11-15 1997-05-22 Bayer Ag Peroxidisch vernetzbare Fluorkautschuke, ein Verfahren zu deren Herstellung und deren Verwendung
US5891965A (en) * 1997-01-06 1999-04-06 Dyneon Llc Low temperature perfluoroether-containing fluoroelastomers

Also Published As

Publication number Publication date
JP4570780B2 (ja) 2010-10-27
DE69913550T2 (de) 2004-09-23
CN1147514C (zh) 2004-04-28
JP2002523576A (ja) 2002-07-30
DE69913550D1 (de) 2004-01-22
EP1117710A1 (en) 2001-07-25
CN1321170A (zh) 2001-11-07
WO2000012574A1 (en) 2000-03-09
EP1117710B1 (en) 2003-12-10
US6294627B1 (en) 2001-09-25
CA2341460A1 (en) 2000-03-09

Similar Documents

Publication Publication Date Title
RU2261871C2 (ru) Низкотемпературные фторуглеродные эластомеры
US4564662A (en) Fluorocarbon elastomer
JP5844733B2 (ja) 低温硬化性非晶質フルオロポリマー
CA2020854C (en) New fluoroelastomers endowed with improved processability and process for preparing them
KR940000016B1 (ko) 경화성 플루오로엘라스토머의 제조방법 및 제품
JP5084998B2 (ja) フルオロエラストマー組成物およびそれから作製される物品
JPH0157126B2 (ru)
JPH04288305A (ja) パーオキサイド加硫可能な含フッ素エラストマ−の製造方法
JP2002507640A (ja) ペルフルオロエラストマ組成物
JPS6212734A (ja) 新規フルオロビニルエ−テルおよびそれを含む共重合体
JP2007517964A (ja) 低温特性の改良されたフルオロエラストマーおよびその製造方法
JP4321922B2 (ja) フルオロエラストマー
JP4430541B2 (ja) 耐透過性が改良されたフルオロエラストマーおよびその製造方法
EP1539844B1 (en) Fluoropolymers having improved compression set
US4774302A (en) Process for producing peroxide-vulcanizable, fluorine-containing elastomer
JPH0762056B2 (ja) 新規非結晶性含フッ素共重合体
JPH0157125B2 (ru)
JP2004527596A (ja) 低いガラス転移温度を有するペルフルオロエラストマーおよびそれらの製造方法
WO2009086068A2 (en) Low temperature curable amorphous fluoropolymers
JPS5930167B2 (ja) 含フツ素エラストマ−の製法
JP2541183B2 (ja) 非結晶性含フッ素共重合体
JPS6019325B2 (ja) 耐薬品・耐溶剤性含フツ素エラストマ−の製造方法
JPS5952645B2 (ja) 含フツ素エラストマ−を製造する方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090722