RU2117677C1 - Способ получения каталитической системы для (со)полимеризации олефинов, способ (со)полимеризации олефинов и (со)полимер, полученный этим способом - Google Patents

Способ получения каталитической системы для (со)полимеризации олефинов, способ (со)полимеризации олефинов и (со)полимер, полученный этим способом Download PDF

Info

Publication number
RU2117677C1
RU2117677C1 RU93043995/04A RU93043995A RU2117677C1 RU 2117677 C1 RU2117677 C1 RU 2117677C1 RU 93043995/04 A RU93043995/04 A RU 93043995/04A RU 93043995 A RU93043995 A RU 93043995A RU 2117677 C1 RU2117677 C1 RU 2117677C1
Authority
RU
Russia
Prior art keywords
neutral metallocene
formula
ionizing agent
metallocene
olefin
Prior art date
Application number
RU93043995/04A
Other languages
English (en)
Other versions
RU93043995A (ru
Inventor
Зандона Никол (IT)
Зандона Николя
Original Assignee
Солвей Полиолефинс Юроп - Бельгиум
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Солвей Полиолефинс Юроп - Бельгиум filed Critical Солвей Полиолефинс Юроп - Бельгиум
Publication of RU93043995A publication Critical patent/RU93043995A/ru
Application granted granted Critical
Publication of RU2117677C1 publication Critical patent/RU2117677C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/63908Component covered by group C08F4/62 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/63912Component covered by group C08F4/62 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/63916Component covered by group C08F4/62 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/6392Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/63922Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Способ получения каталитической системы, по которому готовят смесь нейтрального галогенизированного металлоценового производного переходного металла, выбранного из групп IIIB, IVB, VB и VIB, Периодической таблицы и алюминийорганического соединения и добавляют в нее ионизирующий агент. Способ (со) полимеризации олефинов, по которому готовят смесь галогенизированного нейтрального металлоцена такого, каким он определен выше и алюминийорганического соединения, в смесь вводят олефин и добавляют в нее ионизирующий агент. (Со)-полимер, по крайней мере, одного олефина, полученный выше указанным способом, содержит максимально 0,5%мас.олигомеров, имеющий распределение молекулярной массы с отношением MwMn, равным от 2 до 10, где Mw и Mn обозначают соответственно средневесовой молекулярный вес и среднечисловой молекулярный вес и содержание переходного металла менее 5 ррм мас. Способ позволяет получить ионные каталические системы с использованием металлоценов на носителе, избегая применения негалогенированных металлоценов на носителе, избегая применения негалогенированных полиметилированных неустойчивых металлоценов. 3 с. и 28 з.п. ф-лы.

Description

Изобретение касается способа получения каталитической системы для (со)полимеризации не менее одного олефина, содержащей нейтральное металлоценовое производное переходного металла, при необходимости нанесенное на двуокись кремния, органоалюминиевое соединение и ионизирующий агент.
Изобретение касается также способа (со)полимеризации олефинов, например, этилена и пропилена.
Известен из заявки на европатент EP-426638 (FINA TECHNOLOGY INC.) способ получения каталитической системы и способ (со) полимеризации олефинов, по которому смешивают олефин с алюминийорганическим соединением и затем добавляют в смесь катализатор.
Согласно этому способу катализатор получают путем смешивания ионизирующего агента, в частности, тетракис(пентафторфенил) бората трифенилкарбония с нейтральным металлоценовым производным переходного металла и выбранным из производных циклопентадиена, индена и флуорена. Несмотря на то, что в известном способе описаны галогенированные металлоцены, примерами подтверждены только диметилированные не содержащие галогена металлоцены.
Полиметилированные не содержащие галогена металлоцены являются, как правило, неустойчивыми продуктами, получение которых связано с трудоемким синтезом. При этом было замечено, что катализаторы, полученные с использованием полиметилированных металлоценов, не содержащих галогена, особенно неустойчивы и при использовании их для полимеризации олефинов их активность быстро уменьшается с момента их получения.
Такое поведение делает эти катализаторы плохо воспроизводимыми, и отсюда их неэффективность при полимеризации олефинов.
Цель изобретения - устранение недостатков описанного выше способа. Для решения ее предлагается новый способ, позволяющий получить ионные каталитические системы с использованием других металлоценов (при необходимости на носителях) более простым синтезом.
Новые каталитические системы можно получать в самом реакторе полимеризации, упрощая таким образом способ полимеризации, устранив предварительный этап образования ионного металлоцена.
Согласно изобретению, способ получения каталитической системы осуществляют с использованием по крайней мере одного алюминийорганического соединения общей формулы AlTT'T'', в которой Т, Т' и Т'' каждый обозначает углеводородный радикал, который может содержать кислород, не менее одного нейтрального металлоцена - производного переходного металла и не менее одного ионизирующего агента.
Согласно изобретению, нейтральный металлоцен выбирают из соединений формулы
(Cp)a(Cp')bMXxZz,
в которой
Cp - ненасыщенный углеводородный радикал, связанный координационной связью с центральным атомом М;
Cp' - ненасыщенный углеводородный радикал, связанный координационной связью с центральным атомом М, или радикал- производное элемента, выбранного из групп VA и VIA Периодической таблицы, причем группы Cp и Cp' - идентичные или различные и могут быть связаны ковалентным мостиком;
M - переходный металл из групп IIIB, IVB, VB и VIB Периодической таблицы;
а, b, x и z - целые числа такие, чтобы (а+b+x+z) = m, x ≥ 1, z ≥ 0, а и/или b ≠ 0;
m - валентность переходного металла М;
X - галоген;
Z - углеводородный радикал, который может содержать кислород, или силиловый радикал формулы: (-Rt-Si-R'R''R'''), где -R- обозначает группу алкильную, алкенильную, арильную, алкокси или циклоалкильную, возможно замещенную; -R', R'', R''' идентичные или различные, и каждый обозначает галоген или группу алкильную, алкенильную, арильную, алкокси или циклоалкильную, возможно замещенную;
t - 0 или 1, причем на первом этапе готовят смесь алюминийорганического соединения с нейтральным металлоценом в не менее, чем одном углеводородом разбавителе, и на втором этапе к полученной смеси добавляют ионизирующий агент.
Согласно изобретению, алюминийорганические соединения общей формулы AlTT'T'' могут быть выбраны из триалкилалюминия, например, трибутил-, триметил-, триэтил-, трипропил-, триизопропил-, триизобутил-, тригексил-, триоктил-, тридодецилалюминий.
Предпочтительными алюминийорганическими соединениями являются те, в которых углеводородные радикалы представляют собой алкильные, алкенильные, арильные и алкоксигруппы, возможно замещенные и содержащие до 20 атомов углерода.
Наиболее предпочтительными алюминийорганическими соединениями являются триэтилалюминий и триизобутилалюминий.
Из соединений формулы (Cp)a(Cp')bMXxZz, используемых в способе, целесообразно использовать такие соединения, у которых переходный металл выбран из скандия, титана, циркония, гафния и ванадия: особенно хорошо подходит цирконий. Из групп Cp и Cp', предпочтительно, если каждая означает моно- или полициклическую группу, возможно замещенную, содержащую от 5 до 50 атомов углерода, соединенные двойными сопряженными связями.
В качестве типичного примера можно назвать радикал циклопентадиениловый, индениловый или флуорениловый или замещенное производное этого радикала. Предпочтительны те замещенные радикалы, у которых по крайней мере один атом водорода замещен углеводородным радикалом, содержащим до 10 атомов углерода. Речь также может идти о радикале, производном элемента, выбранного из групп VA и VIA Периодической системы, например, азота.
В способе согласно изобретению нейтральные органические соединения формулы (Cp)a(Cp')bMXxZz, где z равно 0, могут быть выбраны из моно- и дигалогенированных металлоценов скандия, например, хлорди(циклопентадиенил)скандий и дихлор(инденил)скандий, моно-, ди- и тригалогенированных металлоценов титана, например, хлортри(пентаметилциклопентадиенил) титан, дибромоди(метилциклопентадиенил) титан и трихлор(циклопентадиенил) титан; из моно-, ди- и тригалогенированных металлоценов циркония, например, иодтри(циклопентадиенил)цирконий, дибром (циклопентадиенил-инденил) цирконий, трихлор(флуоренил) цирконий; моно-, ди- и тригалогенированных металлоценов гафния, моно-, ди- и тригалогенированных металлоценов ванадия, например, хлортри(циклопентадиенил)ванадий, дихлорди(этилциклопентадиенил) ванадий и трихлор(этилинденил) ванадий; моно- и дигалогенированных трехвалентных металлоценов хрома, например, дихлор (циклопентадиенил) хром.
В случае, когда Z отличается от 0 и где Z - углеводородный радикал, нейтральные металлоцены формулы (Cp)a(Cp')bMXxZz могут быть выбраны, например, из хлор(циклопентадиенил)этилскандия, дибром (метилциклопентадиенил) бутилтитана, хлор(инденил)изопропилтитана, дихлор(флуоренил)-гексилциркония.
В случае, где z отличается от 0 и где Z - силиловый радикал формулы (-Rt-Si-R'R''R'''), нейтральные металлоцены формулы (Cp)a(Cp')bMXxZz могут быть выбраны, например, из таких соединений, в которых силиловый радикал означает аллилдиметилхлорсилил, аллилметилдиэтоксисилил, 5-(бициклогептенил)трихлорсилил, 2-бром-3-триметилсилил-1-пропенил, 3-хлорпропилдиметилвинилсилил, 2- (3-циклогексенил)этилтриметоксисилил и дифенилвинилхлорсилил.
Металлоцены, имеющие ковалентный мостик, связывающий две группы Cp и Cp' могут быть выбраны из тех, которые отвечают общей формуле:
Figure 00000001

в которой
A - алкиленовая группа, которая может содержать кислород, алкениленовая группа, арилалкиленовая, алкилариленовая, арилалкениленовая группа, возможно галогенированная, или радикал - производное элемента, выбранного в группах IIIA, IVA, VA, VIA Периодической таблицы, например, бора, алюминия, кремния, германия, олова, азота, фосфора и серы.
В качестве примера можно привести мостиковые металлоцены, отвечающие формулам:
Figure 00000002

Figure 00000003

в которых Ind означает инденильный радикал, Cyc -циклопентадиениловый радикал, Cyc* означает пентаметилциклопентадиениловый радикал, R и R' - алкильная группа, n и m- число от 1 до 5, M - титан, цирконий, гафний.
Предпочтительны металлоцены формулы (Cp)a(Cp')bMXxZz которых Cp и Cp' выбраны из радикалов: циклопентадиенил, инденил и флуоренил. Хорошие результаты получены с теми соединениями, у которых группы Cp и Cp' связаны ковалентным мостиком алкильного типа. Металлоцены, переходный металл которых выбран из титана, циркония и гафния, подходят очень хорошо. Особенно хорошие результаты получены с металлоценами, производными циркония.
В способе согласно изобретению под ионизирующим агентом подразумевается соединение, состоящее из первой части, которая имеет свойства кислоты Льюиса и способна ионизировать нейтральный металлоцен, и из второй части, которая инертна по отношению к ионизированному металлоцену и способна стабилизировать ионизированный металлоцен.
Ионизирующим агентом может быть ионизированное соединение, содержащее катион со свойствами кислоты Льюиса и анион, составляющий указанную вторую часть ионизирующего агента.
Анионами, которые приводят к очень хорошим результатам, являются борорганические соединения. Под борорганическим соединением подразумевают производное бора, в котором атом бора соединен с 4 органическими заместителями.
В качестве примеров ионных ионизирующих агентов можно назвать тетракис(пентафторфенил) борат трифенилкарбония, тетракис(пентафторфенил)борат N, N-диметиланилиния и тетракис(пентафторфенил) борат три (н-бутил) аммония. Предпочтительными катионными кислотами Льюиса являются карбоний, сильфоний, оксоний.
В качестве варианта ионизирующим агентом может быть также неионное соединение, обладающее свойствами кислоты Льюиса и способное преобразовать нейтральный металлоцен в катионный металлоцен. С этой целью ионизирующий агент сам превращается в анион, инертный по отношению к катионному металлоцену и способный стабилизировать его.
В качестве неионного ионизирующего агента можно назвать три (пентафторфенил)-бор, трифенилбор, триметилбор, три (триметилсилил)- бор и органобороксины.
Предпочтительно выбирают ионизирующий агент из тетракис (пентафторфенил) бората трифенилкарбония или три(пентафторфенил) бора.
Первый этап способа получения каталитической системы состоит в приготовлении смеси алюминийорганического соединения и нейтрального металлоцена по крайней мере в одном углеводородном разбавителе для замещения по крайней мере одного из галогенов нейтрального металлоцена углеводородным радикалом. Углеводородный разбавитель, используемый на этом этапе, может быть выбран из алифатических углеводородов, таких как линейные алканы (например, н-бутан, н-гексан, н-гептан), разветвленные алканы (например, изобутан, изопентан, изооктан и 2,2- диметилпропан), циклоалканы (например, циклопентан и циклогексан), из ароматических моноциклических углеводородов, таких, как бензол, и его производные, например, толуол, и из ароматических полициклических углеводородов, где каждый цикл может быть замещен.
Разумеется, можно использовать одновременно несколько углеводородных разбавителей. Более всего подходит толуол.
Соответствующие количества алюминийорганического соединения и нейтрального металлоцена зависят от выбора этих соединений.
На практике представляет интерес использование алюминийорганического соединения в количестве, достаточном для замещения всех атомов галогена нейтрального металлоцена.
Иногда бывает целесообразным использовать алюминийорганическое соединение в больших количествах, чтобы использовать его свойство улавливать примеси при получении каталитической системы.
Для этого рекомендуется, например, чтобы мольное отношение алюминийорганического соединения к нейтральному металлоцену было не менее 10.
Для того чтобы использовать также указанные выше свойства алюминийорганического соединения в процессе полимеризации олефина, рекомендуется, чтобы мольное отношение алюминийорганического соединения к нейтральному металлоцену было не менее 100, например, около 1000.
На этом первом этапе способа смесь готовят при температуре, которая может изменяться в пределах от температуры окружающей среды до температуры кипения самого летучего соединения в смеси при рабочем давлении, но не выше температуры термического разложения соединений смеси. Температура зависит от природы компонентов смеси и обычно она выше 15oC, предпочтительно около 20oC.
Температура максимальная обычно равна 80oC, предпочтительно ниже 70oC. Наиболее подходит температура окружающей среды.
Продолжительность первого этапа должна быть достаточной для осуществления полной реакции металлоцена с алюминийорганическим соединением. Она может меняться от нескольких секунд до нескольких часов. Практически нет необходимости в ожидании проведения второго этапа, т.к. реакция на первом этапе обычно протекает мгновенно. Смесь можно перемешивать в течение всего первого этапа или только часть этого времени.
Смесь, приготовленная на первом этапе, может содержать более одного алюминийорганического соединения и более одного нейтрального металлоцена.
На втором этапе способа в смесь полученную на первом этапе, добавляют ионизирующий агент.
На втором этапе ионизирующий агент предпочтительно вводят в количестве, достаточном для ионизации металлоцена.
Это количество зависит от выбранного нейтрального металлоцена и ионизирующего агента.
Обычно можно использовать такое количество ионизирующего агента, при котором молярное отношение ионизирующего агента к металлоцену, взятому на первом этапе, не менее 0,1, более конкретно не менее 0,5, предпочтительны величины менее 10, рекомендуемые величины ниже 2.
Второй этап способа может быть осуществлен при температуре ниже температуры кипения самого летучего соединения реакционной среды при рабочем давлении. Под реакционной средой имеется в виду среда, полученная после добавления ионизирующего агента на втором этапе. Температура обычно выше 50oC, предпочтительно не менее 0oC; она обычно ниже 100oC, предпочтительно максимально равна 80oC.
Особенно хорошо подходит температура окружающей среды.
Продолжительность второго этапа должна быть достаточной для полной ионизации продукта реакции между нейтральным металлоценом и алюминийорганическим соединением, полученного на первом этапе. Она может меняться от нескольких секунд до нескольких часов. Реакция обычно протекает мгновенно, наиболее обычная продолжительность ее составляет от 0,5 до 30 мин.
Реакционная среда может перемешиваться в течение всего второго этапа или часть времени.
На втором этапе в смесь, полученную на первом этапе, можно добавить более одного ионизирующего агента.
Согласно первому варианту осуществления способа, металлоцен используют в твердом виде. В этом случае углеводородный разбавитель, используемый на первом этапе способа, должен быть такой, чтобы в нем мог раствориться нейтральный металлоцен. Для этого можно использовать в качестве углеводородного разбавителя любой ароматический углеводород. Хорошо подходит толуол. Согласно этому варианту способа, количество углеводородного разбавителя должно быть достаточным для полного растворения нейтрального металлоцена. Количество углеводородного разбавителя зависит от его природы, а также от природы нейтрального металлоцена и от температуры, при которой осуществляется первый этап способа.
В предпочтительном варианте металлоцен применяется в виде раствора. Для этого его предварительно растворяют в ароматическом углеводороде, предпочтительно в толуоле. В этом варианте выбор углеводородного разбавителя, используемого на первом этапе, не зависит от природы нейтрального металлоцена. В этом случае можно применять в качестве углеводородного разбавителя указанные выше ароматические и алифатические углеводороды. Предпочтительны ароматические углеводороды, особенно толуол.
Согласно второму варианту осуществления способа применяется ионизирующий агент в твердом виде. В этом случае выбирают углеводородный разбавитель на первом этапе такой, чтобы в нем ионизирующий агент был бы растворим. Углеводородные разбавители, способные растворить ионизирующий агент, можно выбрать из ароматических углеводородов таких, как толуол, и из галогенированных алифатических углеводородов таких, как хлористый метилен и хлороформ. Хорошо подходит толуол.
При этом варианте осуществления способа количество углеводородного разбавителя должно быть достаточным для полного растворения в нем ионизирующего агента.
Количество углеводородного разбавителя зависит от его природы, от природы агента и от температуры, при которой осуществляется второй этап способа. В этом же варианте осуществления способа ионизирующий агент может применяться в виде раствора.
Для этой цели его растворяют предварительно в ароматическом углеводороде, таком, как толуол, или в алифатическом, таком, как хлористый метилен или хлороформ.
В этом варианте выбор углеводородного разбавителя, применяемого на первом этапе, не зависит от природы ионизирующего агента. Следовательно, углеводородный разбавитель можно выбрать из ароматических и алифатических углеводородов, указанных выше.
Согласно третьему варианту реализации способа, нейтральный металлоцен наносят на носитель, которым может быть полимер (например, полиэтилен, полипропилен и их сополимеры) или на минеральный носитель. Для этого пропитывают носитель, при необходимости предварительно активированный любым известным способом, раствором нейтрального металлоцена.
Раствор можно приготовить так, как описано выше в первом варианте способа.
Предпочтительно использовать минеральный носитель. В качестве примеров минерального носителя можно назвать минеральные окиси, такие, как окись кремния, окись алюминия, окись титана, циркония, тория (при необходимости обработанные фтористым соединением), их смеси и смешанные окиси этих металлов, такие, как силикат алюминия и фосфат алюминия, и минеральные галогениды, такие как хлорид магния.
Предпочтительны двуокись кремния, окись алюминия и хлорид магния.
Рабочая температура пропитки находится в интервале от температуры окружающей среды до температуры кипения раствора нейтрального металлоцена, а продолжительность пропитки может находиться в пределах от нескольких минут до нескольких часов.
В этой форме осуществления способа носитель, пропитанный нейтральным металлоценом, извлекают из раствора, затем диспергируют в углеводородном разбавителе и смешивают с алюминийорганическим соединением на первом этапе, описанном выше.
В качестве варианта носитель можно обрабатывать раствором алюминоксана. Носителем может быть полимер или минеральный носитель. Предпочтительно использовать минеральный носитель.
Алюминоксан можно выбрать из линейных соединений формулы:
Figure 00000004

и из циклических соединений формулы:
Figure 00000005

в которых
R1, R2, R3, R4, R5 и R6 каждый представляет алкильную группу, содержащую до 18 атомов углерода, предпочтительно до 12 атомов углерода, и 2 ≤ n ≤ 50. Используют предпочтительно метилалюминоксан.
Алюминоксан растворяют в органическом растворителе, выбранном из алифатических углеводородов таких, как линейные алканы, разветвленные алканы и циклоалканы, из моноциклических ароматических углеводородов таких, как бензол и его производные, например, толуол, из полициклических ароматических углеводородов, в которых каждый цикл может быть замещен, и из их смесей. Предпочтительные органические растворители - это ароматические углеводороды.
Толуол особенно пригоден.
Рабочая температура при обработке раствором алюминоксана может находиться в интервале от окружающей до температуры кипения органического растворителя, а продолжительность пропитки - от нескольких минут до нескольких часов, например, от 5 мин до 6 ч. В этом варианте пропитка минерального носителя раствором нейтрального металлоцена может быть проведена до или после обработки минерального носителя раствором алюминоксана.
Предпочтительно обрабатывать минеральный носитель раствором алюминоксана до его пропитки раствором нейтрального металлоцена.
В четвертом варианте осуществления способа ионизирующий агент наносят на носитель. Для этой цели пропитывают носитель, который может быть предварительно активирован любым известным способом, раствором ионизирующего агента. Раствор готовят, как указано во втором варианте осуществления способа.
Носителем может быть полимер или минеральный носитель, аналогичный носителю нейтрального металлоцена, описанного выше. Предпочтение отдают минеральному носителю. Условия проведения пропитки соответствуют условиям, описанным для третьего варианта осуществления способа.
В пятом варианте реализации способа используют нейтральный металлоцен формулы (Cp)a(Cp')bMXx (-Rt-Si-R'R''R''')z, приготовленный взаимодействием силана с соединением формулы (Cp)a(C'p)bMXxHz, в которой символы Cp, Cp', M, X, а, b, x и z имеют указанные выше значения, за исключением z, который отличен от 0. Эта реакция предпочтительно протекает в соответствующем растворителе.
Соединения формулы (Cp)a(Cp')bMXx Hz, которые дают очень хорошие результаты, представляют собой производные циркония, титана и гафния, у которых Cp и Cp' выбраны из радикалов циклопентадиенила, инденила и флуоренила, возможно соединенные ковалентным мостиком алкильного типа. Применяются предпочтительно производные циркония. В качестве примеров силанов, используемых в этом варианте осуществления способа, можно назвать аллилдиметилхлорсилан, аллилметилдиэтоксисилан, 5-(дициклогептенил)трихлорсилан, 2-бром-3-триметилсилил-1-пропен, 3-хлорпропилдиметилвинилсилан, 2- (3-циклогексенил)этилтриметоксисилан, дифенилвинилхлорсилан, винилтрифеноксисилан, винилтрихлорсилан, 2-(триметилсилилметил)-1,3- бутадиен и 3-(триметилсилил)циклопентен.
Предпочтительными силанами являются негалогенированные алкенилсиланы, содержащие до 60 атомов углерода такие, как аллилтриэтоксисилан, аллилтриметилсилан, 5-(бициклогептенил)- триэтоксисилан, винил(триметокси)силан и 2-(3-циклогексенил) этилтриметоксисилан. Винил(триметокси)силан особенно хорошо подходит.
Растворителем реакции между силаном и соединением формулы (Cp)a(Cp')bMXxHz является, в частности, углеводород, предпочтительно толуол. Температура этой реакции находится в интервале от окружающей до температуры кипения используемого растворителя, например от 20oC до 100oC, предпочтительна температура окружающей среды.
В шестом варианте осуществления способа используют нейтральный металлоцен формулы (Cp)a(Cp')bMXx Zz (в которой символы Cp, Cp', M, X, а, b, x и z имеют указанные выше значения, причем отличается от 0, а Z- углеводородный радикал), который получают реакцией соединения формулы (Cp)a (Cp')bMXxHz с олефином. Эта реакция протекает предпочтительно в адекватном растворителе. Соединения этой формулы соответствуют соединениям, используемым в пятом варианте осуществления способа.
Олефины, используемые в этом варианте, предпочтительно содержат до 20 атомов углерода, более предпочтительно до 12 атомов углерода, и могут быть выбраны из моно-олефинов, таких, как этилен и 3-этил-1- бутен, из несопряженных диолефинов таких, как 1,5-гексадиен, сопряженных диолефинов таких, как 1,3-пентадиен, и алициклических диолефинов таких, как дициклопентадиен.
Предпочтительным олефином является этилен.
Растворителем реакции между олефином и соединением формулы (Cp)a(Cp')bMXxHz предпочтительно является ароматический углеводород, в частности толуол.
Температура этой реакции находится в интервале от окружающей до температуры кипения используемого растворителя, например от 20oC до 100oC, предпочтительна температура окружающей среды.
В седьмом варианте осуществления способа каталитическую систему, полученную после второго этапа, наносят на носитель. Для этой цели носитель, при желании предварительно активированный любым известным способом, пропитывают раствором каталитической системы. Этим раствором является раствор, полученный на втором этапе способа.
Носитель может быть минеральным или полимерным, а условия, в которых проводится пропитка, аналогичны тем, которые описаны в третьем варианте способа. Предпочтителен минеральный носитель.
Способ согласно изобретению позволяет получить ионные каталитические системы с использованием, при необходимости, металлоценов на носителе, избегая применения негалогенированных полиметилированных неустойчивых металлоценов и, кроме того, позволяет устранить трудоемкий синтез этих металлоценов.
Способ согласно изобретению позволяет также получать каталитические системы, исходя из гидридов металлоценов формулы (Cp)a(Cp')bMXxHz, где 2 отличен от 0, и с которыми обычно трудно работать из-за их полимерного характера и из-за трудностей их экономичного растворения.
Полученные каталитические системы могут быть использованы при гомополимеризации и сополимеризации олефинов, содержащих до 20 атомов углерода на одну молекулу.
Наиболее подходящие олефины содержат от 2 до 12 атомов углерода на 1 молекулу и выбираются, например, из этилена, пропилена, 1-бутена, 1-пентена, 3-метил-1-бутена, 1-гексена, 3- и 4-метил-1-пентенов, 1- октена, 3-этил-1-бутена, 1-гептена, 3,4-диметил-1-гексена, 4-бутил-1- октена, 5-этил-1-декена, 3,3-диметил-1-бутена и виниловых мономеров таких, как стирол и винилхлорид. Каталитические системы могут найти конкретное применение в производстве гомополимеров этилена и пропилена или сополимеров этилена с пропиленом и/или с одним или несколькими сомономерами, имеющими насыщенную олефиновую связь, и которые могут содержать до 8 атомов углерода, например, с 1-бутеном, 1-пентеном, 3-метил-1-бутеном, 1-гексеном, 3- и 4-метил-1-пентенами и 1-октеном. Один или несколько диолефинов, содержащих от 4 до 18 атомов углерода, могут также быть сополимеризованы с этиленом и пропиленом. Предпочтительно диолефины выбирают из несопряженных алифатических диолефинов таких, как 4-винилциклогексен и 1,5-гексадиен, алициклических диолефинов, имеющих эндоциклический мостик, таких, как дициклопентадиен, метилен- и этилиденнорборен, и сопряженных алифатических диолефинов таких, как 1,3-бутадиен, изопрен и 1,3- пентадиен.
Каталитические системы, получаемые согласно изобретению, особенно хорошо зарекомендовали себя при получении гомополимеров этилена и пропилена и сополимеров этилена и пропилена, содержащих не менее 90 мас.%, предпочтительно не менее 95 мас. % этилена или пропилена. Предпочтительными сомономерами этилена являются пропилен, 1-бутен, 1- гексен, 1-октен, 1,5-гексадиен, а сомономерами пропилена являются этилен, 1,3-бутадиен, 1,5-гексадиен.
Изобретение касается также способа (со)полимеризации по меньшей мере одного олефина в присутствии каталитической системы, содержащей по меньшей мере одно алюминийорганическое соединение общей формулы AlTT'T'', где T, T'и T'' каждый обозначает углеводородный радикал, который может содержать кислород, по меньшей мере один нейтральный металлоцен-производное переходного металла и по меньшей мере один ионизирующий агент, заключающегося в том, что нейтральный металлоцен выбирают из соединений формулы
(Cp)a(Cp')bMXxZz,
в которой
Cp- обозначает ненасыщенный углеводородный радикал, связанный координационной связью с центральным атомом М,
Cp' - ненасыщенный углеводородный радикал, связанный координационной связью с центральным атомом М, или радикал-производное элемента, выбранного из групп VA и VIA Периодической таблицы, причем группы Cp и Cp' - идентичные или различные и могут быть связаны ковалентным мостиком;
M - переходный металл из групп IIIB, IVB, VB и VIB Периодической таблицы;
а, b, х и z - обозначают целые числа такие, чтобы (а+b+х+z) = m, х ≥ 1, z ≥ 0, а и/или b ≠ 0;
m - валентность переходного металла М;
X - галоген;
Z - углеводородный радикал, который может содержать кислород, или силиловый радикал формулы (-Rt-Si-R'R''R'''), где R - группа алкильная алкенильная, арильная, алкокси или циклоалкильная, возможно замещенная; R', R'', R''' идентичные или различные, и каждый обозначает галоген или группу алкильную, алкенильную, арильную, алкокси или циклоалкильную, возможно замещенную;
t - обозначает 0 или 1,
готовят смесь алюминийорганического соединения с нейтральным металлоценом в не менее чем одном углеводородном разбавителе, олефин вводят в контакт с полученной смесью и добавляют ионизирующий агент.
В способе (со)полимеризации согласно изобретению алюминийорганическое соединение, нейтральный металлоцен, ионизирующий агент и углеводородный разбавитель соответствуют тем, которые использовались в способе получения каталитической системы. Предпочтительно используют изобутан или гексан в качестве углеводородного разбавителя. Изобутан особенно хорошо подходит.
В способе (со)полимеризации используемыми олефинами, которые (со)полимеризуются в присутствии каталитической системы, получаемой согласно изобретению, являются описанные выше олефины.
В способе (со)полимеризации приготовление смеси алюминийорганического соединения и нейтрального металлоцена и добавление ионизирующего агента осуществляют так, как это делают на первом и на втором этапах способа получения каталитических систем, только эти операции осуществляют в реакторе полимеризации.
Согласно частной форме осуществления способа (со)полимеризации нейтральный металлоцен и/или ионизирующий агент наносят на носитель. Для этой цели пропитывают носитель раствором нейтрального металлоцена (и соответственно ионизирующего агента), как это описано в третьем (соответственно в четвертом) варианте осуществления способа получения. Носитель, минеральный или полимерный, аналогичен носителю, используемому в этих вариантах осуществления. Предпочтительно использовать минеральный носитель.
В способе (со)полимеризации, согласно изобретению, полимеризацию можно осуществлять в растворе, в суспензии или в паровой фазе, непрерывно или периодически, например, можно осуществить предполимеризацию в суспензии в первом реакторе с последующей полимеризацией в паровой фазе во втором реакторе.
При (со)полимеризации можно применить регулятор молекулярного веса такой, как водород.
В случае суспензионной (со)полимеризации полимеризацию осуществляют в углеводородном разбавителе, используемом при приготовлении смеси нейтрального металлоцена и алюминийорганического соединения и при температуре такой, чтобы не менее 50% (предпочтительно не менее 70%) образовавшегося (со)полимера в нем не растворилось. Температура обычно не ниже 20oC, предпочтительно не ниже 50oC, температура максимальная 200oC и предпочтительно 100oC.
Парциальное давление олефина чаще всего равно атмосферному, предпочтительно ≥ 0,4 МПа, например, ≥ 0,6 МПа. Это давление обычно максимально равно 5 МПа, предпочтительно ≤ 2 МПа, например, ≤ 1,5 МПа.
В случае (со)полимеризации в растворе полимеризацию можно осуществить в углеводородном разбавителе, указанном выше. Рабочая температура зависит от используемого углеводородного разбавителя и должна быть выше температуры растворения в нем (со)полимера таким образом, чтобы не менее 50% (предпочтительно не менее 70%) (со)полимера в нем растворилось. Однако температура должна быть достаточно низкой для того, чтобы избежать термического разложения (со)полимера и/или каталитической системы. Обычно оптимальная температура равна 100 - 200oC.
Парциальное давление олефина чаще всего по крайней мере равно атмосферному, предпочтительно ≥ 0,4 МПа, например, ≥ 0,6 МПа, максимальное парциальное давление равно 5 МПа, предпочтительно ≤ 2 МПа, например, ≤ 1,5 МПа.
(Со)полимеризацию можно осуществлять с использованием самого олефина в качестве углеводородного растворителя. В этом случае используют олефин, жидкий при нормальных условиях давления и температуры или работают при давлении, достаточном, чтобы газообразный при нормальных условиях олефин стал жидким.
В случае (со)полимеризации в паровой фазе газовый поток, содержащий олефин, вводят в контакт с каталитической системой в кипящем слое. В этом случае скорость газового потока должна быть достаточной, чтобы поддерживать (со) полимер в кипящем слое, и зависит от скорости образования (со)полимера и скорости, с которой расходуется каталитическая система. Парциальное давление олефина может быть ниже или выше атмосферного, предпочтительно, парциальное давление находится в интервале от атмосферного до приблизительно 7 МПа. Давление от 0,2 до 5 МПа - самое приемлемое. Выбор температуры не является критическим, обычно она находится в пределах от 30 до 200oC. Можно, при необходимости, использовать газ-разбавитель, который должен быть инертным по отношению к (со)полимеру.
Частная форма осуществления способа согласно изобретению состоит в сополимеризации по меньшей мере двух олефинов, вводимых одновременно или порознь в реактор полимеризации, причем оба олефина вводят предпочтительно до добавления ионизирующего агента.
Способ (со)полимеризации согласно изобретению особенно перспективен для изготовления гомополимеров этилена и пропилена и (со)полимеров этилена и/или пропилена.
Способ (со)полимеризации позволяет, в частности, увеличить активность металлоценовых катализаторов на носителе на основе алюминоксана, обработав его ионизирующим агентом.
Способ (со)полимеризации позволяет получать (со)полимеры с низким содержанием металлических примесей, происходящих от каталитической системы, и с низким содержанием фракции олигомеров. Кроме того, предлагаемый способ позволяет получить (со)полимеры, имеющие широкое распределение по молекулярному весу.
Изобретение касается также (со)полимеров, по меньшей мере, одного олефина, имеющего максимальное содержание олигомеров 0,5% (обычно ниже 0,1%) от его веса, распределение молекулярного веса с соотношением Mw/Mn, равным от 2 до 10, где Mw и Mn обозначают соответственно средневесовой и среднечисловой молекулярный вес, и содержание переходного металла менее 5 ч./млн по весу (обычно ниже 3 ч./млн).
Изобретение касается, в частности, (со)полимеров производных этилена и пропилена, в частности, полиэтилена и полипропилена.
Нижеописанные примеры иллюстрируют изобретение. В первом примере описано получение каталитической системы согласно способу изобретения, которую затем использовали для полимеризации этилена.
В примерах 2 и 4 - 12 описано получение, согласно изобретению, гомо- и сополимеров этилена суспензионным методом (примеры 2 и 4 - 10) и гомополимеров пропилена (примеры 11 и 12) методом полимеризации в растворе.
Пример 3 дан в качестве сравнения и описывает приготовление каталитической системы способом, описанным в документе EP-426638, и применение ее для полимеризации этилена.
Значения символов, используемых в этих примерах, единицы измерения соответствующих величин и методы их измерения даны ниже.
HLMI - показатель текучести в расплаве, измеренный под нагрузкой 21,6 кг при 190oC и выраженный в г/10 мин согласно стандарту ASTMID 1238.
FO - фракция олигомеров, выраженная в граммах олигомеров на 1 кг (со)полимера и определяемая экстракцией гексаном при его температуре кипения.
М - содержание переходного металла М, выраженное в ч./млн и измеренное в методом флуоресценции в Х-лучах.
Mw/Mn - отношение средневесовой молекулярной массы к среднечисловой молекулярной массе, измеренное эксклюзивной хроматографией в 1,2,4-трихлорбензоле при 135oC в хроматографе WATERS тип 150oC.
Пример 1 (согласно изобретению): получение каталитической системы и гомополимеризация этилена в присутствии этой системы.
(а) Приготовление каталитической системы.
Смешивают 10 мл толуола с 5 мл раствора 18 мг этиленбис (инденил)дихлорциркония в 25 мл толуола. В смесь прибавляют 3 мл раствора 40 г триэтилалюминия в 1 л гексана. Затем в смесь вводят 5 мл раствора 30,5 мг тетракис(пентафторфенил)бората трифенилкарбония в 15 мл толуола.
(б) Гомополимеризация этилена.
Вводят в реактор емкостью 3 л, снабженный мешалкой, 1 л изобутана и 7 мл раствора, полученного на этапе (а) и приготовленного за 67 мин до этого. Температуру доводят до 40oC. Затем в реактор подают этилен при парциальном давлении, равном 1 МПа. Давление этилена и температуру поддерживают постоянными в течение полимеризации. Спустя 23 мин реактор охлаждают, дегазируют. Получают 78 г полиэтилена.
Пример 2 (согласно изобретению): гомополимеризация этилена в присутствии металлоцена циркония.
Вводят в реактор емкостью 3 л, снабженный мешалкой, 1 мл раствора 0,098 ммоль этиленбис (инденил) дихлорциркония в 50 мл толуола и 1 мл раствора 40 г/л триэтилалюминия. Затем прибавляют 1 л изобутана. Доводят температуру до 40oC, затем подают в реактор этилен при парциальном давлении 1 МПа и впрыскивают в реактор 1 мл раствора 0,0021 ммоль тетракис(пентафторфенил) бората трифенилкарбония в 10 мл толуола.
Давление этилена и температуру поддерживают постоянными в течение всей полимеризации. После 45 мин реактор охлаждают и дегазируют. Получают 174 г полиэтилена. Полученный полимер имеет следующие характеристики:
HLMI = 2,5;
FO = 0;
<Zr> < 3;
Mw/Mn = 7,1.
Пример 3 (сравнительный): гомополимеризация этилена в присутствии металлоцена циркония.
В этом примере, не соответствующем изобретению, изменен порядок введения ионизирующего агента и алюминийорганического соединения в реактор.
Готовят при окружающей температуре смесь из 8 мл раствора 0,098 ммоль этиленбис(инденил)дихлорциркония в 50 мл толуола и 8 мл раствора 0,0048 ммоль тетракис(пентафторфенил)бората трифенилкарбония в 25 мл толуола. Через 5 мин вводят 1 мл этой смеси в реактор емкостью 3 л, в который предварительно ввели 1 л гексана и 1 мл раствора 40 г/л триэтилалюминия, нагрели до 40oC, и в который был введен этилен при парциальном давлении 1 МПа.
Давление этилена и температуру поддерживают постоянными в продолжение всей полимеризации. Спустя 45 мин реактор охлаждают и дегазируют. Получают 42 г полиэтилена. Затем эти же операции были повторены со следующей модификацией: выдерживали 4 ч. и 20 мин вместо 5 мин перед введением смеси металлоцена циркония с ионизирующим агентом в реактор. Через 45 минут полимеризации получили только 2 г полиэтилена. Сравнение результатов примера 3 с результатами примера 2 показывает существенное значение порядка введения реактивов и улучшение производительности способа полимеризации, согласно изобретению.
Пример 4 (согласно изобретению): гомополимеризация этилена в присутствии металлоцена гафния.
В реактор емкостью 3 л, снабженный мешалкой, вводят 1 л гексана, 0,20 мл раствора 0,128 ммоль этиленбис(инденил)дихлоргафния в 50 мл толуола и 3 мл раствора 40 г/л триэтилалюминия. Температуру доводят до 40oC. Затем в реактор подают этилен при парциальном давлении 1 МПа. В реактор впрыскивают 0,20 мл раствора 0,094 ммоль тетракис(пентафторфенил)бората трифенилкарбония в 50 мл толуола. Давление этилена и температуру поддерживают постоянными в течение всей полимеризации. Через 5 минут реактор охлаждают и дегазируют. Получают 6 г полиэтилена.
Пример 5 (согласно изобретению): гомополимеризация этилена в присутствии металлоцена титана.
В реактор емкостью 3 л, снабженный мешалкой, вводят 1 л гексана, 0,5 мл раствора 0,146 ммоль бис(пентаметилциклопентадиенил)дихлортитана в 50 мл толуола и 3 мл раствора 40 г/л триэтилалюминия. Температуру доводят до 40oC. Затем в реактор подают этилен при парциальном давлении 1 МПа. В реактор впрыскивают 0,74 мл раствора 0,094 ммоль тетракис(пентафторфенил) бората трифенилкарбония в 50 мл толуола. Давление этилена и температуру поддерживают постоянными в течение всей полимеризации. Спустя 60 мин реактор охлаждают и дегазируют. Получают 5 г полиэтилена.
Пример 6 (согласно изобретению): гомополимеризация этилена в присутствии металлоцена циркония, содержащего силильный радикал.
(а) Приготовление металлоцена циркония, содержащего силильный радикал.
1,919 ммоль бис(циклопентадиенил)хлоргидридциркония суспендируют в 54 мл толуола, который затем при окружающей температуре подвергают взаимодействию с 1,750 ммоль винилтриметоксисилана.
(б) Полимеризация этилена.
1 мл раствора, полученного на этапе (а), вводят в реактор емкостью 3 л, снабженный мешалкой, в который добавляют также 1 л гексана и 3 мл раствора 40 г/л триэтилалюминия. Температуру доводят до 40oC. Затем в реактор подают этилен при парциальном давлении 1 МПа. В реактор впрыскивают 1 мл раствора 0,094 ммоль тетракис(пентафторфенил)бората трифенилкарбония в 50 мл толуола. Давление этилена и температуру поддерживают постоянными в течение всей полимеризации. Через 106 мин реактор охлаждают и дегазируют. Получают 31 г полиэтилена. Полученный полимер имеет следующие характеристики:
HLMI = 0,1;
FO = 0;
<Zr> < 3;
Mw/Mn = 10.
Пример 7 (согласно изобретению): гомополимеризация этилена в присутствии металлоцена циркония на носителе.
(а) Активирование носителя.
3,36 г двуокиси кремния прокаливают при температуре 815oC в течение 16 ч. в сухом воздухе и 4 ч. в азоте. Активированную двуокись кремния суспендируют в 80 мл гексана, затем ее обрабатывают 4 мл триизобутилалюминия в течение 2 ч. при 50oC и в течение 10 ч. при окружающей температуре. После испарения гексана полученное твердое вещество высушивают в вакууме, а затем суспендируют в 70 мл толуола.
(б) Пропитка носителя.
Растворяют 83,3 мг этиленбис(инденил)дихлорциркония в 50 мл толуола и добавляют полученный раствор в суспензию, приготовленную по пункту (а).
Смесь перемешивают в течение 5 ч. при комнатной температуре. Затем после осаждения твердого вещества удаляют надосадочную жидкость и промывают его толуолом и гексаном. Твердое вещество, полученное таким образом, содержит 0,08 мас.% циркония.
(в) Полимеризация этилена.
В реактор емкостью 3 л, снабженный мешалкой, вводят 57 мг твердого вещества, полученного на этапе (б) и 1 мл раствора 40 г/л триэтилалюминия. Затем добавляют 1 л изобутана. Температуру доводят до 40oC. Затем в реактор подают этилен при парциальном давлении 1 МПа. В реактор впрыскивают 2,5 мл раствора 0,0021 ммоль тетракис(пентафторфенил)бората трифенилкарбония в 10 мл толуола. Давление этилена и температуру поддерживают постоянными в течение всей полимеризации. Спустя 60 мин реактор охлаждают и дегазируют. Получают 82 г полиэтилена. Полученный полимер имеет следующие характеристики:
HLMI = 5,1;
FO = 0,4;
<Zr> < 3;
Пример 8 (согласно изобретению): гомополимеризация этилена в присутствии металлоцена циркония, содержащего силиловый радикал, на носителе.
(а) Получение металлоцена циркония, включающего силиловый радикал.
283,6 мг бис(циклопентадиенил)монохлоргидрид циркония суспендируют в 50 мл толуола, в полученную суспензию добавляют 0,17 мл винилтриметоксисилана. Смесь перемешивают в течение 5 ч. до получения раствора.
(б) Активирование носителя.
2,27 г двуокиси кремния прокаливают при температуре 815oC в течение 16 ч. в сухом воздухе и 4 ч. в азоте. Активированную двуокись кремния суспендируют в 80 мл гексана, затем ее обрабатывают 4 мл триизобутилалюминия в течение 2 ч. при 50oC и в течение 10 ч. при окружающей температуре. После испарения гексана полученное твердое вещество высушивают в вакууме, и снова суспендируют в 40 мл толуола.
(в) Пропитка носителя.
40 мл раствора, полученного на этапе (а) прибавляют к суспензии, приготовленной на этапе (б). Смесь перемешивают в течение 3 ч. при 50oC. После осаждения твердого вещества надосадочную жидкость удаляют, а твердое вещество промывают толуолом. Полученный твердый продукт содержит 0,3 мас.% циркония.
(г) Полимеризация этилена.
В реактор емкостью 3 л, снабженный мешалкой, вводят 27 мг твердого продукта, полученного на этапе (в), 1 л гексана и 1 мл раствора 40 г/л триэтилалюминия. Температуру доводят до 40oC. Затем в реактор подают этилен при парциальном давлении 1 МПа. В реактор впрыскивают 1,5 мл раствора, содержащего 0,0048 ммоль тетракис(пентафторфенил)бораттрифенилкарбения в 25 мл толуола. Давление этилена и температуру поддерживают постоянными в течение всей полимеризации. Спустя 15 мин реактор охлаждают и дегазируют. Получают 30 г полиэтилена.
Пример 9 (согласно изобретению): гомополимеризация этилена в присутствии металлоцена циркония, содержащего силиловый радикал, на носителе, обработанном алюминоксаном.
(а) Активирование носителя.
6,61 г двуокиси кремния прокаливают при температуре 815oC в течение 16 ч. в сухом воздухе, 4 ч. в азоте и 4 ч. при 120oC в вакууме. Активированную двуокись кремния суспендируют в 40 мл толуола.
(б) Обработка носителя алюминоксаном.
Обрабатывают суспензию, полученную на предыдущем этапе с помощью 15 мл 30%-го раствора метилалюминоксана при перемешивании в течение 4 ч. при 50oC. После испарения толуола полученное твердое вещество промывают толуолом, затем суспендируют в 50 мл толуола.
(в) Приготовление металлоцена циркония, содержащего силиловый радикал.
128,9 мг бис(циклопентадиенил)монохлоргидрата циркония суспендируют в 50 мл толуола, в полученную суспензию добавляют 0,07 мл винилтриметоксисилана. Смесь перемешивают в течение 5 ч. до получения раствора.
(г) Пропитка обработанного носителя.
Смешивают суспензию, полученную на этапе (б) и раствор, полученный на предыдущем этапе, и перемешивают в течение 3 ч. при 50oC. После осаждения твердого вещества надосадочную жидкость удаляют, а твердое вещество промывают толуолом. Полученный твердый продукт содержит 0,38 мас.% циркония.
(д) Полимеризация этилена.
В реактор, описанный выше, вводят 1 мл раствора, содержащего 0,334 М триметилалюминия в 1 л изобутана. Температуру доводят до 60oC. Затем в реактор подают этилен при парциальном давлении 1 МПа. Давление и температуру поддерживают постоянными в течение всей полимеризации. В реактор впрыскивают 68 мг твердого вещества, полученного на этапе (г). Спустя 20 мин в реактор вводят 1 мл раствора, содержащего 29,4 мг тетракис(пентафторфенил)бораттрифенилкарбония в 15 мл толуола. Через 60 мин (что соответствует времени полной полимеризации, равного 80 мин, реактор охлаждают и дегазируют. Получают 76 г полиэтилена.
Пример 10 (согласно изобретению): сополимеризация этилена с 1,5-гексадиеном в присутствии металлоцена циркония.
В реактор, описанный выше, вводят 0,4 мл раствора 21,7 мг этиленбис (инденил) дихлорциркония в 25 мл толуола и 0,5 мл раствора 100 г/л триэтилалюминия. Затем в него вводят 2,5 мл 1,5-гексадиена и 1 л изобутана. Температуру доводят до 50oC. Затем в реактор подают этилен при парциальном давлении 1 МПа. В реактор впрыскивают 0,4 мл раствора 23,3 мг тетракис(пентафторфенил)бораттрифенилкарбония в 10 мл толуола. Давление и температуру поддерживают постоянными в течение всей полимеризации. Спустя 45 мин реактор охлаждают и дегазируют. Получают 112 г сополимера, имеющего следующие характеристики:
HLMI < 0,1;
FO = 0;
<Zr>> < 3;
Mw/Mn = 10.
Пример 11 (согласно изобретению): гомополимеризация пропилена в присутствии металлоцена циркония.
В реактор емкостью 5 л, снабженный мешалкой, вводят 1 мл раствора 40 г/л триэтилалюминия и 4 мл раствора этиленбис(инденил)дихлорциркония в толуоле (0,0017 ммоль/мл). Добавляют 3 л пропилена при комнатной температуре и 4 мл раствора тетракис(пентафторфенил)бораттрифенилкарбония (0,00215 ммоль/мл). Доводят температуру до 70oC.
Во время полимеризации пропилен не подается в реактор. Спустя 60 мин реактор охлаждают и дегазируют. Получают 655 г полипропилена.
Пример 12 (согласно изобретению): гомополимеризация пропилена в присутствии металлоцена циркония, полученного с использованием ионизирующего агента, на носителе.
(а) Активирование носителя.
1,64 г двуокиси кремния прокаливают при температуре 815oC в течение 16 ч. в сухом воздухе, 4 ч. в азоте и 4 ч. при 120oC в вакууме. Активированную двуокись кремния суспендируют в 20 мл толуола.
(б) Пропитка носителя.
Растворяют 32,0 мг тетракис(пентафторфенил)бораттрифенилкарбония в 20 мл толуола. Полученный раствор прибавляют к суспензии, полученной на этапе (а) и выпаривают толуол под вакуумом.
(в) Полимеризация пропилена.
В реактор емкостью 3 л, снабженный мешалкой, вводят 1 мл раствора триэтилалюминия (1 М), 4 мл раствора 20,1 мг этиленбис(инденил)дихлорциркония в 25 мл толуола и 2 л жидкого пропилена. Туда же добавляют 432 мг твердого вещества, полученного на этапе (б). Доводят температуру до 50oC. Спустя 60 мин реактор охлаждают и дегазируют. Получают 33,5 г полипропилена.

Claims (31)

1. Способ получения каталитической системы для (со)полимеризации не менее одного олефина, согласно которому используют по крайней мере одно алюминийорганическое соединение общей формулы AITT'T'', в которой T, T' и T'' каждый - углеводородный радикал, который может содержать кислород, по крайней мере один нейтральный металлоцен - производное переходного металла и по крайней мере один ионизирующий агент, отличающийся тем, что нейтральный металлоцен выбирают из соединений формулы
(Cp)a(C'p)bMXxZz,
в которой Cp - ненасыщенный углеводородный радикал, связанный координационной связью с центральным атомом М:
C'p - ненасыщенный углеводородный радикал, связанный координационной связью с центральным атомом М, или радикал - производное элемента, выбранного из групп VA и VIA Периодической таблицы, причем группы Cp и C'p - идентичные или различные, которые могут быть связаны ковалентным мостиком;
М - переходный металл из групп IIIB, IVB, VB и VIB Периодической таблицы;
a, b, x и z - целые числа, такие, чтобы (a + b + x + z) = m; x ≥ 1; z ≥ 0;
a и/или b ≠ 0;
m - валентность переходного металла М;
Х - галоген; Z - углеводородный радикал, который в некоторых случаях может содержать кислород, или силиловый радикал формулы
(-Rt-Si-R'R''R'''),
в которой R - группа алкильная, алкенильная, арильная, алкокси или циклоалкильная, возможно замещенная;
R', R'', R''' - идентичные или различные и каждый - галоген или группа алкильная, алкенильная, арильная, алкокси или циклоалкильная, возможно замещенная,
t = 0 или 1,
причем на первом этапе готовят смесь алюминийорганического соединения с нейтральным металлоценом в по крайней мере одном углеводородном разбавителе и на втором этапе в полученную смесь вводят ионизирующий агент.
2. Способ по п.1, отличающийся тем, что используют нейтральный металлоцен, в котором ненасыщенные углеводородные радикалы выбраны из циклопентадиенила, инденила или флуоренила, возможно замещенных.
3. Способ по п. 1 или 2, отличающийся тем, что используют нейтральный металлоцен, в котором переходный металл является цирконием.
4. Способ по пп.1 - 3, отличающийся тем, что нейтральный металлоцен используют в виде раствора в ароматическом углеводороде.
5. Способ по пп. 1 - 4, отличающийся тем, что ионизирующий агент используют в виде раствора в ароматическом углеводороде.
6. Способ по п.4 или 5, отличающийся тем, что ароматическим углеводородом является толуол.
7. Способ по пп.1 - 6, отличающийся тем, что алюминийорганическое соединение, нейтральный металлоцен и ионизирующий агент используют в таких количествах, при которых молярное отношение ионизирующего агента к нейтральному металлоцену находится в интервале от 0,1 до 10, а молярное отношение алюминийорганического соединения к нейтральному металлоцену не менее 10.
8. Способ по пп.1 - 7, отличающийся тем, что ионизирующий агент выбирают из тетракис(пентафторфенил)бораттрифенилкарбения или три(пентафторфенил)бора.
9. Способ по пп.1 - 8, отличающийся тем, что алюминийорганическое соединение выбирают из триэтилалюминия и триизобутилалюминия.
10. Способ по пп.1 - 9, отличающийся тем, что нейтральный металлоцен, в котором z отличается от 0 или Z - силиловый радикал формулы
(-Rt-Si-R'R''R'''),
получают взаимодействием соединения формулы
(Cp)a(C'p)bMXxHz
с силаном.
11. Способ по п.10, отличающийся тем, что силан выбирают из негалогенированных алкенилсиланов, содержащих до 60 атомов углерода.
12. Способ по п.11, отличающийся тем, что в качестве силана используют винил(триметокси)силан.
13. Способ по пп.1 - 9, отличающийся тем, что в случае, когда z отличается от 0 или когда Z - углеводородный радикал, нейтральный металлоцен получают взаимодействием соединения формулы
(Cp)a(C'p)bMXxHz
и олефина.
14. Способ по п.13, отличающийся тем, что в качестве олефина используют этилен.
15. Способ по пп.1 - 14, отличающийся тем, что нейтральный металлоцен и/или ионизирующий агент наносят на носитель.
16. Способ по п.15, отличающийся тем, что носитель обрабатывают раствором алюминоксана.
17. Способ по п.15 или 16, отличающийся тем, что носитель выбирают из минеральных носителей.
18. Способ по п.17, отличающийся тем, что носитель выбирают из двуокиси кремния, окиси алюминия и хлорида магния.
19. Способ (со)полимеризации не менее одного олефина в присутствии каталитической системы, содержащей по крайней мере одно алюминийорганическое соединение формулы
AlTT'T'',
в которой T, T' и T'' каждый - углеводородный радикал, который может содержать кислород, по крайней мере один нейтральный металлоцен - производное переходного металла и по крайней мере один ионизирующий агент,
отличающийся тем, что нейтральный металлоцен выбирают из соединений формулы
(Cp)a(C'p)bMXxZz,
в которой Cp - ненасыщенный углеводородный радикал, связанный координационной связью с центральным атомом М;
C'p - ненасыщенный углеводородный радикал, связанный координационной связью с центральным атомом М или радикал - производное элемента, выбранного среди групп VA и VIA Периодической таблицы, причем группы Cp и C'p идентичные или различные, могут быть связаны ковалентным мостиком;
M - переходный металл, выбранный из групп IIIB, IVB, VB и VIB Периодической таблицы;
a, b, x и z - целые числа, такие, чтобы (a + b + x + z) = m;
x ≥ 1;
z ≥ 0;
a и/или b ≠ 0;
m - валентность переходного металла М;
X - галоген;
Z - углеводородный радикал, который может содержать кислород, или силиловый радикал формулы
(-Rt-Si-R'R''R'''),
в которой R - группа алкильная, алкенильная, арильная, алкокси или циклоалкильная, возможно замещенная;
R', R'' и R''' - одинаковые или различные, и каждый - галоген или алькильная, алкинильная, арильная, алкокси или циклоалкильная группа, возможно замещенная;
t = 0 или 1,
и готовят смесь алюминийорганического соединения и нейтрального металлоцена в не менее чем одном углеводородном разбавителе, олефин вводят в контакт с полученной смесью и добавляют ионизирующий агент.
20. Способ по п. 19, отличающийся тем, что углеводородный разбавитель выбирают из алифатических углеводородов.
21. Способ по п.19 или 20, отличающийся тем, что алюминийорганическое соединение и нейтральный металлоцен используют в таких количествах, при которых молярное отношение алюминийорганического соединения к нейтральному металлоцену равно не менее 100.
22. Способ по пп.19 - 21, отличающийся тем, что используют нейтральный металлоцен и/или ионизирующий агент, нанесенный на носитель.
23. Способ по п.22, отличающийся тем, что используют носитель, обработанный раствором алюминоксана.
24. Способ по п.22 или 23, отличающийся тем, что носитель выбирают из минеральных носителей.
25. Способ по п.24, отличающийся тем, что носитель выбирают из двуокиси кремния, окиси алюминия и хлорида магния.
26. Способ по любому из пп.19 - 25, отличающийся тем, что в случае, когда z отличается от 0, а Z - силиловый радикал формулы
(-Rt-Si-R'R''R'''),
нейтральный металлоцен готовят взаимодействием соединения формулы
(Cp)a(C'p)bMXxZt
и силана.
27. Способ по п.26, отличающийся тем, что силан выбирают из негалогенированных алкенилсиланов, содержащих до 60 атомов углерода.
28. Способ по п.27, отличающийся тем, что в качестве силана используют винил(триметокси)силан.
29. Способ по пп.19 - 25, отличающийся тем, что в случае, когда z отличается от 0 или Z - углеводородный радикал, нейтральный металлоцен получают, подвергая взаимодействию соединение формулы
(Cp)a(C'p)bMXxHz
с олефином.
30. Способ по п.29, отличающийся тем, что в качестве олефина используют этилен.
31. (Со)полимер по крайней мере одного олефина, отличающийся тем, что он получен по любому из пп.19 - 30 и содержит максимально 0,5 мас.% олигомеров, имеет распределение молекулярной массы с отношением Mw/Mn, равным от 2 до 10, где Mw и Mn обозначают соответственно средневесовой молекулярный вес и среднечисловой молекулярный вес и содержание переходного металла не менее 5 ррm масс.
RU93043995/04A 1992-06-05 1993-06-04 Способ получения каталитической системы для (со)полимеризации олефинов, способ (со)полимеризации олефинов и (со)полимер, полученный этим способом RU2117677C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE09200526 1992-06-05
BE9200526A BE1005957A5 (fr) 1992-06-05 1992-06-05 Procede de preparation d'un systeme catalytique, procede de (co)polymerisation d'olefines et (co)polymeres d'au moins une olefine.

Publications (2)

Publication Number Publication Date
RU93043995A RU93043995A (ru) 1996-04-27
RU2117677C1 true RU2117677C1 (ru) 1998-08-20

Family

ID=3886306

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93043995/04A RU2117677C1 (ru) 1992-06-05 1993-06-04 Способ получения каталитической системы для (со)полимеризации олефинов, способ (со)полимеризации олефинов и (со)полимер, полученный этим способом

Country Status (11)

Country Link
US (3) US5612271A (ru)
EP (2) EP0573120B1 (ru)
JP (1) JP3429026B2 (ru)
KR (1) KR100282561B1 (ru)
AT (2) ATE172991T1 (ru)
BE (1) BE1005957A5 (ru)
CA (1) CA2097777C (ru)
DE (2) DE69333399T2 (ru)
ES (2) ES2213872T3 (ru)
RU (1) RU2117677C1 (ru)
TW (1) TW286321B (ru)

Families Citing this family (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1006880A3 (fr) * 1993-03-01 1995-01-17 Solvay Precurseur solide d'un systeme catalytique pour la polymerisation d'olefines, procede pour sa preparation, systeme catalytique comprenant ce precurseur solide et procede de polymerisation d'olefines en presence de ce systeme catalytique.
WO1994029356A1 (fr) 1993-06-15 1994-12-22 Idemitsu Kosan Co., Ltd. Procede de production de polymere olefinique, et catalyseur pour la polymerisation d'une olefine
US5498582A (en) * 1993-12-06 1996-03-12 Mobil Oil Corporation Supported metallocene catalysts for the production of polyolefins
US6008307A (en) * 1994-04-28 1999-12-28 Exxon Chemical Patents Inc Process for producing olefin polymers using cationic catalysts
US6291389B1 (en) 1994-04-28 2001-09-18 Exxonmobil Chemical Patents Inc. Cationic polymerization catalysts
DE4431838A1 (de) * 1994-09-07 1996-03-14 Basf Ag Geträgerte Metallocen-Katalysatorsysteme
DE4431837A1 (de) * 1994-09-07 1996-03-14 Basf Ag Geträgerte Metallocen-Katalysatorsysteme
ES2116188B1 (es) * 1994-12-30 1999-04-01 Repsol Quimica Sa Proceso de obtencion de poliolefinas con distribuciones de pesos moleculares anchas, bimodales o multimodales.
BR9708335A (pt) * 1996-03-27 1999-08-03 Dow Chemical Co Processo de polimerização em solução para polimerizar olefinas
DE19617229A1 (de) * 1996-04-30 1997-11-06 Basf Ag Verfahren zur Herstellung von niedermolekularen Ethylenpolymerisaten im Hochdruck
US6107230A (en) * 1998-05-18 2000-08-22 Phillips Petroleum Company Compositions that can produce polymers
US6165929A (en) * 1998-05-18 2000-12-26 Phillips Petroleum Company Compositions that can produce polymers
US6300271B1 (en) 1998-05-18 2001-10-09 Phillips Petroleum Company Compositions that can produce polymers
DE69939738D1 (de) * 1998-05-18 2008-11-27 Chevron Phillips Chemical Co Katalysatorzusammensetzung für monomerpolymerisation
US6291386B1 (en) 1999-05-25 2001-09-18 Equistar Chemicals, Lp Process for the in-situ preparation of single-site transition metal catalysts and polymerization process
US6395847B2 (en) 1999-11-19 2002-05-28 Exxonmobil Chemical Patents Inc. Supported organometallic catalysts and their use in olefin polymerization
US6750302B1 (en) 1999-12-16 2004-06-15 Phillips Petroleum Company Organometal catalyst compositions
US6524987B1 (en) 1999-12-22 2003-02-25 Phillips Petroleum Company Organometal catalyst compositions
US6555495B2 (en) * 2000-12-06 2003-04-29 Univation Technologies, Llc Catalyst support method and polymerization with supported catalysts
TWI300782B (en) * 2002-08-29 2008-09-11 Ineos Europe Ltd Supported polymerisation catalysts
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
CA2499951C (en) 2002-10-15 2013-05-28 Peijun Jiang Multiple catalyst system for olefin polymerization and polymers produced therefrom
US7223822B2 (en) 2002-10-15 2007-05-29 Exxonmobil Chemical Patents Inc. Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom
US7119153B2 (en) * 2004-01-21 2006-10-10 Jensen Michael D Dual metallocene catalyst for producing film resins with good machine direction (MD) elmendorf tear strength
TW200536870A (en) 2004-03-17 2005-11-16 Dow Global Technologies Inc Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation
US7915192B2 (en) 2004-03-17 2011-03-29 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for ethylene copolymer formation
NZ549262A (en) 2004-03-17 2010-08-27 Dow Global Technologies Inc Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation
ATE504349T1 (de) 2004-06-16 2011-04-15 Dow Global Technologies Inc Verfahren zur auswahl von polymerisationsmodifikatoren
US7157531B2 (en) * 2004-06-21 2007-01-02 Univation Technologies, Llc Methods for producing polymers with control over composition distribution
EP1805226A1 (en) 2004-10-29 2007-07-11 Exxonmobil Chemical Patents Inc. Catalyst compound containing divalent tridentate ligand
US8536268B2 (en) 2004-12-21 2013-09-17 Dow Global Technologies Llc Polypropylene-based adhesive compositions
KR20070117675A (ko) 2005-03-17 2007-12-12 다우 글로벌 테크놀로지스 인크. 택틱/아택틱 멀티-블록 공중합체의 형성을 위한 이동제를포함하는 촉매 조성물
CA2600318A1 (en) 2005-03-17 2006-09-28 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for regio-irregular multi-block copolymer formation
US9410009B2 (en) 2005-03-17 2016-08-09 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation
EP1717269A1 (en) * 2005-04-28 2006-11-02 Borealis Technology Oy Alpha-olefin homo-or copolymer compositions
SG156614A1 (en) 2005-09-15 2009-11-26 Dow Global Technologies Inc Catalytic olefin block copolymers via polymerizable shuttling agent
KR20080055838A (ko) 2005-09-15 2008-06-19 다우 글로벌 테크놀로지스 인크. 다중심 셔틀링제를 통한 중합체 구성 및 분자량 분포의제어
US8153243B2 (en) 2005-12-09 2012-04-10 Dow Global Technologies Llc Interpolymers suitable for multilayer films
CA2632880A1 (en) 2005-12-16 2007-07-05 Dow Global Technologies Inc. Polydentate heteroatom ligand containing metal complexes, catalysts and methods of making and using the same
EP1803747A1 (en) 2005-12-30 2007-07-04 Borealis Technology Oy Surface-modified polymerization catalysts for the preparation of low-gel polyolefin films
CN104725535A (zh) 2006-05-17 2015-06-24 陶氏环球技术有限责任公司 高效溶液聚合法
KR20100015391A (ko) 2007-03-07 2010-02-12 다우 글로벌 테크놀로지스 인크. 테더링된 담지 전이 금속 착체
ITMI20070877A1 (it) 2007-05-02 2008-11-03 Dow Global Technologies Inc Processo per la produzione di copolimeri a blocchi multipli con l'utilizzo di solventi polari
ITMI20070878A1 (it) 2007-05-02 2008-11-03 Dow Global Technologies Inc Processo per la polimerizzazine di polimeri tattici con l'uso di catalizzatori chirali
EP2212359B1 (en) 2007-11-19 2013-08-28 Dow Global Technologies LLC Long chain branched propylene-alpha-olefin copolymers
RU2515900C2 (ru) 2008-12-18 2014-05-20 Юнивейшн Текнолоджиз, Ллк Способ обработки зародышевого слоя реакции полимеризации
CN102421807B (zh) 2009-03-06 2015-03-18 陶氏环球技术有限责任公司 催化剂、制备催化剂的方法、制备聚烯烃组合物的方法和聚烯烃组合物
WO2011016991A2 (en) 2009-07-29 2011-02-10 Dow Global Technologies Inc. Dual- or multi-headed chain shuttling agents and their use for the preparation of block copolymers
WO2011016992A2 (en) 2009-07-29 2011-02-10 Dow Global Technologies Inc. Polymeric chain transfer/shuttling agents
IN2012DN03367A (ru) 2009-10-19 2015-10-23 Sasol Technolgoy Pty Ltd
MY161763A (en) 2010-11-30 2017-05-15 Univation Tech Llc Catalyst composition having improved flow characteristics and methods of making and using the same
BR112013012741B1 (pt) 2010-11-30 2020-04-28 Univation Tech Llc processo de polimerização
US9637567B2 (en) 2011-05-13 2017-05-02 Univation Technologies, Llc Spray-dried catalyst compositions and polymerization processes employing the same
CN103596686B (zh) 2011-06-08 2015-08-12 埃克森美孚化学专利公司 包含多种非配位阴离子化活化剂的催化剂体系以及使用其的聚合方法
US8658556B2 (en) 2011-06-08 2014-02-25 Exxonmobil Chemical Patents Inc. Catalyst systems comprising multiple non-coordinating anion activators and methods for polymerization therewith
US8969482B2 (en) 2011-09-30 2015-03-03 Exxonmobil Chemical Patents Inc. Dynamic modulation of metallocene catalysts
KR101339474B1 (ko) * 2011-11-24 2013-12-10 삼성토탈 주식회사 올레핀 중합 및 공중합용 촉매 및 이를 사용하는 올레핀 중합 또는 공중합 방법
US8895679B2 (en) 2012-10-25 2014-11-25 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US8937139B2 (en) 2012-10-25 2015-01-20 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
CN109824802A (zh) 2012-12-21 2019-05-31 埃克森美孚化学专利公司 桥联的金属茂化合物、催化剂体系和使用它们的聚合方法
WO2014109832A1 (en) 2013-01-14 2014-07-17 Univation Technologies, Llc Methods for preparing catalyst systems with increased productivity
US9034991B2 (en) 2013-01-29 2015-05-19 Chevron Phillips Chemical Company Lp Polymer compositions and methods of making and using same
US8877672B2 (en) 2013-01-29 2014-11-04 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
EP2951211B1 (en) 2013-01-30 2019-11-13 Univation Technologies, LLC Processes for making catalyst compositions having improved flow
AU2014287269B2 (en) * 2013-07-09 2018-01-18 Dow Global Technologies Llc Ethylene/alpha-olefin interpolymers with improved pellet flowability
CN105358588B (zh) 2013-07-17 2018-05-18 埃克森美孚化学专利公司 使用取代茂金属催化剂的方法和由其得到的产品
EP3022233B1 (en) 2013-07-17 2019-05-01 ExxonMobil Chemical Patents Inc. Cyclopropyl substituted metallocene catalysts
WO2015073157A1 (en) 2013-11-15 2015-05-21 Exxonmobil Chemical Patents Inc. Process to produce polymers from pyridyldiamido transition metal complexes and use thereof
JP2017512876A (ja) 2014-04-02 2017-05-25 ユニベーション・テクノロジーズ・エルエルシー 連続組成物ならびにそれらの作成及び使用の方法
WO2016094843A2 (en) 2014-12-12 2016-06-16 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system comprising mesoporous organosilica support
WO2016094870A1 (en) 2014-12-12 2016-06-16 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system comprising mesoporous organosilica support
WO2016094861A1 (en) 2014-12-12 2016-06-16 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system comprising mesoporous organosilica support
US10544239B2 (en) 2014-12-12 2020-01-28 Exxonmobile Research And Engineering Company Organosilica materials and uses thereof
WO2016094866A1 (en) 2014-12-12 2016-06-16 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system comprising mesoporous organosilica support
BR112017019133B1 (pt) 2015-03-10 2021-11-23 Univation Technologies, Llc Método para produzir uma composição de catalisador suportado para polimerização de olefina
US10195589B2 (en) 2015-04-20 2019-02-05 Univation Technologies, Llc Bridged bi-aromatic ligands and olefin polymerization catalysts prepared therefrom
US10252967B2 (en) 2015-04-20 2019-04-09 Univation Technologies, Llc Bridged bi-aromatic ligands and transition metal compounds prepared therefrom
EP3286230B1 (en) 2015-04-20 2023-03-08 ExxonMobil Chemical Patents Inc. Supported catalyst systems and processes for use thereof
CN107531840B (zh) 2015-04-27 2022-11-18 尤尼威蒂恩技术有限责任公司 具有改进流动特性的负载型催化剂组合物及其制备
WO2016195824A1 (en) 2015-05-29 2016-12-08 Exxonmobil Chemical Patents Inc. Polymerization process using bridged metallocene compounds supported on organoaluminum treated layered silicate supports
EP3885373A1 (en) 2015-06-05 2021-09-29 ExxonMobil Chemical Patents Inc. Production of heterophasic polymers in gas or slurry phase
US10759886B2 (en) 2015-06-05 2020-09-01 Exxonmobil Chemical Patents Inc. Single reactor production of polymers in gas or slurry phase
WO2017003565A1 (en) 2015-06-30 2017-01-05 Exxonmobil Chemical Patents Inc. Transition metal complexes of tridentate dianionic cnn ligands, production and use thereof
KR102606500B1 (ko) 2015-09-30 2023-11-28 다우 글로벌 테크놀로지스 엘엘씨 사슬 왕복에 유용한 다중-헤드 또는 이중-헤드 조성물 및 이를 제조하는 방법
WO2017058384A1 (en) 2015-10-02 2017-04-06 Exxonmobil Chemical Patents Inc. Asymmetric fluorenyl-substituted salan catalysts
WO2017069854A1 (en) 2015-10-22 2017-04-27 Exxonmobil Chemical Patents Inc. Catalysts for the formation of multimodal polymers
WO2017069851A1 (en) 2015-10-23 2017-04-27 Exxonmobil Chemical Patents Inc. Production of polyolefins with internal unsaturation structures using a metallocene catalyst system
US9803037B1 (en) 2016-05-03 2017-10-31 Exxonmobil Chemical Patents Inc. Tetrahydro-as-indacenyl catalyst composition, catalyst system, and processes for use thereof
US11059918B2 (en) 2016-05-27 2021-07-13 Exxonmobil Chemical Patents Inc. Metallocene catalyst compositions and polymerization process therewith
WO2018022249A1 (en) 2016-07-29 2018-02-01 Exxonmobil Chemical Patents Inc. Heterocyclic amido transition metal complexes, production and use thereof
WO2018022263A1 (en) 2016-07-29 2018-02-01 Exxonmobil Chemical Patents Inc. Polymerization processes using high molecular weight polyhydric quenching agents
KR102490785B1 (ko) 2016-09-30 2023-01-20 다우 글로벌 테크놀로지스 엘엘씨 사슬 왕복에 유용한 캡핑된 다중- 또는 이중-헤드형 조성물 및 이의 제조 방법
KR102464765B1 (ko) 2016-09-30 2022-11-09 다우 글로벌 테크놀로지스 엘엘씨 사슬 이동에 유용한 다중 또는 이중 헤드 조성물의 제조 방법
CN109937217B (zh) 2016-09-30 2021-09-14 陶氏环球技术有限责任公司 适用于链梭移的多头或双头组合物和其制备方法
WO2018067289A1 (en) 2016-10-05 2018-04-12 Exxonmobil Chemical Patents Inc. Sterically hindered metallocenes, synthesis and use
WO2018075243A1 (en) 2016-10-19 2018-04-26 Exxonmobil Chemical Patents Inc. Supported catalyst systems and methods of using same
WO2018151904A1 (en) 2017-02-20 2018-08-23 Exxonmobil Chemical Patents Inc. Group 4 catalyst compounds and process for use thereof
EP3854825A1 (en) 2017-02-20 2021-07-28 ExxonMobil Chemical Patents Inc. Polymers comprising ethylene and c4 to c14 alpha olefin comonomers
WO2018151790A1 (en) 2017-02-20 2018-08-23 Exxonmobil Chemical Patents Inc. Hafnocene catalyst compounds and process for use thereof
WO2019099250A1 (en) 2017-11-14 2019-05-23 Exxonmobil Chemical Patents Inc. (di)silicon bridged metallocenes that produce polyethylene broad molecular weight distribution and molecular weight
US11028196B2 (en) 2017-12-22 2021-06-08 Exxonmobil Chemical Patents Inc. Polyolefin compositions
WO2019162760A1 (en) 2018-02-05 2019-08-29 Exxonmobil Chemical Patents Inc. A Corporation Of State Of Delaware Enhanced processability of lldpe by addition of ultra-high molecular weight high density polyethylene
WO2019156968A1 (en) 2018-02-07 2019-08-15 Exxonmobil Chemical Patents Inc. Supported catalysts systems and polymerization processes for using the same
US11440979B2 (en) 2018-02-19 2022-09-13 Exxonmobil Chemical Patents Inc. Catalysts, catalyst systems, and methods for using the same
CN112513110B (zh) 2018-03-08 2023-10-27 埃克森美孚化学专利公司 作为粘度改性剂的乙烯-丙烯线性共聚物
EP3762475A1 (en) 2018-03-08 2021-01-13 ExxonMobil Chemical Patents Inc. Ethylene-propylene branched copolymers as viscosity modifiers with enhanced fuel economy
WO2019182949A1 (en) 2018-03-19 2019-09-26 Exxonmobil Chemical Patents Inc. Elastomeric propylene-alpha-olefin-diene terpolymer compositions
WO2019236351A1 (en) 2018-06-04 2019-12-12 Exxonmobil Chemical Patents Inc. Metallocenes with si-si bridges
US10815439B2 (en) 2018-08-22 2020-10-27 Exxonmobil Research And Engineering Company Manufacturing hydrocarbons
WO2020041084A1 (en) 2018-08-22 2020-02-27 Exxonmobil Research And Engineering Company Manufacturing a base stock from ethanol
US20210179827A1 (en) 2018-08-29 2021-06-17 Exxonmobil Chemical Patents Inc. Methods of Making Polymer Compositions with Enhanced Elasticity by Employing VTP and HMP Catalyst Systems in Parallel Processes
WO2020069086A2 (en) 2018-09-27 2020-04-02 Exxonmobil Chemical Patents Inc. C1,c2-bridged ligands and catalysts
JP2022516119A (ja) 2018-12-28 2022-02-24 ダウ グローバル テクノロジーズ エルエルシー テレケリックポリオレフィンを含む硬化性組成物
EP3902807A1 (en) 2018-12-28 2021-11-03 Dow Global Technologies LLC Organometallic chain transfer agents
JP2022515522A (ja) 2018-12-28 2022-02-18 ダウ グローバル テクノロジーズ エルエルシー 不飽和ポリオレフィンを含む硬化性組成物
SG11202107057WA (en) 2018-12-28 2021-07-29 Dow Global Technologies Llc Curable compositions comprising unsaturated polyolefins
WO2020140058A1 (en) 2018-12-28 2020-07-02 Dow Global Technologies Llc Telechelic polyolefins and processes for preparing the same
US20220033549A1 (en) 2019-01-08 2022-02-03 Exxonmobil Chemical Patents Inc. Olefin Polymerization Processes Featuring In Situ Blending of an Oil Extension
US11180580B2 (en) 2019-03-29 2021-11-23 Exxonmobil Chemical Patents Inc. Benzazole and pseudoindole diamido transition metal complexes and use thereof in olefin polymerization
CN114423838B (zh) 2019-07-17 2023-11-24 埃克森美孚化学专利公司 包含丙烯-乙烯(-二烯)共聚物的压敏粘合剂
CN114867758A (zh) 2019-08-02 2022-08-05 埃克森美孚化学专利公司 茂金属和其方法
CN114450336B (zh) 2019-08-05 2024-01-09 埃克森美孚化学专利公司 用于改进橡胶粘着性的丙烯-α-烯烃-二烯三元共聚物添加剂
WO2021041406A1 (en) 2019-08-27 2021-03-04 Chevron Oronite Company Llc Ethylene copolymers and use as viscosity modifiers
US11649256B2 (en) 2019-10-11 2023-05-16 Exxonmobil Chemical Patents Inc. Catalysts for olefin polymerization
CN114787208A (zh) 2019-12-11 2022-07-22 埃克森美孚化学专利公司 低芳香性的聚烯烃
US11718635B2 (en) 2019-12-16 2023-08-08 Exxonmobil Chemical Patents Inc. Iron bis(imino) aryl catalysts and methods thereof
US11613593B2 (en) 2020-02-24 2023-03-28 Exxonmobil Chemical Patents Inc. Ansa-bis(inden-2-yl) catalysts for producing vinylidene-terminated polyalphaolefins
CN115427464A (zh) 2020-02-24 2022-12-02 埃克森美孚化学专利公司 路易斯碱催化剂及其方法
US11760814B2 (en) 2020-03-03 2023-09-19 Exxonmobil Chemical Patents Inc. 1,5 diazabicyclooctane ligand systems and methods therewith
WO2021188361A1 (en) 2020-03-20 2021-09-23 Exxonmobil Chemical Patents Inc. Linear alpha-olefin copolymers and impact copolymers thereof
EP4127061A1 (en) 2020-03-30 2023-02-08 ExxonMobil Chemical Patents Inc. Comb-block copolymers and methods thereof
WO2021222016A2 (en) 2020-05-01 2021-11-04 Exxonmobil Chemical Patents Inc. Linear low density polyethylene for film applications
WO2021222280A2 (en) 2020-05-01 2021-11-04 Exxonmobil Chemical Patents Inc. Linear low density polyethylene for film applications
US20230242745A1 (en) 2020-06-03 2023-08-03 Exxonmobil Chemical Patents Inc Process for Production of Thermoplastic Vulcanizates using Supported Catalyst Systems and Compositions Made Therefrom
US20230212330A1 (en) 2020-06-16 2023-07-06 Exxonmobil Chemical Patents Inc. Metallocene Catalysts for Producing Vinyl-Terminated Polyalphaolefins and Methods Associated Therewith
WO2021262842A1 (en) 2020-06-26 2021-12-30 Exxonmobil Chemical Patents Inc. COPOLYMERS OF ETHYLENE, α-OLEFIN, NON-CONJUGATED DIENE, AND ARYL-SUBSTITUTED CYCLOALKENE, METHODS TO PRODUCE, BLENDS, AND ARTICLES THEREFROM
WO2021262838A1 (en) 2020-06-26 2021-12-30 Exxonmobil Chemical Patents Inc. Copolymers composed of ethylene, a-olefin, non-conjugated diene, and substituted styrene and articles therefrom
US20240018279A1 (en) 2020-08-13 2024-01-18 Exxonmobil Chemical Patents Inc. Cyclic Containing Polymer Compositions Obtained Using Transition Metal Bis(Phenolate) Catalyst Complexes and Process for Production Thereof
CN116323694A (zh) 2020-09-30 2023-06-23 埃克森美孚化学专利公司 双(杂环-醇盐)路易斯碱催化剂及其方法
EP4225816A1 (en) 2020-10-08 2023-08-16 ExxonMobil Chemical Patents Inc. Supported catalyst systems and processes for use thereof
US20230312772A1 (en) 2020-10-22 2023-10-05 Exxonmobil Chemical Patents Inc. Multidentate Lewis Base Catalysts and Methods for use Thereof
US11919981B2 (en) 2020-10-22 2024-03-05 Exxonmobil Chemical Patents Inc. Monocyclopentadienyl pyridyl hydroxyl amine catalyst compounds and systems for olefin polymerization
US11814460B2 (en) 2020-10-22 2023-11-14 Exxonmobil Chemical Patents Inc. Pyridyl hydroxyl amine catalyst compounds and systems for Olefin Polymerization
WO2022093814A1 (en) 2020-10-28 2022-05-05 Exxonmobil Chemical Patents Inc. Non-aromatic hydrocarbon soluble olefin polymerization catalysts and use thereof
WO2022146634A1 (en) 2020-12-29 2022-07-07 Exxonmobil Chemical Patents Inc. Polyolefin-based ionomers and production thereof
EP4337750A1 (en) 2021-05-14 2024-03-20 ExxonMobil Chemical Patents Inc. Ethylene-propylene branched copolymers as viscosity modifiers
EP4347670A1 (en) 2021-05-24 2024-04-10 ExxonMobil Chemical Patents Inc. Biphasic polymerization processes
WO2023034889A1 (en) 2021-09-02 2023-03-09 Exxonmobil Chemical Patents Inc. C1 symmetric metallocene catalysts tailored for production of vinyl-terminated polypropylene oligomers and macromonomers
WO2023044215A1 (en) 2021-09-14 2023-03-23 Exxonmobil Chemical Patents Inc. Catalyst feeder and processes thereof
WO2023177956A1 (en) 2022-03-14 2023-09-21 Exxonmobil Chemical Patents Inc. Metal bis(imino) aryl compounds and methods thereof
WO2023177957A1 (en) 2022-03-14 2023-09-21 Exxonmobil Chemical Patents Inc. Metal-containing bis(imino) per-substituted aryl compounds and methods thereof
WO2023250268A1 (en) 2022-06-24 2023-12-28 Exxonmobil Chemical Patents Inc. Constrained geometry metal-ligand complexes and use thereof in olefin polymerization
WO2024072545A1 (en) 2022-09-29 2024-04-04 Exxonmobil Chemical Patents Inc. Foamable branched polypropylene compositions and foamed products produced therefrom

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240844A (en) * 1985-09-13 1993-08-31 Wie Siong I Test kit for determining the presence of organic materials and method of utilizing same
US4701432A (en) * 1985-11-15 1987-10-20 Exxon Chemical Patents Inc. Supported polymerization catalyst
US5241025A (en) * 1987-01-30 1993-08-31 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
KR920006464B1 (ko) * 1988-09-14 1992-08-07 미쓰이 세끼유 가가꾸 고오교오 가부시끼가이샤 올레핀중합용 촉매성분, 올레핀중합용 촉매 및 이 올레핀중합용 촉매를 사용한 올레핀의 중합방법
US5057475A (en) * 1989-09-13 1991-10-15 Exxon Chemical Patents Inc. Mono-Cp heteroatom containing group IVB transition metal complexes with MAO: supported catalyst for olefin polymerization
ES2086397T5 (es) * 1989-10-30 2005-07-16 Fina Technology, Inc. Adicion de alkiloaluminio para un catalizador metaloceno mejorado.
EP0841349B1 (en) * 1990-07-24 2002-06-12 Mitsui Chemicals, Inc. Catalyst for alpha-olefin polymerization and production of poly-alpha-olefin therewith
CA2068939C (en) * 1991-05-20 1996-04-09 Takashi Ueda Olefin polymerization catalyst and olefin polymerization
JP2951763B2 (ja) * 1991-08-27 1999-09-20 三井化学株式会社 メタロセン化合物溶液及びその保存方法
JPH05239138A (ja) * 1992-02-28 1993-09-17 Mitsubishi Petrochem Co Ltd オレフィン重合用触媒
JPH05310829A (ja) * 1992-03-12 1993-11-22 Tosoh Corp オレフィン重合用触媒及びオレフィンの重合方法
JPH05301919A (ja) * 1992-04-27 1993-11-16 Tosoh Corp オレフィン重合用触媒及びオレフィンの重合方法
US5240894A (en) 1992-05-18 1993-08-31 Exxon Chemical Patents Inc. Method for making and using a supported metallocene catalyst system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EP, 0426638 [FINA TECHNOLOGY INC), С 08 А 4/602, 1991. *

Also Published As

Publication number Publication date
EP0573120A1 (fr) 1993-12-08
KR940000484A (ko) 1994-01-03
TW286321B (ru) 1996-09-21
JP3429026B2 (ja) 2003-07-22
DE69321877T2 (de) 1999-06-10
JPH0632830A (ja) 1994-02-08
ATE258191T1 (de) 2004-02-15
ES2213872T3 (es) 2004-09-01
DE69333399T2 (de) 2004-12-09
CA2097777A1 (fr) 1993-12-06
ES2125941T3 (es) 1999-03-16
ATE172991T1 (de) 1998-11-15
KR100282561B1 (ko) 2001-02-15
EP0857735A3 (fr) 2000-07-26
EP0857735B1 (fr) 2004-01-21
EP0857735A2 (fr) 1998-08-12
US5612271A (en) 1997-03-18
US6555632B1 (en) 2003-04-29
DE69321877D1 (de) 1998-12-10
BE1005957A5 (fr) 1994-04-05
DE69333399D1 (de) 2004-02-26
CA2097777C (fr) 2003-12-30
EP0573120B1 (fr) 1998-11-04
US5817725A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
RU2117677C1 (ru) Способ получения каталитической системы для (со)полимеризации олефинов, способ (со)полимеризации олефинов и (со)полимер, полученный этим способом
RU2145612C1 (ru) Каталитическая система, предшественник этой каталитической системы, способ получения этой каталитической системы и способ (со)полимеризации олефинов
EP0822946B1 (en) Azaborolinyl metal complexes as olefin polymerization catalysts
KR100300486B1 (ko) 올레핀중합용촉매계의고체전구물질,이의제조방법,이전구물질을함유하는촉매계와이촉매계의존재하에서하는올레핀의중합방법
RU2165435C2 (ru) Каталитическая композиция, используемая при полимеризации олефинов
AU665320B1 (en) Unbridged indenyl-containing metallocenes useful in olefin polymerization
RU2162091C2 (ru) Твердый компонент каталитической системы для (со)полимеризации этилена, способ его получения, каталитическая система для (со)полимеризации этилена и способ (со)полимеризации этилена
CA2277224C (en) Olefin polymerization catalyst composition having increased activity
EP0570982A1 (en) Catalysts and process for producing olefin polymers
US5908903A (en) Metallocene catalyst systems containing lewis bases
US6136747A (en) Mixed catalyst composition for the production of olefin polymers
US5525690A (en) Process for the preparation of a polyolefin and syndiotactic polypropylene
KR100193152B1 (ko) 2핵 헤테로 메탈로센 촉매와 그 제조 방법
EP0741146A1 (en) Catalyst with improved activity for ethylene (co)-polymerization
CA2337255A1 (en) Heterogeneous catalyst systems comprising kaolin as support for the polymerization of olefins
US6228958B1 (en) Azaborolinyl metal complexes as olefin polymerization catalysts
US6187882B1 (en) Process for polymerization of olefins
CA2219816C (en) Azaborolinyl metal complexes as olefin polymerization catalysts
JPH05320237A (ja) オレフィン重合用固体触媒及びそれを用いたポリオレフィンの製造方法
JPH05320243A (ja) オレフィン重合体の製造方法
JPH08134130A (ja) オレフィン重合用固体触媒及びそれを用いたオレフィン系重合体の製造方法
EP0757995A1 (en) Supported polymerization-catalyst and its use for olefine polymerization

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20030605