RU2091305C1 - Кристаллические микропористые силикоалюмофосфаты, способ их получения и катализатор для синтеза олефинов из метанола - Google Patents

Кристаллические микропористые силикоалюмофосфаты, способ их получения и катализатор для синтеза олефинов из метанола Download PDF

Info

Publication number
RU2091305C1
RU2091305C1 RU9294031164A RU94031164A RU2091305C1 RU 2091305 C1 RU2091305 C1 RU 2091305C1 RU 9294031164 A RU9294031164 A RU 9294031164A RU 94031164 A RU94031164 A RU 94031164A RU 2091305 C1 RU2091305 C1 RU 2091305C1
Authority
RU
Russia
Prior art keywords
sio
source
hydrochloric acid
product
silicoaluminophosphates
Prior art date
Application number
RU9294031164A
Other languages
English (en)
Other versions
RU94031164A (ru
Inventor
Квисле Стейнар
Веннельбо Руне
Эрен Ханне
Original Assignee
Норск Хюдро А.С.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Норск Хюдро А.С. filed Critical Норск Хюдро А.С.
Publication of RU94031164A publication Critical patent/RU94031164A/ru
Application granted granted Critical
Publication of RU2091305C1 publication Critical patent/RU2091305C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates (SAPO compounds), e.g. CoSAPO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/30Alpo and sapo

Abstract

Изобретение относится к кристаллическим микропористым силикоалюмофосфатам, способу их получения и катализатору для синтеза олефинов из метанола. Сущность изобретения заключается в получении продукта из реакционноспособных источников SiO2, Al2O3 и P2O5 и органического матричного материала путем смешения источника Al2O3 с источником P2O5 и соляной кислотой с последующей подачей в смесь источника SiO2 и матричного материала и кристаллизацией продукта при нагревании полученного геля. Источники Al2O3 и SiO2 взяты в том же самом молярном отношении, что и в составе целевого продукта, источник P2O5 добавлен в избытке от стехиометрии, отношение SiO2 к соляной кислоте в геле составляет 0,3-3,0. Продукт имеет улучшенную стабильность к дезактивации коксованием. 2 с. и 7 з.п. ф-лы, 7 табл.

Description

Изобретение относится к способу получения кристаллических микропористых силикоалюмофосфатов с регулируемым содержанием кремния, к кристаллическому микропористому силикоалюмофосфату с улучшенной стабильностью к дезактивации и к применению силикоалюмофосфатов в синтезе олефинов из метанола.
В норвежской заявке N 832712 раскрыты микропористые кристаллические силикоалюмофосфаты и способ получения таких продуктов. Эти продукты имеют трехмерную пространственную решетку, построенную из тетраэдрических единиц PO + 2 , AlO - 2 и SiO2, и их наиболее важный химический состав на безводной основе отвечает формуле: mR:(SixAlyPz)O2 где R представляет собой по меньшей мере один органический матричный материал, присутствующий во внутрикристаллической системе пор, "m" число моль "P" на моль (SixAlyPz)O2 и m имеет значение между 0 и 0,3, причем максимальное значение в каждом случае зависит от размеров молекул матричного материала и доступного объема пор в структуре обсуждаемого силикоалюмофосфата, "x", "y" и "z" представляют собой молярные части кремния, алюминия и фосфора соответственно в форме тетраэдрических оксидов. Минимальное значение "x", "y" и "z" составляет 0,01, максимальное значение "x" 0,98, "y" 0,6 и "z" 0,52.
Минимальное значение "m" в формуле выше 0,02.
Реакционную смесь получают соединением по меньшей мере одной части каждого из источников алюминия и фосфата при отсутствии источника кремния. Затем образующуюся смесь вводят в реакцию с оставшимися компонентами для образования полной реакционной смеси. Реакционную смесь помещают в сосуд, работающий под давлением, для встряхивания и нагревания при аутогенном (самопроизвольно развивающемся) давлении до температуры по меньшей мере 100oC, предпочтительно между 100 и 260oC до получения кристаллического силикоалюмофосфата. Продукт извлекают любым подходящим способом, например, центрифугированием или фильтрованием.
Общеизвестно, что химический состав силикоалюмофосфата очень важен для их физических и химических свойств, включая их свойства при использовании в качестве каталитических материалов. Было бы большим преимуществом, если бы можно было использовать способы получения силикоалюмофосфатов, в которых химический состав продукта можно было бы регулировать. Это особенно касается содержания кремния. Известные технологии не дают такой возможности. В синтезе SAPO-34 в патенте Норвегии N 832712, например, отсутствует согласованность между химическим составом геля синтеза и синтезированным силикоалюмофосфатом.
Согласно примерам патента N 832712 для синтеза SAPO-34 используют эквимолярные количества оксида алюминия и пентоксида фосфора. Так как кремний частично замещает фосфор в структуре SAPO, получают смесь, в которой появляется избыток фосфора в виде фосфорной кислоты. Количество кремния, которое замещает фосфор и, таким образом, состав конечного продукта оказывается нерегулируемым в этих синтезах.
Через некоторое время все катализаторы, используемые для превращения метанола в олефин (реакция МТО), теряют свою активную способность превращать метанол в углеводороды то есть, катализатор дезактивируется. Это происходит потому, что микропористая кристаллическая структура катализаторов МТО типа молекулярных сит заполняется низколетучими углеродными соединениями, блокирующими пористую структуру. Это часто называют дезактивацией "коксованием". Углеродистые соединения можно удалять сжиганием в воздухе. Это известная технология.
Дезактивация может также иметь форму разрушения пространственной решетки, но этот вид дезактивации имеет место за более длительный временный период, чем дезактивация коксованием.
Стабильность к дезактивации коксованием является очень важным свойством для катализаторов МТО, так что будет большим достижением возможность получать катализаторы МТО с улучшенной стабильностью к дезактивации коксованием.
Известны кристаллические микропористые силикоалюмофосфаты SAPO-34. Способ получения их предусматривает использовать плавиковую кислоту, которую добавляют одновременно с источником фосфора и в присутствии органического матричного материала, продукт используют в качестве катализатора в процессах превращения углеводородов (заявка Франции N 2645141, кл. C 01 B 33/26, 05.10.90).
Целью изобретения является получение кристаллических микропористых силикоалюмофосфатов с регулируемым содержанием кремния. Другой целью изобретения является получение силикоалюмофосфатов с повышенной активностью к дезактивации коксованием.
Эти и другие цели изобретения достигаются посредством процессов, описанных ниже.
Это изобретение дает метол, которым можно регулировать химический состав продукта. Было найдено, что это может быть сделано смешиванием источников алюминия, кремния и фосфора в геле синтеза в тех же самых пропорциях, которые требуются в конечном силикоалюмофосфате. Для достижения цели необходимо иметь небольшой избыток фосфорной кислоты, соответствующий количеству, остающемуся в жидкой фазе после кристаллизации. Далее, должна быть добавлена другая кислота, отличная от фосфорной кислоты. Более предпочтительно использовать соляную кислоту. Состав конечного продукта можно точно регулировать и в результате можно синтезировать силикоалюмофосфат с нужным содержанием кремния. Это можно использовать в общем, для оптимизации химических свойств силикоалюмофосфатов, применяемых в качестве катализаторов.
Для синтеза силикоалюмофосфатов согласно изобретению источник алюминия смешивают с источником фосфора и кислотной добавкой. Перед добавлением источника кремния смесь гомогенизируют. Образующийся гель гомогенизируют перед добавлением матричного материала. После гомогенизации смесь выливают в сосуд для работы под давлением и встряхивают при комнатной температуре, затем нагревают. Твердый продукт выделяют и сушат.
Последовательность стадий способа не является решающей, но дополнительно кислота (предпочтительно HCl) должна быть добавлена вместе с источником фосфора. Найдено, что молярное отношение оксида кремния к HCl должно быть выдержано в интервале 0,3-3. Предпочтительное отношение составляет 1-2.
В синтезе силикоалюмофосфатов выбор источников оксида алюминия, оксида кремния, и пентоксида фосфора не является решающим. Например, можно использовать пропоксид алюминия, фосфорную кислоту и золь оксида кремния. В качестве матричных материалов можно сказать о растворе тетраэтиламмонийгидроксида, циклопентиламине, аминометилциклогексане, пиперидине, циклогексиламине и триэтилгидроксиэтиламине. Изобретение иллюстрируют следующие примеры. В примерах улучшенный способ синтеза применяют для получения материала SAPO-34 особенно, но может быть обычно использован для синтеза всех типов силикоалюмофосфатов.
Пример 1. Для синтеза SAPO-34 реакционную смесь получают смешиванием 27,2 г изопропоксида алюминия со смесью 13,7 г 85% фосфорной кислоты и 1,4 г 37% соляной кислоты в 36,3 г дистиллированной воды. Смесь гомогенизировали перемешиванием в течение минуты в 250 мл в полиэтиленовой бутыли. К этой смеси добавляют 4,0 г 30% золь оксида кремния в воде и образующийся гель гомогенизируют описанным выше способом. В течение 5 мин смесь оставляют стоять. Затем добавляют 49,2 г 40% водного раствора тетраэтиламмонийгидроксида (ТЭАОН) и смесь гомогенизируют, как описано выше. Получают состав конечной реакционной смеси, имеющей следующее молярное отношение:
(ТЭА)2O:0,30 SiO2:Al2O3: 0,98 P2O5:0,20 HCl
Затем эту смесь выливают в сосуд из нержавеющей стали для работы под давлением, футерованный инертным материалом, и помещают сосуд в блок нагревания. Блок нагревания и сосуд под давлением перемешивают на вибрационном столе 16 ч при комнатной температуре, нагревают до 215oC и выдерживают при этой температуре 99 ч. Твердый продукт реакции выделяют центрифугированием, промывают в 150 мл дистиллированной воды и снова центрифугируют, сушат на воздухе при 110oC в течение ночи. Кристаллический продукт SAPO-34 охарактеризован порошковой рентгенограммой (ХРД), данные которой приведены в табл.1.
Продукт обжигают в сухом воздухе при 600o в течение двух часов и анализируют. Химическим анализом определено, что состав твердого прокаленного продукта был 42,4% Al2O3, 8.1% SiO2, 49,5% P2O5, который дает состав продукта из основных компонентов:
0,32 SiO2 Al2O3 0,84 P2O5
Пример 2. SAPO-34 синтезируют, как описано в примере 1, но количество добавленного золя оксида кремния было меньше (3,2 г), меньше добавлено соляной кислоты (1,1 г), но больше фосфорной кислоты (14,2 г), так что состав конечной реакционной смеси имеет молярное отношение:
(ТЕА)2O 0,24 SiO2 Al2O3 0,92 P2O5 0,16 HCl
Продукт выделен, как в примере 1, и охарактеризован порошковой рентгенограммой, которая не имеет значительных отклонений от данных табл.1. Химический анализ прокаленного продукта дает состав продукта из основных компонентов:
0,25 SiO2 Al2O3 0,92 P2O5
Пример 3. SAPO-34 синтезируют, как описано в примере 1, но количество добавленного золя оксида кремния меньше (2,6 г), меньше добавлено соляной кислоты (0,9 г), но больше фосфорной кислоты (14,5 г), так что состав конечной реакционной смеси имеет молярное отношение:
(ТЕА)2O 0,20 SiO2 Al2O3 0,94 P2O5 0,12 HCl
Продукт выделен, как описано в примере 1, и охарактеризован порошковой рентгенограммой такой же, как и табл. 1. Химический состав прокаленного продукта дает состав продукта из основных компонентов:
0,21 SiO2 Al2O3 0,94 P2O5.
Пример 4. SAPO-34 получают, как описано в примере 1, но количество добавленного золя оксида кремния меньше (2,0 г), меньше добавлено соляной кислоты (0,7 г), но больше фосфорной кислоты (14,9 г), так что состав конечной реакционной смеси имеет молярное отношение:
(ТЕА)2O 0,15 SiO2 Al2O3 0,97 P2O5 0,10 HCl
Продукт выделен, как в примере 1, и охарактеризован порошковой рентгенограммой такой же, как в таблице 1. Химический анализ прокаленного продукта дает состав продукта из основных компонентов:
0,17 SiO2 Al2O3 P2O5
Пример 5. SAPO-34 получают, как описано в примере 1, но количество добавленного золя оксида кремния больше (8,2 г), больше добавлено соляной кислоты (3,2 г), но меньше фосфорной кислоты (11,0 г), так что состав конечной реакционной смеси имеет молярное отношение:
(ТЕА)2O 0,62 SiO2 Al2O3 0,72 P2O5 0,48 HCl
Продукт выделен, как описано в примере 1, и охарактеризован рентгенограммой такой же, как в табл.1. Химический анализ прокаленного продукта дает состав продукта в терминах основных компонентов:
0,59 SiO2 Al2O3 0,83 P2O5.
Пример 6. SAPO-34 получают, как описано в примере 1, но количество добавленного золя оксида кремния меньше (1,5 г), меньше добавлено соляной кислоты (1,1 г), но больше фосфорной кислоты (15,0 г), так что состав конечной реакционной смеси имеет молярное отношение:
(ТЕА)2O 0,11 SiO2 Al2O3 0,97 P2O% 0,15 HCl
Продукт выделен, как описано в примере 1, и охарактеризован рентгенограммой такой же, как в табл.1. Табл.2 суммирует молярные составы гелей синтеза и синтезированных силикоалюмофосфатов в примерах 1-6.
Результаты табл.2 показывают как улучшенный способ синтеза можно использовать для регулирования содержания кремния в SAPO-34. Описаны примеры синтезов с добавлением соляной кислоты для регулирования pH геля. Были проведены опыты для установления того, будут ли добавки других кислот давать обсуждаемый эффект. Примеры 7 и 8 описывают применение серной и азотной кислоты соответственно вместо соляной кислоты.
Пример 7. SAPO-32 получают, как описано в примере 6, но вместо 1,1 г 37% соляной кислоты добавляют 0,7 г концентрированной серной кислоты, так что состав конечной реакционной смеси имеет молярное отношение:
(ТЕА)2 0,11 SiO2 Al2O3 0,97 P2O5 0,05 H2SO4
Продукт выделен, как описано в примере 2, и охарактеризован рентгенограммой, приведенной в табл.3.
Данные табл. 3 показывают, что продукт, в основном, состоит из SAPO-5 с некоторым количеством SAPO-34.
Пример 8. SAPO-34 получают, как описано в примере 6, но вместо 1,1 г 37% соляной кислоты добавляют 1,0 г 65% азотной кислоты, так что состав конечной реакционной смеси имеет молярное отношение:
(ТЕА)2O 0,11 SiO2 Al2O3 0,97 P2O5 0,07 HNO3
Продукт выделен, как описано в примере 1, и охарактеризован рентгенограммой, приведенной в табл. 4:
Данные табл. 4 показывают, что продукт, в основном, состоит из SAPO-34, но со значительным содержанием SAPO-5.
Идентификация продуктов примеров 7 и 8 по их порошковым диффрактограммам рентгеновских лучей показывает, что получены нечистые продукты. Это указывает на то, что соляная кислота является предпочтительным реагентом для синтеза продуктов с регулируемым составом. Найдено, что настоящее изобретение обеспечивает оптимальное введение и распределение кремния в кристаллической решетке силикоалюмофосфатов и улучшенные морфологические свойства. Это показано сравнением силикоалюмофосфатов с одинаковым содержанием кремния, синтезированных в соответствии с настоящим изобретением и известным методом.
Примеры показывают каталитическое применение для синтеза легких олефинов из метанола в качестве сырья. В общем, улучшенные силикоалюмофосфаты можно использовать для каталитического превращения сырьевого материала, который включает алифатические гетеросоединения, такие, как спирты, простые эфиры, карбонильные соединения (альдегиды и кетоны), галогениды, меркаптаны, сульфиды и амины, в углеводородные продукты, содержащие легкие олефины, такие, как этилен, пропилен и бутен.
Алифатические гетеросоединения могут быть чистыми, смесями с другими перечисленными алифатическими гетеросоединениями или смешены с разбавителем такими, как вода, азот, углеводород и так далее.
Сырьевой материал контактирует с молекулярным ситом, синтезированным согласно изобретению, в условиях, приводящих к эффективной конверсии в легкие олефины. Использование разбавителя, особенно воды, является предпочтительным в этой реакции.
Способ можно проводить в реакторах всех известных типов, включая реакторы с неподвижным слоем и псевдоожиженным слоем. Катализатор приготавливают, как необходимо для использования в реакторах различных типов. Методики таких приготовлений известны и не будут описаны далее.
Материалы, полученные в примерах 1-6, испытаны в качестве катализаторов конверсии метанола в легкие олефины (примеры 9-14). Все материалы прокаливали при высокой температуре перед испытанием для удаления следов матричного материала в микропористой структуре. Испытания проводили в стальном реакторе с внешним диаметром 1/2 дюйма. Применяют 0,5 г катализатора, просеянного через сито 35-70 меш США. Частицы кварца размещают над и под частицами катализатора. Реактор нагревают внешним электрическим нагревателем, а температуру измеряют термоэлементом. Температура реактора во всех описанных примерах поддерживалась ниже 425oC. Метанол подают прецизионным насосом (ISCO LC 5000) и разбавляют азотом так, чтобы парциальное давление метанола было 40000 кПа. Полное давление в реакторе было около 120000 кПа. Газообразный продукт из реактора пропускают через конденсатор, охлаждаемый ледяной водой, перед определением состава продукта газовой хроматографией.
Конверсия метанола в опытах 100% баланс по углероду близок к 100% В качестве критерия стабильности катализатора к дезактивации применяли интервал до проскока диметилового эфира. После проскока диметилового эфира (ДМЭ) конверсия кислородных соединений в легкие олефины становится меньше 100% и катализатор подлежит регенерации. В табл.5 приведены интервалы до проскока для катализатора, полученных в примерах 1-6.
Результаты табл. 5 указывают, что содержание кремния важно для стабильности к дезактивации коксованием. Образец с наиболее низким содержанием кремния показывает наибольшую стабильность, в то время как образец с наибольшим содержанием кремния был самым худшим в этом отношении. Табл.6 показывает распределение продуктов в примере 10. Распределение продуктов в других примерах весьма похоже.
Пример для сравнения. Для сравнения с известным методом SAPO-34 получают, как в патенте N 832712 (примеры 15-19). В этом способе не используют HCl для регулирования содержания кремния в синтезированном SAPO-34. Пять материалов синтезированы с содержанием кремния соответственно, 0,14, 0,19, 0,23, 0,29 и 0,56. Другими словами, содержание кремния в образцах сравнимо с содержанием кремния в примерах 1-5.
За исключением образца с относительным молярным содержанием кремния 0,14 табл.7 показывает, что все образцы обладают одинаковым интервалом до проскока ДМЭ. Этот интервал составляет 325 мин. Образец с наиболее низким содержанием кремния имеет интервал 295 минут. Сравнение с табл. 5 показывает, что образцы со сравнимым содержанием кремния, синтезированные, как в настоящем изобретении, показывают лучшую стабильность к дезактивации, чем образцы с тем же содержанием кремния, синтезированные известным способом. Это очевидно из того факта, что все образцы, синтезированные известным методом, имеют более короткие интервалы до проскока ДМЭ, чем образцы, синтезированные в соответствии с настоящим изобретением. Это может быть потому, что метод, описанный здесь, обеспечивает более благоприятное введение кремния в пространственную решетку силикоалюмофосфатов и лучшую морфологию, без возможных истолкований, накладывающих ограничение на изобретение.

Claims (9)

1. Кристаллические микропористые силикоалюмофосфаты с улучшенной стабильностью к дезактивации коксованием, полученные из реакционно-способных источников SiO2, Al2O3 и P2O5 и органического матричного материала путем смешения источника Al2O3 с источником P2O5 и минеральной кислотой с последующей подачей в реакционную смесь источника SiO2 и матричного материала и кристаллизацией продукта при нагревании полученного геля, отличающиеся тем, что при смешении источника Al2O3 и SiO2 взяты в том же самом мольном отношении, что и в составе кристаллического микропористого силикоалюмофосфата, источник P2O5 добавлен в избытке от стехиометрии и при смешении была использована соляная кислота в количестве, обеспечивающем отношение SiO2 к соляной кислоте в геле 0,3 3,0.
2. Силикоалюмофосфаты по п.1, отличающиеся тем, что источник P2O5 добавлен в избытке, соответствующем количеству источника P2O5, оставшемуся в жидкой фазе после полной кристаллизации.
3. Силикоалюмофосфаты по п.1, отличающиеся тем, что соляная кислота использована в количестве, обеспечивающем молярное отношение SiO2 к соляной кислоте в геле 1 2.
4. Силикоалюмофосфаты по п.1, отличающиеся тем, что они имеют картину порошковой дифракции рентгеновских лучей, представленную в конце текста формулы.
5. Способ получения кристаллических микропористых силикоалюмофосфатов с регулируемым содержанием кремния из реакционно-способных источников SiO2, Al2O3 и P2O5 и органического матричного материала, включающий смешение источника Al2O3 с источником P2O5 и минеральной кислотой с последующей подачей в реакционную смесь источника SiO2 и матричного материала и кристаллизацией продукта из полученного геля при его нагревании, отличающийся тем, что в качестве минеральной кислоты используют соляную кислоту в количестве, обеспечивающем мольное отношение SiO2 к соляной кислоте в полученном геле 0,3 3,0, при этом источники Al2O3 и SiO2 используют в количестве, обеспечивающем такое же мольное отношение, как и в составе целевого продукта, а источник P2O5 используют в избытке от стехиометрии.
6. Способ по п. 5, отличающийся тем, что используют соляную кислоту в количестве, обеспечивающем мольное отношение SiO2 к соляной кислоте в полученном геле, равном 1 2.
7. Способ по п.5, отличающийся тем, что в качестве матричного материала используют тетраэтиламмонийгидроксид, циклопентиламин, аминометилциклогексан, пиперидин, циклогексиламин и триэтилгидроксиэтиламин.
8. Способ по п.5, отличающийся тем, что используют источник P2O5 в избытке, соответствующем количеству источника P2O5, оставшемуся в жидкой фазе после полной кристаллизации.
9. Катализатор для синтеза олефинов из метанола, отличающийся тем, что он представляет собой силикоалюмофосфаты по п.1, имеющие картину порошковой дифракции рентгеновских лучей, представленную в конце формулы.
RU9294031164A 1991-12-23 1992-12-09 Кристаллические микропористые силикоалюмофосфаты, способ их получения и катализатор для синтеза олефинов из метанола RU2091305C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO915080 1991-12-23
NO19915080A NO174341B1 (no) 1991-12-23 1991-12-23 Fremg for fremst av krystallinske mikroporose SiAl-fosfater med kontrollert Si-innh, krystallinske mikroporose SiAl-fosfater med forbedret stabilitet mot deaktivering og en anv av disse ved fremstilling av olefiner fra metanol
PCT/NO1992/000193 WO1993013013A1 (en) 1991-12-23 1992-12-09 Procedure for synthesis of crystalline microporous silico-alumino-phosphates

Publications (2)

Publication Number Publication Date
RU94031164A RU94031164A (ru) 1996-05-27
RU2091305C1 true RU2091305C1 (ru) 1997-09-27

Family

ID=19894708

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9294031164A RU2091305C1 (ru) 1991-12-23 1992-12-09 Кристаллические микропористые силикоалюмофосфаты, способ их получения и катализатор для синтеза олефинов из метанола

Country Status (11)

Country Link
US (1) US5663471A (ru)
EP (1) EP0619800B1 (ru)
JP (1) JP2562863B2 (ru)
AU (1) AU666691B2 (ru)
CA (1) CA2126575C (ru)
DE (1) DE69221638T2 (ru)
ES (1) ES2107559T3 (ru)
NO (1) NO174341B1 (ru)
NZ (1) NZ246097A (ru)
RU (1) RU2091305C1 (ru)
WO (1) WO1993013013A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA010151B1 (ru) * 2006-03-22 2008-06-30 Генрих Семёнович Фалькевич Способ очистки углеводородных смесей от метанола
WO2014092839A1 (en) * 2012-12-14 2014-06-19 Uop Llc Low silicon sapo-42 and method of making

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO300012B1 (no) * 1993-08-17 1997-03-17 Polymers Holding As Mikroporost krystallinsk silikoaluminofosfat, fremgangsmate for fremstilling av dette, samt anvendelse derav
US5817906A (en) * 1995-08-10 1998-10-06 Uop Llc Process for producing light olefins using reaction with distillation as an intermediate step
US5714662A (en) * 1995-08-10 1998-02-03 Uop Process for producing light olefins from crude methanol
US5990369A (en) * 1995-08-10 1999-11-23 Uop Llc Process for producing light olefins
US5744680A (en) * 1995-08-10 1998-04-28 Uop Process for producing light olefins
NO311208B1 (no) * 1996-03-13 2001-10-29 Norsk Hydro As Mikroporös krystallinsk metallofosfatforbindelse, en fremgangsmåte for fremstilling av forbindelsen og anvendelse derav
NO310106B1 (no) * 1996-03-13 2001-05-21 Norsk Hydro As Mikroporöse, krystallinske metallofosfatforbindelser, en fremgangsmåte for fremstilling og anvendelse derav
US6040264A (en) * 1996-04-04 2000-03-21 Exxon Chemical Patents Inc. Use of alkaline earth metal containing small pore non-zeolitic molecular sieve catalysts in oxygenate conversion
US6436869B1 (en) 1996-05-29 2002-08-20 Exxonmobil Chemical Patents Inc. Iron, cobalt and/or nickel containing ALPO bound SAPO molecular sieve catalyst for producing olefins
US5849258A (en) * 1996-06-06 1998-12-15 Intevep, S.A. Material with microporous crystalline walls defining a narrow size distribution of mesopores, and process for preparing same
US6002057A (en) * 1996-09-06 1999-12-14 Exxon Chemical Patents Inc. Alkylation process using zeolite beta
NO304108B1 (no) 1996-10-09 1998-10-26 Polymers Holding As En mikroporos silikoaluminofosfat-sammensetning, katalytisk materiale som omfatter denne sammensetningen og fremgangsmate for fremstilling derav, og bruken av disse for a fremstille olefiner fra metanol
RO114524B1 (ro) 1997-10-02 1999-05-28 Sc Zecasin Sa Procedeu de fabricare a oleofinelor cu greutate moleculara mica prin conversia catalitica in strat fluidizat a metanolului
US6162415A (en) * 1997-10-14 2000-12-19 Exxon Chemical Patents Inc. Synthesis of SAPO-44
JP4168214B2 (ja) 1998-10-15 2008-10-22 三菱瓦斯化学株式会社 メチルアミン製造触媒及び該触媒の製造方法
US6051745A (en) * 1999-03-04 2000-04-18 Phillips Petroleum Company Silicoaluminophosphate material, a method of making such improved material and the use thereof in the conversion of oxygenated hydrocarbons to olefins
US6046371A (en) * 1999-05-05 2000-04-04 Phillips Petroleum Company Silicoaluminophosphate material, a method of making such improved material and the use thereof in the conversion of oxygenated hydrocarbons to olefins
US6316683B1 (en) * 1999-06-07 2001-11-13 Exxonmobil Chemical Patents Inc. Protecting catalytic activity of a SAPO molecular sieve
US6559428B2 (en) * 2001-01-16 2003-05-06 General Electric Company Induction heating tool
US6437208B1 (en) 1999-09-29 2002-08-20 Exxonmobil Chemical Patents Inc. Making an olefin product from an oxygenate
WO2001025150A1 (en) 1999-10-01 2001-04-12 Pop, Grigore Process for the synthesis of silicoaluminophosphate molecular sieves
WO2001060746A1 (en) 2000-02-16 2001-08-23 Exxonmobil Chemical Patents Inc. Treatment of molecular sieves with silicon containing compounds
US6531639B1 (en) 2000-02-18 2003-03-11 Exxonmobil Chemical Patents, Inc. Catalytic production of olefins at high methanol partial pressures
US6743747B1 (en) 2000-02-24 2004-06-01 Exxonmobil Chemical Patents Inc. Catalyst pretreatment in an oxgenate to olefins reaction system
US6303839B1 (en) 2000-06-14 2001-10-16 Uop Llc Process for producing polymer grade olefins
US6953767B2 (en) 2001-03-01 2005-10-11 Exxonmobil Chemical Patents Inc. Silicoaluminophosphate molecular sieve
WO2003004444A1 (en) 2001-07-02 2003-01-16 Exxonmobil Chemical Patents Inc. Inhibiting catalyst coke formation in the manufacture of an olefin
JP5485505B2 (ja) * 2001-10-11 2014-05-07 三菱樹脂株式会社 ゼオライト、及び該ゼオライトを含む水蒸気吸着材
US6696032B2 (en) 2001-11-29 2004-02-24 Exxonmobil Chemical Patents Inc. Process for manufacturing a silicoaluminophosphate molecular sieve
US6872680B2 (en) 2002-03-20 2005-03-29 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion processes
US7271123B2 (en) 2002-03-20 2007-09-18 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion process
US6793901B2 (en) * 2002-06-12 2004-09-21 Exxonmobil Chemical Patents, Inc. Synthesis of molecular sieves having the CHA framework type
US6897179B2 (en) * 2003-06-13 2005-05-24 Exxonmobil Chemical Patents Inc. Method of protecting SAPO molecular sieve from loss of catalytic activity
US7015174B2 (en) * 2003-06-20 2006-03-21 Exxonmobil Chemical Patents Inc. Maintaining molecular sieve catalytic activity under water vapor conditions
US7199277B2 (en) * 2004-07-01 2007-04-03 Exxonmobil Chemical Patents Inc. Pretreating a catalyst containing molecular sieve and active metal oxide
US20070059236A1 (en) * 2005-09-09 2007-03-15 Broach Robert W Molecular sieves with high selectivity towards light olefins in methanol to olefin conversion
JP5756461B2 (ja) 2009-06-12 2015-07-29 アルベマール・ユーロプ・エスピーアールエル Sapo分子篩触媒と、その調製および使用
KR101161845B1 (ko) 2010-04-26 2012-07-03 송원산업 주식회사 알켄 화합물의 제조 방법
CN103771437B (zh) * 2012-10-26 2016-01-13 中国石油化工股份有限公司 一种含磷的改性β分子筛
CN107074571B (zh) 2014-08-22 2022-09-27 格雷斯公司 使用一异丙醇胺合成磷酸硅铝-34分子筛的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440871A (en) * 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4677242A (en) * 1982-10-04 1987-06-30 Union Carbide Corporation Production of light olefins
US4673559A (en) * 1983-12-19 1987-06-16 Mobil Oil Corporation Silicoaluminophosphate crystallization using hydrolysis
US5158665A (en) * 1988-02-12 1992-10-27 Chevron Research And Technology Company Synthesis of a crystalline silicoaluminophosphate
FR2645141B1 (fr) * 1989-03-31 1992-05-29 Elf France Procede de synthese de precurseurs de tamis moleculaires du type silicoaluminophosphate, precurseurs obtenus et leur application a l'obtention desdits tamis moleculaires
SG48303A1 (en) * 1992-05-27 1998-04-17 Exon Chemicals Patents Inc Acid extracted molecular sieve catalysts to improve ethylene yield

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Заявка Франции N 2645141, кл. C 01B 33/26, 1990. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA010151B1 (ru) * 2006-03-22 2008-06-30 Генрих Семёнович Фалькевич Способ очистки углеводородных смесей от метанола
WO2014092839A1 (en) * 2012-12-14 2014-06-19 Uop Llc Low silicon sapo-42 and method of making
US9211530B2 (en) 2012-12-14 2015-12-15 Uop Llc Low silicon SAPO-42 and method of making

Also Published As

Publication number Publication date
EP0619800B1 (en) 1997-08-13
NO915080A (no) 1993-06-24
RU94031164A (ru) 1996-05-27
DE69221638D1 (de) 1997-09-18
EP0619800A1 (en) 1994-10-19
NO174341B1 (no) 1994-04-21
NZ246097A (en) 1996-01-26
CA2126575C (en) 2004-06-22
US5663471A (en) 1997-09-02
NO174341C (no) 1994-04-20
AU3097292A (en) 1993-07-28
NO174341B (no) 1994-01-10
AU666691B2 (en) 1996-02-22
JPH07502250A (ja) 1995-03-09
WO1993013013A1 (en) 1993-07-08
CA2126575A1 (en) 1993-07-08
ES2107559T3 (es) 1997-12-01
JP2562863B2 (ja) 1996-12-11
DE69221638T2 (de) 1998-02-26
NO915080D0 (no) 1991-12-23

Similar Documents

Publication Publication Date Title
RU2091305C1 (ru) Кристаллические микропористые силикоалюмофосфаты, способ их получения и катализатор для синтеза олефинов из метанола
AU2002339763B2 (en) Method of synthesising crystalline microporous metalloaluminophosphate from a solid body
US6162415A (en) Synthesis of SAPO-44
AU685491B2 (en) A microporous crystalline silico-alumino-phosphate and a procedure for manufacturing it
CN101208149B (zh) 制备硅铝磷酸盐分子筛的方法
EP0121233B1 (en) Crystalline aluminophosphate compositions
AU2002339763A1 (en) Method of synthesising crystalline microporous metalloaluminophosphate from a solid body
WO2012071889A1 (zh) 一种低硅sapo-34分子筛的合成方法
EP0888188B1 (en) Crystalline metallophosphates
KR920005939B1 (ko) 합성된 실리코포스포알루미네이트 결정체
EP0226989B1 (en) Crystalline aluminophosphate composition
EP0293939A2 (en) Crystalline aluminophosphate composition
JP2890551B2 (ja) 結晶性アルミノ燐酸塩、およびその製造方法
Satyanarayana Synthesis and characterization of the large-pore molecular sieve SAPO-46
JP2819572B2 (ja) 結晶性アルミノ燐酸塩及びその製造方法
JPH03137013A (ja) モルデナイト型ゼオライトおよびその調製方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081210