KR920000663A - 실리카 피막을 형성시키기 위한 급속 열처리법 - Google Patents
실리카 피막을 형성시키기 위한 급속 열처리법 Download PDFInfo
- Publication number
- KR920000663A KR920000663A KR1019910009913A KR910009913A KR920000663A KR 920000663 A KR920000663 A KR 920000663A KR 1019910009913 A KR1019910009913 A KR 1019910009913A KR 910009913 A KR910009913 A KR 910009913A KR 920000663 A KR920000663 A KR 920000663A
- Authority
- KR
- South Korea
- Prior art keywords
- substrate
- hydrogen silsesquioxane
- silsesquioxane resin
- group
- coated
- Prior art date
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims 8
- 239000000377 silicon dioxide Substances 0.000 title claims 4
- 238000010438 heat treatment Methods 0.000 title claims 3
- 238000000034 method Methods 0.000 title claims 3
- 239000000758 substrate Substances 0.000 claims 7
- 229920003209 poly(hydridosilsesquioxane) Polymers 0.000 claims 6
- 239000011347 resin Substances 0.000 claims 6
- 229920005989 resin Polymers 0.000 claims 6
- 239000011248 coating agent Substances 0.000 claims 4
- 238000000576 coating method Methods 0.000 claims 4
- 229920000642 polymer Polymers 0.000 claims 3
- 239000002904 solvent Substances 0.000 claims 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 2
- 230000005855 radiation Effects 0.000 claims 2
- 125000001424 substituent group Chemical group 0.000 claims 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 1
- 125000004423 acyloxy group Chemical group 0.000 claims 1
- 150000001298 alcohols Chemical class 0.000 claims 1
- 150000001335 aliphatic alkanes Chemical class 0.000 claims 1
- 125000003545 alkoxy group Chemical group 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims 1
- 229910052796 boron Inorganic materials 0.000 claims 1
- 239000000919 ceramic Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 230000002452 interceptive effect Effects 0.000 claims 1
- 150000002576 ketones Chemical class 0.000 claims 1
- 229910052758 niobium Inorganic materials 0.000 claims 1
- 239000010955 niobium Substances 0.000 claims 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims 1
- 125000000962 organic group Chemical group 0.000 claims 1
- 125000004430 oxygen atom Chemical group O* 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- 239000002243 precursor Substances 0.000 claims 1
- 230000001737 promoting effect Effects 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 claims 1
- 229910052715 tantalum Inorganic materials 0.000 claims 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- 229910052720 vanadium Inorganic materials 0.000 claims 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims 1
- 229910052726 zirconium Inorganic materials 0.000 claims 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1212—Zeolites, glasses
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/122—Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1279—Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/14—Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
- C23C18/143—Radiation by light, e.g. photolysis or pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
- H01L21/02134—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material comprising hydrogen silsesquioxane, e.g. HSQ
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02337—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02345—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/312—Organic layers, e.g. photoresist
- H01L21/3121—Layers comprising organo-silicon compounds
- H01L21/3122—Layers comprising organo-silicon compounds layers comprising polysiloxane compounds
- H01L21/3124—Layers comprising organo-silicon compounds layers comprising polysiloxane compounds layers comprising hydrogen silsesquioxane
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Ceramic Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Structural Engineering (AREA)
- Formation Of Insulating Films (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Surface Treatment Of Glass (AREA)
- Chemically Coating (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Abstract
내용 없음
Description
본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음
Claims (4)
- 수소 실세스퀴옥산 수지 및 용매를 포함하는 용액으로 기판을 피복하고, 용매를 증발시켜 기판 상에 수소 실세스퀴옥산 수지를 부착시킨 다음, 피복된 기판을 가시광 영역, 적외선 영역, 자외선 영역 및 이들의 혼합 영역으로 이루어지는 그룹 중에서 선택된 스펙트럼 영역의 비간섭 광을 포함하는 고강도 방사선에 노출시켜 피복된 기판을 충분히 가열시킴으로써 수소 실세스퀴옥산 수지 피막이 실리카 피막으로 전환되는 것을 촉진시킴을 특징으로 하여 실리카 피막을 기판에 도포하는 방법.
- 제1항에 있어서, 피복된 기판을 가열하는 동안 열적으로 고립시키고 고강도 방사선으로 피복된 기판을 약1초내지 약 1시간 동안 약 50내지 약 1000℃의 온도에서 가열함을 특징으로 하는 방법.
- 제2항에 있어서, 수소 실세스퀴옥산 수지를(HSiO3/2)n, 일반식 HSi(OH)aO3-0/2의 단위를 갖는 중합체 및 일반식 HSi(OH)x(OR)yOz/2의 단위를 갖는 중합체(여기서, R은 각각 독립적으로, 산소 원자를 통해 실리콘에 결합시 가수분해성 치환체를 형성하는 유기 그룹이며, a는 0내지 2이고, x는 0내지 2이며, y는 0내지 2이고, z는 1내지3이며, x,y및 z는 합은 3이고, n은 3을 초과하는 정수이며 중합체 단위 전체에 걸쳐 y의 평균치는 0을 초과한다)로 이루어지는 그룹중에서 선택하고 용매는 알콜, 방향족 탄화수소, 알칸, 사이클딕 디메딜실록산,케톤,테르또는 글리콜 테르로 이루어지는 그룹중에서 선택하며 수소 실세스퀴옥산 수지를 약 0.1내지 약 50중량%가 되게 용해시키기에 충분한 양으로 존재함을 특징으로 하는 방법.
- 제3항에 있어서, 용액이, 티탄, 지르코늄, 알루미늄, 탄탈, 바나듐, 니오브, 붕소 및 인으로 이루어지는 그룹 중에서 선택된 원소를 함유하고, 알콕시 또는 아실옥시로 이루어지는 그룹중에서 선택된 가수분해성 치환체 하나 이상을 함유하며 실리카 피막이 개질 세라믹 산화물 0.1내지 30중량%를 함유하도록 하는 양으로 존재하는 화합물을 포함하는 개질 산화물 선구물질을 추가로 함유하는 방법.※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/539.249 | 1990-06-18 | ||
US07/539,249 US5059448A (en) | 1990-06-18 | 1990-06-18 | Rapid thermal process for obtaining silica coatings |
Publications (1)
Publication Number | Publication Date |
---|---|
KR920000663A true KR920000663A (ko) | 1992-01-29 |
Family
ID=24150433
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019910009913A KR950001671B1 (ko) | 1990-06-18 | 1991-06-13 | 실리카 피막을 형성시키기 위한 급속 열처리법 |
KR1019910009913A KR920000663A (ko) | 1990-06-18 | 1991-06-15 | 실리카 피막을 형성시키기 위한 급속 열처리법 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019910009913A KR950001671B1 (ko) | 1990-06-18 | 1991-06-13 | 실리카 피막을 형성시키기 위한 급속 열처리법 |
Country Status (7)
Country | Link |
---|---|
US (1) | US5059448A (ko) |
EP (1) | EP0462715B1 (ko) |
JP (1) | JP2561979B2 (ko) |
KR (2) | KR950001671B1 (ko) |
CA (1) | CA2043411A1 (ko) |
DE (1) | DE69117353T2 (ko) |
ES (1) | ES2086485T3 (ko) |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5116637A (en) * | 1990-06-04 | 1992-05-26 | Dow Corning Corporation | Amine catalysts for the low temperature conversion of silica precursors to silica |
US5290399A (en) * | 1991-02-05 | 1994-03-01 | Advanced Micro Devices, Inc. | Surface planarizing methods for integrated circuit devices |
US5445894A (en) * | 1991-04-22 | 1995-08-29 | Dow Corning Corporation | Ceramic coatings |
US5339211A (en) * | 1991-05-02 | 1994-08-16 | Dow Corning Corporation | Variable capacitor |
US5436029A (en) * | 1992-07-13 | 1995-07-25 | Dow Corning Corporation | Curing silicon hydride containing materials by exposure to nitrous oxide |
JP3210457B2 (ja) * | 1992-12-14 | 2001-09-17 | ダウ・コ−ニング・コ−ポレ−ション | 酸化ケイ素膜の形成方法 |
US5258334A (en) * | 1993-01-15 | 1993-11-02 | The U.S. Government As Represented By The Director, National Security Agency | Process of preventing visual access to a semiconductor device by applying an opaque ceramic coating to integrated circuit devices |
US5387480A (en) * | 1993-03-08 | 1995-02-07 | Dow Corning Corporation | High dielectric constant coatings |
JP3418458B2 (ja) * | 1993-08-31 | 2003-06-23 | 富士通株式会社 | 半導体装置の製造方法 |
JP2739902B2 (ja) * | 1993-09-30 | 1998-04-15 | 東京応化工業株式会社 | 酸化ケイ素系被膜形成用塗布液 |
US6423651B1 (en) | 1993-12-27 | 2002-07-23 | Kawasaki Steel Corporation | Insulating film of semiconductor device and coating solution for forming insulating film and method of manufacturing insulating film |
KR950034495A (ko) * | 1994-04-20 | 1995-12-28 | 윌리엄 이.힐러 | 반도체 장치 제조를 위한 고 수율 광 경화 공정 |
US5456952A (en) * | 1994-05-17 | 1995-10-10 | Lsi Logic Corporation | Process of curing hydrogen silsesquioxane coating to form silicon oxide layer |
EP0749500B1 (en) * | 1994-10-18 | 1998-05-27 | Koninklijke Philips Electronics N.V. | Method of manufacturing a thin silicon-oxide layer |
US5530293A (en) | 1994-11-28 | 1996-06-25 | International Business Machines Corporation | Carbon-free hydrogen silsesquioxane with dielectric constant less than 3.2 annealed in hydrogen for integrated circuits |
US5508238A (en) * | 1995-05-11 | 1996-04-16 | Dow Corning Corporation | Monolithic ceramic bodies using modified hydrogen silsesquioxane resin |
JP3149739B2 (ja) * | 1995-07-14 | 2001-03-26 | ヤマハ株式会社 | 多層配線形成法 |
JP3070450B2 (ja) * | 1995-07-14 | 2000-07-31 | ヤマハ株式会社 | 多層配線形成法 |
JP3696939B2 (ja) * | 1995-08-11 | 2005-09-21 | 東京応化工業株式会社 | シリカ系被膜の形成方法 |
EP0764704B1 (en) * | 1995-09-25 | 2000-03-08 | Dow Corning Corporation | Use of preceramic polymers as electronic adhesives |
US5609925A (en) * | 1995-12-04 | 1997-03-11 | Dow Corning Corporation | Curing hydrogen silsesquioxane resin with an electron beam |
JPH09237785A (ja) * | 1995-12-28 | 1997-09-09 | Toshiba Corp | 半導体装置およびその製造方法 |
JP3123449B2 (ja) * | 1996-11-01 | 2001-01-09 | ヤマハ株式会社 | 多層配線形成法 |
JP3082688B2 (ja) * | 1996-11-05 | 2000-08-28 | ヤマハ株式会社 | 配線形成法 |
JP3225872B2 (ja) | 1996-12-24 | 2001-11-05 | ヤマハ株式会社 | 酸化シリコン膜形成法 |
JPH10247686A (ja) * | 1996-12-30 | 1998-09-14 | Yamaha Corp | 多層配線形成法 |
US6239441B1 (en) * | 1997-01-20 | 2001-05-29 | Kabushiki Kaisha Toshiba | Apparatus for manufacturing a semiconductor device and a method for manufacturing a semiconductor device |
EP0860462A3 (en) * | 1997-02-24 | 1999-04-21 | Dow Corning Toray Silicone Company Limited | Composition and method for the formation of silica thin films |
US6143855A (en) * | 1997-04-21 | 2000-11-07 | Alliedsignal Inc. | Organohydridosiloxane resins with high organic content |
US6015457A (en) * | 1997-04-21 | 2000-01-18 | Alliedsignal Inc. | Stable inorganic polymers |
US6218497B1 (en) | 1997-04-21 | 2001-04-17 | Alliedsignal Inc. | Organohydridosiloxane resins with low organic content |
US6743856B1 (en) | 1997-04-21 | 2004-06-01 | Honeywell International Inc. | Synthesis of siloxane resins |
JP3909912B2 (ja) * | 1997-05-09 | 2007-04-25 | 東京応化工業株式会社 | シリカ系厚膜被膜形成方法 |
EP0881668A3 (en) | 1997-05-28 | 2000-11-15 | Dow Corning Toray Silicone Company, Ltd. | Deposition of an electrically insulating thin film with a low dielectric constant |
US5866197A (en) * | 1997-06-06 | 1999-02-02 | Dow Corning Corporation | Method for producing thick crack-free coating from hydrogen silsequioxane resin |
US6030904A (en) * | 1997-08-21 | 2000-02-29 | International Business Machines Corporation | Stabilization of low-k carbon-based dielectrics |
US5935650A (en) * | 1997-10-17 | 1999-08-10 | Lerch; Wilfried | Method of oxidation of semiconductor wafers in a rapid thermal processing (RTP) system |
TW439197B (en) * | 1997-10-31 | 2001-06-07 | Dow Corning | Electronic coating having low dielectric constant |
US6018002A (en) * | 1998-02-06 | 2000-01-25 | Dow Corning Corporation | Photoluminescent material from hydrogen silsesquioxane resin |
US6177199B1 (en) | 1999-01-07 | 2001-01-23 | Alliedsignal Inc. | Dielectric films from organohydridosiloxane resins with low organic content |
US6218020B1 (en) | 1999-01-07 | 2001-04-17 | Alliedsignal Inc. | Dielectric films from organohydridosiloxane resins with high organic content |
US6417115B1 (en) * | 1998-05-26 | 2002-07-09 | Axeclis Technologies, Inc. | Treatment of dielectric materials |
US5935638A (en) * | 1998-08-06 | 1999-08-10 | Dow Corning Corporation | Silicon dioxide containing coating |
US6124164A (en) | 1998-09-17 | 2000-09-26 | Micron Technology, Inc. | Method of making integrated capacitor incorporating high K dielectric |
WO2000077575A1 (en) * | 1999-06-10 | 2000-12-21 | Alliedsignal Inc. | Spin-on-glass anti-reflective coatings for photolithography |
US20060263531A1 (en) * | 2003-12-18 | 2006-11-23 | Lichtenhan Joseph D | Polyhedral oligomeric silsesquioxanes as glass forming coatings |
US6358841B1 (en) | 1999-08-23 | 2002-03-19 | Taiwan Semiconductor Manufacturing Company | Method of copper CMP on low dielectric constant HSQ material |
US6440550B1 (en) | 1999-10-18 | 2002-08-27 | Honeywell International Inc. | Deposition of fluorosilsesquioxane films |
US6472076B1 (en) | 1999-10-18 | 2002-10-29 | Honeywell International Inc. | Deposition of organosilsesquioxane films |
US6368400B1 (en) * | 2000-07-17 | 2002-04-09 | Honeywell International | Absorbing compounds for spin-on-glass anti-reflective coatings for photolithography |
US20030054115A1 (en) * | 2001-09-14 | 2003-03-20 | Ralph Albano | Ultraviolet curing process for porous low-K materials |
US6705457B2 (en) * | 2002-04-01 | 2004-03-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Transport device and method of transporting to-be-processed elements through a high-temperature zone |
US6889410B2 (en) * | 2003-01-31 | 2005-05-10 | Indian Institute Of Science | Rapid coating process and its application to lead-acid batteries |
US7622399B2 (en) * | 2003-09-23 | 2009-11-24 | Silecs Oy | Method of forming low-k dielectrics using a rapid curing process |
US8053159B2 (en) | 2003-11-18 | 2011-11-08 | Honeywell International Inc. | Antireflective coatings for via fill and photolithography applications and methods of preparation thereof |
RU2006125722A (ru) * | 2003-12-18 | 2008-01-27 | Хайбрид Плэстикс, Инк. (Us) | Полиэдрические олигомерные силсесквиоксаны и металлизированные полиэдрические олигомерные силсесквиоксаны в качестве покрытий, композитов и добавок |
JP5309316B2 (ja) * | 2006-02-06 | 2013-10-09 | 国立大学法人東北大学 | チップ素子 |
US7776404B2 (en) * | 2006-11-30 | 2010-08-17 | General Electric Company | Methods for forming thermal oxidative barrier coatings on organic matrix composite substrates |
US8642246B2 (en) | 2007-02-26 | 2014-02-04 | Honeywell International Inc. | Compositions, coatings and films for tri-layer patterning applications and methods of preparation thereof |
JP4954758B2 (ja) * | 2007-03-19 | 2012-06-20 | 新日本製鐵株式会社 | 耐食性および塗料密着性に優れためっき鋼板の製造方法 |
JP2009078191A (ja) * | 2007-09-25 | 2009-04-16 | Ibaraki Prefecture | 基材温度上昇の少ない加熱コーティング方法 |
US8163357B2 (en) * | 2009-03-26 | 2012-04-24 | Signet Armorlite, Inc. | Scratch-resistant coatings with improved adhesion to inorganic thin film coatings |
US8557877B2 (en) | 2009-06-10 | 2013-10-15 | Honeywell International Inc. | Anti-reflective coatings for optically transparent substrates |
US8457540B2 (en) | 2009-09-15 | 2013-06-04 | Ricoh Company, Ltd. | Fixing device and image forming apparatus incorporating same |
KR101303220B1 (ko) * | 2010-03-16 | 2013-09-03 | 김진욱 | 활선 상태에서 교체 가능한 탈착용 안전 차단기 |
US8864898B2 (en) | 2011-05-31 | 2014-10-21 | Honeywell International Inc. | Coating formulations for optical elements |
GB201209695D0 (en) * | 2012-05-31 | 2012-07-18 | Dow Corning | Silicon wafer coated with passivation layer |
US9741918B2 (en) | 2013-10-07 | 2017-08-22 | Hypres, Inc. | Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit |
WO2016167892A1 (en) | 2015-04-13 | 2016-10-20 | Honeywell International Inc. | Polysiloxane formulations and coatings for optoelectronic applications |
KR102550414B1 (ko) * | 2016-11-03 | 2023-07-04 | 삼성전자주식회사 | 반도체 소자의 제조 방법 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4822697A (en) * | 1986-12-03 | 1989-04-18 | Dow Corning Corporation | Platinum and rhodium catalysis of low temperature formation multilayer ceramics |
US4753855A (en) * | 1986-12-04 | 1988-06-28 | Dow Corning Corporation | Multilayer ceramic coatings from metal oxides for protection of electronic devices |
US4911992A (en) * | 1986-12-04 | 1990-03-27 | Dow Corning Corporation | Platinum or rhodium catalyzed multilayer ceramic coatings from hydrogen silsesquioxane resin and metal oxides |
JP2624254B2 (ja) * | 1987-05-22 | 1997-06-25 | 東京応化工業株式会社 | シリカ系被膜の膜質改善方法 |
US4849296A (en) * | 1987-12-28 | 1989-07-18 | Dow Corning Corporation | Multilayer ceramic coatings from metal oxides and hydrogen silsesquioxane resin ceramified in ammonia |
US4847162A (en) * | 1987-12-28 | 1989-07-11 | Dow Corning Corporation | Multilayer ceramics coatings from the ceramification of hydrogen silsequioxane resin in the presence of ammonia |
US4885186A (en) * | 1988-12-29 | 1989-12-05 | Bell Communications Research, Inc. | Method for preparation of silicate glasses of controlled index of refraction |
US4911942A (en) * | 1989-01-13 | 1990-03-27 | Asama Chemical Co., Ltd. | Stabilized oil and fat powder |
CA2010335A1 (en) * | 1989-03-09 | 1990-09-09 | Ronald H. Baney | Method for protective coating superconductors |
US4973526A (en) * | 1990-02-15 | 1990-11-27 | Dow Corning Corporation | Method of forming ceramic coatings and resulting articles |
-
1990
- 1990-06-18 US US07/539,249 patent/US5059448A/en not_active Expired - Fee Related
-
1991
- 1991-05-28 CA CA002043411A patent/CA2043411A1/en not_active Abandoned
- 1991-05-31 EP EP91304930A patent/EP0462715B1/en not_active Expired - Lifetime
- 1991-05-31 DE DE69117353T patent/DE69117353T2/de not_active Expired - Fee Related
- 1991-05-31 ES ES91304930T patent/ES2086485T3/es not_active Expired - Lifetime
- 1991-06-13 KR KR1019910009913A patent/KR950001671B1/ko not_active IP Right Cessation
- 1991-06-15 KR KR1019910009913A patent/KR920000663A/ko not_active IP Right Cessation
- 1991-06-17 JP JP3144617A patent/JP2561979B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04298542A (ja) | 1992-10-22 |
US5059448A (en) | 1991-10-22 |
JP2561979B2 (ja) | 1996-12-11 |
CA2043411A1 (en) | 1991-12-19 |
DE69117353D1 (de) | 1996-04-04 |
KR930000800A (ko) | 1993-01-15 |
EP0462715A1 (en) | 1991-12-27 |
KR950001671B1 (ko) | 1995-02-28 |
EP0462715B1 (en) | 1996-02-28 |
DE69117353T2 (de) | 1996-09-05 |
ES2086485T3 (es) | 1996-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920000663A (ko) | 실리카 피막을 형성시키기 위한 급속 열처리법 | |
KR920000891A (ko) | 저온에서 실리카 전구물질을 실리카로 전환시키는 방법 | |
KR970052882A (ko) | 전자 비임에 의한 수소 실세스퀴옥산 수지의 경화법 | |
US5789460A (en) | Radiation curable compositions | |
KR940005519A (ko) | 실리카 함유 세라믹 피복물을 기질 위에 형성시키는 방법 | |
KR920008113A (ko) | 퍼하이드로실록산 공중합체 및 피복물질로서의 이의 용도 | |
Que et al. | Optical and microstructural properties of sol–gel derived titania/organically modified silane thin films | |
JP5766856B2 (ja) | 透明物品およびその製造方法 | |
Diré et al. | Sol–gel synthesis of siloxane–oxide hybrid coatings [Si (CH 3) 2 O· MO x: M= Si, Ti, Zr, Al] with luminescent properties | |
US5037861A (en) | Novel highly reactive silicon-containing epoxides | |
KR100214111B1 (ko) | 전자 장치 위에 패턴화된 도막을 형성시키는 방법 | |
KR920009891A (ko) | 수소 실세스퀴옥산 수지 분획 및 피복재료로서의 이의 용도 | |
KR950008432A (ko) | Si-O 함유 피막의 형성방법 | |
KR920000890A (ko) | 실리카 전구체를 실리카로 저온 전환시키기 위한 아민 촉매 | |
JPS60228542A (ja) | ポリシランおよびこれを使用する方法 | |
AU3042800A (en) | Cyclosiloxane-based cross-linkable monomers, production thereof and use thereof in polymerisable materials | |
NL9002408A (nl) | Ozonolyse bij lage temperatuur van silicium- en keramische oxyde voorloperpolymeren tot keramische bekledingen. | |
DE58908314D1 (de) | Verfahren zur Herstellung von Materialien mit einem strukturierten Überzug. | |
JP4246269B2 (ja) | シロキサン系のためのuv−安定化剤 | |
JPS6310170B2 (ko) | ||
JPH06322318A (ja) | セラミック塗料及びその塗膜形成方法 | |
US6572974B1 (en) | Modification of infrared reflectivity using silicon dioxide thin films derived from silsesquioxane resins | |
JPH03287627A (ja) | ポリシロキサン | |
JPH06346025A (ja) | コーティング用組成物 | |
US6319551B1 (en) | Methods and compositions for forming silica, germanosilicate and metal silicate films, patterns and multilayers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20020226 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |