KR20210149882A - 광전자 디바이스 - Google Patents

광전자 디바이스 Download PDF

Info

Publication number
KR20210149882A
KR20210149882A KR1020217038889A KR20217038889A KR20210149882A KR 20210149882 A KR20210149882 A KR 20210149882A KR 1020217038889 A KR1020217038889 A KR 1020217038889A KR 20217038889 A KR20217038889 A KR 20217038889A KR 20210149882 A KR20210149882 A KR 20210149882A
Authority
KR
South Korea
Prior art keywords
active region
type active
optoelectronic device
superlattice
layer
Prior art date
Application number
KR1020217038889A
Other languages
English (en)
Other versions
KR102439708B1 (ko
Inventor
페타르 아타나크코빅
Original Assignee
실라나 유브이 테크놀로지스 피티이 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2014902007A external-priority patent/AU2014902007A0/en
Application filed by 실라나 유브이 테크놀로지스 피티이 리미티드 filed Critical 실라나 유브이 테크놀로지스 피티이 리미티드
Publication of KR20210149882A publication Critical patent/KR20210149882A/ko
Application granted granted Critical
Publication of KR102439708B1 publication Critical patent/KR102439708B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0045Devices characterised by their operation the devices being superluminescent diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • H01L33/105Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector with a resonant cavity structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

반도체 구조를 포함하는 광전자 디바이스는 p-형 활성 영역 및 n-형 활성 영역을 포함한다. 반도체 구조는 하나 이상의 초격자로만 구성되고, 각 초격자는 복수의 단위 셀로 구성된다. 각 단위 셀은 적어도 2개의 별개의 실질적으로 단결정 층을 포함한다.

Description

광전자 디바이스{AN OPTOELECTRONIC DEVICE}
관련출원에 대한 상호참조
본 출원은 2014년 5월 27일에 출원된 "광전자 디바이스(An Optoelectronic Device)" 명칭의 호주 가 특허 출원번호 2014902007의 우선권을 주장하고, 전체가 참조로 본 출원에 통합된다.
본 발명은 일반적으로 광전자 디바이스에 관한 것이다. 특히, 발명은 자외선 파장의 광을 방출하는 광전자 디바이스에 관한 것이다. 그러나, 발명은 자외선 파장으로 제한되지 않는다.
알루미늄 갈륨 질화물(AlGaN)과 같은 III 족 금속 질화물 반도체 물질을 사용하여 딥(deep) 자외선(UV) 파장(λ≤280 nm) 내 광을 방출하는 발광 다이오드(LED)와 같은 광전자 디바이스를 생산하는 것이 가능하였을지라도, 지금까지 이러한 LED로부터 광학 방출 세기는 가시 파장 LED에 비해 비교적 열악하였다. 이것은 부분적으로는 AlGaN 반도체 물질 전자 밴드 구조 내 내재적 한계에 기인한다. 층 형성 성장 축에 실질적으로 평행한 방향으로 결정질 AlGaN 막으로부터 딥 자외선 광의 방출은 통상의 LED 구조에선 유리하지 않음이 발견되었다. 특히, 딥 자외선 LED는 통상적으로 요망되는 광학 방출 파장을 위해 요구되는 밴드갭을 얻기 위해서 고 알루미늄 함량 AlGaN 합금을 사용하여 형성된다. 이러한 고 알루미늄 함량 조성물은 특히 앞에 언급된 한계에 의해 영향을 받는다.
이러한 LED에서 열악한 딥 자외선 방출 세기는 LED의 열악한 전기적 행동에 이르게 하는 증착된 III 족 금속 질화물 물질의 열등한 결정질의 구조적 품질에 기인하는 것으로 널리 생각되어져 왔다. 갈륨 알루미늄 비화물(GaAlAs)과 같은 다른 기술적으로 원숙한 III-V 족 화합물 반도체에 비해서, III 족 금속 질화물은 적어도 2 내지 3 자리수 크기 이상의 결정질의 결함을 나타낸다. III 족 금속 질화물의 구조적 품질은 알루미늄 질화물(AlN) 및 갈륨 질화물(GaN)과 같은 자연(native) 기판 상에 에피택셜 증착에 의해 개선될 수 있다. 그러나, AlN 기판이 가용할지라도, 고 알루미늄 함량 AlGaN 물질을 사용하여 형성된 딥 자외선 LED는 여전히 광을 효율적으로 수직 방향으로(즉, 층의 평면에 수직한 평행한 광 방출) 방출할 수 없다.
III 족 금속 질화물에 기초한 LED의 동작에 대해 종래 기술에는 또 다른 문제가 존재한다. III 족 금속 질화물 물질의 최상의 결정질 구조 질은 섬유아연석 (wurtzite crystal) 결정 구조 유형의 막을 사용하여 형성된다. 이들 막은 자연 혹은 소위 c-평면 방위를 가진 서로 비유사한 6각형 결정 대칭 기판 상에 증착된다. 이러한 c-평면 방위의 III 족 금속 질화물 막은 2개의 서로 비유사한 AlGaN 조성물의 계면 경계에 극히 큰 내부 전하 시트(charge sheet)를 형성하는 특유의 특성을 갖는다. 이들 전하는 초전성(pyroelectric) 전하라 불리우며 모든 층 조성물 불연속에서 나타난다. 또한, 서로 상이한 AlGaN 조성물 어느 것이나 약간 상이한 결정 격자 파라미터를 보유하며, 따라서, 각 서로 비유사한 AlGaN 층은 정확하게 관리되지 않는다면 층의 내부 내로 전파하는 계면 경계에서 결정 불일치 전위(dislocation)를 쉽게 형성한다. 서로 비유사한 AlGaN 층들이 결정 불일치 전위를 최소화하기 위해 형성된다면, 압전성 전하라 불리우는 문제가 있는 또 다른 내부 전하가 발생된다. 그러므로 이들 내부 초전성 및 압전성 전하들은 이들이 광 발생을 위해 요구되는 전하 캐리어의 재결합을 저지하는 경향이 있는 LED 내에 내부 전계를 발생하기 때문에 LED 설계에 추가의 과제를 부과한다.
또 다른 문제는 표면으로부터 탈출할 수 있는 LED 내에서 발생되는 광량을 더욱 제한하는 III 족 금속 질화물 물질의 내재적 고 굴절률이다. 표면으로부터 광의 탈출 원뿔(escape cone)을 개선하기 위해 표면 텍스터링에 상당한 노력이 행해졌다. 이들 해결책은 딥 UV LED로부터 광 방출을 개선함으로써 어느 정도 성공적이었지만 그러나 여전히 UV 가스-램프 기술과 비교했을 때 상업적으로 유의한 광학적 파워 밀도는 달성하지 못한다. 표면 텍스처링, 그리고 광자 밴드갭 패터닝된 구조와 같은 광학 결합 구조의 사용으로도, UV LED는 광을 수직 방향으로 효율적으로 방출할 수 없었다.
종래 기술에서 발견되는 또 다른 한계는 III 족 금속 비화물 반도체에 비해 III 족 금속 질화물 반도체가 막 증착을 통해 성장시키기가 극히 어렵다는 것이다. 인듐 갈륨 질화물(InxGa1-xN), 알루미늄 갈륨 질화물(AlxGa1-xN) 및 인듐 갈륨 알루미늄 질화물(InxGayAl1-x-yN)의 임의의 합금 조성물의 확실한 범위가 분자 빔 에피택시(MBE) 및 금속 유기 화학기상증착(MOCVD) 둘 다를 사용하여 드러나졌을지라도, LED의 단일의 에피택셜 스택의 부분으로서 상당수의 서로 비유사한 조성물의 증착에서 큰 기술적 과제는 남아 있다. 실제로, 이것은 III 족 금속 질화물 반도체 및 이러한 성장 기술을 사용하여 실현될 수 있는 밴드갭이 조작된 구조의 복잡성 및 범위를 제한한다.
그러므로 UV 주파수, 특히 딥 UV 주파수에서 사용을 위한 개선된 고체 상태 광전자 디바이스에 대한 필요성이 있다. 이러한 광전자 디바이스를 조작하기 위한 막 형성 방법을 개선할 추가의 필요성이 있다.
종래 기술의 전술한 문제들 중 하나 이상을 해결하거나 혹은 적어도 개선하는 및/또는 유용한 상업적 대안을 제공하는 광전자 디바이스를 제공하는 것이 본 발명의 실시예의 바람직한 목적이다.
일 형태에서, 유일하거나 혹은 실제로 최광의의 형태일 필요는 없을지라도, 발명은
p-형 활성 영역; 및
n-형 활성 영역을 포함하는 반도체 구조를 포함하는 광전자 디바이스에 있으며,
반도체 구조는 하나 이상의 초격자들만으로 구성되고;
각 초격자는 복수의 단위 셀들로 구성되고,
각 단위 셀은 적어도 2개의 별개의 실질적으로 단결정층들을 포함한다.
바람직하게, 반도체 구조는 실질적으로 단결정 구조이다.
적합하게, 반도체 구조는 n-형 활성 영역과 p-형 활성 영역 사이에 i-형 활성 영역을 포함한다.
바람직하게, 반도체 구조 전체에 걸쳐, 서로 이웃한 단위 셀들은 실질적으로 동일한 평균 합금 함량(average alloy content)을 갖는다.
바람직하게, i-형 활성 영역은 1 nm 이상 및 100 nm 이하의 두께를 갖는다.
바람직하게, i-형 활성 영역은 1 nm 내지 대략 10 ㎛의 범위에서 선택된 측방 폭을 갖는다.
바람직하게, 반도체 구조는 소정의 성장 방향을 따른 에피택셜층 성장에 의해 구성된다.
적합하게, 복수의 단위 셀들 각각의 평균 합금 함량은 각 초격자 내에서 일정하다.
적합하게, 복수의 단위 셀들 각각의 평균 합금 함량은 반도체 구조의 상당 부분에서 일정하다.
적합하게, 복수의 단위 셀들 각각의 평균 합금 함량은 하나 이상의 초격자들 중 적어도 하나 내에서 성장 방향을 따라 일정하지 않다.
적합하게, 복수의 단위 셀들 각각의 평균 합금 함량은 하나 이상의 초격자들 중 적어도 하나의 일부 내에서 성장 방향을 따라 주기적으로 가변한다.
적합하게, 복수의 단위 셀들 각각의 평균 합금 함량은 하나 이상의 초격자들 중 적어도 하나의 별개의 영역들에서 에피택셜 성장 방향을 따라 주기적으로 및 비주기적으로 가변한다.
적합하게, 복수의 단위 셀들 각각 내에 상기 적어도 2개의 층들 각각은 각각의 층이 성장 방향을 따라 구성되는 물질의 6 단분자층(monolayer)들 이하의 두께를 갖는다.
적합하게, 하나 이상의 초격자들의 적어도 일부 내에 복수의 단위 셀들 각각의 적어도 2개의 층들 중 하나는 성장 방향을 따라 원자들의 1 내지 10 단분자층들을 포함하고, 각각의 단위 셀들 각각 내에 다른 하나 이상의 층들은 성장 방향을 따라 원자들의 총 1 내지 10 단분자층들을 포함한다.
적합하게, 각 초격자 내에 각 단위 셀의 별개의 실질적으로 단결정 층들 전부 혹은 대부분은 성장 방향을 따라 원자의 1 단분자층 내지 10 단분자층의 두께를 갖는다.
적합하게, 복수의 단위 셀 각각의 성장 방향으로 평균 두께는 하나 이상의 초격자 중 적어도 하나 내에서 일정하다.
적합하게, n-형 활성 영역, p-형 활성 영역, 및 i-형 활성 영역 중 2 이상 내에 단위 셀들은 상이한 평균 두께를 갖는다.
바람직하게, 각 단위 셀의 적어도 2개의 별개의 실질적으로 단결정층들은 섬유아연석 결정 대칭을 가지며, 금속-극의 극성 혹은 질소-극의 극성인 성장 방향으로 결정 극성을 갖는다.
적합하게, 결정 극성은 성장 방향을 따라 공간적으로 가변되고, 결정 극성은 질소-극의 극성과 금속-극의 극성 간에 교번하여 플립(flip)된다.
적합하게, 하나 이상의 초격자 내 각 단위 셀 내 각 층은 초격자의 전자 밴드 구조 내 전자 및 정공에 대한 양자화된 에너지 상태들 및 공간 파동 함수를 제어함으로써 광전자 디바이스의 전자적 특성 및 광학 특성을 제어하게 선택된 두께를 갖는다.
적합하게, 광전자 디바이스는 광 방출 디바이스로서 구성되고, 광학 에너지는 p-형 활성 영역 및 n-형 활성 영역에 의해 공급되는 전기적으로 활성 정공들 및 전자들의 재결합에 의해 발생되고, 재결합은 실질적으로 p-형 활성 영역과 n-형 활성 영역 사이의 영역 내에서 일어난다.
적합하게, 광전자 디바이스에 의해 방출되는 광은 자외선 광이다.
적합하게, 광전자 디바이스에 의해 방출되는 광은 150 nm 내지 280 nm의 파장 범위 내 자외선 광이다.
적합하게, 광전자 디바이스에 의해 방출되는 광은 210 nm 내지 240 nm의 파장 범위 내 자외선 광이다.
적합하게, 광전자 디바이스는 성장 방향에 관하여 실질적으로 횡 자기 광학적 분극(polarization)을 갖는 광을 방출한다.
적합하게, 광전자 디바이스는 반도체 구조의 하나 이상의 초격자들의 단위 셀들의 하나 이상의 층들의 평면에 실질적으로 평행한 방향을 따라 공간적으로 발생되어 국한되는 광을 갖는 광학 도파로로서 동작한다.
적합하게, 광전자 디바이스는 성장 방향에 관하여 실질적으로 횡 전기 광학적 분극을 갖는 광을 방출한다.
적합하게, 광전자 디바이스는 반도체 구조의 하나 이상의 초격자들의 단위 셀들의 하나 이상의 층들의 평면에 실질적으로 수직한 방향을 따라 공간적으로 발생되어 국한되는 광을 갖는 수직 방출 공동 디바이스로서 동작한다.
적합하게, 수직 방출 공동 디바이스는, 반도체 구조의 하나 이상의 부분들을 따라 공간적으로 배치된 금속 반사체들을 사용하여 형성되고 실질적으로 성장 방향을 따라 배치된, 수직 공동을 갖는다.
적합하게, 반사체들은 고 광학 반사율 금속으로 만들어진다.
적합하게, 공동(cavity)은 디바이스에 의해 방출되는 광의 파장 이하인 반사체들 간 광학 길이에 의해 정의된다.
적합하게, 파장은 반도체 구조를 포함하는 하나 이상의 초격자들의 광학 방출 에너지 및 수직 공동에 의해 결정되는 광학 공동 모드들에 의해 결정된다.
적합하게, 고 광학 반사율 금속은 알루미늄(Al)이다.
적합하게, 반도체 구조의 적어도 한 영역은 광학 에너지에 실질적으로 투명하다.
적합하게, 적어도 한 영역은 p-형 활성 영역 및 n-형 활성 영역 중 적어도 하나로부터 선택된다.
적합하게, 반도체 구조 내에서 발생되는 광학 에너지의 아웃 결합(out coupling)을 개선하기 위해 반사체층이 제공된다.
적합하게, 반사체층은 디바이스의 내부로부터 방출되는 광을 실질적으로 재반사하기 위해 광전자 디바이스 맨 위에 위치된다.
적합하게, 광전자 디바이스는 반도체 구조가 성장되는 결정질 기판을 포함한다.
적합하게, 반도체 구조에 의해 발생되는 광학 에너지는 기판을 통해 광전자 디바이스 밖으로 지향된다.
적합하게, 먼저 기판 상에 버퍼층이 성장되고 이어 반도체 구조가 성장되며 버퍼는 소정의 면내 격자 상수를 제공하는 스트레인(strain) 제어 메커니즘으로서 작용한다.
적합하게, 버퍼층은 하나 이상의 초격자들을 포함한다.
적합하게, 버퍼층 및 기판에 인접하여 투명 영역이 제공되고, 버퍼층은 디바이스로부터 방출되는 광학 에너지에 투명하다.
적합하게, 광학 에너지는 투명 영역, 버퍼층 및 기판을 통과하여 외부에 결합된다.
적합하게, p-형 활성 영역 혹은 n-형 활성 영역이 먼저 성장된다.
적합하게, 각 초격자 내 각 단위 셀의 적어도 2개의 별개의 실질적으로 단결정 층들 각각은 다음 조성물들 중 적어도 하나를 포함한다:
2원 조성물 단결정 반도체 물질(AxNy), 0<x≤1 및 0<y≤1;
3원 조성물 단결정 반도체 물질(AuB1-uNy), 0≤u≤1 및 0<y≤1;
4원 조성물 단결정 반도체 물질(ApBqC1-p-qNy), 0≤p≤1, 0≤q≤1 및 0<y≤1;
A, B 및 C는 II 족 및/또는 III 족 원소들에서 선택된 별개의 금속 원자들이며, N은 질소, 산소, 비소, 인, 안티몬, 및 플루오르 중 적어도 하나에서 선택된 양이온들이다.
적합하게, 각 초격자 내 각 단위 셀의 적어도 2개의 별개의 실질적으로 단결정 층들 각각은 다음 조성물들 중 적어도 하나를 포함한다:
III 족 금속 질화물 물질(MxNy);
III 족 금속 비화물 물질(MxAsy);
III 족 금속 인화물 물질(MxPy);
III 족 금속 안티몬화물 물질(MxSby);
II 족 금속 산화물 물질(MxOy);
II 족 금속 불화물 물질(MxFy);
0<x≤3 및 0<y≤4, M은 금속이다.
적합하게, 각 초격자 내 각 단위 셀의 적어도 2개의 별개의 실질적으로 단결정 층들 각각은 다음 조성물들 중 적어도 하나를 포함한다:
알루미늄 질화물(AlN);
알루미늄 갈륨 질화물(AlxGa1-xN), 0≤x<1;
알루미늄 인듐 질화물(AlxIn1-xN), 0≤x<1;
알루미늄 갈륨 인듐 질화물(AlxGayIn1-x-yN), 0≤x<1, 0≤y≤1 및 0<(x+y)<1.
적합하게, 하나 이상의 초격자들의 각 단위 셀의 하나 이상의 층들은 불순물 종들로 의도적으로 도핑되지 않는다.
적합하게, n-형 활성 영역 및/또는 p-형 활성 영역의 하나 이상의 초격자들의 각 단위 셀의 하나 이상의 층들은 하나 이상의 불순물 종들로 의도적으로 도핑되거나 혹은 하나 이상의 불순물 종들로 형성된다.
적합하게, n-형 활성 영역 내 하나 이상의 불순물 종들은 다음에서 선택된다:
실리콘(Si);
게르마늄(Ge);
실리콘-게르마늄(SixGe1-x), 0<x<1;
결정질 실리콘-질화물(SixNy), 0<x<3 및 0<y<4;
결정질 게르마늄-질화물(GexNy), 0<x<3 및 0<y<4;
결정질 실리콘-알루미늄-갈륨-질화물(Siu[AlxGa1-y]zNv), u>0, x>0, 0<y<1, z>0 및 v>0; 혹은
결정질 게르마늄-알루미늄-갈륨-질화물(Geu[AlxGa1-y]zNv), u>0, x>0, 0<y<1, z>0 및 v>0.
적합하게, p-형 활성 영역 내 상기 하나 이상의 불순물 종들은 다음에서 선택된다:
마그네슘(Mg);
아연(Zn);
마그네슘-아연(MgxZn1-x), 0≤x≤1
결정질 마그네슘-질화물(MgxNy), 0<x≤3 및 0<y≤2; 혹은
마그네슘-알루미늄-갈륨-질화물(Mgu[AlxGa1-y]zNv), u>0, x>0, 0<y<1, z>0 및 v>0.
적합하게, n-형 활성 영역 혹은 p-형 활성 영역 내 하나 이상의 불순물 종들은 다음에서 선택된다:
수소(H);
산소(O);
탄소(C); 혹은
플루오르(F).
적합하게, 하나 이상의 불순물 종들은 이온-주입을 통해 성장후 함유된다.
적합하게, 하나 이상의 초격자들 중 적어도 하나의 적어도 일부는 전자 혹은 정공 캐리어 농도를 개선하기 위해 의도적으로 도핑된 영역의 활성화 에너지를 향상시키기 위해 단축 스트레인 혹은 2축 스트레인을 포함한다.
적합하게, 하나 이상의 초격자의 노출된 혹은 물리적으로 에칭된 층은 패시베이션층에 의해 커버된다.
적합하게, 제1 측방 콘택(contact)은 n-형 활성 영역의 표면 상에 형성된 제1 콘택 층으로부터 n-형 활성 영역 내로 부분적으로 확장한다.
적합하게, 제2 측방 콘택은 p-형 활성 영역의 표면 상에 형성된 제2 콘택 층으로부터 p-형 활성 영역 내로 부분적으로 확장한다.
적합하게, 제2 측방 콘택은 제2 측방 콘택과 p-형 활성 영역 사이에 p-형 GaN 층에 의해 둘러싸인다.
적합하게, 제2 콘택 층은 금속 콘택 층이며, p-형 콘택 층은 p-형 활성 영역과 금속 콘택 층 사이에 형성된다.
적합하게, 각 단위 셀의 적어도 2개의 별개의 실질적으로 단결정 층들 각각은 탄성 스트레인을 유지하기 위해 요구되는 임계 층 두께 이하이다.
바람직하게, 적어도 2개의 별개의 실질적으로 단결정 층의 하나 이상은 별개의 실질적으로 단결정 반도체층이다.
적합하게, 적어도 2개의 별개의 실질적으로 단결정 층의 하나 이상은 금속층이다.
본 발명의 추가의 특징 및 잇점은 다음 상세한 설명으로부터 명백하게 될 것이다.
이하 상세한 설명과 함께, 개별적 도면 전체에 걸쳐 동일 참조부호가 동일 혹은 기능적으로 유사한 구성요소들을 지칭하는 첨부된 도면은 명세서 내에 포함되고 이의 일부를 형성하며, 청구된 발명을 포함하는 개념의 실시예를 더욱 예시하기 위해 사용되고 이들 실시예의 여러 원리 및 잇점을 설명한다.
도 1은 본 발명의 제1 실시예에 따른 광전자 디바이스를 위한 스택의 단면도를 도시한 도면이다.
도 2는 본 발명의 제2 실시예에 따른 광전자 디바이스를 위한 스택의 단면도를 도시한 도면이다.
도 3은 본 발명의 제3 실시예에 따른 광전자 디바이스의 단면도를 도시한 도면이다.
도 4는 본 발명의 제4 실시예에 따른 광전자 디바이스의 단면도를 도시한 도면이다.
도 5는 본 발명의 제5 실시예에 따른 광전자 디바이스의 단면도를 도시한 도면이다.
도 6은 본 발명의 제6 실시예에 따른 광전자 디바이스의 단면도를 도시한 도면이다.
도 7은 본 발명의 제7 실시예에 따른 광전자 디바이스의 사시도를 도시한 도면이다.
도 8은 본 발명의 제8 실시예에 따른 광전자 디바이스 내에서 어떤 광학 및 전자적 활동의 단면도를 도시한 도면이다.
도 9는 본 발명의 실시예에 따라, 광전자 디바이스에 있어서의 성장 방향(z)을 따른 거리에 관하여 전도대 및 가전자대에서의 공간 에너지 레벨의 그래프이며, p-형, i-형 및 n-형 활성 영역 내 단위 셀은 GaN의 1 단분자층 및 AlN의 2 단분자층을 포함한다.
도 10은 도 9에 관련하여 기술된 광전자 디바이스에 대해서 성장 방향을 따른 거리(z)에 관하여, 양자화된 최저 에너지 전자 공간 파동 함수를 보여주는 그래프이다.
도 11은 도 9에 관련하여 기술된 광전자 디바이스에 대해서 성장 방향을 따른 거리에 관하여 양자화된 최저 에너지 헤비(heavy) 정공 공간 파동 함수를 보여주는 그래프이다.
도 12는 도 10의 각 양자화된 전자 공간 파동 함수의 공간 중첩 적분 및 성장 방향을 따른 거리에 관하여 도 11의 양자화된 헤비 정공 공간 파동 함수를 보여주는 그래프이다.
도 13는 대응하는 전자 및 정공의 조합된 천이 에너지에 관하여 도 10의 각 양자화된 전자 공간 파동 함수와 도 11의 양자화된 헤비 정공 공간 파동 함수와의 공간 중첩 적분을 보여주는 그래프이다.
도 14는 도 9에 관련하여 기술된 광전자 디바이스에 대해 방출된 루미넌스 대 파장을 보여주는 그래프이다.
도 15는 본 발명의 실시예에 따라 광전자 디바이스에 대해서 성장 방향(z)을 따른 거리에 관하여 전도대 및 가전자대에서 공간 에너지 레벨의 그래프이며, p-형 및 n-형 활성 영역 내 단위 셀은 GaN의 1 단분자층 및 AlN의 2 단분자층을 포함하며, i-형 활성 영역 내 단위 셀은 GaN의 2 단분자층 및 AlN의 4 단분자층을 포함한다.
도 16은 도 15에 관련하여 기술된 광전자 디바이스에 대해 성장 방향을 따라 거리(z)에 관하여 양자화된 최저 에너지 전자 공간 파동 함수를 보여주는 그래프이다.
도 17은 도 15에 관련하여 기술된 광전자 디바이스에 대해 성장 방향을 따라 거리에 관하여 양자화된 최저 에너지 헤비 정공 공간 파동 함수를 보여주는 그래프이다.
도 18은 성장 방향을 따른 거리에 관하여 도 16의 각 양자화된 전자 공간 파동 함수와 도 17의 양자화된 헤비 정공 공간 파동 함수와의 공간 중첩 적분을 보여주는 그래프이다.
도 19는 대응하는 전자 및 정공의 조합된 천이 에너지에 관하여 도 16의 각 양자화된 전자 공간 파동 함수와 도 17의 양자화된 헤비 정공 공간 파동 함수와의 공간 중첩 적분을 보여주는 그래프이다.
도 20은 도 15에 관련하여 기술된 광전자 디바이스에 대한 방출된 루미넌스 대 파장을 보여주는 그래프이다.
도 21은 본 발명의 실시예에 따라 광전자 디바이스에 대한 성장 방향(z)을 따른 거리에 관하여 전도대 및 가전자대에서 공간 에너지 레벨의 그래프이며, p-형 및 n-형 활성 영역 내 단위 셀은 GaN의 2 단분자층 및 AlN의 2 단분자층을 포함하며, i-형 활성 영역 내 단위 셀은 GaN의 3 단분자층 및 AlN의 3 단분자층을 포함한다.
도 22는 도 21에 관련하여 기술된 광전자 디바이스에 대한 성장 방향에 따른 거리에 관하여 양자화된 최저 에너지 전자 공간 파동 함수를 보여주는 그래프이다.
도 23은 도 21에 관련하여 기술된 광전자 디바이스에 대한 성장 방향에 따른 거리에 관하여 양자화된 최저 에너지 헤비 정공 공간 파동 함수를 보여주는 그래프이다.
도 24는 성장 방향을 따른 거리에 관하여 도 22의 각 양자화된 전자 공간 파동 함수와 도 23의 양자화된 헤비 정공 공간 파동 함수와의 공간 중첩 적분을 보여주는 그래프이다.
도 25는 대응하는 전자 및 정공의 조합된 천이 에너지에 관하여 도 22의 각 양자화된 전자 공간 파동 함수와 도 23의 양자화된 헤비 정공 공간 파동 함수와의 공간 중첩 적분을 보여주는 그래프이다.
도 26은 도 21에 관련하여 기술된 광전자 디바이스에 대한 방출된 루미넌스 대 파장을 보여주는 그래프이다.
도 27a는 III 족 금속 질화물 반도체에 대한 섬유아연석 결정 구조를 도시한 것이다.
도 27b는 도 27a의 섬유아연석 결정 구조의 c-평면을 도시한 것이다.
도 27c는 c-축을 따른 방위에 있고 Al 원자 표면을 노출한 AlN 섬유아연석 결정의 사시도이다.
도 28은 예시적 초격자에 대해 층상(layered) 두께의 바람직한 범위를 보인 차트이다.
도 29는 본 발명의 실시예에 따라 초격자의 단위 셀의 결정 격자 구조의 측면도이다.
도 30은 GaN 및 AlN 물질을 사용함으로써 형성된 단위 셀의 또 다른 가능한 구현예를 도시한 차트이다.
도 31은 각 단위 셀 내에 GaN의 M 단분자층 및 AlN의 N 단분자층의 주어진 선택에 대해 초격자의 평형 면내 격자 상수 a|| SL의 그래프이다.
도 32는 두 단위 셀을 포함하는 구조 내 있는 원자 힘의 몇몇을 도시한 개요도이다.
도 33은 M=N이고 각 단위 셀 내에 GaN의 M 단분자층 및 AlN의 N 단분자층의 주어진 선택에 대해 초격자의 평형 면내 격자 상수 a|| SL의 그래프이다.
도 34은 N=2M이고 각 단위 셀 내에 GaN의 M 단분자층 및 AlN의 N 단분자층의 주어진 선택에 대해 초격자의 평형 면내 격자 상수 a|| SL의 그래프이다.
도 35는 각각이 GaN의 5 단분자층 및 AlN의 5 단분자층을 포함하는 100 단위 셀을 갖는 초격자의 에너지 밴드 구조의 계산된 부분의 그래프이다.
도 36은 일정한 단위 셀 길이 및 조성물의 초격자의 반-무한 개수의 주기를 시뮬레이트하기 위해 사용되는 초격자를 도시한 것이다.
도 37은 GaN의 1 단분자층 및 AlN의 2 단분자층을 포함하는 반복된 단위 셀을 갖는 초격자의 횡 전기(TE) 광학 방출 스펙트럼의 그래프이다.
도 38은 GaN의 2 단분자층 및 AlN의 4 단분자층을 포함하는 반복된 단위 셀을 갖는 초격자의 TE 광학 방출 스펙트럼의 그래프이다.
도 39는 GaN의 3 단분자층 및 AlN의 6 단분자층을 포함하는 반복된 단위 셀을 갖는 초격자의 TE 광학 방출 스펙트럼의 그래프이다.
도 40은 GaN의 4 단분자층 및 AlN의 8 단분자층을 포함하는 반복된 단위 셀을 갖는 초격자의 TE 광학 방출 스펙트럼의 그래프이다.
도 41은 GaN의 5 단분자층 및 AlN의 10 단분자층을 포함하는 반복된 단위 셀을 갖는 초격자의 TE 광학 방출 스펙트럼의 그래프이다.
도 42는 헤비 정공 천이에 대해 도 37 내지 도 41 각각에 도시된 광학 방출 스펙트럼을 비교하는 그래프이다.
도 43은 N=2M이고 각 단위 셀 내에 GaN의 M 단분자층 및 AlN의 N 단분자층을 갖는 초격자의 선택에 대해, 허용된 초격자 전도대 상태와 헤비 정공 상태 간에 최저 에너지 천이의 계산된 광학 방출 파장의 그래프이다.
도 44는 M=N이고 각 단위 셀 내에 GaN의 M 단분자층 및 AlN의 N 단분자층을 갖는 초격자의 선택에 대해, 허용된 초격자 전도대 상태와 헤비 정공 상태 간에 최저 에너지 천이의 계산된 광학 방출 파장의 그래프이다.
도 45는 i-형 활성 영역 내에 GaN의 2 단분자층 및 AlN의 4 단분자층을 포함하는 25 단위 셀을 갖는 반도체 구조에 대한 전도대 에너지 및 헤비 정공 가전자대 에너지의 그래프이다.
도 46는 i-형 활성 영역 내에 GaN의 2 단분자층 및 AlN의 4 단분자층을 포함하는 100 단위 셀을 갖는 반도체 구조에 대한 전도대 에너지 및 헤비 정공 가전자대 에너지의 그래프이다.
도 47은 비교를 위해 단일 그래프 상에 도 45 및 도 46의 그래프를 도시한 그래프이다.
도 48은 빌트인 공핍 전계의 영향 하에 도 45에서 언급되는 반도체 구조의 i-형 활성 영역 내에 양자화된 최저 에너지 전자 파동 함수의 그래프이다.
도 49는 빌트인 공핍 전계의 영향 하에 도 46에서 언급되는 반도체 구조의 i-형 활성 영역 내에 양자화된 최저 에너지 헤비 정공 파동 함수의 그래프이다.
도 50a는 도 45에서 언급된 디바이스의 i-형 활성 영역으로부터 방출 스펙트럼의 그래프이다.
도 50b는 도 46에서 언급된 디바이스의 i-형 활성 영역으로부터 방출 스펙트럼의 그래프이다.
도 51은 전도대 에지, 비편재화된 전자 파동 함수, 및 에너지 미니밴드 상에 빌트인 공핍 필드의 영향을 도시한 개요도이다.
당업자는 도면에 요소는 단순성 및 명확성을 위해 예시되고 반드시 축척대로 도시되지 않았음을 알 것이다. 예를 들어, 도면에 일부 요소의 치수는 본 발명의 실시예의 이해를 개선하는데 도움을 주기 위해 다른 요소에 비해 과장되어 있을 수 있다.
광전자 디바이스 성분은 적합한 곳에 도면에 통상의 부호로 표현되어졌으며, 본원에 설명의 잇점을 가진 당업자에게 쉽게 명백해질 상세로 본 개시물이 모호해지지 않게 하기 위해서 본 발명의 실시예에 관련된 특정한 상세만을 도시하였다.
일 측면에 따라, 발명은 반도체 구조를 포함하는 광전자 디바이스에 있다. 바람직한 실시예에서, 반도체 구조는 소정의 성장 방향을 따른 성장, 예를 들면, 에피택셜 층 성장에 의해 구성된다. 반도체 구조는 하나 이상의 초격자만으로 구성된다. 예를 들어, 반도체 구조가 하나 이상의 초격자를 포함하는 경우, 초격자는, 인접한 스택 내에 서로의 위에 형성된다. 바람직한 실시예에서, 하나 이상의 초격자는 짧은 주기 초격자이다. 하나 이상의 초격자 각각은 복수의 단위 셀로 구성되고, 복수의 단위 셀 각각은 적어도 2개의 별개의 실질적으로 단결정 층을 포함한다. 바람직한 실시예에서, 적어도 2개의 별개의 실질적으로 단결정 층의 하나 이상은 별개의 단결정 반도체층이며, 더 바람직하게는, 적어도 2개의 별개의 실질적으로 단결정 층 모두가 별개의 단결정 반도체층이다. 그러나, 일부 실시예에서, 적어도 2개의 별개의 실질적으로 단결정 층의 하나 이상은 금속층이다. 예를 들어, 금속층은 알루미늄(Al)으로 형성될 수 있다.
반도체 구조는 p-형 활성 영역 및 n-형 활성 영역을 포함한다. 반도체 구조의 p-형 활성 영역은 p-형 전도성을 제공하며, n-형 활성 영역은 n-형 전도성을 제공한다. 바람직한 실시예에서, 반도체 구조는 p-i-n 디바이스를 형성하기 위해 n-형 활성 영역과 p-형 활성 영역 사이에 i-형 활성 영역을 포함한다.
일부 실시예에서, 반도체 구조의 각 영역은 개별적 초격자이다. 그러나, 일부 대안적 실시예에서, n-형 활성 영역, p-형 활성 영역 및/또는 i-형 활성 영역은 단일 초격자의 영역이다. 다른 대안적 실시예에서, 활성 영역, p-형 활성 영역 및/또는 i-형 활성 영역 각각은 하나 이상의 초격자를 포함한다.
바람직한 실시예에서, 광전자 디바이스는 발광 다이오드 혹은 레이저이며 및/또는 바람직하게, 150 nm 내지 280 nm의 파장 범위, 더 바람직하게는 210 nm 내지 240 nm의 파장 범위 내 자외선 광을 방출한다. 그러나, 대안적 실시예에서, 광전자 디바이스는 바람직하게, 240 nm 내지 300 nm의 파장 범위, 더 바람직하게는 260 nm 내지 290 nm의 파장 범위 내 자외선 광을 방출한다. 광전자 디바이스가 광 방출 디바이스로서 구성될 때, 광학 에너지는 p-형 활성 영역 및 n-형 활성 영역에 의해 공급되는 전기적 활성 정공 및 전자의 재결합에 의해 발생된다. 정공와 전자와의 재결합은 실질적으로 p-형 활성 영역과 n-형 활성 영역 사이의 영역 내에서, 예를 들면, i-형 활성 영역 내에서 혹은 i-형 활성 영역이 생략되었을 땐 p-형 활성 영역과 n-형 활성 영역과의 계면 주위에서 일어난다.
하나 이상의 초격자 내 각 단위 셀 내 각 층은 초격자의 전자 밴드 구조 내 전자 및 정공에 대한 양자화된 에너지 상태 및 공간 파동 함수를 제어함으로써 광전자 디바이스의 전자적 및 광학적 특성들을 제어하기 위해 선택될 수 있는 두께를 갖는다. 이 선택으로부터 요망되는 전자적 광학적 에너지가 달성될 수 있다. 바람직한 실시예에서, 복수의 단위 셀 각각의 성장 방향으로 평균 두께는 하나 이상의 초격자 중 적어도 하나 내에서 일정하다. 일부 실시예에서, n-형 활성 영역, p-형 활성 영역, 및 i-형 활성 영역 중 2 이상 내에 단위 셀은 상이한 평균 두께를 갖는다.
바람직한 실시예에서, 하나 이상의 초격자들의 적어도 일부 내에 복수의 단위 셀들 각각의 적어도 2개의 층들 중 하나는 성장 방향을 따라 원자들의 1 내지 10 단분자층들을 포함하고, 각각의 단위 셀들 각각 내에 다른 하나 이상의 층들은 성장 방향을 따라 원자들의 총 1 내지 10 단분자층들을 포함한다. 일부 실시예에서, 각 초격자 내에 각 단위 셀의 별개의 실질적으로 단결정 층들 전부 혹은 대부분은 성장 방향을 따라 원자의 1 단분자층 내지 10 단분자층의 두께를 갖는다. 일부 실시예에서, 복수의 단위 셀 각각에 적어도 2개의 층 각각은 성장 방향을 따라 각각의 층이 구성된 물질의 6 단분자층 이하의 두께를 갖는다. 일부 실시예에서, 각 단위 셀의 두께는 단위 셀의 조성물에 기초하여 선택된다.
복수의 단위 셀들 각각의 평균 합금 함량은 하나 이상의 초격자들 중 적어도 하나 내에서 성장 방향을 따라 일정하거나 일정하지 않을 수 있다. 일정한 평균 합금 함량을 유지하는 것은 서로 비유사한 초격자의 단위 셀의 유효 면내 격자 상수의 격자 매칭을 가능하게 한다. 바람직한 실시예에서, 반도체 구조 전체에 걸쳐, 서로 이웃한 단위 셀은 실질적으로 동일한 평균 합금 함량을 갖는다. 일부 실시예에서, 복수의 단위 셀 각각의 평균 합금 함량은 반도체 구조의 상당 부분에서 일정하다.
일부 실시예에서, 복수의 단위 셀들 각각의 평균 합금 함량은 하나 이상의 초격자들 중 적어도 하나의 일부 내에서 성장 방향을 따라 주기적으로 및/또는 비주기적으로 가변한다. 일부 실시예에서, 복수의 단위 셀들 각각의 평균 합금 함량은 하나 이상의 초격자들 중 적어도 하나의 별개의 영역에서 에피택셜 성장 방향을 따라 주기적으로 및 비주기적으로 가변한다.
바람직한 실시예에서, 각 단위 셀의 적어도 2개의 별개의 실질적으로 단결정층은 섬유아연석 결정 대칭을 가지며, 금속-극의 극성 혹은 질소-극의 극성인 성장 방향으로 결정 극성을 갖는다. 일부 실시예에서, 결정 극성은 성장 방향을 따라 공간적으로 가변되고, 결정 극성은 질소-극의 극성과 금속-극의 극성 간에 교번하여 뒤바뀐다(flip).
바람직하게, 각 초격자 내 각 단위 셀의 적어도 2개의 별개의 실질적으로 단결정 층들 각각은 다음 조성물들 중 적어도 하나를 포함한다: 2원 조성물 단결정 반도체 물질(AxNy), 0<x≤1 및 0<y≤1; 3원 조성물 단결정 반도체 물질(AuB1-uNy), 0≤u≤1 및 0<y≤1; 4원 조성물 단결정 반도체 물질(ApBqC1-p-qNy), 0≤p≤1, 0≤q≤1 및 0<y≤1. 여기에서, A, B 및 C는 II 족 및/또는 III 족 원소들에서 선택된 별개의 금속 원자들이며, N은 질소, 산소, 비소, 인, 안티몬, 및 플루오르 중 적어도 하나에서 선택된 양이온들이다.
더 바람직하게, 각 초격자 내 각 단위 셀의 적어도 2개의 별개의 실질적으로 단결정 층들 각각은 다음 조성물들 중 적어도 하나를 포함한다: III 족 금속 질화물 물질(MxNy); III 족 금속 비화물 물질(MxAsy); III 족 금속 인화물 물질(MxPy); III 족 금속 안티몬화물 물질(MxSby); II 족 금속 산화물 물질(MxOy); II 족 금속 불화물 물질(MxFy). 여기에서 0<x≤3 및 0<y≤4, M은 금속이다. 일부 실시예에서, 금속 M은 하나 이상의 II 족, III 족 혹은 IV 족 원소에서 선택된다. 예를 들어, 각 초격자 내 각 단위 셀의 적어도 2개의 별개의 실질적으로 단결정 층들 각각은 다음 조성물들 중 적어도 하나를 포함한다: 알루미늄 질화물(AlN); 알루미늄 갈륨 질화물(AlxGa1-xN), 0≤x<1; 알루미늄 인듐 질화물(AlxIn1-xN), 0≤x<1; 알루미늄 갈륨 인듐 질화물(AlxGayIn1-x-yN), 0≤x<1, 0≤y≤1 및 0<(x+y)<1. 일부 실시예에서, 적어도 2개의 별개의 실질적으로 단결정 층 중 하나는 협 밴드 갭 물질을 포함하며, 적어도 2개의 별개의 실질적으로 단결정 층 중 또 다른 것은 넓은 밴드갭 물질을 포함한다.
일부 실시예에서, 각 단위 셀의 적어도 2개의 별개의 실질적으로 단결정 층의 하나 이상은 금속으로 형성된다. 예를 들어, 각 단위 셀은 알루미늄(Al) 층 및 알루미늄 질화물(AlN) 층을 포함할 수 있다.
일부 실시예에서, 하나 이상의 초격자들의 각 단위 셀의 하나 이상의 층들은 예를 들어, n-형 활성 영역, p-형 활성 영역 및/또는 i-형 활성 영역 내에, 불순물 종들로 의도적으로 도핑되지 않는다. 대안적으로 혹은 추가로, n-형 활성 영역 및/또는 p-형 활성 영역의 하나 이상의 초격자들의 각 단위 셀의 하나 이상의 층들은 하나 이상의 불순물 종들로 의도적으로 도핑되거나 혹은 하나 이상의 불순물 종들로 형성된다. 예를 들어, n-형 활성 영역 내 하나 이상의 불순물 종들은 다음에서 선택된다: 실리콘(Si); 게르마늄(Ge); 실리콘-게르마늄(SixGe1-x), 0<x<1; 결정질 실리콘-질화물(SixNy), 0<x<3 및 0<y<4; 결정질 게르마늄-질화물(GexNy), 0<x<3 및 0<y<4; 결정질 실리콘-알루미늄-갈륨-질화물(Siu[AlxGa1-y]zNv), u>0, x>0, 0<y<1 및 v>0; 혹은 결정질 게르마늄-알루미늄-갈륨-질화물(Geu[AlxGa1-y]zNv) u>0, x>0, 0<y<1 및 v>0. 예를 들어, p-형 활성 영역 내 하나 이상의 불순물 종들은 다음에서 선택된다: 마그네슘(Mg); 아연(Zn); 마그네슘-아연(MgxZn1-x), 0≤x≤1; 결정질 마그네슘-질화물(MgxNy), 0<x≤3 및 0<y≤2; 혹은 마그네슘-알루미늄-갈륨-질화물(Mgu[AlxGa1-y]zNv), u>0, x>0, 0<y<1 및 v>0. n-형 활성 영역 혹은 p-형 활성 영역 내 하나 이상의 불순물 종들은 다음에서 선택될 수 있다: 수소(H); 산소(O); 탄소(C); 혹은 플루오르(F).
하나 이상의 초격자들 중 적어도 하나의 적어도 일부는 활성화된 불순물 도핑의 레벨을 수정하기 위해 단축 스트레인, 2축 스트레인, 혹은 3축 스트레인을 포함할 수 있다. 즉, 적어도 한 결정 방향으로 결정 변형의 작용에 의해서, 유발된 스트레인은 하나 이상의 초격자의 층 내 물질의 에너지 밴드 구조를 유리하게 변형할 수 있다. 전도대 혹은 가전자대 에지의 결과적인 에너지 이동은 초격자에 관하여 주어진 불순물 도펀트의 활성화 에너지를 감소시키기 위해 사용될 수 있다. 예를 들어, 섬유아연석 격자 구조를 갖는 p-형 Mg-도핑된 GaN과 같은 III 족 질화물 물질은 c-평면에 실질적으로 평행하고 성장 방향에 수직한 탄성 인장성 스트레인을 받을 수 있다. 가전자대 에지의 에너지에서 결과적인 이동은 상기 가전자대 에지와 Mg 불순물 레벨 간에 감소된 에너지 분리를 초래한다. 이 에너지 분리는 정공에 대한 활성화 에너지로서 알려져 있고 온도 의존성이다. 그러므로, 스트레인의 인가를 통해 불순물 도펀트에 기인한 특정 캐리어의 활성화 에너지를 감소시키는 것은 도핑된 물질의 활성화된 캐리어 밀도를 극적으로 개선한다. 이 빌트인 스트레인은 초격자의 형성 동안 에피택셜 물질 형성 단계 동안에 선택될 수 있다. 예를 들어, GaN 에피층는 단결정 AlN 층 상에 직접 증착된다면 인장성 면내 스트레인을 포함하기 위해 형성될 수 있다. 예를 들어, p-형 활성 영역에서, AlN 및 Mg 도핑된 GaN 층이 각각 1 내지 7 단분자층으로 두께가 제한된다면, 이들은 계면 전위(dislocation)와 같은 치명적 결정 결함의 유발 없이 탄성적으로 변형할 것이다. 여기에서 AlN 층은 면내 압축성 스트레스를 받을 것이며, 반면 Mg-도핑된 GaN 층은 면내 인장성 스트레스를 받을 것이다. 그러므로, 스트레인은 불순물 종들을 내포하는 의도적으로 도핑된 영역 중 하나 이상의 활성화 에너지를 향상시킬 수 있다. 이것은 의도적으로 도핑된 영역 중 하나 이상 내에 전자 혹은 정공 캐리어 농도를 개선한다.
도 1은 본 발명의 일부 실시예에 따른 광전자 디바이스를 위한 스택(100)의 단면도를 도시한 도면이다. 일 실시예에서, 광전자 디바이스는 발광 다이오드(LED)이다. 그러나, 본 발명은 또한 광전자 디바이스 내에 적합한 반사층 혹은 미러를 배치시킨 슈퍼루미네슨스(superluminescent) LED 및 레이징(lasing) 디바이스를 제조하게 개조될 수 있음을 알아야 할 것이다.
스택(100)은 결정질 기판(110)을 포함한다. 버퍼 영역(112)이 먼저 기판(110) 상에 성장되고 이어 반도체 구조(114)가 성장된다. 버퍼 영역(112) 및 반도체 구조(114)는 화살표(101)로 나타낸 성장 방향으로 형성 혹은 성장된다. 버퍼 영역(112)은 버퍼층(120) 및 하나 이상의 초격자(130)를 포함한다. 바람직한 실시예에서, 버퍼 영역은 소정의 면내 격자 상수를 제공하는 스트레인 제어 메커니즘으로서 작용한다.
반도체 구조(114)는, 성장 순서로, n-형 활성 영역(140), i-형 활성 영역(150) 및 p-형 활성 영역(160)을 포함한다. p-형 콘택 층(170)은 선택적으로 p-형 활성 영역(160) 상에 형성된다. 제1 콘택 층(180)은 p-형 콘택 층(170) 상에 혹은 p-형 콘택 층이 없다면 p-형 활성 영역(160) 상에 형성된다. 바람직한 실시예에서, 반도체 구조의 적어도 한 영역은 광전자 디바이스에 의해 방출된 광학 에너지에 실질적으로 투명하다. 예를 들어, p-형 활성 영역 및/또는 n-형 활성 영역은 방출된 광학 에너지에 투명하다.
바람직한 실시예에서, 기판(110)은 300 ㎛ 내지 1,000 ㎛ 사이의 두께를 갖는다. 기판(110)의 두께는 기판(110)의 직경에 기초하여 선택될 수 있다. 예를 들어, 2 인치(25.4mm)의 직경을 가지며 c-평면 사파이어로 만들어진 기판은 약 400 ㎛의 두께를 가질 수 있고 6 인치의 직경을 갖는 기판은 약 1 mm의 두께를 가질 수 있다. 기판(110)은 n-형 활성 영역에 자연적인 자연 물질로 만들어진 자연 기판 혹은 n-형 활성 영역에 비-자연적인 비-자연 물질로부터 만들어진 비-자연 기판일 수 있다. 예를 들어, n-형 활성 영역이 하나 이상의 III 족 금속 질화물 물질을 포함한다면, 기판(110)은 AlN 혹은 GaN과 같은 유사한 III 족 금속 질화물 물질로, 혹은 Al2O3 혹은 Si(111)와 같은 비-자연 물질로부터 만들어질 수 있다. 그러나, 당업자는 기판(110)이 기판(110) 위에 형성된 층과 호환되는 많은 다른 물질로부터 만들어질 수 있음을 알 것이다. 예를 들어, 기판은 마그네슘 산화물(MgO) 혹은 아연-산화물(ZnO)와 같은 결정질 금속 산화물 물질, 실리콘-카바이드(SiC), 칼슘 불화물(CaF2), 비정질 유리 상에 결정질 박막 반도체, 혹은 금속 상에 결정질 박막 반도체로 만들어질 수 있다.
버퍼 영역(112)은 기판(110)과 반도체 구조(114) 사이에 천이 영역으로서 기능한다. 예를 들어, 버퍼 영역(112)은 기판(110)과 반도체 구조(114) 사이에 격자 구조에 더 나은 매칭을 제공한다. 예를 들어, 버퍼 영역(112)은 벌크 유사 버퍼층 및 이에 이어 디바이스의 반도체 구조의 하나 이상의 초격자를 증착하기에 적합한 요망되는 면내 격자 상수를 달성하게 설계된 적어도 한 초격자를 포함할 수 있다.
바람직한 실시예에서, 버퍼 영역(112) 내 버퍼층(120)은 50 nm 내지 수 마이크로미터, 바람직하게는, 100 nm 내지 500 nm 사이의 두께를 갖는다. 버퍼층(120)은 기판(110)의 격자 구조를 하나 이상의 초격자의 최저 층에 매칭하는데 적합한 임의의 물질로부터 만들어질 수 있다. 예를 들어, 하나 이상의 초격자의 최저 층이 AlN와 같은 III 족 금속 질화물 물질로 만들어진다면, 버퍼층(120)은 AlN로 만들어질 수 있다. 대안적 실시예에서, 버퍼층(120)은 생략될 수도 있다.
버퍼 영역(112) 내 하나 이상의 초격자(130) 및 반도체 구조(114) 내 하나 이상의 초격자는 복수의 단위 셀을 포함하는 것으로 간주될 수 있다. 예를 들면, 버퍼 영역(112) 내 단위 셀(132), n-형 활성 영역(140) 내 단위 셀(142), i-형 활성 영역(150) 내 단위 셀(152), 및 p-형 활성 영역(160)의 단위 셀(162). 복수의 단위 셀 각각은 2개의 별개의 실질적으로 단결정 층을 포함한다. 각 단위 셀 내 제1 층은 "A"로 표기하고 각 단위 셀 내 제2 층은 "B"로 표기한다.
반도체 구조의 서로 상이한 영역들에서, 각 단위 셀 내 제1 층 및/또는 제2 층은 동일 혹은 상이한 조성물, 및/또는 동일 혹은 상이한 두께를 가질 수 있다. 예를 들어, 도 1은 n-형 활성 영역(140) 및 p-형 활성 영역(160)에서보다 i-형 활성 영역(150)에서 더 큰 두께를 갖는 제1 층 및 제2 층을 보여준다.
n-형 활성 영역(140)은 n-형 전도성을 제공한다. 바람직한 실시예에서, n-형 활성 영역(140)에서 각 단위 셀(142) 내에 제1 층(142A) 및 제2 층(142B) 중 하나 혹은 둘 다는 위에 기술된 물질과 같은 도펀트 물질로 도핑 혹은 형성된다. 일부 실시예에서, 도펀트 물질은 각 단위 셀의 제1 층 및 제2 층에서 서로 상이하다.
i-형 활성 영역(150)은 광전자 디바이스의 주 활성 영역이다. 바람직한 실시예에서, i-형 활성 영역은 선택된 방출 에너지 혹은 파장으로 공간 전자 및 정공 재결합을 최적화하도록 설계된다. 바람직한 실시예에서, i-형 활성 영역(150)의 각 단위 셀(152) 내 제1 층(152A) 및 제2 층(152B)은 단위 셀 혹은 i-형 활성 영역(150) 내에서 양자역학적 허용된 에너지를 제어하기 위해 조절되는 두께를 갖는다. 단위 셀의 각 층의 두께가 바람직한 실시예에서 1 내지 10 단분자층이기 때문에, 초격자 구조의 양자적 서술 및 취급은 전자적 및 광학적 구성을 결정하기 위해 필요하다. 섬유아연석 결정 대칭을 가지며 극성의 본성을 더욱 갖는 III 족 금속 질화물 물질이 층을 형성하기 위해 사용된다면, 단위 셀 및 하나 이상의 초격자의 각 헤테로접합에 걸쳐 많은 내부 전계가 존재한다. 이들 빌트인 전계는 각 헤테로접합에서 일어나는 자발적 및 압전성 전하에 기인하여 형성된다. 성장 방향을 따른 복잡한 공간 밴드 구조는 단위 셀의 층들 간에 조성물에서 공간적 변화에 의해 조절되는 전도대 및 가전자대에서의 사소하지 않은 포텐셜 변화를 야기한다. 이 공간적 변화는 전도대 및 가전자대 내에 각각의 캐리어의 드브루이 파장 정도를 가지며, 이에 따라 하나 이상의 초격자 내에 결과적인 국한된 에너지 레벨 및 공간 확률 분포(본원에서는 캐리어 파동 함수로서 정의된다)의 양자적 취급을 요구한다.
또한, 반도체 구조의 결정 극성은 바람직하게는, 예를 들어, III 족 금속 질화물 물질로 형성된 하나 이상의 초격자에 대해서 성장 방향(101)을 따른 금속-극성의 혹은 질소-극성의 성장으로부터 선택된다. 반도체 구조의 결정 극성에 따라, i-형 활성 영역(150)의 적어도 일부는 광학 방출을 최적화하게 더욱 선택될 수 있다. 예를 들어, 성장 방향(101)을 따른 금속-극성의 방위의 성장은 교번하는 GaN 층 및 AlN 층을 포함하는 n-i-p 스택의 i-형 활성 영역 내에 초격자를 형성하기 위해 사용될 수 있다. n-i-p 스택 내 n-형 활성 영역은 기판에 최 근접하여 형성되기 때문에, i-형 활성 영역은 이에 걸쳐, n-형 활성 영역과 p-형 활성 영역 간 거리에 걸친(예를 들면, 도 9, 도 15 및 도 21 참조), 선형으로 증가하는 공핍 필드를 가질 것이다. i-형 활성 영역 초격자는 n-i-p 스택의 빌트인 공핍 필드에 기인하여 추가의 전계를 받게 될 것이다. 대안적으로, i-형 활성 영역에 걸친 빌트인 공핍 필드는 다른 구성에서 발생될 수 있다. 예를 들어, 스택은 기판에 최 근접한 및/또는 101을 따른 질소-극성의 결정 성장 방위를 사용하여 성장된 p-형 활성 영역(160)을 가진 p-i-n 스택일 수 있다.
p-i-n 스택의 p-n 스택 혹은 i-형 활성 영역(150)의 공핍 영역에 걸친 상기 공핍 필드는 또한 광전자 디바이스의 광학 방출 에너지 및 방출 파장을 부분적으로 설정할 수 있다. 바람직한 실시예에서, i-형 활성 영역 내 각 단위 셀 내 제1 층(152A) 및 제2 층(152B) 중 하나 혹은 둘 다는 비-도핑 혹은 의도적으로 도핑되지 않는다. 바람직한 실시예에서, i-형 활성 영역(150)은 100 nm 이하의 두께 및 1 nm 이하의 두께를 갖는다. i-형 활성 영역은 1 nm 내지 대략 10 ㎛의 범위에서 선택된 측방 폭을 갖는다.
i-형 활성 영역(150)의 총 폭은 p-형 활성 영역(160)과 n-형 활성 영역(140) 사이에 i-형 활성 영역(150)에 걸쳐 공핍 필드 강도를 더욱 튜닝하기 위해 선택될 수 있다. n-형 활성 영역(140) 및 p-형 활성 영역(160)의 결정 성장 극성, 폭 및 유효 전자 및 정공 캐리어 농도에 따라, 공핍 필드 강도는 i-형 활성 영역으로부터 방출된 광의 방출 에너지 혹은 파장에서의 청색-이동 혹은 적색-이동을 제공할 것이다.
p-형 활성 영역(160)은 p-형 전도성을 제공한다. 바람직한 실시예에서, p-형 활성 영역에서 각 단위 셀(162) 내 제1 층(162A) 및 제2 층(162B) 중 하나 혹은 둘 다는 위에 기술된 물질과 같은 도펀트 물질로 도핑되거나, 형성된다.
바람직한 실시예에서, 반도체 구조에서 하나 이상의 초격자 각각에 복수의 단위 셀 각각의 제1 층 및 제2 층은 III 족 금속 질화물 물질로 구성된다. 예를 들어, 제1 층은 알루미늄 질화물(AlN)으로 구성될 수 있고, 제2 층은 갈륨 질화물(GaN)로 구성될 수 있다. 그러나, 하나 이상의 초격자 각각에 제1 층 및 제2 층은 위에 명시된 물질들 중 어느 것으로 구성될 수 있음을 알아야 할 것이다.
바람직한 실시예에서, 하나 이상의 초격자의 평균 합금 함량, 예를 들어 제1 층이 근본적으로 AlN로 구성되고 제2 층이 근본적으로 GaN으로 구성되는 Al 및/또는 Ga은 일정하다. 대안적 실시예에서, 하나 이상의 초격자의 하나 이상의 평균 합금 함량은 일정하지 않다.
일부 실시예에서, 단위 셀의 평균 합금 함량은 반도체 구조(114) 및/또는 스택(100)의 모든 초격자에서 동일한데, 그러나 주기는 초격자들 간에 및/또는 초격자들 내에서 변경된다. 일정한 평균 합금 함량을 유지하는 것은 서로 비유사한 초격자의 격자 매칭을 가능하게 한다. 각 단위 셀의 이러한 격자 매칭된 성장은 상당수의 주기가 스트레인의 누적 없이도 형성될 수 있게 한다. 예를 들어, n-형 활성 영역(140)을 위한 초격자의 특정 주기를 사용하는 것은 n-형 활성 영역(140)을 방출된 광의 파장에 더 투명해지게 할 것이다. 또 다른 예에서, i-형 활성 영역(150)에 대해 상이한 주기를 사용하는 것은 광이 수직으로, 즉 성장 방향(101)과 동일 평면에서 방출되게 할 것이다.
또 다른 실시예에서, 하나 이상의 초격자는 일정한 평균 합금 함량, 및 초격자 층의 평면에 실질적으로 수직한 광학 방출을 갖는다. 예를 들어, 수직 방출 디바이스는 AlGaN 층의 Al 퍼센티지를 60% 미만으로 하는 AlN 및 AlGaN의 층을 가진 초격자를 사용함으로써 형성된다. 또 다른 실시예에서, 복수의 혹은 모든 하나 이상의 초격자는 AlN 및 GaN을 포함하는 단위 셀로부터 구성되고 그럼으로써 두 물질에 대해서만 단일 성장 온도에 최적화되는 개선된 성장 프로세스를 가능하게 한다.
도핑은 몇가지 방법으로 하나 이상의 초격자의 n-형 활성 영역 및/또는 p-형 활성 영역에 내포될 수 있다. 일부 실시예에서, 도핑은 각 단위 셀 내 제1 층 및 제2 층 중 단지 하나에만 도입된다. 예를 들어, Si는 n-형 물질을 생성하기 위해 단위 셀의 제2 층 내 GaN에 도입될 수 있고 혹은 Mg는 p-형 물질을 생성하기 위해 단위 셀의 제2 층 내 GaN에 도입될 수 있다. 대안적 실시예에서, 도핑은 각 단위 셀 내 하나 이상의 층/물질에 도입될 수 있고, 도펀트 물질은 단위 셀의 각 층에서 서로 상이할 수 있다. 일부 실시예에서, 하나 이상의 초격자는 활성화된 도핑의 레벨을 수정하기 위해 단축 스트레인 혹은 2축 스트레인을 포함한다.
바람직한 실시예에서, 반도체 구조의 하나 이상의 초격자는 바람직하게는 c-축 (0001)을 따라 성장된 섬유아연석 격자 구조를 포함한다. 하나 이상의 초격자가 섬유아연석 격자 구조를 갖는 경우, 단분자층은 격자의 6각형 단위 셀의 "c" 치수의 두께의 절반으로서 정의된다. 일부 실시예에서, 반도체 구조의 하나 이상의 초격자는 바람직하게는 (001)-축을 따라 성장된 아연-혼합물 격자 구조를 포함한다. 하나 이상의 초격자가 아연-혼합물 격자 구조를 갖는 경우, 한 단분자층은 격자의 입방 단위 셀의 "a" 치수의 두께의 절반으로서 정의된다.
반도체 구조의 각 영역에 대해 단일의 초격자가 도 1에 도시되었지만, 각 영역은 서로의 위로 스택된 하나 이상의 초격자를 포함할 수 있음을 알아야 할 것이다. 예를 들어, n-형 활성 층(140)은 각 단위 셀 내 각각의 층이 제1 물질 조성물을 갖는 제1 초격자 및 각 단위 셀 내 각각의 층이 제2 물질 조성물을 갖는 제1 초격자 상에 성장된 제2 초격자를 포함할 수 있다. 일부 실시예에서, 스택(100)은 버퍼 영역(130), n-형 활성 영역(140), i-형 활성 영역(150) 및 p-형 활성 영역(160)의 하나 혹은 그 이상을 포함하는 단일 초격자를 포함할 수 있다.
일부 실시예에서, 하나 이상의 초격자의 적어도 하나는 주기적인데, 각각의 초격자의 각 단위 셀이 동일 구조를 가짐을 의미한다. 예를 들어, 각각의 초격자의 각 단위 셀은 각각의 층에서 동일 수의 층, 동일한 층 두께 및 동일한 물질 조성물을 갖는다.
일부 실시예에서, 하나 이상의 초격자의 적어도 하나는 비주기인데, 단위 셀의 하나 이상이 서로 상이한 구조를 가짐을 의미한다. 차이는 층 각각에 대해 선택된 물질, 층의 두께, 각 단위 셀 내 층 수, 혹은 이들의 조합에 있을 수 있다.
초격자 각각은 서로 상이한 전자적 및 광학적 특성들을 달성하기 위해 상이한 구조를 가질 수 있다. 이에 따라, 한 초격자는 주기적일 수도 있을 것이며, 반면 다른 것들은 비주기적일 수도 있을 것이다. 또한, 스택(100) 내 모든 초격자는 주기적일 수 있고, 혹은 모든 초격자는 비주기적일 수 있다. 또 다른 실시예에서, 하나 이상의 초격자는 주기적일 수 있고, 반면 하나 이상의 초격자는 비주기적이다. 예를 들어, 버퍼 영역(130) 내 초격자는 격자 매칭을 돕기 위해 비주기적일 수 있다.
정공 주입층이라고도 알려진 p-형 콘택 층(170)은 하나 이상의 초격자의 p-형 활성 영역 위에 형성된다. 제1 콘택 층(180)은 제1 콘택 층(180)과 p-형 활성 영역(160) 사이에 p-형 콘택 층(170)이 형성되게, p-형 콘택 층(170) 상에 형성된다. 바람직한 실시예에서, 제1 콘택 층(180)은 금속 콘택 층이다. p-형 콘택 층(170)은 p-형 활성 영역(160)과 제1 콘택 층(180) 간에 전기적 오믹 콘택을 돕는다. 바람직한 실시예에서, p-형 콘택 층(170)은 p-형 GaN으로 만들어지고, 5 nm 내지 200 nm, 바람직하게, 10 nm 내지 25 nm의 두께를 갖는다. p-형 콘택 층(170)의 두께는 특정한 광학 파장에서 광학 흡수를 감소시키게 및/또는 p-형 콘택 층(170)을 스택(100)의 방출 파장에 광학적으로 반사되게 최적화될 수 있다.
제1 콘택 층(180)은 스택(100)이 전압원의 양극 단자에 연결될 수 있게 한다. 바람직한 실시예에서, 제1 콘택 층(180)은 10 nm 내지 수 1000 nm, 바람직하게, 50 nm 내지 500 nm의 두께를 갖는다.
제2 콘택 층(도시되지 않음)은 전압원의 음극 단자에 연결하기 위해 n-형 활성 영역(140) 상에 형성된다. 바람직한 실시예에서, 제2 콘택 층은 10 nm 내지 수 1000 nm, 바람직하게, 50 nm 내지 500 nm의 두께를 갖는다.
제1 콘택 층(180) 및 제2 콘택 층은 임의의 적합한 금속으로 만들어질 수 있다. 바람직한 실시예에서, 제1 콘택 층(180)은 p-형 활성 영역(160)과 제1 콘택 층(180) 간에 낮은 오믹 콘택의 형성을 돕기 위해 고 일함수 금속으로 만들어진다. 제1 콘택 층(180)의 일함수가 충분히 높다면, 선택적 p-형 콘택 층(170)은 요구되지 않을 수 있다. 예를 들어, 기판이 투명하고 절연이고 반도체 구조에 의해 방출된 광이 기판을 통해 실질적으로 밖으로 지향되고 p-형 활성 영역(160)이 n-형 활성 영역(140)보다 기판으로부터 더 멀리 배치된다면, 제1 콘택 층(180)은 이상적으로는, 방출된 광의 부분을 기판을 통해 되돌려 재반사하기 위해서 동작 파장에서 고 광학 반사율의 특성을 가질 것이다. 예를 들어, 제1 콘택 층(180)은 알루미늄(Al), 니켈(Ni), 오시뮴(Os), 백금(Pt), 팔라듐(Pd), 이리듐(Ir), 및 텅스텐(W)에서 선택된 금속으로 만들어질 수 있다. 특히, 스택(100)이 DUV 광을 방출하는 딥 자외선(DUV) 동작에 있어서, 제1 콘택 층(180)은 일반적으로 저 p-형 오믹 콘택 및 고 광학 반사율의 이중의 명세를 이행하지 않을 수 있다. III 족 금속 질화물을 위한 고 일함수 p-형 콘택 금속은 일반적으로 열등한 DUV 파장 반사체이다. 백금(Pt), 이리듐(Ir), 팔라듐(Pd) 및 오시뮴(Os)은 고 Al% III 족 금속 질화물 조성물 및 초격자에 이상적인 고 일함수 p-형 콘택 금속이다. 바람직하게, 오시뮴은 III 족 금속 질화물을 포함하는 p-형 영역보다 우수한 저 오믹 콘택 금속이다.
그러나, 스택(100)의 자외선 및 DUV 동작에 있어서, 알루미늄은 이것이 150 내지 500 nm에 걸친 큰 파장 범위에 대해 가장 높은 광학 반사율을 갖기 때문에, 모든 금속 중 가장 바람직하다. 일반적으로, 금속은 금속 내로 광의 저 침투 깊이및 저 손실에 기인하여 DUV 광학 반사체로서 바람직하다. 이것은 광학 마이크로공동 구조가 형성될 수 있게 한다. 반대로, 알루미늄(Al), 티타늄(Ti) 및 티타늄 질화물(TiN)과 같은 비교적 낮은 일함수 금속은 n-형 III 족 금속 질화물 조성물 및 초격자에 대한 저 오믹 금속 콘택을 형성하기 위해 이용될 수 있다.
도 1에 도시된 스택(100)은 광전자 디바이스를 위한 예시적 스택이고 스택(100)은 많은 다른 방법들로 만들어질 수 있음을 알아야 할 것이다. 예를 들어, n-형 활성 층(140) 및 p-형 활성 층(160)은 p-형 층(160)이 먼저 성장되게 반대로 될 수도 있다. 그러나, 먼저 n-형 활성 층(140)을 성장시키는 이유는 p-형 초격자보다 기판 혹은 버퍼층 상에 III 족 금속 질화물 조성물을 사용하여 저 결함 밀도 n-형 초격자를 성장시키기가 일반적으로 덜 도전적이라는 것이다. 또한, 버퍼층(120) 및/또는 버퍼 영역(130)은 선택적 층이고 하나 이상의 초격자가 직접 기판(110) 상에 성장될 수 있음에 유의한다. 그러나, 버퍼층(120) 및/또는 버퍼 영역(130) 상에 하나 이상의 초격자를 성장시키기는 이러한 층/영역의 표면이 일반적으로 결정의 c-평면 내 방위로 놓이기 때문에, 일반적으로 더 쉽다.
일부 실시예에서, 버퍼 영역 및 이웃한 p-형 혹은 n-형 활성 영역은 동일 초격자의 부분이고 버퍼 영역과 p-형 혹은 n-형 활성 영역 간에 유일한 차이는 p-형 혹은 n-형 활성 영역 내에 불순물 도펀트의 혼입이다. 일부 실시예에서, 제1 초격자는 저 결함 밀도 및 미리 선택된 면내 격자 상수를 갖고 초격자를 실질적으로 릴렉스된 혹은 자립 상태로 만들만큼 충분한 두께로 기판 상에 성장된다.
또 다른 실시예에서, 스택(100)은 스택이 도 1의 p-i-n 접합이 아니라 p-n 접합을 형성하게 i-형 활성 층(150) 없이 제조될 수 있다. 또한, p-형 콘택 층(170)은 선택적이고, 제1 콘택 층(180)은 하나 이상의 초격자의 p-형 활성 영역(160) 상에 직접 성장될 수 있음을 알아야 할 것이다. 그러나, 통상의 엑스-시튜(ex-situ) 제조 기술을 사용하여 p-형 활성 영역(160) 상에 직접 제1 콘택 층(180)을 제조하기는 더 어렵다. 예를 들어, 얇지만 고농도로 도핑된 p-형 콘택 층(170)은 금속화를 위한 더 쉽고 더 일관적인 에피택셜후 프로세스가 오믹 콘택을 달성할 수 있게 한다. 그러나, 오염이 없는 p-형 활성 영역(160)의 최종의 에피택셜 표면 상에 직접 인-시튜(in-situ) 금속화 프로세스는 제1 콘택 층(180)의 형성을 위한 대안적 수단을 제공한다.
바람직한 실시예에서, 하나 이상의 초격자는 적어도 한 증착 사이클 동안 순차로 성장된다. 즉, 도펀트는 동시-증착(co-deposition)의 프로세스를 통해 에피택시 동안 도입된다. 대안적 방법은 도펀트 없이 하나 이상의 초격자의 적어도 부분을 물리적으로 성장시키고, 이어 성장-후, 요망되는 도펀트를 도입하는 것이다. 예를 들어, 실험에 따르면 n-형 III 족 금속 질화물 물질이 전형적으로 p-형 III 족 금속 질화물 물질보다 결정 구조 질에서 우수함이 발견되었다. 그러므로, 일부 실시예에서, p-형 물질은 스택의 제조의 최종 순서로서 증착된다. 이어 표면으로부터 도입된 도펀트를 혼입하기 위한 성장후 방법이 사용될 수 있다. 예를 들어, 이온-주입, 및 확산(예를 들면, 스핀-온 도펀트를 통해), 이어서 활성화 열 어닐링.
반도체 구조(114)는 성장 방향(101)을 따른 방위를 갖고 극성의, 비-극성의 혹은 반-극성의 결정 극성을 갖고 성장될 수 있다. 예를 들어, 실질적으로 성장 방향에 수직한 c-평면의 6각형 대칭을 갖는 방위의 섬유아연석 격자 구조가 성장될 수 있다. 이와 같이 형성된 단위 셀 층의 평면을 c-평면 상에 방위를 갖는다라고 한다. III 족 금속 질화물과 같은 이온성 섬유아연석 결정은 극성의 결정(즉, 반전 대칭의 중심이 없는 결정)을 더욱 형성한다. 이들 극성의 결정은 c-평면에 수직한 결정 방향을 따라 금속-극성의 혹은 질소 극성일 수 있다.
성장 방향(101)을 따라 반-극성 및 심지어 비-극성의 결정 성장이 되게 하는 그외 다른 성장 평면 방위가 달성될 수 있다. 비-극성의 방위에서 III 족 금속 질화물로 형성된 반도체 구조는 입방 및/또는 아연-혼합물 격자 구조의 성장을 통해 될 수 있다. 그러나, 반도체 구조가 이러한 격자 구조를 갖게 형성될 때, 이것은 반도체 구조가 섬유아연석 격자 구조를 갖게 형성될 때보다 전형적으로 덜 안정하다. 예를 들어, III 족 금속 질화물은 r-평면 사파이어 기판 상에 반-극성의 결정 극성을 갖고 성장될 수 있어, 하나 이상의 a-평면 방위의 초격자가 된다.
성장 방향을 따라 결정 극성을 극성에서 반-극성의 결정으로 바꾸는 것은 헤테로접합 어느 것에서든 야기되는 자발적 및 압전성 전하의 감소에 잇점이 있다. 이러한 반-극성 및 비-극성의 결정 극성들이 얼마간 잇점을 갖지만, 최고의 결정 질 초격자는 성장 방향을 따른 방위의 단결정 극성을 갖는 섬유아연석 결정 구조를 사용하여 형성됨을 발견된다. 내부 분극(polarization) 전하는 유효 합금 함량을 하나 이상의 초격자의 각 단위 셀 내에서 일정하게 유지함으로써 유리하게 관리될 수 있다. 일단 어느 한 단위 셀 혹은 초격자 내 평균 합금 함량이 다른 것과 다르다면, 순 분극 전하가 축적된다. 이것은 페르미 에너지에 관하여 하나 이상의 초격자 내에 밴드 에지 에너지 위치를 제어하기 위해 유리하게 사용될 수 있다.
예를 들어, 섬유아연석 격자는 제1 층 및 제2 층이 각각 GaN 및 AlN으로 구성될 때 단위 셀의 층들 간 계면에서 전하 분극을 가질 수 있다. n-형 활성 영역, i-형 활성 영역, 및 p-형 활성 영역을 위해 하나 이상의 초격자를 사용하고, 광전자 디바이스를 튜닝하기 위해 주기를 가변하고, 각 단위 셀 내 평균 Al 함량을 일정하게 유지함으로써, 광전자 스택(100) 내 계면에서 전하 분극은 감소될 수 있다.
또 다른 실시예에서, 단일 초격자 구조는 n-형 활성 영역(140), i-형 활성 영역(150), 및 p-형 활성 영역(160)을 위해 사용되고, 초격자는 요망되는 광학적 및/또는 전자적 튜닝에 더욱 영향을 미치기 위해 2축 및 혹은 단축 스트레스를 통해 스트레인된다.
도 2는 본 발명의 제2 실시예에 따른 광전자 디바이스를 위한 스택(200)의 단면도를 도시한 도면이다. 스택(200)은 버퍼 영역(112)이 하나 이상의 초격자(130)를 포함하지 않는 것을 제외하고 도 1의 스택(100)과 유사하다.
도 3은 본 발명의 제3 실시예에 따른 광전자 디바이스(300)의 단면도를 도시한 도면이다. 도 1 및 2의 스택(100, 200)과 유사하게, 광전자 디바이스(300)는 버퍼층(120) 및 반도체 구조(114)가 형성되는 기판(110)을 포함한다. 반도체 구조(114)는, 성장 순서로, n-형 활성 영역(140), i-형 활성 영역(150) 및 p-형 활성 영역(160)을 포함한다. p-형 콘택 층(170)은 p-형 활성 영역(160) 상에 형성되고, 제1 콘택 층(180)은 p-형 콘택 층(170) 상에 형성된다.
도 3에 도시된 실시예에서, i-형 활성 영역(150), p-형 활성 영역(160), p-형 콘택 층(170) 및 제1 콘택 층(180)은 n-형 활성 영역(140) 상에 메사(mesa)를 형성한다. 도 3에 도시된 메사는 곧바른 측벽을 갖는다. 그러나, 대안적 실시예에서, 메사는 각진 측벽을 가질 수 있다. 디바이스(300)는 n-형 활성 영역(140) 상에 형성된 제2 콘택 층(382)을 더 포함한다. 바람직한 실시예에서, 제2 콘택 층(382)은 메사 둘레에 링 혹은 루프를 형성한다. 제2 콘택 층(382)은 전압원의 음극 단자가 n-형 활성 영역(130)에 연결될 수 있게 한다. 디바이스(300)는 하나 이상의 초격자의 노출된 혹은 물리적으로 에칭된 층을 커버하는 패시베이션층(390)을 더 포함한다. 패시베이션층(390)은 바람직하게는 이것이 커버하는 노출된 혹은 물리적으로 에칭된 층보다 더 넓은 밴드 갭을 갖는 물질로 만들어진다. 패시베이션층(390)은 하나 이상의 초격자의 층들 간에 전류 누설을 감소시킨다.
디바이스(300)는 수직 방출성 디바이스 혹은 도파로 디바이스로서 동작될 수 있다. 예를 들어, 일부 실시예에서, 광전자 디바이스(300)는 광이 n-형 활성 영역(140) 및 기판(110)을 통해 i-형 활성 영역(150)의 전자-정공 재결합 영역의 내부로부터 아웃 결합되는 수직 방출성 디바이스로서 행동할 수 있다. 바람직한 실시예에서, 광전자 디바이스(300) 내에서 위쪽으로(성장 방향으로) 전파하는 광 또한 예를 들어 제1 콘택 층(180)으로부터 재반사된다.
도 4는 본 발명의 제4 실시예에 따른 광전자 디바이스(400)의 단면도를 도시한 도면이다. 광전자 디바이스(400)는 도 3의 광전자 디바이스(300)와 유사하다. 그러나, 광전자 디바이스는 제1 측방 콘택(486) 및 제2 측방 콘택(484)을 포함한다.
제1 측방 콘택(486)은 제1 콘택 층(180)으로부터 p-형 활성 영역(160) 내로 부분적으로 확장한다. 바람직한 실시예에서, 제1 측방 콘택(486)은 제1 콘택 층(180)에서 p-형 활성 영역(160) 및 (적용가능한 경우) p-형 콘택 층(170) 내로 확장하는 환형 형상 돌출부이다. 일부 실시예에서, 제1 측방 콘택(486)은 제1 콘택 층(180)과 동일한 물질로 만들어진다.
제2 측방 콘택(484)은 n-형 활성 영역(140)의 표면 상에 형성된 제2 콘택 층(482)으로부터 n-형 활성 영역(140) 내로 부분적으로 확장한다. 바람직한 실시예에서, 제2 측방 콘택(484)은 제2 콘택 층(382)으로부터 n-형 활성 영역(140) 내로 확장하는 환형 형상 돌출부이다. 일부 실시예에서, 제2 측방 콘택(484)은 n-형 활성 영역(140)과 제2 콘택 층(382) 간에 전기적 전도를 개선하기 위해 제2 콘택 층(382)과 동일한 물질로부터 만들어진다.
바람직한 실시예에서, 제1 측방 콘택(486) 및 제2 측방 콘택(484)은 반도체 구조(114) 내 하나 이상의 초격자의 복수의 협 밴드갭 층과 콘택하고, 따라서 층의 평면에 수직한 전하 캐리어의 수직 수송과 층의 평면에 평행한 전하 캐리어의 평행한 수송 둘 다를 위해 효율적으로 결합한다. 일반적으로, 층의 평면 내 캐리어 수송은 층의 평면에 수직한 캐리어 수송보다 더 큰 이동도를 달성한다. 그러나, 층의 평면에 수직한 효유적 수송은 양자역학적 터널링을 촉진하기 위해 얇은 넓은 밴드갭 층을 사용함으로써 달성된다. 예를 들어, AlN 및 GaN이 교번하는 층들을 포함하는 초격자에서, 각 GaN 층 내에 이웃한 허용된 에너지 상태들 간에 전자 터널링은 개재된 AlN 층들이 4 단분자층 이하의 두께를 가질 때 향상됨이 발견된다. 반면 정공 및 특히 헤비-정공은 이들의 각각의 GaN 층 내에 국한된 채로 있고, AlN 층이 2 단분자층 이상의 두께를 가질 때, 배리어로서 작용하는 AlN 층을 통한 터널링에 의해 효과적으로 비-결합되는 경향을 갖는다.
바람직한 실시예에서, 제1 측방 콘택(486), 및 제2 측방 콘택(484)은 초격자의 층 밴드 불연속을 가로질러 수직 수송에 비해 우수한 면내 캐리어 수송을 이용함으로써, 각각, 제1 콘택층(180)과 p-형 활성 영역(160) 간에, 그리고 제2 콘택층(482)과 n-형 활성 영역(140) 간에 전기적 전도도을 개선한다. 제1 측방 콘택(484) 및 제2 측방 콘택(486)은 성장후 패터닝 및 개별적 깊이들까지 3D 전기적 불순물 영역의 생성을 사용하여 형성될 수 있다.
도 5는 본 발명의 제5 실시예에 따른 광전자 디바이스(500)의 단면도를 도시한 도면이다. 광전자 디바이스(500)는 광전자 디바이스(500)가 p-형 콘택 층(170)을 포함하지 않고 제1 측방 콘택(486)이 제1 측방 콘택(486)과 p-형 활성 영역(160) 사이에, p-형 GaN의 층과 같은 향상 층(588)에 의해 둘러싸인 것을 제외하고, 도 4의 광전자 디바이스(400)와 유사하다. 향상 층(588)은 p-형 활성 영역(160)과 제1 콘택 층(180) 간에 오믹 연결을 개선할 수 있다. 향상 층(588)은 p-형 활성 영역(160)의 패터닝된 표면 상에 선택적 지역 재성장에 의해 생성될 수 있다.
도 6은 본 발명의 제6 실시예에 따른 광전자 디바이스(600)의 단면도를 도시한 도면이다. 광전자 디바이스(600)는 도 5의 광전자 디바이스(500)와 유사하다. 그러나, 제1 콘택 층(680)은 환형 형상이며, 반사체층(692)은 반도체 구조 내에서 발생되는 광학 에너지의 아웃 결합을 개선하기 위해 제공된다. 반사체층(692)은 광전자 디바이스(600)의 내부로부터 방출된 광을 실질적으로 재반사하기 위해 광전자 디바이스(600) 위에 위치된다.
바람직한 실시예에서, 패시베이션층(390)은 또한 제1 콘택 층(680)에 의해 형성된 고리 내에 제공되고, 반사체(692)은 패시베이션층(390)의 위에 형성된다. 대안적 실시예에서, 반사체(692)는 p-형 활성 영역(160), 혹은, 있다면, p-형 콘택 층(170)의 위에 형성될 수 있다.
도 7은 본 발명의 제7 실시예에 따른 광전자 디바이스(700)의 사시도를 도시한 도면이다. 광전자 디바이스(700)은 도 6의 광전자 디바이스(600)와 유사하다. 그러나, 광전자 디바이스(700)는 버퍼 영역(130)을 포함하며 패시베이션층(390)은 도시되지 않았다. 제1 콘택 층(680) 및 반사체층(692)은 메사 상에 p-형 활성 영역(160) 위에 도시되었다. 제2 콘택 층(382)은 메사 둘레에 링으로서 버퍼 영역(130) 상에 형성된다.
도 8은 본 발명의 제8 실시예에 따른 광전자 디바이스(800)의 단면도를 도시한 도면이다. 광전자 디바이스(800)는 도 6의 광전자 디바이스(600)와 유사하다. 그러나, 광전자 디바이스는 향상 층(588)을 포함하지 않는다.
도 8에 도시된 바와 같이, 제1 콘택 층(680)과 제2 콘택 층(382) 사이에 외부 전압 및 전류원의 인가시, 정공(802)이 p-형 활성 영역 내로 주입되고, 예를 들어 지점(808)에서, n-형 활성 영역(140) 내 발생된 전자(804)와 조합한다. 주입된 전자(804) 및 정공(802)은 i-형 활성 영역(150) 내에 실질적으로 공간적으로 국한된 전자-정공 재결합(EHR) 영역(809)에서 유리하게 재결합한다. EHR 영역(809)은 하나 이상의 초격자의 에너지-모멘텀 밴드 구조에 의해 정해진 광자의 에너지 및 광학적 분극을 갖고 전자-정공 재결합을 통해 광자를 발생한다. 도 8에 도시된 바와 같이, EHR은 층의 평면 내로서 혹은 성장 방향에 수직으로 평행한 것으로서 유별될 수 있는 방향으로 광자(806A, 806B, 806C, 806D)를 방출한다. 광은 또한 다른 방향들로 전파할 수 있고 구조 내에서 비자명한 방식으로 전파할 수 있다. 일반적으로, 실질적으로 수직하고 탈출 원뿔(전반사(total internal reflection)의 각도 및 이에 따라 물질의 굴절률에 의해 결정되는) 내에 있는 전파 벡터를 갖고 발생되는 광은 투명 기판(110)을 통해 수직으로 아웃 결합될 수 있는 광자의 주요 소스가 될 것이다. 광자(806A)는 일반적으로 수직 방향으로 그리고 도 1에 도시된 성장 방향(101)과 동일한 방향으로 방출된다. 광자(806B)는 일반적으로 수직 방향으로 그리고 성장 방향(101)과 반대되는 방향으로 방출된다. 광자(806C, 806D)는 디바이스의 층에 평행한, 예를 들어, i-형 활성 영역(150)의 층의 평면에 평행한 일반적으로 수평 방향으로 방출된다.
도 8에 도시된 실시예에서, 일부 광자(806A)는 광학 반사체(692)로부터 반사되고, 기판(110)을 통해 광 방출 디바이스(800)에서 나간다. 적합한 미러(도시되지 않음) 혹은 유익한 광학 공동의 추가와 기판과 i-형 활성 영역 사이에 굴절률 불연속을 갖고 디바이스는 마이크로공동 LED 혹은 레이저 혹은 슈퍼루미네슨스 LED를 생산하기 위해 수정될 수 있음을 알아야 할 것이다. 슈퍼루미네슨스는 발생된 광이 결합하는데 가용한 광학 모드 수를 제한함으로써 광의 추출 효율을 개선하는 것으로 발견된다. 이 효과적인 광학 위상(phase) 공간 압축은 유익한 수직 방출을 위한 디바이스의 선택도를 개선한다. 광학 공동은 버퍼층(120), n-형 활성 영역(140), i-형 활성 영역(150) 및 p-형 활성 영역(160)에 의해 형성된 총 광학 두께를 사용하여 형성될 수 있다. 광학 공동이 반사체(692)와 기판(110) 사이에 형성되고 성장 방향을 따른 광학 공동의 두께가 방출 파장의 1 파장 이하이라면, 공동은 마이크로공동이다. 이러한 마이크로공동은 광학 공동 모드 파장에 의해 부과된 슈퍼루미네슨스 및 안정한 파장 동작을 일으키기 위해 필요한 특성을 보유한다. 본 발명의 일부 실시예에서, EHR 영역(809)으로부터 방출 파장은 마이크로공동의 최하위 파장 공동 모드와 동일하고, 슈퍼루미네슨스가 달성된다. 제2 광학 반사체는 또한 버퍼 영역(112) 내에 포함될 수 있다. 예를 들어, 본원에서 금속-유전체 초격자라 칭하는 원소 Al 및 AlN 층을 포함하는 단위 셀을 갖는 초격자를 포함하는 반사체.
일부 실시예에서, 투명 영역은 버퍼층(120) 및 기판(110)에 이웃하여 제공되며, 버퍼층(120)은 디바이스로부터 방출되는 광학 에너지에 투명하다. 광학 에너지는 투명 영역, 버퍼층(120) 및 기판(110)을 통해 외부에 결합된다. 광자(806C, 806D)는 디바이스의 층에 평행한, 예를 들어, p-형 활성 영역(160)의 층의 평면에 평행한, 일반적으로 수평 방향으로 방출된다.
일부 실시예에서, 광전자 디바이스는 성장 방향에 관하여 실질적으로 횡 자기 광학적 분극을 갖는 광을 방출한다. 광전자 디바이스는 반도체 구조의 하나 이상의 초격자의 단위 셀의 하나 이상의 층의 평면에 실질적으로 평행한 방향을 따라 공간적으로 발생되고 국한된 광을 갖고 광학 도파로로서 동작한다.
일부 실시예에서, 광전자 디바이스는 성장 방향에 관하여 실질적으로 횡 전기 광학적 분극을 갖는 광을 방출한다. 광전자 디바이스는 반도체 구조의 하나 이상의 초격자의 단위 셀의 하나 이상의 층의 평면에 실질적으로 수직한 방향을 따라 공간적으로 발생되고 국한된 광을 갖고 수직 방출 공동 디바이스로서 동작한다. 수직 방출 공동 디바이스는, 실질적으로 성장 방향을 따라 배치되고 그리고 반도체 구조의 하나 이상의 부분을 따라 공간적으로 배치된 금속 반사체를 사용하여 형성된, 수직 공동을 갖는다. 반사체는 고 광학 반사율 금속으로 만들어질 수 있다. 공동은 디바이스에 의해 방출되는 광의 파장 이하의 반사체들 간에 광학 길이에 의해 정의된다. 광전자 디바이스의 방출 파장은 수직 공동에 의해 결정된 반도체 구조 및 광학 공동 모드를 포함하는 하나 이상의 초격자의 광학 방출 에너지에 의해 결정된다.
도 9는 본 발명의 실시예에 따라, 광전자 디바이스에 있어서의 성장 방향(z)을 따른 거리에 관하여 전도대 및 가전자대에서의 공간 에너지 레벨의 그래프(900)이다. 이 실시예에서, 단일의 초격자는 광전자 디바이스의 n-형 활성 영역(140), i-형 활성영역(150) 및 p-형 활성 영역(160)을 포함한다. 초격자의 각 단위 셀은 AlN의 2개의 단분자층으로 형성된 제1 층 및 GaN의 하나의 단분자층으로 형성된 제2 층을 포함한다. 초격자는 n-형 활성 영역(140), i-형 활성 영역(150) 및 p-형 활성 영역(160) 각각 내에 25 단위 셀을 포함한다. 초격자는 성장 방향에 평행한 방위의 금속-극성의 결정 성장을 가진 c-평면 상에 증착된다. p-GaN으로 만들어진 p-형 콘택 층은 p-형 활성 영역(160) 상에 증착된다. 이상적인 오믹 금속(M)으로 만들어진 제1 콘택 층은 p-GaN 콘택 층 상에 위치되고, 이상적인 오믹 금속(M)으로 만들어진 제2 콘택 층은 n-형 활성 영역(140) 상에 위치된다.
도 9의 y-축은 페르미 에너지에 관하여 eV 에너지 레벨이며, x-축은 기판의 기부로부터 성장 방향(101)을 따른 나노미터(nm) 거리이다. 디바이스의 n-형 활성 영역(140), i-형 활성 영역(150) 및 p-형 활성 영역(160) 및 이외 다른 영역/층의 위치들은 x-축 위에 도시되었다. 트레이스(910)은 전도대에서 존(zone) 중심(즉, k=0) 에너지인데, 트로프(trough)는 GaN에 기인하고, 피크는 AlN에 기인한다. 그래프(900)는 전도대 에너지 Ec k=0(z)가 n-형 활성 영역(140)에서 페르미 에너지에 가깝고 전도대 에너지 Ec k=0(z)의 트로프는 페르미 에너지 미만임을 트레이스(910)에서 보여준다. 이것은 고도로 활성화된 n-형 활성 영역을 제공한다. 트레이스(920)는 가전자대에서의 에너지인데, 트로프는 AlN에 기인하고, 피크는 GaN에 기인한다. 그래프(900)는 가전자대 에너지 EHH k=0(z)가 p-형 활성 영역(160)에서 페르미 에너지에 가깝고 가전자대 에너지 EHH k=0(z)의 피크는 페르미 에너지 이상임을 트레이스(920)에서 보여준다. 이것은 고도로 활성화된 p-형 활성 영역을 제공한다. 금속 극성의 방위의 성장은 각 AlN/GaN 및 GaN/AlN 헤테로접합에서 초전성 및 압전성 전하를 초래한다.
공간 파동 함수는 입자의 양자 상태 및 이것이 어떻게 행동하는가를 기술하는 양자역학에서 확률 진폭이다. 도 10은 도 9에 관련하여 기술된 광전자 디바이스에 대해서 성장 방향을 따른 거리(z)에 관하여 양자화된 최저 에너지 전자 공간 파동 함수 Ψc n=1(i,z)을 보여주는 그래프(1000)이다. 지수(i)는 개별적 파동 함수들을 나타낸다. 각 양자화된 파동 함수는 에너지 밴드 구조 내에서 대응하는 허용된 양자화된 아이젠에너지에서 플롯된다. 각각의 양자화된 에너지 레벨 이상에서 비-제로 파동 함수 확률은 연관된 공간 영역에서 전자 위치를 알아낼 유한 확률을 나타낸다. 전도대 에지 에너지 Ec k=0(z)는 참조를 위해 도시되었다.
전자 파동 함수가 상당수의 단위 셀에 대해 비편재화되는 것은 그래프(1000)로부터 명백하다. 이것은 고 결합 GaN 포텐셜 우물을 나타낸다. 얇은 AlN 배리어(2 단분자층)는 효율적인 양자역학적 터널링을 허용하며 이에 따라 n-형 및 p-형 활성 영역 내에 공간적으로 국한된 에너지 매니폴드(manifold)를 형성한다. n-형 활성 영역 내에 주입된 전자는 i-형 활성 영역을 향하여 성장 방향을 따라 효율적으로 수송될 것이다. i-형 활성 영역 내에 허용된 최저 에너지 파동 함수는 i-형 활성 영역에서 더 많은 편재화된 파동 함수에 의해 증가되는 바와 같이, n-형 혹은 p-형 활성 영역 내에서보다 더 국한된다. 단위 셀의 작은 두께는 양자화된 에너지 레벨이 강제로 AlN 전도대 에지에 비교적 가깝게 되게 하며 이에 따라 i-형 활성 영역에 걸쳐 발생된 큰 공핍 전계의 영향 하에서 인접한 이웃하는 GaN 포텐셜 최소들 간에 결합을 끊는다. 결과적으로, i-형 활성 영역에서 전자 파동 함수는 이들의 각각의 GaN 포텐셜 최소들에 강하게 국한되지 않는다.
도 11은 도 9에 관련하여 기술된 광전자 디바이스에 대해서 성장 방향을 따른 거리에 관하여 양자화된 최저 에너지 헤비 정공 공간 파동 함수 ΨHH n=1(j,z)을 보여주는 그래프(1100)이다. 헤비 정공 존(zone) 중심 가전자대 에너지 EHH k=0(z)는 참조를 위해 도시되었다. III 족 금속 질화물 물질은 3개의 개별적 밴드, 즉, 헤비-정공(HH), 라이트-정공(LH) 및 결정 필드 분리(CF) 밴드들을 갖는 에너지 모멘텀 분산을 포함하는 고유한 가전저대 구조를 갖는다. 존 중심에서, 초격자는 3개 중 최저 에너지, 즉, EHH k=0<ELH k=0<ECH k=0인 헤비-정공 밴드를 갖는다. 본원에서는 관련 광학 프로세스에 대해서 HH 밴드만을 기술하는 것만으로 충분하다. 그래프(1100)에서, p-형 활성 영역 내에 헤비-정공 파동 함수 ΨHH n=1(j,z)의 실질적 공간 비편재화되가 존재하고, 반면 이들은 i-형 활성 영역 내에 GaN 포텐셜 최소들에 단단히 국한됨이 명백하다. 다시, 디바이스 내에 빌트인 공핍 전계는 i-형 활성 영역 내에 결합을 끊는다.
도 12는 전도 및 HH 파동 함수의 공간 중첩 적분을 보여주는 그래프(1200)이다. 중첩 적분은 근본적으로, 도 9에 관련하여 기술된 광전자 디바이스에 대해 성장 방향을 따른 거리에 관하여 도 11의 헤비 정공 공간 파동 함수 ΨHH n=1(j,z) 각각에 도 10의 전자 공간 파동 함수 Ψc n=1(i,z)의 곱이다. 전자 및 정공이 동일 위치에 있을 확률은 n-형 활성 영역(140) 및 p-형 활성 영역(160)보다 i-형 활성 영역(150)에서 더 높음을 그래프(1200)로부터 알 수 있다. 그러므로 방출은 광전자 디바이스의 n-형 활성 영역(140) 및 p-형 활성 영역(160)보다 i-형 활성 영역(150)으로부터 일어날 가능성이 더 많다.
도 13은 도 9에 관련하여 기술된 광전자 디바이스에 대해 대응하는 전자 및 정공의 양자화된 에너지 레벨들 간에 조합된 천이 에너지에 관하여 전자 공간 파동 함수 Ψc n=1(i,z)와 헤비 정공 공간 파동 함수 ΨHH n=1(j,z)의 중첩 적분을 보여주는 그래프(1300)이다. 도 13의 개별 플롯은 전체 반도체 구조 내에 최저 n=1 양자화된 전자 상태와 n=1 HH 상태 간에 허용된 광학 천이의 에너지 스펙트럼을 도시한 것이다. 그러므로 그래프(1300)는 디바이스가 약 5.3 eV의 최저 에너지 광학 방출을 갖고 방출할 수 있음을 보여준다. 도 13에서 방출 스펙트럼의 폭은 디바이스 전체에 걸쳐 양자화된 에너지 레벨의 미니밴드 폭을 나타낸다.
도 14는 도 9에 관련하여 기술된 광전자 디바이스에 대해 방출되는 루미넌스 대 파장을 보여주는 그래프(1400)이다. 도 13의 개별적 중첩 적분들은 실온에서 예측되는 열적 변동을 시뮬레이트하기 위해 에너지가 균등하게 넓혀졌다. 개개의 진동자 강도 기여들의 합은 폭 넓힘 파라미터(broadening parameter)의 두 선택에 대해 파장의 함수로서 플롯된다. 가장 긴 파장 및 가장 가파른 천이는 실험적으로 관찰할 수 있는 최저 에너지 헤비-정공 엑시톤에 기인한다. 도 14에 도시된 바와 같이, 최대 세기의 파장은 n=1 양자화된 전자 및 정공 파동 함수들 간에 최저 에너지 천이에 대응하는 대략 230 nm에 있다. 도 12를 참조하면 발생된 광의 상당 부분이 i-형 활성 영역 및 p-형 활성 영역 계면 근처에 영역으로부터 온 것임을 나타낸다. 도 14의 빗금친 영역은 점유된 상태를 갖지 않아 이에 따라 광학 재결합 프로세스에 사용할 수 없게 될 p-형 및 n-형 활성 영역에 의해 차지되는 스펙트럼 영역을 나타낸다. 또한, 실제 방출 에너지는 최하위 엑시톤 소멸에 기인한다. 엑시톤은 정전기 바인딩 에너지를 향상시키기 위해 공간적으로 국한되는 바인딩된 전자-정공 쌍을 포함하는 증간 입자이다. AlN/GaN 초격자에서 n=1 엑시톤 바인딩 에너지 (EX n=1)는 50-60 meV 정도이고 n=1 전자 및 n=1 HH 파동 함수의 정전기 인력에 기인한다. 일반적으로, n=1 엑시톤 Eγ n=1으로부터 방출되는, 광자의 방출 에너지는 Eγ n=1= EC n=1-EHH n=1-EX n=1에 의해 주어지며, 여기에서 엑시톤 바인딩 에너지는 관찰되는 방출 에너지를 감소시킨다.
도 15는 본 발명의 또 다른 실시예에 따라 광전자 디바이스에 대해서 성장 방향(z)을 따른 거리에 관하여 전도대 및 가전자대에서 공간 에너지 레벨의 그래프(1500)이다. 이 실시예에서, 디바이스의 n-형 활성 영역(140) 및 p-형 활성 영역(160)을 형성하는 초격자는 도 9의 광전자 디바이스에 대한 것과 동일하다. 그러나, i-형 활성 영역(150)에서 각 단위 셀 내 제1 층은 AlN의 4 단분자층으로 형성되고 각 단위 셀 내 제2 층은 GaN의 2 단분자층으로 형성된다. p-형 영역 및 n-형 영역은 제1 층이 AlN의 2 단분자층으로 형성되고 제2 층이 GaN의 1 단분자층으로 형성된, 불순물이 도핑된 초격자를 사용하여 형성된다. 그러므로 도핑된 영역은 진성 영역 내 형성된 n=1 엑시톤에 투명하다. 단위 셀의 주기 혹은 두께가 n-형 및 p-형 활성 영역과 i-형 활성 영역 간에 변하지만, 각 영역 내 단위 셀은 동일한 평균 합금 함량을 갖는다. 즉, 단위 셀 내 Al 분량은 일정하다. 각 영역 내에 단위 셀의 25 반복이 있다. 많은 수의 단위 셀 반복이 사용될 수 있음이 발견된다. 두께(tGaN)의 GaN 층 및 두께(tAlN)의 AlN 층과 같은 두 조성물을 포함하는 단순 단위 셀의 평균 합금 함량은 xave=tAlN/(tAlN+tGaN)에 의해 주어지며, xave는 단위 셀 내 쌍의 유효 Al 분량을 나타낸다. 대안적 실시예에서, 단위 셀은 3 이상의 AlGaN 조성물을 포함할 수 있고, 이러한 실시예에서 효과적인 합금 함량이 유사하게 결정될 수 있다. 2원, 3원 및 4원물질을 포함하는 다른 층 조성물의 평균 합금 함량은 하나 이상의 원소 구성성분에 따라 정의될 수 있다. 예를 들어, AlN/AlxGa1-xN/GaN 혹은 AlN/AlxGa1-xN/AlyInzGa1-y-zN의 3중 층을 포함하는 3개 층의 단위 셀 내 Al 분량이 결정될 수 있다. 선택적 p-형 GaN 오믹 콘택 층은 p-형 활성 영역 상에 포함된다. 오믹 금속 콘택이 n-형 활성 영역 및 선택적 p-형 GaN 오믹 콘택 층 상에 제공된다. 에너지 밴드 구조가 도시되었는데 오믹 금속 콘택 간에는 제로 외부 전기적 바이어스가 인가되었다.
도 15의 y-축은 페르미 에너지에 관하여 eV 에너지 레벨이며, x-축은 기판의 기부로부터 성장 방향을 따른 나노미터(nm) 거리이다. 디바이스의 n-형 활성 영역(140), i-형 활성 영역(150) 및 p-형 활성 영역(160)의 위치들은 x-축 위에 도시되었다. 트레이스(1510)은 전도대에서 에너지인데, 트로프는 GaN에 기인하고, 피크는 AlN에 기인한다. 단위 셀 내 AlN 층 및 GaN 층은 유형-I 초격자를 형성하는데, GaN 전도대는 AlN 전도대 에지보다 에너지가 낮고 GaN 가전자대는 AlN 가전자대 에지보다 에너지가 높다. 즉, AlN 층은 GaN 층 내 전자 및 정공 둘 다에 대한 포텐셜 배리어를 나타낸다. 트레이스(1520)는 가전자대에서 에너지인데, 트로프는 AlN에 기인하고, 피크는 GaN에 기인한다. 특히, 헤비-정공 가전자대 에지가 도시되었다. 도 15는 트레이스(1510, 1520)에서 피크 및 트로프의 주기 및 진폭이 i-형 활성 영역(150)에서 증가되었음을 보여준다. i-형 활성 영역 내 단위 셀 내 GaN 층 및 AlN 층 둘 다의 더 큰 층 두께들은 각각에 걸쳐 금속-극성의 헤테로인터페이스의 자발적 및 압전기적 필드에 기인하여 더 큰 빌트인 전계를 발생한다. 이 효과는 극성의 섬유아연석 결정에 특히 특유하다. 다시, 도 15의 디바이스는 이상적인 금속 콘택(M)에 의해 콘택되고, p-GaN 콘택 층은 p-형 활성 영역(160)을 금속 콘택 중 하나에 연결한다. 플랫 밴드 상황이 도시되었는데, 즉, 두 콘택 간에 제로 외부 인가된 바이어스, 및 이에 따라 페르미 에너지는 성장 방향을 따라 구조 전체에 걸쳐 연속된다.
도 16은 도 15에 관련하여 기술된 광전자 디바이스에 대해 성장 방향을 따라 거리(z)에 관하여 양자화된 최저 에너지 (nSL=1) 전자 공간 파동 함수 Ψc n=1(i,z)을 보여주는 그래프(1600)이다. 전도대 에지 에너지 Ec k=0(z)가 참조를 위해 도시되었다.
전자 파동 함수는 n-형 및 p-형 활성 영역 내 얇은 AlN 터널 배리어에 기인하여 상당수의 이웃한 인근 단위 셀들에 걸쳐 명확하게 분포된다. i-형 활성 영역의 더 큰 단위 셀 주기는 기껏해야 가장 가까운 이웃 침투로의 전자 파동 함수의 확연한 편재화를 나타낸다. 도 10의 구조에서 관찰되었던 바와 같이 i-형 활성 영역의 금지된 갭 내에 초격자 밖으로 누설 파동 함수는 없다. 그러므로, n-형 활성 영역으로부터 주입되는 전자는 n-형 활성 영역 미니밴드를 통해서 그리고 i-형 활성 영역 내로 효율적으로 수송될 것이다. i-형 활성 영역 내 최저 에너지 양자화된 파동 함수 내 캡처되는 전자는 가전저대 내 공간적으로 일치하는 nSL=1 헤비-정공을 갖고 재결합에 사용될 수 있다.
도 17은 도 15에 관련하여 기술된 광전자 디바이스에 대해 성장 방향을 따라 거리에 관하여 양자화된 최저 에너지 헤비 정공 공간 파동 함수 ΨHH n=1(j,z)을 보여주는 그래프(1700)이다. 헤비 정공 가전자대 에너지 에지 EHH k=0(z)가 참조를 위해 도시되었다. 또 다시, 도 11에서 관찰되는 바와 같이, 헤비 정공 파동 함수는 n-형 및 p-형 활성 영역 내 몇몇 단위 셀에 걸쳐 실질적으로 비편재화된다. i-형 활성 영역은 n-형 및 p-형 활성 영역보다 더 큰 단위 셀 주기 및 p-형 및 n-형 초격자 영역과 동일한 단위 셀 내에 평균 Al 분량을 갖는다. 다시, GaN 포텐셜 최소들은 헤비 정공 상태에 속하는 것으로서 최저 에너지 원자가(valence) 상태를 발생한다.
도 18은 최저 에너지 양자화 전자 및 헤비 정공 원자가 파동 함수 상태들 간에 공간 중첩 적분을 보여주는 그래프(1800)이다. 중첩 적분은 도 15에 관련하여 기술된 광전자 디바이스에 대해 성장 방향을 따라 거리에 관하여 실질적으로 도 16의 양자화된 전자 공간 파동 함수 Ψc n=1(i,z)와 도 17의 헤비 정공 공간 파동 함수 ΨHH n=1(j,z)와의 곱이다. 중첩 적분의 강도는 특정 천이의 진동자 강도에 비례한다. 일반적으로, 전자 및 정공 파동 함수 확률들이 공간적으로 일치한다면, 전자-정공 재결합 이벤트에 대한 유한 확률이 존재한다. 허용된 광학 천이의 에너지 폭은 얇은 AlN 배리어 층을 통한 GaN 층들 간에 양자역학적 터널링을 나타낸다. 진성 영역은 두꺼운 AlN 배리어 및 이에 따라 감소된 전도대 터널링을 갖는다. 진성 영역의 진동자 강도는 n-형 및 p-형 영역에 비해 더 강한 것으로 보여졌다. 전자 및 정공이 동일 위치에 있을 확률은 n-형 활성 영역(140) 및 p-형 활성 영역(160)보다 i-형 활성 영역(150)에서 더 높음을 그래프(1800)로부터 알 수 있다. 그러므로, 전자 및 헤비 정공 재결합에 기인한 광학 방출은 광전자 디바이스의 n-형 활성 영역(140) 및 p-형 활성 영역(160)보다 i-형 활성 영역(150)으로부터 일어날 가능성이 더 많다. 그래프(1800)는 또한 i-형 활성 영역(150)으로부터 방출 확률이 도 9에 관련하여 기술된 광전자 디바이스보다 도 15에 관련하여 기술된 광전자 디바이스에 있어 더 높음을 보여준다.
도 19는 도 15에 관련하여 기술된 광전자 디바이스에 대해서 대응하는 최저 에너지 양자화 전자 및 헤비 정공의 조합된 천이 에너지에 관하여 전자 공간 파동 함수 Ψc n=1(i,z)와 헤비 정공 공간 파동 함수 ΨHH n=1(j,z)의 중첩 적분을 보여주는 그래프(1900)이다.
그러므로, n=1 엑시톤에 기인한 최저 에너지 광학 천이는 p-형 및 n-형 활성 영역 둘 다보다 더 큰 주기를 갖는 i-형 활성 영역에서 비롯되는 재결합에 기인한다. 그러므로, i-형 활성 영역의 방출 에너지는 n-형 및 p-형 활성 영역 둘 다의 최저 에너지 흡수보다 더 긴 파장에 있게 되도록 선택된다. 이것은 i-형 활성 영역 내에 발생된 광자가 클래딩 영역, 즉 p-형 및 n-형 활성 영역 내에서 흡수(및 이에 따라 유실) 없이 전파할 수 있게 하며, 또한 광이 디바이스의 내부로부터 추출될 수 있게 한다.
이것은 본 발명의 바람직한 구현예를 나타내는데 반도체 구조 혹은 디바이스의 영역의 방출 및 흡수 특성은 각각의 초격자 단위 셀 주기의 선택에 의해 제어된다. 또한, 평균 합금 함량은 초격자 영역 전체에 걸쳐 일정하게 유지되고, 이에 따라 각 단위 셀의 면내 격자 상수는 매칭되고, 어떠한 스트레인 에너지의 누적 도 성장 방향의 함수로서 목격되지 않는다. 이것은 고 결정 질의 초격자 스택이 실현될 수 있게 한다. 또한, 구조 내에 분극 전하에 기인하여 빌트인 전계에 불연속은 없어, 스택이 분극 안정화가 될 수 있게 한다.
도 20은 도 15에 관련하여 기술된 광전자 디바이스에 대한 방출된 루미넌스 대 파장을 보여주는 그래프(2000)이다. 도 19의 개별적 중첩 적분들은 실온에서 예측되는 열적 변동을 시뮬레이트하기 위해 에너지가 균등하게 넓혀졌다. 개개의 진동자 강도 기여들의 합은 폭 넓힘 파라미터의 두 선택에 대해 파장의 함수로서 플롯된다. 가장 긴 파장 및 가장 가파른 천이는 최저 에너지 n=1 헤비-정공 엑시톤에 기인되고, 진성 영역 내에 공간적으로 국한된다. 도 20에 도시된 바와 같이, 최대 세기의 파장은 대략 247 nm에 있는데, 이것은 도 9에 관련하여 기술된 광전자 디바이스에 대해 도 14에서 최대 세기의 파장보다 길다.
도 9 및 도 15의 광전자 디바이스는 i-형 활성 영역 내 하나 이상의 초격자에 대한 주기의 선택에서만 상이하다. 반도체 구조 내 모든 하나 이상의 초격자의 모든 단위 셀은 이들 예가 고정된 평균 합금 함량을 갖게 선택된다. 평균 합금 함량은 단위 셀의 Al 분량으로서 정의되게 선택된다. 예를 들어, GaN의 1 단분자층 및 AlN의 2 단분자층을 포함하는 단위 셀은 Al 분량 xave=2/3을 가지며, GaN의 2 단분자층 및 AlN의 4 단분자층을 갖는 단위 셀에 있어서는 똑같이 Al 분량 xave=4/6=2/3을 갖는다. 다시, 단순성만을 위해서, 25 단위 셀 반복이 각 영역에서 사용된다. 즉, 단위 셀의 평균 Al 분량은 AlxaveGa1-xaveN 형태의 동등 질서의 3원 합금 조성물을 결정할 뿐만 아니라, 주기는 상기 단위 셀에 대한 광학 방출 에너지를 정의한다.
도 21은 본 발명의 또 다른 실시예에 따라 광전자 디바이스에 대한 성장 방향을 따른 거리에 관하여 전도대 및 가전자대에서 공간적 의존성 에너지 레벨의 그래프(2100)이다. 존 중심 (k=0) 전도대 및 헤비 정공 가전저대에 대한 언급은 디바이스 동작을 기술하는데 충분함이 이해된다. 이 실시예에서, n-형 활성 영역, i-형 활성 영역 및 p-형 활성 영역을 형성하는 하나 이상의 초격자는 도 9 및 도 15에 관련하여 기술된 광전자 디바이스의 경우에서와 같이 AlN 층 및 GaN층을 갖는 2층의 단위 셀로 유사하게 구성된다. 그러나 도 21의 경우에 유효 Al 분량은 xave=0.5의 더 낮은 Al 분량을 갖게 선택된다. i-형 활성 영역(150)에서, 각 단위 셀 내 제1 층은 AlN의 3 단분자층으로 형성되고, 각 단위 셀 내 제2 층은 GaN의 3 단분자층으로 형성된다. n-형 및 p-형 활성 영역 둘 다는 xave=0.5를 갖지만, 이들을 i-형 활성 영역에 의해 발생되는 광학 방출 에너지에 실질적으로 투명하게 되게 하기 위해서 흡수 시작에서 더 큰 광학 에너지를 갖게 설계된다. p-형 및 n-형 활성 영역은 GaN의 2 단분자층 및 AlN의 2 단분자층만을 포함하는 단위 셀을 갖게 선택된다. GaN의 얇은 층은 전도대 및 가전저대에서 최저 양자화된 에너지 레벨들 간에 에너지 분리에 증가를 초래한다. p-형 및 n-형 영역은 불순물 도핑된 초격자를 사용하여 형성된다.
도 21의 y-축은 페르미 에너지에 관하여 에너지 레벨 밴드도(전자 볼트 eV 단위)이고, x-축은 기판의 기부로부터 성장 방향을 따른 나노미터(nm) 거리이다. 광전자 디바이스의 n-형 활성 영역(140), i-형 활성 영역(150) 및 p-형 활성 영역(160)의 공간 위치 및 정도는 x-축 위에 도시되었다. 트레이스(2110)은 전도대에서 존 중심(혹은 최소) 에너지인데, 트로프는 GaN에 기인하고, 피크는 AlN에 기인한다. 주의깊은 조사에 따르면 금속 극성의 구조에 대한 빌트인 초전성 및 압전성 전계는 i-형 활성 영역 내지 n-형 및 p-형 활성 영역에서 서로 상이함을 보여준다. 이것은 i-형 활성 영역 내 GaN 및 AlN의 큰 층 두께에 기인한다. 트레이스(2120)는 가전자대에서 공간 에너지 조절이며, 트로프는 AlN에 기인하고, 피크는 GaN에 기인한다. 도 21은 트레이스(2110, 2120)에서 i-형 활성 영역(150) 내 단위 셀(피크 및 트로프로서 도시된)의 주기가 도 15에 도시된 트레이스(1510, 1520)에 도시된 단위 셀 주기와 대략 동일함을 보여준다. 그러나, 듀티 사이클(즉 단위 셀 내에 상대적 GaN 및 AlN 층 두께)이 변경되었다. 다시, 디바이스는 i-형 활성 영역의 방출 파장에 실질적으로 투명한 p-형 및 n-형 활성 영역을 갖게 선택된다.
도 22는 도 21에 관련하여 기술된 광전자 디바이스에 대한 성장 방향에 따른 거리에 관하여 최저 에너지 양자화된 전자 공간 파동 함수 Ψc n=1(i,z)을 보여주는 그래프(2200)이다. 존 중심 (k=0) 전도대 에너지 Ec k=0(z)이 참조를 위해 도시되었다. n-형 및 p-형 공간 영역은 고도로 결합된 파동 함수를 나타내며, n=1 초격자 미니밴드를 형성한다. 진성 영역은 빌트인 공핍 필드 및 두꺼운 AlN 배리어에 의해 가장 가까운 이웃 포텐셜 우물만에 걸쳐 결합된 전자 파동 함수를 보여준다.
도 23은 도 21에 관련하여 기술된 광전자 디바이스에 대한 성장 방향에 따른 거리에 관하여 최저 에너지 양자화된 헤비 정공 공간 파동 함수 ΨHH n=1(j,z)을 보여주는 그래프(2300)이다. 존 중심 (k=0) 헤비 정공 가전저대 에너지 EHH k=0(z)가 참조를 위해 도시되었다. p-형 및 n-형 영역에서 헤비-정공 파동 함수는 많은 수의 인근 포텐셜 우물에 걸쳐 비편재화된다. 반대로, i-형 활성 영역 내 헤비-정공 파동 함수는 큰 AlN 배리어 폭 및 빌트인 공핍 필드에 의해 이들의 각각의 포텐셜 우물에 고도로 편재화된다.
도 24는 전자 및 헤비 정공 파동 함수의 공간 중첩 적분을 보여주는 그래프(2400)이다. 중첩 적분은 도 21에 관련하여 기술된 광전자 디바이스에 대한 성장 방향에 따른 거리에 관하여 실질적으로 도 22의 전자 공간 파동 함수 Ψc n=1(i,z)과 도 23의 헤비 정공 공간 파동 함수 ΨHH n=1(j,z)과의 곱이다. 중첩 적분은 각각의 직접적인 전자 & 헤비-정공 천이에 대한 진동자 강도를 나타낸다. 허용된 광학 천이의 에너지 폭은 AlN 배리어 층을 통해 GaN 층들 간에 양자역학적 터널링을 나타낸다. i-형 활성 영역은 두꺼운 AlN 배리어 및 이에 따라 감소된 전도대 터널링을 갖는다. i-형 활성 영역의 진동자 강도는 n-형 및 p-형 활성 영역에 비해 더 강한 것으로 나타난다. 전자 및 정공이 동일한 공간상의 위치에 있을 확률은 n-형 활성 영역(140) 및 p-형 활성 영역(160)보다 i-형 활성 영역(150)에서 더 높음을 그래프(2400)로부터 알 수 있다. 그러므로 방출은 광전자 디바이스의 n-형 활성 영역(140) 및 p-형 활성 영역(160)보다 i-형 활성 영역(150)으로부터 일어날 가능성이 더 많다. 그래프(2400)는 또한 n-형 활성 영역(140) 및 p-형 활성 영역(160)으로부터 방출 확률이 도 9 및 도 15에 관련하여 기술된 광전자 디바이스보다 도 21에 관련하여 기술된 광전자 디바이스에 있어 더 낮음을 보여준다.
도 25는 도 21에 관련하여 기술된 광전자 디바이스에 대한 대응하는 최저 에너지 양자화된 전자 및 정공의 조합된 천이 에너지에 관하여 전자 공간 파동 함수 Ψc n=1(i,z) 및 헤비 정공 공간 파동 함수 ΨHH n=1(j,z)의 중첩 적분을 보여주는 그래프(2500)이다. n-형 및 p-형 활성 영역에 비해 i-형 활성 영역에서 최저 에너지 천이의 더 강한 진동자 강도는 i-형 활성 영역에서 전자 및 헤비-정공 재결합에 기인한다.
도 26은 도 21에 관련하여 기술된 광전자 디바이스에 대한 방출된 루미넌스 대 파장을 보여주는 그래프(2600)이다. 도 25의 개별적 중첩 적분들은 실온에서 예측되는 열적 변동을 시뮬레이트 하기 위해 에너지가 균등하게 넓혀졌다. 개개의 진동자 강도 기여들의 합은 폭 넓힘 파라미터의 두 선택에 대해 파장의 함수로서 플롯된다. 가장 긴 파장 및 가장 가파른 천이는 최저 에너지 n=1 헤비-정공 엑시톤에 기인되고, i-형 활성 영역 내에 공간적으로 국한된다. 도 26에 도시된 바와 같이, 최대 세기의 파장은 대략 262 nm에 있는데, 이것은 각각 도 9 및 도 15에 관련하여 기술된 광전자 디바이스에 대해 도 14 및 도 20에서 최대 세기의 파장보다 실질적으로 길다.
방출 파장의 튜닝 및 디바이스의 다른 측면들이 이하 더 상세히 논의된다.
본 발명은 바람직하게는 결정질이고 더 바람직하게는 단결정 원자 구조로서 형성되는 반도체 구조를 이용한다. 바람직한 실시예에서, 자외선 및 딥 자외선 광의 방출을 위해서, 반도체 구조는 이온결합으로 구성되고 III 족 금속 질화물(III-N) 반도체 II 족 금속 산화물(II-VI) 반도체와 같은 하나 이상의 반도체로부터 형성되는 섬유아연석 결정 구조를 갖는다.
도 27a는 III 족 금속 질화물 반도체에 대한 섬유아연석 결정 구조를 도시한 것이다. 섬유아연석 결정 구조는 금속 결정 사이트(2715) 및 질소 원자 사이트(2720)를 포함한다. 밀러 표기 [h k i l] = [0 0 0 1] 방향(2750)을 따른 결정 본드의 극성은 질소 극성의 본드(2725)를 갖는 질소-극성의 결정 방위인 것으로 보여졌다. 구조는 2760에 관하여 미러 반사에 의해 반전될 수 있고 금속-극성의 방위의 결정이 된다. 결정 축(2750)이 성장 방향 [0 0 0 1]으로서 취해진다면, c-평면 (0 0 0 1)은 2730으로 표기된 평면으로서 확인된다. 수평 결정 축(2760)은 [1 1 -2 0] 방향을 갖는 섬유아연석 결정을 통한 고 대칭 슬라이스 중 하나이다.
도 27b는 금속 원자가 표면을 종단하는 c-평면(2730)을 도시한 것이다. c-평면의 질소 원자 표면 종단도 가능하다. 결정 방향(2760, 2780)은 밀러 표기로 [1 1 -2 0] 및 [0 0 1 -1] 방향을 각각 나타낸다. 급격한 표면 종단은 더욱 하측에 대칭 본드 패턴의 표면 재구성 대상이 된다. 이들 표면 재구성은 성장하는 표면 에너지를 최소화하지만, 그러나 종국에 재구성된 표면이 섬유아연석 결정 구조 내 추가의 물질로 과성장될 때 층의 벌크 내에 실질적으로 이상적인 결정 구조를 형성한다. 이상적인 금속 종단 표면은 면내 격자 상수(2790)의 동일한 변을 갖는 6각형(2785)으로서 확인되는 6각형 c-평면 결정 셀을 나타낸다. 결정 기본 반복 단위는 2790으로서 표기된 격자 상수(a), 및 도 27a에서 2705 혹은 2710로서 표기된 높이(c)의 6각형 컬럼으로서 파라미터화된 섬유아연석 셀에 의해 특징지워진다. 예를 들어, 스트레인이 없는 AlN 에피 층은 a=4.982 Å 및 c=5.185 Å을 가질 것이다. 한 단분자층(1ML)은 본원에서는 c-평면 상에 증착된 막에 대해 1ML=c /2과 동일한 것으로서 정의된다.
도 27c는 c-축(2750)을 따른 방위이고 Al 원자 표면을 더욱 노출한 AlN 섬유아연석 결정(2770)의 사시도이다. Al 종단 표면은 c-평면(2730) 내에 놓이고 섬유아연석 결정 단위 셀은 6각형(2760)에 의해 정의된다. 방향(2750)을 따른 수직 두께는 AlN 물질의 4개의 단분자층 및 연관된 결정 방위를 나타낸다. 예를 들어, 일부 실시예에서, 기판 상에 c-평면 방위의 에피택셜 증착은 기판 표면 지역에 걸쳐 방향(2760, 2780)으로 측방으로 확장하는 복수의 단분자층의 막들을 고 균일성으로 증착하는 것을 포함할 수 있다.
도 28은 예시적 초격자에 대해 층 두께의 바람직한 범위를 보인 차트(2800)이다. 초격자의 단위 셀은 각각 GaN 및 AlN의 2원 조성물으로만 형성된 2개의 층을 포함한다. 예를 들어, 초격자는 도 27c에서 이상적인 공간 부분에 대해 개요적으로 도시된 바와 같이 c-평면 상에 증착된 섬유아연석 GaN 및 AlN 막으로 형성된다. 도 28의 차트(2800)는 c-축을 따라 정수개의 단분자층 N으로서 AlN 두께와, 옹스트롬(n.b., 1Å=0.1nm) 단위로 물리적 두께의 항목으로 표로 작성된 컬럼을 도시한다. 유사하게, 행은 GaN의 전체 단분자층(M)에 관하여 표로 작성한 것으로 표 엔트리는 단위 셀 주기 두께를 계산한 것이다: ΛSL= M.(1ML GaN) + N.(1ML AlN) = M.cGaN/2+N.cAlN/2.
Np회 반복하고 성장 방향을 따라 일정한 Al 분량을 갖는 단위 셀을 가진 초격자는 편의상 본원에서 M:N으로서 기재된, M 및 N 단분자층을 갖는 GaN 및 AlN 쌍으로서 정의될 수 있다.
도 29는 4:4 초격자의 하나의 단위 셀의 결정 격자 구조를 도시한 것으로, GaN(2940)의 4 단분자층은 성장 방향을 정의하는 c-축(2750)을 따라 AlN(2930)의 4 단분자층 상에 에피택셜로 증착된다. Al 원자 사이트는 큰 백색 구(2905)로서 도시되었고, Ga 원자 사이트는 큰 회색 구(2920)로서 도시되었고, 질소 원자 사이트는 작은 흑색 구(2910, 2925)로서 도시되었다. AlN/GaN 헤테로인터페이스(2935)은 순전히 Ga 혹은 Al 금속 종단을 가져 급격할 수 있고, 혹은 평면(2935) 내에 Ga 원자 및 Al 원자의 랜덤 분포를 갖는 혼합된 계면일 수 있다. GaN 에피층(2940)의 수직 높이는 결정 단위 셀의 탄성 변형에 의해 하측에 AlN 에피층(2930)보다 크다. 자립 초격자 단위 셀(2900)은 이상적으로는 어떠한 계면 전위(즉, 불일치 전위)도 나타내지 않을 것이며 면내 인장성 스트레인의 상태에 AlN 층과 면내 압축성 스트레인 상태에 GaN 에피층을 가질 것이다. 탄성적으로 변형된 서로 비유사한 에피층은 이상적으로는 임계 층 두께(CLT) 미만인 c-축(2750)을 따른 두께를 갖고 증착된다. CLT는 불일치 전위를 형성함이 없이 하지의 결정 상에 격자 오매칭된 물질이 증착될 수 있는 최대 두께이다. 도 28의 차트(2800)에 개시된 모든 M:N 조합들은 각 물질의 CLT 미만으로 증착되는 이러한 초격자 단위 셀을 나타낸다. CLT는 이론적으로 계산되고 실험적으로 결정될 수 있음에 유의한다. 예를 들어, MBE에서 헤테로에피택시 동안 반사 고 에너지 전자 회절(RHEED)을 사용한 직접적 인-시튜 측정은 CLT를 매우 정확하게 결정할 수 있다.
도 30은 본원에서 정의된 바와 같이 c-축을 따라 증착된 GaN 및 AlN 물질을 사용함으로써 형성되는 단위 셀의 추가의 가능한 구현예를 보인 차트(3000)이다. 차트(3000)는 M:N의 분량의 단분자층 쌍을 정의하며 표 엔트리는 단위 셀 두께(ΛSL)을 보여준다. 이들 단위 셀 두께는 III 족 금속 질화물 반도체를 사용하여 딥 자외선 방출기에 적용될 수 있다. 또한, 다른 물질 조성물이 사용될 수 있고 초격자 단위 셀을 포함하는 2 이상의 조성물이 적용될 수 있음이 발견된다.
도 31은 GaN 및 AlN 층만을 갖는 단위 셀로 구성된, 초격자의 평형 면내 격자 상수 a|| SL의 그래프(3100)를 도시한 것이다. 그래프(3100)는 각 단위 셀 내 GaN의 M 단분자층 및 AlN의 N 단분자층의 주어진 선택에 대해 계산된 면내 격자 상수 a|| SL을 보여준다. 각 곡선은 AlN의 N 단분자층의 개별적 선택에 의해 파라미터화된다. 그래프(3100)의 곡선은 서로 상이한 단위 셀 M:N 쌍들을 포함하는 초격자 LED를 설계하기 위해 직접 사용될 수 있고 이하 논의된다.
도 32는 두 단위 셀(3270, 3280)을 포함하는 구조(3200) 내 있는 원자 힘을 개요적으로 도시한 것이다. 각 단위 셀은 두 층을 포함하고 두 층 각각은 서로 비유사한 물질로 형성되는데, 예를 들어, 제1 층(3230, 3250)은 GaN 층일 수 있고 제2 층(3240, 3260)은 AlN 층일 수 있다. 층은 각 이웃 층 내 서로 비유사한 결정 격자 상수에 기인하여 탄성적으로 변형되는 결정의 에피택셜 증착에 의해 형성된다. 구조가 c-평면 상에 증착된다면, GaN 층(3230, 3250)은 압축성 면내 스트레스(3220)를 받으며, AlN 층(3240, 3260)은 유발된 인장성 면내 스트레인(3210)을 갖는다. 각 단위 셀의 각 층이 CLT 미만의 두께를 갖고 형성되고 격자 오매칭된 물질을 사용하여 형성되는 이러한 초격자는 충분한 수의 주기를 갖고 형성될 때 고 결정질 완벽을 달성할 수 있다. 예를 들어, GaN 및 AlN 물질만을 사용할 때, 본 발명의 교시된 바에 따른 초격자는 벌크-유사 c-평면 AlN 표면, (0001)-방위의 사파이어 표면, 혹은 또 다른 적합한 표면 상에 형성된다. 대략 10 내지 100 주기의 초격자 성장 후에, 최종 단위 셀은 이상적인 자립 면내 격자 상수 a|| SL을 획득한다. 이것은 도 1에 관련하여 논의된 바와 같이 초격자 버퍼(130)를 형성하는 한 예시적 방법이다.
본 발명의 일부 실시예에서, 반도체 구조 내 각 초격자는 선택된 광학적 및 전자적 명세를 달성하는 개별적 구성을 갖는다.
실험은 각 단위 셀 내 평균 합금 함량을 초격자를 따라 일정하게 유지하는 것은 단위 셀 a|| SL의 평균 면내 격자 상수를 일정하게 유지하는 것과 동등함을 보여준다. 실험은 또한 단위 셀의 두께가 요망되는 광학 및 전기적 명세를 달성하게 선택될 수 있음을 보여준다. 이것은 복수의 별개의 초격자가 공통의 유효한 면내 단위 셀 격자 상수를 가질 수 있게 하며, 이에 따라 성장 방향을 따라 스트레인의 유익한 관리를 가능하게 한다.
도 33 및 도 34는 GaN 및 AlN 층만을 갖는 단위 셀로 구성된, 초격자의 평형 면내 격자 상수 a|| SL의 그래프(3300, 3400)를 도시한 것이다. 그래프(3300, 3400)는 각 단위 셀 내 GaN의 M 단분자층 및 AlN의 N 단분자층의 주어진 선택에 대해 계산된 면내 격자 상수 a|| SL을 보여준다. 각 곡선은 AlN의 N 단분자층의 개별적 선택에 의해 파라미터화된다. 흑색 도트는 동일 평균 합금 함량을 갖는 단위 셀 구성을 보이기 위해 각 그래프 내에 제공된다. 도 33의 그래프(3300)에 도시된 흑색 도트는 M:N 조합들을 포함하며 M=N 및 이에 따라 xave SL=1/2의 유효 Al 분량이 달성된다. 도 34에서 그래프(3400) 내 흑색 도트는 N=2M 및 이에 따라 xave SL=2/3인 M:N 조합들을 포함한다.
도 33 및 도 34의 그래프는 c-축을 따라 증착되고 섬유아연석 결정 구조를 갖는 GaN 및 AlN 물질 조합들로부터 단위 셀이 배타적으로 구축되는 초격자를 갖는 반도체 구조를 설계하는데 특히 유용할 수 있다.
도 35는 성장 방향(z)을 따라 반복되는 M:N=5:5 단위 셀을 포함하는 Np=100 주기 초격자의 에너지 밴드 구조의 계산된 부분의 그래프(3500)을 도시한 것이다. 양자화된 에너지 및 공간적으로 국한된 캐리어 파동 함수(3510, 3560)와 함께 전도대 에지(3520) 및 헤비 정공 가전저대 에지(3550)의 공간 변화가 도시되었다. GaN 및 AlN 층은 도 30에 도시된 바와 같이, 각각의 층 각각의 CLT를 보존하는 두께로부터 선택된다. 도 35은 전자 파동 함수(3510)가 AlN 배리어를 통해 양자역학적 터널링(3570)에 대한 강한 경향을 나타냄을 보여주며, 반면 헤비 정공 파동 함수(3560)는 이들의 각각의 GaN 포텐셜 최소들 내에 단단히 편재화된다.
도 36은 일정한 단위 셀 길이 및 조성물의 초격자의 반-무한 개수의 주기를 시뮬레이트하기 위해 사용되는 초격자(3600)를 도시한 것이다. 초격자에서, 단위 셀은 일정한 길이 및 조성물을 갖는다. 그러나, 제1 GaN 층(3605)은 절반으로 분할되고 초격자의 끝(3610)에 추가된다. 이에 따라 기본 99 단위 셀(3620)의 상호작용 특성을 조사하면서, 파동 함수에 대한 주기 경계 조건을 적용하는 것은 반-무한 개수의 주기를 시뮬레이트한다. 유한 원소 방법 및 완전한 k.p 이론을 사용하여 파동 함수는 가장 낮은 놓여진 초격자 상태의 양자화된 에너지와 더불어 계산된다. 앞서 기술된 바와 같이, 광학 방출 스펙트럼은 중첩 적분 및 최저 에너지 (n=1) 전도대 상태와 n=1 헤비 정공 상태 간 에너지 분리로부터 계산된다.
도 37, 도 38, 도 39, 도 40 및 도 41은 xave SL=2/3 및 각각 1:2, 2:4, 3:6, 4:8 및 5:10의 M:N 구성을 갖는 초격자의 횡 전기(TE) 광학 방출 스펙트럼의 그래프이다. 그래프 각각은 총 방출 및 허용된 전도 상태를 갖고 특정 가전저대 유형(즉, HH, LH 혹은 CH)에 기인한 방출에 대응하는 4개의 곡선을 도시한다. 앞서 논의된 바와 같이, 요망되는 최저 에너지 방출은 허용된 전도대 상태와 헤비-정공 상태 간에 천이에 대한 것으로, c-축 및 혹은 성장 방향에 평행한 수직 방출에 대한 기준을 만족한다.
도 37은 n=1 전도 상태 및 n=1 헤비 정공 상태 (EC n=1-EHH n=1)(3705)의 최저 에너지 천이, n=1 전도 상태 및 n=1 결정 필드 분리 상태(EC n=1-ECH n=1)(3710)의 최저 에너지 천이, 및 n=1 전도 상태 및 n=1 라이트 정공 상태(EC n=1-ELH n=1)(3715)의 최저 에너지 천이에 대해서 1:2 초격자의 방출 스펙트럼의 그래프(3700)를 도시한다. 곡선(3720)은 관찰될 수 있는 총 스펙트럼을 보여준다. 방출 피크의 큰 에너지 폭은 기본적으로, 최인접한 이웃 GaN 포텐셜 최소들 간 큰 결합과 이에 따른 전도대 및 각각의 가전저대에서 넓은 에너지 폭의 형성에 기인한다.
도 38은 n=1 전도 상태 및 n=1 헤비 정공 상태 (EC n=1-EHH n=1)(3805)의 최저 에너지 천이, n=1 전도 상태 및 n=1 결정 필드 분할 상태(EC n=1-ECH n=1)(3810)의 최저 에너지 천이, 및 n=1 전도 상태 및 n=1 라이트 정공 상태(EC n=1-ELH n=1)(3815)의 최저 에너지 천이에 대해 2:4 초격자의 방출 스펙트럼의 그래프(3800)를 도시한 것이다. 곡선(3820)은 관찰될 수 있는 총 스펙트럼을 보여준다. 도 37에 비해 방출 피크의 작은 에너지 폭은 최 근접한 이웃 GaN 포텐셜 최소들 간 작은 결합과 이에 따른 전도대 및 각각의 가전저대에서 협 에너지 폭의 형성에 기인한다.
도 39는 n=1 전도 상태 및 n=1 헤비 정공 상태 (EC n=1-EHH n=1)(3905)의 최저 에너지 천이, n=1 전도 상태 및 n=1 결정 필드 분리 상태 (EC n=1-ECH n=1)(3910)의 최저 에너지 천이, 및 n=1 전도 상태 및 n=1 라이트 정공 상태 (EC n=1-ELH n=1)(3915)의 최저 에너지 천이에 대해서 3:6 초격자의 방출 스펙트럼의 그래프(3900)를 도시한 것이다. 곡선(3920)은 관찰될 수 있는 총 스펙트럼을 보여준다.
도 40은 n=1 전도 상태 및 n=1 헤비 정공 상태 (EC n=1-EHH n=1)(4005)의 최저 에너지 천이, n=1 전도 상태 및 n=1 결정 필드 분리 상태 (EC n=1-ECH n=1)(4010)의 최저 에너지 천이, 및 n=1 전도 상태 및 n=1 라이트 정공 상태 (EC n=1-ELH n=1)(4015)의 최저 에너지 천이에 대해 4:8 초격자의 방출 스펙트럼의 그래프(4000)를 도시한 것이다. 곡선(4020)은 관찰될 수 있는 총 스펙트럼을 보여준다.
도 41은 n=1 전도 상태 및 n=1 헤비 정공 상태 (EC n=1-EHH n=1)(4105)의 최저 에너지 천이, n=1 전도 상태 및 n=1 결정 필드 분리 상태 (EC n=1-ECH n=1)(4110)의 최저 에너지 천이, 및 n=1 전도 상태 및 n=1 라이트 정공 상태 (EC n=1-ELH n=1)(4115)의 최저 에너지 천이에 대해 5:10 초격자의 방출 스펙트럼의 그래프(4100)를 도시한 것이다. 곡선(4120)은 관찰할 수 있는 총 스펙트럼을 보여준다.
항시 최저 에너지 방출이고 이에 따라 도 7에 도시된 형태의 효율적 수직 방출성 디바이스를 가능하게 하는 (EC n=1-EHH n=1) 광학 천이의 달성이 특히 중요하다.
도 42는 도 37 내지 도 41에 플롯된 각 M:N 쌍에 있어서 헤비 정공 천이에 대한 광학 방출 스펙트럼의 그래프(4200)를 도시한 것이다. 일반적으로 큰 GaN 층 두께는 GaN 밴드 에지에 가까워 이에 따라 긴 방출 파장을 초래하는 양자화된 에너지 레벨이 되게 한다. 반대로, 얇은 GaN 층은 최저 에너지 양자화된 전도대 및 가전자대 상태의 중첩을 개선하고 이에 따라 진동자 강도 및 방출 세기를 개선한다. 8 내지 10 단분자층을 초과하는 GaN 에피층에 있어서 중첩 적분은 심하게 떨어지고 열악한 광학 방출이 초래됨이 발견된다. 자외선 및 딥 자외선 디바이스에 적용을 위해서, 도 42의 M:N 구성은 최적 및 혹은 요망되는 것으로 발견된다. 짧은 방출 파장은 AlN 및 AlxGa1-xN 조성물을 포함하는 초격자 단위 셀을 사용하여 가능하다. 방출의 TE 특징을 보전하기 위해서 x가 약 0.5 이하인 AlxGa1-xN가 바람직한 것으로 발견된다.
전술한 바는 도 1 내지 도 8의 반도체 구조와 같은 반도체 구조를 설계하기 위해 사용될 수 있다. 예를 들어, i-형 활성 영역, n-형 활성 영역 및 p-형 활성 영역의 단위 셀의 M:N 구성은 n-형 활성 영역 및 p-형 활성 영역의 흡수 에지보다 긴 i-형 활성 영역로부터 방출 파장을 생성하기 위해 선택될 수 있다. 또한, 발명의 실시예는 반도체 구조 전체에 걸쳐 일정한 평균 합금 분량을 갖게 하여 결과적인 구조의 결정 질을 더욱 개선하게 설계될 수 있다.
도 43 및 도 44는 배타적으로 AlN 및 GaN 에피층을 포함하는 단위 셀에 대해 허용된 초격자 전도대 상태와 헤비 정공 상태 간에 최저 에너지 천이의 계산된 광학 방출 파장의 그래프를 도시한 것이다. 도 43은 xave SL=2/3=0.667을 갖는 N=2M 초격자에 대한 방출 파장을 개시하며, 반면 도 44는 N=M 초격자 및 xave SL=1/2=0.50에 대한 방출 파장을 개시한다. 곡선(4300, 4400)은 대응하는 M:N 구성을 갖는 단위 셀 주기 ΛSL의 함수로서 최저 에너지 광학 방출 파장에 있어 변화를 도시한다. 그래프로부터 광학 방출은 약 230 nm 내지 300 nm 미만에 걸친 넓고 바람직한 광학 범위에 대해 튜닝될 수 있음을 알 수 있다.
일 예에서, 반도체 구조는 별개의 초격자 영역으로 형성된다. 각 초격자의 단위 셀은 Al 분량 xave SL=2/3을 가지며, GaN 및 AlN층으로 배타적으로 형성된다. 반도체 구조를 포함하는 광 방출 디바이스에 대한 요망되는 설계 파장은 예를 들어, λe=265 nm이다. 이에 따라, 도 43을 참조하면, M:N=3:6 단위 셀이 i-형 활성 영역으로 선택된다. 디바이스는 요망되는 설계 파장 λe에 실질적으로 투명한 초격자 단위 셀을 사용하여 투명 기판 위에 형성된 n-형 활성 영역을 포함한다. 유사하게, 디바이스는 요망되는 설계 파장 λe에 실질적으로 투명한 p-형 활성 영역을 포함한다. 그러므로, n-형 활성 영역 내 초격자는 M:N=1:2 단위 셀을 갖게 선택될 수 있고, p-형 활성 영역 내 초격자는 M:N=2:4 단위 셀을 갖게 선택될 수 있다. 이것은 활성화된 헤비 정공 농도를 개선할 것이며 i-형 활성 영역 내 초격자의 M:N=3:6 단위 셀의 부분 내로 개선된 정공 파동 함수 주입을 제공할 것이다.
i-형 활성 영역은 M:N=2:4 단위 셀을 가진 제1 초격자와 M:N=3:6 단위 셀을 가진 제2 초격자인 2개의 별개의 초격자로 분할될 수 있다. 제1 초격자는 n-형 활성 영역과 제2 초격자 사이에 위치된다. 제2 초격자는 제1 초격자와 p-형 활성 영역 사이에 위치된다. 제1 초격자는 제2 초격자에 의해 정의된 전자-정공 재결합 영역(EHR) 내로 바람직한 전자를 주입하기 위한 전자 에너지 필터로서 작용한다. 그러므로 이 구성은 반도체 구조 전체에 걸쳐 전자 및 정공의 개선된 캐리어 수송을 제공한다. 제2 초격자의 EHR은 III 족 금속 질화물 내에서 내재적으로 낮은 정공 이동도에 기인하여 정공 저장소(reservoir)에 가깝게 위치된다. 그러므로, 광 방출 디바이스는 [n-형 1:2/i-형 2:4/i-형 3:6/p-형 2:4] 초격자 영역을 갖는 반도체 구조를 갖게 생성될 수 있다. i-형 활성 영역의 총 두께 또한 최적화될 수 있다.
도 45 및 도 46은 n-형 활성 영역 내에 100 주기의 n-형 M:N=1:2 단위 셀 및 p-형 활성 영역 내에 100 주기의 p-형 M:N=1:2 단위 셀을 포함하는 반도체 구조에 있어 성장 방향(z)을 따라 전자 볼트(eV)로 전도대 에지(4510, 4610) 및 헤비 정공 가전자대 에지(4505, 4605)의 그래프를 도시한 것이다. 단위 셀은 xave SL=2/3의 일정한 Al 분량을 가진 c-평면 방위의 GaN 및 AlN 단분자층의 막으로부터 배타적으로 구성된다. i-형 활성 영역은 유사하게 xave SL=2/3의 일정한 Al 분량을 갖지만, 그러나 방출 파장을 더 긴 파장에 튜닝하기 위해서 큰 주기를 갖는다. 도 45는 i-형 활성 영역(4530) 내 2:4 단위 셀의 25 주기를 갖는 반도체 구조에 대한 그래프를 도시한 것이고, 도 46은 i-형 활성 영역(4630) 내 2:4 단위 셀의 100 주기를 갖는 반도체 구조에 대한 그래프를 도시한 것이다. 도 45에서 p-형 및 n-형 활성 영역에 기인하여, 빌트인 공핍 영역 전계 Ed(z)(4520)는 도 46에서 빌트인 공핍 영역 전계 Ed(z)(4620)보다 크다. 빌트인 공핍 영역 전계 Ed(z)는 i-형 활성 영역 초격자의 총 두께에 의해 영향을 받으며, 초격자 국한된 상태에 걸쳐 또 다른 슈타르크 이동 포텐셜을 가한다. 이 양자 국한된 초격자 슈타르크 효과(QC-SL-SE)는 디바이스의 광학 특성을 더욱 튜닝하기 위해 사용될 수 있음이 발견된다.
도 47은 비교를 위해 단일 그래프 상에 도 45 및 도 46의 그래프를 도시한 것이다. p-형 활성 영역 위에 삽입된 선택적 p-GaN 콘택 층은 유발된 2차원 정공 기체(2DHG)를 통해 페르미 레벨을 고정시킨다(pin). 디바이스는 성장 방향(z)을 따라 금속 극성의 성장 방위를 갖는다.
도 48은 빌트인 공핍 전계의 영향 하에 도 45에서 언급되는 반도체 구조의 i-형 활성 영역 내에 계산된 최저 에너지 양자화된 전자 파동 함수(4800)의 그래프를 도시한 것이다. 공핍 전계가 없는 반도체 구조에 비해, 파동 함수는 청색 이동되는 것으로 관찰되고 최 근접한 이웃 간에 공진 터널링의 감소가 있다. 전도대 에지(4510)는 참조로서 플롯되었다.
도 49는 빌트인 공핍 전계의 영향 하에 도 46에서 언급되는 반도체 구조의 i-형 활성 영역 내에 계산된 양자화된 최저 에너지 헤비 정공 파동 함수(4900)의 그래프를 도시한 것이다. 헤비 정공 밴드 에지(4605)는 참조로서 플롯되었다.
도 50a 및 도 50b는 각각 도 45 및 도 46에 언급된 디바이스의 i-형 활성 영역으로부터 방출 스펙트럼의 그래프를 도시한 것이다. 도 50a는 최저 에너지 n=1 전도대 상태들 간에 광학 천이에 대한 방출 스펙트럼 및 도 45의 디바이스에서 이들의 각각의 HH(5005), LH(5010) 및 CH(5015) 가전자대 및 총 TE 방출 스펙트럼(5020)을 도시한 것이다. 도 50b는 최저 에너지 n=1 전도대 상태들 간에 광학 천이에 대한 방출 스펙트럼 및 도 46의 디바이스에서 이들의 각각의 HH(5025), LH(5035) 및 CH(5030) 가전자대 및 총 TE 방출 스펙트럼(5020)을 도시한 것이다.
도 45의 디바이스는 얇은 i-형 활성 영역에 기인하여 도 46의 디바이스 보다 큰 빌트인 전계를 갖는다. 이 큰 빌트인 전계는 i-형 활성 영역 내 이웃한 단위 셀들 간에 결합을 끊고, 방출 에너지에 있어 작은 청색 이동을 생성하고, 방출 스펙트럼 선 폭을 감소시킨다. 도 50a과 도 50b를 비교하면, 피크 방출의 저 에너지 측의 반치전폭(FWHM)에 감소와 큰 빌트인 전계에 기인한 저 에너지 방출 에지의 청색 이동이 있음을 알 수 있다. 도 50b는 도 46의 디바이스의 i-형 활성 영역에서 많은 수의 주기에 기인하여 도 50a보다 큰 통합된 루미네슨스를 보여준다.
도 51은 성장 방향(5110)에 평행한 거리(5140)를 따라 포텐셜 에너지(5135)를 갖는 빌트인 공핍 필드(5130)의 영향을 개요적으로 기술한다. 빌트인 공핍 필드가 없이 초격자 밴드도는 공간 전도대 에지(5115)로서 보여졌고, 수직 축(5105)은 에너지를 나타낸다. 비편재화된 전자 파동 함수(5120)는 고 포텐셜 에너지 AlN 배리어를 통한 양자역학적 터널링에 의해 이웃한 GaN 영역들 간에 결합된다. 내부 초전성 및 압전성 전계 또한 보여졌고 금속 극성의 방위의 성장을 나타낸다. 파동 함수(5120)의 터널링은 허용된 양자화된 전도 상태에 대한 에너지 미니밴드(5125)을 초래한다. 예를 들어 선형으로 증가하는 포텐셜(5130)의 인가는 빌트인 공핍 필드와 함께 일어나고, 공간 밴드 구조(5160)를 야기한다. 공핍 필드(5130)의 인가로 초격자의 결과적인 파동 함수는 더 이상 이들의 최 근접한 이웃 GaN 포텐셜 최소들에 공진적으로 결합되지 않는 파동 함수(5145, 5155)를 발생한다. 밴드 구조(5160)의 양자화된 허용된 에너지 상태는 이제 미니밴드 에너지 상태(5125)에 비해 에너지에서 더 높은 개별적 에너지 상태(5165, 5170)를 갖는다.
이 효과는 질소-극성의 방위의 성장에 걸쳐 공핍 전계의 인가에 의해 수정될 수 있어, 결과적으로 슈타르크 분할 상태들의 에너지가 낮아진다. 이것은 예를 들어, GaN 층 및 AlN 층을 갖는 M:N=3:6 단위 셀과 같은 단지 한 단위 셀 유형으로 구성된 질소 극성의 p-i-n 초격자 디바이스에 특히 유용하다. M:N =3:6 단위 셀을 갖는 초격자에 걸친 빌트인 공핍 필드는 방출 에너지가 더 긴 파장(즉, 적색-이동된)으로 슈타르크 이동되게 하며, M:N =3:6 단위 셀을 갖는 둘러싸인 p-형 및 n-형 활성 영역 내에 실질적으로 흡수되지 않을 것이다.
일반적으로, 금속 극성의 방위의 성장은 p-업(up) 에피층 스택에 기인하여 n-i-p 디바이스의 i-형 활성 영역 혹은 i-형 활성 영역의 방출 스펙트럼에서 청색 이동을 생성한다. 즉, 기판, n-형 활성 영역, i-형 활성 영역, p-형 활성 영역 [SUB/n-i-p] 순서로 형성된 디바이스에 대해 도시된 바와 같이 공핍 전계에 대해서. 반대로, 적색 이동은 p-다운(down) 에피층 스택, 즉, [SUB/p-i-n]으로서 형성된 p-i-n 디바이스에 대해 i-형 활성 영역의 방출 스펙트럼에서 관찰된다.
반대로, 질소 극성의 방위의 성장은 공핍 전계에 기인하여 n-i-p 디바이스의 i-형 활성 영역의 방출 스펙트럼에서 청색 이동 및 공핍 전계에 기인하여 p-i-n 디바이스의 i-형 활성 영역의 방출 스펙트럼에서 적색 이동을 생성한다.
본 발명은 종래 기술에 비해, 특히 UV 및 딥 UV (DUV) 파장에서 개선된 광 방출을 포함한 많은 있점을 제공한다. 예를 들어, 매우 얇은 층상(layered) 초격자의 사용은 광자가 수평으로, 즉 층에 평행할 뿐만 아니라, 수직으로, 즉, 디바이스의 층에 수직하게, 방출될 수 있게 한다. 또한, 본 발명은 전자 및 정공 파동 함수들 간에 공간 중첩을 제공하여 전자 및 정공의 개선된 재결합을 가능하게 한다.
특히, 자외선 디바이스의 응용에 있어서, GaN은 협 밴드 갭 물질에 그리고 AlN은 넓은 밴드갭 물질에 극히 잇점이 있는 것으로 입증된다. GaN은 c-평면 표면 상에 증착되었을 때 내재적으로 수직 방출성 물질이며, AlN은 실질적으로 TM 광학 분극을 갖고, 즉 부(sub)-층들의 평면 내에서 방출한다.
단위 셀의 제1 층 및 제2 층의 두께는 전자 및 정공의 양자화 에너지 및 전도대에서 전자의 결합을 선택하기 위해 사용될 수 있다. 예를 들어, GaN의 층의 두께는 전자 및 정공의 양자화 에너지를 선택하기 위해 사용될 수 있고, AlN의 층의 두께는 전도대에서 전자의 결합을 제어할 수 있다. GaN의 층 대 AlN의 층의 두께 비는 초격자의 평균 면내 격자 상수를 선택하기 위해 사용될 수 있다. 그러므로, 주어진 초격자의 광학 천이 에너지는 평균 단위 셀 조성물 및 각 단위 셀의 각 층의 두께 둘 다의 선택에 의해 변경될 수 있다.
본 발명의 또 다른 잇점은 간단한 구성 및 증착 프로세스; 고 효율 광 방출에 적합한 맞춤가능한 전자적 및 광학적 특성(이를테면 방출된 광의 파장과 같은); c-평면 방위의 표면 상에 증착되었을 때 수직 방출성 디바이스에 대한 최적화된 광학 방출 분극; n-형 및 p-형 전도성 영역을 위한 개선된 불순물 도펀트 활성화; 및 과도한 스트레인 누적 없이 광학적으로 두꺼운 초격자가 형성될 수 있게 하는 스트레인 관리된 단분자층을 포함한다. 예를 들어, 비주기적 초격자는 스트레인 전파를 방지하고 광학 추출을 향상시키기 위해 사용될 수 있다.
또한, 전자-정공 재결합 영역 내에 전자 및 혹은 정공 캐리어 공간 파동 함수를 분포시키는 하는 것은 물질의 증가된 볼륨에 의하여 캐리어 캡처 확률을 개선하고, 또한 전자 및 정공 공간 파동 함수 중첩을 개선하며, 이에 따라, 종래 기술에 비해 디바이스의 재결합 효율을 개선한다.
이 명세서에서, 용어 "초격자"는 2 이상의 층을 포함하는 복수의 반복적인 단위 셀을 포함하는 층상(layered) 구조를 지칭하며, 단위 셀 내 층의 두께는 전자 및/또는 정공의 양자 터널링이 쉽게 일어날 수 있게 이웃 단위 셀들의 대응하는 층들 간에 유의한 파동 함수 침투가 있게 할 만큼 충분히 작다.
이 특허 명세서에서, 제1 및 제2, 좌 및 우, 전방 및 후방, 상부 및 하부, 등과 같은 형용사는 형용사에 의해 기술되는 특정한 상대적 위치 혹은 순서를 반드시 요구함이 없이 다른 구성요소로부터 한 구성요소를 정의하기 위해서만 사용된다. "포함하다(comprises)" 또는 "포함하다(includes)"와 같은 단어는 배타적인 한 세트의 구성요소 혹은 방법의 단계들을 정의하기 위해 사용되지 않는다. 그보다는, 이러한 단어는 본 발명의 특정 실시예에 포함된 최소 한 세트의 구성요소 혹은 방법의 단계들을을 단지 정의한다. 발명은 다양한 방법으로 구현될 수 있고 이 설명은 단지 예로서만 주어진 것음을 알 것이다.
본 발명의 여러 실시예의 앞에 설명은 관련 기술에 당업자에게 설명 목적을 위해 제공된다. 철저하게 하려고 한다거나 단일의 개시된 실시예로 발명을 제한하려는 것이 아니다. 위에 언급된 바와 같이, 본 발명에 대한 수많은 대안 및 변형예가 위에 교시된 바의 당업자에게 명백하게 될 것이다. 따라서, 일부 대안적 실시예가 구체적으로 논의되어졌지만, 이외 다른 실시예는 당업자에 의해 명백해지게 되거나 비교적 쉽게 개발될 것이다. 따라서, 이 특허 명세서는 본원에 논의되어진 본 발명의 모든 대안, 수정예 및 변형예, 및 위에 기술된 발명의 정신 및 범위 내에 드는 그외 다른 실시예를 포괄하게 의도된 것이다.
이 명세서에서 임의의 종래 기술에 대한 언급은 종래 기술이 호주 혹은 다른 어떤 곳에서 공통의 일반적 지식의 부분을 형성한다는 인정 혹은 암시의 임의의 형태로서 취해지지 않으며, 취해지지 않아야 한다.

Claims (36)

  1. 광전자 디바이스에 있어서,
    p-형 활성 영역; 및
    n-형 활성 영역을 포함하는 반도체 구조를 포함하고,
    상기 반도체 구조는 하나 이상의 초격자들만으로 구성되고;
    각 초격자는 복수의 단위 셀들로 구성되고;
    각 단위 셀은 적어도 2개의 별개의 실질적으로 단결정층들을 포함하는, 광전자 디바이스.
  2. 청구항 1에 있어서, 상기 반도체 구조는 상기 n-형 활성 영역과 상기 p-형 활성 영역 사이에 i-형 활성 영역을 포함하는, 광전자 디바이스.
  3. 청구항 2에 있어서, 상기 i-형 활성 영역은 1 nm 이상 및 100 nm 이하의 두께를 갖는, 광전자 디바이스.
  4. 청구항 1에 있어서, 상기 반도체 구조는 성장 방향을 따른 에피택셜층 성장에 의해 구성되는, 광전자 디바이스.
  5. 청구항 4에 있어서, 상기 복수의 단위 셀들 각각의 평균 합금 함량(average alloy content)은 각 초격자 내에서 일정한 것인, 광전자 디바이스.
  6. 청구항 4에 있어서, 상기 복수의 단위 셀들 각각의 평균 합금 함량은 상기 하나 이상의 초격자들 중 적어도 하나 내에서 상기 성장 방향을 따라 일정하지 않은, 광전자 디바이스.
  7. 청구항 6에 있어서, 상기 복수의 단위 셀들 각각의 평균 합금 함량은 상기 하나 이상의 초격자들 중 적어도 하나의 일부 내에서 상기 성장 방향을 따라 주기적으로 가변하는, 광전자 디바이스.
  8. 청구항 4에 있어서, 상기 복수의 단위 셀들 각각 내에 상기 적어도 2개의 층들 각각은, 개개의 층이 상기 성장 방향을 따라 구성되는 물질의 6 단분자층들 이하의 두께를 갖는, 광전자 디바이스.
  9. 청구항 4에 있어서, 상기 하나 이상의 초격자들의 적어도 일부 내에 상기 복수의 단위 셀들 각각의 적어도 2개의 층들 중 하나는 상기 성장 방향을 따라 원자들의 1 내지 10 단분자층들을 포함하고, 상기 각각의 단위 셀들 각각 내에 다른 하나 이상의 층들은 상기 성장 방향을 따라 원자들의 총 1 내지 10 단분자층들을 포함하는, 광전자 디바이스.
  10. 청구항 4에 있어서, 상기 n-형 활성 영역, 상기 p-형 활성 영역 및 상기 i-형 활성 영역 중 2 이상 내에 상기 단위 셀들은 상이한 평균 두께를 갖는, 광전자 디바이스.
  11. 청구항 4 중 어느 한 항에 있어서, 각 단위 셀의 상기 적어도 2개의 별개의 실질적으로 단결정층들은 섬유아연석 결정 대칭을 가지며, 금속-극의 극성 혹은 질소-극의 극성인 상기 성장 방향으로 결정 극성을 갖는, 광전자 디바이스.
  12. 청구항 11에 있어서, 상기 결정 극성은 상기 성장 방향을 따라 공간적으로 가변되고, 상기 결정 극성은 상기 질소-극의 극성과 상기 금속-극의 극성 간에 교번하여 뒤바뀌는(flip), 광전자 디바이스.
  13. 청구항 4에 있어서, 상기 광전자 디바이스는 광 방출 디바이스로서 구성되고, 광학 에너지는 상기 p-형 활성 영역 및 상기 n-형 활성 영역에 의해 공급되는 전기적으로 활성 정공들 및 전자들의 재결합에 의해 발생되고, 상기 재결합은 실질적으로 상기 p-형 활성 영역과 상기 n-형 활성 영역 사이의 영역 내에서 일어나는, 광전자 디바이스.
  14. 청구항 13에 있어서, 상기 광전자 디바이스에 의해 방출되는 광은 150 nm 내지 280 nm의 파장 범위 내 자외선 광인, 광전자 디바이스.
  15. 청구항 13 중 어느 한 항에 있어서,
    상기 광전자 디바이스는 상기 성장 방향에 관하여 실질적으로 횡 전기 광학적 분극(polarization)을 갖는 광을 방출하며;
    상기 광전자 디바이스는 상기 반도체 구조의 하나 이상의 초격자들의 단위 셀들의 하나 이상의 층들의 평면에 실질적으로 수직한 방향을 따라 공간적으로 발생되어 국한되는 광을 갖는 수직 방출 공동 디바이스(vertically emitting cavity device)로서 동작하는, 광전자 디바이스.
  16. 청구항 15에 있어서,
    상기 수직 방출 공동 디바이스는, 상기 반도체 구조의 하나 이상의 부분들을 따라 공간적으로 배치된 금속 반사체들을 사용하여 형성되고 실질적으로 상기 성장 방향을 따라 배치된 수직 공동을 가지며;
    상기 반사체들은 고 광학 반사율 금속으로 만들어지며;
    상기 공동은 상기 디바이스에 의해 방출되는 광의 파장 이하인 상기 반사체들 간 광학 길이(optical length)에 의해 정의되며;
    상기 파장은 상기 반도체 구조를 포함하는 상기 하나 이상의 초격자들의 상기 광학 방출 에너지 및 상기 수직 공동에 의해 결정되는 광학 공동 모드들에 의해 결정되는, 광전자 디바이스.
  17. 청구항 16에 있어서, 상기 고 광학 반사율 금속은 알루미늄(Al)인, 광전자 디바이스.
  18. 청구항 13 중 어느 한 항에 있어서,
    상기 반도체 구조 내에서 발생되는 상기 광학 에너지의 아웃 결합(out coupling)을 개선하기 위한 반사체층이 제공되며;
    상기 반사체층은 상기 디바이스의 내부로부터 방출되는 광을 실질적으로 재반사(retroreflect)하기 위해 상기 광전자 디바이스 맨 위에 위치되는, 광전자 디바이스.
  19. 청구항 1 중 어느 한 항에 있어서,
    상기 반도체 구조가 성장되는 결정질 기판을 더 포함하고,
    상기 기판 상에 먼저 버퍼층이 성장되고 이어 상기 반도체 구조가 성장되며 상기 버퍼는 면내(in-plane) 격자 상수를 제공하는 스트레인(strain) 제어 메커니즘으로 동작하는 것인, 광전자 디바이스.
  20. 청구항 19에 있어서, 상기 버퍼층은 하나 이상의 초격자들을 포함하는, 광전자 디바이스.
  21. 청구항 20에 있어서,
    상기 버퍼층 및 상기 기판에 인접하여 투명 영역이 제공되고, 상기 버퍼층은 상기 디바이스로부터 방출되는 광학 에너지에 투명하며; 및
    상기 광학 에너지는 상기 투명 영역, 상기 버퍼층 및 상기 기판을 통과하여 외부에 결합되는, 광전자 디바이스.
  22. 청구항 1 내지 21 중 어느 한 항에 있어서,
    각 초격자 내 각 단위 셀의 상기 적어도 2개의 별개의 실질적으로 단결정 층들 각각은
    2원 조성물 단결정 반도체 물질(AxNy), 0<x≤1 및 0<y≤1;
    3원 조성물 단결정 반도체 물질(AuB1-uNy), 0≤u≤1 및 0<y≤1;
    4원 조성물 단결정 반도체 물질(ApBqC1-p-qNy), 0≤p≤1, 0≤q≤1 및 0<y≤1; 조성물들 중 적어도 하나를 포함하고,
    A, B 및 C는 II 족 및/또는 III 족 원소들에서 선택된 별개의 금속 원자들이며, N은 질소, 산소, 비소, 인, 안티몬, 및 플루오르 중 적어도 하나에서 선택된 양이온들인, 광전자 디바이스.
  23. 청구항 1 내지 22 중 어느 한 항에 있어서, 각 초격자 내 각 단위 셀의 상기 적어도 2개의 별개의 실질적으로 단결정 층들 각각은
    III 족 금속 질화물 물질(MxNy);
    III 족 금속 비화물 물질(MxAsy);
    III 족 금속 인화물 물질(MxPy);
    III 족 금속 안티몬화물 물질(MxSby);
    II 족 금속 산화물 물질(MxOy);
    II 족 금속 불화물 물질(MxFy); 조성물들 중 적어도 하나를 포함하고,
    0<x≤3 및 0<y≤4이며, M은 금속인, 광전자 디바이스.
  24. 청구항 1에 있어서, 각 초격자 내 각 단위 셀의 상기 적어도 2개의 별개의 실질적으로 단결정 층들 각각은
    알루미늄 질화물(AlN);
    알루미늄 갈륨 질화물(AlxGa1-xN), 0≤x<1;
    알루미늄 인듐 질화물(AlxIn1-xN), 0≤x<1;
    알루미늄 갈륨 인듐 질화물(AlxGayIn1-x-yN), 0≤x<1, 0≤y≤1 및 0<(x+y)<1,조성물들 중 적어도 하나를 포함하는, 광전자 디바이스.
  25. 청구항 1에 있어서, 상기 하나 이상의 초격자들의 각 단위 셀의 하나 이상의 층들은 불순물 종들로 의도적으로 도핑되지 않은, 광전자 디바이스.
  26. 청구항 1에 있어서, 상기 n-형 활성 영역 및/또는 상기 p-형 활성 영역의 상기 하나 이상의 초격자들의 각 단위 셀의 하나 이상의 층들은 하나 이상의 불순물 종들로 의도적으로 도핑되거나 혹은 하나 이상의 불순물 종들로 형성되는, 광전자 디바이스.
  27. 청구항 26에 있어서, 상기 n-형 활성 영역 내 상기 하나 이상의 불순물 종들은
    실리콘(Si);
    게르마늄(Ge);
    실리콘-게르마늄(SixGe1-x), 0<x<1;
    결정질 실리콘-질화물(SixNy), 0<x<3 및 0<y<4;
    결정질 게르마늄-질화물(GexNy), 0<x<3 및 0<y<4;
    결정질 실리콘-알루미늄-갈륨-질화물(Siu[AlxGa1-y]zNv), u>0, x>0, 0<y<1, z>0 및 v>0; 혹은
    결정질 게르마늄-알루미늄-갈륨-질화물(Geu[AlxGa1-y]zNv), u>0, x>0, 0<y<1, z>0 및 v>0 에서 선택되는, 광전자 디바이스..
  28. 청구항 26에 있어서, 상기 p-형 활성 영역 내 상기 하나 이상의 불순물 종들은
    마그네슘(Mg);
    아연(Zn);
    마그네슘-아연(MgxZn1-x), 0≤x≤1
    결정질 마그네슘-질화물(MgxNy), 0<x≤3 및 0<y≤2; 혹은
    마그네슘-알루미늄-갈륨-질화물(Mgu[AlxGa1-y]zNv), u>0, x>0, 0<y<1, z>0 및 v>0 에서 선택되는, 광전자 디바이스.
  29. 청구항 26에 있어서, 상기 n-형 활성 영역 혹은 상기 p-형 활성 영역 내 상기 하나 이상의 불순물 종들은
    수소(H);
    산소(O);
    탄소(C); 혹은
    플루오르(F) 에서 선택되는, 광전자 디바이스..
  30. 청구항 26에 있어서, 상기 하나 이상의 불순물 종들은 이온-주입을 통해 성장후(post growth) 함유되는, 광전자 디바이스.
  31. 청구항 26에 있어서, 상기 하나 이상의 초격자들 중 상기 적어도 하나의 적어도 일부는 전자 혹은 정공 캐리어 농도를 개선하기 위해 의도적으로 도핑된 영역의 활성화 에너지를 향상시키기 위해 단축(uniaxial) 스트레인 혹은 2축(biaxial) 스트레인을 포함하는, 광전자 디바이스.
  32. 청구항 1에 있어서, 제1 측방 콘택(contact)은 상기 n-형 활성 영역의 표면 상에 형성된 제1 콘택 층으로부터 상기 n-형 활성 영역 내로 부분적으로 확장한, 광전자 디바이스.
  33. 청구항 32에 있어서, 제2 측방 콘택은 상기 p-형 활성 영역의 표면 상에 형성된 제2 콘택 층으로부터 상기 p-형 활성 영역 내로 부분적으로 확장한, 광전자 디바이스.
  34. 청구항 33에 있어서, 상기 제2 측방 콘택은 상기 제2 측방 콘택과 상기 p-형 활성 영역 사이에 p-형 GaN 층에 의해 둘러싸인, 광전자 디바이스.
  35. 청구항 33에 있어서, 상기 제2 콘택 층은 금속 콘택 층이며, p-형 콘택 층은 상기 p-형 활성 영역과 상기 금속 콘택 층 사이에 형성된, 광전자 디바이스.
  36. 청구항 1에 있어서, 각 단위 셀의 상기 적어도 2개의 별개의 실질적으로 단결정 층들 각각은 탄성 스트레인을 유지하기 위해 요구되는 임계 층 두께 이하인 두께를 갖는, 광전자 디바이스.
KR1020217038889A 2014-05-27 2015-04-06 광전자 디바이스 KR102439708B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2014902007A AU2014902007A0 (en) 2014-05-27 An optoelectronic device
AU2014902007 2014-05-27
KR1020167033467A KR102333773B1 (ko) 2014-05-27 2015-04-06 광전자 디바이스
PCT/IB2015/052480 WO2015181648A1 (en) 2014-05-27 2015-04-06 An optoelectronic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020167033467A Division KR102333773B1 (ko) 2014-05-27 2015-04-06 광전자 디바이스

Publications (2)

Publication Number Publication Date
KR20210149882A true KR20210149882A (ko) 2021-12-09
KR102439708B1 KR102439708B1 (ko) 2022-09-02

Family

ID=54698185

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020217038889A KR102439708B1 (ko) 2014-05-27 2015-04-06 광전자 디바이스
KR1020167033467A KR102333773B1 (ko) 2014-05-27 2015-04-06 광전자 디바이스

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020167033467A KR102333773B1 (ko) 2014-05-27 2015-04-06 광전자 디바이스

Country Status (6)

Country Link
US (1) US10475956B2 (ko)
JP (1) JP6817072B2 (ko)
KR (2) KR102439708B1 (ko)
CN (1) CN106663718B (ko)
TW (1) TWI686950B (ko)
WO (1) WO2015181648A1 (ko)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3005785B1 (fr) * 2013-05-14 2016-11-25 Aledia Dispositif optoelectronique et son procede de fabrication
FR3005784B1 (fr) 2013-05-14 2016-10-07 Aledia Dispositif optoelectronique et son procede de fabrication
DE102014102029A1 (de) * 2014-02-18 2015-08-20 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterbauelementen und Halbleiterbauelement
CN106537617B (zh) 2014-05-27 2019-04-16 斯兰纳Uv科技有限公司 使用半导体结构和超晶格的高级电子装置结构
US11322643B2 (en) * 2014-05-27 2022-05-03 Silanna UV Technologies Pte Ltd Optoelectronic device
KR102264671B1 (ko) * 2014-09-30 2021-06-15 서울바이오시스 주식회사 자외선 발광소자
TWI568016B (zh) * 2014-12-23 2017-01-21 錼創科技股份有限公司 半導體發光元件
US10147848B2 (en) * 2015-10-01 2018-12-04 Sensor Electronic Technology, Inc. Contact configuration for optoelectronic device
US10854785B2 (en) 2015-10-01 2020-12-01 Sensor Electronic Technology, Inc. Contact configuration for optoelectronic device
US10707379B2 (en) 2015-10-01 2020-07-07 Sensor Electronic Technology, Inc. Configuration for optoelectronic device
CN105374912B (zh) * 2015-10-28 2017-11-21 厦门市三安光电科技有限公司 发光二极管及其制作方法
US11287563B2 (en) * 2016-12-01 2022-03-29 Ostendo Technologies, Inc. Polarized light emission from micro-pixel displays and methods of fabrication thereof
EP3373343B1 (en) * 2017-03-09 2021-09-15 Technische Universität Berlin Semiconductor device having an internal-field-guarded active region
JP7094082B2 (ja) * 2017-06-14 2022-07-01 日本ルメンタム株式会社 光半導体素子、光サブアセンブリ、及び光モジュール
US10957817B2 (en) * 2017-11-15 2021-03-23 Cornell University Polarization field assisted heterostructure design for efficient deep ultra-violet light emitting diodes
US10748881B2 (en) * 2017-12-05 2020-08-18 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
US10516076B2 (en) * 2018-02-01 2019-12-24 Silanna UV Technologies Pte Ltd Dislocation filter for semiconductor devices
KR20210008427A (ko) 2018-06-07 2021-01-21 실라나 유브이 테크놀로지스 피티이 리미티드 반도체 레이어 형성을 위한 방법 및 재료 증착 시스템
FR3083002B1 (fr) * 2018-06-20 2020-07-31 Aledia Dispositif optoelectronique comprenant une matrice de diodes
US10879420B2 (en) 2018-07-09 2020-12-29 University Of Iowa Research Foundation Cascaded superlattice LED system
KR102562806B1 (ko) * 2018-07-11 2023-08-01 에스알아이 인터내셔널 과잉 잡음이 없는 선형 모드 아발란체 포토다이오드들
JP7338166B2 (ja) * 2019-02-25 2023-09-05 日本電信電話株式会社 半導体装置
US10916680B2 (en) * 2019-03-06 2021-02-09 Bolb Inc. Heterostructure and light-emitting device employing the same
CN111668351B (zh) * 2019-03-06 2023-05-12 博尔博公司 异质结构以及采用异质结构的发光器件
US11637219B2 (en) 2019-04-12 2023-04-25 Google Llc Monolithic integration of different light emitting structures on a same substrate
US11462658B2 (en) 2019-08-16 2022-10-04 Silanna UV Technologies Pte Ltd Impact ionization light-emitting diodes
CN110518031B (zh) * 2019-08-29 2021-09-28 南京工程学院 同质集成光源、探测器和有源波导的通信芯片及制备方法
US11374143B2 (en) * 2020-01-13 2022-06-28 Globalfoundries U.S. Inc. Fin-based photodetector structure
TWI804837B (zh) * 2020-04-10 2023-06-11 荷蘭商Asml荷蘭公司 信號電子偵測之系統及方法
US11322647B2 (en) 2020-05-01 2022-05-03 Silanna UV Technologies Pte Ltd Buried contact layer for UV emitting device
US11342484B2 (en) 2020-05-11 2022-05-24 Silanna UV Technologies Pte Ltd Metal oxide semiconductor-based light emitting device
KR102380306B1 (ko) * 2021-01-14 2022-03-30 (재)한국나노기술원 나노 스케일 박막 구조의 구현 방법
WO2023073404A1 (en) 2021-10-27 2023-05-04 Silanna UV Technologies Pte Ltd Methods and systems for heating a wide bandgap substrate
WO2023084275A1 (en) 2021-11-10 2023-05-19 Silanna UV Technologies Pte Ltd Ultrawide bandgap semiconductor devices including magnesium germanium oxides
US20230143766A1 (en) 2021-11-10 2023-05-11 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices
WO2023084274A1 (en) 2021-11-10 2023-05-19 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136446A (ja) * 1997-07-22 2005-05-26 Nichia Chem Ind Ltd 窒化物半導体発光素子
JP2011146575A (ja) * 2010-01-15 2011-07-28 Nec Corp 偏光制御発光素子とその製造方法
JP2011228646A (ja) * 2010-03-31 2011-11-10 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子
JP2013084817A (ja) * 2011-10-11 2013-05-09 Toshiba Corp 半導体発光素子
KR20140004361A (ko) * 2012-07-02 2014-01-13 전자부품연구원 초격자 구조를 이용한 질화물계 반도체 발광 소자의 제조 방법

Family Cites Families (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US732956A (en) 1901-08-12 1903-07-07 Charlie C Palmer Regulating means for self-feeders and band-cutters.
JPS6027692A (ja) 1983-07-25 1985-02-12 Ulvac Corp インプロセスモニタ可能な気相エピタキシヤル成長用化学反応装置
US4972246A (en) 1988-03-22 1990-11-20 International Business Machines Corp. Effective narrow band gap base transistor
US5248890A (en) 1989-05-13 1993-09-28 Forschungszentrum Julich Gmbh Valance specific lanthanide doped optoelectronic metal fluoride semiconductor device
US5060030A (en) 1990-07-18 1991-10-22 Raytheon Company Pseudomorphic HEMT having strained compensation layer
JP3445653B2 (ja) * 1994-03-23 2003-09-08 士郎 酒井 発光素子
US5932899A (en) 1996-08-23 1999-08-03 Trustees Of Boston University Semiconductor having enhanced acceptor activation
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JP3220977B2 (ja) * 1997-05-07 2001-10-22 日亜化学工業株式会社 窒化物半導体レーザ素子及び窒化物半導体レーザ素子の製造方法。
EP1014455B1 (en) 1997-07-25 2006-07-12 Nichia Corporation Nitride semiconductor device
US6266355B1 (en) 1997-09-12 2001-07-24 Sdl, Inc. Group III-V nitride laser devices with cladding layers to suppress defects such as cracking
US6593589B1 (en) 1998-01-30 2003-07-15 The University Of New Mexico Semiconductor nitride structures
KR100753147B1 (ko) 1998-03-12 2007-08-30 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 소자
JP2000244070A (ja) 1999-02-19 2000-09-08 Sony Corp 半導体装置および半導体発光素子
EP1183761A2 (en) 1999-03-26 2002-03-06 Matsushita Electronics Corporation Semiconductor structures having a strain compensated layer and method of fabrication
JP4423699B2 (ja) 1999-05-27 2010-03-03 ソニー株式会社 半導体レーザ素子及びその作製方法
KR20010029852A (ko) 1999-06-30 2001-04-16 도다 다다히데 Ⅲ족 질화물계 화합물 반도체 소자 및 그 제조방법
US6515313B1 (en) 1999-12-02 2003-02-04 Cree Lighting Company High efficiency light emitters with reduced polarization-induced charges
JP3950604B2 (ja) 1999-12-28 2007-08-01 日本オプネクスト株式会社 半導体レーザ装置、半導体レーザアレー装置及び光伝送装置
JP5145617B2 (ja) 2000-07-03 2013-02-20 日亜化学工業株式会社 n型窒化物半導体積層体およびそれを用いる半導体素子
JP3963068B2 (ja) 2000-07-19 2007-08-22 豊田合成株式会社 Iii族窒化物系化合物半導体素子の製造方法
JP2002208755A (ja) * 2000-11-13 2002-07-26 Fuji Xerox Co Ltd 面発光型半導体レーザ
US6906352B2 (en) 2001-01-16 2005-06-14 Cree, Inc. Group III nitride LED with undoped cladding layer and multiple quantum well
US20020149033A1 (en) 2001-04-12 2002-10-17 Michael Wojtowicz GaN HBT superlattice base structure
JP2003045900A (ja) 2001-05-25 2003-02-14 Sharp Corp 窒化物系iii−v族化合物半導体装置
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US7015515B2 (en) 2001-06-08 2006-03-21 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device having a superlattice structure
JP2003163373A (ja) * 2001-11-26 2003-06-06 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
US7919791B2 (en) 2002-03-25 2011-04-05 Cree, Inc. Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same
US6921924B2 (en) 2003-06-18 2005-07-26 United Epitaxy Company, Ltd Semiconductor light-emitting device
US6995389B2 (en) 2003-06-18 2006-02-07 Lumileds Lighting, U.S., Llc Heterostructures for III-nitride light emitting devices
KR100580623B1 (ko) * 2003-08-04 2006-05-16 삼성전자주식회사 초격자 구조의 반도체층을 갖는 반도체 소자 및 그 제조방법
US20050156183A1 (en) * 2003-10-06 2005-07-21 Tzong-Liang Tsai Light-emitting device having reflecting layer formed under electrode
JP2005150531A (ja) 2003-11-18 2005-06-09 Nec Compound Semiconductor Devices Ltd 半導体装置
US7901994B2 (en) 2004-01-16 2011-03-08 Cree, Inc. Methods of manufacturing group III nitride semiconductor devices with silicon nitride layers
WO2006013698A1 (ja) 2004-08-02 2006-02-09 Nec Corporation 窒化物半導体素子、及びその製造方法
US7042018B2 (en) 2004-09-22 2006-05-09 Formosa Epitaxy Incorporation Structure of GaN light-emitting diode
JP2006108585A (ja) * 2004-10-08 2006-04-20 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
KR100662191B1 (ko) 2004-12-23 2006-12-27 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR100580751B1 (ko) 2004-12-23 2006-05-15 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
US7498182B1 (en) 2005-03-18 2009-03-03 The United States Of America As Represented By The Secretary Of The Army Method of manufacturing an ultraviolet light emitting AlGaN composition and ultraviolet light emitting device containing same
US7265374B2 (en) 2005-06-10 2007-09-04 Arima Computer Corporation Light emitting semiconductor device
US7547925B2 (en) 2005-11-14 2009-06-16 Palo Alto Research Center Incorporated Superlattice strain relief layer for semiconductor devices
BRPI0619150A2 (pt) * 2005-12-02 2011-09-20 Helianthos Bv célula fotovoltaica
TWI334646B (en) 2005-12-22 2010-12-11 Mears Technologies Inc Electronic device including a selectively polable superlattice
JP5244614B2 (ja) 2005-12-27 2013-07-24 三星ディスプレイ株式會社 Iii族窒化物系発光素子
JP3863174B2 (ja) * 2006-05-08 2006-12-27 東芝電子エンジニアリング株式会社 発光装置
JP4172505B2 (ja) * 2006-06-29 2008-10-29 住友電気工業株式会社 面発光型半導体素子及び面発光型半導体素子の製造方法
US7807917B2 (en) 2006-07-26 2010-10-05 Translucent, Inc. Thermoelectric and pyroelectric energy conversion devices
US20080054248A1 (en) 2006-09-06 2008-03-06 Chua Christopher L Variable period variable composition supperlattice and devices including same
EP2087507A4 (en) 2006-11-15 2010-07-07 Univ California METHOD FOR THE HETEROEPITAXIAL GROWTH OF QUALITATIVELY HIGH-QUALITY N-SIDE-GAN, INN AND AIN AND THEIR ALLOYS THROUGH METALLORGANIC CHEMICAL IMMUNE
US7769066B2 (en) 2006-11-15 2010-08-03 Cree, Inc. Laser diode and method for fabricating same
KR100862497B1 (ko) 2006-12-26 2008-10-08 삼성전기주식회사 질화물 반도체 소자
JP2009123718A (ja) 2007-01-16 2009-06-04 Showa Denko Kk Iii族窒化物化合物半導体素子及びその製造方法、iii族窒化物化合物半導体発光素子及びその製造方法、並びにランプ
CN101578715A (zh) * 2007-01-16 2009-11-11 昭和电工株式会社 Ⅲ族氮化物化合物半导体元件及其制造方法、ⅲ族氮化物化合物半导体发光元件及其制造方法和灯
CN101652832B (zh) 2007-01-26 2011-06-22 晶体公司 厚的赝晶氮化物外延层
US7880161B2 (en) * 2007-02-16 2011-02-01 Mears Technologies, Inc. Multiple-wavelength opto-electronic device including a superlattice
US8362503B2 (en) 2007-03-09 2013-01-29 Cree, Inc. Thick nitride semiconductor structures with interlayer structures
JP2008235574A (ja) * 2007-03-20 2008-10-02 Sumitomo Electric Ind Ltd 面発光半導体レーザ
EP1976031A3 (en) 2007-03-29 2010-09-08 Seoul Opto Device Co., Ltd. Light emitting diode having well and/or barrier layers with superlattice structure
WO2009005894A2 (en) 2007-05-08 2009-01-08 Nitek, Inc. Non-polar ultraviolet light emitting device and method for fabricating same
US8030684B2 (en) 2007-07-18 2011-10-04 Jds Uniphase Corporation Mesa-type photodetectors with lateral diffusion junctions
US8519437B2 (en) 2007-09-14 2013-08-27 Cree, Inc. Polarization doping in nitride based diodes
KR101438808B1 (ko) 2007-10-08 2014-09-05 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
CN101447536A (zh) 2007-11-26 2009-06-03 鸿富锦精密工业(深圳)有限公司 固态发光元件
JP5353113B2 (ja) 2008-01-29 2013-11-27 豊田合成株式会社 Iii族窒化物系化合物半導体の製造方法
JP2009277882A (ja) * 2008-05-14 2009-11-26 Showa Denko Kk Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子、並びにランプ
US9331240B2 (en) 2008-06-06 2016-05-03 University Of South Carolina Utlraviolet light emitting devices and methods of fabrication
TWI413279B (zh) 2008-06-20 2013-10-21 Toyoda Gosei Kk Iii族氮化物半導體發光元件及其製造方法、以及燈
US8000366B2 (en) 2008-11-21 2011-08-16 Palo Alto Research Center Incorporated Laser diode with high indium active layer and lattice matched cladding layer
EP2432005A4 (en) 2009-05-11 2015-05-27 Dowa Electronics Materials Co EPITACTICAL SUBSTRATE FOR ELECTRONIC EQUIPMENT AND METHOD FOR THE PRODUCTION THEREOF
DE102009034359A1 (de) 2009-07-17 2011-02-17 Forschungsverbund Berlin E.V. P-Kontakt und Leuchtdiode für den ultravioletten Spektralbereich
JP4681684B1 (ja) 2009-08-24 2011-05-11 Dowaエレクトロニクス株式会社 窒化物半導体素子およびその製造方法
KR101173072B1 (ko) 2009-08-27 2012-08-13 한국산업기술대학교산학협력단 경사진 기판 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
JP2010021576A (ja) 2009-10-19 2010-01-28 Ricoh Co Ltd 半導体装置の製造方法
JP5526712B2 (ja) * 2009-11-05 2014-06-18 豊田合成株式会社 半導体発光素子
US9287442B2 (en) 2009-12-04 2016-03-15 Sensor Electronic Technology, Inc. Semiconductor material doping
US9368580B2 (en) 2009-12-04 2016-06-14 Sensor Electronic Technology, Inc. Semiconductor material doping
US8835998B2 (en) 2009-12-14 2014-09-16 University Of Notre Dame Du Lac Compositionally graded heterojunction semiconductor device and method of making same
WO2011083940A2 (ko) 2010-01-05 2011-07-14 서울옵토디바이스주식회사 발광 다이오드 및 그것을 제조하는 방법
US9412901B2 (en) 2010-01-08 2016-08-09 Sensor Electronic Technology, Inc. Superlattice structure
US8138494B2 (en) 2010-01-27 2012-03-20 Chang Gung University GaN series light-emitting diode structure
KR101007136B1 (ko) 2010-02-18 2011-01-10 엘지이노텍 주식회사 발광 소자, 발광 소자 패키지 및 발광 소자 제조방법
WO2011108738A1 (ja) * 2010-03-01 2011-09-09 Dowaエレクトロニクス株式会社 半導体素子およびその製造方法
JP2011181762A (ja) * 2010-03-02 2011-09-15 Tohoku Univ 半導体装置の製造方法
JP5706102B2 (ja) 2010-05-07 2015-04-22 ローム株式会社 窒化物半導体素子
US8927959B2 (en) 2010-06-18 2015-01-06 Sensor Electronic Technology, Inc. Deep ultraviolet light emitting diode
WO2012067687A2 (en) 2010-08-26 2012-05-24 The Ohio State University Nanoscale emitters with polarization grading
JP5904734B2 (ja) 2010-09-16 2016-04-20 三星電子株式会社Samsung Electronics Co.,Ltd. グラフェン発光素子及びその製造方法
US20120104360A1 (en) 2010-10-29 2012-05-03 The Regents Of The University Of California Strain compensated short-period superlattices on semipolar or nonpolar gan for defect reduction and stress engineering
US20120201264A1 (en) 2010-12-08 2012-08-09 Shatalov Maxim S Light emitting device with varying barriers
JP2012146847A (ja) 2011-01-13 2012-08-02 Sharp Corp 窒化物半導体発光素子および半導体光学装置
CN102117869B (zh) 2011-01-21 2013-12-11 厦门市三安光电科技有限公司 一种剥离发光二极管衬底的方法
JP5648510B2 (ja) 2011-02-04 2015-01-07 豊田合成株式会社 Iii族窒化物半導体発光素子の製造方法
US8633468B2 (en) 2011-02-11 2014-01-21 Sensor Electronic Technology, Inc. Light emitting device with dislocation bending structure
WO2012138414A1 (en) * 2011-04-06 2012-10-11 Versatilis Llc Optoelectronic device containing at least one active device layer having a wurtzite crystal structure, and methods of making same
JP5023230B1 (ja) 2011-05-16 2012-09-12 株式会社東芝 窒化物半導体素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法
CN103597617A (zh) 2011-06-10 2014-02-19 加利福尼亚大学董事会 高发射功率和低效率降低的半极性蓝色发光二极管
US8686397B2 (en) 2011-06-10 2014-04-01 The Regents Of The University Of California Low droop light emitting diode structure on gallium nitride semipolar substrates
US9337387B2 (en) 2011-06-15 2016-05-10 Sensor Electronic Technology, Inc. Emitting device with improved extraction
US20130026480A1 (en) 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
KR20140043161A (ko) 2011-08-09 2014-04-08 소코 가가쿠 가부시키가이샤 질화물 반도체 자외선 발광 소자
US9385271B2 (en) 2011-08-11 2016-07-05 Sensor Electronic Technology, Inc. Device with transparent and higher conductive regions in lateral cross section of semiconductor layer
US20130043459A1 (en) * 2011-08-19 2013-02-21 Svt Associates, Inc. Long Wavelength Infrared Superlattice
US20130043458A1 (en) * 2011-08-19 2013-02-21 Svt Associates, Inc. Long Wavelength Infrared Superlattice
US9330911B2 (en) 2011-08-22 2016-05-03 Invenlux Limited Light emitting device having group III-nitride current spreading layer doped with transition metal or comprising transition metal nitride
CN103733308B (zh) * 2011-09-05 2016-08-17 日本电信电话株式会社 氮化物半导体结构以及其制作方法
US9287455B2 (en) 2011-09-22 2016-03-15 Sensor Electronic Technology, Inc. Deep ultraviolet light emitting diode
US20130082274A1 (en) * 2011-09-29 2013-04-04 Bridgelux, Inc. Light emitting devices having dislocation density maintaining buffer layers
KR101568624B1 (ko) 2011-09-30 2015-11-11 소코 가가쿠 가부시키가이샤 질화물 반도체 소자 및 그 제조 방법
US9252329B2 (en) 2011-10-04 2016-02-02 Palo Alto Research Center Incorporated Ultraviolet light emitting devices having compressively strained light emitting layer for enhanced light extraction
US9397260B2 (en) 2011-10-10 2016-07-19 Sensor Electronic Technology, Inc. Patterned layer design for group III nitride layer growth
JP5988568B2 (ja) * 2011-11-14 2016-09-07 Dowaエレクトロニクス株式会社 半導体発光素子およびその製造方法
US9337301B2 (en) 2011-12-21 2016-05-10 Massachusetts Institute Of Technology Aluminum nitride based semiconductor devices
US8723189B1 (en) 2012-01-06 2014-05-13 Trustees Of Boston University Ultraviolet light emitting diode structures and methods of manufacturing the same
CN102569484A (zh) 2012-02-08 2012-07-11 中国科学院半导体研究所 InAs/GaSb二类超晶格红外探测器
CN102534764A (zh) 2012-02-17 2012-07-04 中国科学院半导体研究所 Ⅱ类超晶格窄光谱红外光电探测器材料的外延生长方法
US9269788B2 (en) 2012-02-23 2016-02-23 Sensor Electronic Technology, Inc. Ohmic contact to semiconductor
US20130221320A1 (en) * 2012-02-27 2013-08-29 Tsmc Solid State Lighting Ltd. Led with embedded doped current blocking layer
JP2013214700A (ja) * 2012-03-07 2013-10-17 Toshiba Corp 半導体発光素子
US9396933B2 (en) 2012-04-26 2016-07-19 Applied Materials, Inc. PVD buffer layers for LED fabrication
US20130320296A1 (en) 2012-06-05 2013-12-05 Epistar Corporation Light emitting device with qcse-reversed and qcse-free multi quantum well structure
KR101669641B1 (ko) 2012-06-28 2016-10-26 서울바이오시스 주식회사 표면 실장용 발광 다이오드, 그 형성방법 및 발광 다이오드 모듈의 제조방법
US9312448B2 (en) 2012-07-12 2016-04-12 Sensor Electronic Technology, Inc. Metallic contact for optoelectronic semiconductor device
JP6120204B2 (ja) * 2012-09-06 2017-04-26 パナソニック株式会社 エピタキシャルウェハ及びその製造方法、紫外発光デバイス
CN104620399B (zh) 2012-09-07 2020-02-21 首尔伟傲世有限公司 晶圆级发光二极管阵列
US9401452B2 (en) 2012-09-14 2016-07-26 Palo Alto Research Center Incorporated P-side layers for short wavelength light emitters
KR102059030B1 (ko) 2012-09-24 2019-12-24 엘지이노텍 주식회사 자외선 발광 소자
JP5853921B2 (ja) 2012-09-26 2016-02-09 豊田合成株式会社 Iii族窒化物半導体発光素子およびその製造方法
US9112103B1 (en) 2013-03-11 2015-08-18 Rayvio Corporation Backside transparent substrate roughening for UV light emitting diode
CN102945902B (zh) 2012-12-11 2014-12-17 东南大学 一种光子晶体结构的发光二极管及其应用
KR102027301B1 (ko) 2012-12-14 2019-10-01 서울바이오시스 주식회사 광추출 효율이 향상된 발광다이오드
US9312428B2 (en) 2013-01-09 2016-04-12 Sensor Electronic Technology, Inc. Light emitting heterostructure with partially relaxed semiconductor layer
US9287449B2 (en) 2013-01-09 2016-03-15 Sensor Electronic Technology, Inc. Ultraviolet reflective rough adhesive contact
US9331244B2 (en) 2013-02-25 2016-05-03 Sensor Electronic Technology, Inc. Semiconductor structure with inhomogeneous regions
WO2014151264A1 (en) 2013-03-15 2014-09-25 Crystal Is, Inc. Planar contacts to pseudomorphic electronic and optoelectronic devices
US8896008B2 (en) 2013-04-23 2014-11-25 Cree, Inc. Light emitting diodes having group III nitride surface features defined by a mask and crystal planes
WO2014178288A1 (ja) 2013-04-30 2014-11-06 創光科学株式会社 紫外線発光装置
KR101909919B1 (ko) 2013-05-01 2018-10-19 센서 일렉트로닉 테크놀로지, 인크 응력 완화 반도체 층
US9281441B2 (en) 2013-05-23 2016-03-08 Sensor Electronic Technology, Inc. Semiconductor layer including compositional inhomogeneities
JP6192378B2 (ja) 2013-06-18 2017-09-06 学校法人 名城大学 窒化物半導体発光素子
US9368582B2 (en) 2013-11-04 2016-06-14 Avogy, Inc. High power gallium nitride electronics using miscut substrates
US9240517B2 (en) 2014-02-21 2016-01-19 Osram Sylvania Inc. Strain relief superlattices and optoelectronic devices including the same
US9412902B2 (en) 2014-02-22 2016-08-09 Sensor Electronic Technology, Inc. Semiconductor structure with stress-reducing buffer structure
US9318650B2 (en) 2014-03-13 2016-04-19 Qingdao Jason Electric Co., Ltd. Light-emitting device with heavily doped active-region and method for manufacturing the same
CN106104821A (zh) 2014-04-07 2016-11-09 晶体公司 紫外发光装置及方法
WO2015181656A1 (en) 2014-05-27 2015-12-03 The Silanna Group Pty Limited Electronic devices comprising n-type and p-type superlattices
KR102320790B1 (ko) 2014-07-25 2021-11-03 서울바이오시스 주식회사 자외선 발광 다이오드 및 그 제조 방법
CN105450842A (zh) 2014-09-25 2016-03-30 紫岳科技有限公司 紫外光源及其方法
US9246311B1 (en) 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US9444224B2 (en) 2014-12-08 2016-09-13 Palo Alto Research Center Incorporated Nitride laser diode with engineered non-uniform alloy composition in the n-cladding layer
US9455300B1 (en) 2015-03-02 2016-09-27 Rayvio Corporation Pixel array of ultraviolet light emitting devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136446A (ja) * 1997-07-22 2005-05-26 Nichia Chem Ind Ltd 窒化物半導体発光素子
JP2011146575A (ja) * 2010-01-15 2011-07-28 Nec Corp 偏光制御発光素子とその製造方法
JP2011228646A (ja) * 2010-03-31 2011-11-10 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子
JP2013084817A (ja) * 2011-10-11 2013-05-09 Toshiba Corp 半導体発光素子
KR20140004361A (ko) * 2012-07-02 2014-01-13 전자부품연구원 초격자 구조를 이용한 질화물계 반도체 발광 소자의 제조 방법

Also Published As

Publication number Publication date
US10475956B2 (en) 2019-11-12
TWI686950B (zh) 2020-03-01
KR102439708B1 (ko) 2022-09-02
JP6817072B2 (ja) 2021-01-20
WO2015181648A1 (en) 2015-12-03
TW201545339A (zh) 2015-12-01
CN106663718A (zh) 2017-05-10
JP2017517886A (ja) 2017-06-29
US20160149075A1 (en) 2016-05-26
CN106663718B (zh) 2019-10-01
KR20170010372A (ko) 2017-01-31
KR102333773B1 (ko) 2021-12-01

Similar Documents

Publication Publication Date Title
KR102333773B1 (ko) 광전자 디바이스
JP7022736B2 (ja) 半導体構造と超格子とを用いた高度電子デバイス
EP2709170B1 (en) P-Side Layers for Short Wavelength Light Emitters
Park et al. Fundamental limitations of wide-bandgap semiconductors for light-emitting diodes
US11862750B2 (en) Optoelectronic device
US7956369B2 (en) Light emitting diode
US20130270514A1 (en) Low resistance bidirectional junctions in wide bandgap semiconductor materials
US20100207100A1 (en) Radiation-Emitting Semiconductor Body
Wu et al. III-nitride nanostructures: Emerging applications for Micro-LEDs, ultraviolet photonics, quantum optoelectronics, and artificial photosynthesis
US9768349B2 (en) Superlattice structure
Arcara Tunnel junctions in nitride heterostructures for optoelectronic applications
Thahab et al. InAlGaN quaternary multi-quantum wells UV laser Diode performance and characterization
Mikawa et al. Conference 9363: Gallium Nitride Materials and Devices X
Selmane et al. Tailoring the characteristics of a GaN (n)/InxGa1-xN/GaN/AlGaN/GaN (p) light emitting diode by quantum well number and indium mole fraction

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant