KR20200138449A - 상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치 - Google Patents

상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치 Download PDF

Info

Publication number
KR20200138449A
KR20200138449A KR1020207034778A KR20207034778A KR20200138449A KR 20200138449 A KR20200138449 A KR 20200138449A KR 1020207034778 A KR1020207034778 A KR 1020207034778A KR 20207034778 A KR20207034778 A KR 20207034778A KR 20200138449 A KR20200138449 A KR 20200138449A
Authority
KR
South Korea
Prior art keywords
perspective
eyepiece
path
view
optical
Prior art date
Application number
KR1020207034778A
Other languages
English (en)
Other versions
KR102345444B1 (ko
Inventor
춘유 가오
유시앙 린
홍 후아
Original Assignee
매직 립, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매직 립, 인코포레이티드 filed Critical 매직 립, 인코포레이티드
Publication of KR20200138449A publication Critical patent/KR20200138449A/ko
Application granted granted Critical
Publication of KR102345444B1 publication Critical patent/KR102345444B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1066Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/02Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with scanning movement of lens or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0145Head-up displays characterised by optical features creating an intermediate image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/015Head-up displays characterised by mechanical features involving arrangement aiming to get less bulky devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality

Abstract

본 발명은 투시 이미지 경로의 불투명도가 변조될 수 있고 가상 이미지가 투시 이미지의 일부를 가리고 또한 상기 투시 뷰가 상기 가상 뷰의 일부를 가릴 수도 있도록, 투시 이미지 경로를 가상 이미지 경로와 결합할 수 있는 컴팩트한 광학적 투시 헤드-장착형 디스플레이(compact optical see-through head-mounted display)를 포함한다.

Description

상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치{APPARATUS FOR OPTICAL SEE-THROUGH HEAD MOUNTED DISPALY WITH MUTUAL OCCLUSION AND OPAQUENESS CONTROL CAPABILITY}
[0001] 본원은 2012년 4월 5일에 출원된 미국 가출원 번호 제61/620,574호 및 2012년 4월 5일에 출원된 미국 가출원 번호 제61/620,581호에 대한 우선권을 주장하며, 이 문헌들의 개시내용은 그 전체가 본 명세서에 참조로서 포함된다.
[0002] 본 발명은 미국 육군에 의해 수여된 SBIR 계약 번호 W91CRB-12-C-0002 하에서 부분적으로 이루어졌다. 미국 정부는 본 발명에 대한 소정의 권리들을 갖는다.
[0003] 본 발명은 일반적으로 헤드-장착형 디스플레이들에 관한 것이며, 보다 구체적으로, 그러나 배타적인 것은 아닌, 실제의 객체들이 전방에 위치한 컴퓨터에 의해 구현되는 가상 객체들에 의해서 가려질 수 있거나 이와 반대로 될 수 있는, 불투명도 제어 및 상호 가림 능력(mutual occlusion capability)을 갖는 광학적 투시 헤드-장착형 디스플레이들에 관한 것이다.
[0004] 수십년 동안에, 증강 현실(AR) 기술은 의료 및 군사 트레이닝, 엔지니어링 설계 및 프로토타이핑, 원격조작(tele-manipulation)과 텔레프레즌스(tele-presence), 및 개인용 엔터테인먼트 시스템들과 같은 수 많은 애플리케이션들에 적용되어왔다. 투시 헤드-장착형 디스플레이(See-through Head-Mounted DISPLAY: ST-HMD)들은 가상 뷰(virtual view)들을 물리적 장면(physical scene)과 합치기 위한 증강된 현실 시스템의 기술들을 가능하게 하는 것이다. 2개의 타입, 즉 광학적 타입과 비디오 타입의 ST-HMD들이 존재한다(J. Rolland and H. Fuchs, "Optical versus video See-through head mounted Displays," In Fundamentals of Wearable Computers and Augmented Reality, pp.113-157, 2001.). 비디오 투시 방식의 주된 단점들로는 투시 뷰의 이미지 품질의 저하, 입력 비디오 스트림의 프로세싱으로 인한 이미지 래그(image lag), 하드웨어/소프트웨어 오동작으로 인한 투시 뷰의 잠재적 손실을 포함할 수 있다. 이와는 대조적으로, 광학적 투시 HMD(OST-HMT)는 빔스플리터를 통하여 현실 세계의 직접적인 뷰를 제공함으로써 현실 세계의 뷰에 최소한의 영향을 준다. 이는 라이브 환경에 대한 사용자 인식이 중요한 애플리케이션들의 요구에 있어서 매우 바람직하다.
[0005] 그러나, 광학적 투시 HMD들 개발하는 것은 복잡한 기술적 과제들에 직면하게 된다. 이러한 중요한 문제들 중 하나는 OST-HMD에서 가상 뷰들이 가림 능력(occlusion capability) 부족으로 인해 현실 세계에서는 떠있는 "고스트처럼(ghost-like)" 보인다는 것이다. 도 1은 통상적인 OST-HMD을 통해 보여지는 증강된 뷰(도 1a)와 가림 가능한 OST-HMD(OCOST-HMD) 시스템을 통해 보여지는 증강된 뷰(도 1b)의 비교 예시를 도시한 것이다. 이 도면에서는, 가상의 자동차 모델이 실제의 객체를 나타내는 솔리드 플랫폼(solid platform) 상에 중첩된다. 도 1a에 도시된 바와 같이 적절한 가림 관리가 없다면, 통상적인 AR 뷰에서, 자동차는 플랫폼과 믹싱되며(mixed) 자동차와 플랫폼의 깊이 관계를 구별하기 어렵다. 이와는 대조적으로, 도 1b에 도시된 바와 같이, 적절한 가림 관리에 의해서, 자동차는 플랫폼의 일부를 블록킹하고 자동차가 플랫폼의 상단에 안착된 것이 명확하게 식별될 수 있다. AR 디스플레이에 가림 능력을 부가하는 것은 가상 객체들을 실제 환경에 현실감 있게 합치는 것을 가능하게 한다. 이러한 가림에 의해서 가능해지는 능력은 AR 디스플레이 기술에 혁신적인 영향을 줄 수 있으며 수많은 증강 현실 기반 애플리케이션들에서 매우 가치가 있다.
[0006] OCOST-HMD 시스템은 통상적으로 2개의 주요한 하위-시스템들을 포함한다. 제 1 하위-시스템은 마이크로디스플레이 상에 디스플레이되는 확대된 이미지를 사용자가 볼 수 있게 하는 접안렌즈 광학체(eyepiece optics)이며, 제 2 하위-시스템은 현실 세계의 외부 장면으로부터의 광을 수집하고 변조하는 릴레이 광학체(relay optics)로서, 이는 뷰어들에 제공될 때 외부 장면에 대한 불투명도 및 가림 제어를 가능하게 한다. 실제로 휴대가능하고 경량인 OCOST-HMD 시스템을 만드는데 있어서의 핵심 과제들은 3개의 주요한 이슈들, 즉 (1) 시스템에 상당한 중량과 체적을 부가하지 않으면서 2개의 하위시스템들들의 통합을 가능하게는 광학적 설계(optical scheme), (2) 외부 장면의 좌표 시스템의 패리티(parity)를 유지하는 적합한 광학적 방법, (3) HMD 개발자들에게 언제나 꿈이 되어 왔던 엘레겐트한(elegant) 폼 팩터(form factor)로 이러한 광학적 하위시스템들의 설계를 가능하게 하는 광학적 설계 방법을 처리하는 것에 있다. 몇몇 가림 가능한 광학적 ST-HMD 개념들이 개발되었다(미국 특허, 7,639,208 B1, Kiyokawa, K., Kurata, Y., and Ohno, H., "An Optical See-through Display for Mutual Occlusion with a Real-time Stereo Vision System," Elsevier Computer & Graphics, Special Issue on "Mixed Realities - Beyond Conventions," Vol.25, No.5, pp.2765-779, 2001. K. Kiyokawa, M. Billinghurst, b. Campbell, e. Woods, "An Occlusion-Capable Optical See-through Head Mount Display for Supporting Co-located Collaboration." ISMAR 2003, pp. 133-141). 예를 들어, Kiyokawa 등은 통상적인 렌즈들, 프리즘들 및 미러들을 사용하는 ELMO 시리즈 가림 디스플레이(occlusion dispaly)들을 개발하였다. 사용되는 요소들의 수로 인해서 뿐만 아니라, 보다 중요하게는 광학적 시스템들의 회전적으로 대칭성인 성질로 인해서, 기존의 가림-가능한 OST-HMD들은 헬멧형의 부피가 나가는 폼 팩터를 갖는다. 이들은 무거운 중량 및 복잡한 설계로 인하여 오직 실험실 환경에서만 사용되어 왔다. 이러한 크고 무거운 헬멧형의 폼 팩터는 수많은 수요가 있는 현재 출현하고 있는 애플리케이션들을 위한 기술을 받아들이지 못하게 하고 있다.
[0007] 본 발명은 불투명 제어 및 상호 가림 능력을 가진 광학적 투시 헤드-장착형 디스플레이(OST-HMD) 디바이스에 관한 것이다. 이 디스플레이 시스템은 통상적으로 디스플레이된 가상 이미지를 보여주기 위한 가상 뷰 경로(virtual view path) 및 현실 세계의 외부 장면을 보여주기 위한 투시 경로(see-through path)를 포함한다. 본 발명에서, 가상 뷰 경로는 가상 이미지 컨텐츠를 제공하기 위한 미니어처(miniature) 이미지 디스플레이 유닛 및 사용자가 확대된 가상 이미지를 볼 수 있게 하는 접안렌즈를 포함한다. 투시 경로는 외부 장면으로부터 광을 직접 캡처하여 적어도 하나의 중간 이미지를 형성하는 대물렌즈 광학체, 투시 경로 내의 중간 이미지 플레인에 또는 그 근처에 배치되어서 그 투시 경로의 불투명도를 제어 및 변조하는 공간적 광 변조기(SLM), 및 변조된 투시 뷰를 뷰어가 볼 수 있게 하는 접안렌즈 광학체를 포함한다. 투시 경로 내에서, 대물렌즈 광학체 및 접안렌즈는 함께 현실 세계로부터의 광을 뷰어의 눈에 전달하기 위한 릴레이 광학체로서 기능한다. 컴팩트한 폼 팩터를 달성하고 뷰포인트 오프셋을 줄이기 위해서, 투시 경로는 몇 개의 반사성 표면들을 통해서 2개의 층들, 즉 외부 장면으로부터 입사 광을 수용하는 전방 층(front layer) 및 전방 층에 의해서 캡처된 광을 뷰어의 눈에 커플링하는 후방 층(back layer)으로 폴딩(folding)된다. 빔스플리터에 의해서 투시 경로가 가상 이미지 경로와 합쳐지며, 이에 따라 디스플레이된 가상 컨텐츠 및 변조된 투시 이미지를 뷰잉하도록 동일한 접안렌즈가 두 경로들에 의해서 공유된다. 마이크로디스플레이 및 SLM은 빔스플리터를 통해 서로 광학적으로 컨쥬게이트되며(optically conjugate), 이것은 픽셀 레벨 가림 조작을 가능하게 한다. 본 발명에서, 접안렌즈, 대물렌즈 광학체, 또는 이 둘은 회전적으로 대칭인 렌즈들 또는 비-회전적으로(non-rotationally) 대칭인 프리폼(freeform) 광학체일 수 있다. 본 발명의 중요한 양상들 중 하나에서, 본 발명은, 컴팩트하고 경량인 OCOST-HMD 설계를 달성하기 위해, 접안렌즈 광학체, 대물렌즈 광학체, 또는 이 둘다에 프리폼 광학적 기술을 활용할 수 있다.
[0008] 광학적 경로들을 폴딩하기 위한 반사성 표면들은 평면형 미러들, 광학적 능력을 가진 구형의, 비구형의 또는 프리폼의 표면들일 수 있다. 본 발명의 다른 중요한 양상에서, 반사성 표면들 중 일부는 프리폼 광학 기술을 이용할 수 있다. 반사성 표면들 중 일부는 또한 접안렌즈 또는 대물렌즈 광학체의 일체형 부분이 되도록 전략적으로 설계될 수 있으며, 여기서 반사성 표면들은 컴팩트한 디스플레이 설계를 달성하기 위한 광학적 경로의 폴딩을 용이하게 할 뿐만 아니라 광학적 능력에 기여하며 광학적 수차를 보정하기도 한다. 예시적인 구성에서, 본 발명은 접안렌즈 또는 대물렌즈 광학체로서 1회-반사 또는 다회 반사 프리폼 프리즘을 사용할 수 있으며, 여기서 이 프리즘은 굴절성 표면들 그리고 광학적 경로를 폴딩하고 수차들을 보정하기 위한 하나 이상의 반사성 표면들을 포함하는 단일의 광학적 요소이다.
[0009] 본 발명의 다른 중요한 양상에서, 투시 경로 내의 대물렌즈 광학체는 적어도 하나의 액세스 가능한 중간 이미지를 형성하며, 이 이미지 근처에서 SLM이 배치되어서 불투명도 제어 및 투시 뷰 변조를 제공한다. 본 발명에서는, 반사-타입(reflection-type) SLM 또는 투과-타입(transmission-type) SLM이 가림 제어를 위해 투시 뷰를 변조하도록 사용될 수 있다. 대물렌즈 광학체에 있어서의 보다 긴 백 초점 거리(back focal distance)는, 투과-타입 SLM보다는 반사-타입 SLM에서 요구된다. 반사-타입 SLM은 투과-타입 SLM보다 높은 광 효율의 이점을 가질 수 있다.
[0010] 본 발명의 다른 중요한 양상에서, 투시 경로는 홀수 또는 짝수 개의 중간 이미지들을 형성할 수 있다. 홀수 개의 중간 이미지들의 경우에, 투시 경로에서 투시 뷰를 반전(invert) 및/또는 복구(revert)시키는 광학적 방법이 제공된다. 예를 들어, 투시 경로에 관여하는 반사 수에 따라, 가능한 방법들의 예들로는, 추가의 반사 또는 반사들을 삽입하는 것, 루프 미러 표면을 사용하는 것, 또는 직립 프리즘(erection prism) 또는 렌즈를 삽입하는 것을 포함하나, 이에 한정되지 않는다. 짝수 개의 중간 이미지들의 경우에는, 투시 뷰 내에 어떠한 패리티 변화도 없으면, 어떠한 이미지 직립 요소도 필요하지 않다. 예를 들어, 다회 반사 프리폼 프리즘 구조체(통상적으로 2 회보다 많이 반사)가 접안렌즈 또는 대물렌즈 광학체 또는 이 둘로서 사용될 수 있으며, 이것은 대물렌즈 및/또는 접안렌즈 프리즘 안쪽에서 투시 광학 경로를 다수 회 폴딩하는 것을 가능하게 하여서 이 프리즘 안쪽에 중간 이미지(들)를 형성하며, 이는 직립 루프 반사성 표면을 사용할 필요성을 제거한다. 직립 프리즘을 제거하는 것의 잠재적 이점은, 이러한 접근방식이 보다 컴팩트한 설계로 이어질 수 있다는 것이다.
[0011] 전술한 발명의 내용 및 본 발명의 예시적인 실시예들에 대한 다음의 상세한 설명은 첨부 도면들과 함께 독해될 때에 더 이해될 수 있다.
[0012] 도 1은 가림 능력이 없는 광학적 투시 HMD(도 1a) 및 가림 능력을 갖는 광학적 투시 HMD(도 1b)를 통해 보여진 AR 뷰들을 개략적으로 도시한 것이다.
[0013] 도 2는 모노큘러 광학적 모듈(monocular optical module)로서 나타낸 본 발명에 따른 예시적인 광학적 레이아웃을 개략적으로 도시한 것이다.
[0014] 도 3은 프리폼 광학적 기술을 기반으로 하는 본 발명에 따른 바람직한 실시예를 개략적으로 도시한 것이다. 이 실시예는 1회-반사 접안렌즈 프리즘, 1회-반사 대물렌즈 프리즘, 반사-타입 SLM 및 루프 반사성 표면을 포함한다.
[0015] 도 4는 프리폼 광학적 기술을 기반으로 하는 본 발명에 따른 다른 바람직한 실시예를 개략적으로 도시한 것이다. 이 실시예는 2회-반사 접안렌즈 프리즘, 2회-반사 대물렌즈 프리즘, 4회-반사 대물렌즈 프리즘 및 반사-타입 SLM을 포함한다.
[0016] 도 5는 프리폼 광학적 기술을 기반으로 하는 본 발명에 따른 다른 바람직한 실시예를 개략적으로 도시한 것이다. 이 실시예는 2회-반사 접안렌즈 프리즘, 1회-반사 대물렌즈 프리즘, 반사-타입 SLM 및 루프 반사성 표면을 포함한다.
[0017] 도 6은 프리폼 광학적 기술을 기반으로 하는 본 발명에 따른 다른 바람직한 실시예를 개략적으로 도시한 것이다. 이 실시예는 2회-반사 접안렌즈 프리즘, 3회-반사 대물렌즈 프리즘, 및 투과-타입 SLM을 포함한다.
[0018] 도 7은 프리폼 광학적 기술을 기반으로 하는 본 발명에 따른 다른 바람직한 실시예를 개략적으로 도시한 것이다. 이 실시예는 2회-반사 접안렌즈 프리즘, 2회-반사 대물렌즈 프리즘, 반사-타입 SLM 및 릴레이 렌즈를 포함한다.
[0019] 도 8은 도 3에서의 예시적인 레이아웃에 기초하는 본 발명에 따른 OCOST-HMD 시스템의 예시적인 설계를 개략적으로 도시한 것이다.
[0020] 도 9는 3mm 동공(pupil) 직경을 사용하여서 평가된 컷오프 주파수 40lps/mm(line pairs per millimeter:밀리미터당 라인 쌍들)에서 도 8에서의 설계의 가상 디스플레이 경로의 다색 변조 전달 함수(polychromatic modulation transfer function)들의 필드 맵 플롯을 도시한 것이다.
[0021] 도 10은 동일한 프리폼 구조를 가진 접안렌즈 광학체 및 대물렌즈 광학체를 갖는 도 3에서의 예시적인 레이아웃에 기초한 본 발명에 따른 OCOST-HMD 시스템의 예시적인 설계를 개략적으로 도시한 것이다.
[0022] 도 11은 3mm 동공 직경을 사용하여서 평가된 컷오프 주파수 40lps/mm(line pairs per millimeter)에서 도 10에서의 설계의 가상 디스플레이 경로의 다색 변조 전달 함수들의 필드 맵 플롯을 도시한 것이다.
[0023] 도 12는 본 발명의 실시예에 따른 이미지 처리 파이프라인의 일 예의 블록도를 도시한 것이다.
[0024] 도 13은 표 1: 접안렌즈 프리즘의 표면 1의 광학적 표면 규정(optical surface prescription)을 도시한 것이다.
[0025] 도 14는 표 2: 접안렌즈 프리즘의 표면 2의 광학적 표면 규정을 도시한 것이다.
[0026] 도 15는 표 3: 접안렌즈 프리즘의 표면 3의 광학적 표면 규정을 도시한 것이다.
[0027] 도 16은 표 4: 접안렌즈 프리즘의 위치 및 배향 파라미터들을 도시한 것이다.
[0028] 도 17은 표 5: 대물렌즈 프리즘의 표면 4의 광학적 표면 규정을 도시한 것이다.
[0029] 도 18은 표 6: 대물렌즈 프리즘의 표면 5의 광학적 표면 규정을 도시한 것이다.
[0030] 도 19는 표 7: 대물렌즈 프리즘의 표면 6의 광학적 표면 규정을 도시한 것이다.
[0031] 도 20은 표 8: 대물렌즈 프리즘의 위치 및 배향 파라미터들을 도시한 것이다.
[0032] 도 21은 표 9: DOE 플레이트들(882 및 884)에 대한 표면 파라미터들을 예시한 것이다.
[0033] 도 22는 표 10: 프리폼 프리즘의 표면 1의 광학적 표면 규정을 도시한 것이다.
[0034] 도 23은 표 11: 프리폼 프리즘의 표면 2의 광학적 표면 규정을 도시한 것이다.
[0035] 도 24는 표 12: 프리폼 프리즘의 표면 3의 광학적 표면 규정을 도시한 것이다.
[0036] 도 25는 표 13: 접안렌즈로서의 프리폼 프리즘의 위치 및 배향 파라미터들을 도시한 것이다.
[0037] 본 발명에 따른 실시예들이 첨부된 도면들을 참조하여 완전하게 기술될 것이다. 다음의 설명은 본 발명의 이해를 제공하기 위해서 제시된다. 그러나, 본 발명은 이러한 세부사항들 없이도 실시될 수 있음이 명백할 것이다. 또한, 본 발명은 다양한 형태들로 구현될 수 있다. 그러나, 이하에서 기술되는 본 발명의 실시예들은 본 명세서에서 제시된 실시예들로만 한정되는 것으로 해석되어서는 안된다. 이보다는, 이러한 실시예들, 도면들 및 실례들은 예시적인 것이며 본 발명을 모호하게 하지 않는 것으로 의도된다.
[0038] 가림가능한(occlusion capable) 광학적 투시 헤드-장착형 디스플레이(optical see-through head-mounted display: OCOST-HMD) 시스템은 통상적으로 디스플레이된 가상 이미지를 보여주기 위한 가상 뷰 경로 및 현실 세계의 외부 장면을 보여주기 위한 투시 경로를 포함한다. 이하에서는, 가상 뷰 경로를 통해서 관찰된 가상 이미지를 가상 뷰로 지칭하고, 투시 경로를 통해서 관찰된 외부 장면을 투시 뷰로 지칭한다. 본 발명의 일부 실시예들에서, 가상 뷰 경로는 가상 이미지 컨텐츠를 공급하기 위한 마이크로디스플레이 유닛(microdisplay unit) 및 그를 통해서 사용자가 확대된 가상 이미지를 보게 하는 접안렌즈(eyepiece)를 포함한다. 투시 경로는, 외부 장면으로부터의 광을 캡처하여 적어도 하나의 중간 이미지를 형성하는 대물렌즈 광학체(objective optics), 투시 뷰의 불투명도를 제어 및 변조하도록 투시 경로 내의 중간 이미지 플레인에 또는 그 근처에 배치된 공간적 광 변조기(spatial light modular: SLM), 및 그를 통해서 상기 변조된 투시 뷰가 관찰자에 의해서 보여지게 되는 접안렌즈를 포함한다. 투시 경로에서, 대물렌즈 광학체 및 접안렌즈는 함께 현실 세계로부터의 광을 관찰자의 눈으로 전달하기 위한 릴레이 광학체 역할을 한다. 투시 경로 내의 중간 이미지는 투시 이미지로 지칭되며, SLM에 의해서 변조된 중간 이미지는 변조된 투시 이미지로 지칭된다. OCOST-HMD는 가상 뷰 및 투시 뷰의 결합된 뷰(combined view)를 생성하며, 여기서 가상 뷰는 투시 뷰의 일 부분들을 가리게 된다.
[0039] 몇몇 실시예들에서, 본 발명은 투시 경로(207)를 가상 뷰 경로(205)와 결합함으로써 투시 경로의 불투명도가 변조될 수 있고 가상 뷰가 투시 뷰의 일부를 가리고 그 반대의 경우도 가능하도록 할 수 있는, 컴팩트한 광학적 투시 헤드-장착형 디스플레이(200)를 포함하며, 이 디스플레이는,
a. 사용자에 의해서 보여질 이미지를 생성하기 위한 마이크로디스플레이(250) ―상기 마이크로디스플레이는 자신과 연관된 가상 뷰 경로(205)를 가짐―;
b. 가려질 투시 뷰의 부분들을 블록킹(blocking)하도록 현실 세계의 외부 장면으로부터의 광을 수정하기 위한 공간적 광 변조기(240) ―상기 광 변조기는 자신과 연관된 투시 경로(207)를 를 가짐―;
c. 외부 장면으로부터 입사되는 광을 수용하고 이 광을 공간적 광 변조기(240)에 포커싱(focusing)하도록 구성된 대물렌즈 광학체(220);
d. 마이크로디스플레이(250)로부터의 가상 이미지와 공간적 광 변조기로부터 전달되는 외부 장면의 변조된 투시 이미지를 서로 합쳐(merge) 결합된 이미지를 생성하도록 구성된 빔스플리터(230);
e. 결합된 이미지를 확대하도록 구성된 접안렌즈(210);
f. 접안렌즈와 대면하도록 구성되며, 가상 뷰가 투시 뷰의 일부를 가리는, 가상 뷰와 투시 뷰의 결합된 뷰를 사용자가 관찰하게 하는 출사 동공(exit pupil)(202);
g. 가상 뷰 경로(205) 및 투시 경로들(207)을 2개의 층들로 폴딩(folding)하도록 구성된 복수의 반사성 표면들을 포함한다.
[0040] 일부 실시예들에서, 적어도 3개의 반사성 표면들이 가상 경로 및 투시 경로를 2개의 층들로 폴딩하는데 사용된다. 제 1 반사성 표면(M1)은 외부 장면으로부터 광을 반사하도록 배향된 디스플레이의 전방 층 상에 배치된다. 대물렌즈 광학체(220)는 디스플레이의 전방 층 상에 배치된다. 제 2 반사성 표면(M2)은 공간적 광 변조기 내로 광을 반사시키도록 배향된 디스플레이의 전방 층 상에 배치된다. 공간적 광 변조기(240)는 투시 경로(207)의 중간 이미지 플레인에 또는 그 근처에 배치되며, 투시 경로(207)를 따라서 빔스플리터(230)를 통해 대물렌즈 광학체(220) 및 접안렌즈(210)와 광학적으로 연통한다. 마이크로디스플레이(250)는 접안렌즈(210)의 초점 플레인(focal plane)에 배치되며, 가상 뷰 경로(205)를 따라서 빔스플리터(230)를 통해 접안렌즈(210)와 광학적으로 연통한다. 빔스플리터(230)는, 투시 경로(207)가 가상 뷰 경로(205)와 합쳐지고 투시 경로 및 가상 뷰 경로 양쪽 모두로부터의 광이 접안렌즈(210)를 향하도록, 배향된다. 접안렌즈(210)는 디스플레이의 후방 층 상에 배치된다. 제 3 반사성 표면(M3)은 디스플레이의 후방 층 상에 배치되며, 접안렌즈로부터의 광을 출사 동공(202)으로 반사하도록 배향된다.
[0041] 일부 실시예들에서, 대물렌즈 광학체(220)는 외부 장면의 광을 수용하고, 그 외부 장면의 광을 포커싱하여서 공간적 광 변조기(240) 상에 투시 이미지를 형성한다. 공간적 광 변조기(240)는 가려질 투시 이미지의 부분을 제거하도록 투시 이미지를 수정한다. 마이크로디스플레이(250)는 빔스플리터(230)로 가상 이미지를 투사한다. 공간적 광 변조기(240)는 변조된 투시 이미지를 빔스플리터(230)로 투과하며, 빔스플리터(230)는 2개의 이미지들을 결합하여, 가상 이미지가 투시 이미지의 일부를 가리는 결합된 이미지를 생성한다. 이어서, 빔스플리터(230)는 결합된 이미지를 접안렌즈(210)에 투사하며, 접안렌즈는 이 이미지를 출사 동공(202)에 투사한다.
[0042] 일부 실시예들에서, 본 발명은 현실 세계의 외부 장면을 가상 뷰와 결합할 수 있고, 여기서 외부 장면의 불투명도가 변조되고, 디지털적으로 생성된 가상 뷰가 외부 장면의 일부를 가리며 그 반대의 경우도 가능한, 광학적 투시 헤드-장착형 디스플레이(200)를 포함한다. 본 발명은 이미지를 투과시키는 마이크로디스플레이(250), 외부 장면으로부터의 광을 수정하기 위한 공간적 광 변조기(240), 외부 장면을 캡처하는 대물렌즈 광학체(220), 마이크로디스플레이(250)로부터 디지털적으로 생성된 가상 이미지를 공간적 광 변조기로부터의 변조된 외부 장면과 결합하도록 구성된 빔스플리터(230), 가상 이미지 및 변조된 외부 장면을 확대하는 접안렌즈(210) 및 사용자가 가상 이미지 및 수정된 외부 장면의 결합된 뷰를 관찰하게 하는 출사 동공(202)을 포함한다.
[0043] 일부 실시예들에서는, 적어도 3개의 반사성 표면들이 사용되어 가상 뷰 경로(205) 및 투시 경로(207)를 2개의 층으로 폴딩한다. 대물렌즈 광학체(220)는 디스플레이의 전방 층 상에 배치되고, 접안렌즈(210)는 디스플레이의 후방 층 상에 배치된다. 일련의 미러들이 사용되어서 광을 공간적 광 변조기, 빔스플리터 및 접안렌즈를 거치는 광학적 경로를 따라서 가이드할 수도 있다. 공간적 광 변조기(240)는 투시 경로 내의 중간 이미지 플레인에 또는 그 근처에서 배치된다. 마이크로디스플레이(250)는 마이크로디스플레이로부터의 광이 빔스플리터(230)로 투과되도록 빔스플리터(230)에 대면한다. 빔스플리터(230)는 마이크로디스플레이 및 공간적 광 변조기로부터의 광들을 결합시키며, 빔스플리터로부터의 광 투과의 방향이 접안렌즈(210)와 대면하도록 배향된다. 접안렌즈(210)는 빔스플리터로부터의 광이 접안렌즈를 거쳐 출사 동공으로 투과되도록 배치된다.
[0044] 일부 실시예들에서, 대물렌즈 광학체(220)는 외부 장면의 이미지를 수용하여서 이 이미지를 공간적 광 변조기(240)에 반사 또는 굴절시킨다. 공간적 광 변조기(240)는 가려질 이미지의 부분을 제거하도록 외부 장면으로부터의 광을 수정하고 광을 빔스플리터로 투과 또는 반사시킨다. 마이크로디스플레이(250)는 빔스플리터(230)로 가상 이미지를 투과하며, 빔스플리터(230)는 2개의 이미지들을 결합하여, 가상 이미지(205)가 외부 장면의 이미지의 일부를 가리는 결합된 이미지를 생성한다. 이어서, 빔스플리터(230)는 결합된 이미지를 접안렌즈(210)에 투사하며, 접안렌즈는 이 이미지를 출사 동공(208)에 전달한다. 이로써, 사용자는 결합된 이미지를 관찰하게 되며, 이 결합된 이미지에서는 가상 이미지가 외부 장면의 일부를 가리게 나타난다.
[0045] 도 2는 컴팩트한 OCOST-HMD 시스템을 달성하기 위한 본 발명에 따른 개략적 레이아웃(200)을 도시한 것이다. 이 예시적인 레이아웃(200)에서, 가상 뷰 경로(205)(파선으로 도시됨)는 가상 뷰의 광 전파 경로를 나타내며, 디스플레이 컨텐츠를 공급하기 위한 마스크로디스플레이(250) 및 디스플레이된 컨텐츠의 확대된 이미지를 사용자가 볼 수 있게 하는 접안렌즈(210)를 포함하며, 투시 경로(207)(실선으로 도시됨)는 투시 뷰의 광 전파 경로를 나타내며, 현실 세계의 외부 장면으로부터의 광을 뷰어의 눈에 전달하기 위한 릴레이 광학체로서 기능하는 대물렌즈 광학체(220) 및 접안렌즈(210) 양쪽 모두를 포함한다. 컴팩트한 폼 팩터를 달성하고 뷰포인트 오프셋을 줄이기 위해서, 투시 경로(207)는 몇 개의 반사성 표면들(M1 내지 M3)을 통해 뷰어의 눈 전방에서 2개의 층들로 폴딩된다. 외부 장면으로부터 입사되는 광을 수용하는 전방 층(215)은 주로 대물렌즈 광학체(220) 및 필수 반사성 표면들(M1 및 M2)을 포함한다. 전방 층에 의해서 캡처된 광을 뷰어의 눈에 커플링하는 후방 층(217)은 주로 접안렌즈(210) 및 다른 필수 광학적 컴포넌트들, 예를 들어 추가의 폴딩 미러(additional folding mirror)(M3)를 포함한다. 전방 층(215)에서, 반사성 표면(M1)은 외부 장면으로부터 입사된 광을 대물렌즈 광학체(220)로 향하게 하며, 대물렌즈 광학체(220)를 통과한 후에, 광은 반사성 표면(M2)을 거쳐 후방 층(217)을 향해서 폴딩된다. 투시 경로(207) 내의 대물렌즈 광학체(220)는 적어도 하나의 액세스 가능한 중간 이미지를 형성한다. 공간적 광 변조기(SLM)(240)는 통상적으로 대물렌즈 광학체의 백 초점 플레인(back focual plane)에 있는 액세스 가능한 중간 이미지의 위치에 또는 그 근처에 배치되어서 투시 뷰의 불투명도 제어 및 투시 뷰 변조를 제공한다. 본 발명에서, SLM은 그를 통과하거나 이에 의해서 반사된 광 빔의 강도를 변조할 수 있는 광 제어 디바이스이다. SLM은 반사-타입 SLM, 예를 들어, LCoS(liquid crystal on silicon) 디스플레이 패널 또는 디지털 미러 디바이스(DMD)이거나 투과-타입 SLM, 예를 들어, 액정 디스플레이(LCD) 패널일 수 있다. 이 두 타입의 SLM 모두는 투시 경로(207) 내의 가림 제어를 위해서 투시 뷰를 변조하도록 사용될 수 있다. 도 2a는 반사-타입 SLM을 사용하는 예시적인 구성을 도시한 것이고, 도 2b는 투과-타입 SLM을 사용하는 예시적인 구성을 도시한 것이다. 대물렌즈 광학체(220)의 초점 플레인 위치에 따라서, SLM(240)은 도 2a의 반사-타입 SLM에서 SLM2의 위치에서 배치되거나, 도 2b의 투과-타입 SLM에서 SLM1의 위치에서 배치될 수 있다. 빔스플리터(230)는 투시 경로(207)를 폴딩하여 이를 가상 뷰 경로(205)와 합치며, 이에 따라 동일한 접안렌즈(210)가 디스플레이된 가상 컨텐츠 및 변조된 투시 뷰를 뷰잉하는데 공유되도록 한다. 반사성 표면(M3)은 가상 뷰 경로(205) 및 투시 경로(207)가 출사 동공(202)을 향하게 하며, 여기서 뷰어의 눈은 믹싱된(mixed) 가상 및 실제 뷰를 관찰하게 된다. 반사성 표면들(M1 내지 M3)은 단독형 요소(예를 들어, 미러)이거나 접안렌즈(210) 또는 대물렌즈 광학체(220)의 일체형 부분이 되도록 전략적으로 설계될 수 있다. 마이크로디스플레이(250) 및 SLM(240) 모두는 대물렌즈 광학체(220)의 초점 플레인에 배치되어, 빔스플리터(230)를 통해 서로 광학적으로 컨쥬게이트되며, 이로 인해 투시 뷰에 대한 픽셀 레벨 불투명도 제어가 가능하게 된다. SLM(240), 마이크로디스플레이(250) 및 빔스플리터(230)를 어셈블리한 유닛이, 예시적인 도면들에서 도시된 바와 같이 후방 층 내에 포함되어 있지만, 접안렌즈의 백 초점 거리가 대물렌즈 광학체의 백 초점 거리보다 커서 이 결합 유닛을 대물렌즈 광학체에 보다 가깝게 배치하는 것이 바람직할 경우에는, 이 유닛을 전방 층 내에 포함시킬 수도 있다. 위에서 기술된 방식은 컴팩트한 OCOST-HDM 솔루션 및 최소의 뷰 축 시프트(view axis shift)를 달성하는 것을 가능하게 한다.
[0046] 그의 이점들 중 하나로서, 광학적 레이아웃(200)은 회전적으로 대칭인 광학체 및 비회전적으로 대칭인 프리폼 광학체를 포함하는 수많은 타입의 HMD 광학체들로의 적용가능성을 가지게 되며, 이에 한정되지 않는다. 광학적 경로들을 폴딩하기 위한 반사성 표면들(M1 내지 M3)은 평면형 미러들, 광학적 능력을 가진 구형의, 비구형의, 또는 프리폼의 표면들일 수 있다. 반사성 표면들 중 일부는 프리폼 광학 기술을 사용할 수도 있다. 반사성 표면들 중 일부는 또한 접안렌즈(210) 또는 대물렌즈 광학체(220)의 일체형 부분이 되도록 전략적으로 설계될 수도 있으며, 여기서 반사성 표면들은 컴팩트한 디스플레이 설계를 달성하기 위한 광학적 경로의 폴딩을 용이하게 할 뿐만 아니라 광학적 능력에 기여하며 광학적 수차를 보정하기도 한다. 도 3에 도시된 예시적인 구성에서, 본 발명은 접안렌즈 또는 대물렌즈 광학체로서 1회-반사 프리폼 프리즘의 사용을 입증하였으며, 이 프리즘은 2개의 굴절성 표면들 및 광학적 경로를 폴딩하고 수차들을 보정하기 위한 하나 이상의 반사성 표면들을 포함하는 단일의 광학적 요소이다. 구성들의 다른 예들에서, 다중-반사 프리폼 프리즘들이 입증되었다.
[0047] 본 발명의 다른 중요한 양상에서, SLM(240)으로 액세스 가능한 중간 이미지 이외에, 투시 경로(207)는 대물렌즈 광학체(220) 또는 접안렌즈(210) 또는 이 둘에 의해서 추가의 중간 이미지들(260)을 형성할 수도 있다. 예를 들어, 다회 반사 프리폼 프리즘 구조(통상적으로 3 회 이상 반사)가 대물렌즈 광학체 또는 접안렌즈 또는 이 둘로서 사용될 수 있으며, 이는 대물렌즈 및/또는 접안렌즈 프리즘 안쪽에서 투시 경로를 다수 회로 폴딩하는 것을 가능하게 하며 이 프리즘 안쪽에서 중간 이미지(들)를 형성할 수 있다. 이로써, 투시 경로(207)는 짝수 개의 또는 홀수 개의 중간 이미지들을 산출할 수 있다. 하나 이상의 중간 이미지 생성의 잠재적 이점은 확장된 광학적 경로 길이, 긴 백 초점 거리 및 실제-뷰 직립 요소(real-view erection element)의 제거의 이점이다.
[0048] 투시 경로(207)에서 생성된 중간 이미지의 총 개수 및 사용된 반사성 표면들의 총 개수에 따라서, 투시 뷰의 좌표 시스템의 패리티를 유지하도록 투시 경로의 투시 뷰를 반전 및/또는 복구시키고, 뷰어가 반전되거나 복구된 뷰를 보는 것을 방지하기 위해서, 투시 뷰 직립 방법이 필요할 수 있다. 구체적으로 투시 뷰 직립 방법에 대해서, 본 발명은 2개의 상이한 이미지 직립 전략들을 고려한다. 총 짝수 회의 반사들이 투시 경로(207)에 관여하고 이것이 투시 뷰의 좌표 시스템의 패리티에 변화를 주지 않는 경우에는, 접안렌즈(210) 및 대물렌즈 광학체(220)의 형태는 짝수 개의 중간 이미지들이 투시 경로(207)에서 생성되도록 설계될 수 있다. 홀수 회의 반사들이 투시 경로(207)에서 관여하고 이것이 투시 뷰의 좌표 시스템의 패리티에 변화를 주는 경우에는, 반사성 표면들(M1 내지 M3) 중 하나가 투시 뷰 직립을 위해서 루프 미러 표면으로 대체될 수 있다. 루프 반사를 사용하여 뷰 직립하는 바람직한 실시예들에 대하여, 도 3 및 도 5를 참조하여 이하에서 설명하도록 한다. 중간 이미지를 사용하여서 뷰 직립하는 바람직한 실시예들에 대하여 도 4, 도 6 및 도 7를 참조하여 이하에서 설명하도록 한다.
[0049] 본 발명의 중요한 양상들 중 하나에서, 본 발명은 컴팩트하고 경량인 OCOST-HMD를 달성하기 위해서 접안렌즈 또는 대물렌즈 광학체 또는 이 둘에서 프리폼 광학 기술을 사용할 수 있다. 도 3은 프리폼 광학적 기술을 기반으로 하는 본 발명에 따른 컴팩트한 OCOST-HMD 설계에 대한 예시적인 방식의 블록도(300)를 도시한 것이다. 후방 층(317) 내의 접안렌즈(310)는 3개의 광학적 프리폼 표면들, 즉 굴절성 표면 S1, 반사성 표면 S2 및 굴절성 표면 S3으로 구성되는 1회-반사 프리폼 프리즘이다. 가상 뷰 경로(305)에서, 마이크로디스플레이(350)로부터 방사된 광선은 굴절성 표면 S3를 통해 접안렌즈(310)로 들어가며, 이어서 반사성 표면 S2에 의해서 반사되고, 굴절성 표면 S1를 통해 접안렌즈(310)를 나가고 출사 동공(302)에 도달하며, 여기서 뷰어의 눈은 마이크로디스플레이(350)의 확대된 가상 이미지를 보도록 정렬된다. 전방 층(315) 내의 대물렌즈 광학체(320)도 또한 3개의 광학적 프리폼 표면들, 즉 굴절성 표면 S4, 반사성 표면 S5 및 굴절성 표면 S6으로 구성되는 1회-반사 프리폼 프리즘이다. 투시 경로(307)에서, 대물렌즈 광학체(320)는 접안렌즈(310)와 함께 동작하여 투시 뷰용의 릴레이 광학체 역할을 한다. 미러(325)에 의해 반사된, 외부 장면으로부터 입사된 광은 굴절성 표면 S4를 통해서 대물렌즈 광학체(320)로 들어가고 이어서 반사성 표면 S5에 의해서 반사되고, 굴절성 표면 S6를 통해 대물렌즈 광학체(320)를 나가며, 광 변조를 위해서 SLM(340) 상에서 그의 초점 플레인에서 중간 이미지를 형성한다. 빔스플리터(330)는 투시 경로(307)에서 변조된 광을 가상 뷰 경로(305)의 광과 합치고, 뷰잉을 위해서 접안렌즈(310)를 향해 폴딩한다. 빔스플리터(330)는 와이어 그리드 타입(wire-grid type) 빔스플리터, 편광 큐브(polarized cube) 빔스플리터 또는 다른 유사한 타입의 빔스플리터들일 수 있다. 이 방식에서는, SLM(340)이 반사-타입 SLM이고, 개략적 레이아웃(200)의 SLM2 위치에 배치하며, 빔스플리터(330)를 통해 마이크로디스플레이(350)와 광학적으로 컨쥬게이트된다.
[0050] 이 예시적인 레이아웃(300)에서는, 개략적 레이아웃(200)의 반사성 표면 M2가 프리폼 반사성 표면 S5로서 대물렌즈 프리즘(320)의 일체형 부분이 되도록 전략적으로 설계되며, 개략적 레이아웃(200)의 반사성 표면 M3는 프리폼 반사성 표면 S2로서 접안렌즈 프리즘(310)의 일체형 부분이 되도록 전략적으로 설계되고, 개략적 레이아웃(200)의 반사성 표면 M1은 투시 경로(307)에서의 총 반사 회수들이 5(홀수)이면 뷰 직립(view erection)을 위한 루프 타입 미러(325)로서 설계된다.
[0051] 이 예시적인 레이아웃(300)에서, 접안렌즈(310) 및 대물렌즈 광학체(320)는 동일한 프리폼 프리즘 구조를 가질 수 있다. 접안렌즈 및 대물렌즈 광학체에 대해서 이러한 동일한 구조를 사용하는 것의 이점은 단일 프리즘의 광학적 설계 전략이 다른 것에도 용이하게 적용될 수 있어서, 광학적 설계를 단순화하는 것을 돕는다는 것이다. 접안렌즈 및 대물렌즈 광학체의 대칭적 구조도 또한 코마(coma), 디스토션(distrotion) 및 래터럴 컬러(lateral color)와 같은 홀수 차수 수차(odd oder abberation)를 보정하는 것을 지원할 수 있다.
[0052] 도 4는 프리폼 광학적 기술을 기반으로 하는 본 발명에 따른 컴팩트한 OCOST-HMD 설계에 대한 다른 예시적인 방식의 블록도(400)를 도시한 것이다. 일 예시적인 구현예에서, 접안렌즈(410)는 2회-반사 프리즘이며 대물렌즈 광학체(420)는 4회-반사 프리즘이다. 대물렌즈 광학체(420) 안쪽에는, 중간 이미지(460)가 투시 뷰를 직립하도록 형성되며 이는 직립 루프 반사성 표면을 사용할 필요를 제거한다. 직립 프리즘(erection prism)을 제거하는 것의 잠재적 이점은 이 시스템 구조가 대물렌즈 프리즘 안쪽에서 수회 광학적 경로를 폴딩함으로써 보다 컴팩트한 설계로 이어질 수 있다는 것이다. 후방 층(417) 내의 접안렌즈(410)는 4개의 광학적 프리폼 표면들, 즉 굴절성 표면 S1, 반사성 표면 S2, 반사성 표면 S1' 및 굴절성 표면 S3로 구성된다. 가상 뷰 경로(405)에서는, 마이크로디스플레이(450)로부터 방사된 광선이 굴절성 표면 S3를 통해 접안렌즈(410)로 들어가며, 이어서 반사성 표면들 S1' 및 S2에 의해 연속적으로 반사되고, 굴절성 표면 S1을 통해 접안렌즈(410)를 나가서 출사 동공(402)에 도달하며, 여기서 뷰어의 눈은 마이크로디스플레이(450)의 확대된 가상 이미지를 보도록 정렬된다. 굴절성 표면 S1 및 반사성 표면 S1'은 동일한 물리적 표면들일 수 있으며 동일한 세트의 표면 규정들을 가질 수 있다. 전방 층(415) 내의 대물렌즈 광학체(420)는 6개의 광학적 프리폼 표면들, 즉 굴절성 표면 S4, 반사성 표면들 S5, S4', S5', 및 S6 및 굴절성 표면 S7로 구성된다. 투시 경로(407)에서는, 대물렌즈 광학체(420)가 접안렌즈(410)와 함께 동작하여 투시 뷰용의 릴레이 광학체 역할을 한다. 현실 세계의 외부 장면으로부터 입사되는 광은 굴절성 표면 S4를 통해 대물렌즈 광학체(420)로 들어가며 이어서 반사성 표면들 S5, S4', S5' 및 S6에 의해서 연속적으로 반사되고, 굴절성 표면 S7을 통해 대물렌즈 광학체(420)를 나가서 광 변조를 위해 SLM(440) 상의 초점 플레인에서 중간 이미지를 형성한다. 굴절성 표면 S4 및 반사성 표면 S4'는 동일한 물리적 표면들일 수 있으며 동일한 세트의 표면 규정들을 가질 수 있다. 반사성 표면 S5 및 반사성 표면 S5'는 동일한 물리적 표면들일 수 있으며 동일한 세트의 표면 규정들을 가질 수 있다. 빔스플리터(430)는 투시 경로(407)에서 변조된 광을 가상 뷰 경로(405)의 광과 합치고 뷰잉을 위해서 이를 접안렌즈(410)를 향해 폴딩한다. 빔스플리터(430)는 와이어 그리드 타입 빔스플리터, 편광 큐브 빔스플리터 또는 다른 유사한 타입 빔스플리터들일 수 있다. 이 방식에서, SLM(440)는 반사-타입 SLM이고, 개략적 레이아웃(200)의 SLM2 위치에 배치되며, 빔스플리터(430)를 통해 마이크로디스플레이(450)와 광학적으로 컨쥬게이트된다.
[0053] 이 예시적인 레이아웃(400)에서는, 개략적 레이아웃(200)의 반사성 표면 M2이 반사성 표면 S6로서 대물렌즈 광학체(420)의 일체형 부분이 되도록 전략적으로 설계되고, 개략적 레이아웃(200)의 반사성 표면 M3는 반사성 표면 S2로서 접안렌즈(410)의 일체형 부분이 되도록 전략적으로 설계되며, 개략적 레이아웃(200)의 반사성 표면 M1은 반사성 표면 S5로서 대물렌즈 광학체(420)의 일체형 부분이 되도록 설계된다. 중간 이미지(460)는 실제-뷰 직립을 위해서 대물렌즈 광학체(410)의 안쪽에 형성된다. 투시 경로(407)에서의 총 반사 회수들이 8(짝수)이면, 루프 타입 미러는 어떠한 반사성 표면상에서도 요구되지 않는다.
[0054] 도 5는 프리폼 광학적 기술을 기반으로 하는 본 발명에 따른 컴팩트한 OCOST-HMD 설계에 대한 다른 예시적인 방식의 블록도(500)를 도시한 것이다. 이 방식은 투과-타입 SLM의 사용을 용이하게 한다. 접안렌즈(510)는 2회-반사 프리즘이며 대물렌즈 광학체(520)는 1회-반사 프리즘이다. 루프 미러(527)가 대물렌즈 광학체(520)의 상단에 배치되어 투시 뷰를 반전하고, 투시 경로(507)를 후방 층(517)을 향해 폴딩한다. 후방 층(517) 내의 접안렌즈(510)는 4개의 광학적 프리폼 표면들, 즉 굴절성 표면(refractive surface) S1, 반사성 표면 S2, 반사성 표면 S1' 및 굴절성 표면 S3으로 구성된다. 가상 뷰 경로(505)에서는, 마이크로디스플레이(550)로부터 방사된 광선이 굴절성 표면 S3를 통해 접안렌즈(510)로 들어가며, 이어서 반사성 표면들 S1' 및 S2에 의해 연속적으로 반사되고, 굴절성 표면 S1을 통해 접안렌즈(510)를 나가서 출사 동공(502)에 도달하며, 여기서 뷰어의 눈은 마이크로디스플레이(550)의 확대된 가상 이미지를 보도록 정렬된다. 굴절성 표면 S1 및 반사성 표면 S1'은 동일한 물리적 표면들일 수 있으며 동일한 세트의 표면 규정들을 가질 수 있다. 전방 층(515) 내의 대물렌즈 광학체(520)는 3개의 광학적 프리폼 표면들, 즉 굴절성 표면 S4, 반사성 표면 S5 및 굴절성 표면 S6로 구성된다. 투시 경로(507)에서는, 대물렌즈 광학체(520)가 접안렌즈(510)와 함께 동작하여 투시 뷰용의 릴레이 광학체 역할을 한다. 현실 세계의 외부 장면으로부터 입사되는 광은 굴절성 표면 S4를 통해 대물렌즈 광학체(520)로 들어가며 이어서 반사성 표면 S5에 의해 반사되고, 굴절성 표면 S6를 통해 대물렌즈 광학체(520)를 나가고, 후방 층(517)을 향해 미러(527)에 의해서 폴딩되어서 광 변조를 위해 SLM(540)의 초점 플레인에서 중간 이미지를 형성한다. 빔스플리터(530)는 투시 경로(507)에서 변조된 광을 가상 뷰 경로(505)의 광과 합치고 뷰잉을 위해서 이를 접안렌즈(510)를 향해 폴딩한다. 빔스플리터(530)는 와이어 그리드 타입 빔스플리터, 편광 큐브 빔스플리터 또는 다른 유사한 타입 빔스플리터들일 수 있다. 이 방식에서, SLM(540)은 투과-타입 SLM이고, 개략적 레이아웃(200)의 SLM1 위치에 배치되며, 빔스플리터(530)를 통해 마이크로디스플레이(550)와 광학적으로 컨쥬게이트된다.
[0055] 이 예시적인 레이아웃(500)에서는, 개략적 레이아웃(200)의 반사성 표면 M1이 반사성 표면 S5로서 대물렌즈 광학체(520)의 일체형 부분이 되도록 전략적으로 설계되고, 개략적 레이아웃(200)의 반사성 표면 M3은 반사성 표면 S2로서 접안렌즈(510)의 일체형 부분이 되도록 전략적으로 설계되고, 개략적 레이아웃(200)의 반사성 표면 M2는, 투시 경로(507)에서의 총 반사 회수들이 5(홀수)인 경우, 뷰 직립을 위해서 루프 타입 미러(527)로서 설계된다.
[0056] 도 6은 프리폼 광학적 기술을 기반으로 하는 본 발명에 따른 컴팩트한 OCOST-HMD 설계에 대한 다른 예시적인 방식의 블록도(600)를 도시한 것이다. 이 방식은 또한 투과-타입 SLM의 사용을 용이하게 한다. 일 예시적인 구현예에서, 접안렌즈(610)는 2회-반사 프리폼 프리즘이며, 대물렌즈 광학체(620)는 3회-반사 프리폼 프리즘이다. 대물렌즈 광학체(620) 안쪽에서는, 중간 이미지(660)가 투시 뷰를 직립하도록 형성된다. 후방 층(617) 내의 접안렌즈(610)는 4개의 광학적 프리폼 표면들, 즉 굴절성 표면 S1, 반사성 표면 S2, 반사성 표면 S1' 및 굴절성 표면 S3로 구성된다. 가상 뷰 경로(605)에서는, 마이크로디스플레이(650)로부터 방사된 광선이 굴절성 표면 S3를 통해 접안렌즈(610)로 들어가며, 이어서 반사성 표면들 S1' 및 S2에 의해 연속적으로 반사되고, 굴절성 표면 S1을 통해 접안렌즈(610)를 나가서 출사 동공(602)에 도달하며, 여기서 뷰어의 눈은 마이크로디스플레이(650)의 확대된 가상 이미지를 보도록 정렬된다. 굴절성 표면 S1 및 반사성 표면 S1'은 동일한 물리적 표면들일 수 있으며 동일한 세트의 표면 규정들을 가질 수 있다. 전방 층(615) 내의 대물렌즈 광학체(620)는 5개의 광학적 프리폼 표면들, 즉 굴절성 표면 S4, 반사성 표면들 S5, S4' 및 S6 및 굴절성 표면 S7을 포함한다. 투시 경로(607)에서는, 대물렌즈 광학체(620)가 접안렌즈(610)와 함께 동작하여 투시 뷰용의 릴레이 광학체 역할을 한다. 현실 세계의 외부 장면으로부터 입사되는 광은 굴절성 표면 S4를 통해 대물렌즈 광학체(620)로 들어가며, 이어서 반사성 표면들 S5, S4' 및 S6에 의해 연속적으로 반사되고 굴절성 표면 S7을 통해 대물렌즈 광학체(620)를 나가서 광 변조를 위해 SLM(640)의 초점 플레인에서 중간 이미지를 형성한다. 굴절성 표면 S4 및 반사성 표면 S4'은 동일한 물리적 표면들일 수 있으며 동일한 세트의 표면 규정들을 가질 수 있다. 빔스플리터(630)는 투시 경로(607)에서 변조된 광을 가상 뷰 경로(605)의 광과 합치고 뷰잉을 위해 이를 접안렌즈(610)를 향해서 폴딩한다. 빔스플리터(630)는 와이어 그리드 타입 빔스플리터, 편광 큐브 빔스플리터 또는 다른 유사한 타입 빔스플리터들일 수 있다. 이 방식에서는, SLM(640)이 투과-타입 SLM이고, 개략적 레이아웃(200)의 SLM1 위치에 배치되며, 빔스플리터(630)를 통해 마이크로디스플레이(650)와 광학적으로 컨쥬게이트된다.
[0057] 이 예시적인 레이아웃(600)에서는, 개략적 레이아웃(200)의 반사성 표면 M1이 반사성 표면 S5로서 대물렌즈 광학체(620)의 일체형 부분이 되도록 전략적으로 설계되고, 개략적 레이아웃(200)의 반사성 표면 M2은 반사성 표면 S6로서 대물렌즈 광학체(620)의 일체형 부분이 되도록 전략적으로 설계되며, 개략적 레이아웃(200)의 반사성 표면 M3는 반사성 표면 S2로서 접안렌즈(610)의 일체형 부분이 되도록 설계된다. 중간 이미지(660)는 실제-뷰 직립을 위해서 대물렌즈 광학체(610)의 안쪽에 형성된다. 투시 경로(607)에서의 총 반사 회수들이 6(짝수)인 경우, 어떠한 루프 미러도 임의의 반사성 표면 상에서 요구되지 않는다.
[0058] 도 7은 프리폼 광학적 기술을 기반으로 하는 본 발명에 따른 컴팩트한 OCOST-HMD 설계에 대한 다른 예시적인 방식의 블록도(700)를 도시한 것이다. 일 예시적인 구현예에서, 접안렌즈와 대물렌즈 광학체 모두 2회-반사 프리폼 프리즘이며 거의 동일한 구조를 갖는다. 접안렌즈 및 대물렌즈 광학체에 대해서 이러한 동일한 구조를 사용하는 것의 이점은 단일 프리즘의 광학적 설계 전략이 다른 것에도 용이하게 적용될 수 있어서, 광학적 설계를 단순화하는 것을 돕는다는 것이다. 접안렌즈 및 대물렌즈 광학체의 대칭적 구조도 또한 코마, 디스토션 및 래터럴 컬러와 같은 홀수 차수 수차를 보정하는 것을 지원할 수 있다. 후방 층(717) 내의 접안렌즈(710)는 4개의 광학적 프리폼 표면들, 즉 굴절성 표면 S1, 반사성 표면 S2, 반사성 표면 S1' 및 굴절성 표면 S3로 구성된다. 가상 뷰 경로(705)에서는, 마이크로디스플레이(750)로부터 방사된 광선이 굴절성 표면 S3를 통해 접안렌즈(710)로 들어가며, 이어서 반사성 표면들 S1' 및 S2에 의해 연속적으로 반사되고, 굴절성 표면 S1을 통해 접안렌즈(710)를 나가서 출사 동공(702)에 도달하며, 여기서 뷰어의 눈은 마이크로디스플레이(750)의 확대된 가상 이미지를 보도록 정렬된다. 굴절성 표면 S1 및 반사성 표면 S1'은 동일한 물리적 표면들일 수 있으며 동일한 세트의 표면 규정을 가질 수 있다. 전방 층(715) 내의 대물렌즈 광학체(720)는 4개의 광학적 프리폼 표면들, 즉 굴절성 표면 S4, 반사성 표면들 S5, S4' 및 굴절성 표면 S6로 구성된다. 투시 경로(707)에서는, 대물렌즈 광학체(720)가 접안렌즈(710)와 함께 동작하여 투시 뷰용의 릴레이 광학체 역할을 한다. 현실 세계의 외부 장면으로부터 입사되는 광은 굴절성 표면 S4를 통해 대물렌즈 광학체(720)로 들어가며, 이어서 반사성 표면들 S5, S4'에 의해 연속적으로 반사되고, 굴절성 표면 S6를 통해 대물렌즈 광학체(720)를 나가서 광 변조를 위해 그것의 초점 플레인에서 중간 이미지(760)를 형성한다. 빔스플리터(780)는 대물렌즈 광학체(720)의 초점 플레인에 위치한 미러(790)를 향해서, 후방 층(715)으로부터 투시 경로(707)가 멀어지게 폴딩한다. 투시 경로(707)는 후방 층(715)을 향해서 미러(790)에 의해서 반사된다. 릴레이 렌즈(770)는, 뷰 변조를 위해서 개략적 레이아웃(200)의 SLM2 위치에 중간 이미지(760)의 이미지를 생성하도록 사용된다. 빔스플리터(730)는 투시 경로(707)에서 변조된 광을 가상 뷰 경로(705)의 광과 합치고 뷰잉을 위해 이를 접안렌즈(710)를 향해서 폴딩한다. 이 방식에서는, SLM(740)이 반사-타입 SLM이고, 빔스플리터(730)를 통해 마이크로디스플레이(750)와 광학적으로 컨쥬게이트된다. 중간 이미지(760)가 SLM(740)과 광학적으로 컨쥬게이트된다는 사실로 인하여, SLM(740)과 미러(790)의 위치는 상호교환가능하다.
[0059] 이 예시적인 레이아웃(700)에서는, 개략적 레이아웃(200)의 반사성 표면 M1이 반사성 표면 S5로서 대물렌즈 광학체(720)의 일체형 부분이 되도록 전략적으로 설계되고, 개략적 레이아웃(200)의 반사성 표면 M3는 반사성 표면 S2로서 접안렌즈(710)의 일체형 부분이 되도록 전략적으로 설계되며, 개략적 레이아웃(200)의 반사성 표면 M2는 미러(790)로서 대물렌즈 광학체(710)의 초점 플레인에 위치되어 투시 경로(707)를 가상 뷰 경로(705)를 향해서 폴딩한다. 중간 이미지(760)는 실제-뷰 직립을 위해서 대물렌즈 광학체(720)의 초점 플레인에 형성된다. 투시 경로(707)에서의 총 반사 회수들이 8(짝수)인 경우에는, 어떠한 루프 미러도 임의의 반사성 표면 상에서 요구되지 않는다.
[0060] 도 8은 도 3에 도시된 예시적인 방식에 기초한 예시적인 설계(800)를 개략적으로 도시한 것이다. 이 설계는 40 도(degree)의 사선 FOV를 달성하며, 이 FOV는 수평 방향(X 축 방향)에서 31.7 도이고, 수직 방향(Y 축 방향)에서 25.6 도이며, 이 설계는 또한 8mm의 출사 동공 직경(exit pupil diameter)(EPD)(비네트되지 않음:non-vignetted), 및 18mm의 아이 클리어런스(eye clearance)를 달성하였다. 이 설계는 5:4 종횡비 및 1280x1024 픽셀 해상도를 갖는 0.8" 마이크로디스플레이에 기초한 것이다. 마이크로디스플레이는 15.36mm 및 12.29mm의 유효 면적 및 화소 크기 12㎛를 갖는다. 이 설계는 마이크로디스플레이와 동일한 크기 및 해상도의 SLM을 사용하였다. 편광 큐브(polarized cube) 빔스플리터를 사용하여 가상 뷰 경로와 투시 경로를 결합하였다. DOE 플레이트들(882 및 884)을 사용하여 색수차(chromatic aberration)를 보정하였다. 이 시스템은 43mm(X)x23mm(Y)x 44.5mm(Z)로 측정되었다. 입사 동공(886)과 출사 동공(802) 간의 뷰포인트 시프트는 각기 Y 방향에서 0.6mm이고 z 방향에서 67mm이었다.
[0061] 접안렌즈(810)의 예시적인 광학적 규정에 대하여 표 1 내지 표 4에서 열거되어 있다. 접안렌즈(810)에서의 3개의 모든 광학적 표면들은 AAS(anamorphic aspheric surface)이다. AAS 표면의 새그(sag)는,
Figure pat00001
로 정의되며, 여기서, z는 로컬 x, y, z 좌표 시스템의 z 축을 따라서 측정된 프리폼 표면의 새그이고, cx 및 cy는 각기 x 축 및 y 축에서 꼭지점 곡률(vertex curvature)이며, Kx 및 Ky는 각기 x 축 및 y 축에서의 코닉 상수(conic constant)이고, AR, BR, CR 및 DR은 각기 코닉으로부터의 4차, 6차, 8차 및 10차 변형의 회전적으로 대칭인 부분이며, AP, BP, CP 및 DP은 각기 코닉으로부터의 4차, 6차, 8차 및 10차 변형의 비회전적으로 대칭인 부분이다.
표 1: 접안렌즈 프리즘의 표면 1의 광학적 표면 규정, 도 13 참조
표 2: 접안렌즈 프리즘의 표면 2의 광학적 표면 규정, 도 14 참조
표 3: 접안렌즈 프리즘의 표면 3의 광학적 표면 규정, 도 15 참조
표 4: 접안렌즈 프리즘의 위치 및 배향 파라미터들, 도 16 참조
[0062] 대물렌즈 광학체(820)의 예시적인 광학적 규정에 대하여 표 5 내지 표 8에서 열거되어 있다. 대물렌즈 광학체(820)에서의 모든 3개의 광학적 표면들은 AAS(anamorphic aspheric surface)이다.
표 5: 대물렌즈 프리즘의 표면 4의 광학적 표면 규정, 도 17 참조
표 6: 대물렌즈 프리즘의 표면 5의 광학적 표면 규정, 도 18 참조
표 7: 대물렌즈 프리즘의 표면 6의 광학적 표면 규정, 도 19 참조
표 8: 대물렌즈 프리즘의 위치 및 배향 파라미터들, 도 20 참조
[0063] DOE 플레이트(882 및 884)의 예시적인 광학적 규정에 대하여 표 9에 열거되어 있다.
표 9: DOE 플레이트들(882 및 884)에 대한 표면 파라미터들, 도 21 참조
[0064] 도 9는 3mm 동공 직경을 사용하여 평가된 컷오프 주파수 40lps/mm(밀리미터당 라인 쌍들)에서의 가상 디스플레이 경로의 다색 변조 전달 함수들의 필드 맵 플롯을 도시한 것이다. 40lps/mm 컷오프 주파수는 마이크로디스플레이의 픽셀 크기로부터 결정된다. 이 플롯은 본 설계가 15 퍼센트보다 약간 작은 컷오프 주파수에의 MTF 값들을 갖는 2개의 상부 디스플레이 코너들을 제외하고, 대부분의 필드들에 있어서 매우 우수한 성능을 가짐을 보인다. 전체 FOV에 걸쳐서, 가상 디스플레이 경로의 디스토션은 2.9%보다 작은 한편, 투시 경로의 디스토션은 0.5%보다 작다. 광학체에 대한 총 추정된 중량은 단독으로 눈당(per eye) 33 그램이다.
[0065] 도 10은 도 3에서 도시된 예시적인 방식에 기초한 예시적인 설계(1000)를 개략적으로 도시한 것이다. 이 설계는 40 도의 사선 FOV를 달성하며, 이 FOV는 수평 방향(X 축 방향)에서 35.2 도이고, 수직 방향(Y 축 방향)에서 20.2 도이며, 이 설계는 또한 8mm의 출사 동공 직경(EPD)(비네트되지 않음: non-vignetted), 및 18mm의 아이 클리어런스를 달성하였다. 이 설계는 16:9 종횡비 및 1280x720 픽셀 해상도를 갖는 0.7" 마이크로디스플레이에 기초한 것이다. 이 설계는 마이크로디스플레이와 동일한 크기 및 해상도의 SLM을 사용하였다. 와이어-그리드 플레이트 빔스플리터를 사용하여 가상 뷰 경로와 투시 경로를 결합하였다. 동일한 프리폼 프리즘이 접안렌즈 및 대물렌즈 광학체로서 사용되었다.
[0066] 프리폼 프리즘의 예시적인 광학적 규정에 대하여 표 10 내지 표 15에 열거되어 있다. 프리즘의 2개의 표면들은 AAS(anamorphic aspheric surface)이며, 한 개의 표면은 ASP(aspheric surface)이다. ASP 표면의 새그는,
Figure pat00002
로 정의되며, 여기서, z는 로컬 x, y, z 좌표 시스템의 z 축을 따라서 측정된 표면의 새그이고, c는 꼭지점 곡률이고, K는 코닉 상수이고, A 내지 J는 각기 4차, 6차, 8차 및 10차, 12차, 14차, 16차, 18차 및 20차 변형 계수들이다.
표 10: 프리폼 프리즘의 표면 1의 광학적 표면 규정, 도 22 참조
표 11: 프리폼 프리즘의 표면 2의 광학적 표면 규정, 도 23 참조
표 12: 프리폼 프리즘의 표면 3의 광학적 표면 규정, 도 24 참조
*표 13: 접안렌즈로서의 프리폼 프리즘의 위치 및 배향 파라미터들, 도 25 참조
[0068] 도 11은 3mm 동공 직경을 사용하여 평가된 컷오프 주파수 40lps/mm(밀리미터당 라인 쌍들)에서의 가상 디스플레이 경로의 다색 변조 전달 함수들의 필드 맵 플롯을 도시한 것이다. 이 플롯은 본 설계가 대부분의 필드들에 대해서 매우 우수한 성능을 가짐을 보인다.
[0069] 도 12는 본 발명에 필요한 이미지 처리 파이프라인의 일 예의 블록도를 도시한 것이다. 먼저, 적합한 깊이 감지 수단을 사용하여 외부 장면의 깊이 맵(depth map)이 추출된다. 이어서, 가상 객체를 깊이 맵과 비교함으로써, 가림(occlusion)이 발생하는 영역들을 결정한다. 마스크 생성 알고리즘이 사전 결정된 가림 영역들에 따라서 이진 마스크 이미지(binary mask image)를 생성한다. 이어서, 마스크 이미지가 공간적 광 변조기 상에 디스플레이되어서, 외부 장면의 중간 이미지 내의 가려진 영역으로부터 광을 블록킹한다. 가상 객체의 가상 이미지가 렌더링되고 마이크로디스플레이 상에 디스플레이된다. 본 발명의 디스플레이 디바이스를 통해 가상 이미지와 외부 장면의 변조된 투시 이미지가 결합된 이미지를, 뷰어가 관찰한다.
[0070] 종래 기술과 비교할 때, 본 발명은 컴팩트한 형태로 압축되며, 헤드-장착형 디스플레이로서 보다 용이하게 착용될 수 있게 하는, 폴딩된(folded) 이미지 경로를 특징으로 한다. 종래 기술(미국 특허 7,639,208 B1)에서는, 이 광학적 경로가 회전적으로 대칭인 렌즈들을 사용하여 선형으로 배열된다. 그 결과, 종래 기술의 가림 타입 디스플레이는 긴 텔레스코프와 유사한 형상을 가지며, 헤드에 착용하도록 다루는 것이 쉽지 않다. 본 발명은 반사성 표면들을 사용하여 이미지 경로를 2개의 층들로 폴딩함으로써, 공간적 광 변조기, 마이크로디스플레이 및 빔스플리터가 눈의 전방에서 선형적으로 보다는 헤드의 상단에 장착된다.
[0071] 종래 기술은 오직 반사-타입 공간적 광 변조기에 의존하는 반면, 본 발명은 반사-타입 또는 투과-타입 공간적 광 변조기를 사용할 수 있다. 또한, 종래 기술은 외부 장면을 변조하기 위해서 편광 빔스플리터를 요구하지만, 본 발명은 편광을 필요로 하지 않는다.
[0072] 본 발명은 층들로 배열되기 때문에, 접안렌즈 및 대물렌즈 광학체가 반드시 동일선상에 있을 필요는 없지만, 종래 기술에서는 동일선상에 있어야 한다. 또한, 대물렌즈 광학체는 반드시 텔레-센트릭(tele-centric)할 필요가 없다.
[0073] 종래 기술에서는, 시스템의 대물렌즈 광학체로 인하여, 현실 세계의 뷰가 투시 뷰의 미러 반사이다. 본 발명은 사용자의 뷰와 외부 장면 간의 패리티를 유지하도록 루프 미러가 삽입되게 할 수 있는 폴딩된 이미지 경로를 가지고 있다. 이로 인해, 본 발명은 사용자의 관점에서 보다 기능적게 된다.
[0074] 종래 기술과 비교할 때, 본 발명은 시스템이 훨씬 컴팩트하게 될 수 있는 프리폼 광학적 기술을 사용한다. 프리폼 광학적 표면들은 내부에서 광을 다수회 반사하도록 설계될 수 있으며, 이로써 광 경로를 폴딩하는데 미러들이 사용될 필요가 없다.
[0075] 본 발명에서, 광학적 경로들을 폴딩하기 위한 반사성 표면들은 광학적 능력을 갖는 평면형 미러들, 구형의, 비구형의, 또는 프리폼 표면들일 수 있다. 본 발명의 중요한 양상은 반사성 표면들 일부가 프리폼 광학적 기술을 사용하여 광학적 성능 및 컴팩트성을 증진시키는 것을 돕는다는 것에 있다. 본 발명에서는, 반사성 표면들 일부가 접안렌즈 또는 대물렌즈 광학체의 일체형 부분이 되게 전략적으로 설계되며, 반사성 표면들은 컴팩트한 디스플레이 설계을 달성하기 위한 광학적 경로의 폴딩을 용이하게 할 뿐만 아니라 광학적 능력에 기여하며 광학적 수차를 보정할 수 있다. 예를 들어, 도 2에서, 반사성 표면들(M1 내지 M3)은 접안렌즈 및 대물렌즈 광학체와는 별도의 일반적 미러들로서 도시되어 있다. 도 3에서는, 미러들 M1 내지 M3 중 2 개가 프리폼 접안렌즈 프리즘 및 대물렌즈 프리즘 내에 S2 및 S5로서 포함된 프리폼 표면들이다. 도 4에서는, 4개의 반사성 프리폼 표면들이 프리폼 대물렌즈 프리즘 내에 포함되어 있으며 2개의 반사성 프리폼 표면들이 프리폼 접안렌즈 프리즘 내에 포함되어 있다. 도 5에서는, 루프 프리즘 이외에, 1개의 반사성 표면이 대물렌즈 프리즘 내에 있고, 2개의 프리폼 표면들이 접안렌즈 내에 있다. 도 6에서는, 3개의 프리폼 표면들이 대물렌즈 광학체 내에 있고, 2개의 프리폼 표면들이 접안렌즈 내에 있다. 도 7에서는, 미러(790) 및 빔스플리터(780) 이외에, 2개의 반사성 프리폼 미러들이 대물렌즈 광학체 내에 있고, 2개의 프리폼 미러들이 접안렌즈 내에 있다.
[0076] 본 발명은 시스템을 통해 보여지는 투시 뷰가 정확하게 직립되도록(반전 또는 복구되지 않도록) 보장한다. 이를 달성하기 위한 본 실시예들에서는, 투시 경로에 형성된 중간 이미지들의 개수 및 투시 경로에 관여하는 반사 회수에 따라서 2개의 상이한 광학적 방법들이 이용되었다. 홀수 개수의 중간 이미지들의 경우에, 광학적 방법은 투시 경로에서 투시 뷰를 반전 및/또는 복구시키도록 제공된다. 예를 들어, 투시 경로에서 관여한 반사 회수에 따라, 가능한 방법들의 예들은 추가의 반사 또는 반사들을 삽입하는 것, 루프 미러 표면을 사용하는 것, 또는 직립 렌즈를 삽입하는 것을 포함하나, 이에 한정되지 않는다. 짝수 개수의 중간 이미지들의 경우에는, 패리티 변화가 필요하지 않다면, 어떠한 이미지 직립 요소도 필요하지 않다. 예를 들어, 다회 반사 프리폼 프리즘 구조체(통상적으로 2 회보다 많이 반사)는, 접안렌즈 또는 대물렌즈 광학체 또는 이 둘로서 사용될 수 있으며(이는, 대물렌즈 및/또는 접안렌즈 프리즘 안쪽에서 투시 광학적 경로를 다수 회 폴딩하는 것을 가능하게 함), 그리고 투시 뷰를 직립시키기 위해 프리즘 안쪽에 중간 이미지(들)를 형성하며, 이는 직립 루프 반사성 표면을 사용할 필요성을 제거한다.
[0077] 도 3에서는, 오직 1개의 중간 이미지가 투시 경로에 생성된다. 이 구조는 루프 프리즘(325)을 사용하여 직립된 투시 뷰를 적절하게 생성한다.
[0078] 도 4에서는, 4회 반사 프리폼 프리즘이 대물렌즈 광학체로서 사용되며, 이것은 2개의 중간 이미지들(이 프리즘 안쪽에서 하나(460), SLM에 대해서 하나(440))을 생성한다. 또한, 투시 경로 내에서는 총 8 회의 반사가 관여하게 되며, 이것은 패리티 무변화로 이어진다. 따라서, 직립된 뷰가 생성된다. 대물렌즈 광학체 및 접안렌즈의 구조는 동일한 결과들을 위해서 서로 바뀔 수도 있음에 유의한다.
[0079] 도 5에서는, 1개의 중간 이미지가 SLM을 위하여 투시 경로에 생성된다. 이 설계는 루프 프리즘(527)을 사용하여 직립된 투시 뷰를 생성한다.
[0080] 도 6에서는, 3회 반사 프리폼 프리즘이 대물렌즈 광학체로서 사용되며, 이것은 2개의 중간 이미지들(이 프리즘 안쪽에서 하나(660), SLM에 대해서 하나(640))을 생성한다. 또한, 투시 경로 내에서는 총 6 회의 반사가 관여하게 되며, 이것은 패리티 무변화로 이어진다. 따라서, 직립된 뷰가 생성된다. 대물렌즈 광학체 및 접안렌즈의 구조는 동일한 결과들을 위해서 서로 바뀔 수도 있음에 유의한다.
[0081] 도 7에서는, 대물렌즈 광학체(720)가 오직 2회 반사만을 사용하며, 빔스플리터(780)와 미러(790)의 조합이 투시 경로에서 2개의 중간 이미지들(SLM에 대해서 하나(740) 및 추가된 하나(760))을 생성하는 것을 가능하게 한다. 또한, 투시 경로 내에서는 총 8회의 반사가 관여하게 된다. 따라서, 직립된 투시 뷰가 생성된다.
[0082] 투시 헤드-장착형 디스플레이가 외부 장면의 패리티를 유지하여, HMD 없이도 사용자에게 그들의 일반적인 뷰들로서 실감나는 경험을 제공하는 것은 매우 중요하다.
[0083] 본 발명의 바람직한 실시예들이 도시 및 기술되었지만, 수정사항들이 첨부된 청구항들의 범위를 벗어나지 않으면서 이러한 실시예들에 대해 가능하다는 것은 본 기술 분야의 당업자에게 용이하게 명백해질 것이다. 청구항들에서 인용된 참조 번호들은 예시적인 것이고, 특허청이 검토하기 용이하게 제공된 것이며, 어떤 경우에도 한정적이지 않다. 일부 실시예들에서, 본 특허출원에서 제공된 도면들은 각도들, 치수 비들 등을 포함하여 크기대로 도시되지 않았다. 일부 실시예들에서, 도면들은 오직 대표적인 것이며 청구항들은 이 도면들의 치수들로 한정되지 않는다.
[0084] 아래의 청구항들에서 인용된 참조 부호들은 오로지 본 특허출원의 심사의 편의를 위해서만 존재하고, 예시적인 것이며, 어떠한 방식으로도 청구항들의 범위를 도면들에서의 대응하는 참조 번호들을 갖는 특정 특징부들로 한정하는 것으로 의도되지 않는다.

Claims (20)

  1. 헤드-장착형 디스플레이 시스템으로서,
    a. 가상 뷰 경로 상에 사용자에 의해서 뷰잉(viewing)될 가상 이미지를 생성하기 위한 마이크로디스플레이;
    b. 투시 경로 상의 외부 장면으로부터의 광을 수신하고 그리고 폴딩(folding)하고, 대물렌즈 광학체(objective optics)의 백 초점 플레인 거리(back focal plane distance)에서 공간적 광 변조기 상의 중간 이미지로서 상기 외부 장면으로부터의 광을 포커싱(focusing)하도록 구성되는 상기 대물렌즈 광학체;
    c. 가려질 상기 투시 경로의 일부들을 차단(block)하도록 상기 외부 장면으로부터의 광을 수정하기 위한 공간적 광 변조기;
    d. 상기 투시 경로와 상기 가상 뷰 경로를 결합하여 투시 뷰의 불투명도가 상기 투시 경로의 부분들을 가리기 위해 변조될 수 있도록, 상기 가상 뷰와 가려질 상기 투시 뷰를 합쳐(merge) 상기 외부 장면으로부터의 광의 가려진 부분들 내에 상기 마이크로디스플레이로부터의 가상 이미지의 결합된 이미지(combined image)를 생성하도록 구성되는 빔스플리터;
    e. 상기 결합된 이미지를 확대하도록 구성되는 접안렌즈 광학체(eyepiece optics);
    f. 상기 접안렌즈 광학체를 대면하도록 구성되는 출사 동공(exit pupil) ― 상기 사용자는 상기 출사 동공을 통해 상기 결합된 이미지를 관찰함 ―; 및
    g. 상기 출사 동공으로의 상기 투시 경로 및 상기 가상 뷰 경로를 폴딩하도록 구성되는 복수의 표면들을 포함하며,
    상기 공간적 광 변조기가 상기 빔스플리터로부터 상기 마이크로디스플레이의 거리와 실질적으로 동일한 상기 빔스플리터로부터의 거리에 배치되도록, 상기 마이크로디스플레이 및 상기 공간적 광 변조기는 광학적으로 컨주게이션되는(optically conjugate),
    헤드-장착형 디스플레이 시스템.
  2. 제 1 항에 있어서,
    상기 공간적 광 변조기는 투과-타입(transmission-type) 공간적 광 변조기이고, 상기 공간적 광 변조기는 상기 빔 분할기의 전방에 배치되며, 상기 대물 광학체들로부터의 광은 상기 빔 분할기에 도달하기 이전에 상기 공간적 광 변조기를 통해서 전달되고, 상기 공간적 광 변조기의 불투명도는 상기 외부 장면의 일부들로부터의 광을 차단하도록 제어되는, 헤드-장착형 디스플레이 시스템.
  3. 제 1 항에 있어서,
    상기 공간적 광 변조기는 반사-타입(reflection-type) 공간적 광 변조기이고, 상기 공간적 광 변조기는 상기 빔 분할기의 후방에 배치되며, 상기 대물 광학체들로부터의 광은 상기 빔 분할기를 통과하여 상기 공간적 광 변조기로부터 상기 빔 분할기로 역반사되며, 상기 공간적 광 변조기의 반사도는 가려지지 않을 상기 외부 장면의 일부들로부터의 광만을 반사하도록 제어되는, 헤드-장착형 디스플레이 시스템.
  4. 제 1 항에 있어서,
    중간 이미지가 상기 투시 경로 내의 하나 이상의 지점들에서 형성되며, 상기 공간적 광 변조기는 중간 이미지 평면들 중 하나에 또는 그 근처에 배치되는, 헤드-장착형 디스플레이 시스템.
  5. 제 1 항에 있어서,
    상기 제 1, 제 2, 및 제 3 반사성 표면들 중 하나 이상은 상기 투시 경로 및 상기 가상 뷰 경로를 폴딩하고 광을 포커싱할 수 있는 광학적 능력(optical power)을 갖는 독립형 표면들인, 헤드-장착형 디스플레이 시스템.
  6. 제 1 항에 있어서,
    상기 제 1, 제 2, 및 제 3 반사성 표면들 중 하나 이상은 프리폼(freeform) 표면들인, 헤드-장착형 디스플레이 시스템.
  7. 제 1 항에 있어서,
    상기 전방 층에 있는 상기 제 1 반사성 표면 및/또는 상기 제 2 반사성 표면은 상기 대물 광학체 내에 포함되는, 헤드-장착형 디스플레이 시스템.
  8. 제 1 항에 있어서,
    상기 후방 층에 있는 상기 제 3 반사성 표면은 상기 아이피스 내에 포함되는, 헤드-장착형 디스플레이 시스템.
  9. 제 1 항에 있어서,
    상기 대물 광학체는 상기 외부 장면을 상기 공간적 광 변조기 내로 이미징(imaging)하도록 복수의 반사성 표면들 및 굴절성 표면들에 의해서 형성되는 프리폼 프리즘인, 헤드-장착형 디스플레이 시스템.
  10. 제 1 항에 있어서,
    상기 아이피스는 상기 가상 이미지 및 상기 변조된 투시 이미지를 확대하도록 복수의 반사성 표면들 및 굴절성 표면들에 의해서 형성되는 프리폼 프리즘인, 헤드-장착형 디스플레이 시스템.
  11. 제 9 항에 있어서,
    상기 전방 층에 있는 상기 제 1 반사성 표면 및/또는 상기 제 2 반사성 표면은 상기 대물 광학체 내에 포함되는, 헤드-장착형 디스플레이 시스템.
  12. 제 10 항에 있어서,
    상기 후방 층에 있는 상기 제 3 반사성 표면은 상기 아이피스 내에 포함되는, 헤드-장착형 디스플레이 시스템.
  13. 제 1 항에 있어서,
    짝수 개의 중간 이미지들이 상기 투시 경로를 따라 형성되어, 뷰어(viewer)에게 제공되는 투시 뷰와 상기 외부 장면 간의 패리티(parity)를 유지하도록 상기 투시 뷰를 반전시키는(invert), 헤드-장착형 디스플레이 시스템.
  14. 제 1 항에 있어서,
    상기 제 1, 제 2, 및 제 3 반사성 표면들 중 하나는, 뷰어에게 제공되는 투시 뷰와 상기 외부 장면 간의 패리티를 유지하기 위해 상기 투시 뷰를 복구(revert)하기 위한 루프 미러(roof mirror)로 대체되는, 헤드-장착형 디스플레이 시스템.
  15. 제 1 항에 있어서,
    상기 아이피스와 상기 대물 광학체 양쪽 모두는 동일한 광학적 구조를 갖는, 헤드-장착형 디스플레이 시스템.
  16. 제 15 항에 있어서,
    상기 아이피스와 상기 대물 광학체 양쪽 모두는 동일한 형상을 갖는 프리폼 프리즘들인, 헤드-장착형 디스플레이 시스템.
  17. 제 1 항에 있어서,
    상기 빔 분할기는 상기 전방 층 상에 배치되는, 헤드-장착형 디스플레이 시스템.
  18. 제 1 항에 있어서,
    하나 이상의 DOE(diffractive optical element) 플레이트들이 광학적 경로 내에 배치되어 색수차(chromatic aberration)들을 보정하는, 헤드-장착형 디스플레이 시스템.
  19. 제 1 항에 있어서,
    상기 대물 광학체는, 제 1 굴절성 표면, 제 3 반사성 표면 및 제 2 굴절성 표면의 3개의 광학적 표면들 포함하는 1회-반사 프리즘(one-reflection prism)이고,
    상기 아이피스는, 제 3 굴절성 표면, 제 4 반사성 표면 및 제 4 굴절성 표면의 3개의 광학적 표면들을 포함하는 1회-반사 프리즘이고,
    상기 제 2 반사성 표면은 상기 대물 광학체 내에 포함되고, 상기 제 3 반사성 표면은 상기 아이피스 내에 포함되며,
    루프 미러가 상기 제 1 반사성 표면을 대체하여 상기 투시 뷰를 반전시키고,
    반사-타입 공간적 광 변조기는 상기 외부 장면으로부터의 광을 변조하는데 사용되는, 헤드-장착형 디스플레이 시스템.
  20. 제 19 항에 있어서,
    상기 루프 미러에 의해서 반사된 외부 장면으로부터의 입사 광은 상기 제1 굴절성 표면을 통해 상기 대물 광학체로 들어가고, 이후 상기 제3 반사성 표면에 의해 반사되고, 상기 제2 굴절성 표면을 통해 상기 대물 광학체를 나와서 상기 공간적 광 변조기 상의 그의 초점 평면에서 중간 이미지를 형성하며,
    상기 공간적 광 변조기는 가려질 광을 차단하도록 상기 투시 경로 내의 광을 변조하고, 상기 공간적 광 변조기는 변조된 광을 상기 빔 분할기로 반사하고, 상기 마이크로디스플레이로부터의 광은 상기 빔 분할기로 들어가고, 상기 빔 분할기는 상기 투시 경로에서의 변조된 광을 상기 가상 뷰 경로의 광과 합쳐서 감상을 위해 상기 아이피스를 향해서 폴딩하고, 상기 빔 분할기로부터의 광은 상기 제4 굴절성 표면을 통해 상기 아이피스로 들어가고, 상기 제4 반사성 표면에 의해 반사되고, 상기 제3 굴절성 표면을 통해 상기 아이피스를 나가서 상기 사출 동공에 도달하며, 뷰어의 눈은 가상 뷰와 변조된 투시 뷰의 결합된 뷰를 보도록 정렬되는, 헤드-장착형 디스플레이 시스템.



KR1020207034778A 2012-04-05 2013-04-05 상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치 KR102345444B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261620581P 2012-04-05 2012-04-05
US201261620574P 2012-04-05 2012-04-05
US61/620,574 2012-04-05
US61/620,581 2012-04-05
KR1020147031031A KR102188748B1 (ko) 2012-04-05 2013-04-05 상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치
PCT/US2013/035486 WO2014011266A2 (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020147031031A Division KR102188748B1 (ko) 2012-04-05 2013-04-05 상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치

Publications (2)

Publication Number Publication Date
KR20200138449A true KR20200138449A (ko) 2020-12-09
KR102345444B1 KR102345444B1 (ko) 2021-12-29

Family

ID=49301051

Family Applications (11)

Application Number Title Priority Date Filing Date
KR1020217030170A KR102404537B1 (ko) 2012-04-05 2013-04-04 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
KR1020147031167A KR102022719B1 (ko) 2012-04-05 2013-04-04 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
KR1020197028502A KR102095330B1 (ko) 2012-04-05 2013-04-04 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
KR1020207008629A KR102223290B1 (ko) 2012-04-05 2013-04-04 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
KR1020187009611A KR102028732B1 (ko) 2012-04-05 2013-04-04 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
KR1020217005871A KR102306729B1 (ko) 2012-04-05 2013-04-04 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
KR1020147031031A KR102188748B1 (ko) 2012-04-05 2013-04-05 상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치
KR1020207034778A KR102345444B1 (ko) 2012-04-05 2013-04-05 상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치
KR1020187009706A KR102129330B1 (ko) 2012-04-05 2013-04-05 상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치
KR1020187009715A KR102124350B1 (ko) 2012-04-05 2013-04-05 상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치
KR1020187009709A KR102099156B1 (ko) 2012-04-05 2013-04-05 상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치

Family Applications Before (7)

Application Number Title Priority Date Filing Date
KR1020217030170A KR102404537B1 (ko) 2012-04-05 2013-04-04 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
KR1020147031167A KR102022719B1 (ko) 2012-04-05 2013-04-04 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
KR1020197028502A KR102095330B1 (ko) 2012-04-05 2013-04-04 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
KR1020207008629A KR102223290B1 (ko) 2012-04-05 2013-04-04 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
KR1020187009611A KR102028732B1 (ko) 2012-04-05 2013-04-04 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
KR1020217005871A KR102306729B1 (ko) 2012-04-05 2013-04-04 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
KR1020147031031A KR102188748B1 (ko) 2012-04-05 2013-04-05 상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR1020187009706A KR102129330B1 (ko) 2012-04-05 2013-04-05 상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치
KR1020187009715A KR102124350B1 (ko) 2012-04-05 2013-04-05 상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치
KR1020187009709A KR102099156B1 (ko) 2012-04-05 2013-04-05 상호 가림 및 불투명도 제어 능력을 가진 광학적 투시 헤드-장착형 디스플레이를 위한 장치

Country Status (12)

Country Link
US (13) US9851563B2 (ko)
EP (5) EP2841991B1 (ko)
JP (9) JP6176747B2 (ko)
KR (11) KR102404537B1 (ko)
CN (5) CN104541201B (ko)
AU (4) AU2013243380B2 (ko)
BR (2) BR112014024941A2 (ko)
CA (4) CA3111134A1 (ko)
IL (6) IL308962A (ko)
NZ (6) NZ700887A (ko)
RU (2) RU2015156050A (ko)
WO (2) WO2013152205A1 (ko)

Families Citing this family (463)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US9158116B1 (en) 2014-04-25 2015-10-13 Osterhout Group, Inc. Temple and ear horn assembly for headworn computer
US9298007B2 (en) 2014-01-21 2016-03-29 Osterhout Group, Inc. Eye imaging in head worn computing
US9229233B2 (en) 2014-02-11 2016-01-05 Osterhout Group, Inc. Micro Doppler presentations in head worn computing
US9952664B2 (en) 2014-01-21 2018-04-24 Osterhout Group, Inc. Eye imaging in head worn computing
US9965681B2 (en) 2008-12-16 2018-05-08 Osterhout Group, Inc. Eye imaging in head worn computing
US9400390B2 (en) 2014-01-24 2016-07-26 Osterhout Group, Inc. Peripheral lighting for head worn computing
US9715112B2 (en) 2014-01-21 2017-07-25 Osterhout Group, Inc. Suppression of stray light in head worn computing
US20150277120A1 (en) 2014-01-21 2015-10-01 Osterhout Group, Inc. Optical configurations for head worn computing
US9366867B2 (en) 2014-07-08 2016-06-14 Osterhout Group, Inc. Optical systems for see-through displays
US20150205111A1 (en) 2014-01-21 2015-07-23 Osterhout Group, Inc. Optical configurations for head worn computing
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US9341846B2 (en) 2012-04-25 2016-05-17 Rockwell Collins Inc. Holographic wide angle display
US9274349B2 (en) 2011-04-07 2016-03-01 Digilens Inc. Laser despeckler based on angular diversity
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
EP2995986B1 (en) 2011-08-24 2017-04-12 Rockwell Collins, Inc. Data display
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
WO2013102759A2 (en) 2012-01-06 2013-07-11 Milan Momcilo Popovich Contact image sensor using switchable bragg gratings
WO2013152205A1 (en) * 2012-04-05 2013-10-10 Augmented Vision Inc. Wide-field of view (fov) imaging devices with active foveation capability
US9456744B2 (en) 2012-05-11 2016-10-04 Digilens, Inc. Apparatus for eye tracking
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US9858721B2 (en) 2013-01-15 2018-01-02 The University Of North Carolina At Chapel Hill Methods, systems, and computer readable media for generating an augmented scene display
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US10228561B2 (en) * 2013-06-25 2019-03-12 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism and gaze-detection light
US9625723B2 (en) * 2013-06-25 2017-04-18 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism
WO2015015138A1 (en) 2013-07-31 2015-02-05 Milan Momcilo Popovich Method and apparatus for contact image sensing
WO2015095737A2 (en) 2013-12-19 2015-06-25 The University Of North Carolina At Chapel Hill Optical see-through near-eye display using point light source backlight
US10684687B2 (en) 2014-12-03 2020-06-16 Mentor Acquisition One, Llc See-through computer display systems
US20150277118A1 (en) 2014-03-28 2015-10-01 Osterhout Group, Inc. Sensor dependent content position in head worn computing
US9529195B2 (en) 2014-01-21 2016-12-27 Osterhout Group, Inc. See-through computer display systems
US10191279B2 (en) 2014-03-17 2019-01-29 Osterhout Group, Inc. Eye imaging in head worn computing
US20150228119A1 (en) 2014-02-11 2015-08-13 Osterhout Group, Inc. Spatial location presentation in head worn computing
US9810906B2 (en) 2014-06-17 2017-11-07 Osterhout Group, Inc. External user interface for head worn computing
US9448409B2 (en) 2014-11-26 2016-09-20 Osterhout Group, Inc. See-through computer display systems
US11103122B2 (en) 2014-07-15 2021-08-31 Mentor Acquisition One, Llc Content presentation in head worn computing
US9746686B2 (en) 2014-05-19 2017-08-29 Osterhout Group, Inc. Content position calibration in head worn computing
US10254856B2 (en) 2014-01-17 2019-04-09 Osterhout Group, Inc. External user interface for head worn computing
US9594246B2 (en) 2014-01-21 2017-03-14 Osterhout Group, Inc. See-through computer display systems
US9671613B2 (en) 2014-09-26 2017-06-06 Osterhout Group, Inc. See-through computer display systems
US9841599B2 (en) 2014-06-05 2017-12-12 Osterhout Group, Inc. Optical configurations for head-worn see-through displays
US11227294B2 (en) 2014-04-03 2022-01-18 Mentor Acquisition One, Llc Sight information collection in head worn computing
US9939934B2 (en) 2014-01-17 2018-04-10 Osterhout Group, Inc. External user interface for head worn computing
US9299194B2 (en) 2014-02-14 2016-03-29 Osterhout Group, Inc. Secure sharing in head worn computing
US9366868B2 (en) 2014-09-26 2016-06-14 Osterhout Group, Inc. See-through computer display systems
US9829707B2 (en) 2014-08-12 2017-11-28 Osterhout Group, Inc. Measuring content brightness in head worn computing
US9575321B2 (en) 2014-06-09 2017-02-21 Osterhout Group, Inc. Content presentation in head worn computing
US20160019715A1 (en) 2014-07-15 2016-01-21 Osterhout Group, Inc. Content presentation in head worn computing
US10649220B2 (en) 2014-06-09 2020-05-12 Mentor Acquisition One, Llc Content presentation in head worn computing
US9532714B2 (en) 2014-01-21 2017-01-03 Osterhout Group, Inc. Eye imaging in head worn computing
US9753288B2 (en) 2014-01-21 2017-09-05 Osterhout Group, Inc. See-through computer display systems
US9836122B2 (en) 2014-01-21 2017-12-05 Osterhout Group, Inc. Eye glint imaging in see-through computer display systems
US9494800B2 (en) 2014-01-21 2016-11-15 Osterhout Group, Inc. See-through computer display systems
US9811159B2 (en) 2014-01-21 2017-11-07 Osterhout Group, Inc. Eye imaging in head worn computing
US11892644B2 (en) 2014-01-21 2024-02-06 Mentor Acquisition One, Llc See-through computer display systems
US9651784B2 (en) 2014-01-21 2017-05-16 Osterhout Group, Inc. See-through computer display systems
US11737666B2 (en) 2014-01-21 2023-08-29 Mentor Acquisition One, Llc Eye imaging in head worn computing
US11669163B2 (en) 2014-01-21 2023-06-06 Mentor Acquisition One, Llc Eye glint imaging in see-through computer display systems
US9766463B2 (en) 2014-01-21 2017-09-19 Osterhout Group, Inc. See-through computer display systems
US20150205135A1 (en) 2014-01-21 2015-07-23 Osterhout Group, Inc. See-through computer display systems
US9310610B2 (en) 2014-01-21 2016-04-12 Osterhout Group, Inc. See-through computer display systems
US9523856B2 (en) 2014-01-21 2016-12-20 Osterhout Group, Inc. See-through computer display systems
US11487110B2 (en) 2014-01-21 2022-11-01 Mentor Acquisition One, Llc Eye imaging in head worn computing
US9846308B2 (en) 2014-01-24 2017-12-19 Osterhout Group, Inc. Haptic systems for head-worn computers
US9852545B2 (en) 2014-02-11 2017-12-26 Osterhout Group, Inc. Spatial location presentation in head worn computing
US9401540B2 (en) 2014-02-11 2016-07-26 Osterhout Group, Inc. Spatial location presentation in head worn computing
US20150241963A1 (en) 2014-02-11 2015-08-27 Osterhout Group, Inc. Eye imaging in head worn computing
CN103901615B (zh) * 2014-03-14 2016-05-25 北京理工大学 小凹成像光学系统
US10430985B2 (en) 2014-03-14 2019-10-01 Magic Leap, Inc. Augmented reality systems and methods utilizing reflections
US11138793B2 (en) 2014-03-14 2021-10-05 Magic Leap, Inc. Multi-depth plane display system with reduced switching between depth planes
US20160187651A1 (en) 2014-03-28 2016-06-30 Osterhout Group, Inc. Safety for a vehicle operator with an hmd
US10529359B2 (en) 2014-04-17 2020-01-07 Microsoft Technology Licensing, Llc Conversation detection
US9922667B2 (en) 2014-04-17 2018-03-20 Microsoft Technology Licensing, Llc Conversation, presence and context detection for hologram suppression
US9672210B2 (en) 2014-04-25 2017-06-06 Osterhout Group, Inc. Language translation with head-worn computing
US10853589B2 (en) 2014-04-25 2020-12-01 Mentor Acquisition One, Llc Language translation with head-worn computing
US9651787B2 (en) 2014-04-25 2017-05-16 Osterhout Group, Inc. Speaker assembly for headworn computer
US9423842B2 (en) 2014-09-18 2016-08-23 Osterhout Group, Inc. Thermal management for head-worn computer
US20150309534A1 (en) 2014-04-25 2015-10-29 Osterhout Group, Inc. Ear horn assembly for headworn computer
US20160137312A1 (en) 2014-05-06 2016-05-19 Osterhout Group, Inc. Unmanned aerial vehicle launch system
CN104007559B (zh) * 2014-05-08 2017-05-17 北京理工大学 含局部超分辨扫描的小凹成像系统
CN104102018B (zh) * 2014-05-08 2016-10-05 北京理工大学 双小凹局部高分辨率成像系统
US10663740B2 (en) 2014-06-09 2020-05-26 Mentor Acquisition One, Llc Content presentation in head worn computing
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
WO2016042283A1 (en) 2014-09-19 2016-03-24 Milan Momcilo Popovich Method and apparatus for generating input images for holographic waveguide displays
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
NZ730509A (en) 2014-09-29 2018-08-31 Magic Leap Inc Architectures and methods for outputting different wavelength light out of waveguides
WO2016054079A1 (en) 2014-09-29 2016-04-07 Zyomed Corp. Systems and methods for blood glucose and other analyte detection and measurement using collision computing
US9684172B2 (en) 2014-12-03 2017-06-20 Osterhout Group, Inc. Head worn computer display systems
USD743963S1 (en) 2014-12-22 2015-11-24 Osterhout Group, Inc. Air mouse
USD751552S1 (en) 2014-12-31 2016-03-15 Osterhout Group, Inc. Computer glasses
USD753114S1 (en) 2015-01-05 2016-04-05 Osterhout Group, Inc. Air mouse
KR102329295B1 (ko) 2015-01-09 2021-11-19 삼성디스플레이 주식회사 헤드 마운티드 디스플레이 장치
US20180275402A1 (en) 2015-01-12 2018-09-27 Digilens, Inc. Holographic waveguide light field displays
CN111323867A (zh) 2015-01-12 2020-06-23 迪吉伦斯公司 环境隔离的波导显示器
US10105049B2 (en) 2015-01-16 2018-10-23 Massachusetts Institute Of Technology Methods and apparatus for anterior segment ocular imaging
CN107533137A (zh) 2015-01-20 2018-01-02 迪吉伦斯公司 全息波导激光雷达
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
CN105988763B (zh) * 2015-02-15 2019-10-29 联想(北京)有限公司 一种信息处理方法及装置
US10878775B2 (en) 2015-02-17 2020-12-29 Mentor Acquisition One, Llc See-through computer display systems
US20160239985A1 (en) 2015-02-17 2016-08-18 Osterhout Group, Inc. See-through computer display systems
WO2016146963A1 (en) 2015-03-16 2016-09-22 Popovich, Milan, Momcilo Waveguide device incorporating a light pipe
IL293029B2 (en) 2015-03-16 2023-06-01 Magic Leap Inc Augmented reality signal oximeter
GB2536650A (en) 2015-03-24 2016-09-28 Augmedics Ltd Method and system for combining video-based and optic-based augmented reality in a near eye display
JP2016180955A (ja) * 2015-03-25 2016-10-13 株式会社ソニー・インタラクティブエンタテインメント ヘッドマウントディスプレイ、表示制御方法及び位置制御方法
CN106154640B (zh) * 2015-03-31 2020-02-21 联想(北京)有限公司 显示组件和电子设备
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US10274728B2 (en) 2015-05-18 2019-04-30 Facebook Technologies, Llc Stacked display panels for image enhancement
US10254454B2 (en) 2015-06-15 2019-04-09 Magic Leap, Inc. Display system with optical elements for in-coupling multiplexed light streams
US9977493B2 (en) 2015-06-17 2018-05-22 Microsoft Technology Licensing, Llc Hybrid display system
US10222619B2 (en) 2015-07-12 2019-03-05 Steven Sounyoung Yu Head-worn image display apparatus for stereoscopic microsurgery
US10139966B2 (en) 2015-07-22 2018-11-27 Osterhout Group, Inc. External user interface for head worn computing
CA2995978A1 (en) 2015-08-18 2017-02-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
NZ740746A (en) 2015-08-21 2019-08-30 Magic Leap Inc Eyelid shape estimation
US10146997B2 (en) 2015-08-21 2018-12-04 Magic Leap, Inc. Eyelid shape estimation using eye pose measurement
US9581744B1 (en) * 2015-09-03 2017-02-28 3M Innovative Properties Company Optical stack and optical system
EP4254145A3 (en) 2015-09-16 2023-11-01 Magic Leap, Inc. Head pose mixing of audio files
EP3353711A1 (en) 2015-09-23 2018-08-01 Datalogic USA, Inc. Imaging systems and methods for tracking objects
US10466478B2 (en) 2015-09-23 2019-11-05 Magic Leap, Inc. Eye imaging with an off-axis imager
EP3359999A1 (en) 2015-10-05 2018-08-15 Popovich, Milan Momcilo Waveguide display
CN108369653B (zh) 2015-10-16 2021-12-14 奇跃公司 使用眼睛特征的眼睛姿态识别
NZ741866A (en) 2015-10-20 2019-07-26 Magic Leap Inc Selecting virtual objects in a three-dimensional space
NZ742518A (en) 2015-11-04 2019-08-30 Magic Leap Inc Dynamic display calibration based on eye-tracking
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
CN105404005A (zh) * 2015-12-10 2016-03-16 合肥虔视光电科技有限公司 用于增强现实的头戴显示器
IL301785A (en) 2016-01-07 2023-05-01 Magic Leap Inc Virtual and augmented reality systems and methods with an unequal number of color component images spread across depth planes
KR102567431B1 (ko) 2016-01-19 2023-08-14 매직 립, 인코포레이티드 눈 이미지 수집, 선택 및 결합
WO2017127571A1 (en) 2016-01-19 2017-07-27 Magic Leap, Inc. Augmented reality systems and methods utilizing reflections
JP2019505843A (ja) 2016-01-22 2019-02-28 コーニング インコーポレイテッド 広視野パーソナル表示装置
EP3408704B1 (en) 2016-01-29 2021-11-03 Magic Leap, Inc. Display for three-dimensional image
US10459230B2 (en) 2016-02-02 2019-10-29 Disney Enterprises, Inc. Compact augmented reality / virtual reality display
WO2017134412A1 (en) 2016-02-04 2017-08-10 Milan Momcilo Popovich Holographic waveguide optical tracker
US10591728B2 (en) 2016-03-02 2020-03-17 Mentor Acquisition One, Llc Optical systems for head-worn computers
US10850116B2 (en) 2016-12-30 2020-12-01 Mentor Acquisition One, Llc Head-worn therapy device
IL301720A (en) 2016-02-24 2023-05-01 Magic Leap Inc Polarizing beam splitter with low light leakage
IL303148A (en) 2016-02-24 2023-07-01 Magic Leap Inc Low profile connection for light emitter
NZ760857A (en) 2016-02-26 2024-02-23 Magic Leap Inc Light output system with reflector and lens for highly spatially uniform light output
CN114002844A (zh) 2016-02-26 2022-02-01 奇跃公司 具有用于多个光发射器的多个光管的显示系统
CA3014765A1 (en) 2016-02-29 2017-09-08 Magic Leap, Inc. Virtual and augmented reality systems and methods
US10667981B2 (en) 2016-02-29 2020-06-02 Mentor Acquisition One, Llc Reading assistance system for visually impaired
US10571693B2 (en) 2016-03-01 2020-02-25 Magic Leap, Inc. Reflective switching device for inputting different wavelengths of light into waveguides
US9826299B1 (en) 2016-08-22 2017-11-21 Osterhout Group, Inc. Speaker systems for head-worn computer systems
US9880441B1 (en) 2016-09-08 2018-01-30 Osterhout Group, Inc. Electrochromic systems for head-worn computer systems
KR20230109789A (ko) 2016-03-04 2023-07-20 매직 립, 인코포레이티드 Ar/vr 디스플레이 시스템들에서의 전류 드레인 감소
US10127369B2 (en) 2016-03-07 2018-11-13 Magic Leap, Inc. Blue light adjustment for biometric security
KR102530558B1 (ko) * 2016-03-16 2023-05-09 삼성전자주식회사 투시형 디스플레이 장치
CN115032795A (zh) 2016-03-22 2022-09-09 奇跃公司 被配置为交换生物测定信息的头戴式显示系统
CN105744132B (zh) * 2016-03-23 2020-01-03 捷开通讯(深圳)有限公司 全景图像拍摄的光学镜头配件
CN108780224B (zh) 2016-03-24 2021-08-03 迪吉伦斯公司 用于提供偏振选择性全息波导装置的方法和设备
EP3433661A4 (en) 2016-03-25 2019-11-20 Magic Leap, Inc. SYSTEMS AND METHODS FOR VIRTUAL AND INCREASED REALITY
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
EP3436863A4 (en) 2016-03-31 2019-11-27 Magic Leap, Inc. INTERACTIONS WITH 3D VIRTUAL OBJECTS USING POSES AND MULTI-DOF CONTROLLERS
US10539763B2 (en) * 2016-03-31 2020-01-21 Sony Corporation Optical system, electronic device, camera, method and computer program
US10466491B2 (en) 2016-06-01 2019-11-05 Mentor Acquisition One, Llc Modular systems for head-worn computers
US10684478B2 (en) 2016-05-09 2020-06-16 Mentor Acquisition One, Llc User interface systems for head-worn computers
US9910284B1 (en) 2016-09-08 2018-03-06 Osterhout Group, Inc. Optical systems for head-worn computers
IL299497B2 (en) 2016-04-08 2024-02-01 Magic Leap Inc Augmented reality systems and methods with variable focus lens elements
US10824253B2 (en) 2016-05-09 2020-11-03 Mentor Acquisition One, Llc User interface systems for head-worn computers
WO2017178781A1 (en) 2016-04-11 2017-10-19 GRANT, Alastair, John Holographic waveguide apparatus for structured light projection
US10001648B2 (en) 2016-04-14 2018-06-19 Disney Enterprises, Inc. Occlusion-capable augmented reality display using cloaking optics
CN109313509B (zh) 2016-04-21 2022-01-07 奇跃公司 视野周围的视觉光环
US9726896B2 (en) 2016-04-21 2017-08-08 Maximilian Ralph Peter von und zu Liechtenstein Virtual monitor display technique for augmented reality environments
WO2017189450A1 (en) 2016-04-26 2017-11-02 Magic Leap, Inc. Electromagnetic tracking with augmented reality systems
CA3022876A1 (en) 2016-05-06 2017-11-09 Magic Leap, Inc. Metasurfaces with asymmetric gratings for redirecting light and methods for fabricating
KR102643105B1 (ko) 2016-05-09 2024-03-04 매직 립, 인코포레이티드 사용자 건강 분석을 위한 증강 현실 시스템들 및 방법들
US9922464B2 (en) * 2016-05-10 2018-03-20 Disney Enterprises, Inc. Occluded virtual image display
CA3023539A1 (en) 2016-05-12 2017-11-16 Magic Leap, Inc. Distributed light manipulation over imaging waveguide
US11328484B2 (en) 2016-05-20 2022-05-10 Magic Leap, Inc. Contextual awareness of user interface menus
US10430988B2 (en) 2016-06-03 2019-10-01 Facebook Technologies, Llc Facial animation using facial sensors within a head-mounted display
US9959678B2 (en) * 2016-06-03 2018-05-01 Oculus Vr, Llc Face and eye tracking using facial sensors within a head-mounted display
KR102516112B1 (ko) 2016-06-03 2023-03-29 매직 립, 인코포레이티드 증강 현실 아이덴티티 검증
KR102448938B1 (ko) 2016-06-10 2022-09-28 매직 립, 인코포레이티드 텍스처 투사 전구용 적분 점광원
EP3472828B1 (en) 2016-06-20 2022-08-10 Magic Leap, Inc. Augmented reality display system for evaluation and modification of neurological conditions, including visual processing and perception conditions
KR102296267B1 (ko) 2016-06-30 2021-08-30 매직 립, 인코포레이티드 3d 공간에서의 포즈 추정
US9996984B2 (en) 2016-07-05 2018-06-12 Disney Enterprises, Inc. Focus control for virtual objects in augmented reality (AR) and virtual reality (VR) displays
CN114495249A (zh) 2016-07-14 2022-05-13 奇跃公司 使用角膜曲率的虹膜边界估计
EP3485425B1 (en) 2016-07-14 2023-08-23 Magic Leap, Inc. Deep neural network for iris identification
KR20230050479A (ko) 2016-07-25 2023-04-14 매직 립, 인코포레이티드 광 필드 프로세서 시스템
KR20230133940A (ko) 2016-07-25 2023-09-19 매직 립, 인코포레이티드 증강 현실 및 가상 현실 안경류를 사용한 이미징 수정, 디스플레이 및 시각화
EP4138339A1 (en) 2016-07-29 2023-02-22 Magic Leap, Inc. Secure exchange of cryptographically signed records
CN115202482A (zh) 2016-08-11 2022-10-18 奇跃公司 用于三维空间中虚拟对象的自动放置的系统和方法
EP3497695A4 (en) 2016-08-12 2019-12-25 Magic Leap, Inc. WORD STREAM ANNOTATION
IL247360B (en) * 2016-08-18 2021-09-30 Veeride Ltd A device and method for augmented reality
KR102194688B1 (ko) 2016-08-22 2020-12-24 매직 립, 인코포레이티드 다층 회절 접안렌즈
WO2018039269A1 (en) 2016-08-22 2018-03-01 Magic Leap, Inc. Augmented reality display device with deep learning sensors
US10108013B2 (en) 2016-08-22 2018-10-23 Microsoft Technology Licensing, Llc Indirect-view augmented reality display system
US10690936B2 (en) 2016-08-29 2020-06-23 Mentor Acquisition One, Llc Adjustable nose bridge assembly for headworn computer
KR102257181B1 (ko) 2016-09-13 2021-05-27 매직 립, 인코포레이티드 감각 안경류
CA3037044A1 (en) 2016-09-21 2018-03-29 Magic Leap, Inc. Systems and methods for optical systems with exit pupil expander
US10330935B2 (en) 2016-09-22 2019-06-25 Apple Inc. Predictive, foveated virtual reality system
JP7148501B2 (ja) 2016-09-22 2022-10-05 マジック リープ, インコーポレイテッド 拡張現実の分光法
WO2018058063A1 (en) 2016-09-26 2018-03-29 Magic Leap, Inc. Calibration of magnetic and optical sensors in a virtual reality or augmented reality display system
US10976549B2 (en) 2016-09-28 2021-04-13 Magic Leap, Inc. Face model capture by a wearable device
RU2016138608A (ru) 2016-09-29 2018-03-30 Мэджик Лип, Инк. Нейронная сеть для сегментации изображения глаза и оценки качества изображения
US20180096494A1 (en) * 2016-09-30 2018-04-05 Visbit Inc. View-optimized light field image and video streaming
CA3038967A1 (en) 2016-10-04 2018-04-12 Magic Leap, Inc. Efficient data layouts for convolutional neural networks
JP7090601B2 (ja) 2016-10-05 2022-06-24 マジック リープ, インコーポレイテッド 複合現実較正のための眼球周囲試験
USD840395S1 (en) 2016-10-17 2019-02-12 Osterhout Group, Inc. Head-worn computer
AU2017345780B2 (en) 2016-10-21 2022-11-17 Magic Leap, Inc. System and method for presenting image content on multiple depth planes by providing multiple intra-pupil parallax views
US10565790B2 (en) 2016-11-11 2020-02-18 Magic Leap, Inc. Periocular and audio synthesis of a full face image
JP6854344B2 (ja) 2016-11-15 2021-04-07 マジック リープ, インコーポレイテッドMagic Leap,Inc. 直方体検出のための深層機械学習システム
JP7037561B2 (ja) 2016-11-16 2022-03-16 マジック リープ, インコーポレイテッド ウェアラブルコンポーネントのための熱管理システム
CA3044241A1 (en) 2016-11-18 2018-05-24 Magic Leap, Inc. Waveguide light multiplexer using crossed gratings
US11067860B2 (en) 2016-11-18 2021-07-20 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
CN115685626A (zh) 2016-11-18 2023-02-03 奇跃公司 用于重定向具有宽入射角范围的光的多层液晶衍射光栅
WO2018094079A1 (en) 2016-11-18 2018-05-24 Magic Leap, Inc. Spatially variable liquid crystal diffraction gratings
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
KR102413561B1 (ko) 2016-12-05 2022-06-24 매직 립, 인코포레이티드 혼합 현실 환경의 가상 사용자 입력 콘트롤들
US10531220B2 (en) 2016-12-05 2020-01-07 Magic Leap, Inc. Distributed audio capturing techniques for virtual reality (VR), augmented reality (AR), and mixed reality (MR) systems
KR102656425B1 (ko) * 2016-12-07 2024-04-12 삼성전자주식회사 영상을 표시하는 전자 장치 및 방법
CA3045663A1 (en) 2016-12-08 2018-06-14 Magic Leap, Inc. Diffractive devices based on cholesteric liquid crystal
US10664049B2 (en) 2016-12-09 2020-05-26 Nvidia Corporation Systems and methods for gaze tracking
AU2017375951B2 (en) 2016-12-13 2022-02-10 Magic Leap, Inc. 3D object rendering using detected features
CN110291369A (zh) 2016-12-13 2019-09-27 奇跃公司 用于传送偏振光和确定葡萄糖水平的增强和虚拟现实眼镜、系统和方法
IL301448B1 (en) 2016-12-14 2024-04-01 Magic Leap Inc Structures of liquid crystals through fine-imprint copying of surface alignment templates
US10088686B2 (en) 2016-12-16 2018-10-02 Microsoft Technology Licensing, Llc MEMS laser scanner having enlarged FOV
AU2017382880B2 (en) 2016-12-22 2022-10-27 Magic Leap, Inc. Systems and methods for manipulating light from ambient light sources
US10371896B2 (en) 2016-12-22 2019-08-06 Magic Leap, Inc. Color separation in planar waveguides using dichroic filters
US10746999B2 (en) 2016-12-28 2020-08-18 Magic Leap, Inc. Dual depth exit pupil expander
CN106773054A (zh) * 2016-12-29 2017-05-31 北京乐动卓越科技有限公司 一种实现增强现实互动的装置及方法
KR102553190B1 (ko) 2016-12-29 2023-07-07 매직 립, 인코포레이티드 외부 조건들에 기초한 웨어러블 디스플레이 디바이스의 자동 제어
US10825010B2 (en) 2016-12-30 2020-11-03 Datalogic Usa, Inc. Self-checkout with three dimensional scanning
USD864959S1 (en) 2017-01-04 2019-10-29 Mentor Acquisition One, Llc Computer glasses
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
CN110431118B (zh) 2017-01-05 2023-10-27 奇跃公司 通过等离子体蚀刻的高折射率玻璃的图案化
JP7096253B2 (ja) 2017-01-23 2022-07-05 マジック リープ, インコーポレイテッド 仮想現実、拡張現実、および複合現実システムのための接眼レンズ
KR102553802B1 (ko) 2017-01-27 2023-07-07 매직 립, 인코포레이티드 상이하게 배향된 나노빔들을 갖는 메타표면들에 의해 형성된 회절 격자
CN110476090B (zh) 2017-01-27 2023-04-25 奇跃公司 用于超表面的抗反射涂层
US10354140B2 (en) 2017-01-31 2019-07-16 Microsoft Technology Licensing, Llc Video noise reduction for video augmented reality system
US10504397B2 (en) 2017-01-31 2019-12-10 Microsoft Technology Licensing, Llc Curved narrowband illuminant display for head mounted display
US11187909B2 (en) 2017-01-31 2021-11-30 Microsoft Technology Licensing, Llc Text rendering by microshifting the display in a head mounted display
US10298840B2 (en) 2017-01-31 2019-05-21 Microsoft Technology Licensing, Llc Foveated camera for video augmented reality and head mounted display
US9983412B1 (en) 2017-02-02 2018-05-29 The University Of North Carolina At Chapel Hill Wide field of view augmented reality see through head mountable display with distance accommodation
US11287292B2 (en) 2017-02-13 2022-03-29 Lockheed Martin Corporation Sensor system
US11347054B2 (en) 2017-02-16 2022-05-31 Magic Leap, Inc. Systems and methods for augmented reality
IL268630B2 (en) 2017-02-23 2023-09-01 Magic Leap Inc Display system with variable power reflector
JP2020514802A (ja) 2017-03-14 2020-05-21 マジック リープ, インコーポレイテッドMagic Leap,Inc. 吸光膜を有する導波管およびそれを形成するためのプロセス
WO2018170421A1 (en) 2017-03-17 2018-09-20 Magic Leap, Inc. Room layout estimation methods and techniques
CN115576048A (zh) 2017-03-21 2023-01-06 奇跃公司 用于组合视场的具有不同衍射光栅的堆叠波导
EP4020982A3 (en) 2017-03-21 2022-09-21 Magic Leap, Inc. Depth sensing techniques for virtual, augmented, and mixed reality systems
EP3602156A4 (en) 2017-03-21 2020-12-23 Magic Leap, Inc. SPATIAL LIGHT MODULATOR LIGHTING DISPLAY SYSTEM FOR DIVIDED PUPILS
CN110651216B (zh) 2017-03-21 2022-02-25 奇跃公司 低轮廓分束器
CA3057080C (en) 2017-03-21 2023-09-12 Magic Leap, Inc. Eye-imaging apparatus using diffractive optical elements
JP7424834B2 (ja) 2017-03-21 2024-01-30 マジック リープ, インコーポレイテッド 空間光変調器を照明するための方法、デバイス、およびシステム
KR20240046291A (ko) 2017-03-22 2024-04-08 매직 립, 인코포레이티드 디스플레이 시스템들을 위한 깊이 기반 포비티드 렌더링
US10891488B2 (en) 2017-03-30 2021-01-12 Hrl Laboratories, Llc System and method for neuromorphic visual activity classification based on foveated detection and contextual filtering
US10417975B2 (en) 2017-04-03 2019-09-17 Microsoft Technology Licensing, Llc Wide field of view scanning display
US10921593B2 (en) 2017-04-06 2021-02-16 Disney Enterprises, Inc. Compact perspectively correct occlusion capable augmented reality displays
US10499021B2 (en) 2017-04-11 2019-12-03 Microsoft Technology Licensing, Llc Foveated MEMS scanning display
EP4270091A3 (en) 2017-04-18 2024-01-24 Magic Leap, Inc. Waveguides having reflective layers formed by reflective flowable materials
EP4220258A1 (en) 2017-04-19 2023-08-02 Magic Leap, Inc. Multimodal task execution and text editing for a wearable system
IL310727A (en) 2017-04-27 2024-04-01 Magic Leap Inc Light emitting user output device
CN110832441B (zh) 2017-05-19 2023-12-26 奇跃公司 用于虚拟、增强和混合现实显示系统的键盘
JP7080249B2 (ja) 2017-05-22 2022-06-03 マジック リープ, インコーポレイテッド コンパニオンデバイスとのペアリング
CN110710014B (zh) 2017-05-30 2023-06-20 奇跃公司 用于电子装置的具有风扇组件的电源组件
EP4123425A1 (en) 2017-05-31 2023-01-25 Magic Leap, Inc. Eye tracking calibration techniques
CN111052720A (zh) 2017-06-12 2020-04-21 奇跃公司 具有更改深度平面的多元件自适应透镜的增强现实显示器
US10810773B2 (en) * 2017-06-14 2020-10-20 Dell Products, L.P. Headset display control based upon a user's pupil state
CN107065196B (zh) 2017-06-16 2019-03-15 京东方科技集团股份有限公司 一种增强现实显示装置及增强现实显示方法
KR102314789B1 (ko) 2017-06-29 2021-10-20 에스케이텔레콤 주식회사 증강현실용 디스플레이 장치
US10338400B2 (en) 2017-07-03 2019-07-02 Holovisions LLC Augmented reality eyewear with VAPE or wear technology
US10859834B2 (en) 2017-07-03 2020-12-08 Holovisions Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear
US10908680B1 (en) 2017-07-12 2021-02-02 Magic Leap, Inc. Pose estimation using electromagnetic tracking
CN107167921B (zh) * 2017-07-18 2020-01-21 京东方科技集团股份有限公司 显示器
US10578869B2 (en) 2017-07-24 2020-03-03 Mentor Acquisition One, Llc See-through computer display systems with adjustable zoom cameras
US11409105B2 (en) 2017-07-24 2022-08-09 Mentor Acquisition One, Llc See-through computer display systems
US10422995B2 (en) 2017-07-24 2019-09-24 Mentor Acquisition One, Llc See-through computer display systems with stray light management
IL271929B (en) 2017-07-26 2022-07-01 Magic Leap Inc Neural network training with displays of user interface devices
JP7398962B2 (ja) 2017-07-28 2023-12-15 マジック リープ, インコーポレイテッド 画像を表示するためのファンアセンブリ
US10969584B2 (en) 2017-08-04 2021-04-06 Mentor Acquisition One, Llc Image expansion optic for head-worn computer
US10976551B2 (en) 2017-08-30 2021-04-13 Corning Incorporated Wide field personal display device
US10521661B2 (en) 2017-09-01 2019-12-31 Magic Leap, Inc. Detailed eye shape model for robust biometric applications
US10719951B2 (en) 2017-09-20 2020-07-21 Magic Leap, Inc. Personalized neural network for eye tracking
WO2019060741A1 (en) 2017-09-21 2019-03-28 Magic Leap, Inc. INCREASED REALITY DISPLAY HAVING A WAVEGUIDE CONFIGURED TO CAPTURE IMAGES OF THE EYE AND / OR THE ENVIRONMENT
JP7317003B2 (ja) 2017-09-27 2023-07-28 マジック リープ, インコーポレイテッド 別個の位相および振幅変調器を伴う接眼3dディスプレイ
US10867368B1 (en) 2017-09-29 2020-12-15 Apple Inc. Foveated image capture for power efficient video see-through
AU2018348229A1 (en) 2017-10-11 2020-04-23 Magic Leap, Inc. Augmented reality display comprising eyepiece having a transparent emissive display
CN116149058A (zh) 2017-10-16 2023-05-23 迪吉伦斯公司 用于倍增像素化显示器的图像分辨率的系统和方法
KR102602117B1 (ko) 2017-10-26 2023-11-13 매직 립, 인코포레이티드 딥 멀티태스크 네트워크들에서 적응적 손실 밸런싱을 위한 그라디언트 정규화 시스템들 및 방법들
CA3078774A1 (en) 2017-10-26 2019-05-02 Magic Leap, Inc. Augmented reality display having liquid crystal variable focus element and roll-to-roll method and apparatus for forming the same
EP3701516A4 (en) 2017-10-26 2021-07-28 Magic Leap, Inc. LARGE BAND ADAPTIVE LENS KIT INTENDED FOR AUGMENTED REALITY DISPLAY
IL310847A (en) 2017-10-27 2024-04-01 Magic Leap Inc A virtual network for augmented reality systems
EP3710990A4 (en) 2017-11-14 2021-10-27 Magic Leap, Inc. METALERS FOR MULTITASK LEARNING FOR NEURAL NETWORKS
US11256093B2 (en) 2017-12-11 2022-02-22 Magic Leap, Inc. Waveguide illuminator
KR102601622B1 (ko) 2017-12-14 2023-11-10 매직 립, 인코포레이티드 가상 아바타들의 콘텍스추얼 기반 렌더링
IL274976B1 (en) 2017-12-15 2024-01-01 Magic Leap Inc Improved positioning for a display device
IL303076A (en) 2017-12-15 2023-07-01 Magic Leap Inc Eyepieces for an augmented reality display system
TWI647485B (zh) * 2018-01-03 2019-01-11 國立交通大學 Head-mounted virtual object imaging device
US11656466B2 (en) * 2018-01-03 2023-05-23 Sajjad A. Khan Spatio-temporal multiplexed single panel based mutual occlusion capable head mounted display system and method
JP7474696B2 (ja) 2018-01-04 2024-04-25 マジック リープ, インコーポレイテッド 無機材料を組み込むポリマー構造に基づく光学要素
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
CN115356905A (zh) 2018-01-08 2022-11-18 迪吉伦斯公司 波导单元格中全息光栅高吞吐量记录的系统和方法
JP7291708B2 (ja) 2018-01-17 2023-06-15 マジック リープ, インコーポレイテッド ディスプレイとユーザの眼との間の位置合わせを決定するためのディスプレイシステムおよび方法
JP7390297B2 (ja) 2018-01-17 2023-12-01 マジック リープ, インコーポレイテッド 眼の回転中心決定、深度平面選択、およびディスプレイシステム内のレンダリングカメラ位置付け
CN115052139B (zh) 2018-01-19 2023-09-08 交互数字Vc控股公司 一种用于显示视频的方法和显示设备
US10540941B2 (en) 2018-01-30 2020-01-21 Magic Leap, Inc. Eclipse cursor for mixed reality displays
WO2019152177A2 (en) * 2018-01-30 2019-08-08 Hrl Laboratories, Llc System and method for neuromorphic visual activity classification based on foveated detection and contextual filtering
US11567627B2 (en) 2018-01-30 2023-01-31 Magic Leap, Inc. Eclipse cursor for virtual content in mixed reality displays
US20190250407A1 (en) * 2018-02-15 2019-08-15 Microsoft Technology Licensing, Llc See-through relay for a virtual reality and a mixed environment display device
US10735649B2 (en) 2018-02-22 2020-08-04 Magic Leap, Inc. Virtual and augmented reality systems and methods using display system control information embedded in image data
EP3759693A4 (en) 2018-02-27 2021-11-24 Magic Leap, Inc. MESH PAIRING FOR VIRTUAL AVATARS
CA3089645A1 (en) 2018-02-28 2019-09-06 Magic Leap, Inc. Head scan alignment using ocular registration
JP7081473B2 (ja) * 2018-03-02 2022-06-07 株式会社リコー 撮像光学系、撮像システム及び撮像装置
EP3762765A4 (en) 2018-03-05 2021-12-08 Magic Leap, Inc. DISPLAY SYSTEM WITH A LOW-LATENCY PUPIL TRACKER
AU2019231697B2 (en) 2018-03-07 2020-01-30 Magic Leap, Inc. Visual tracking of peripheral devices
US11656462B2 (en) 2018-03-07 2023-05-23 Magic Leap, Inc. Adaptive lens assemblies including polarization-selective lens stacks for augmented reality display
WO2019178120A1 (en) 2018-03-12 2019-09-19 Magic Leap, Inc. Very high index eyepiece substrate-based viewing optics assembly architectures
EP3765890A4 (en) 2018-03-14 2022-01-12 Magic Leap, Inc. DISPLAY SYSTEMS AND CONTENT CROPPING METHODS TO INCREASE VIEWING COMFORT
WO2019177870A1 (en) 2018-03-15 2019-09-19 Magic Leap, Inc. Animating virtual avatar facial movements
US10775618B2 (en) 2018-03-16 2020-09-15 Magic Leap, Inc. Facial expressions from eye-tracking cameras
CN112088332A (zh) 2018-03-16 2020-12-15 迪吉伦斯公司 包含双折射控制的全息波导及用于它们的制造的方法
CN112136094A (zh) 2018-03-16 2020-12-25 奇跃公司 用于显示系统的基于深度的凹式渲染
US11480467B2 (en) 2018-03-21 2022-10-25 Magic Leap, Inc. Augmented reality system and method for spectroscopic analysis
MX2020009791A (es) 2018-03-23 2020-11-11 Pcms Holdings Inc Método basado en planos multifocales para producir puntos de vista estereoscópicos en un sistema de renderizado de imágenes basado en profundidad (mfp-dibr).
EP3776027A4 (en) 2018-04-02 2021-12-29 Magic Leap, Inc. Waveguides with integrated optical elements and methods of making the same
US11460609B2 (en) 2018-04-02 2022-10-04 Magic Leap, Inc. Hybrid polymer waveguide and methods for making the same
WO2019195193A1 (en) 2018-04-02 2019-10-10 Magic Leap, Inc. Waveguides having integrated spacers, waveguides having edge absorbers, and methods for making the same
WO2019204164A1 (en) 2018-04-16 2019-10-24 Magic Leap, Inc. Systems and methods for cross-application authoring, transfer, and evaluation of rigging control systems for virtual characters
WO2019204765A1 (en) 2018-04-19 2019-10-24 Magic Leap, Inc. Systems and methods for operating a display system based on user perceptibility
US10789753B2 (en) 2018-04-23 2020-09-29 Magic Leap, Inc. Avatar facial expression representation in multidimensional space
WO2019212698A1 (en) 2018-05-01 2019-11-07 Magic Leap, Inc. Avatar animation using markov decision process policies
WO2019213220A1 (en) 2018-05-03 2019-11-07 Magic Leap, Inc. Using 3d scans of a physical subject to determine positions and orientations of joints for a virtual character
WO2019226494A1 (en) 2018-05-21 2019-11-28 Magic Leap, Inc. Generating textured polygon strip hair from strand-based hair for a virtual character
WO2019226549A1 (en) 2018-05-22 2019-11-28 Magic Leap, Inc. Computer generated hair groom transfer tool
EP3797345A4 (en) 2018-05-22 2022-03-09 Magic Leap, Inc. TRANSMODAL INPUT FUSION FOR A BODY WEARABLE SYSTEM
US10885692B2 (en) 2018-05-22 2021-01-05 Magic Leap, Inc. Skeletal systems for animating virtual avatars
WO2019226865A1 (en) 2018-05-25 2019-11-28 Magic Leap, Inc. Compression of dynamic unstructured point clouds
WO2019236344A1 (en) 2018-06-07 2019-12-12 Magic Leap, Inc. Augmented reality scrollbar
EP3807715A4 (en) 2018-06-15 2022-03-23 Magic Leap, Inc. WIDE FIELD OF VIEW POLARIZATION SWITCHES AND LIQUID CRYSTAL OPTICAL ELEMENTS WITH FORWARD TILT
EP3807710B1 (en) 2018-06-18 2024-01-17 Magic Leap, Inc. Augmented reality display with frame modulation functionality
EP3807868A4 (en) * 2018-06-18 2021-09-22 Magic Leap, Inc. CENTRALIZED RENDERING
US11694435B2 (en) 2018-06-18 2023-07-04 Magic Leap, Inc. Systems and methods for temporarily disabling user control interfaces during attachment of an electronic device
US11624909B2 (en) 2018-06-18 2023-04-11 Magic Leap, Inc. Head-mounted display systems with power saving functionality
US11151793B2 (en) 2018-06-26 2021-10-19 Magic Leap, Inc. Waypoint creation in map detection
CN112602090A (zh) 2018-07-02 2021-04-02 奇跃公司 用于插值不同输入的方法和系统
WO2020010271A1 (en) 2018-07-05 2020-01-09 Magic Leap, Inc. Waveguide-based illumination for head mounted display system
US11689709B2 (en) 2018-07-05 2023-06-27 Interdigital Vc Holdings, Inc. Method and system for near-eye focal plane overlays for 3D perception of content on 2D displays
WO2020018938A1 (en) 2018-07-19 2020-01-23 Magic Leap, Inc. Content interaction driven by eye metrics
JP2021530790A (ja) 2018-07-23 2021-11-11 マジック リープ, インコーポレイテッドMagic Leap, Inc. 頭部姿勢予測のための深層予測器再帰ニューラルネットワーク
US11627587B2 (en) 2018-07-23 2023-04-11 Magic Leap, Inc. Coexistence interference avoidance between two different radios operating in the same band
EP3827426A4 (en) 2018-07-24 2022-07-27 Magic Leap, Inc. AD SYSTEMS AND PROCEDURES FOR DETERMINING A REGISTRATION BETWEEN AN AD AND A USER'S EYES
USD930614S1 (en) 2018-07-24 2021-09-14 Magic Leap, Inc. Totem controller having an illumination region
WO2020023546A1 (en) 2018-07-24 2020-01-30 Magic Leap, Inc. Diffractive optical elements with mitigation of rebounce-induced light loss and related systems and methods
USD924204S1 (en) 2018-07-24 2021-07-06 Magic Leap, Inc. Totem controller having an illumination region
US11422620B2 (en) 2018-07-24 2022-08-23 Magic Leap, Inc. Display systems and methods for determining vertical alignment between left and right displays and a user's eyes
USD918176S1 (en) 2018-07-24 2021-05-04 Magic Leap, Inc. Totem controller having an illumination region
WO2020023404A1 (en) 2018-07-24 2020-01-30 Magic Leap, Inc. Flicker mitigation when toggling eyepiece display illumination in augmented reality systems
WO2020023779A1 (en) 2018-07-25 2020-01-30 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
WO2020023788A1 (en) 2018-07-27 2020-01-30 Magic Leap, Inc. Pose space dimensionality reduction for pose space deformation of a virtual character
CN112805659A (zh) 2018-08-03 2021-05-14 奇跃公司 通过用户分类为多深度平面显示系统选择深度平面
US11002971B1 (en) * 2018-08-24 2021-05-11 Apple Inc. Display device with mechanically adjustable optical combiner
US11141645B2 (en) 2018-09-11 2021-10-12 Real Shot Inc. Athletic ball game using smart glasses
US11103763B2 (en) 2018-09-11 2021-08-31 Real Shot Inc. Basketball shooting game using smart glasses
USD950567S1 (en) 2018-09-18 2022-05-03 Magic Leap, Inc. Mobile computing support system having an illumination region
USD955396S1 (en) 2018-09-18 2022-06-21 Magic Leap, Inc. Mobile computing support system having an illumination region
USD934872S1 (en) 2018-09-18 2021-11-02 Magic Leap, Inc. Mobile computing support system having an illumination region
USD934873S1 (en) 2018-09-18 2021-11-02 Magic Leap, Inc. Mobile computing support system having an illumination region
JP7444861B2 (ja) 2018-09-26 2024-03-06 マジック リープ, インコーポレイテッド 屈折力を有する回折光学要素
US10861240B1 (en) * 2018-09-26 2020-12-08 Facebook Technologies, Llc Virtual pupil camera in head mounted display
EP3871034A4 (en) * 2018-10-26 2022-08-10 Magic Leap, Inc. ELECTROMAGNETIC AMBIENT DISTORTION CORRECTION FOR ELECTROMAGNETIC TRACKING
WO2020102554A1 (en) 2018-11-15 2020-05-22 Magic Leap, Inc. Deep neural network pose estimation system
EP3884337A4 (en) 2018-11-20 2022-08-17 Magic Leap, Inc. EYEPIECES FOR AN AUGMENTED REALITY DISPLAY SYSTEM
US10939977B2 (en) 2018-11-26 2021-03-09 Augmedics Ltd. Positioning marker
US11766296B2 (en) 2018-11-26 2023-09-26 Augmedics Ltd. Tracking system for image-guided surgery
JP2022510843A (ja) 2018-11-30 2022-01-28 マジック リープ, インコーポレイテッド アバタ移動のためのマルチモードの手の場所および配向
US11914150B2 (en) 2018-12-28 2024-02-27 Magic Leap, Inc. Augmented and virtual reality display systems with shared display for left and right eyes
US11640063B2 (en) 2018-12-28 2023-05-02 Magic Leap, Inc. Variable pixel density display system with mechanically-actuated image projector
CN113614783A (zh) 2019-01-25 2021-11-05 奇跃公司 使用具有不同曝光时间的图像的眼睛跟踪
JP7268372B2 (ja) * 2019-01-31 2023-05-08 株式会社リコー 撮像装置
CN113692544A (zh) 2019-02-15 2021-11-23 迪吉伦斯公司 使用集成光栅提供全息波导显示的方法和装置
WO2020176783A1 (en) 2019-02-28 2020-09-03 Magic Leap, Inc. Display system and method for providing variable accommodation cues using multiple intra-pupil parallax views formed by light emitter arrays
US20200292745A1 (en) 2019-03-12 2020-09-17 Digilens Inc. Holographic Waveguide Backlight and Related Methods of Manufacturing
US11435584B2 (en) * 2019-03-13 2022-09-06 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Large field of view see through head mounted display having magnified curved intermediate image
US11846778B2 (en) 2019-03-20 2023-12-19 Magic Leap, Inc. System for providing illumination of the eye
US10554940B1 (en) 2019-03-29 2020-02-04 Razmik Ghazaryan Method and apparatus for a variable-resolution screen
US10466489B1 (en) 2019-03-29 2019-11-05 Razmik Ghazaryan Methods and apparatus for a variable-resolution screen
US11284053B2 (en) 2019-03-29 2022-03-22 Razmik Ghazaryan Head-mounted display and projection screen
JP2022529245A (ja) 2019-04-15 2022-06-20 マジック リープ, インコーポレイテッド 電磁追跡のためのセンサ融合
US11800205B2 (en) * 2019-04-18 2023-10-24 University Of Florida Research Foundation, Incorporated Fast foveation camera and controlling algorithms
KR102606609B1 (ko) 2019-05-05 2023-11-29 후아웨이 테크놀러지 컴퍼니 리미티드 카메라 모듈, 단말 디바이스, 촬상 방법 및 촬상 장치
CN110913096A (zh) * 2019-05-05 2020-03-24 华为技术有限公司 一种摄像模组及电子设备
EP3973347A4 (en) 2019-05-20 2023-05-31 Magic Leap, Inc. EYE POSITION ESTIMATION SYSTEMS AND TECHNIQUES
TWI707193B (zh) * 2019-05-22 2020-10-11 財團法人國家實驗研究院 遙測衛星的聚焦面組合件及其影像處理方法
WO2020243012A1 (en) 2019-05-24 2020-12-03 Magic Leap, Inc. Variable focus assemblies
EP3976726A4 (en) 2019-05-28 2023-06-28 Magic Leap, Inc. Thermal management system for portable electronic devices
USD962981S1 (en) 2019-05-29 2022-09-06 Magic Leap, Inc. Display screen or portion thereof with animated scrollbar graphical user interface
WO2020247930A1 (en) 2019-06-07 2020-12-10 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
CN114286962A (zh) 2019-06-20 2022-04-05 奇跃公司 用于增强现实显示系统的目镜
CN114270312A (zh) 2019-06-21 2022-04-01 奇跃公司 经由模态窗口的安全授权
WO2020263866A1 (en) 2019-06-24 2020-12-30 Magic Leap, Inc. Waveguides having integral spacers and related systems and methods
US11029805B2 (en) 2019-07-10 2021-06-08 Magic Leap, Inc. Real-time preview of connectable objects in a physically-modeled virtual space
US11868525B2 (en) 2019-07-16 2024-01-09 Magic Leap, Inc. Eye center of rotation determination with one or more eye tracking cameras
JP2022540691A (ja) 2019-07-19 2022-09-16 マジック リープ, インコーポレイテッド 回折格子を加工する方法
JP7447237B2 (ja) 2019-07-19 2024-03-11 マジック リープ, インコーポレイテッド 低減された偏光感度を伴う回折格子を有するディスプレイデバイス
US11740458B2 (en) 2019-07-26 2023-08-29 Microsoft Technology Licensing, Llc Projection device and projection method for head mounted display based on rotary MEMS fast scanner
JP2022543571A (ja) 2019-07-29 2022-10-13 ディジレンズ インコーポレイテッド 画素化されたディスプレイの画像解像度および視野を乗算するための方法および装置
AU2020325162B2 (en) * 2019-08-07 2023-08-31 Agilent Technologies, Inc. Optical imaging performance test system and method
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
EP4028354A4 (en) 2019-09-11 2023-11-22 Magic Leap, Inc. DISPLAY DEVICE PROVIDED WITH A DIFFRACTION GRATING WITH REDUCED POLARIZATION SENSITIVITY
CN114600035A (zh) * 2019-09-13 2022-06-07 代表亚利桑那大学的亚利桑那校董事会 瞳孔匹配的具有遮挡能力的光学透视头戴式显示器
US11610290B2 (en) * 2019-09-24 2023-03-21 Rockwell Collins, Inc. Point source detection
US11933949B2 (en) * 2019-09-27 2024-03-19 Apple Inc. Freeform folded optical system
US11276246B2 (en) 2019-10-02 2022-03-15 Magic Leap, Inc. Color space mapping for intuitive surface normal visualization
US11176757B2 (en) 2019-10-02 2021-11-16 Magic Leap, Inc. Mission driven virtual character for user interaction
JPWO2021070970A1 (ko) * 2019-10-12 2021-04-15
JP7467619B2 (ja) 2019-11-08 2024-04-15 マジック リープ, インコーポレイテッド 複数の材料を含む光再指向構造を伴うメタ表面およびその加工方法
US11493989B2 (en) 2019-11-08 2022-11-08 Magic Leap, Inc. Modes of user interaction
USD982593S1 (en) 2019-11-08 2023-04-04 Magic Leap, Inc. Portion of a display screen with animated ray
WO2021101844A1 (en) 2019-11-18 2021-05-27 Magic Leap, Inc. Mapping and localization of a passable world
JP2023502336A (ja) 2019-11-22 2023-01-24 マジック リープ, インコーポレイテッド 液晶層をパターン化するための方法およびシステム
KR102244445B1 (ko) * 2019-11-22 2021-04-26 인하대학교 산학협력단 단일 디지털 마이크로미러 장치를 이용한 오클루전 가능 증강현실용 근안 디스플레이 장치 및 방법
JP7467623B2 (ja) 2019-11-26 2024-04-15 マジック リープ, インコーポレイテッド 拡張または仮想現実ディスプレイシステムのための向上された眼追跡
WO2021113309A1 (en) 2019-12-06 2021-06-10 Magic Leap, Inc. Encoding stereo splash screen in static image
WO2021113322A1 (en) 2019-12-06 2021-06-10 Magic Leap, Inc. Dynamic browser stage
USD940749S1 (en) 2019-12-09 2022-01-11 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
USD940748S1 (en) 2019-12-09 2022-01-11 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
USD941307S1 (en) 2019-12-09 2022-01-18 Magic Leap, Inc. Portion of a display screen with graphical user interface for guiding graphics
USD952673S1 (en) 2019-12-09 2022-05-24 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
USD940189S1 (en) 2019-12-09 2022-01-04 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
USD941353S1 (en) 2019-12-09 2022-01-18 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
US11288876B2 (en) 2019-12-13 2022-03-29 Magic Leap, Inc. Enhanced techniques for volumetric stage mapping based on calibration object
US11382712B2 (en) 2019-12-22 2022-07-12 Augmedics Ltd. Mirroring in image guided surgery
CN111077679A (zh) * 2020-01-23 2020-04-28 福州贝园网络科技有限公司 一种智能眼镜显示器及其成像方法
US11340695B2 (en) 2020-01-24 2022-05-24 Magic Leap, Inc. Converting a 2D positional input into a 3D point in space
CN115380236A (zh) 2020-01-24 2022-11-22 奇跃公司 使用单个控制器的内容移动和交互
USD948562S1 (en) 2020-01-27 2022-04-12 Magic Leap, Inc. Portion of a display screen with avatar
WO2021154646A1 (en) 2020-01-27 2021-08-05 Magic Leap, Inc. Neutral avatars
USD949200S1 (en) 2020-01-27 2022-04-19 Magic Leap, Inc. Portion of a display screen with a set of avatars
CN115039166A (zh) 2020-01-27 2022-09-09 奇跃公司 增强现实地图管理
USD948574S1 (en) 2020-01-27 2022-04-12 Magic Leap, Inc. Portion of a display screen with a set of avatars
CN115004235A (zh) 2020-01-27 2022-09-02 奇跃公司 基于锚的交叉现实应用的增强状态控制
CN115004128A (zh) 2020-01-27 2022-09-02 奇跃公司 基于注视计时器的用户输入设备的功能增强
USD936704S1 (en) 2020-01-27 2021-11-23 Magic Leap, Inc. Portion of a display screen with avatar
WO2021155047A1 (en) 2020-01-31 2021-08-05 Magic Leap, Inc. Augmented and virtual reality display systems for oculometric assessments
US11709363B1 (en) 2020-02-10 2023-07-25 Avegant Corp. Waveguide illumination of a spatial light modulator
CN115087905A (zh) 2020-02-10 2022-09-20 奇跃公司 在混合现实环境中相对于三维容器的以身体为中心的内容定位
US11726349B2 (en) 2020-02-14 2023-08-15 Magic Leap, Inc. Virtual object movement speed curve for virtual and augmented reality display systems
EP4111133A1 (en) 2020-02-26 2023-01-04 Magic Leap, Inc. Procedural electron beam lithography
CN115190837A (zh) 2020-02-28 2022-10-14 奇跃公司 制造用于形成具有一体间隔件的目镜的模具的方法
US11262588B2 (en) 2020-03-10 2022-03-01 Magic Leap, Inc. Spectator view of virtual and physical objects
US11474358B2 (en) 2020-03-20 2022-10-18 Magic Leap, Inc. Systems and methods for retinal imaging and tracking
CN115698782A (zh) 2020-03-25 2023-02-03 奇跃公司 具有单路镜的光学设备
EP4127822A1 (en) 2020-04-03 2023-02-08 Magic Leap, Inc. Wearable display systems with nanowire led micro-displays
JP2023520463A (ja) 2020-04-03 2023-05-17 マジック リープ, インコーポレイテッド 最適視線弁別のためのアバタカスタマイズ
WO2021237115A1 (en) 2020-05-22 2021-11-25 Magic Leap, Inc. Augmented and virtual reality display systems with correlated in-coupling and out-coupling optical regions
WO2021247435A1 (en) 2020-06-05 2021-12-09 Magic Leap, Inc. Enhanced eye tracking techniques based on neural network analysis of images
US11389252B2 (en) 2020-06-15 2022-07-19 Augmedics Ltd. Rotating marker for image guided surgery
CN111580280B (zh) * 2020-06-16 2022-10-28 京东方科技集团股份有限公司 透视头戴显示器
WO2022032198A1 (en) 2020-08-07 2022-02-10 Magic Leap, Inc. Tunable cylindrical lenses and head-mounted display including the same
CN116438479A (zh) 2020-09-29 2023-07-14 阿维甘特公司 用于对显示面板照明的架构
JP2022144057A (ja) * 2021-03-18 2022-10-03 株式会社Jvcケンウッド 表示装置、表示方法およびプログラム
TWI775392B (zh) * 2021-04-20 2022-08-21 宏碁股份有限公司 擴增實境眼鏡
US11936975B2 (en) 2021-05-12 2024-03-19 Nio Technology (Anhui) Co., Ltd. Combined computer vision and human vision camera system
WO2022269895A1 (ja) * 2021-06-25 2022-12-29 株式会社ニコン 撮像装置、および受光装置
US11896445B2 (en) 2021-07-07 2024-02-13 Augmedics Ltd. Iliac pin and adapter
US20230236420A1 (en) * 2021-08-17 2023-07-27 Texas Instruments Incorporated Compact near eye display engine
US20230059918A1 (en) * 2021-08-17 2023-02-23 Texas Instruments Incorporated Compact near eye display engine
US20230057977A1 (en) * 2021-08-20 2023-02-23 Immervision, Inc. Dual field of view optical system
US11417069B1 (en) * 2021-10-05 2022-08-16 Awe Company Limited Object and camera localization system and localization method for mapping of the real world
WO2023133301A1 (en) * 2022-01-07 2023-07-13 Arizona Board Of Regents On Behalf Of The University Of Arizona Occlusion-capable optical viewing device and associated method
US11662591B1 (en) * 2022-07-01 2023-05-30 Brelyon Inc. Display systems and imaging systems with dynamically controllable optical path lengths
CN115220238A (zh) * 2022-07-12 2022-10-21 李宪亭 近视防控结构和近视防控设备
US11776206B1 (en) 2022-12-23 2023-10-03 Awe Company Limited Extended reality system and extended reality method with two-way digital interactive digital twins

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792426A (ja) * 1993-09-24 1995-04-07 Sony Corp 視覚装置

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909121A (en) * 1974-06-25 1975-09-30 Mesquita Cardoso Edgar Antonio Panoramic photographic methods
US4026641A (en) * 1975-12-30 1977-05-31 The United States Of America As Represented By The Secretary Of The Army Toric reflector display
JPS54128217A (en) * 1978-03-29 1979-10-04 Olympus Optical Co Ltd Pickup device
JPS57171314A (en) 1981-04-15 1982-10-21 Mitsubishi Electric Corp Optical branching and coupling circuit
CN1058577C (zh) * 1989-07-28 2000-11-15 佳能株式会社 图象形成装置
US5136183A (en) 1990-06-27 1992-08-04 Advanced Micro Devices, Inc. Integrated comparator circuit
US5307203A (en) * 1990-12-06 1994-04-26 Tandem Scanning Corporation Confocal tandem scanning reflected light microscope
US5135183A (en) * 1991-09-23 1992-08-04 Hughes Aircraft Company Dual-image optoelectronic imaging apparatus including birefringent prism arrangement
CA2084111A1 (en) * 1991-12-17 1993-06-18 William E. Nelson Virtual display device and method of use
US5406415A (en) 1992-09-22 1995-04-11 Kelly; Shawn L. Imaging system for a head-mounted display
US5386313A (en) 1993-03-11 1995-01-31 Szegedi; Nicholas J. Reflective magneto-optic spatial light modulator assembly
JP3320252B2 (ja) * 1995-04-24 2002-09-03 キヤノン株式会社 反射型の光学系及びそれを用いた撮像装置
US6347744B1 (en) * 1995-10-10 2002-02-19 Symbol Technologies, Inc. Retroreflective scan module for electro-optical readers
JPH09166759A (ja) * 1995-12-18 1997-06-24 Olympus Optical Co Ltd 画像表示装置
JP3222052B2 (ja) * 1996-01-11 2001-10-22 株式会社東芝 光走査装置
JPH1068899A (ja) * 1996-08-26 1998-03-10 Asahi Optical Co Ltd カスケード走査光学系
US6204974B1 (en) 1996-10-08 2001-03-20 The Microoptical Corporation Compact image display system for eyeglasses or other head-borne frames
JP3924348B2 (ja) * 1996-11-05 2007-06-06 オリンパス株式会社 画像表示装置
JPH10197796A (ja) * 1996-12-27 1998-07-31 Olympus Optical Co Ltd ファインダー光学系
US6466185B2 (en) 1998-04-20 2002-10-15 Alan Sullivan Multi-planar volumetric display system and method of operation using psychological vision cues
US6377229B1 (en) * 1998-04-20 2002-04-23 Dimensional Media Associates, Inc. Multi-planar volumetric display system and method of operation using three-dimensional anti-aliasing
JP2000105348A (ja) * 1998-07-27 2000-04-11 Mr System Kenkyusho:Kk 画像観察装置
US6215532B1 (en) 1998-07-27 2001-04-10 Mixed Reality Systems Laboratory Inc. Image observing apparatus for observing outside information superposed with a display image
JP4100531B2 (ja) * 1998-08-11 2008-06-11 株式会社東京大学Tlo 情報提示方法及び装置
JP2000171750A (ja) * 1998-12-03 2000-06-23 Sony Corp ヘッドマウントディスプレイ、表示方法、および提供媒体
JP2000227554A (ja) 1999-02-05 2000-08-15 Olympus Optical Co Ltd 結像光学系
JP2000330025A (ja) * 1999-05-19 2000-11-30 Olympus Optical Co Ltd ルーバーを用いた結像光学系
CN1452725A (zh) * 2000-02-11 2003-10-29 Emd有限公司 光学分束器单元和包括这种单元的双目显示装置
AU4082801A (en) * 2000-03-16 2001-09-24 Lee Scott Friend Imaging apparatus
ATE473464T1 (de) * 2000-06-05 2010-07-15 Lumus Ltd Optischer strahlaufweiter mit substratlichtwellenleitung
US20020000951A1 (en) * 2000-06-26 2002-01-03 Richards Angus Duncan Display device enhancements
US8042947B1 (en) * 2000-10-07 2011-10-25 Metaio Gmbh Information system
US6457834B1 (en) 2001-01-24 2002-10-01 Scram Technologies, Inc. Optical system for display panel
EP1231780A3 (en) * 2001-02-07 2004-01-14 Sony Corporation Image pickup apparatus
JP2002244074A (ja) * 2001-02-15 2002-08-28 Mixed Reality Systems Laboratory Inc 画像表示装置
FR2826221B1 (fr) 2001-05-11 2003-12-05 Immervision Internat Pte Ltd Procede d'obtention et d'affichage d'une image panoramique numerique a resolution variable
US7009773B2 (en) 2001-05-23 2006-03-07 Research Foundation Of The University Of Central Florida, Inc. Compact microlenslet arrays imager
CN1316286C (zh) * 2001-06-21 2007-05-16 皇家菲利浦电子有限公司 显示装置
US6593561B2 (en) * 2001-06-22 2003-07-15 Litton Systems, Inc. Method and system for gathering image data using multiple sensors
US7940299B2 (en) 2001-08-09 2011-05-10 Technest Holdings, Inc. Method and apparatus for an omni-directional video surveillance system
US6473241B1 (en) * 2001-11-27 2002-10-29 The United States Of America As Represented By The Secretary Of The Air Force Wide field-of-view imaging system using a reflective spatial light modulator
US7084904B2 (en) * 2002-09-30 2006-08-01 Microsoft Corporation Foveated wide-angle imaging system and method for capturing and viewing wide-angle images in real time
US7427996B2 (en) * 2002-10-16 2008-09-23 Canon Kabushiki Kaisha Image processing apparatus and image processing method
JP2004170386A (ja) * 2002-10-28 2004-06-17 Seiko Epson Corp 検査装置及び検査方法、液滴吐出装置及び液滴吐出方法、デバイス及び電子機器
JP2004153605A (ja) * 2002-10-31 2004-05-27 Victor Co Of Japan Ltd 撮像装置及び撮像画像伝送システム
GB0228089D0 (en) * 2002-12-02 2003-01-08 Seos Ltd Dynamic range enhancement of image display apparatus
JP4288939B2 (ja) * 2002-12-05 2009-07-01 ソニー株式会社 撮像装置
JP4304973B2 (ja) * 2002-12-10 2009-07-29 ソニー株式会社 撮像装置
US6870653B2 (en) * 2003-01-31 2005-03-22 Eastman Kodak Company Decoupled alignment axis for fold mirror adjustment
US7542090B1 (en) * 2003-03-21 2009-06-02 Aerodyne Research, Inc. System and method for high-resolution with a small-format focal-plane array using spatial modulation
US20050117015A1 (en) * 2003-06-26 2005-06-02 Microsoft Corp. Foveated panoramic camera system
US7336299B2 (en) * 2003-07-03 2008-02-26 Physical Optics Corporation Panoramic video system with real-time distortion-free imaging
JP2005094417A (ja) * 2003-09-18 2005-04-07 Sony Corp 撮像装置
WO2005062105A1 (en) * 2003-12-12 2005-07-07 Headplay, Inc. Optical arrangements for head mounted displays
DE10359691A1 (de) * 2003-12-18 2005-07-14 Carl Zeiss Beobachtungssystem und -verfahren
EP1580586B1 (en) * 2004-03-25 2008-06-11 Olympus Corporation Scanning confocal microscope
KR100491271B1 (ko) * 2004-04-30 2005-05-25 주식회사 나노포토닉스 전방위 거울 및 이를 이용한 영상 시스템
US20070182812A1 (en) * 2004-05-19 2007-08-09 Ritchey Kurtis J Panoramic image-based virtual reality/telepresence audio-visual system and method
US7639208B1 (en) 2004-05-21 2009-12-29 University Of Central Florida Research Foundation, Inc. Compact optical see-through head-mounted display with occlusion support
SG155167A1 (en) * 2004-08-03 2009-09-30 Silverbrook Res Pty Ltd Walk-up printing
US20060055811A1 (en) * 2004-09-14 2006-03-16 Frtiz Bernard S Imaging system having modules with adaptive optical elements
US7532771B2 (en) * 2004-11-12 2009-05-12 Microsoft Corporation Image processing system for digital collage
JP4689266B2 (ja) * 2004-12-28 2011-05-25 キヤノン株式会社 画像表示装置
US7884947B2 (en) 2005-01-20 2011-02-08 Zygo Corporation Interferometry for determining characteristics of an object surface, with spatially coherent illumination
US20070002131A1 (en) * 2005-02-15 2007-01-04 Ritchey Kurtis J Dynamic interactive region-of-interest panoramic/three-dimensional immersive communication system and method
DE102005012763A1 (de) 2005-03-19 2006-09-21 Diehl Bgt Defence Gmbh & Co. Kg Weitwinkeloptik
US7023628B1 (en) * 2005-04-05 2006-04-04 Alex Ning Compact fisheye objective lens
EP1798587B1 (en) * 2005-12-15 2012-06-13 Saab Ab Head-up display
DE602005015010D1 (de) 2005-12-29 2009-07-30 Fiat Ricerche Optisches System zur Bildübertragung, besonders für Projektionsgeräte der kopfmontierten Art
CN101021669A (zh) * 2006-02-13 2007-08-22 耿忠 全视场成像与显示方法与系统
US20100045773A1 (en) * 2007-11-06 2010-02-25 Ritchey Kurtis J Panoramic adapter system and method with spherical field-of-view coverage
CN100526936C (zh) * 2006-03-09 2009-08-12 比亚迪股份有限公司 一种头盔显示器的光学成像系统
JP2007248545A (ja) * 2006-03-14 2007-09-27 Konica Minolta Holdings Inc 映像表示装置および映像表示システム
US20080097347A1 (en) 2006-09-22 2008-04-24 Babak Arvanaghi Bendable needle assembly
US8072482B2 (en) * 2006-11-09 2011-12-06 Innovative Signal Anlysis Imaging system having a rotatable image-directing device
CN101029968A (zh) * 2007-04-06 2007-09-05 北京理工大学 可寻址光线屏蔽机制光学透视式头盔显示器
WO2008129539A2 (en) * 2007-04-22 2008-10-30 Lumus Ltd. A collimating optical device and system
US7589901B2 (en) * 2007-07-10 2009-09-15 Microvision, Inc. Substrate-guided relays for use with scanned beam light sources
KR100882011B1 (ko) * 2007-07-29 2009-02-04 주식회사 나노포토닉스 회전 대칭형의 광각 렌즈를 이용하여 전방위 영상을 얻는 방법 및 장치
US7973834B2 (en) * 2007-09-24 2011-07-05 Jianwen Yang Electro-optical foveated imaging and tracking system
JP2009122379A (ja) * 2007-11-14 2009-06-04 Canon Inc 光学装置及びその制御方法、撮像装置、並びにプログラム
JP5201957B2 (ja) * 2007-11-21 2013-06-05 キヤノン株式会社 撮像装置
JP5153351B2 (ja) * 2008-01-18 2013-02-27 キヤノン株式会社 ズームレンズ及びそれを有する光学機器
US7952783B2 (en) * 2008-09-22 2011-05-31 Microvision, Inc. Scanning mirror control
CN102265124A (zh) 2008-11-04 2011-11-30 威廉马什赖斯大学 像映射光谱仪
US20110164108A1 (en) * 2009-12-30 2011-07-07 Fivefocal Llc System With Selective Narrow FOV and 360 Degree FOV, And Associated Methods
AU2011220382A1 (en) * 2010-02-28 2012-10-18 Microsoft Corporation Local advertising content on an interactive head-mounted eyepiece
US20110213664A1 (en) 2010-02-28 2011-09-01 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
US8743199B2 (en) * 2010-03-09 2014-06-03 Physical Optics Corporation Omnidirectional imaging optics with 360°-seamless telescopic resolution
WO2012037290A2 (en) 2010-09-14 2012-03-22 Osterhout Group, Inc. Eyepiece with uniformly illuminated reflective display
US8941559B2 (en) 2010-09-21 2015-01-27 Microsoft Corporation Opacity filter for display device
JP2012252091A (ja) 2011-06-01 2012-12-20 Sony Corp 表示装置
EP2732330A4 (en) * 2011-07-17 2015-07-08 Ziva Corp OPTICAL ILLUSTRATION WITH FOVEATION
AU2011204946C1 (en) * 2011-07-22 2012-07-26 Microsoft Technology Licensing, Llc Automatic text scrolling on a head-mounted display
US9256117B2 (en) * 2011-10-07 2016-02-09 L-3 Communications Cincinnati Electronics Corporation Panoramic imaging systems comprising rotatable mirrors for image stabilization
WO2013152205A1 (en) 2012-04-05 2013-10-10 Augmented Vision Inc. Wide-field of view (fov) imaging devices with active foveation capability
KR20140118770A (ko) 2013-03-27 2014-10-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
US9494792B2 (en) 2013-07-30 2016-11-15 Global Oled Technology Llc Local seal for encapsulation of electro-optical element on a flexible substrate
US20160077345A1 (en) 2014-09-17 2016-03-17 Michael Bohan Eliminating Binocular Rivalry in Monocular Displays
EP3163379B1 (en) * 2015-10-28 2019-10-16 Samsung Electronics Co., Ltd. See-through holographic display apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792426A (ja) * 1993-09-24 1995-04-07 Sony Corp 視覚装置

Also Published As

Publication number Publication date
KR102022719B1 (ko) 2019-11-05
EP2841991A4 (en) 2016-02-10
US20170315361A1 (en) 2017-11-02
EP3608717A1 (en) 2020-02-12
CN108391033B (zh) 2020-10-30
CN104937475B (zh) 2018-01-16
KR102188748B1 (ko) 2020-12-08
US20140177023A1 (en) 2014-06-26
CA2869781A1 (en) 2013-10-10
KR102223290B1 (ko) 2021-03-04
JP6322753B2 (ja) 2018-05-09
CA2874576C (en) 2021-12-28
US20180157046A1 (en) 2018-06-07
EP2834699B1 (en) 2020-12-16
US20170031163A1 (en) 2017-02-02
JP6126682B2 (ja) 2017-05-10
US10061130B2 (en) 2018-08-28
IL300033B1 (en) 2024-01-01
KR20180038583A (ko) 2018-04-16
KR20210119558A (ko) 2021-10-05
IL261165A (en) 2018-10-31
IL284204B (en) 2022-05-01
NZ725339A (en) 2018-04-27
JP2017161914A (ja) 2017-09-14
CN107976818B (zh) 2020-06-19
EP2834699A4 (en) 2016-06-29
US20230244074A1 (en) 2023-08-03
CN104541201A (zh) 2015-04-22
US20140218468A1 (en) 2014-08-07
BR112014024945A2 (pt) 2020-10-27
US10175491B2 (en) 2019-01-08
KR20180038584A (ko) 2018-04-16
WO2014011266A2 (en) 2014-01-16
CN108391033A (zh) 2018-08-10
NZ725322A (en) 2017-12-22
JP2015518178A (ja) 2015-06-25
KR102345444B1 (ko) 2021-12-29
JP6434076B2 (ja) 2018-12-05
IL275662B (en) 2021-07-29
JP6944578B2 (ja) 2021-10-06
RU2015154980A3 (ko) 2019-03-26
JP6176747B2 (ja) 2017-08-09
IL292007B2 (en) 2023-06-01
KR102028732B1 (ko) 2019-10-04
IL261165B (en) 2020-07-30
US11656452B2 (en) 2023-05-23
IL308962A (en) 2024-01-01
AU2013243380B2 (en) 2017-04-20
CN107843988A (zh) 2018-03-27
US10048501B2 (en) 2018-08-14
IL284204A (en) 2021-07-29
CA3111134A1 (en) 2013-10-10
KR20150009536A (ko) 2015-01-26
US20180299677A1 (en) 2018-10-18
AU2013243380A1 (en) 2014-10-30
NZ700898A (en) 2017-03-31
US20180101012A1 (en) 2018-04-12
US20190018249A1 (en) 2019-01-17
AU2017203227A1 (en) 2017-06-08
EP4339690A2 (en) 2024-03-20
CA2869781C (en) 2021-04-27
US9726893B2 (en) 2017-08-08
JP7216165B2 (ja) 2023-01-31
EP2841991B1 (en) 2020-01-08
IL275662A (en) 2020-08-31
EP3796071B1 (en) 2024-01-31
KR102404537B1 (ko) 2022-05-31
KR102306729B1 (ko) 2021-09-28
KR102095330B1 (ko) 2020-03-31
CA2874576A1 (en) 2014-01-16
US9874752B2 (en) 2018-01-23
JP2023052497A (ja) 2023-04-11
NZ700887A (en) 2016-11-25
AU2017203227B2 (en) 2018-11-29
NZ724344A (en) 2018-05-25
RU2015156050A (ru) 2019-01-18
JP2019035977A (ja) 2019-03-07
US10451883B2 (en) 2019-10-22
EP2834699A2 (en) 2015-02-11
AU2013289157A1 (en) 2014-10-30
JP2015519595A (ja) 2015-07-09
US9547174B2 (en) 2017-01-17
KR102129330B1 (ko) 2020-07-02
CN104937475A (zh) 2015-09-23
EP2841991A1 (en) 2015-03-04
JP2018139421A (ja) 2018-09-06
JP2021009398A (ja) 2021-01-28
KR20140141718A (ko) 2014-12-10
US20210373338A1 (en) 2021-12-02
AU2013289157B2 (en) 2017-04-06
KR20180037336A (ko) 2018-04-11
NZ740631A (en) 2018-12-21
EP3796071A1 (en) 2021-03-24
JP2017201406A (ja) 2017-11-09
IL300033A (en) 2023-03-01
CN104541201B (zh) 2018-05-25
US10901221B2 (en) 2021-01-26
JP2022001949A (ja) 2022-01-06
WO2014011266A3 (en) 2015-04-16
KR20200035184A (ko) 2020-04-01
JP6768046B2 (ja) 2020-10-14
US20200012109A1 (en) 2020-01-09
KR102124350B1 (ko) 2020-06-23
AU2017201669A1 (en) 2017-03-30
RU2015154980A (ru) 2017-06-28
KR20190112218A (ko) 2019-10-02
US20180284456A1 (en) 2018-10-04
AU2017201669B2 (en) 2019-02-07
IL292007A (en) 2022-06-01
WO2013152205A1 (en) 2013-10-10
CN107843988B (zh) 2021-02-02
BR112014024941A2 (pt) 2017-09-19
KR20210024255A (ko) 2021-03-04
US20190107722A1 (en) 2019-04-11
EP3608717B1 (en) 2023-09-27
US10162184B2 (en) 2018-12-25
KR20180038582A (ko) 2018-04-16
CN107976818A (zh) 2018-05-01
CA3138549A1 (en) 2014-01-16
US9851563B2 (en) 2017-12-26
KR102099156B1 (ko) 2020-04-09

Similar Documents

Publication Publication Date Title
JP6944578B2 (ja) 相互遮蔽および不透明度制御能力を有する光学式シースルー型ヘッドマウントディスプレイのための装置

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant