CN110291369A - 用于传送偏振光和确定葡萄糖水平的增强和虚拟现实眼镜、系统和方法 - Google Patents

用于传送偏振光和确定葡萄糖水平的增强和虚拟现实眼镜、系统和方法 Download PDF

Info

Publication number
CN110291369A
CN110291369A CN201780086316.9A CN201780086316A CN110291369A CN 110291369 A CN110291369 A CN 110291369A CN 201780086316 A CN201780086316 A CN 201780086316A CN 110291369 A CN110291369 A CN 110291369A
Authority
CN
China
Prior art keywords
user
wearable device
light
glucose level
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780086316.9A
Other languages
English (en)
Inventor
N·U·罗柏纳
N·E·萨梅克
M·拜伦洛特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magic Leap Inc
Original Assignee
Magic Leap Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magic Leap Inc filed Critical Magic Leap Inc
Publication of CN110291369A publication Critical patent/CN110291369A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14558Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters by polarisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4261Evaluating exocrine secretion production
    • A61B5/4266Evaluating exocrine secretion production sweat secretion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/486Bio-feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6821Eye
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Optics & Photonics (AREA)
  • Pulmonology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Emergency Medicine (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Graphics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Eye Examination Apparatus (AREA)
  • User Interface Of Digital Computer (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Eyeglasses (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

用户可穿戴设备的各种实施例可以包括框架,其被配置为安装在用户上。该设备可以包括显示器,其被附接到框架并且被配置为将虚拟图像引导到用户的眼睛。该设备还可以包括光源,其被配置为向用户的眼睛提供偏振光,并且该偏振光被配置为从用户的眼睛反射。该设备可以进一步包括光分析仪,其被配置为确定从用户的眼睛的反射的光的偏振角旋转,以使得可以至少部分地基于反射光的偏振角旋转来确定用户的葡萄糖水平。

Description

用于传送偏振光和确定葡萄糖水平的增强和虚拟现实眼镜、 系统和方法
优先权声明
本申请根据35 U.S.C.§119(e)主张2016年12月13日提交的序列号为62/433,756的美国临时专利申请的优先权益,该申请的全部公开内容明确地通过引用并入此文。
通过引用并入
本申请通过引用并入以下专利申请中的每一者的全部内容:2014年11月27日提交的序列号为14/555,585的美国申请;2015年4月18日提交的序列号为14/690,401的美国申请;2014年3月14日提交的序列号为14/212,961的美国申请;2014年7月14日提交的序列号为14/331,218的美国申请;以及2016年3月16日提交的序列号为15/072,290的美国申请。
技术领域
本公开涉及光学设备,包括用于传送偏振光和确定葡萄糖水平的虚拟现实和增强现实成像和可视化眼镜、系统和方法。
背景技术
现代计算和显示技术促进了用于所谓的“虚拟现实”或“增强现实”体验的系统开发,其中,数字再现图像或其一部分以它们看起来或可以被感知为真实的方式呈现给用户。虚拟现实“VR”场景通常涉及以对其它实际的真实世界视觉输入不透明的方式呈现数字或虚拟图像信息;增强现实“AR”场景通常涉及呈现数字或虚拟图像信息作为对用户周围实际的世界的可视化的增强。混合现实“MR”场景是一种AR场景,并且通常涉及集成到自然世界中并响应于自然世界的虚拟对象。例如,在MR场景中,AR图像内容可以被真实世界中的对象阻挡或被感知为与该对象交互。
参考图1A,示出了增强现实场景1,其中AR技术的用户看到真实世界的公园式设置1100,该设置以人、树、位于背景中的建筑物以及混凝土平台1120为特征。除了这些项目之外,AR技术的用户还感知到他/她“看到”“虚拟内容”,诸如站在真实世界平台1120上的机器人雕像1110,以及看起来是大黄蜂的化身的正在飞舞的卡通式化身角色1150,即使这些元素1110、1130在真实世界中不存在。由于人类视觉感知系统复杂,因此产生便利在其它虚拟或真实世界图像元素当中舒适、感觉自然、丰富地呈现虚拟图像元素的AR技术极具挑战性。
本文公开的设备、系统和方法解决了与AR和VR技术相关的各种挑战。
发明内容
本公开的设备、系统和方法分别具有若干创新方面,其中没有单个方面单独地负责本公开的期望属性。
1.一种用户可穿戴设备,包括:
框架,其被配置为安装在用户上;
显示器,其被附接到所述框架,所述显示器被配置为将虚拟图像引导到所述用户的眼睛;
光源,其被配置为向所述用户的所述眼睛提供偏振光,其中,所述偏振光被配置为从所述用户的所述眼睛反射;以及
光分析仪,其被配置为确定从所述用户的所述眼睛反射的光的偏振角旋转,以使得能够至少部分地基于所反射的光的所述偏振角旋转来确定所述用户的葡萄糖水平。
2.根据示例1所述的用户可穿戴设备,其中,所述光源包括偏振滤波器。
3.根据示例1或2所述的用户可穿戴设备,其中,所述光源包括偏振控制器。
4.根据示例3所述的用户可穿戴设备,其中,所述偏振控制器包括至少一个光学光纤。
5.根据示例4所述的用户可穿戴设备,其中,所述偏振控制器进一步包括至少一个致动器,所述致动器被配置为在所述至少一个光学光纤上施加压力。
6.根据示例5所述的用户可穿戴设备,其中,所述至少一个致动器包括至少一个压电致动器。
7.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述光源包括具有500nm至800nm范围内的波长的光源。
8.根据示例7所述的用户可穿戴设备,其中,所述光源包括激光器,所述激光器被配置为发射具有530nm至650nm范围内的波长的光。
9.根据示例8所述的用户可穿戴设备,其中,所述光源包括激光器,所述激光器被配置为发射具有550nm至590nm范围内的波长的光。
10.根据前述示例中的任一项所述的用户可穿戴设备,
其中,所述光分析仪包括可旋转滤波器,所述可旋转滤波器被配置为阻挡所反射的光中的至少一部分,以及
其中,所述光分析仪被配置为至少部分地基于被阻挡的所反射的光来确定所反射的光的所述偏振角旋转。
11.根据前述示例中的任一项所述的用户可穿戴设备,进一步包括处理电子装置,所述处理电子装置被配置为至少部分地基于所反射的光的所述偏振角旋转来确定所述用户的所述葡萄糖水平。
12.根据示例11所述的用户可穿戴设备,其中,所述处理电子装置被配置为至少部分地基于所确定的所反射的光的所述偏振角旋转来确定所述葡萄糖水平的浓度。
13.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述设备被配置为与所述用户或与临床医生通信。
14.根据示例13所述的用户可穿戴设备,其中,所述设备被配置为将所确定的葡萄糖水平传达给所述用户或临床医生。
15.根据示例13或14所述的用户可穿戴设备,其中,所述设备被配置为接收来自所述用户或临床医生的信息。
16.根据示例15所述的用户可穿戴设备,其中,所述处理电子装置被配置为至少部分地基于所接收的来自所述用户或临床医生的信息来校准所确定的葡萄糖水平。
17.根据示例16所述的用户可穿戴设备,其中,所接收的信息包括通过血液测试确定的葡萄糖水平。
18.根据示例13至17中任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为根据所述用户或临床医生的请求确定所述葡萄糖水平。
19.根据示例11至18中任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为在至少一段时间内自动确定所述葡萄糖水平。
20.根据示例13至19中任一项所述的用户可穿戴设备,其中,所述设备被配置为经由所述增强现实显示器与所述用户通信。
21.根据示例13至20中任一项所述的用户可穿戴设备,其中,所述设备被配置为经由与所述增强现实显示器分离的显示器与所述用户通信。
22.根据示例11至21中任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为远程存储和访问所确定的葡萄糖水平。
23.根据示例11至22中任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为远程存储和访问与所确定的葡萄糖水平相关的信息。
24.根据示例22或23所述的用户可穿戴设备,其中,所述设备被配置为随时间跟踪所述用户的所述葡萄糖水平。
25.根据示例24所述的用户可穿戴设备,其中,所述设备被配置为比较当前葡萄糖水平与历史葡萄糖水平。
26.根据示例25所述的用户可穿戴设备,其中,所述设备被配置为响应于比较所述当前葡萄糖水平与所述历史葡萄糖水平而向所述用户或临床医生提供警报。
27.根据前述示例中的任一项所述的用户可穿戴设备,进一步包括一个或多个传感器,所述传感器被配置为检测与所述用户的身体状态相关的至少一个参数。
28.根据示例27所述的用户可穿戴设备,其中,所述一个或多个传感器包括面向内部的相机或面向外部的相机。
29.根据示例27或28所述的用户可穿戴设备,其中,所述至少一个参数包括体温、皮肤温度、心率、呼吸率、出汗水平、自上次进餐后经过的时间或自上次服药后经过的时间。
30.根据示例27至29中任一项所述的用户可穿戴设备,其中,所述设备被配置为至少部分地基于与所述用户的所述身体状态相关的所述至少一个参数分析所确定的葡萄糖水平。
31.根据示例27至30中任一项所述的用户可穿戴设备,其中,所述设备被配置为在所述至少一个参数落在范围之外时向所述用户或临床医生提供警报。
32.根据前述示例中的任一项所述的用户可穿戴设备,进一步包括眼睛跟踪传感器,所述眼睛跟踪传感器被配置为确定所提供的偏振光是否传输到所述用户的所述眼睛内。
33.根据示例32所述的用户可穿戴设备,其中,所述设备被配置为在所述眼睛跟踪传感器确定所述偏振光未传输到所述用户的所述眼睛内时,不确定所述葡萄糖水平。
34.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述光源或所述光分析仪的至少一部分被配置为旋转,以使得所述偏振角旋转能够被确定。
35.根据前述示例中的任一项所述的用户可穿戴设备,进一步包括光学检测器,所述光学检测器相对于所述分析仪设置以检测穿过所述分析仪的从所述眼睛反射的偏振光的量。
36.根据前述示例中的任一项所述的用户可穿戴设备,进一步包括眼睛跟踪传感器,所述眼睛跟踪传感器被配置为确定所提供的偏振光是否入射在所述用户的虹膜或视网膜脉络系统上。
37.根据前述示例中的任一项所述的用户可穿戴设备,进一步包括眼睛跟踪传感器,所述眼睛跟踪传感器被配置为确定所提供的偏振光是否入射在所述眼睛的同一位置上。
38.根据前述示例中的任一项所述的用户可穿戴设备,进一步包括一个或多个传感器,所述传感器被配置为检测所述用户的活动或状况。
39.根据示例38所述的用户可穿戴设备,其中,所述活动包括进食、服药、锻炼或其组合。
40.根据示例38或39所述的用户可穿戴设备,其中,所述设备被配置为向所述用户提供与所述活动或状况相关的实时反馈。
41.根据示例19所述的用户可穿戴设备,其中,所述处理电子装置被配置为:
确定是否重新确定所述葡萄糖水平;以及
在确定的情况下,自动重新确定所述葡萄糖水平。
42.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述显示器被配置为以不同的发散量或准直量将不同的虚拟图像引导到所述用户的眼睛。
43.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述显示器被配置为将来自周围环境的光传输到所述用户的眼睛,以允许观察所述周围环境。
附加示例
1.一种用户可穿戴设备,包括:
框架,其被配置为安装在用户上;
显示器,其被附接到所述框架,所述显示器被配置为将虚拟图像引导到所述用户的眼睛;
光源,其被配置为向所述用户的所述眼睛提供光;
光分析仪,其被配置为分析从所述用户的所述眼睛反射的光;以及
处理电子装置,其与所述光分析仪通信,所述处理电子装置被配置为至少部分地基于从所述用户的眼睛反射的光来确定所述用户的葡萄糖水平,所述处理电子装置被配置为在至少一段时间内自动确定所述用户的所述葡萄糖水平。
2.根据示例1所述的用户可穿戴设备,其中,所述处理电子装置被配置为根据由所述用户或临床医生进行的编程来确定所述用户的所述葡萄糖水平。
3.根据示例1或2所述的用户可穿戴设备,其中,所述处理电子装置被配置为一天多次确定所述用户的所述葡萄糖水平。
4.根据示例3所述的用户可穿戴设备,其中,所述处理电子装置被配置为一天至少三次确定所述用户的所述葡萄糖水平。
5.根据示例1或2所述的用户可穿戴设备,其中,所述处理电子装置被配置为一周多次确定所述用户的所述葡萄糖水平。
6.根据示例5所述的用户可穿戴设备,其中,所述处理电子装置被配置为一周至少三次确定所述用户的所述葡萄糖水平。
7.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述设备被配置为与所述用户或临床医生通信。
8.根据示例7所述的用户可穿戴设备,其中,所述设备被配置为将所确定的葡萄糖水平传达给所述用户或临床医生。
9.根据示例7至8中任一项所述的用户可穿戴设备,其中,所述设备被配置为经由所述显示器与所述用户通信。
10.根据示例7至8中任一项所述的用户可穿戴设备,其中,所述设备被配置为经由与所述显示器分离的显示器与所述用户通信。
11.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述设备被配置为响应于所确定的葡萄糖水平而向所述用户或临床医生提供警报。
12.根据示例1至11中任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为存储和访问所确定的葡萄糖水平。
13.根据示例1至11中任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为远程存储和访问所确定的葡萄糖水平。
14.根据示例12或13所述的用户可穿戴设备,其中,所述设备被配置为随时间跟踪所述用户的所述葡萄糖水平。
15.根据示例14所述的用户可穿戴设备,其中,所述设备被配置为比较当前葡萄糖水平与历史葡萄糖水平。
16.根据示例15所述的用户可穿戴设备,其中,所述设备被配置为响应于比较所述当前葡萄糖水平与所述历史葡萄糖水平而向所述用户或临床医生提供警报。
17.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为:
确定是否重新确定所述葡萄糖水平;以及
在确定的情况下,自动重新确定所述葡萄糖水平。
18.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述光源被配置为提供偏振光,以及所述处理电子装置被配置为至少部分地基于所述偏振光的偏振角旋转来确定所述葡萄糖水平。
19.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述显示器被配置为以不同的发散量或准直量将不同的虚拟图像引导到所述用户的眼睛。
20.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述显示器被配置为将来自周围环境的光传输到所述用户的眼睛,以允许观察所述周围环境。
其它示例
1.一种用户可穿戴设备,包括:
框架,其被配置为安装在用户上;
显示器,其被附接到所述框架,所述显示器被配置为将虚拟图像引导到所述用户的眼睛;
光源,其被配置为向所述用户的所述眼睛提供光;
光分析仪,其被配置为分析从所述用户的所述眼睛反射的光;
一个或多个传感器,其被附接到所述框架,所述一个或多个传感器被配置为检测与所述用户或环境相关的信息;以及
处理电子装置,其与所述光分析仪和所述一个或多个传感器通信,所述处理电子装置被配置为:
至少部分地基于从所述用户的所述眼睛反射的光来确定所述用户的葡萄糖水平;
从所述一个或多个传感器接收与所述用户或所述环境相关的信息;以及
存储和访问所接收的信息。
2.根据示例1所述的用户可穿戴设备,其中,所述一个或多个传感器包括一个或多个用户传感器。
3.根据示例1至2中任一项所述的用户可穿戴设备,其中,所述一个或多个传感器包括一个或多个环境传感器。
4.根据示例1至3中任一项所述的用户可穿戴设备,其中,所述一个或多个传感器包括一个或多个用户传感器和一个或多个环境传感器。
5.根据示例1至4中任一项所述的用户可穿戴设备,其中,所述一个或多个传感器包括面向内部的相机或面向外部的相机。
6.根据示例1至5中任一项所述的用户可穿戴设备,其中,与所述用户或所述环境相关的信息包括所述用户的活动。
7.根据示例6所述的用户可穿戴设备,其中,所述用户的所述活动包括进食、服药、锻炼或其组合。
8.根据示例1至7中任一项所述的用户可穿戴设备,其中,与所述用户或所述环境相关的信息包括食物摄取量、食物的营养信息、药物摄取量或其组合。
9.根据示例1至8中任一项所述的用户可穿戴设备,其中,与所述用户或所述环境相关的信息包括与所述用户的身体状态相关的参数中的至少一个参数。
10.根据示例9所述的用户可穿戴设备,其中,所述至少一个参数包括体温、皮肤温度、心率、呼吸率、出汗水平、自上次进餐后经过的时间或自上次服药后经过的时间。
11.根据示例1至10中任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为远程存储和访问与所述用户或所述环境相关的信息。
12.根据示例1至11中任一项所述的用户可穿戴设备,其中,所述设备被配置为随时间跟踪与所述用户或所述环境相关的信息。
13.根据示例1至12中任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为存储和访问所确定的葡萄糖水平。
14.根据示例13所述的用户可穿戴设备,其中,所述处理电子装置被配置为远程存储和访问所确定的葡萄糖水平。
15.根据示例13或14所述的用户可穿戴设备,其中,所述设备被配置为随时间跟踪所述用户的所述葡萄糖水平。
16.根据示例15所述的用户可穿戴设备,其中,所述设备被配置为比较当前葡萄糖水平与历史葡萄糖水平。
17.根据示例1至16中任一项所述的用户可穿戴设备,其中,所述设备被配置为确定所确定的葡萄糖水平与所述用户或所述用户的环境中的至少一个方面之间的关系。
18.根据示例1至17中任一项所述的用户可穿戴设备,其中,所述设备被配置为将用户葡萄糖水平的变化与关于所述用户或所述环境的信息中的一项或多项进行关联。
19.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述设备被配置为与所述用户或临床医生通信。
20.根据示例19所述的用户可穿戴设备,其中,所述设备被配置为将所确定的葡萄糖水平传达给所述用户或临床医生。
21.根据示例19所述的用户可穿戴设备,其中,所述设备被配置为响应于所确定的葡萄糖水平或与所述用户或所述环境相关的信息而向所述用户或临床医生提供警报。
22.根据示例9至21中任一项所述的用户可穿戴设备,其中,所述设备被配置为在所述至少一个参数落在范围之外时向所述用户或临床医生提供警报。
23.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为:
确定是否重新确定所述葡萄糖水平;以及
在确定的情况下,自动重新确定所述葡萄糖水平。
24.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述光源被配置为提供偏振光,以及所述处理电子装置被配置为至少部分地基于所述偏振光的偏振角旋转来确定所述葡萄糖水平。
25.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述显示器被配置为以不同的发散量或准直量将不同的虚拟图像引导到所述用户的眼睛。
26.根据前述示例中的任一项所述的用户可穿戴设备,其中,所述显示器被配置为将来自周围环境的光传输到所述用户的眼睛,以允许观察所述周围环境。
本说明书中描述的主题的一个或多个实施例的细节在附图和下面的描述中阐述。通过描述、附图和权利要求,其它特征、方面和优点将变得显而易见。请注意,以下附图的相关尺寸可能未按比例绘制。
附图说明
图1A示出了用户通过AR设备对增强现实(AR)的观看。
图1B示出了人眼的横截面。
图2示出了可穿戴显示系统的示例。
图3示出了用于为用户模拟三维图像的常规显示系统。
图4示出了使用多个深度平面模拟三维图像的方法的各方面。
图5A至图5C示出了曲率半径与焦半径之间的关系。
图6示出了用于将图像信息输出给用户的波导堆叠的示例。
图7示出了由波导输出的出射光束的示例。
图8示出了其中每个深度平面包括使用多种不同组份颜色(component color)形成的图像的堆叠波导组件的示例。
图9A示出了每个堆叠波导包括耦入光学元件的一组堆叠波导的示例的横截面侧视图。
图9B示出了图9A的多个堆叠波导的示例的透视图。
图9C示出了图9A和图9B的多个堆叠波导的示例的俯视平面图。
图10示出了包括环境和用户传感器的增强现实系统的各种部件的示例的示意图。
图11A至图11B示出了包括偏振光源和光分析仪的示例增强现实显示设备的示意图。
图11C示意性地示出了示例偏振光源。
图11D示意性地示出了示例偏振控制器。
图11E示意性地示出了包括滤波器的示例光分析仪。
图12示意性地示出了采取皮腰带耦合式配置的示例增强现实显示系统。
图13是用于确定葡萄糖水平的示例过程流。
具体实施方式
糖尿病患者和其他患者可能必须监测其葡萄糖水平。目前测量葡萄糖水平的方法包括血液测试,血液测试涉及用于抽血的侵入性皮肤穿刺技术。一些患者可能必须携带并保管他们自己的血糖测试试剂盒(血糖仪、刺破设备/小刀、测试条等),设置闹钟(alarm)以记住在一天中的某个时间进行测量,在日志中记录葡萄糖测量值,并制定食物摄取量/运动日志。一些患者可能还需要一周多次就医以检阅日志并根据医生的建议调整其饮食和/或生活方式。这些方法可能会扰乱一个人一天,可能繁重、耗时且痛苦。本文描述的各种实施例针对用户可穿戴设备、系统和方法,这些设备、系统和方法被配置为有利地允许在不抽取血液的情况下以非侵入性的无痛方法来确定葡萄糖水平(例如,基于从眼睛反射的光来确定葡萄糖水平)。这些实施例的用户可以更频繁地甚至每天多次检查其葡萄糖水平。本文描述的一些实施例还被配置为方便地跟踪所确定的葡萄糖水平、用户的身体状态(例如,用户的温度)、用户的活动(例如,食物摄取量、锻炼等)和/或环境状况(例如,天气)。在一些这样的实施例中,葡萄糖测量值和数据跟踪可以在较少用户参与的情况下执行(例如,在某些情况下部分和/或完全自动执行),并且还可以与医生远程共享。
如图1B所示,示出了人眼100的示意性剖视图,包括以下特征:角膜42、虹膜44、晶状体或“水晶体”46、巩膜48、脉络膜层50、黄斑52、视网膜54、到大脑的视神经通路56。角膜42和晶状体46将光朝向视网膜54折射并聚焦。眼房水是位于角膜42与虹膜44之间(例如,在前房中)以及虹膜44与晶状体46之间(例如,在后房中)的一层薄薄的水状流体。
葡萄糖存在于眼睛的前房和后房中的眼房水中。葡萄糖分子是手性分子,其可以使线性偏振光(例如,偏振面)的偏振角旋转。不受理论的限制,偏振角旋转的量与葡萄糖浓度相关。本文描述的实施例允许通过将偏振光投射到用户的眼睛中(例如,眼房水中)并测量从眼睛反射的光的偏振角旋转(例如,当光透射过分子时,由眼房水中的葡萄糖分子引起)来确定葡萄糖水平。
本文描述的用户可穿戴设备和系统的某些实施例可以包括增强现实(AR)设备和系统,该设备和系统向用户或观看者显示虚拟内容,同时仍然允许用户看到其周围的世界。优选地,此内容显示在向用户的眼睛投射图像信息的头戴式显示器(例如,作为眼镜的一部分)上。另外,显示器还可以将来自周围环境的光传输到用户的眼睛,以允许观察该周围环境。如本文所使用的,应当理解,“头戴式”显示器是可以安装在观看者的头部上的显示器。
如下面进一步讨论的,许多VR、AR和MR显示设备在显示图像信息时经历调节-辐辏不匹配。这种不匹配可能引起用户的不适并且可能使长期穿戴设备不可行。有利地,根据本文的实施例的显示设备允许通过提供用户的调节与辐辏之间的正确匹配方式(这是其中一种方式)来长期穿戴设备。因此,设备的用户可以能够基本上连续地穿戴和使用设备持续3小时或更长时间,4小时或更长时间,5小时或更长时间,6小时或更长时间或全天,而无需在超过持续时间的25%、20%、15%、10%或5%内移除该设备。在一些实施例中,显示设备可以基本上连续地在上述持续时间内显示增强现实图像。
有利地,显示设备的长期穿戴性(例如,由于提供正确的调节-辐辏匹配的能力)提供了允许长期、被动地执行葡萄糖测试的平台。可以定期地或在任意时间进行测试。此外,一些实施例可以在需要注意时(例如,在确定的葡萄糖水平和/或与葡萄糖水平相关的参数落在某个范围之外时)提供警报。
显示设备和/或系统还可以允许用户随时间监测他或她的葡萄糖水平。例如,根据葡萄糖测试确定的葡萄糖水平可以被存储在用户可穿戴显示器和/或系统的本地数据库中和/或存储在用户可穿戴显示器和/或系统可访问的远程数据库中。因此,显示设备和/或系统允许收集相对大量的数据。因为显示设备和/或系统可以被长时间穿戴,优选地,当用户正在进行他或她的日常生活的部分或全部时,葡萄糖测试的次数和/或重复次数可能高于在需要用户刺破他或她的手指的情况下所达到的次数和/或重复次数。在一些实施例中,用户可穿戴设备和/或系统可以比较当前葡萄糖水平与历史葡萄糖水平。所确定的葡萄糖水平也可以通过校准个体化,例如通过血液测试获得的葡萄糖水平。
本文描述的各种实施例还可以检测和跟踪用户的身体状态、活动和/或环境状况,以使得可能影响所确定的葡萄糖水平的因素(例如,用户的温度、用户是否在禁食、出汗或处于极端温度环境中等)可以在估计结果时被考虑到,以提供更准确的解释和评估和/或指示是否建议另一次读取。在一些实施例中,用户可穿戴设备和/或系统可以分析所确定的葡萄糖水平和所跟踪的数据以进行关联,在某些情况下,可以使用这些关联来提供未来行为的预测模型。例如,当检测到某些活动和/或状况(例如,进食)时,设备和/或系统可以提供实时反馈,诸如基于历史读数的警报(例如,用户正在食用过去已经导致更高葡萄糖水平的食物的警报)。因此,各种实施例可以通过提供更好的集成糖尿病/血糖管理来帮助用户和医生维持目标血糖水平。
现在参考图2。图2示出了可穿戴显示系统80的示例。显示系统80包括显示器62,以及支持该显示器62的功能的各种机械和电子模块和系统。显示器62可以耦接到框架64,该框架可由显示系统用户或观看者60穿戴,并且被配置为将显示器62定位在用户60的眼前。在一些实施例中,显示器62可以被视为眼镜。在一些实施例中,扬声器66耦接到框架64并且邻近用户60的耳道定位(在一些实施例中,另一扬声器(未示出)邻近用户的另一耳道定位以提供立体声/可塑形的声音控制)。在一些实施例中,显示系统还可以包括一个或多个麦克风67或其它检测声音的设备。在一些实施例中,麦克风被配置为允许用户向系统80提供输入或命令(例如,选择语音菜单命令、自然语言问题等)和/或可以允许与其它人(例如,与类似显示系统的其他用户)进行音频通信。麦克风可以进一步被配置为外围传感器以连续收集音频数据(例如,从用户和/或环境处被动地收集)。此类音频数据可以包括用户声音(诸如,浓重的呼吸)、或环境声音(诸如,指示附近事件的重击声)。显示系统还可以包括外围传感器30a,该外围传感器30a可以与框架64分离并且附接到用户60的身体上,例如,附接到用户60的头部、躯干、四肢等上。如本文进一步描述的,在一些实施例中,外围传感器130a可以被配置为获取有关用户60的数据。
继续参考图2,显示器62通过通信链路68(诸如,通过有线引线或无线连接)可操作地耦接到本地数据处理模块70,本地数据处理模块70可以以各种配置安装,诸如固定地附接到框架64,固定地附接到用户戴的头盔或帽子,嵌入耳机中,或以其它方式可移除地附接到用户60(例如,采取背包式配置,采取束带连接式配置)。类似地,传感器30a可以通过通信链路30b(例如,通过有线引线或无线连接)可操作地耦接到本地处理和数据模块70。本地处理和数据模块70可以包括硬件处理器,以及数字存储器,诸如非易失性存储器(例如,闪存或硬盘驱动器),这两者都可用于辅助数据的处理、缓存和存储。这些数据包括a)通过传感器(其例如可以可操作地耦接到框架64或以其它方式附接到用户60)捕获的数据,这些传感器诸如图像捕获设备(诸如,相机)、麦克风、惯性测量单元、加速度计、指南针、GPS单元、无线电设备、陀螺仪和/或本文公开的其它传感器;和/或b)使用远程处理模块72和/或远程数据存储库74获取和/或处理的数据(包括与虚拟内容相关的数据),这些数据可能在被执行完这样的处理或检索之后传送到显示器62。本地处理和数据模块70可以通过通信链路76、70(诸如,经由有线或无线通信链路)可操作地耦接到远程处理模块72和远程数据存储库74,以使得这些远程模块72、74可操作地彼此耦接,并且作为资源可用于本地处理和数据模块70。在一些实施例中,本地处理和数据模块70可以包括图像捕获设备、麦克风、惯性测量单元、加速度计、指南针、GPS单元、无线电设备和/或陀螺仪中的一者或多者。在一些其它实施例中,这些传感器中的一者或多者可以被附接到框架64,或者可以是通过有线或无线通信路径与本地处理和数据模块70通信的独立结构。
继续参考图2,在一些实施例中,远程处理模块72可以包括被配置为分析和处理数据和/或图像信息的一个或多个处理器。在一些实施例中,远程数据存储库74可以包括数字数据存储设施,该设施可以通过因特网或“云”资源配置中的其它网络配置获得。在一些实施例中,远程数据存储库74可以包括一个或多个远程服务器,这些服务器向本地处理和数据模块70和/或远程处理模块72提供信息,例如用于生成增强现实内容的信息。在一些实施例中,在本地处理和数据模块中存储所有数据并执行所有计算,允许从远程模块完全自主地使用。
可以通过向观看者的每只眼睛提供略微不同的图像呈现来实现将图像感知为“三维”或“3D”。图3示出了用于模拟用户的三维图像的常规显示系统。向用户输出两个不同图像5、7,其中每个图像针对一只眼睛4、6。图像5、7沿着平行于观看者视线的光轴或z轴与眼睛4、6相隔距离10。图像5、7是平坦的,以及眼睛4、6可以通过假设单个调节状态而聚焦在图像上。这样的系统依赖于人类视觉系统来组合图像5、7以提供组合图像的深度感和/或缩放。
然而,应当理解,人类视觉系统更复杂并且提供逼真的深度感更具挑战性。例如,常规的“3D”显示系统的许多观看者发现这样的系统不舒服或者可能根本无法感知到深度感。不受理论的限制,可以认为对象的观看者可能由于辐辏和调节的组合而将对象感知为“三维的”。两只眼睛相对的辐辏动作(即,使得瞳孔彼此靠近或远离以使眼睛的视线会聚以固定在对象上的眼睛旋转)与眼睛晶状体和瞳孔的聚焦(或“调节”)密切相关。在正常情况下,根据被称为“调节-辐辏反射”的关系,以及瞳孔放大或收缩,更改眼睛晶状体的焦点或调节眼睛以将焦点从一个对象改变到不同距离处的另一对象将自动导致到同一距离的辐辏匹配变化。同样,在正常情况下,辐辏变化将引发晶状体形状和瞳孔大小的调节匹配变化。如本文所述,许多立体或“3D”显示系统使用略微不同的呈现(以及因此略微不同的图像)向每只眼睛显示场景,以使得人类视觉系统感知到三维透视。然而,这些系统对于许多观看者来说是不舒服的,因为它们仅提供不同的场景呈现,但是眼睛在单个调节状态下观看所有图像信息(这是其中一种方式),并违反“调节-辐辏反射”起作用。在调节与辐辏之间提供更好匹配的显示系统可以形成更逼真和舒适的三维图像模拟,有助于增加穿戴的持续时间,进而符合诊断和治疗协议。
图4示出了使用多个深度平面模拟三维图像的方法的各方面。参考图4,沿z轴距眼睛4、6不同距离处的对象由眼睛4、6调节,以使这些对象处于焦点。眼睛(4和6)呈现特定的调节状态,以使沿z轴不同距离处的对象处于焦点。因此,可以认为特定的调节状态与深度平面14中的特定一者相关联,该特定平面具有关联的焦距,以使得当眼睛针对特定深度平面处于调节状态时,该特定深度平面中的对象或对象的一部分处于焦点。在一些实施例中,可以通过为每只眼睛4、6提供图像的不同呈现,并且还通过提供与每个深度平面对应的图像的不同呈现来模拟三维图像。尽管为了清楚地说明而示出为是分开的,但是应当理解,眼睛4、6的视野可以重叠,例如在沿z轴的距离增加时。此外,尽管为了便于说明而示出为平坦的,但是应当理解,深度平面的轮廓在物理空间中可以是弯曲的,以使得深度平面中的所有特征在眼睛处于特定调节状态时处于焦点。
对象与眼睛4或6之间的距离也可以改变来自该眼睛所看到的对象的光的发散量。图5A至图5C示出了距离与光线发散之间的关系。对象与眼睛4之间的距离按照距离递减的顺序由R1、R2和R3表示。如图5A至图5C所示,随着到对象的距离减小,光线变得更加发散。随着距离的增加,光线变得更加准直。换句话说,可以认为由点(对象或对象的一部分)产生的光场具有球面波前曲率,该曲率是该点距用户的眼睛的距离的函数。曲率随着对象与眼睛4之间的距离减小而增加。因此,在不同的深度平面处,光线的发散程度也不同,发散度随着深度平面与观看者眼睛4之间的距离的减小而增加。尽管为了在图5A至图5C和本文中的其它图中为了清楚地说明而仅示出单只眼睛4,但是应当理解,有关眼睛4的讨论可以应用于观看者的双眼4和6。
不受理论的限制,可以认为人眼通常可以解释有限数量的深度平面以提供深度感。因此,可以通过向眼睛提供与这些有限数量的深度平面中的每一者对应的图像(例如,场景)的不同呈现来实现高度可信的感知深度模拟。不同的呈现可以由观看者的眼睛单独聚焦,从而有助于基于使位于不同深度平面上的场景的不同图像特征处于焦点所需的眼睛调节和/或基于观察到不同深度平面上的不同的图像特征位于不在焦点上,为用户提供深度线索。
图6示出了用于将图像信息输出给用户的波导堆叠的示例。显示系统1000包括波导的堆叠或堆叠的波导组件178,该组件可用于使用多个波导182、184、186、188、190向眼睛/大脑提供三维感知。在一些实施例中,显示系统1000是图2的系统80,图6更详细地示意性地示出了该系统80的一些部分。例如,波导组件178可以是图2的显示器62的一部分。将理解,在一些实施例中,显示系统1000可以被视为光场显示器。
继续参考图6,波导组件178还可以包括位于波导之间的多个特征198、196、194、192。在一些实施例中,特征198、196、194、192可以是一个或多个透镜。波导182、184、186、188、190和/或多个透镜198、196、194、192可以被配置为以各种水平的波前曲率或光线发散度向眼睛传输图像信息。每个波导水平可以与特定深度平面相关联,并且可以被配置为输出对应于该深度平面的图像信息。图像注入设备200、202、204、206、208可以用作波导的光源,并且可用于将图像信息注入波导182、184、186、188、190中,如本文所述,波导182、184、186、188、190中每一者可以被配置为将入射光分布在每个相应的波导上以便朝向眼睛4输出。光从图像注入设备200、202、204、206、208的输出表面300、302、304、306、308出射,并被注入波导182、184、186、188、190的对应输入表面382、384、386、388、390中。在一些实施例中,输入表面382、384、386、388、390中的每一者可以是对应波导的边缘,或者可以是对应波导的主表面(即,直接面朝世界144或观看者眼睛4的波导表面中的一者)的一部分。在一些实施例中,可以将单个光束(例如,准直光束)注入每个波导以输出整个克隆的准直光束场,这些准直光束以与关联于特定波导的深度平面相对应的特定角度(和发散量)指向眼睛4。在一些实施例中,图像注入设备200、202、204、206、208中的单独一者可以与多个(三个)波导182、184、186、188、190相关联并将光注入这些波导中。
在一些实施例中,图像注入设备200、202、204、206、208是分立的显示器,每个显示器产生用于分别注入对应波导182、184、186、188、190中的图像信息。在一些其它实施例中,图像注入设备200、202、204、206、208是单个多路复用显示器的输出端,该显示器例如可以经由通过一个或多个光学导管(例如光纤光缆)将图像信息管道传输到图像注入设备200、202、204、206、208中的每一者。将理解,由图像注入设备200、202、204、206、208提供的图像信息可以包括不同波长或颜色(例如,本文所讨论的不同的组份颜色)的光。
在一些实施例中,注入波导182、184、186、188、190中的光由光投射器系统2000提供,该光投射器系统2000包括光模块2040,该光模块2040可以包括诸如发光二极管(LED)之类的光发射器。来自光模块2040的光可以经由分束器2050被引导到光调制器2030(例如,空间光调制器)并由其进行修改。光调制器2030可以被配置为改变注入波导182、184、186、188、190中的光的感知强度。空间光调制器的示例包括液晶显示器(LCD),该液晶显示器(LCD)包括硅基液晶(LCOS)显示器。
在一些实施例中,显示系统1000可以是包括一个或多个扫描光纤的扫描光纤显示器,该一个或多个扫描光纤被配置为以各种图案(例如,光栅扫描、螺旋扫描、利萨如图案等)将光投射到一个或多个波导182、184、186、188、190中并最终投射到观看者的眼睛4。在一些实施例中,所示图像注入设备200、202、204、206、208可示意性地表示单个扫描光纤或扫描光纤束,该单个扫描光纤或扫描光纤束被配置为将光注入一个或多个波导182、184、186、188、190中。在一些其它实施例中,所示的图像注入设备200、202、204、206、208可以示意性地表示多个扫描光纤或扫描光纤束,该多个扫描光纤或扫描光纤束中的每一者的光纤被配置为将光注入波导182、184、186、188、190中的关联的一者。应当理解,一个或多个光学光纤可以被配置为将光从光模块2040传输到一个或多个波导182、184、186、188、190。应当理解,可以在一个或多个扫描光纤与一个或多个波导182、184、186、188、190之间提供一个或多个中间光学结构,以例如将从扫描光纤出射的光重定向到一个或多个波导182、184、186、188、190中。
控制器210控制堆叠波导组件178中的一者或多者的操作,包括图像注入设备200、202、204、206、208、光源2040和光调制器2030的操作。在一些实施例中,控制器210是本地数据处理模块70的一部分。控制器210包括编程(例如,非暂时性介质中的指令),该编程根据例如本文公开的多种的方案中的任一项调节图像信息到波导182、184、186、188、190的时钟(timing)和提供。在一些实施例中,控制器可以是单个集成设备,或者是通过有线或无线通信信道连接的分布式系统。在一些实施例中,控制器210可以是处理模块70或72(图2)的一部分。
继续参考图6,波导182、184、186、188、190可以被配置为通过全内反射(TIR)在每个相应的波导内传播光。波导182、184、186、188、190可以各自是平面的或具有另一形状(例如,弯曲的),其具有主要的顶部和底部表面以及在这些主要的顶部与底部表面之间延伸的边缘。在所示的配置中,波导182、184、186、188、190可各自包括耦出光学元件282、284、286、288、290,这些元件被配置为通过将在每个相应的波导内传播的光重定向出波导来从波导中提取出光,向眼睛4输出图像信息。所提取的光也可以被称为耦出光,且耦出光学元件也可以被称为光提取光学元件。在波导内传播的光照射光提取光学元件的位置处,由波导输出所提取的光束。耦出光学元件282、284、286、288、290例如可以是光栅,包括如本文进一步所讨论的衍射光学特征。尽管为了便于描述和描绘清楚而示出了设置在波导182、184、186、188、190的底部主表面处,但是在一些实施例中,如本文进一步所讨论的,耦出光学元件282、284、286、288、290可以设置在顶部和/或底部主表面,和/或可以直接设置在波导182、184、186、188、190的体中。在一些实施例中,耦出光学元件282、284、286、288、290可以在被附接到透明基板的材料层中形成,以形成波导182、184、186、188、190。在一些其它实施例中,波导182、184、186、188、190可以是整块材料,且耦出光学元件282、284、286、288、290可以形成在该块材料的表面上和/或内部。
继续参考图6,如本文所讨论的,每个波导182、184、186、188、190被配置为输出光以形成对应于特定深度平面的图像。例如,最靠近眼睛的波导182可以被配置为将作为注入这种波导182的准直光传送到眼睛4。准直光可以代表光学无限远焦平面。向上的下一波导184可以被配置为发出在能到达眼睛4之前穿过第一透镜192(例如,负透镜)的准直光;这样的第一透镜192可以被配置为产生微凸的波前曲率,以使得眼睛/大脑将来自向上的下一波导184的光解释为来自相对于光学无限远向内更接近眼睛4的第一焦平面。类似地,向上的第三波导186使其输出光在到达眼睛4之前穿过第一透镜192和第二透镜194两者。第一透镜192和第二透镜194的组合光焦度可以被配置为产生另一波前曲率增量,以使得眼睛/大脑将来自第三波导186的光解释为来自第二焦平面的光,该来自第二焦平面的光相对于光学无限远向内比来自向上的下一波导184的光更接近人。
其它波导层188、190和透镜196、198被类似地配置,其中,堆叠中的最高波导190通过其与眼睛之间的所有透镜传输其输出,以获得代表与人最接近的焦平面的总焦度。为了在观察/解释来自堆叠波导组件178的另一侧上的世界144的光时补偿透镜堆叠198、196、194、192,可以在堆叠的顶部设置补偿透镜层180以补偿下面的透镜堆叠198、196、194、192的总焦度。这种配置提供与可用的波导/透镜配对一样多的感知焦平面。波导的耦出光学元件和透镜的聚焦方面两者都可以是静态的(即,不是动态的或电活性的)。在一些备选实施例中,通过使用电活性特征,它们中的一者或两者可以是动态的。
在一些实施例中,波导182、184、186、188、190中的两者或更多者可具有相同的关联深度平面。例如,多个波导182、184、186、188、190可以被配置为将图像集输出到相同的深度平面,或者波导182、184、186、188、190的多个子集可以被配置为将图像集输出到相同的多个深度平面,每个深度平面一个集。这可以提供形成拼接(tiled)图像以在那些深度平面处提供扩展视野的优势。
继续参考图6,耦出光学元件282、284、286、288、290可以被配置为将光重定向出它们相应的波导并且针对与波导相关联的特定深度平面以适当的发散量或准直量输出该光。因此,具有不同关联深度平面的波导可以具有不同的耦出光学元件282、284、286、288、290的配置,这些元件取决于关联深度平面以不同的发散量输出光。在一些实施例中,光出射光学元件282、284、286、288、290可以是体特征或表面特征,其可以被配置为以特定角度输出光。例如,光出射光学元件282、284、286、288、290可以是体全息图、表面全息图和/或衍射光栅。在一些实施例中,特征198、196、194、192可以不是透镜;相反,它们可以仅仅是间隔物(例如,用于形成气隙的包层和/或结构)。
在一些实施例中,耦出光学元件282、284、286、288、290是形成衍射图案的衍射特征,或“衍射光学元件”(在本文中也被称为“DOE”)。优选地,DOE具有足够低的衍射效率,以使得只有一部分光束借助DOE的每个交叉点朝向眼睛4偏转,而其余部分经由全内反射继续行进通过波导。因此,携带图像信息的光被分成多个相关的出射光束,这些出射光束在多个位置处离开波导,结果是针对在波导内四处弹跳的特定准直光束,形成朝着眼睛4的相当均匀的出射图案。
在一些实施例中,一个或多个DOE可以在主动衍射的“接通”状态与不明显衍射的“关断”状态之间切换。例如,可切换的DOE可以包括聚合物分散液晶层,其中微滴包括主体介质中衍射图案,并且微滴的折射率可以切换为基本匹配主体材料的折射率(在这种情况下,图案不会明显地衍射入射光)或者微滴可以切换到与主体介质的折射率不匹配的折射率(在这种情况下,图案主动地衍射入射光)。
在一些实施例中,可提供相机组件500(例如,数码相机,包括可见光和红外光相机)以捕获眼睛4和/或眼睛4周围的组织的图像,以例如检测用户输入。如本文所使用的,相机可以是任何图像捕获设备。在一些实施例中,相机组件500可以包括图像捕获设备和光源,以将光(例如,红外光)投射到眼睛,然后光可以被眼睛反射并被图像捕获设备检测到。在一些实施例中,相机组件500可以被附接到框架64(图2)并且可以与处理模块70和/或72电连通,处理模块70和/或72可以处理来自相机组件500的图像信息。在一些实施例中,可以针对每只眼睛使用一个相机组件500以分别监测每只眼睛。
现在参考图7,示出了由波导输出的出射光束的示例。示出了一个波导,但是应当理解,波导组件178(图6)中的其它波导可以发挥类似的作用,其中,波导组件178包括多个波导。光400在波导182的输入表面382处注入波导182,并通过TIR在波导182内传播。在光400照射DOE 282的点处,光的一部分作为出射光束402离开波导。出射光束402被示为基本上平行,但是如本文所讨论的,它们也可以被重定向为以一定角度(例如,形成发散的出射光束)传播到眼睛4,该角度取决于与波导182相关联的深度平面。可以理解,基本上平行的出射光束可以指示包括耦出光学元件的波导,该耦出光学元件将光耦出以形成看起来设置在距眼睛4较远距离(例如,光学无限远)处的深度平面上的图像。其它波导或其它组耦出光学元件可以输出更加发散的出射光束图案,这将需要眼睛4适应更近的距离以聚焦在视网膜上,并且这些光束图案可以被大脑解释为来自比光学无限远更接近眼睛4的距离的光。
在一些实施例中,可以通过在组份颜色(例如,三种或更多种组份颜色)中的每者中叠加图像来在每个深度平面处形成全色图像。图8示出了堆叠波导组件的示例,其中,每个深度平面包括使用多种不同组份颜色形成的图像。所示的实施例示出了深度平面14a至14f,尽管也可以构想更多或更少的深度。每个深度平面可以具有与其相关联的三种组份颜色图像:第一颜色G的第一图像;第二颜色R的第二图像;以及第三颜色B的第三图像。不同的深度平面在图中通过字母G、R和B之后的屈光度(dpt)的不同数字指示。例如,这些字母中的每一者后面的数字指示屈光度(1/m),或深度平面与观看者的反距离,并且图中的每个框表示单个组份颜色图像。在一些实施例中,为了解决眼睛对不同波长的光的聚焦的差异,不同组份颜色的深度平面的精确放置可以变化。例如,给定深度平面的不同组份颜色图像可以被放置在与相对于用户的不同距离对应的深度平面上。这样的布置可以增加视敏度和用户舒适度和/或可以减少色差。
在一些实施例中,每种组份颜色的光可以由单个专用波导输出,因此,每个深度平面可以具有与其相关联的多个波导。在这样的实施例中,图中包括字母G、R或B的每个框可以被理解为表示单独的波导,并且可以为每个深度平面提供三个波导,其中,为每个深度平面提供三个组份颜色图像。虽然为了便于描述,在该图中邻近另一个波导示出了与每个深度平面相关联的波导,但是应当理解,在物理设备中,波导可以全部布置成每层具有一个波导的堆叠。在一些其它实施例中,多个组份颜色可以由相同的波导输出,以使得例如可以为每个深度平面仅提供单个波导。
继续参考图8,在一些实施例中,G是绿色,R是红色,B是蓝色。在一些其它实施例中,除了红色、绿色或蓝色之外,可以使用与其它波长的光相关联的其它颜色(包括品红色和青色),或者可以替换红色、绿色或蓝色中的一种或多种。在一些实施例中,特征198、196、194和192可以是有源或无源光学滤波器,其被配置为阻挡或选择性地阻挡从背景环境到观看者眼睛的光。
应当理解,本公开通篇对给定颜色的光的引用将被理解为包括被观看者感知为具有该给定颜色的光波长范围内的一个或多个波长的光。例如,红光可以包括在约620至780nm范围内的一个或多个波长的光,绿光可以包括在约492至577nm范围内的一个或多个波长的光,以及蓝光可以包括在约435至493nm的范围内的一个或多个波长的光。
在一些实施例中,光源2040(图6)可以被配置为发射观看者视觉感知范围之外的一个或多个波长(例如,红外和/或紫外波长)的光。此外,显示器1000的波导的耦入、耦出和其它光重定向结构可以被配置为将该光从显示器引导出并朝向用户的眼睛4发射,例如用于成像和/或其它应用。
现在参考图9A,在一些实施例中,照射在波导上的光可能需要重定向以将该光耦入波导中。可以使用耦入光学元件将光重定向并且将光耦入其对应的波导中。图9A示出了多个堆叠波导或堆叠波导组1200的示例的横截面侧视图,每个堆叠波导包括耦入光学元件。波导可以各自被配置为输出一个或多个不同波长的光,或一个或多个不同波长范围的光。应当理解,堆叠1200可以对应于堆叠178(图6),并且所示波导的堆叠1200可以对应于多个波导182、184、186、188、190的一部分,期待来自图像注入设备200、202、204、206、208中的一者或多者的光从需要重定向光以进行耦入的位置注入波导。
所示的堆叠波导组1200包括波导1210、1220和1230。每个波导包括关联的耦入光学元件(其也可以称为波导上的光输入区域),其中例如,设置在波导1210的主表面(例如,上面的主表面)上的耦入光学元件1212、设置在波导1220的主表面(例如,上面的主表面)上的耦入光学元件1224,以及设置在波导1230的主表面(例如,上面的主表面)上的耦入光学元件1232。在一些实施例中,耦入光学元件1212、1222、1232中的一者或多者可以设置在相应波导1210、1220、1230的底部主表面上(特别是在一个或多个耦入光学元件是反射的偏转光学元件的情况下)。如图所示,耦入光学元件1212、1222、1232可以设置在其相应波导1210、1220、1230的上面的主表面上(或下一层下方的波导的顶部),特别是在这些耦入光学元件是透射的偏转光学元件的情况下。在一些实施例中,耦入光学元件1212、1222、1232可以设置在相应波导1210、1220、1230的主体中。在一些实施例中,如本文所讨论的,耦入光学元件1212、1222、1232是波长选择性的,以使得它们选择性地重定向一个或多个波长的光,同时透射其它波长的光。虽然示出为在其相应波导1210、1220、1230的一侧或角上,但是应当理解,在一些实施例中,耦入光学元件1212、1222、1232可以设置在其相应波导1210、1220、1230的其它区域中。
如图所示,耦入光学元件1212、1222、1232可以彼此横向偏移。在一些实施例中,每个耦入光学元件可以是偏移的,以使得其接收无需通过另一耦入光学元件的光。例如,每个耦入光学元件1212、1222、1232可以被配置为从不同的如图6所示的图像注入设备200、202、204、206和208接收光并且可以与其它耦入光学元件1212、1222、1232分开(例如,横向地间隔开),以使得它基本上不接收来自耦入光学元件1212、1222、1232中的其它光学元件的光。
每个波导还包括相关联的光分布元件,其中例如,设置在波导1210的主表面(例如,顶部主表面)上的光分布元件1214、设置在波导1220的主表面(例如,顶部主表面)上的光分布元件1224、以及设置在波导1230的主表面(例如,顶部主表面)上的光分布元件1234。在一些其它实施例中,光分布元件1214、1224、1234可以分别设置在关联波导1210、1220、1230的底部主表面上。在一些其它实施例中,光分布元件1214、1224、1234可以分别设置在关联波导1210、1220、1230的顶部主表面和底部主表面两者上;或者,光分布元件1214、1224、1234可以分别设置在不同的关联波导1210、1220、1230中的不同的顶部主表面和底部主表面上。
波导1210、1220、1230可以由例如气体、液体和/或固体材料层间隔开以及分开。例如,如图所示,层1218a可以分开波导1210和1220;以及层1218b可以分开波导1220和1230。在一些实施例中,层1218a和1218b由低折射率材料形成(即,该材料具有低于形成波导1210、1220、1230中的紧邻波导的材料的折射率)。优选地,形成层1218a、1218b的材料的折射率是小于形成波导1210、1220、1230的材料的折射率的0.05或更大,或者是0.10或更大。有利地,低折射率层1218a、1218b可以用作包层,其促进光通过波导1210、1220、1230的全内反射(TIR)(例如,每个波导的顶部主表面与底部主表面之间的TIR)。在一些实施例中,层1218a、1218b由空气形成的。尽管未示出,但应理解,所示的波导组1200的顶部和底部可以包括紧邻的包层。
优选地,为了便于制造和处于其它考虑,形成波导1210、1220、1230的材料相似或相同,且形成层1218a、1218b的材料相似或相同。在一些实施例中,形成波导1210、1220、1230的材料在一个或多个波导之间可以是不同的,和/或形成层1218a、1218b的材料可以是不同的,同时仍然保持上述各种折射率关系。
继续参考图9A,光线1240、1242、1244入射在波导组1200上。应当理解,光线1240、1242、1244可以通过一个或多个图像注入设备200、202、204、206、208(图6)注入波导1210、1220、1230中。
在一些实施例中,光线1240、1242、1244具有不同的属性,例如,不同的波长或不同的波长范围,这些波长或波长范围可以对应于不同的颜色。耦入光学元件1212、1222、1232各自偏转入射光,以使得光通过TIR传播通过波导1210、1220、1230中的相应一者。
例如,耦入光学元件1212可以被配置为偏转具有第一波长或波长范围的光线1240。类似地,透射光线1242照射在耦入光学元件1222上并被其偏转,该耦入光学元件1222被配置为偏转第二波长或波长范围的光。同样,光线1244被耦入光学元件1232偏转,该耦入光学元件1232被配置为选择性地偏转第三波长或波长范围的光。
继续参考图9A,偏转的光线1240、1242、1244被偏转,以使得它们传播通过对应波导1210、1220、1230;也就是说,每个波导的耦入光学元件1212、1222、1232将光偏转到对应波导1210、1220、1230中,以将光耦入对应波导中。光线1240、1242、1244以角度偏转,这些角度使光通过TIR传播通过相应波导1210、1220、1230。光线1240、1242、1244通过TIR传播通过相应波导1210、1220、1230,直到照射在波导的对应光分布元件1214、1224、1234上。
现在参考图9B,示出了图9A的多个堆叠波导的示例的透视图。如上所述,耦入光线1240、1242、1244分别被耦入光学元件1212、1222、1232偏转,然后分别通过TIR在波导1210、1220、1230内传播。然后,光线1240、1242、1244分别照射在光分布元件1214、1224、1234上。光分布元件1214、1224、1234偏转光线1240、1242、1244,以使得它们分别朝向耦出光学元件1250、1252、1254传播。
在一些实施例中,光分布元件1214、1224、1234是正交光瞳扩展器(OPE)。在一些实施例中,OPE既将光偏转或分布到耦出光学元件1250、1252、1254,又在光传播到耦出光学元件时增加该光的光束或光斑尺寸。在一些实施例中,例如,在光束尺寸已经具有期望尺寸的情况下,可以省略光分布元件1214、1224、1234,且耦入光学元件1212、1222、1232可以被配置为将光直接偏转到耦出光学元件1250、1252、1254。例如。参考图9A,光分布元件1214、1224、1234可分别用耦出光学元件1250、1252、1254代替。在一些实施例中,耦出光学元件1250、1252、1254是出瞳(EP)或出瞳扩展器(EPE),其将光引导到观看者眼睛4(图7)中。
因此,参考图9A和图9B,在一些实施例中,波导组1200包括用于每种组份颜色的波导1210、1220、1230;耦入光学元件1212、1222、1232;光分布元件(例如,OPE)1214、1224、1234;以及耦出光学元件(例如,EP)1250、1252、1254。波导1210、1220、1230可以借助每个中间的气隙/包层进行堆叠。耦入光学元件1212、1222、1232将入射光(通过接收不同波长的光的不同耦入光学元件)重定向或偏转到其波导中。然后光以导致相应波导1210、1220、1230中的TIR的角度传播。在所示的示例中,光线1240(例如,蓝光)以先前描述的方式被第一耦入光学元件1212偏转,然后继续沿波导向下反弹,与光分布元件(例如,OPE)1214和耦出光学元件(例如,EP)1250相互作用。光线1242和1244(例如,分别为绿光和红光)将穿过波导1210,其中,光线1242照射在耦入光学元件1222上并被其偏转。然后,光线1242经由TIR沿波导1220向下反弹,继续行进到其光分布元件(例如,OPE)1224,然后继续行进到耦出光学元件(例如,EP)1252。最后,光线1244(例如,红光)穿过波导1230照射在波导1230的耦入光学元件1232上。耦入光学元件1232偏转光线1244,以使得光线通过TIR传播到光分布元件(例如,OPE)1234,然后通过TIR传播到耦出光学元件(例如,EP)1254。然后,耦出光学元件1254最终将光线1244耦出到观看者,观看者还接收来自其它波导1210、1220的耦出光。
图9C示出了图9A和图9B的多个堆叠波导的示例的俯视平面图。如图所示,波导1210、1220、1230及每个波导的关联光分布元件1214、1224、1234和关联耦出光学元件1250、1252、1254可以是垂直对准的。然而,如本文所讨论的,耦入光学元件1212、1222、1232不是垂直对准的;相反,耦入光学元件优选地是非重叠的(例如,如俯视图中所见,是横向地间隔开的)。如本文进一步所讨论的,该非重叠空间布置有助于将来自不同资源的光一对一地注入不同波导中,从而允许特定光源唯一地耦接到特定波导。在一些实施例中,包括非重叠空间分离的耦入光学元件的布置可以被称为移位光瞳系统,并且这些布置内的耦入光学元件可以对应于子光瞳。
现在参考图10,其示出了包括用户传感器24、28、30、32和环境传感器34的增强现实显示系统的各种部件的示例的示意图。在一些实施例中,增强现实显示系统可以是混合现实显示系统。如图所示,用户传感器24、28、30、32可以被配置为检测关于用户的数据,并且环境传感器34可以被配置为收集关于用户外部参数的数据。在一些实施例中,显示系统可以被配置为存储与传送给用户的AR内容相关和/或表征该AR内容的数据(例如,AR内容的时间、位置、颜色构成、音量等)。
首先讨论用户传感器。如图所示,增强现实显示系统2010可以包括各种用户传感器。增强现实显示系统2010可以对应于图2的系统80,且可以包括观看者成像系统22。系统22可以包括与光源26(例如,红外光源)配对的相机24(例如,红外、UV和/或可见光相机),该相机指向用户并被配置为监测用户(例如,用户的眼睛2001、2002和/或周围组织)。相机24和光源26可以可操作地耦接到本地处理模块70。此类相机24可以被配置为监测相应眼睛的瞳孔(包括瞳孔大小)或虹膜的取向、形状和对称性中的一者或多者,和/或眼睛周围的组织(诸如眼睑或眉毛),以执行本文公开的各种分析。在一些实施例中,眼睛的虹膜和/或视网膜的成像可用于安全识别用户。
继续参考图10,相机24可进一步被配置为对相应眼睛的视网膜进行成像,诸如用于诊断目的和/或基于视网膜特征(诸如中央凹或眼底的特征)的位置的取向跟踪。可以执行虹膜和视网膜成像或扫描以便安全地识别用户,例如正确地将用户数据与特定用户进行关联和/或向适当的用户呈现私人信息。在一些实施例中,作为相机24的补充或替代,一个或多个相机28可以被配置为检测和/或监测用户状态的各种其它方面。例如,一个或多个相机28可以面向内部的并被配置为监测用户眼睛之外的特征的形状、位置、运动、颜色和/或其它属性,例如一个或多个面部特征(例如,面部表情、自主运动、非自主抽搐)。在另一示例中,一个或多个相机28可以面向下并被配置为监测用户的手臂、手、腿、脚和/或躯干的位置、运动和/或其它特征或属性。
在一些实施例中,如本文所公开的,显示系统2010可以包括空间光调制器,其通过光纤扫描仪(例如,图6中的图像注入设备200、202、204、206、208)可变地在用户的视网膜上投射光束以形成图像。在一些实施例中,光纤扫描仪可以与相机24或28结合使用或代替相机24或28使用,以便例如跟踪用户的眼睛或对用户的眼睛进行成像。例如,作为被配置为输出光的扫描光纤的替代或补充,健康系统可以具有单独的光接收设备以接收从用户的眼睛反射的光,并收集与该反射光相关联的数据。
继续参考图10,相机24、28和光源26可以安装在框架64上,框架64也可以固定波导堆叠2005、2006。在一些实施例中,显示系统2010的传感器和/或其它电子装置(例如,相机24、28和光源26)可以被配置为通过通信链路76、70与本地处理和数据模块70通信。
在一些实施例中,除了提供关于用户的数据之外,还可以利用相机24和28中的一者或两者来跟踪眼睛以提供用户输入。例如,观看者成像系统22可用于选择虚拟菜单上的项,和/或向显示系统2010提供其它输入,诸如用于在本文公开的各种测试和分析中提供用户响应。
在一些实施例中,显示系统2010可以包括运动传感器32,诸如一个或多个加速度计、陀螺仪、手势传感器、步态传感器、平衡传感器和/或IMU传感器。传感器30可以包括一个或多个向内指向(指向用户)的麦克风,其被配置为检测声音和这些声音的各种属性,包括检测到的声音的强度和类型、多个信号的存在和/或信号位置。
传感器30被示意性地示出为连接到框架64。应当理解,该连接可以采取物理附接到框架64的形式且可以在框架64上的任何位置,包括延伸到用户耳朵上的框架64的镜腿端部。例如,传感器30可以安装在框架64的镜腿端部处,在框架64与用户之间的接触点处。在一些其它实施例中,传感器30可以远离框架64延伸以接触用户60(图2)。在另外的实施例中,传感器30可以不物理地附接到框架64;相反,传感器30可以采用可以与框架64间隔开的外围传感器30a(图2)的形式。
在一些实施例中,显示系统2010可以进一步包括一个或多个环境传感器34,该一个或多个环境传感器34被配置为检测用户周围世界的对象、刺激、人、动物、位置或其它方面。例如,环境传感器34可以包括一个或多个相机、高度计、气压计、化学传感器、湿度传感器、温度传感器、外部麦克风、光传感器(例如,光度计)、定时装置(例如,时钟或日历),或上述项的任何组合或子组合。在一些实施例中,多个(例如,两个)麦克风可以是间隔开的,以便于声源位置确定。在包括环境传感相机的各种实施例中,相机例如可以面向外部定位,以便捕获与用户普通视场的至少一部分类似的图像。环境传感器可以进一步包括发射装置,该发射装置被配置为接收诸如激光、可见光、不可见波长光、声音(例如,可听声音、超声波或其它频率)之类的信号。在一些实施例中,一个或多个环境传感器(例如,相机或光传感器)可以被配置为测量环境的背景光(例如,亮度)(例如,以捕获环境的照明状况)。物理接触传感器(诸如应变仪、路缘探测器(curb feeler)等)也可以作为环境传感器包括在内。
在一些实施例中,显示系统2010可以进一步被配置为接收其它环境输入,诸如GPS位置数据、天气数据、日期和时间,或可以通过因特网、卫星通信、或其它合适的有线或无线数据通信方法接收的其它可用环境数据。处理模块70可以被配置为访问表征用户位置的进一步信息,诸如花粉计数、人口统计、空气污染、环境毒素、来自智能恒温器的信息、生活方式统计或接近其他用户、建筑物或医疗保健提供者。在一些实施例中,可以使用基于云的数据库或其它远程数据库来访问表征该位置的信息。处理模块70可以被配置为从环境传感器中的任一者或环境传感器的组合获取此类数据和/或进一步分析数据。
显示系统2010可以被配置为针对较长时间段收集和存储通过上述传感器和/或输入中的任一者获得的数据。设备处接收的数据可以在本地处理模块70处和/或远程地(例如,如图2所示,在远程处理模块72或远程数据存储库74处)进行处理和/或存储。在一些实施例中,可以在本地处理模块70处直接接收附加数据,诸如日期和时间、GPS位置或其它全球数据。关于正由系统传送给用户的内容(诸如如图像、其它可视内容或可听内容)的数据也可以在本地处理模块70处接收。
传送偏振光以确定葡萄糖水平
在一个或多个实施例中,增强现实或虚拟现实设备、系统和/或方法可以被配置为传送偏振光并使得能够确定用户的葡萄糖水平。返回参考图2、图6和图10,可以通过用一个或多个附加部件配置用户可穿戴设备和/或系统80、1000和/或2010来实现各种实施例。例如,如本文所公开的,偏振光源和光分析仪可以包含在用户可穿戴设备的某些实施例中以传送偏振光并使得能够确定用户的葡萄糖水平。在一些实施例中,用户可穿戴设备可以包含一个或多个用户传感器以收集关于用户的数据和/或包含一个或多个环境传感器以收集关于用户环境的数据。可以使用来自一些这样的传感器的信息,使得能够确定更准确的葡萄糖水平评估。在一些实施例中,用户可穿戴设备还可以包含处理器(例如,在一些情况下,包含处理电子装置),该处理器被配置为确定用户的葡萄糖水平和/或存储和访问与用户的葡萄糖水平相关的信息。本文所述的用户可穿戴设备可以有利地提供用于在不抽血的情况下确定和跟踪用户葡萄糖水平的改进的设备、系统和方法。
如本文所述,眼睛的房水包括葡萄糖分子。当光透射过这些分子时,葡萄糖分子可以使线性偏振光的偏振角旋转。偏振角旋转量可以与葡萄糖水平相关。在一些情况下,偏振角旋转越大,葡萄糖水平越高和/或偏振角旋转越小,葡萄糖水平越低。在一些情况下,偏振角旋转量可以与葡萄糖浓度成比例。作为示例,偏振角旋转量可以与葡萄糖浓度成正比。本文描述的各种实施例可以包括偏振光源和光分析仪。光源可以被配置为朝向用户的眼睛发射偏振光。在一些实施例中,光源可以被配置为朝向眼睛的特定区域(例如,视网膜中的脉络系统处)发射偏振光。偏振光中的一些可以从眼睛反射,且光分析仪可以测量反射光的偏振角旋转。所测量的角旋转量可用于确定用户的葡萄糖水平。可以使用偏振控制器来引起偏振角的旋转或光的偏振,以确定葡萄糖引起的偏振旋转量。
图11A至11B示意性地示出了可由用户穿戴的增强现实/虚拟现实可穿戴设备1600的示例实施例,该可穿戴设备1600被配置为在用于确定用户的葡萄糖水平的系统或方法中使用。设备1600包括被附接到显示器1662的框架1664。显示器1662可以被配置为定位在用户的眼睛1620的前方。设备1600可以被配置为将来自至少一个光源1640的偏振光(例如,线性偏振光)1642投射到用户的至少一只眼睛1620中。所投射的光中的一部分可以被眼睛1620反射为光1644,且所反射的光1644的偏振角可以旋转。所反射的光1644中的一部分可以由一个或多个光分析仪1646接收以确定偏振角旋转,以使得能够确定葡萄糖水平。
在图11A至图11B所示的可穿戴设备1600的各种实施例中,框架1664可具有与图2的框架64类似的特性。在可穿戴设备1600的各种实施例中,显示器1662可具有与图2的显示器62类似的特性。显示器1662可以包括附接到框架1664的显示透镜。例如,在一些实施例中,显示器1662可以包括安装在框架1664中的显示透镜。在一些实施例中,显示器1662可以包括单一透镜,该单一透镜包括两个目镜区,每个目镜区定位在用户的眼睛1620前方。在一些实施例中,显示器1662可以两个包括附接到框架1664的显示透镜,每个显示透镜包括位于用户的每一只眼睛1620前方的目镜区。如本文所述,显示器1662可以包括一个或多个透明波导。另如本文所述,各种实施例的显示器1662可以被配置为将图像引导到用户的眼睛1620。在一些实施例中,处理器(例如,未示出的处理电子装置)可以与显示器1662通信以控制图像内容向显示器1662的呈现。
在某些实施例中,设备1600可以包括至少一个光源1640,该光源1640被配置为向用户的至少一只眼睛1620(例如,朝向图11B所示的角膜1625)提供偏振光。在各种示例中,一个光源可以被配置为向左眼或右眼提供偏振光。在一些示例中,一个光源可以被配置为向左眼提供偏振光,且另一光源可以被配置为向右眼提供偏振光。在一些示例中,一个以上光源可以被配置为向左眼提供偏振光和/或一个以上光源可以被配置为向右眼提供偏振光。在一些示例中,一个或多个光源可以被配置为向左眼和右眼两者提供偏振光(例如,使用分束器)。
如图11A所示,一个或多个光源1640可以定位在框架1664上。在其它实施例中,一个或多个光源1640可以定位在显示器1662上。在另外的实施例中,一个或多个光源1640可以包含在用于向显示器提供照明和/或图像的光源2040(图6中)(例如,用于将光提供到波导中的光源)中和/或与其一起使用。
光源1640可以被配置和/或定位在用户可穿戴设备1600中,以使得偏振光1642可以被朝向用户的至少一只眼睛1620引导。例如,在一些情况下,光源1640可以邻近用户的眼睛1620定位,以使得偏振光1642可以直接朝向用户的眼睛1620引导。在一些实施例中使用的偏振光1642可以是朝向用户的虹膜或视网膜(例如,视网膜中的脉络系统)引导的准直光束。在一些情况下,偏振光1642可以经由重定向元件(例如,透镜、棱镜、反射镜等)朝向用户的眼睛1620引导。
可以使用任何偏振光源,包括任何线性偏振光源、任何转换为线性偏振光的圆偏振光源、与偏振器一起使用的任何非偏振光源等。图11C示意性地示出了偏振光源1700的一个示例。光源1700可以包括位于非偏振光1712的源1710前方的偏振滤波器1720以产生偏振光1742。例如,偏振滤波器1720可以包括具有优先透射平面的滤波器,以使光发生线性偏振。因此,在图11A至图11B所示的设备1600中使用的一个或多个光源1640可以通过透射使光发生偏振(例如,不受理论的限制,当非偏振光透射穿过偏振滤波器时,光可以与优先透射平面一致地偏振)。在图11A至图11B所示的用户可穿戴设备1600的各种实施例中,偏振光源1640可以包括利用光透射、反射、散射、相长干涉和/或相消干涉中的一个或多个原理的偏振器。
图11D示意性地示出了可以在偏振光源的另一示例中使用的示例偏振控制器1750。偏振控制器1750可以包括至少一个光学光纤1752。例如,偏振控制器1750还可以包括至少一个致动器1755(例如,在一些情况下为金属板和/或压电致动器),该致动器1755被配置为在光学光纤1752上施加压力。在不受理论限制的情况下,光学光纤1752上的应力可以引起正交的偏振分量之间的相移。在各种实施例中,偏振控制器1750可以被配置为在光学光纤1752上施加压力,以使得光学光纤1752可以控制偏振状态,该偏振态包括从该光学光纤1752输出的偏振光的偏振角。在一些实施例中,光源1700可以包括偏振滤波器和偏振控制器。
光源和/或偏振器的其它示例也是可能的。返回参考图11A至图11B,光源1640的波长可以是优选地对人眼无害的任何波长和/或能级。例如,在一些示例中,光源1640可以包括具有在400nm至800nm范围内的波长的光源,例如,450nm至800nm、470nm至800nm、480nm至800nm、490nm至800nm、500nm至800nm、500nm至750nm、500nm至700nm、500nm至650nm、500nm至600nm、500nm至550nm、550nm至570nm、550nm至少580nm、550nm至590nm、550nm至600nm,或由这些范围内的任何值形成的任何范围。不受理论的束缚,在一些情况下,接近500nm的波长可以产生比诸如700nm之类的更高波长更多的葡萄糖旋转。在一些实施例中,具有以下波长范围内的波长的光源由于波长较小可用于减少对视网膜细胞的潜在危害:530nm至600nm、540nm至600nm、550nm至600nm、550nm至590nm或由这些范围内的任何值形成的任何范围。
在一些实施例中,光源1640可以包括激光二极管。在一些实施例中,光源1640可以包括激光器,诸如红色氦-氖激光器或氩激光器,其具有从1mW至20mW的范围内的功率,例如1mW至15mW、1mW至12mW、2mW至15mW、3mW至15mW、5mW至10mW,或由这些值中的任何值形成的任何范围。其它示例光源也是可能的。
继续参考图11A至图11B,投射的偏振光1642的一部分可以被用户的眼睛1620的各种解剖学特征反射、散射和/或衍射。投射光1642的偏振角可以被用户眼睛1620的房水中的葡萄糖分子旋转(例如,当光透射过葡萄糖分子时)。设备1600可以被配置为确定反射光1644的偏振角旋转。例如,设备1600可以包括至少一个光分析仪1646,该光分析仪1646被配置为确定反射光1644的偏振角旋转。如本文所述,用户的葡萄糖水平可以与旋转量相关。例如,在一些示例中,偏振角旋转量可以与葡萄糖浓度成比例(例如,在一些情况下成正比)。因此,本文描述的各种实施例包括一个或多个光分析仪1646,该一个或多个光分析仪1646被配置为确定偏振角旋转,以使得能够确定用户的葡萄糖水平。
一个或多个光分析仪1646可以定位在框架1664上。在其它实施例中,一个或多个光分析仪1646可以定位在显示器1662上。光分析仪1646的数量没有具体限制。在一些示例中,光分析仪1646的数量可以对应于反射光束1644的数量。在一些示例中,一个光分析仪1646可用于确定一个以上反射光束1644的偏振角旋转。
如图11B所示,反射光1644的至少一部分可以被朝向光分析仪1646引导。在一些示例中,光分析仪1646可以邻近用户的眼睛1620定位,以使得反射光1644可以被直接朝向光分析仪1646引导。例如,光分析仪1646可以被定位成至少部分地基于用户眼睛1620上的偏振光的入射角来接收反射光1644。在一些情况下,反射光1644可以经由重定向元件(例如,透镜、棱镜、反射镜等)被朝向光分析仪1646引导。
现在参考图11E,光分析仪1646可以包括偏振器,诸如类似于图11C所示的偏振滤波器1720的偏振滤波器1800,例如具有优先透射平面的偏振滤波器。偏振滤波器1800可以被定位为使得优先透射平面与原始透射平面对准以指示0度。如果反射光1644已经旋转,则光的至少一部分被偏振滤波器1800阻挡,因为光的偏振不与滤波器的透射平面对准。在一些实施例中,偏振滤波器1800可以被配置为旋转,以使得滤波器的透射平面与反射光1644的偏振对准,且透射将增加或最大化。反射偏振光1644的偏振角旋转可以通过使得最多反射光1644透射过偏振滤波器1800的旋转量来确定。在一些实施例中,偏振滤波器1800可以被配置为旋转,以使得可以在反射光1644被偏振滤波器1800阻挡时确定反射偏振光1644的偏振角旋转。旋转偏振滤波器,直到偏振滤波器的偏振面相对于反射光的偏振“交叉”,且偏振滤波器不允许偏振光穿过。可以基于偏振滤波器被旋转的量来确定由葡萄糖引起的偏振旋转角度。光分析仪1646可以包括被配置为确定旋转角度的处理电子装置。在一些实施例中,被配置为确定偏振角旋转的处理电子装置可以被包含到被配置为控制到显示器1662的呈现内容的处理电子装置中。由光分析仪1646确定的偏振角旋转可用于确定用户的葡萄糖水平。
可以使用其它类型的光分析仪1646和/或偏振器。例如,光分析仪1646可以包括固定偏振滤波器1800。在一些这样的实施例中,可以通过旋转光源1640(例如,旋转图11C所示的偏振滤波器1720)来旋转线性偏振光1644。包括固定偏振滤波器1800的光分析仪1646可用于确定旋转偏振光的偏振角旋转,例如采取与上述方式类似的方式。
在一些实施例中,葡萄糖水平可以由诸如包含在用户可穿戴设备1600中的处理电子装置,或作为可连接到用户可穿戴设备1600的单独部件的处理电子装置的处理器确定。处理电子装置可以本地地包含在设备1600的。在一些示例中,处理电子装置可以与被配置为控制到显示器1662的图像内容的电子装置集成。作为另一示例,处理电子装置可以与确定偏振角旋转的光分析仪1646的电子装置集成。在一些这样的示例中,光分析仪1646不仅确定偏振角旋转,而且还可以被配置为至少部分地基于偏振角旋转来确定用户的葡萄糖水平。在一些实施例中,光分析仪1646还可以包括存储器以在诸如在所确定的偏振角旋转、所确定的葡萄糖水平和/或与所确定的葡萄糖水平相关的信息的数据库中访问和/或存储数据。
作为另一示例,处理电子装置可以包括在图2和图10所示的本地处理和数据模块70中。本地处理和数据模块70可以可操作地耦接(例如,通过有线引线或无线连接)到用户可穿戴设备1600。本地处理和数据模块70可以以本文所述的各种配置安装,包括以图12的示例实施例中所示的皮带耦接式配置可拆卸地附接到用户60的躯干84上。一些皮带耦接式配置还可有利地提供附接到皮带上的电池和/或光源1640。其它配置也是可能的。在各种实施例中,本地处理和数据模块70可以至少部分地基于例如由光分析仪1646确定的偏振角旋转量来确定葡萄糖水平。在各种实施例中,本地处理模块70可以诸如在所确定的旋转、所确定的葡萄糖水平和/或与所确定的葡萄糖水平相关的信息的数据库中访问和/或存储数据。
附加地和/或替代地,处理电子装置可以包括在远程处理模块中。例如,处理电子装置可以包含在图2和图12所示的远程处理模块72和/或远程数据存储库74中。在一些示例中,远程处理模块72和/或远程数据存储库74例如可以通过通信链路76、78(诸如,经由有线或无线通信链路)可操作地耦接到本地处理和数据模块70,以使得这些远程模块72、74可以可操作地彼此耦接并且可作为资源用于本地处理和数据模块70。在各种这样的实施例中,远程处理模块72可以被配置为至少部分地基于例如由光分析仪1646确定的偏转角旋转来确定葡萄糖水平。在一些实施例中,远程处理模块72可以访问和/或存储远程数据存储库74中的数据,诸如在所确定的旋转、所确定的葡萄糖水平和/或与所确定的葡萄糖水平相关的信息的数据库中的数据。
葡萄糖浓度可以与偏振角旋转量成比例(例如,在一些情况下成正比)。因此,在各种实施例中,处理电子装置(例如,包含在与光分析仪1646相关联的控制到显示器1662的呈现内容的处理电子装置中的处理电子装置、在本地处理和数据模块70中的处理电子装置备,和/或在远程中处理模块/远程数据存储库72、74中的处理电子装置)可以至少部分地基于所确定的偏振角旋转来确定用户的葡萄糖水平。在各种实施例中,葡萄糖水平可以表示为定量值,例如葡萄糖浓度。在一些示例中,处理电子装置可以基于计算(例如,利用将偏振角旋转与葡萄糖水平进行关联的等式执行计算)来确定葡萄糖水平。附加地和/或替代地,处理电子装置可以基于数据库中的信息(例如,查询将所确定的偏振角旋转与葡萄糖水平进行关联的数据库)来确定葡萄糖水平。在一些实施例中,葡萄糖水平可以以定性尺度表示,例如“正常”、“异常”、“高度异常”等。
用户可穿戴设备1600可以被配置为与用户和/或与临床医生通信。在一些实施例中,用户可以向用户可穿戴设备1600输入命令和/或信息。用户可穿戴设备1600例如可以被配置为在用户请求时执行上述葡萄糖测试。作为示例,用户可穿戴设备1600可以在用户激活(例如,接通)偏振光源1640时启动葡萄糖测试。作为另一示例,用户可穿戴设备1600可以在用户命令用户可穿戴设备1600执行葡萄糖测试时启动葡萄糖测试并激活偏振光源1640。
用户可穿戴设备1600可以包括用户界面以允许用户输入命令和/或信息。在一些实施例中,用户可穿戴设备1600可以包括物理用户界面。作为示例,可以在用户可穿戴设备1600的表面上提供一个或多个按钮或开关,例如在框架1664的表面上。在一些实施例中,用户可穿戴设备1600可以包括虚拟用户界面。作为示例,可以在显示器1662上和/或与显示器1662分开的显示器上(例如,容纳图12中的本地处理模块70的部件上的显示器)提供虚拟触摸屏上的一个或多个图标。因此,该设备可以包括面向外部的(例如,面向前的)相机,其被配置为提供手势识别以经由手势接收用户输入。例如,处理电子装置可以接收由面向外部的相机产生的基于图像的信号,以检测和/或识别用户的手势或其它运动。在一些实施例中,用户可穿戴设备1600可以包括音频识别系统,以使得用户可以通过语音输入命令和/或信息。作为又一示例,用户可穿戴设备1600可以包括移动识别系统(例如,动作检测器)以识别用户何时穿戴设备1600并启动葡萄糖测试。
在一些示例中,用户可穿戴设备1600可以被配置为经由显示器与用户通信以从用户处请求信息和/或显示结果。例如,用户可穿戴设备1600可以被配置为通过显示器1662将所确定的偏振角旋转和/或所确定的葡萄糖水平或其它消息传达给用户和/或临床医生。例如,消息可以是建议就医或前往其它医疗保健提供者,或者服用药物。作为另一示例,用户可穿戴设备1600可以被配置为通过与显示器1662分开的显示器(例如,通过容纳图12中的本地处理模块70的部件上的显示器)传达这样的示例信息。
虽然用户可穿戴设备1600可以被配置为根据用户的请求执行葡萄糖测试,但是设备1600还可以被配置为针对某个时间段自动执行葡萄糖测试,消除了用户设置定时器的需要,也不会扰乱他或她的一天。例如,用户可穿戴设备1600可以被配置为根据设备1600中的编程,在没有用户请求的情况下自动执行葡萄糖测试。作为另一示例,在用户请求执行葡萄糖测试之后,用户可穿戴设备1600可以自动执行葡萄糖测试,直到用户请求暂停测试。设备1600可以在某个时间段内以特定频率自动执行葡萄糖测试(例如,根据用户或临床医生请求)。在一些实施例中,用户可穿戴设备1600可以每天执行葡萄糖测试至少1、2、3、4、5、6、7、8、9、10、12、15、17或20次或更多次。在一些实施例中,用户可穿戴设备1600可以每周执行葡萄糖测试至少1、2、3、4、5、6、7、8、9、10、12、15、17或20次或更多次。在一些实施例中,用户可穿戴设备1600可以每月执行葡萄糖测试至少1、2、3、4、5、6、7、8、9、10、12、15、17或20次或更多次。在一些实施例中,用户可穿戴设备1600可以每年执行葡萄糖测试至少1、2、3、4、5、6、7、8、9、10、12、15、17或20次或更多次。上述值之间的任何范围也是可能的。
在包括(或可操作地耦接到)被配置为访问和/或存储数据(例如,在光分析仪1646中、在本地数据模块70中和/或在远程数据存储库74中)的处理电子装置的一些示例中,用户可穿戴设备1600可以被配置为随时间跟踪用户的葡萄糖水平。在一些这样的示例中,用户可穿戴设备1600(例如,经由处理电子装置)可以被配置为将当前葡萄糖水平与历史葡萄糖水平进行比较。用户可穿戴设备1600可以包括闹钟系统,以在确定异常高的葡萄糖水平或其它异常时向用户和/或临床医生提供听觉、视觉、图形和/或触觉警报。在一些实施例中,可以与用户的医生远程共享所跟踪的数据。
任何测试的测试结果都是患者特定的。对于葡萄糖测试,用于确定葡萄糖水平的等式可以针对不同的患者群体(例如,不同的年龄、尺码(size)、种族等)而变化。本文描述的各种实施例可以通过基于关于用户的信息校准所确定的葡萄糖水平来个性化测试结果。例如,在一些实施例中,用户可穿戴设备1600可以基于通过血液测试确定的葡萄糖水平来校准所确定的葡萄糖水平。在一些这样的实施例中,用户可穿戴设备1600偶尔可以请求用户进行血液测试。用户或临床医生可以输入这种测试的结果以允许用户可穿戴设备1600校准其确定的葡萄糖水平。由于可以采集相对大量的数据,因此在许多情况下,在初始校准设备1600之后(或在几次校准之后),设备可以被配置为使得用户可以不再需要执行葡萄糖血液测试。
葡萄糖水平也可能受各种因素影响。例如,当用户禁食时(例如,8小时不进食),正常葡萄糖水平在70-99mg/dL的范围内。然而,当用户不禁食时,葡萄糖水平可能更高。进食后2小时,正常水平可被认为出于70-140mg/dL的范围内。因此,一些实施例可能偶尔向用户请求信息(例如,是否禁食,上次进食的时间、是否服药、上次服药的时间等),并且可以在估计所确定的葡萄糖水平时(例如,当比较当前葡萄糖水平与历史葡萄糖水平时)考虑这些响应。
通过从用户处采集附加信息,各种实施例可以提供甚至更准确和个性化的结果和评估。还可以通过使用一个或多个传感器来获取关于用户的附加信息(例如,与用户的身体状态、用户的活动、环境状况等相关的参数)。参考图10,一些实施例可以包括一个或多个用户传感器(例如,在一些示例中为面向内部的相机)24、30、32和/或一个或多个环境传感器(例如,在一些示例中为面向外部的相机)28、34。作为一个示例,可以提供面向内部的相机24和/或面向外部的相机28以捕获用户的活动(例如,进食、锻炼等)。作为另一示例,麦克风67(图2)可以捕获指示用户咀嚼的声音。咀嚼声也可以指示某些食物。某些实施例可以基于自用户上次进餐后经过的时间确定进行葡萄糖测试时用户是否正在禁食。如本文所述,当用户尚未禁食时葡萄糖水平可能增加,可以在检阅所确定的葡萄糖水平时考虑此类信息。另外,各种实施例可以被配置为确定在所确定的葡萄糖水平与用户或用户环境中的至少一个方面之间的关系。例如,一些实施例可以被配置为将用户葡萄糖水平的变化与关于用户或用户环境的信息进行关联。
一些实施例可以自动记录食物摄取量日记(例如,所消耗的食物和/或所消耗的食物的营养信息的日志)。例如,面向外部的相机可以捕获用户的食物摄取量和饮食习惯。用户可穿戴设备1600(例如,经由处理电子装置)可识别某些食物(包括饮料)并从数据库(例如,本地存储或远程存储)获得营养分类信息(例如,糖、碳水化合物、蛋白质、脂肪、胆固醇、钠等)。在一些情况下,食物可以在数据库中识别(例如,冷冻餐)。然而,在其它情况下,食物是不可识别的(例如,家常饭)。在一些这样的情况下,用户可穿戴设备1600可以请求用户输入。输入可以保存在数据库中以供将来参考。在各种实施例中,可以经由显示器1662或与显示器1662分开的显示器实时地(或在用户请求时)自动向用户呈现营养分类。用户可以决定是否继续进食和/或是否控制摄取量部分。某些实施例还可以分析食物摄取量日记以找到趋势。例如,如果历史上当用户吃某种食物(例如,一碗谷物或芝士汉堡)时他或她的葡萄糖水平增加,则设备和/或系统1600可以向用户提供警报。通过监测食物摄取量和/或所消耗食物的营养信息,各种实施例可以帮助用户将葡萄糖水平维持在目标范围内。
如本文所述,各种实施例可以被编程为在某些时间和/或以某个频率执行葡萄糖测试。一些实施例还可以在执行某些活动时或在距活动特定时间之后自动执行葡萄糖测试。例如,设备和/或系统1600可以被编程为在用户进食时,在进食后的两小时等执行葡萄糖测试。
作为另一示例,温度可以影响葡萄糖水平。例如,在炎热的天气中脱水会导致血液中的葡萄糖变得更浓。另一方面,在炎热的天气中血管扩张可导致葡萄糖水平降低。此外,身体可以使用更多的能量来保持凉爽(或在寒冷的温度下保持温暖)。用户可穿戴设备1600的一些实施例可以包括用于感测温度的传感器(例如,环境温度传感器)。至少部分地基于所感测的环境温度,用户可穿戴设备1600可以确定给定温度的葡萄糖水平。如果温度在校准范围之外(例如,在温度范围之外),则设备1600可以被配置为向用户提供警报,例如稍后进行另一次读取。
在一些情况下,用户的温度可以与环境温度不同。例如,虽然天气可能极冷,但是用户可能穿着毛衣、围巾、帽子和厚外套。用户可穿戴设备1600的一些实施例可以包括用于检测用户的温度的传感器(例如,用户前额上的用户温度传感器)。至少部分地基于所检测的身体和/或皮肤温度,用户可穿戴设备1600可以确定给定温度的葡萄糖水平。如果用户的温度在校准范围之外(例如,在温度范围之外),则设备1600可以被配置为向用户提供警报,例如稍后进行另一次读取。
作为又一示例,体力劳动(exertion)也可以影响葡萄糖水平。例如,通过排汗可以损失葡萄糖。一些实施例可以包括确定用户是否正在出汗的传感器(例如,面向内部的相机)和/或确定用户是否正在锻炼的传感器(例如,面向外部的相机)。如果用户正在出汗和/或锻炼,则在估计结果时可以考虑此类信息。在一些情况下,用户可穿戴设备1600还可以监测用户的心率和/或呼吸率并且将所确定的葡萄糖水平与此类信息进行关联。一些实施例还可以在检测到某些状况时自动执行葡萄糖测试(例如,某些状况可以触发设备1600执行葡萄糖测试)。例如,设备1600可以被编程为在设备1600感测到用户行为异常时(例如出汗、以低于平常速度的速度行走等)执行葡萄糖测试。
因此,在各种实施例中,用户可穿戴设备1600可以被配置为检测与用户的身体状态相关的至少一个参数(例如,温度、心率、呼吸率、出汗量、禁食后经过的时间等),并至少部分地基于该参数分析所确定的葡萄糖水平。当参数落在范围之外时,设备1600还可以向用户或临床医生提供警报。另外,某些实施例可以被配置为检测用户的活动或状况(例如,进食)。设备1600还可以向用户提供与活动或状况相关的实时反馈。例如,设备1600可以提供用户正在食用的食物在历史上导致了更高葡萄糖读数的警报。作为另一示例,基于所确定的葡萄糖水平(例如,相对高的葡萄糖读数),设备1600还可以建议用户重新进行葡萄糖测试(例如,通过血液测试和/或使用该设备)。在一些情况下,设备1600可以被配置为自动重新确定葡萄糖水平。
另外,一个或多个传感器可以包括一个或多个眼睛跟踪传感器(例如,面向内部的相机)。一些这样的传感器可以被配置为确定是否所提供的偏振光1642未传送到眼睛1620。用户可穿戴设备1600可以被配置为在眼睛跟踪传感器确定偏振光未传送到用户的眼睛或可能的眼睛目标区域(诸如,虹膜、视网膜脉络系统或眼睛的相同区域,例如以保持校准)时不确定葡萄糖水平。
现在参考图13,示出了确定葡萄糖水平的示例方法3000。方法3000可以包括提供被配置为将图像引导到用户的眼睛的增强现实显示器,如框3010所示。增强现实显示器可以分别包括图2、图6、图10或图11A中的示例显示设备80、1000、2010或1600。显示设备例如可以包括将向用户眼睛的投射图像内容的头戴式显示设备。
在一些实施例中,头戴式显示设备可以被配置为使用显示器向用户呈现增强现实图像内容。在某些实施例中,显示器可以设置在头戴式显示器的框架上。如本文所述,显示器可以包括设置在用户眼睛前方的位置处的一个或多个透明波导。因此,用户可能能够透过显示器进行观看。来自穿戴头戴式显示设备的用户前方的环境中的对象的光可以通过显示器(例如通过一个或多个透明波导)传送到用户的眼睛中,以使得用户前方环境的图像或其至少一部分形成在用户的眼睛的视网膜上。
在框3020处,用户可穿戴设备可以被配置为向用户的眼睛提供偏振光,以使得偏振光被配置为从用户的眼睛反射。在一些实施例中,偏振光可以由偏振滤波器提供。在一些实施例中,偏振光可以由偏振控制器提供,例如,被配置为在光纤上提供压力的致动器。在一些情况下,致动器可以包括压电致动器。
在框3030处,各种实施例可以确定反射光的偏振角旋转,以使得能够确定葡萄糖水平。在各种实施例中,可以至少部分地基于将偏振角旋转与葡萄糖水平(例如,葡萄糖浓度)进行关联的计算来确定葡萄糖水平。在一些实施例中,可以至少部分地基于将偏振角旋转与葡萄糖水平进行关联的数据库来确定葡萄糖水平。
应当理解,在此描述和/或在附图中示出的处理、方法和算法中的每一者可以体现在由被配置为执行特定和特殊计算机指令的一个或多个物理计算系统、硬件计算机处理器、专用电路和/或电子硬件执行的代码模块中,并完全或部分地由所述代码模块自动执行。例如,计算系统可以包括用特定计算机指令编程的通用计算机(例如,服务器)或专用计算机、专用电路等。代码模块可以被编译并链接到可执行程序中,安装在动态链接库中,或者可以用解译的编程语言编写。在一些实施例中,特定操作和方法可以由特定于给定功能的电路来执行。
此外,本公开的功能的某些实施例在数学上、计算上或技术上足够复杂,因此必需专用硬件或一个或多个物理计算设备(利用适当的专用可执行指令)来执行功能,例如由所涉及的计算量或复杂性决定或基本实时地提供结果。例如,视频可以包括许多帧,其中,每帧具有数百万个像素,并且需要专门编程的计算机硬件来处理视频数据以在商业上合理的时间内提供所需的图像处理任务或应用。
代码模块或任何类型的数据可以存储在任何类型的非暂时性计算机可读介质上,诸如物理计算机存储装置,该物理计算机存储装置包括硬盘驱动器、固态存储器、随机存取存储器(RAM)、只读存储器(ROM)、光盘、易失性或非易失性存储装置及其组合等。在一些实施例中,非暂时性计算机可读介质可以是本地处理和数据模块70、远程处理模块72以及远程数据存储库74中的一者或多者的一部分。方法和模块(或数据)也可以在各种计算机可读传输介质上作为生成的数据信号(例如,作为载波或其它模拟或数字传播信号的一部分)传输,所述传输介质包括基于无线的和基于导线/电缆的介质,可以采取多种形式(例如,作为单个或多路复用模拟信号的一部分,或者作为多个离散数字分组或帧)。所公开的处理或处理步骤的结果可以持久地或以其它方式存储在任何类型的非暂时性有形计算机存储装置中,或者可以经由计算机可读传输介质来传达。
在此描述和/或在附图中示出的流程图中的任何处理、方框、状态、步骤或功能应该被理解为潜在地表示代码模块、片段或代码部分,其包括用于实现处理中的特定功能(例如,逻辑或算术功能)或步骤的一个或多个可执行指令。各种处理、方框、状态、步骤或功能可以与本文提供的示例性示例一起执行以下操作:组合、重排、添加、删除、修改或其它方式的改变。在一些实施例中,附加的或不同的计算系统或代码模块可以执行此处描述的功能中的部分或全部。此处描述的方法和处理也不限于任何特定的顺序,并且与其相关的方框、步骤或状态可以以其它合适的序列来执行,例如顺序地执行、并行地执行或以某种其它方式执行。可以向所公开的示例实施例添加任务或事件或者从中移除任务或事件。此外,在此描述的实施例中的各种系统部件的分离是出于说明的目的,不应该被理解为在所有实施例中都需要这种分离。应该理解,所描述的程序部件、方法和系统通常可以一起集成在单个计算机产品中或者封装到多个计算机产品中。
在前面的说明书中,已经参考本发明的具体实施例对本发明进行了描述。然而,显而易见的是,在不脱离本发明的更广泛的精神和范围的情况下,可以对其进行各种修改和改变。因此,说明书和附图应被视为说明性的而非限制性的。
实际上,应当理解,本公开的系统和方法各自具有若干创新性方面,它们中的没有单独一者不能负责或要求在此公开的所需属性。上述各种特征和处理可以彼此独立地使用,或者可以以各种方式进行组合。所有可能的组合和子组合均旨在落入本公开的范围内。
本说明书中通过分开的实施例的上下文描述的某些特征也可以在单个实施例中组合地实现。相反地,在单个实施例的上下文中描述的各种特征也可以在多个实施例中单独实现,或以任何合适的子组合实现。此外,尽管特征可以像上文描述的那样以某些组合起作用,甚至最初以此方式要求保护,但是来自所要求保护的组合中的一个或多个特征在一些情况下可以从该组合中剔除,并且所要求保护的组合可以涉及子组合或子组合的变体。对于每个实施例而言,没有任何单个特征或特征组是必需的或不可或缺的。
应当理解,除非另有明确说明,或者在所使用的上下文中以其它方式理解,否则在此使用的诸如“能够”、“可”、“可以”、“能能”、“例如”等之类的条件语通常旨在表达某些实施例包括,而其它实施例不包括某些特征、元素和/或步骤。因此,这种条件语通常不旨在暗示特征、元素和/或步骤以任何方式是一个或多个实施例所必需的,也不意在暗示在有或者没有作者输入或提示的情况下,一个或多个实施例必然包括用于决定是否包括这些特征、元素和/或步骤或否是在任何特定实施例中执行这些特征、元素和/或步骤的逻辑。术语“包括”、“包含”、“具有”等是同义词,并且以开放的方式包含性地使用,并且不排除附加元素、特征、动作、操作等。此外,术语“或”以其包含性含义(而非排他性含义)使用,以使得当用于例如连接元素列表时,术语“或”表示一个、一些或全部列表中的元素。另外,除非另有说明,否则在本申请和所附权利要求书中使用的冠词“一”、“一个”和“所述”被解释为表示“一个或多个”或“至少一个”。类似地,尽管操作在附图中以特定次序示出,但应认识到,此类操作不需要以所示的特定次序或按顺序执行,或者执行所有示出的操作以实现所需的结果。此外,附图可以以流程图的形式示意性地示出一个或多个示例处理。然而,其它未示出的操作可以并入示意性说明的示例方法和处理中。例如,一个或多个附加操作可以在任何所示的操作之前、之后、之间执行,或者与其同时执行。另外,在其它实施例中,操作可以重新排列或排序。在某些情况下,多任务和并行处理是有利的。此外,上述实施例中的各种系统部件的分离不应该被理解为在所有实施例中都需要这种分离,应当理解,所描述的程序部件和系统通常可以一起集成在单个软件产品中或者封装到多个软件产品中。另外,其它实施例在以下权利要求的范围内。在一些情况下,权利要求中列出的动作可以以不同的次序执行并且仍能实现所需的结果。
因此,权利要求不旨在限于在此所示的实施例,而是与符合与本公开、在此公开的原理和新颖特征的最宽范围相一致。例如,尽管本公开内的许多示例针对医学领域中的医学应用被提供,但是在此描述的某些实施例可以针对各种其它应用和/或在许多其它环境中实现。

Claims (40)

1.一种用户可穿戴设备,包括:
框架,其被配置为安装在用户上;
显示器,其被附接到所述框架,所述显示器被配置为将虚拟图像引导到所述用户的眼睛;
光源,其被配置为向所述用户的所述眼睛提供偏振光,其中,所述偏振光被配置为从所述用户的所述眼睛反射;以及
光分析仪,其被配置为确定从所述用户的所述眼睛反射的光的偏振角旋转,以使得能够至少部分地基于所反射的光的所述偏振角旋转来确定所述用户的葡萄糖水平。
2.根据权利要求1所述的用户可穿戴设备,其中,所述光源包括偏振滤波器、偏振控制器或其组合。
3.根据前述权利要求中的任一项所述的用户可穿戴设备,其中,所述光源包括具有500nm至800nm范围内的波长的光源。
4.根据前述权利要求中的任一项所述的用户可穿戴设备,
其中,所述光分析仪包括可旋转滤波器,所述可旋转滤波器被配置为阻挡所反射的光中的至少一部分,以及
其中,所述光分析仪被配置为至少部分地基于被阻挡的所反射的光来确定所反射的光的所述偏振角旋转。
5.根据前述权利要求中的任一项所述的用户可穿戴设备,进一步包括处理电子装置,所述处理电子装置被配置为至少部分地基于所反射的光的所述偏振角旋转来确定所述用户的所述葡萄糖水平。
6.根据权利要求5所述的用户可穿戴设备,其中,所述处理电子装置被配置为至少部分地基于所确定的所反射的光的所述偏振角旋转来确定所述葡萄糖水平的浓度。
7.根据权利要求5至6中任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为在至少一段时间内自动确定所述葡萄糖水平。
8.根据权利要求5至7中任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为远程存储和访问所确定的葡萄糖水平和/或与所确定的葡萄糖水平相关的信息。
9.根据权利要求8所述的用户可穿戴设备,其中,所述设备被配置为随时间跟踪所述用户的所述葡萄糖水平。
10.根据权利要求9所述的用户可穿戴设备,其中,所述设备被配置为比较当前葡萄糖水平与历史葡萄糖水平。
11.根据权利要求10所述的用户可穿戴设备,其中,所述设备被配置为响应于比较所述当前葡萄糖水平与所述历史葡萄糖水平而向所述用户或临床医生提供警报。
12.根据前述权利要求中的任一项所述的用户可穿戴设备,进一步包括一个或多个传感器,所述传感器被配置为检测与所述用户的身体状态相关的至少一个参数。
13.根据权利要求12所述的用户可穿戴设备,其中,所述至少一个参数包括体温、皮肤温度、心率、呼吸率、出汗水平、自上次进餐后经过的时间或自上次服药后经过的时间。
14.根据权利要求12至13中任一项所述的用户可穿戴设备,其中,所述设备被配置为至少部分地基于与所述用户的所述身体状态相关的所述至少一个参数分析所确定的葡萄糖水平。
15.根据权利要求12至14中任一项所述的用户可穿戴设备,其中,所述设备被配置为在所述至少一个参数落在范围之外时向所述用户或临床医生提供警报。
16.根据前述权利要求中的任一项所述的用户可穿戴设备,进一步包括光学检测器,所述光学检测器相对于所述分析仪设置以检测穿过所述分析仪的从所述眼睛反射的偏振光的量。
17.根据前述权利要求中的任一项所述的用户可穿戴设备,进一步包括一个或多个传感器,所述传感器被配置为检测所述用户的活动或状况。
18.根据权利要求17所述的用户可穿戴设备,其中,所述活动包括进食、服药、锻炼或其组合。
19.根据权利要求17或18所述的用户可穿戴设备,其中,所述设备被配置为向所述用户提供与所述活动或状况相关的实时反馈。
20.根据权利要求7所述的用户可穿戴设备,其中,所述处理电子装置被配置为:
确定是否重新确定所述葡萄糖水平;以及
在确定的情况下,自动重新确定所述葡萄糖水平。
21.一种用户可穿戴设备,包括:
框架,其被配置为安装在用户上;
显示器,其被附接到所述框架,所述显示器被配置为将虚拟图像引导到所述用户的眼睛;
光源,其被配置为向所述用户的所述眼睛提供光;
光分析仪,其被配置为分析从所述用户的所述眼睛反射的光;
一个或多个传感器,其被附接到所述框架,所述一个或多个传感器被配置为感测与所述用户或环境相关的信息;以及
处理电子装置,其与所述光分析仪和所述一个或多个传感器通信,所述处理电子装置被配置为:
至少部分地基于从所述用户的所述眼睛反射的光来确定所述用户的葡萄糖水平;
从所述一个或多个传感器接收与所述用户或所述环境相关的信息;以及
存储和访问所接收的信息。
22.根据权利要求21所述的用户可穿戴设备,其中,所述一个或多个传感器包括一个或多个用户传感器和/或一个或多个环境传感器。
23.根据权利要求21至22中任一项所述的用户可穿戴设备,其中,所述一个或多个传感器包括面向内部的相机或面向外部的相机。
24.根据权利要求21至23中任一项所述的用户可穿戴设备,其中,与所述用户或所述环境相关的信息包括进食、服药、锻炼、食物摄取量、食物的营养信息、药物摄取量或其组合。
25.根据权利要求21至24中任一项所述的用户可穿戴设备,其中,与所述用户或所述环境相关的信息包括与所述用户的身体状态相关的参数中的至少一个参数。
26.根据权利要求25所述的用户可穿戴设备,其中,所述至少一个参数包括体温、皮肤温度、心率、呼吸率、出汗水平、自上次进餐后经过的时间或自上次服药后经过的时间。
27.根据权利要求21至26中任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为远程存储和访问与所述用户或所述环境相关的信息。
28.根据权利要求21至27中任一项所述的用户可穿戴设备,其中,所述设备被配置为随时间跟踪与所述用户或所述环境相关的信息。
29.根据权利要求21至28中任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为存储和访问所确定的葡萄糖水平。
30.根据权利要求29所述的用户可穿戴设备,其中,所述设备被配置为随时间跟踪所述用户的所述葡萄糖水平。
31.根据权利要求30所述的用户可穿戴设备,其中,所述设备被配置为比较当前葡萄糖水平与历史葡萄糖水平。
32.根据权利要求21至31中任一项所述的用户可穿戴设备,其中,所述设备被配置为确定所确定的葡萄糖水平与所述用户或所述用户的环境中的至少一个方面之间的关系。
33.根据权利要求21至32中任一项所述的用户可穿戴设备,其中,所述设备被配置为将用户葡萄糖水平的变化与关于所述用户或所述环境的信息中的一项或多项进行关联。
34.根据权利要求21至33中任一项所述的用户可穿戴设备,其中,所述设备被配置为与所述用户或临床医生通信。
35.根据权利要求34所述的用户可穿戴设备,其中,所述设备被配置为将所确定的葡萄糖水平传达给所述用户或临床医生。
36.根据权利要求34所述的用户可穿戴设备,其中,所述设备被配置为响应于所确定的葡萄糖水平或与所述用户或所述环境相关的信息而向所述用户或临床医生提供警报。
37.根据权利要求21至36中任一项所述的用户可穿戴设备,其中,所述处理电子装置被配置为:
确定是否重新确定所述葡萄糖水平;以及
在确定的情况下,自动重新确定所述葡萄糖水平。
38.根据权利要求21至37中任一项所述的用户可穿戴设备,其中,所述光源被配置为提供偏振光,以及所述处理电子装置被配置为至少部分地基于所述偏振光的偏振角旋转来确定所述葡萄糖水平。
39.根据权利要求21至38中任一项所述的用户可穿戴设备,其中,所述显示器被配置为以不同的发散量或准直量将不同的虚拟图像引导到所述用户的眼睛。
40.根据权利要求21至39中任一项所述的用户可穿戴设备,其中所述显示器被配置为将来自周围环境的光传输到所述用户的眼睛,以允许观察所述周围环境。
CN201780086316.9A 2016-12-13 2017-11-08 用于传送偏振光和确定葡萄糖水平的增强和虚拟现实眼镜、系统和方法 Pending CN110291369A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662433756P 2016-12-13 2016-12-13
US62/433,756 2016-12-13
PCT/US2017/060695 WO2018111449A2 (en) 2016-12-13 2017-11-08 Augmented and virtual reality eyewear, systems, and methods for delivering polarized light and determing glucose levels

Publications (1)

Publication Number Publication Date
CN110291369A true CN110291369A (zh) 2019-09-27

Family

ID=62488054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780086316.9A Pending CN110291369A (zh) 2016-12-13 2017-11-08 用于传送偏振光和确定葡萄糖水平的增强和虚拟现实眼镜、系统和方法

Country Status (9)

Country Link
US (2) US11559228B2 (zh)
EP (2) EP3555581B1 (zh)
JP (3) JP7071363B2 (zh)
KR (1) KR102491442B1 (zh)
CN (1) CN110291369A (zh)
AU (1) AU2017377915B2 (zh)
CA (1) CA3046336A1 (zh)
IL (2) IL299220A (zh)
WO (1) WO2018111449A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537122A (zh) * 2017-02-23 2019-12-03 奇跃公司 基于偏振转换的可变焦虚拟图像设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017377915B2 (en) 2016-12-13 2022-12-15 Magic Leap. Inc. Augmented and virtual reality eyewear, systems, and methods for delivering polarized light and determining glucose levels
JP7182632B2 (ja) 2017-12-22 2022-12-02 マジック リープ, インコーポレイテッド 仮想、拡張、または複合現実環境内で3dビデオを生成および表示するための方法およびシステム
DE102022121036A1 (de) 2022-08-19 2024-02-22 Trumpf Photonic Components Gmbh Vorrichtung und Verfahren zum Bestimmen einer Glukosekonzentration

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704588B2 (en) * 2001-06-16 2004-03-09 Rafat R. Ansari Method and apparatus for the non-invasive measurement of blood glucose levels in humans
CN1650148A (zh) * 2002-05-30 2005-08-03 维思克斯公司 跟踪扭转的眼睛的方向和位置
US20060258920A1 (en) * 2004-04-14 2006-11-16 Oculir, Inc. Non-Invasive Analyte Measurement Glasses and Method of Use
CN101854845A (zh) * 2007-10-05 2010-10-06 眼科医疗公司 半自动眼科光凝固方法和装置
CN103845063A (zh) * 2012-11-30 2014-06-11 财团法人工业技术研究院 光学旋转角度测量系统及其方法
US20160256086A1 (en) * 2015-03-03 2016-09-08 Co-Optical Non-Invasive, Bioelectric Lifestyle Management Device
US20160270656A1 (en) * 2015-03-16 2016-09-22 Magic Leap, Inc. Methods and systems for diagnosing and treating health ailments

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014321A (en) 1974-11-25 1977-03-29 March Wayne F Non-invasive glucose sensor system
US5209231A (en) * 1990-11-02 1993-05-11 University Of Connecticut Optical glucose sensor apparatus and method
US6222525B1 (en) 1992-03-05 2001-04-24 Brad A. Armstrong Image controllers with sheet connected sensors
DE4242232C2 (de) * 1992-12-15 1998-12-10 Burkhard Kuhls Vorrichtung und Verfahren zur nicht-invasiven Konzentrationsbestimmung polarisierender Stoffe im menschlichen Körper
US5670988A (en) 1995-09-05 1997-09-23 Interlink Electronics, Inc. Trigger operated electronic device
US5788632A (en) 1996-03-19 1998-08-04 Abbott Laboratories Apparatus and process for the non-invasive measurement of optically active compounds
US6246893B1 (en) * 1997-06-12 2001-06-12 Tecmed Incorporated Method and device for glucose concentration measurement with special attention to blood glucose determinations
US6370407B1 (en) 1999-07-27 2002-04-09 Tecmed, Incorporated System for improving the sensitivity and stability of optical polarimetric measurements
US6493474B1 (en) 2000-09-30 2002-12-10 General Photonics Corporation Fiber devices based on fiber squeezer polarization controllers
US6885782B2 (en) 2001-06-26 2005-04-26 Ilx Lightwave Corporation Feedback polarization controller
US20050010091A1 (en) * 2003-06-10 2005-01-13 Woods Joe W. Non-invasive measurement of blood glucose using retinal imaging
US6885882B2 (en) * 2002-05-28 2005-04-26 Cote Gerard L. Method and apparatus for non-invasive glucose sensing through the eye
WO2009048462A1 (en) 2007-10-09 2009-04-16 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US9471978B2 (en) 2004-10-04 2016-10-18 Banner Health Methodologies linking patterns from multi-modality datasets
US11428937B2 (en) 2005-10-07 2022-08-30 Percept Technologies Enhanced optical and perceptual digital eyewear
US8696113B2 (en) 2005-10-07 2014-04-15 Percept Technologies Inc. Enhanced optical and perceptual digital eyewear
US20070081123A1 (en) 2005-10-07 2007-04-12 Lewis Scott W Digital eyewear
JP2009011753A (ja) 2007-07-09 2009-01-22 Rarugo:Kk 血糖値測定装置
JP2010197474A (ja) 2009-02-23 2010-09-09 Topcon Corp 偏光コントローラ、干渉計及び光画像計測装置
DK3718922T3 (da) 2009-08-31 2022-04-19 Abbott Diabetes Care Inc Glucoseovervågningssystem og fremgangsmåde
US20110124996A1 (en) * 2009-11-20 2011-05-26 Roche Diagnostics Operations, Inc. Diabetes health management systems and methods
US8380270B2 (en) 2010-01-26 2013-02-19 Chromologic Llc Non-invasive ocular monitoring
US9304319B2 (en) 2010-11-18 2016-04-05 Microsoft Technology Licensing, Llc Automatic focus improvement for augmented reality displays
KR101997852B1 (ko) 2010-12-24 2019-10-01 매직 립, 인코포레이티드 인체공학적 머리 장착식 디스플레이 장치 및 광학 시스템
US10156722B2 (en) 2010-12-24 2018-12-18 Magic Leap, Inc. Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality
US9532737B2 (en) * 2011-02-28 2017-01-03 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
EP2517624A3 (en) * 2011-04-29 2013-03-20 Industrial Technology Research Institute Apparatus and method for non-invasive blood glucose monitoring and method for analysing biological molecule
CN103635891B (zh) 2011-05-06 2017-10-27 奇跃公司 大量同时远程数字呈现世界
KR20130025675A (ko) 2011-09-02 2013-03-12 삼성전자주식회사 3d안경과 디스플레이장치를 포함하는 사용자 건강 모니터링 시스템 및 디스플레이장치와 그 제어방법
US10795448B2 (en) 2011-09-29 2020-10-06 Magic Leap, Inc. Tactile glove for human-computer interaction
RU2621633C2 (ru) 2011-10-28 2017-06-06 Мэджик Лип, Инк. Система и способ для дополненной и виртуальной реальности
CA2861975C (en) 2011-12-15 2022-05-31 Becton, Dickinson And Company System for improved interpretation of physiological data and presentation of physiological condition management information
EP2841991B1 (en) 2012-04-05 2020-01-08 Magic Leap, Inc. Wide-field of view (fov) imaging devices with active foveation capability
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
JP2013258555A (ja) 2012-06-12 2013-12-26 Sony Computer Entertainment Inc ヘッドマウントディスプレイ、生体情報管理装置、および生体情報表示方法
WO2014043196A1 (en) 2012-09-11 2014-03-20 Magic Leap, Inc Ergonomic head mounted display device and optical system
US20140163329A1 (en) * 2012-12-11 2014-06-12 Elwha Llc Unobtrusive Active Eye Interrogation with Gaze Attractor
NZ710096A (en) 2013-01-15 2018-11-30 Magic Leap Inc Ultra-high resolution scanning fiber display
EP2967322A4 (en) 2013-03-11 2017-02-08 Magic Leap, Inc. System and method for augmented and virtual reality
NZ751593A (en) 2013-03-15 2020-01-31 Magic Leap Inc Display system and method
EP3296797B1 (en) * 2013-03-25 2019-11-06 North Inc. Method for displaying an image projected from a head-worn display with multiple exit pupils
US9874749B2 (en) 2013-11-27 2018-01-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
US10262462B2 (en) 2014-04-18 2019-04-16 Magic Leap, Inc. Systems and methods for augmented and virtual reality
KR102341870B1 (ko) 2013-10-16 2021-12-20 매직 립, 인코포레이티드 조절가능한 동공간 거리를 가지는 가상 또는 증강 현실 헤드셋들
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
KR102378457B1 (ko) 2013-11-27 2022-03-23 매직 립, 인코포레이티드 가상 및 증강 현실 시스템들 및 방법들
EP4071537B1 (en) 2014-01-31 2024-07-10 Magic Leap, Inc. Multi-focal display system
CN106233189B (zh) 2014-01-31 2020-06-26 奇跃公司 多焦点显示系统和方法
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
JP5800100B1 (ja) 2014-03-20 2015-10-28 富士ゼロックス株式会社 眼球の光計測装置
AU2015255652B2 (en) 2014-05-09 2018-03-29 Google Llc Systems and methods for using eye signals with secure mobile communications
CA2950432C (en) 2014-05-30 2022-01-04 Magic Leap, Inc. Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
US10120413B2 (en) 2014-09-11 2018-11-06 Interaxon Inc. System and method for enhanced training using a virtual reality environment and bio-signal data
US10368744B1 (en) 2015-02-17 2019-08-06 Halo Wearables, Llc Baselining user profiles from portable device information
JP6701587B2 (ja) 2015-03-31 2020-05-27 国立大学法人東北大学 画像表示装置、処理方法、及び、プログラム
EP3081149A1 (en) 2015-04-12 2016-10-19 Taiwan Biophotonic Corporation Device and method for alignment
AU2017377915B2 (en) 2016-12-13 2022-12-15 Magic Leap. Inc. Augmented and virtual reality eyewear, systems, and methods for delivering polarized light and determining glucose levels

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704588B2 (en) * 2001-06-16 2004-03-09 Rafat R. Ansari Method and apparatus for the non-invasive measurement of blood glucose levels in humans
CN1650148A (zh) * 2002-05-30 2005-08-03 维思克斯公司 跟踪扭转的眼睛的方向和位置
US20060258920A1 (en) * 2004-04-14 2006-11-16 Oculir, Inc. Non-Invasive Analyte Measurement Glasses and Method of Use
CN101854845A (zh) * 2007-10-05 2010-10-06 眼科医疗公司 半自动眼科光凝固方法和装置
CN103845063A (zh) * 2012-11-30 2014-06-11 财团法人工业技术研究院 光学旋转角度测量系统及其方法
US20160256086A1 (en) * 2015-03-03 2016-09-08 Co-Optical Non-Invasive, Bioelectric Lifestyle Management Device
US20160270656A1 (en) * 2015-03-16 2016-09-22 Magic Leap, Inc. Methods and systems for diagnosing and treating health ailments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
梅遂生: "《光电子技术 信息化武器装备的新天地 第2版》", 31 January 2008 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537122A (zh) * 2017-02-23 2019-12-03 奇跃公司 基于偏振转换的可变焦虚拟图像设备

Also Published As

Publication number Publication date
IL267120B2 (en) 2023-05-01
KR102491442B1 (ko) 2023-01-20
AU2017377915A1 (en) 2019-06-27
EP4148402A1 (en) 2023-03-15
US20180160956A1 (en) 2018-06-14
AU2017377915B2 (en) 2022-12-15
JP2020513870A (ja) 2020-05-21
IL299220A (en) 2023-02-01
WO2018111449A2 (en) 2018-06-21
JP7071363B2 (ja) 2022-05-18
EP3555581A2 (en) 2019-10-23
WO2018111449A3 (en) 2019-05-31
CA3046336A1 (en) 2018-06-21
JP7318056B2 (ja) 2023-07-31
IL267120B1 (en) 2023-01-01
JP2022115982A (ja) 2022-08-09
WO2018111449A8 (en) 2019-09-06
JP2023086895A (ja) 2023-06-22
AU2017377915A9 (en) 2019-09-26
US20230116241A1 (en) 2023-04-13
US11559228B2 (en) 2023-01-24
WO2018111449A9 (en) 2019-06-27
EP3555581B1 (en) 2022-11-23
EP3555581A4 (en) 2020-04-29
IL267120A (en) 2019-08-29
KR20190091503A (ko) 2019-08-06

Similar Documents

Publication Publication Date Title
US11828946B2 (en) Systems and methods for retinal imaging and tracking
EP3685215B1 (en) Augmented reality display with waveguide configured to capture images of eye and/or environment
US20230341695A1 (en) Diffractive optical elements with optical power
JP7318056B2 (ja) 偏光を送達し、グルコースレベルを決定するための拡張現実および仮想現実アイウェア、システム、および方法
CN104603673B (zh) 头戴式系统以及使用头戴式系统计算和渲染数字图像流的方法
US11852530B2 (en) Augmented reality system and method for spectroscopic analysis
US11487356B2 (en) Augmented and virtual reality display systems for oculometric assessments

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination