CN107843988B - 具有相互遮挡和不透明度控制能力的用于光学透视头戴显示器的设备 - Google Patents
具有相互遮挡和不透明度控制能力的用于光学透视头戴显示器的设备 Download PDFInfo
- Publication number
- CN107843988B CN107843988B CN201711317230.0A CN201711317230A CN107843988B CN 107843988 B CN107843988 B CN 107843988B CN 201711317230 A CN201711317230 A CN 201711317230A CN 107843988 B CN107843988 B CN 107843988B
- Authority
- CN
- China
- Prior art keywords
- see
- image
- path
- eyepiece
- view
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 claims description 24
- 210000001747 pupil Anatomy 0.000 claims description 23
- 238000009877 rendering Methods 0.000 claims 1
- 238000013461 design Methods 0.000 description 33
- 238000009472 formulation Methods 0.000 description 28
- 239000000203 mixture Substances 0.000 description 28
- 238000005516 engineering process Methods 0.000 description 16
- 230000004075 alteration Effects 0.000 description 10
- 238000013459 approach Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 208000013057 hereditary mucoepithelial dysplasia Diseases 0.000 description 7
- 101001050607 Homo sapiens KH domain-containing, RNA-binding, signal transduction-associated protein 3 Proteins 0.000 description 4
- 102100023428 KH domain-containing, RNA-binding, signal transduction-associated protein 3 Human genes 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 206010010071 Coma Diseases 0.000 description 2
- 101001050622 Homo sapiens KH domain-containing, RNA-binding, signal transduction-associated protein 2 Proteins 0.000 description 2
- 102100023411 KH domain-containing, RNA-binding, signal transduction-associated protein 2 Human genes 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 210000000887 face Anatomy 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B25/00—Eyepieces; Magnifying glasses
- G02B25/001—Eyepieces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1066—Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/144—Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/283—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/04—Prisms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B37/00—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
- G03B37/02—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with scanning movement of lens or cameras
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/45—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/698—Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0118—Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0145—Head-up displays characterised by optical features creating an intermediate image
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0149—Head-up displays characterised by mechanical features
- G02B2027/015—Head-up displays characterised by mechanical features involving arrangement aiming to get less bulky devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Human Computer Interaction (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- Lenses (AREA)
- Studio Devices (AREA)
- Stereoscopic And Panoramic Photography (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Eyeglasses (AREA)
- Instrument Panels (AREA)
- Camera Bodies And Camera Details Or Accessories (AREA)
- Telescopes (AREA)
- Liquid Crystal Display Device Control (AREA)
- Optical Elements Other Than Lenses (AREA)
- Cameras In General (AREA)
- Closed-Circuit Television Systems (AREA)
Abstract
本发明涉及具有相互遮挡和不透明度控制能力的用于光学透视头戴显示器的设备。本发明包括一种紧凑光学透视头戴显示器,其能够组合透视图像路径和虚拟图像路径,以便所述透视图像路径的不透明度可以被调制并且所述虚拟图像遮挡所述透视图像的部分,并且反之亦然。
Description
本申请是申请日为2013年4月5日、申请号为201380029550.X、名称为"具有相互遮挡和不透明度控制能力的用于光学透视头戴显示器的设备"的专利申请的分案申请。
相关申请
本申请要求在2012年4月5日提交的美国临时申请61/620574和在2012年4月5日提交的美国临时申请61/620581的优先权,通过引用将其公开的全部内容并入本文中。
技术领域
本发明一般涉及头戴显示器,并且更具体地,但是不唯一地,涉及具有不透明度控制和相互遮挡能力的光学透视头戴显示器,在该光学透视头戴显示器中,真实物体可被位于前面的计算机渲染的虚拟物体遮挡或者反之亦然。
背景技术
在过去几十年,增强实现(AR)技术已经被应用在许多应用领域,例如医疗和军事训练、工程设计和原型、远程操作和远程呈现(tele-presence)以及个人娱乐系统。透视头戴显示器(ST-HMD)为用于合并虚拟视图与物理场景的增强实现系统的使能技术当中的一种。有两种类型的ST-HMD:光学和视频(J.Rolland和H.Fuchs,“Optical versus videosee-through head mounted displays”,Fundamentals of Wearable Computers andAugmented Reality,pp113-157,2001)。视频透视方法的主要缺点包括:透视视图的图像质量降低;源于进入视频流的处理的图像滞后;源于硬件/软件故障的透视视图的潜在损失。相反,光学透视HMD(OST-HMD)通过分束器提供真实世界的直接视图,并且从而具有对真实世界的视图的最小影响。这在用户对现场环境的意识是极为重要的苛刻应用中是高度优选的。
然而,开发光学透视HDM面临复杂的技术挑战。关键问题之一在于,由于缺乏遮挡能力,在OST-HMD中的虚拟视图呈现“重影状(ghost-like)”并且在真实世界中浮动。图1示出通过典型的OST-HMD(图1a)的增强视图和通过能够遮挡的OST-HMD(OCOST-HMD)系统透视的增强视图(图1b)的对比说明。在图中,虚拟汽车模型被叠加在表示真实物体的立体平台上。如图1a中所示,不具有适当的遮挡管理,在典型的AR视图中,汽车与平台混合,难以区分汽车和平台的深度关系。相反,如图1b中所示,具有恰当的遮挡管理,汽车挡住平台的一部分,并且可以清晰地识别出汽车是位于平台的顶上。向AR显示器添加遮挡能力能够将虚拟物体真实地并入到真实环境中。这样的遮挡能力对AR显示器技术产生变革性影响,并且对许多基于增强实现的应用是非常具有吸引力的。
OCOST-HMD系统典型地包括两个关键子系统。第一是允许用户在微显示器上看到放大图像的目镜光学部件;以及第二是收集并且调制来自真实世界中的外部场景的光的中继光学部件(relay optics),当向观察者呈现时,其能够对外部场景进行不透明度和遮挡控制。产生真正便携式和轻巧的OCOST-HMD系统的关键挑战在于解决三个基础问题:(1)允许两个子系统集成而没有向系统添加显著重量和体积的光学方案。(2)维持外部场景的坐标系统的宇称(parity)的适当的光学方法;(3)具有优雅的形状因子使能这些光学子系统设计的光学设计方法,这已经是HMD开发者的持续梦想。若干能遮挡的光学ST-HMD概念已经被开发(美国专利,7639208B1,Kiyokawa K.、Kurata Y.和Ohno H.,“An Optical See-Through Display For Mutual Occlusion With A Real-Time Stereo Vision System”,Elsevier Computer&Graphics,Special Issue On“Mixed Realities-BeyondConventions”,Vol.25,No.5,pp.2765-779,2001K.Kiyokawa,M.Billinghurst,B.Campbell,E.Woods,“An Occlusion-Capable Optical See-Through Head MountDisplay For Supporting Co-Located Collaboration”)。例如,Kiyokawa等使用常规的透镜、棱镜和反射镜开发ELMO系列遮挡显示器。不是仅由于所使用的元件的数目,更重要地是源于光学系统的旋转对称的性质,现有能遮挡的OST-HMD具有头盔状笨重的形状因子。由于沉重重量和累赘的设计,它们仅仅被用在实验环境中。累赘的头盔状形状因子阻碍了用于许多苛刻和新兴应用对技术的接受。
发明内容
本发明涉及一种具有不透明度控制和相互遮挡能力的光学透视头戴显示器(OST-HMD)装置。所述装置系统典型地由虚拟视图路径和透视路径组成,所述虚拟视图路径用于观察显示的虚拟图像,所述透视路径用于观察在真实世界中的外部场景。在本发明中,所述虚拟视图路径包括用于供应虚拟图像内容的小型图像显示器单元和目镜,用户通过所述目镜观察放大的虚拟图像。所述透视路径包括物镜光学部件、空间光调制器(SLM)和目镜光学部件,所述物镜光学部件直接捕获来自所述外部场景的所述光并且形成至少一个中间图像,所述空间光调制器位于或者接近在所述透镜路径中的中间图像平面以控制和调制所述透视视图的不透明度,所述观察者通过所述目镜光学部件看到所述调制的透视视图。在所述透视路径中,所述物镜光学部件和目镜一起作为用于将来自所述真实世界的所述光传递到观察者的眼睛的中继光学部件。为了实现紧凑形状因子并且降低视点偏移,所述透视路径通过若干反射表面被折成两层,前层接受来自外部场景的所述入射光并且背层通将由所述前层所捕获的光耦合到观察者的眼睛中。通过分束器将所述透视路径与所述虚拟图像路径合并,以便两个路径共用相同的目镜以用于观察显示的虚拟内容和调制的透视图像。通过所述分束器,将所述微显示器和所述SLM彼此光学共轭,这使得像素级控制是可能的。在本发明中,所述目镜、所述物镜光学部件或者二者为旋转对称透镜或者非旋转对称自由形状光学部件。在其一个显著方面,本发明在目镜光学部件、物镜光学部件或者二者中利用自由形状光学技术,以实现紧凑的并且轻巧的OCOST-HMD设计。
用于折叠所述光学路径的所述反射表面可为具有光学度数(optical power)的平面反射镜、球面、非球面或者自由形状表面。在本发明的另一显著方面,一些反射表面利用自由形状光学技术。一些反面表面也可被策略地设计为所述目镜或者物镜光学部件的一体部分,其中所述反射表面不仅仅促进用于实现紧凑的显示设计的所述光学路径的折叠,还贡献光度数并且校正光像差。在示例性配置中,本发明使用单-反射或者多-反射自由形状棱镜作为目镜或者物镜光学部件,其中所述棱镜为包括折射表面和一个或多个反射表面的单个光学元件以用于折叠所述光学路径并且校正像差。
在本发明的另一显著方面,在所述透视路径中的所述物镜光学部件形式至少一个可访问的中间图像(accessible intermediate image),在所述中间图像附近放置有SLM以提供不透明度控制和透视调制。在本发明中,使用反射型SLM或者透射型SLM用于调制所述透视视图以用于遮挡控制。与透射型SLM相比,反射型SLM需要物镜光学部件的更长的背焦距。反射型SLM具有比透射型SLM更高的光效率的优势。
在本发明的另一显著方面,透视路径形成奇数或者偶数数目的中间图像。在奇数数目的中间图像的情况下,提供光学方法以反转(invert)和/或颠倒(revert)在所述透视路径中的所述透视视图。例如,取决于在所述透视路径中涉及的反射的数目,可能的方法的实例包括但不限制于,插入附加的一个反射或者多个反射、利用屋脊反射镜表面、或者插入直立(erection)棱镜或者透镜。在偶数数目的中间图像的情况下,如果在所述透视视图中不存在宇称(parity)改变,则不需要图像直立元件。例如,利用多-反射自由形状棱镜结构(典型地多于2)作为目镜或者物镜光学部件或者二者,这允许在所述物镜和/或目镜棱镜内部多次折叠所述透视光学路径并且在所述棱镜内部形成中间图像,其消除使用直立屋脊反射表面的必要性。消除直立棱镜的潜在优势是此方法导致更紧凑的设计。
附图说明
连同所附附图说明,可以进一步理解本发明的上述总结和下列示例性实施例的详细描述,其中:
图1示意性示出通过不具有遮挡能力(图1a)和具有遮挡能力(图1b)的光学透视HMD而看到的AR视图。
图2示意性示出根据本发明的被示为单眼光学模块的示例性光学布局。
图3示意性示出根据本发明的基于自由形状光学技术(freeform opticaltechnology)的优选实施例。该实施例包括单-反射目镜棱镜、单-反射物镜棱镜、反射型SLM和屋脊反射表面(roof reflective surface)。
图4示意性示出根据本发明的基于自由形状光学技术的另一优选实施例。此实施例包括双-反射目镜棱镜、四-反射物镜棱镜和反射型SLM。
图5示意性示出根据本发明的基于自由形状光学技术的另一优选实施例。此实施例包括双-反射目镜棱镜、单-反射物镜棱镜、透射型SLM和屋脊反射表面。
图6示意性示出根据本发明的基于自由形状光学技术的另一优选实施例。此实施例包括双-反射目镜棱镜、三-反射物镜棱镜和透射型SLM。
图7示意性示出根据本发明的基于自由形状光学技术的另一优选实施例。此实施例包括双-反射目镜棱镜、双-反射物镜棱镜、反射型SLM和中继透镜。
图8示意性示出根据本发明的基于图3中的示例性布局的OCOST-HMD系统的示例性设计。
图9示出使用3mm瞳孔直径评估的40lps/mm的截止频率(线对每毫米)下图8的设计的虚拟显示路径的多色调制传递函数(MTF)的场图绘图(field map plot)。
图10示意性示出根据本发明的基于图3中的示例性布局的OCOST-HMD系统的示例性设计,其具有含有相同的自由形状结构的目镜和物镜光学部件。
图11示出了使用3mm瞳孔直径评估的40lps/mm的截止频率(线对每毫米)下图10中的设计的虚拟现实路径的多色调制传递函数(MTF)的场图绘图。
图12描绘根据本发明的图像处理流水线的实例的框图。
图13示出表1:目镜棱镜的表面1的光学表面配方(prescription)。
图14示出表2:目镜棱镜的表面2的光学表面配方。
图15示出表3:目镜棱镜的表面3的光学表面配方。
图16示出表4:目镜棱镜的位置和取向参数。
图17示出表5:物镜棱镜的表面4的光学表面配方。
图18示出表6:物镜棱镜的表面5的光学表面配方。
图19示出表7:物镜棱镜的表面6的光学表面配方。
图20示出表8:物镜棱镜的位置和取向参数。
图21示出表9:对于DOE板882和884的表面参数。
图22示出表10:自由形状棱镜的表面1的光学表面配方。
图23示出表11:自由形状棱镜的表面2的光学表面配方。
图24示出表12:自由形状棱镜的表面3的光学表面配方。
图25示出表13:作为目镜的自由形状棱镜的位置和取向参数。
具体实施方式
将考虑到附图全面地描述根据本发明的实施例。阐述描述以便提供对本发明的理解。然而,将简而易见的是,没有这些细节仍可以实施本发明。再者,可以各种形式实施本发明。然而,下面描述的本发明的实施例将不被构造为限制于本文所描述的实施例。相反,这些实施例、附图和实例为说明性的并且旨在避免模糊本发明。
能遮挡的光学透视头戴式显示器(OCOST-HMD)系统典型地由用于观察显示的虚拟图像的虚拟视图路径和用于观察在真实世界上的外部场景的透视路径组成。此后,通过虚拟视图路径所观察的虚拟图像被称为虚拟视图,并且通过透视路径所观察的外部场景被称为透视视图。在本发明的一些实施例中,虚拟视图路径包括用于供应虚拟图像内容的微显示器单元和通过其用户观察放大的虚拟视图的目镜。透视路径包括用以从外部场景捕获光并且至少形成一个中间图像的物镜光学部件、放置于或者接近在透视路径中的中间图像平面的空间光模块(SLM)、以及目镜,该空间光模块用以控制和调制透视视图的不透明度,观察者通过该目镜看到调制的透视视图。在透视路径中,物镜光学部件和目镜一起作为用于将光从真实世界传递给观察者的眼睛的中继光学部件。在透视路径中的中间图像被称为透视图像,并且由SLM调制的中间图像被称为调制的透视图像。OCOST-HMD产生虚拟视图和透视视图的组合视图,其中,虚拟视图遮挡透视视图的部分。
在一些实施例中,本发明包括紧凑光学透视头戴式显示器200,其能够组合透视路径207和虚拟视图路径205,以便透视路径的不透明度可以被调制并且虚拟视图遮挡透视视图的部分,并且反之亦然,显示器包括:
a.微显示器250,用于生成要由用户观察的图像,该微显示器具有与之关联的虚拟视图路径205;
b.空间光调制器240,用于修改来自真实世界中的外部场景的光,以挡住透视视图的要被遮挡的部分,空间光调制器具有与之关联的透视路径207;
c.目镜光学部件220,被配置为接收来自外部场景的入射光并且将光聚焦在空间光调制器240之上;
d.分束器230,被配置为合并来自微显示器250的虚拟图像和从空间光调制器传递的调制的外部场景的透视图像,产生组合图像;
e.目镜210,被配置为放大组合图像;
f.出瞳202,被配置为面对目镜,其中,用户观察虚拟视图和透视视图的组合视图,在该组合视图中,虚拟视图遮挡透视视图的部分;
g.多个反射表面,被配置为将虚拟视图路径205和透视路径207折成两层。
在一些实施例中,使用至少三个反射表面以将虚拟和透视路径折成两层。第一反射表面(M1)位于显示器的前层上且被定向以反射来自外部场景的光。物镜光学部件220位于显示器的前层上。第二反射表面(M2)位于显示器的前层上且被定向以将光反射到空间光调制器中。空间光调制器240位于或者接近透视路径207的中间图像平面,其通过分束器230沿着透视路径207与物镜光学部件220和目镜210相光学通信。微显示器250位于目镜210的焦平面,其通过分束器230沿着虚拟视图路径205与目镜210相光学通信。将分束器230定向以便透视路径207与虚拟视图路径205合并,并且来自透视路径和虚拟视图路径的光都被导引到目镜210。目镜210位于显示器的背层上。第三反射表面(M3)位于显示器的背层上,其被定向为将光从目镜反射到出瞳202中。
在一些实施例中,物镜光学部件220反射外部场景的光,并且聚焦外部场景的光并在空间光调制器240上形成透视图像。空间光调制器240修改透视图像以去除图像要被遮挡的部分。微显示器250将虚拟图像投射到分束器230。空间光调制器240将修改的透视图像传输到分束器230,其中分束器230合并两图像产生组合的图像,其中虚拟图像遮挡透视图像的部分。分束器230则将组合图像投射到目镜210,因此目镜将图像投射到出瞳202。
在一些实施例中,本发明包括能够组合在真实世界中的外部场景与虚拟视图的光学透视头戴式显示器200,其中外部场景的不透明度被调制并且数字生成的虚拟视图遮挡外部场景的部分并且反之亦然。本发明包括传输虚拟图像的微显示器250、用于修改来自外部场景的光的空间光调制器240、捕获外部场景的物镜光学部件220、被配置为合并来自微显示器的数字地生成的虚拟图像和来自空间光调制器的修改的外部场景的分束器230、放大虚拟图像和修改的外部场景的目镜210、以及用户用以观察虚拟图像和修改的外部场景的组合视图的出瞳202。
在一些实施例中,使用至少三个反射表面,以将虚拟视图路径205虚和透视路径207折成两层。物镜光学部件220位于显示器的前层上,而目镜210位于显示器的背层上。可使用一系列反射镜以引导光沿着光学路径通过空间光调制器、分束器和目镜。空间光调制器240位于或者接近在透视路径中的中间图像平面。微显示器250面对分束器230,以便来自微显示器的光被传输到分束器230中。分束器230组合来自微显示器和空间光调制器的光,并且被定向以便从分束器的光传输的方向面对着目镜210。目镜210被定位以便来自分束器、经过目镜的光被传输到出瞳中。
在一些实施例中,物镜光学部件220接收外部场景的图像,并且将图像反射或者折射到空间光调制器240。空间光调制器240修改来自外部场景的光以去除图像要被遮挡的部分,并且将光传输或者反射到分束器中。微显示器250将虚拟图像传输到分束器230,并且分束器230合并两图像产生组合图像,其中虚拟图像205遮挡外部场景的图像的部分。分束器230将组合图像投射到目镜210,目镜210将图像传导到出瞳208。从而用户观察到组合图像,其中虚拟图像看起来遮挡外部场景的部分。
图2示出根据本发明的用于实现紧凑OCOST-HMD系统的示意性布局200。在此示例性布局200中,虚拟视图路径205(以虚线示出)代表虚拟视图的光传播路径并且包括用于提供显示器内容的微显示器250和目镜210,用户通过目镜210观察显示内容的放大图像;透视路径207(以实线示出)代表透视视图的光传播路径并且包括物镜光学部件220和目镜210组成,二者作为用于将来自真实世界中的外部场景的光传到观察者的眼睛的中继光学部件。为了实现紧凑形状因子并且减少观察点偏移,通过若干反射表面M1~M3在观察者的眼睛前,将透视路径207折成两层。接受来自外部场景的入射光的前层215主要包括物镜光学部件220和必要的反射表面M1和M2。将由前层所捕获的光耦合到观察者的眼睛中的背层217主要包括目镜210和诸如附加的折叠反射镜M3的其它必需的光学组件。在前层215中,反射表面M1将来自外部场景的入射光导引向物镜光学部件220;并且在通过物镜光学部件220之后,通过反射表面表面M2将光折向背层217。在透视路径207中的物镜光学部件220形成至少一个可访问的中间图像。空间光调制器(SLM)240被放置在可访问的中间图像的位置处或者接近可访问的中间图像的位置,可访问的中间图像典型地在物镜光学部件的背焦平面,以提供透视视图的不透明度控制和透视调制。在本发明中,SLM为可以调制通过其的或被其反射的光束的强度的光控制器件。SLM可以为反射型SLM,例如,在硅上液晶(LCoS)显示板或者数字镜器件(digital mirror device,DMD),或者为透射型SLM,例如,液晶显示板(LCD)。可使用两种类型SLM用于调制透视视图,以在透视路径207中的遮挡控制。图2(a)示出使用反射型SLM的示例性配置,而图2(b)示出示出透射型SLM的使用。取决于物镜光学部件220的焦平面位置,在图2(a)中,为反射型SLM的SLM240可以被放置在SLM2的位置,或者在图2(b)中,为透射型SLM的SLM240可以被放置在SLM1的位置。分束器230将透视路径207折叠并且将其与虚拟视图路径205合并,以便对于观察显示的虚拟内容和调制的透视视图,共用相同的目镜210。反射表面M3将虚拟视图路径205和透视路径207导引向出瞳202,其中观察者的眼睛观察混合的虚拟和真实视图。反射表面M1~M3可以为独立元件(standing alone element)(例如反射镜),或者可被策略性地设计为目镜210或者物镜光学部件220的一体部件。微显示器250和SLM240均位于物镜光学部件220的焦平面,并且通过分束器230而彼此光学共轭,这使得在透视视图上的像素级控制是可能的。尽管如示例性图中所示,组装SLM240、微显示器250和分束器230的单元被包括在背层中,当目镜的背焦距大于物镜光学部件的背焦距时,可将该单元并入到前层中,以便优选将组合单元放置得更近于物镜光学部件。上述方法能够实现紧凑的OCOST-HMD解决方案和最小的视轴偏移。
作为益处之一,光学布局200具有对许多类型HMD光学部件的适用性,包括但不限制于,旋转对称性光学部件和非旋转对称性自由光学部件。用于折叠光学路径的反射表面M1~M3为具有光学度数(optical power)的平面反射镜、球面、非球面或者自由形状。反射表面中的一些利用自由形状光学技术。反射表面中的一些也可被策略性地设计为目镜210或者物镜光学部件220的一体部分,其中反射表面不仅仅促进用于实现紧凑显示设计的光学路径的折叠,还贡献光学度数并且校正光学像差。在如图3所示的示例性配置中,本发明示例了单-反射自由形状棱镜作为目镜和物镜光学部件的使用,其中棱镜为包括两个折射表面和一个反射表面的用于折叠光学路径和校正像差的单光学元件。在配置的其它实例中,说明了多-反射自由形状棱镜。
在本发明的另一显著方面,除SLM可访问的中间图像外,通过物镜光学部件220或目镜210或者两者,透视路径207可形成附加的中间图像260。例如,多个-反射自由形状棱镜结构(典型地多于2)被利用作为目镜或者物镜光学部件或者两者,这允许在物镜和/或目镜棱镜内部多次折叠透视路径,并且在棱镜内部形成中间图像(一个或多个图像)。其结果是,透视路径产生总数为奇数或者偶数的图像。产生多于一个中间图像的潜在优点是扩展的光学路径长度、场背焦距和消除真时视图直立元件的益处。
取决于被产生的中间图像的总数目和在透视路径207中所使用的反射表面的总数目,需要透视视图直立方法,以将透视路径的透视视图反转和/或颠倒,以维持透视视图的坐标系统的宇称并且阻止观察者看到反转的或者颠倒的透视视图。具体地至于透视视图直立方法,本发明考虑两种不同的图像直立策略。当在透视路径207中涉及总偶数数目的反射时,这没有诱导对透视视图的坐标系统的宇称的改变,将设计目镜210和物镜光学部件220的形状,以便在透视路径207中产生偶数数目的中间图像。当在透视路径207中存在奇数数目的反射和奇数数目的中间图像时,这诱导宇称改变,反射表面M1到M3当中的一个可被屋脊反射镜(roof mirror)表面替代以用于透视视图直立。在下面将结合图3和5讨论具有使用屋脊反射的视图直立的优选实施例。在下面将结合图4、6和7讨论优选具有使用中间图像的视图直立的实施例。
在显著方面之一,本发明在目镜、物镜光学部件或者两者中利用自由形状光学技术,以实现紧凑且轻巧的OCOST-HMD。图3示出根据本发明的基于自由形状光学技术的对紧凑OCOST-HMD设计的示例性方法的框图300。在背层317中的目镜310为单-反射自由形状棱镜,其包括三个光学自由形状表面:折射表面S1、反射表面S2和折射表面S3。在虚拟视图路径305中,从微显示器350发射的光线,通过折射表面S3进入目镜310并且通过反射表面S2的反射后到达出瞳302,其中对准观察者的眼睛以看到微显示器350的放大的虚拟图像。在前层315中的物镜光学部件320也是单-反射自由形状棱镜,其由三个光学自由表面组成:折射表面S4、反射表面S5和折射表面S6。在透视路径307中,物镜光学部件320与目镜310一起工作作为用于透视视图的中继光学部件。来自外部场景的由反射镜325反射的入射光通过折射表面S4进入目镜光学部件320,然后被反射表面S5反射,并且通过折射表面S6离开物镜光学部件320,并且在其焦平面处在用于光调制的SLM340上形成中间图像。分束器330合并在透视路径307中的调制光和在虚拟视图路径305中的光,并且折向目镜310用于观察。分束器330为线栅型分束器、偏振立方体分束器或者其它类似类型的分束器。在此方法中,SLM340为反射型SLM并且位于示意性布局200的SLM2位置处,并且通过分束器330被光学共轭至微显示器350。
在此示例性布局300中,示意性布局200的反射表面M2被策略地设计为作为自由形状反射表面S5的目镜棱镜320的集成部分;示意性布局200的反射表面M3被策略地设计为作为自由形状反射表面S2的目镜棱镜310的集成部分;示意性布局200的反射表面M1被策略地设计为屋脊型反射镜325用于视图直立,给定在透视路径307中的反射总数目为5(奇数数目)。
在此示例性布局300中,目镜310和物镜光学部件320具有相同的自由形状棱镜结构。对于目镜和物镜光学部件使用相同结构的优势是一个棱镜的光学设计策略可以容易地应用到另一个,这有助于简化光学设计。目镜和物镜光学部件的对称结构也有助于校正奇数阶像差,例如,慧差、失真和横向色差。
图4示出根据本发明的基于自由形状光学技术的对紧凑OCOST-HMD设计的另一示例性方法的框图400。在一个示例性实施中,目镜410为双-反射棱镜并且物镜光学部件420为四-反射棱镜。在物镜光学部件420内部,形成中间图像460以直立透视视图,这消除使用直立屋脊反射表面的必要性。消除直立棱镜的潜在优势为,通过在物镜棱镜内部将光学路径折叠多次,此系统结构导致更紧凑的设计。在背层417中的目镜410由四个光学自由表面组成:折射表面S1、反射表面S2、反射表面S1’和折射表面S3。在虚拟视图路径405中,从微显示器450发射的光线通过折射表面S3进入目镜410,然后被反射表面S1’和S2连续地反射,并且通过折射表面S1离开目镜410,并且到达出瞳402,其中对准观察者的眼睛以看到微显示器450的放大的虚拟图像。折射表面S1和折射表面S1’可为相同的物理表面并且具备同一套表面配方。在前层415中的物镜光学部件420由六个光学自由形状表面组成:折射表面S4、反射表面S5、S4’、S5’和S6以及折射表面S7。在透视路径407中,物镜光学部件420与目镜410一起作为用于透视视图的中继光学部件。来自在真实世界中的外部场景的入射光,通过折射表面S4进入物镜光学部件420,然后被反射表面S5、S4、S5’和S6连续地反射,并且通过折射表面S7离开物镜光学部件420,然后在其焦平面处在用于光调制的SLM440上形成中间图像。折射表面S4和反射表面S4’可为相同的物理表面并且具备同一套表面配方。反射表面S5和反射表面S5’可为相同的物理表面并且具备同一套表面配方。分束器430合并在透视路径407中的调制的光和在虚拟视图路径405中的光,并且折向目镜410以用于观察。分束器430可为线栅型分束器、偏振立方体分束器或者其它类似类型的分束器。在此方法中,SLM440为反射型SLM并且位于示意性布局200的SLM2位置处,并且通过分束器430被光学共轭至微显示器450。
在此示例性布局400中,示意性布局200的反射表面M2被策略地设计为作为反射表面S6的物镜光学部件420的集成部分;示意性布局200的反射表面M3被策略地设计为作为反射表面S2的目镜410的集成部分;示意性布局200的反射表面M1被策略地设计为作为反射表面S5的物镜光学部件420的集成部分。在物镜光学部件420内部形成中间图像460以用于真实视图直立。给定在透视路径407中的反射总数目为8(偶数数目),在任何反射表面上不需要屋脊反射镜。
图5示出根据本发明的基于自由形状光学技术的对紧凑OCOST-HMD设计的另一示例性方法的框图500。此方法促进透射型SLM的使用。目镜510为双-反射棱镜并且物镜光学部件520为单-反射棱镜。屋脊反射镜527被放置在物镜棱镜520的顶上,以将透视视图反转并且将透视路径507折向背层517。在背层517中的目镜510由四个光学自由形状表面组成:折射表面S1、反射表面S2、反射表面S1’和折射表面S3。在虚拟视图路径505中,从微显示器550发射的光线,通过折射表面S3进入目镜510,然后被反射表面S1’和S2连续地反射,并且通过折射表面S1离开目镜510,并且到达出瞳502,其中观察者的眼睛被对准以看到微显示器550的放大的虚拟图像。折射表面S1和反射表面S1’可为相同的物理表面并且具备相同的一套表面配方。在前层515中的物镜光学部件520由三个光学自由形状表面组成:折射表面S4、反射表面S5和折射表面S6。在透视路径507中,物镜光学部件520与目镜510一起操作作为用于透视视图的中继光学部件。来自在真实世界中的外部场景的入射光,通过折射表面S4进入物镜光学部件520,然后被反射表面S5反射,并且通过折射表面S6离开物镜光学部件520并且通过反射镜527被折向背层517,并且在其焦平面处、在用于光调制的SLM540上形成中间图像。分束器530合并在透视路径507中的调制的光和在虚拟视图路径505中的光,并且将合并的光折向目镜510以用于观察。分束器530为线栅型分束器、偏振立方体分束器或者其它类似类型的分束器。在此方法中,SLM540为透射型SLM并且位于示意性布局200的SLM1位置处,并且通过分束器530被光学共轭至微显示器530。
在此示例性布局500中,示意性布局200的反射表面M1被策略地设计为作为反射表面S5的物镜光学部件520的集成部分;示意性布局200的反射表面M3被策略地设计为作为反射表面S2的目镜510的集成部分;示意性布局200的反射表面M2被设计为屋脊型反射镜527用于视图直立,给定在透视路径507中的反射总数目为5(奇数数目)。
图6示出根据本发明的基于自由形状光学技术的对紧凑OCOST-HMD设计的另一示例性方法的框图600。此方法还促进透射型SLM的使用。在一个示例性实施中,目镜610为双-反射自由形状棱镜并且物镜光学部件620为三-反射自由形状棱镜。在目镜610内部,形成中间图像660以直立透视视图。在背层617中的目镜610由四个光学自由形状表面组成:折射表面S1、反射表面S2、反射表面S1’和折射表面S3。在虚拟视图路径605中,从微显示器650发射的光线,通过折射表面S3进入目镜610,然后被反射表面S1’和S2连续地反射,并且通过折射表面S1离开目镜610,并且到达出瞳602,其中观察者的眼睛被对准以看到微显示器650的放大的虚拟图像。折射表面S1和反射表面S1’为相同的物理表面并且具备相同一套表面配方。在前层615中的物镜光学部件620由五个光学自由形状表面组成:折射表面S4、反射表面S5、S4’和S6以及折射表面S7。在透视路径607中,物镜光学部件620与目镜610一起工作作为用于透视视图的中继光学部件。来自在真实世界中的外部场景的入射光通过折射表面S4进入物镜光学部件620,被反射表面S5、S4’和S6连续地反射,并且通过折射表面S7离开物镜光学部件620,并且在其焦平面、在SLM640上形成中间图像以用于光学调制。折射表面S4和反射表面S4’为相同的物理表面并且具备相同一套表面配方。分束器630合并在透视路径607中的调制光和在虚拟视图路径605中的光,并且折向目镜610以用于观察。分束器630为线栅型分束器、偏振立方体分束器或者其它类似类型的分束器。在此方法中,SLM640为透射型SLM并且位于示意性布局200的SLM1位置处,并且通过分束器630被光学共轭至微显示器650。
在此示例性布局600中,示意性布局200的反射表面M1被策略地设计为作为反射表面S5的物镜光学部件620的集成部分;示意性布局200的反射表面M2被策略地设计为作为反射表面S6的物镜光学部件620的集成部分;示意性布局200的反射表面M3被策略地设计为作为反射表面S2的目镜610的集成部分。在物镜光学部件610内部形成中间图像660以用于真实视图直立。给定了在透视路径607中的反射总数目为6(偶数数目),在任何反射表面上不需要屋脊反射镜。
图7示出根据本发明的基于自由形状光学技术的对紧凑OCOST-HMD设计的另一示例性方法的框图700。在一个示例性实施中,目镜和物镜光学部件均为双-反射自由形状棱镜并且具有几乎相同的结构。对于目镜和物镜使用相同结构的优势为一个棱镜的光学设计策略可以容易地施加到另一个,这有助于简化光学设计。目镜和物镜棱镜的对称结构也有助于校正奇数阶像差,例如,慧差、失真和横向色差。在背层717中的目镜710由四个光学自由形状表面组成:折射表面S1、反射表面S2、反射表面S1’和折射表面S3。在虚拟视图路径705中,从微显示器750发射的光线,通过折射表面S3进入目镜710,然后被反射表面S1’和S2连续地反射,并且通过折射表面S1离开目镜710,并且到达出瞳702,其中观察者的眼睛被对准以看到微显示器750的放大的虚拟图像。折射表面S1和反射表面S1’为相同的物理表面并且具备相同套的表面配方。在前层715中的物镜光学部件720由四个光学自由形状表面组成:折射表面S4、反射表面S5、S4’和折射表面S6。在透视路径707中,物镜光学部件720与目镜710一起工作作为用于透视视图的中继光学部件。来自在真实世界中的外部场景的入射光,通过折射表面S4进入物镜光学部件720,并且被反射表面S6、S4’连续地反射,并且通过折射表面S6离开物镜光学部件720,并且在其焦平面形成中间图像760。分束器780将离开背层715的透视路径707折叠朝向位于物镜光学部件720的焦平面的反射镜790。反射镜790将透视路径707朝着背层715反射回来。使用中继透镜770以在示意性布局200的SLM2位置处产生中间图像760的图像以用于视图调制。分束器730合并在透视路径707中的调制的光和在虚拟视图路径705中的光,并且折向目镜710以用于观察。在此方法中,SLM740为反射型SLM,并且通过分束器730被光学共轭至微显示器750。由于中间图像760被光学共轭至SLM740这一事实,SLM740和反射镜790的位置是可交换的。
在此示例性布局700中,示意性布局200的反射表面M1被策略地设计为作为反射表面S5的物镜光学部件720的集成部分;示意性布局200的反射表面M3被策略地设计为作为反射表面S2的目镜710的集成部分;示意性布局200的反射表面M2被作为反射镜790而定位在物镜光学部件710的焦平面,并且将透视路径707折向虚拟视图路径705;在物镜光学部件720的焦平面形成中间图像760以用于真实视图直立。给定了在透视路径707中的反射总数目为8(偶数数目),在任何反射表面上不需要屋脊反射镜。
图8示意性示出基于在图3中描绘的示例性方法的示例性设计800。设计实现40度的对角(Diagonal)FOV、8mm的出瞳直径(EPD)(非虚光(non-vignetted))和18mm的眼间隙(eye clearance),该对角FOV在水平方向(X轴方向)上为31.7度,并且在垂直方向(Y轴方向)上为25.6度。设计是基于具有5:4纵横比和1280×1024像素分辨率的0.8”微显示器。微显示器具有15.36mm和12.29mm的有效面积以及12μm的像素尺寸。设计使用与微显示器的尺寸和分辨率相同的SLM。使用偏振立方体分束器以组合虚拟视图路径和透视路径。使用DOE板882和884以校正色像差。系统被测量为43mm(X)×23mm(Y)×44.5mm(Z)。在入瞳886和出瞳802之间的视点偏移分别在Y方向上为0.6mm,在Z方向上为67mm。
在表1-4中列出目镜810的示例性光学配方。在目镜810中的全部三个光学表面为变形非球面表面(AAS)。AAS表面的凹陷被这样限定:
其中,z为沿着局部x,y,z坐标系统的z轴测量的自由形状表面的凹陷,cx和cy分别为在x和y轴的顶点曲率,Kx和Ky分别为在x和y轴的锥形常数(conic constant),AR、BR、CR和DR为来自锥形的第4、6、8和10阶变形的旋转对称部分,AP、BP、CP和DP为来自锥形的第4、6、8和10阶变形的非旋转对称分量。
表1:目镜棱镜的表面1的光学表面配方,见图13。
表2:目镜棱镜的表面2的光学表面配方,见图14。
表3:目镜棱镜的表面3的光学表面配方,见图15。
表4:目镜棱镜的位置和取向参数,见图16。
在表5-8中列出物镜光学部件820的示例性光学配方。在物镜光学部件820中的全部三个光学表面为变形非球面表面(AAS)。
表5:物镜棱镜的表面4的光学表面配方,见图17。
表6:物镜棱镜的表面5的光学表面配方,见图18。
表7:物镜棱镜的表面6的光学表面配方,见图19。
表8:物镜棱镜的位置和取向参数,见图20。
在表9中列出DOE板882和884的示例性光学配方。
表9:用于DOE板882和884的表面参数,见图21。
图9示出使用3mm瞳孔直径评估的40lps/mm的截止频率(线对每毫米)下的虚拟显示路径的多色调制传递函数(MTF)的场图。40lps/mm的截止频率被从微显示器的像素尺寸确定。绘图示出,除在截止频率处的MTF值略小于15%的两个上部显示拐角之外,本设计对于多数场具非常好的性能。跨整个FOV,虚拟现实路径的失真小于2.9%,而透视路径的失真小于0.5%。只对于光学部件,总评估重量为33克每眼。
图10示意性示出基于在图3中描绘的示例性方法的示例性设计1000。设计实现40度的对角FOV、8mm的出瞳直径(EPD)(非虚光)和18mm的眼间隙,该对角FOV为水平地(X轴方向)35.2度以及垂直地(Y轴)20.2度。设计是基于具有16:9纵横比和1280×720像素分辨率的0.7”微显示器。设计使用与微显示器的尺寸和分辨率相同的SLM。使用线栅板分束器以组合虚拟视图路径和透视路径。相同的自由形状棱镜被用作目镜和物镜光学部件。
在表10-15中列出自由形状棱镜的示例性光学配方。在棱镜中的两个表面为变形非球面表面(AAS),并且一个为非球面表面(ASP)。AAS表面的凹陷被这样限定:
其中,z为沿着局部x,y,z坐标系统的z轴测量的表面的凹陷,c为在顶点曲率,k为锥形常数,A至J分别为第4、6、8、10、12、14、16、18和20阶变形系数。
表10:自由形状棱镜的表面1的光学表面配方,见图22。
表11:自由形状棱镜的表面2的光学表面配方,见图23。
表12:自由形状棱镜的表面3的光学表面配方,见图24。
表13:作为目镜的自由形状棱镜的位置和取向参数,见图25。
图11示出使用3mm瞳孔直径评估的40lps/mm(线对每毫米)的截止频率下的虚拟显示路径的多色调制传递函数(MTF)的场图。绘图示出,对于多数场,本发明设计具有非常好的性能。
图12描绘本发明所需的图像处理流水线的实例的框图。首先,使用合宜的深度感测装置,获得外部场景的深度图。然后,将虚拟物体与深度图比较,以确定遮挡出现的区域。根据预先确定的遮挡区域,掩盖生成算法产生二元掩盖图像。然后在空间光调制器上显示该掩盖图像,以屏蔽来自在外部场景的中间图像中的遮挡区域的光。虚拟物体的虚拟图像被渲染并且显示在微显示器上。观察者通过本发明的显示装置观察虚拟图像和外部场景的调制的透视图像的组合图像。
与现有技术相比,本发明以折叠的图像路径为特征,该折叠的图像路径允许本发明压缩成紧凑形式、作为头戴显示器是更容易穿戴的。在现有技术(美国专利7639208B1)中,使用旋转对称透镜直线布置光学路径。其结果是,现有技术的遮挡型显示器具有长的望远镜般形状,这对于戴上头上是笨拙的。本发明使用反射表面将图像路径折成两层,以便空间光调制器、微显示器和分束器被安装在头的顶上,而不是直线性地在眼前。
现有技术仅依靠反射型空间光调制器,而本发明可使用反射或者透射型空间光调制器。再者,现有技术需要偏振分束器以调制外部图像,而本发明不必须是偏振。
由于本发明是以层来布置,目镜和物镜光学部件不必须如同在现有技术的情况下那样是共线的。物镜光学部件也不必须是焦阑的(tele-centric)。
在现有技术中,由于系统的光学部件,世界的视图为透视视图的反射镜反射。本发明的折叠的图像路径允许嵌入屋脊反射镜,以在用户和外部的视图之间维持宇称。这使得从用户角度来讲,本发明更具功能性。
与现有技术相比,本发明利用允许系统更紧凑的自由形状光学技术。可以设计自由光学表面以在内部多次反射光,以便不需要反射镜来折叠光路径。
在本发明中,用于折叠光学路径的反射表面为具有光学度数的平面反射镜、球面、非球面或者自由形状表面。本发明的显著方面在于一些反射表面利用自由形状光学技术,这有助于提升光学性能和紧凑度。在本发明中,一些反射表面被策略地设计为目镜或者物镜光学部件的一体部分,其中反射表面不仅促进用于实现紧凑显示器设计的光学路径的折叠,还贡献光度数并且校正光学像差。例如,在图2中,示出反射表面M1~M3,其作为与目镜和物镜光学部件分开的通用反射镜。在图3中,两个反射镜(M2和M3)为作为S2和S5并入到自由形状目镜和物镜棱镜中的自由形状表面。在图4中,4个反射自由形状表面被并入到自由形状物镜棱镜中,并且2个被并入到自由形状目镜棱镜中。在图5中,除屋脊棱镜外,1个自由形状表面在物镜棱镜中,2个自由形状表面在目镜中。在图6中,3个自由形状表面在物镜中,并且2个自由形状表面在目镜中。在图7中,除反射镜790和分束器780之外,2个反射自由形状反射镜在物镜中,2个自由形状反射镜在目镜中。
本发明确保通过系统看到的透视视图被正确地直立(未反转或者颠倒)。在实施例中利用两种不同的光学方法用于将这点实现,取决于在透视路径中形成的中间图像的数目和在透视路径中涉及的反射的数目。在奇数数目的中间图像的情况下,提供光学方法以反转和/或颠倒在透视路径中的透视视图。例如,依赖于透视路径中的反射的数目,可能的方法的实例包括但不限制于,插入附加的一个反射或者多个反射、利用屋脊反射镜表面或者插入直立透镜(erector lens)。在偶数数目的中间图像的情况下如果不需要宇称改变,就不需要图像直立元件。例如,利用多-反射自由形状棱镜结构(典型的多于2)作为目镜或者物镜光学部件或者两者,这允许在物镜和/或目镜棱镜内部多次折叠透视光学路径,并且在棱镜内部形成中间图像以直立透视视图,这消除使用直立屋脊反射表面的必要性。
在图3中,仅在透视路径中产生1个中间图像。此结构利用屋脊棱镜用于325,以适宜地产生直立的透视视图。
在图4中,利用4-反射自由形状棱镜作为物镜光学部件,其产生2个中间图像(一个用于SLM440,并且一个是在棱镜内部的460)。附加地,在透视路径中涉及总共8个反射,这导致不存在宇称改变。因此,产生直立的视图。值得一提,物镜和目镜的结构可互变用于相同结果。
在图5中,在用于SLM的透视路径中产生中间图像。此涉及利用屋脊棱镜527以直立透视视图。
在图6中,利用3-反射自由形状棱镜作为物镜光学部件,其产生2个中间图像(一个用于SLM640,并且一个是在棱镜内部的660)。附加地,在透视路径中涉及总共6个反射,这导致不存在宇称改变。因此,产生直立的视图。值得一提的是,对于相同结果,物镜和目镜的结构可互换。
在图7中,物镜光学部件720仅利用2个反射,分束器780和反射镜790的组合促进在透视路径中的2个中间图像的产生(一个用于SLM740,和附加的一个760)。附加地,在透视路径中总共涉及8个反射。因此,产生直立的透视视图。
对于头戴显示器来说,维持外部场景的宇称是非常重要的,这向用户提供如同他们不用HMD而有的通常视图那样的真实的体验。
尽管这里已经示出并且描述了本发明的优选实施例,对于本领域技术人员将显而易见的是,可以在不超过所附权利要求的范围下,做出对本发明的优选实施例的修改。在权利要求中引用的标号仅为示例性的并且用于方便专利局评述,在任何方面并非为限制性的。在一些实施例中,在本申请中表示的图是按比例来绘制的,包括角度、尺寸比率等等。在一些实施例中,图仅为表示性的,并且权利要求不受图的尺寸的限制。
在下列权利要求中的参考标号仅仅用于方便本申请的审查,并且为示例性的,并在任何方面非旨在将权利要求的范围限制到具有在附图中相应参考标号的具体特征。
Claims (2)
1.一种紧凑光学透视头戴显示器系统,被配置为组合透视路径和虚拟视图路径,以便透视视图的不透明度能够被调制以及虚拟视图遮挡所述透视视图的部分,所述系统包括:
a.微显示器,用于在所述虚拟视图路径上生成要被用户观察的虚拟图像;
b.空间光调制器,用于修改来自外部场景的光,以挡住所述透视视图的要被遮挡的部分;
c.物镜光学部件,被配置为接收在所述透视路径上接收并折叠来自所述外部场景的所述光,并将来自所述外部场景的所述光作为中间图像聚焦到在所述物镜光学部件的背焦平面距离处的所述空间光调制器上,其中所述物镜光学部件为包括三个光学自由形状表面的单-反射自由形状棱镜,该三个光学自由形状表面为:折射表面S4、反射表面S5和折射表面S6;
d.分束器,被配置为合并虚拟图像和遮挡的透视图像,在所述透视视图的那些遮挡的部分中产生来自所述微显示器的所述虚拟图像的组合的图像;
e.目镜光学部件,被配置为放大所述组合的图像,其中所述目镜光学部件为包括三个光学自由形状表面的单-反射自由形状棱镜,该三个光学自由形状表面为:折射表面S1、反射表面S2和折射表面S3;
f.出瞳,被配置为面对所述目镜光学部件,其中所述用户通过所述出瞳观察所述组合的图像;
g.反射镜,被配置为将来自所述外部场景的光反射到所述物镜光学部件中,其中,所述反射镜被设置在所述显示器系统的前层上,其中,所述物镜光学部件被设置在所述显示器系统的所述前层上,其中所述空间光调制器被设置在所述显示器系统的背层上,其中所述微显示器被设置在所述显示器系统的所述背层上,其中所述微显示器和所述空间光调制器通过所述分束器彼此光学共轭,其中所述分束器被设置,以便所述透视路径与所述虚拟视图路径合并,并且来自合并的路径的光被导引到所述目镜光学部件,其中,所述目镜光学部件被设置在所述显示器系统的所述背层上,
其中来自所述外部场景的被所述反射镜反射的所述光通过所述折射表面S4进入所述物镜光学部件,然后被所述反射表面S5反射,并且通过所述折射表面S6离开所述物镜光学部件,并且在所述物镜光学部件的焦平面处且在所述空间光调制器上形成中间图像,其中所述空间光调制器调制在所述透视路径中的光以遮挡所述透视视图的部分,其中所述空间光调制器将所述调制的光反射到所述分束器中,其中来自所述微显示器的光进入所述分束器,其中所述分束器合并在所述透视路径中的所述调制的光和在所述虚拟视图路径中的光,并且折向所述目镜光学部件以用于观察,其中来自所述分束器的光通过所述折射表面S3进入所述目镜光学部件,然后被所述反射表面S2反射,并且通过所述折射表面S1离开所述目镜,并且到达所述出瞳,其中所述用户的眼睛被对准以看到虚拟图像和调制的透视图像的组合的图像。
2.一种用于根据权利要求1所述的紧凑光学透视头戴显示器系统的显示方法,包括:
通过所述物镜光学部件接收来自所述外部场景的被所述反射镜反射的外部光;
通过所述反射镜、所述物镜光学部件的所述折射表面S4、所述反射表面S5和所折射表面S6、以及所述目镜光学部件的所述折射表面S1、所述反射表面S2和所述折射表面S3折叠来自所述外部场景的所述外部光以产生透视路径;
将作为中间图像的所述外部光聚焦在所述空间光调制器上;
在所述空间光调制器上调制从所述外部场景接收的所述外部光以挡住所述透视视图的要被遮挡的部分,由此产生所述外部场景的调制的透视图像;
将所述外部场景的所述调制的透视图像传输到所述分束器;
通过所述微显示器渲染虚拟图像;
将渲染的图像传输到所述虚拟视图路径上的所述分束器;
通过所述分束器组合所述渲染的图像与所述调制的透视图像;以及
通过所述目镜光学部件折叠组合的渲染的图像和调制的透视图像,所述目镜光学部件被配置为放大所述组合的渲染的图像和调制的透视图像。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261620581P | 2012-04-05 | 2012-04-05 | |
US201261620574P | 2012-04-05 | 2012-04-05 | |
US61/620,574 | 2012-04-05 | ||
US61/620,581 | 2012-04-05 | ||
CN201380029550.XA CN104937475B (zh) | 2012-04-05 | 2013-04-05 | 具有相互遮挡和不透明度控制能力的用于光学透视头戴显示器的设备 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380029550.XA Division CN104937475B (zh) | 2012-04-05 | 2013-04-05 | 具有相互遮挡和不透明度控制能力的用于光学透视头戴显示器的设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107843988A CN107843988A (zh) | 2018-03-27 |
CN107843988B true CN107843988B (zh) | 2021-02-02 |
Family
ID=49301051
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810181619.5A Active CN108391033B (zh) | 2012-04-05 | 2013-04-04 | 具有主动中央凹能力的宽视场(fov)成像设备 |
CN201380029492.0A Active CN104541201B (zh) | 2012-04-05 | 2013-04-04 | 具有主动中央凹能力的宽视场(fov)成像设备 |
CN201380029550.XA Active CN104937475B (zh) | 2012-04-05 | 2013-04-05 | 具有相互遮挡和不透明度控制能力的用于光学透视头戴显示器的设备 |
CN201711317230.0A Active CN107843988B (zh) | 2012-04-05 | 2013-04-05 | 具有相互遮挡和不透明度控制能力的用于光学透视头戴显示器的设备 |
CN201711317271.XA Active CN107976818B (zh) | 2012-04-05 | 2013-04-05 | 具有相互遮挡和不透明度控制能力的用于光学透视头戴显示器的设备 |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810181619.5A Active CN108391033B (zh) | 2012-04-05 | 2013-04-04 | 具有主动中央凹能力的宽视场(fov)成像设备 |
CN201380029492.0A Active CN104541201B (zh) | 2012-04-05 | 2013-04-04 | 具有主动中央凹能力的宽视场(fov)成像设备 |
CN201380029550.XA Active CN104937475B (zh) | 2012-04-05 | 2013-04-05 | 具有相互遮挡和不透明度控制能力的用于光学透视头戴显示器的设备 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711317271.XA Active CN107976818B (zh) | 2012-04-05 | 2013-04-05 | 具有相互遮挡和不透明度控制能力的用于光学透视头戴显示器的设备 |
Country Status (12)
Country | Link |
---|---|
US (13) | US9851563B2 (zh) |
EP (5) | EP2841991B1 (zh) |
JP (9) | JP6176747B2 (zh) |
KR (11) | KR102022719B1 (zh) |
CN (5) | CN108391033B (zh) |
AU (4) | AU2013243380B2 (zh) |
BR (2) | BR112014024941A2 (zh) |
CA (4) | CA3111134A1 (zh) |
IL (6) | IL308962A (zh) |
NZ (6) | NZ700887A (zh) |
RU (2) | RU2015156050A (zh) |
WO (2) | WO2013152205A1 (zh) |
Families Citing this family (488)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0522968D0 (en) | 2005-11-11 | 2005-12-21 | Popovich Milan M | Holographic illumination device |
GB0718706D0 (en) | 2007-09-25 | 2007-11-07 | Creative Physics Ltd | Method and apparatus for reducing laser speckle |
US9158116B1 (en) | 2014-04-25 | 2015-10-13 | Osterhout Group, Inc. | Temple and ear horn assembly for headworn computer |
US20150277120A1 (en) | 2014-01-21 | 2015-10-01 | Osterhout Group, Inc. | Optical configurations for head worn computing |
US9952664B2 (en) | 2014-01-21 | 2018-04-24 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9965681B2 (en) | 2008-12-16 | 2018-05-08 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US20150205111A1 (en) | 2014-01-21 | 2015-07-23 | Osterhout Group, Inc. | Optical configurations for head worn computing |
US9400390B2 (en) | 2014-01-24 | 2016-07-26 | Osterhout Group, Inc. | Peripheral lighting for head worn computing |
US9366867B2 (en) | 2014-07-08 | 2016-06-14 | Osterhout Group, Inc. | Optical systems for see-through displays |
US9298007B2 (en) | 2014-01-21 | 2016-03-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9715112B2 (en) | 2014-01-21 | 2017-07-25 | Osterhout Group, Inc. | Suppression of stray light in head worn computing |
US9229233B2 (en) | 2014-02-11 | 2016-01-05 | Osterhout Group, Inc. | Micro Doppler presentations in head worn computing |
US9335604B2 (en) | 2013-12-11 | 2016-05-10 | Milan Momcilo Popovich | Holographic waveguide display |
US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
WO2012136970A1 (en) | 2011-04-07 | 2012-10-11 | Milan Momcilo Popovich | Laser despeckler based on angular diversity |
US10670876B2 (en) | 2011-08-24 | 2020-06-02 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
WO2016020630A2 (en) | 2014-08-08 | 2016-02-11 | Milan Momcilo Popovich | Waveguide laser illuminator incorporating a despeckler |
WO2013027004A1 (en) | 2011-08-24 | 2013-02-28 | Milan Momcilo Popovich | Wearable data display |
WO2013102759A2 (en) | 2012-01-06 | 2013-07-11 | Milan Momcilo Popovich | Contact image sensor using switchable bragg gratings |
EP2841991B1 (en) * | 2012-04-05 | 2020-01-08 | Magic Leap, Inc. | Wide-field of view (fov) imaging devices with active foveation capability |
CN106125308B (zh) | 2012-04-25 | 2019-10-25 | 罗克韦尔柯林斯公司 | 用于显示图像的装置和方法 |
WO2013167864A1 (en) | 2012-05-11 | 2013-11-14 | Milan Momcilo Popovich | Apparatus for eye tracking |
US9933684B2 (en) * | 2012-11-16 | 2018-04-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
US9858721B2 (en) | 2013-01-15 | 2018-01-02 | The University Of North Carolina At Chapel Hill | Methods, systems, and computer readable media for generating an augmented scene display |
WO2014188149A1 (en) | 2013-05-20 | 2014-11-27 | Milan Momcilo Popovich | Holographic waveguide eye tracker |
US9625723B2 (en) * | 2013-06-25 | 2017-04-18 | Microsoft Technology Licensing, Llc | Eye-tracking system using a freeform prism |
US10228561B2 (en) * | 2013-06-25 | 2019-03-12 | Microsoft Technology Licensing, Llc | Eye-tracking system using a freeform prism and gaze-detection light |
US9727772B2 (en) | 2013-07-31 | 2017-08-08 | Digilens, Inc. | Method and apparatus for contact image sensing |
WO2015095737A2 (en) | 2013-12-19 | 2015-06-25 | The University Of North Carolina At Chapel Hill | Optical see-through near-eye display using point light source backlight |
US10649220B2 (en) | 2014-06-09 | 2020-05-12 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US10684687B2 (en) | 2014-12-03 | 2020-06-16 | Mentor Acquisition One, Llc | See-through computer display systems |
US20160019715A1 (en) | 2014-07-15 | 2016-01-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US11103122B2 (en) | 2014-07-15 | 2021-08-31 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US20150228119A1 (en) | 2014-02-11 | 2015-08-13 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US20150277118A1 (en) | 2014-03-28 | 2015-10-01 | Osterhout Group, Inc. | Sensor dependent content position in head worn computing |
US10191279B2 (en) | 2014-03-17 | 2019-01-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US11227294B2 (en) | 2014-04-03 | 2022-01-18 | Mentor Acquisition One, Llc | Sight information collection in head worn computing |
US9448409B2 (en) | 2014-11-26 | 2016-09-20 | Osterhout Group, Inc. | See-through computer display systems |
US9939934B2 (en) | 2014-01-17 | 2018-04-10 | Osterhout Group, Inc. | External user interface for head worn computing |
US9575321B2 (en) | 2014-06-09 | 2017-02-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US9594246B2 (en) | 2014-01-21 | 2017-03-14 | Osterhout Group, Inc. | See-through computer display systems |
US9829707B2 (en) | 2014-08-12 | 2017-11-28 | Osterhout Group, Inc. | Measuring content brightness in head worn computing |
US9671613B2 (en) | 2014-09-26 | 2017-06-06 | Osterhout Group, Inc. | See-through computer display systems |
US9746686B2 (en) | 2014-05-19 | 2017-08-29 | Osterhout Group, Inc. | Content position calibration in head worn computing |
US9366868B2 (en) | 2014-09-26 | 2016-06-14 | Osterhout Group, Inc. | See-through computer display systems |
US9299194B2 (en) | 2014-02-14 | 2016-03-29 | Osterhout Group, Inc. | Secure sharing in head worn computing |
US10254856B2 (en) | 2014-01-17 | 2019-04-09 | Osterhout Group, Inc. | External user interface for head worn computing |
US9841599B2 (en) | 2014-06-05 | 2017-12-12 | Osterhout Group, Inc. | Optical configurations for head-worn see-through displays |
US9529195B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | See-through computer display systems |
US9810906B2 (en) | 2014-06-17 | 2017-11-07 | Osterhout Group, Inc. | External user interface for head worn computing |
US12093453B2 (en) | 2014-01-21 | 2024-09-17 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US9753288B2 (en) | 2014-01-21 | 2017-09-05 | Osterhout Group, Inc. | See-through computer display systems |
US11892644B2 (en) | 2014-01-21 | 2024-02-06 | Mentor Acquisition One, Llc | See-through computer display systems |
US11487110B2 (en) | 2014-01-21 | 2022-11-01 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US12105281B2 (en) | 2014-01-21 | 2024-10-01 | Mentor Acquisition One, Llc | See-through computer display systems |
US9811159B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9651784B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US9615742B2 (en) | 2014-01-21 | 2017-04-11 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9310610B2 (en) | 2014-01-21 | 2016-04-12 | Osterhout Group, Inc. | See-through computer display systems |
US9836122B2 (en) | 2014-01-21 | 2017-12-05 | Osterhout Group, Inc. | Eye glint imaging in see-through computer display systems |
US9766463B2 (en) | 2014-01-21 | 2017-09-19 | Osterhout Group, Inc. | See-through computer display systems |
US11669163B2 (en) | 2014-01-21 | 2023-06-06 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US9494800B2 (en) | 2014-01-21 | 2016-11-15 | Osterhout Group, Inc. | See-through computer display systems |
US9811153B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9746676B2 (en) | 2014-01-21 | 2017-08-29 | Osterhout Group, Inc. | See-through computer display systems |
US20150205135A1 (en) | 2014-01-21 | 2015-07-23 | Osterhout Group, Inc. | See-through computer display systems |
US11737666B2 (en) | 2014-01-21 | 2023-08-29 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US9846308B2 (en) | 2014-01-24 | 2017-12-19 | Osterhout Group, Inc. | Haptic systems for head-worn computers |
US12112089B2 (en) | 2014-02-11 | 2024-10-08 | Mentor Acquisition One, Llc | Spatial location presentation in head worn computing |
US9852545B2 (en) | 2014-02-11 | 2017-12-26 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9401540B2 (en) | 2014-02-11 | 2016-07-26 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US10430985B2 (en) | 2014-03-14 | 2019-10-01 | Magic Leap, Inc. | Augmented reality systems and methods utilizing reflections |
CN103901615B (zh) * | 2014-03-14 | 2016-05-25 | 北京理工大学 | 小凹成像光学系统 |
US11138793B2 (en) | 2014-03-14 | 2021-10-05 | Magic Leap, Inc. | Multi-depth plane display system with reduced switching between depth planes |
US20160187651A1 (en) | 2014-03-28 | 2016-06-30 | Osterhout Group, Inc. | Safety for a vehicle operator with an hmd |
US10529359B2 (en) | 2014-04-17 | 2020-01-07 | Microsoft Technology Licensing, Llc | Conversation detection |
US9922667B2 (en) | 2014-04-17 | 2018-03-20 | Microsoft Technology Licensing, Llc | Conversation, presence and context detection for hologram suppression |
US9672210B2 (en) | 2014-04-25 | 2017-06-06 | Osterhout Group, Inc. | Language translation with head-worn computing |
US10853589B2 (en) | 2014-04-25 | 2020-12-01 | Mentor Acquisition One, Llc | Language translation with head-worn computing |
US9651787B2 (en) | 2014-04-25 | 2017-05-16 | Osterhout Group, Inc. | Speaker assembly for headworn computer |
US9423842B2 (en) | 2014-09-18 | 2016-08-23 | Osterhout Group, Inc. | Thermal management for head-worn computer |
US20150309534A1 (en) | 2014-04-25 | 2015-10-29 | Osterhout Group, Inc. | Ear horn assembly for headworn computer |
US20160137312A1 (en) | 2014-05-06 | 2016-05-19 | Osterhout Group, Inc. | Unmanned aerial vehicle launch system |
CN104007559B (zh) * | 2014-05-08 | 2017-05-17 | 北京理工大学 | 含局部超分辨扫描的小凹成像系统 |
CN104102018B (zh) * | 2014-05-08 | 2016-10-05 | 北京理工大学 | 双小凹局部高分辨率成像系统 |
US10663740B2 (en) | 2014-06-09 | 2020-05-26 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US10359736B2 (en) | 2014-08-08 | 2019-07-23 | Digilens Inc. | Method for holographic mastering and replication |
WO2016042283A1 (en) | 2014-09-19 | 2016-03-24 | Milan Momcilo Popovich | Method and apparatus for generating input images for holographic waveguide displays |
WO2016046514A1 (en) | 2014-09-26 | 2016-03-31 | LOKOVIC, Kimberly, Sun | Holographic waveguide opticaltracker |
WO2016054079A1 (en) | 2014-09-29 | 2016-04-07 | Zyomed Corp. | Systems and methods for blood glucose and other analyte detection and measurement using collision computing |
NZ730509A (en) | 2014-09-29 | 2018-08-31 | Magic Leap Inc | Architectures and methods for outputting different wavelength light out of waveguides |
US9684172B2 (en) | 2014-12-03 | 2017-06-20 | Osterhout Group, Inc. | Head worn computer display systems |
USD743963S1 (en) | 2014-12-22 | 2015-11-24 | Osterhout Group, Inc. | Air mouse |
USD751552S1 (en) | 2014-12-31 | 2016-03-15 | Osterhout Group, Inc. | Computer glasses |
USD753114S1 (en) | 2015-01-05 | 2016-04-05 | Osterhout Group, Inc. | Air mouse |
KR102329295B1 (ko) | 2015-01-09 | 2021-11-19 | 삼성디스플레이 주식회사 | 헤드 마운티드 디스플레이 장치 |
EP3245551B1 (en) | 2015-01-12 | 2019-09-18 | DigiLens Inc. | Waveguide light field displays |
EP3245444B1 (en) | 2015-01-12 | 2021-09-08 | DigiLens Inc. | Environmentally isolated waveguide display |
US10105049B2 (en) | 2015-01-16 | 2018-10-23 | Massachusetts Institute Of Technology | Methods and apparatus for anterior segment ocular imaging |
CN107533137A (zh) | 2015-01-20 | 2018-01-02 | 迪吉伦斯公司 | 全息波导激光雷达 |
US9632226B2 (en) | 2015-02-12 | 2017-04-25 | Digilens Inc. | Waveguide grating device |
CN105988763B (zh) * | 2015-02-15 | 2019-10-29 | 联想(北京)有限公司 | 一种信息处理方法及装置 |
US10878775B2 (en) | 2015-02-17 | 2020-12-29 | Mentor Acquisition One, Llc | See-through computer display systems |
US20160239985A1 (en) | 2015-02-17 | 2016-08-18 | Osterhout Group, Inc. | See-through computer display systems |
NZ773844A (en) | 2015-03-16 | 2022-07-01 | Magic Leap Inc | Methods and systems for diagnosing and treating health ailments |
US10459145B2 (en) | 2015-03-16 | 2019-10-29 | Digilens Inc. | Waveguide device incorporating a light pipe |
GB2536650A (en) | 2015-03-24 | 2016-09-28 | Augmedics Ltd | Method and system for combining video-based and optic-based augmented reality in a near eye display |
JP2016180955A (ja) * | 2015-03-25 | 2016-10-13 | 株式会社ソニー・インタラクティブエンタテインメント | ヘッドマウントディスプレイ、表示制御方法及び位置制御方法 |
CN106154640B (zh) * | 2015-03-31 | 2020-02-21 | 联想(北京)有限公司 | 显示组件和电子设备 |
US10591756B2 (en) | 2015-03-31 | 2020-03-17 | Digilens Inc. | Method and apparatus for contact image sensing |
US10274728B2 (en) * | 2015-05-18 | 2019-04-30 | Facebook Technologies, Llc | Stacked display panels for image enhancement |
KR102359038B1 (ko) | 2015-06-15 | 2022-02-04 | 매직 립, 인코포레이티드 | 멀티플렉싱된 광 스트림들을 인-커플링하기 위한 광학 엘리먼트들을 가진 디스플레이 시스템 |
US9977493B2 (en) | 2015-06-17 | 2018-05-22 | Microsoft Technology Licensing, Llc | Hybrid display system |
US10222619B2 (en) | 2015-07-12 | 2019-03-05 | Steven Sounyoung Yu | Head-worn image display apparatus for stereoscopic microsurgery |
US10139966B2 (en) | 2015-07-22 | 2018-11-27 | Osterhout Group, Inc. | External user interface for head worn computing |
NZ739860A (en) | 2015-08-18 | 2019-10-25 | Magic Leap Inc | Virtual and augmented reality systems and methods |
KR20230150397A (ko) | 2015-08-21 | 2023-10-30 | 매직 립, 인코포레이티드 | 눈 포즈 측정을 사용한 눈꺼풀 형상 추정 |
EP3337383B1 (en) | 2015-08-21 | 2024-10-16 | Magic Leap, Inc. | Eyelid shape estimation |
WO2017039720A1 (en) | 2015-09-03 | 2017-03-09 | 3M Innovative Properties Company | Beam expander with a curved reflective polarizer |
KR102389807B1 (ko) | 2015-09-16 | 2022-04-21 | 매직 립, 인코포레이티드 | 오디오 파일들의 헤드 포즈 혼합 |
JP6876683B2 (ja) | 2015-09-23 | 2021-05-26 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 軸外イメージャを用いた眼の撮像 |
US10936881B2 (en) | 2015-09-23 | 2021-03-02 | Datalogic Usa, Inc. | Imaging systems and methods for tracking objects |
US10690916B2 (en) | 2015-10-05 | 2020-06-23 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
JP6885935B2 (ja) | 2015-10-16 | 2021-06-16 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 眼の特徴を用いる眼ポーズ識別 |
CN113220116A (zh) | 2015-10-20 | 2021-08-06 | 奇跃公司 | 改变可穿戴设备用户输入模式的系统和方法及可穿戴系统 |
AU2016349891B9 (en) | 2015-11-04 | 2021-05-06 | Magic Leap, Inc. | Dynamic display calibration based on eye-tracking |
US11231544B2 (en) | 2015-11-06 | 2022-01-25 | Magic Leap, Inc. | Metasurfaces for redirecting light and methods for fabricating |
CN105404005A (zh) * | 2015-12-10 | 2016-03-16 | 合肥虔视光电科技有限公司 | 用于增强现实的头戴显示器 |
US10466480B2 (en) | 2016-01-07 | 2019-11-05 | Magic Leap, Inc. | Virtual and augmented reality systems and methods having unequal numbers of component color images distributed across depth planes |
US10831264B2 (en) | 2016-01-19 | 2020-11-10 | Magic Leap, Inc. | Eye image combination |
EP3405830B1 (en) | 2016-01-19 | 2024-10-16 | Magic Leap, Inc. | Augmented reality systems and methods utilizing reflections |
WO2017127494A1 (en) | 2016-01-22 | 2017-07-27 | Corning Incorporated | Wide field personal display |
CN108885352B (zh) | 2016-01-29 | 2021-11-23 | 奇跃公司 | 三维图像的显示 |
US10459230B2 (en) | 2016-02-02 | 2019-10-29 | Disney Enterprises, Inc. | Compact augmented reality / virtual reality display |
CN109073889B (zh) | 2016-02-04 | 2021-04-27 | 迪吉伦斯公司 | 全息波导光学跟踪器 |
US10850116B2 (en) | 2016-12-30 | 2020-12-01 | Mentor Acquisition One, Llc | Head-worn therapy device |
US10591728B2 (en) | 2016-03-02 | 2020-03-17 | Mentor Acquisition One, Llc | Optical systems for head-worn computers |
NZ745246A (en) | 2016-02-24 | 2020-01-31 | Magic Leap Inc | Polarizing beam splitter with low light leakage |
CN114898675A (zh) | 2016-02-24 | 2022-08-12 | 奇跃公司 | 用于光发射器的低轮廓互连 |
CN109073821B (zh) | 2016-02-26 | 2021-11-02 | 奇跃公司 | 具有用于多个光发射器的多个光管的显示系统 |
IL304423B1 (en) | 2016-02-26 | 2024-08-01 | Magic Leap Inc | Light output system with reflector and lenses for high spatially uniform light output |
US10667981B2 (en) | 2016-02-29 | 2020-06-02 | Mentor Acquisition One, Llc | Reading assistance system for visually impaired |
US10739593B2 (en) | 2016-02-29 | 2020-08-11 | Magic Leap, Inc. | Virtual and augmented reality systems and methods |
AU2017227598B2 (en) | 2016-03-01 | 2022-03-17 | Magic Leap, Inc. | Reflective switching device for inputting different wavelengths of light into waveguides |
US9880441B1 (en) | 2016-09-08 | 2018-01-30 | Osterhout Group, Inc. | Electrochromic systems for head-worn computer systems |
US9826299B1 (en) | 2016-08-22 | 2017-11-21 | Osterhout Group, Inc. | Speaker systems for head-worn computer systems |
NZ756561A (en) | 2016-03-04 | 2023-04-28 | Magic Leap Inc | Current drain reduction in ar/vr display systems |
KR102358677B1 (ko) | 2016-03-07 | 2022-02-03 | 매직 립, 인코포레이티드 | 생체 인증 보안을 위한 청색 광 조정 |
KR102530558B1 (ko) * | 2016-03-16 | 2023-05-09 | 삼성전자주식회사 | 투시형 디스플레이 장치 |
EP3779740B1 (en) | 2016-03-22 | 2021-12-08 | Magic Leap, Inc. | Head mounted display system configured to exchange biometric information |
CN105744132B (zh) * | 2016-03-23 | 2020-01-03 | 捷开通讯(深圳)有限公司 | 全景图像拍摄的光学镜头配件 |
WO2017162999A1 (en) | 2016-03-24 | 2017-09-28 | Popovich Milan Momcilo | Method and apparatus for providing a polarization selective holographic waveguide device |
IL261769B2 (en) | 2016-03-25 | 2024-08-01 | Magic Leap Inc | Virtual and augmented reality systems and methods |
US9554738B1 (en) | 2016-03-30 | 2017-01-31 | Zyomed Corp. | Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing |
US10539763B2 (en) * | 2016-03-31 | 2020-01-21 | Sony Corporation | Optical system, electronic device, camera, method and computer program |
CN109196447B (zh) | 2016-03-31 | 2022-06-17 | 奇跃公司 | 使用姿势和多dof控制器与3d虚拟对象的交互 |
US10824253B2 (en) | 2016-05-09 | 2020-11-03 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US9910284B1 (en) | 2016-09-08 | 2018-03-06 | Osterhout Group, Inc. | Optical systems for head-worn computers |
US10466491B2 (en) | 2016-06-01 | 2019-11-05 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
KR20220040511A (ko) | 2016-04-08 | 2022-03-30 | 매직 립, 인코포레이티드 | 가변 포커스 렌즈 엘리먼트들을 가진 증강 현실 시스템들 및 방법들 |
US10684478B2 (en) | 2016-05-09 | 2020-06-16 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
EP3433658B1 (en) | 2016-04-11 | 2023-08-09 | DigiLens, Inc. | Holographic waveguide apparatus for structured light projection |
US10001648B2 (en) | 2016-04-14 | 2018-06-19 | Disney Enterprises, Inc. | Occlusion-capable augmented reality display using cloaking optics |
US9726896B2 (en) | 2016-04-21 | 2017-08-08 | Maximilian Ralph Peter von und zu Liechtenstein | Virtual monitor display technique for augmented reality environments |
IL311131A (en) | 2016-04-21 | 2024-04-01 | Magic Leap Inc | A visual aura around the field of vision |
AU2017257549B2 (en) | 2016-04-26 | 2021-09-09 | Magic Leap, Inc. | Electromagnetic tracking with augmented reality systems |
KR20210032022A (ko) | 2016-05-06 | 2021-03-23 | 매직 립, 인코포레이티드 | 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들 |
CN109414164B (zh) | 2016-05-09 | 2022-06-14 | 奇跃公司 | 用于用户健康分析的增强现实系统和方法 |
US9922464B2 (en) * | 2016-05-10 | 2018-03-20 | Disney Enterprises, Inc. | Occluded virtual image display |
EP4235237A1 (en) | 2016-05-12 | 2023-08-30 | Magic Leap, Inc. | Distributed light manipulation over imaging waveguide |
IL290933B2 (en) | 2016-05-20 | 2023-10-01 | Magic Leap Inc | Contextual awareness of user interface menus |
US10430988B2 (en) | 2016-06-03 | 2019-10-01 | Facebook Technologies, Llc | Facial animation using facial sensors within a head-mounted display |
US9959678B2 (en) * | 2016-06-03 | 2018-05-01 | Oculus Vr, Llc | Face and eye tracking using facial sensors within a head-mounted display |
IL299710A (en) | 2016-06-03 | 2023-03-01 | Magic Leap Inc | Identity verification in augmented reality |
EP3469251B1 (en) | 2016-06-10 | 2021-07-07 | Magic Leap, Inc. | Integrating point source for texture projecting bulb |
KR102491130B1 (ko) | 2016-06-20 | 2023-01-19 | 매직 립, 인코포레이티드 | 시각적 프로세싱 및 지각 상태들을 포함하는 신경학적 상태들의 평가 및 수정을 위한 증강 현실 디스플레이 시스템 |
CA3029541A1 (en) | 2016-06-30 | 2018-01-04 | Magic Leap, Inc. | Estimating pose in 3d space |
US9996984B2 (en) | 2016-07-05 | 2018-06-12 | Disney Enterprises, Inc. | Focus control for virtual objects in augmented reality (AR) and virtual reality (VR) displays |
EP3484343B1 (en) | 2016-07-14 | 2024-01-10 | Magic Leap, Inc. | Iris boundary estimation using cornea curvature |
KR102648770B1 (ko) | 2016-07-14 | 2024-03-15 | 매직 립, 인코포레이티드 | 홍채 식별을 위한 딥 뉴럴 네트워크 |
KR102520143B1 (ko) | 2016-07-25 | 2023-04-11 | 매직 립, 인코포레이티드 | 광 필드 프로세서 시스템 |
EP4345831A3 (en) | 2016-07-25 | 2024-04-24 | Magic Leap, Inc. | Imaging modification, display and visualization using augmented and virtual reality eyewear |
KR102557341B1 (ko) | 2016-07-29 | 2023-07-18 | 매직 립, 인코포레이티드 | 암호화방식으로 싸인된 레코드들의 안전한 교환 |
KR102195352B1 (ko) | 2016-08-11 | 2020-12-24 | 매직 립, 인코포레이티드 | 3-차원 공간에서의 가상 객체의 자동적인 배치 |
IL292025B2 (en) | 2016-08-12 | 2023-12-01 | Magic Leap Inc | Parosh is a flurry of words |
IL247360B (en) * | 2016-08-18 | 2021-09-30 | Veeride Ltd | A device and method for augmented reality |
WO2018039273A1 (en) | 2016-08-22 | 2018-03-01 | Magic Leap, Inc. | Dithering methods and apparatus for wearable display device |
US10402649B2 (en) | 2016-08-22 | 2019-09-03 | Magic Leap, Inc. | Augmented reality display device with deep learning sensors |
US10108013B2 (en) | 2016-08-22 | 2018-10-23 | Microsoft Technology Licensing, Llc | Indirect-view augmented reality display system |
US10690936B2 (en) | 2016-08-29 | 2020-06-23 | Mentor Acquisition One, Llc | Adjustable nose bridge assembly for headworn computer |
IL312096A (en) | 2016-09-13 | 2024-06-01 | Magic Leap Inc | Sensory glasses |
CN112987303A (zh) | 2016-09-21 | 2021-06-18 | 奇跃公司 | 用于具有出瞳扩展器的光学系统的系统和方法 |
US10330935B2 (en) | 2016-09-22 | 2019-06-25 | Apple Inc. | Predictive, foveated virtual reality system |
WO2018057962A1 (en) | 2016-09-22 | 2018-03-29 | Magic Leap, Inc. | Augmented reality spectroscopy |
IL265498B1 (en) | 2016-09-26 | 2024-08-01 | Magic Leap Inc | Calibration of magnetic and optical sensors in a virtual reality or augmented reality display system |
WO2018064169A1 (en) | 2016-09-28 | 2018-04-05 | Magic Leap, Inc. | Face model capture by a wearable device |
RU2016138608A (ru) | 2016-09-29 | 2018-03-30 | Мэджик Лип, Инк. | Нейронная сеть для сегментации изображения глаза и оценки качества изображения |
US20180096494A1 (en) * | 2016-09-30 | 2018-04-05 | Visbit Inc. | View-optimized light field image and video streaming |
US10489680B2 (en) | 2016-10-04 | 2019-11-26 | Magic Leap, Inc. | Efficient data layouts for convolutional neural networks |
KR102269065B1 (ko) | 2016-10-05 | 2021-06-24 | 매직 립, 인코포레이티드 | 혼합 현실 교정을 위한 안구주위 테스트 |
USD840395S1 (en) | 2016-10-17 | 2019-02-12 | Osterhout Group, Inc. | Head-worn computer |
EP4333428A3 (en) | 2016-10-21 | 2024-05-22 | Magic Leap, Inc. | System and method for presenting image content on multiple depth planes by providing multiple intra-pupil parallax views |
IL296031A (en) | 2016-11-11 | 2022-10-01 | Magic Leap Inc | Peripheral assembly and audio of a full facial image |
CN115097937A (zh) | 2016-11-15 | 2022-09-23 | 奇跃公司 | 用于长方体检测的深度学习系统 |
AU2017361096B2 (en) | 2016-11-16 | 2022-09-01 | Magic Leap, Inc. | Thermal management systems for wearable components |
JP7019695B2 (ja) | 2016-11-18 | 2022-02-15 | マジック リープ, インコーポレイテッド | 広入射角範囲の光を再指向するための多層液晶回折格子 |
IL310194A (en) | 2016-11-18 | 2024-03-01 | Magic Leap Inc | Liquid crystal refraction lattices vary spatially |
EP3542213A4 (en) | 2016-11-18 | 2020-10-07 | Magic Leap, Inc. | WAVE GUIDE LIGHT MULTIPLEXER USING CROSSED GRIDS |
US11067860B2 (en) | 2016-11-18 | 2021-07-20 | Magic Leap, Inc. | Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same |
WO2018102834A2 (en) | 2016-12-02 | 2018-06-07 | Digilens, Inc. | Waveguide device with uniform output illumination |
KR20230070318A (ko) | 2016-12-05 | 2023-05-22 | 매직 립, 인코포레이티드 | 혼합 현실 환경의 가상 사용자 입력 콘트롤들 |
US10531220B2 (en) | 2016-12-05 | 2020-01-07 | Magic Leap, Inc. | Distributed audio capturing techniques for virtual reality (VR), augmented reality (AR), and mixed reality (MR) systems |
KR102656425B1 (ko) * | 2016-12-07 | 2024-04-12 | 삼성전자주식회사 | 영상을 표시하는 전자 장치 및 방법 |
EP4002000A1 (en) | 2016-12-08 | 2022-05-25 | Magic Leap, Inc. | Diffractive devices based on cholesteric liquid crystal |
US10664049B2 (en) | 2016-12-09 | 2020-05-26 | Nvidia Corporation | Systems and methods for gaze tracking |
US10922887B2 (en) | 2016-12-13 | 2021-02-16 | Magic Leap, Inc. | 3D object rendering using detected features |
AU2017377915B2 (en) | 2016-12-13 | 2022-12-15 | Magic Leap. Inc. | Augmented and virtual reality eyewear, systems, and methods for delivering polarized light and determining glucose levels |
CA3046328A1 (en) | 2016-12-14 | 2018-06-21 | Magic Leap, Inc. | Patterning of liquid crystals using soft-imprint replication of surface alignment patterns |
US10088686B2 (en) | 2016-12-16 | 2018-10-02 | Microsoft Technology Licensing, Llc | MEMS laser scanner having enlarged FOV |
US10371896B2 (en) | 2016-12-22 | 2019-08-06 | Magic Leap, Inc. | Color separation in planar waveguides using dichroic filters |
US11036049B2 (en) | 2016-12-22 | 2021-06-15 | Magic Leap, Inc. | Systems and methods for manipulating light from ambient light sources |
US10746999B2 (en) | 2016-12-28 | 2020-08-18 | Magic Leap, Inc. | Dual depth exit pupil expander |
CN106773054A (zh) * | 2016-12-29 | 2017-05-31 | 北京乐动卓越科技有限公司 | 一种实现增强现实互动的装置及方法 |
CA3051060A1 (en) | 2016-12-29 | 2018-07-05 | Magic Leap, Inc. | Automatic control of wearable display device based on external conditions |
WO2018125712A1 (en) * | 2016-12-30 | 2018-07-05 | Datalogic Usa, Inc. | Self-checkout with three dimensional scanning |
USD864959S1 (en) | 2017-01-04 | 2019-10-29 | Mentor Acquisition One, Llc | Computer glasses |
US10545346B2 (en) | 2017-01-05 | 2020-01-28 | Digilens Inc. | Wearable heads up displays |
WO2018129151A1 (en) | 2017-01-05 | 2018-07-12 | Magic Leap, Inc. | Patterning of high refractive index glasses by plasma etching |
KR20240059645A (ko) | 2017-01-11 | 2024-05-07 | 매직 립, 인코포레이티드 | 의료 보조기 |
US10451799B2 (en) | 2017-01-23 | 2019-10-22 | Magic Leap, Inc. | Eyepiece for virtual, augmented, or mixed reality systems |
WO2018140651A1 (en) | 2017-01-27 | 2018-08-02 | Magic Leap, Inc. | Diffraction gratings formed by metasurfaces having differently oriented nanobeams |
US11681153B2 (en) | 2017-01-27 | 2023-06-20 | Magic Leap, Inc. | Antireflection coatings for metasurfaces |
US10298840B2 (en) | 2017-01-31 | 2019-05-21 | Microsoft Technology Licensing, Llc | Foveated camera for video augmented reality and head mounted display |
US11187909B2 (en) | 2017-01-31 | 2021-11-30 | Microsoft Technology Licensing, Llc | Text rendering by microshifting the display in a head mounted display |
US10354140B2 (en) | 2017-01-31 | 2019-07-16 | Microsoft Technology Licensing, Llc | Video noise reduction for video augmented reality system |
US10504397B2 (en) | 2017-01-31 | 2019-12-10 | Microsoft Technology Licensing, Llc | Curved narrowband illuminant display for head mounted display |
US9983412B1 (en) | 2017-02-02 | 2018-05-29 | The University Of North Carolina At Chapel Hill | Wide field of view augmented reality see through head mountable display with distance accommodation |
US11287292B2 (en) | 2017-02-13 | 2022-03-29 | Lockheed Martin Corporation | Sensor system |
US11347054B2 (en) | 2017-02-16 | 2022-05-31 | Magic Leap, Inc. | Systems and methods for augmented reality |
IL268427B2 (en) | 2017-02-23 | 2024-03-01 | Magic Leap Inc | Variable focus virtual imagers based on polarization conversion |
KR102578084B1 (ko) | 2017-03-14 | 2023-09-12 | 매직 립, 인코포레이티드 | 광 흡수막들을 갖는 도파관들 및 이를 형성하기 위한 프로세스들 |
KR102302725B1 (ko) | 2017-03-17 | 2021-09-14 | 매직 립, 인코포레이티드 | 룸 레이아웃 추정 방법들 및 기술들 |
KR102493992B1 (ko) | 2017-03-21 | 2023-01-30 | 매직 립, 인코포레이티드 | 가상, 증강 및 혼합 현실 시스템들을 위한 깊이 감지 기술 |
EP3602177B1 (en) | 2017-03-21 | 2023-08-02 | Magic Leap, Inc. | Methods, devices, and systems for illuminating spatial light modulators |
KR102576133B1 (ko) | 2017-03-21 | 2023-09-07 | 매직 립, 인코포레이티드 | 회절 광학 엘리먼트들을 이용한 눈-이미징 장치 |
WO2018175488A1 (en) | 2017-03-21 | 2018-09-27 | Magic Leap, Inc. | Stacked waveguides having different diffraction gratings for combined field of view |
KR20240069826A (ko) | 2017-03-21 | 2024-05-20 | 매직 립, 인코포레이티드 | 저-프로파일 빔 스플리터 |
US11079603B2 (en) | 2017-03-21 | 2021-08-03 | Magic Leap, Inc. | Display system with spatial light modulator illumination for divided pupils |
WO2018175625A1 (en) | 2017-03-22 | 2018-09-27 | Magic Leap, Inc. | Depth based foveated rendering for display systems |
US10891488B2 (en) | 2017-03-30 | 2021-01-12 | Hrl Laboratories, Llc | System and method for neuromorphic visual activity classification based on foveated detection and contextual filtering |
US10417975B2 (en) | 2017-04-03 | 2019-09-17 | Microsoft Technology Licensing, Llc | Wide field of view scanning display |
US10921593B2 (en) | 2017-04-06 | 2021-02-16 | Disney Enterprises, Inc. | Compact perspectively correct occlusion capable augmented reality displays |
US10499021B2 (en) | 2017-04-11 | 2019-12-03 | Microsoft Technology Licensing, Llc | Foveated MEMS scanning display |
US10436968B2 (en) | 2017-04-18 | 2019-10-08 | Magic Leap, Inc. | Waveguides having reflective layers formed by reflective flowable materials |
JP7149289B2 (ja) | 2017-04-19 | 2022-10-06 | マジック リープ, インコーポレイテッド | ウェアラブルシステムのためのマルチモード実行およびテキスト編集 |
US11112932B2 (en) | 2017-04-27 | 2021-09-07 | Magic Leap, Inc. | Light-emitting user input device |
JP2020521217A (ja) | 2017-05-19 | 2020-07-16 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 仮想現実ディスプレイシステム、拡張現実ディスプレイシステム、および複合現実ディスプレイシステムのためのキーボード |
CN110678891B (zh) | 2017-05-22 | 2023-11-14 | 奇跃公司 | 与同伴设备配对 |
KR20240069815A (ko) | 2017-05-30 | 2024-05-20 | 매직 립, 인코포레이티드 | 전자 디바이스를 위한 팬 조립체를 갖는 전력 공급기 조립체 |
EP3631567B1 (en) | 2017-05-31 | 2022-09-21 | Magic Leap, Inc. | Eye tracking calibration techniques |
IL300301B2 (en) | 2017-06-12 | 2024-08-01 | Magic Leap Inc | Augmented reality display with multi-component adaptive lenses to change plane depths |
US10810773B2 (en) * | 2017-06-14 | 2020-10-20 | Dell Products, L.P. | Headset display control based upon a user's pupil state |
CN107065196B (zh) | 2017-06-16 | 2019-03-15 | 京东方科技集团股份有限公司 | 一种增强现实显示装置及增强现实显示方法 |
KR102314789B1 (ko) | 2017-06-29 | 2021-10-20 | 에스케이텔레콤 주식회사 | 증강현실용 디스플레이 장치 |
US10338400B2 (en) | 2017-07-03 | 2019-07-02 | Holovisions LLC | Augmented reality eyewear with VAPE or wear technology |
US10859834B2 (en) | 2017-07-03 | 2020-12-08 | Holovisions | Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear |
US10908680B1 (en) | 2017-07-12 | 2021-02-02 | Magic Leap, Inc. | Pose estimation using electromagnetic tracking |
CN107167921B (zh) * | 2017-07-18 | 2020-01-21 | 京东方科技集团股份有限公司 | 显示器 |
US10578869B2 (en) | 2017-07-24 | 2020-03-03 | Mentor Acquisition One, Llc | See-through computer display systems with adjustable zoom cameras |
US11409105B2 (en) | 2017-07-24 | 2022-08-09 | Mentor Acquisition One, Llc | See-through computer display systems |
US10422995B2 (en) | 2017-07-24 | 2019-09-24 | Mentor Acquisition One, Llc | See-through computer display systems with stray light management |
US10922583B2 (en) | 2017-07-26 | 2021-02-16 | Magic Leap, Inc. | Training a neural network with representations of user interface devices |
IL271963B (en) | 2017-07-28 | 2022-08-01 | Magic Leap Inc | Fan assembly for image display |
US10969584B2 (en) | 2017-08-04 | 2021-04-06 | Mentor Acquisition One, Llc | Image expansion optic for head-worn computer |
US10976551B2 (en) | 2017-08-30 | 2021-04-13 | Corning Incorporated | Wide field personal display device |
US10521661B2 (en) | 2017-09-01 | 2019-12-31 | Magic Leap, Inc. | Detailed eye shape model for robust biometric applications |
EP3685313A4 (en) | 2017-09-20 | 2021-06-09 | Magic Leap, Inc. | PERSONALIZED NEURAL EYE TRACKING NETWORK |
JP7280250B2 (ja) | 2017-09-21 | 2023-05-23 | マジック リープ, インコーポレイテッド | 眼および/または環境の画像を捕捉するように構成される導波管を伴う拡張現実ディスプレイ |
KR102650507B1 (ko) | 2017-09-27 | 2024-03-21 | 매직 립, 인코포레이티드 | 별개의 위상 및 진폭 변조기들을 갖는 근안 3d 디스플레이 |
US10867368B1 (en) | 2017-09-29 | 2020-12-15 | Apple Inc. | Foveated image capture for power efficient video see-through |
EP3695270A4 (en) | 2017-10-11 | 2021-06-23 | Magic Leap, Inc. | AUGMENTED REALITY HEADSET INCLUDING A TRANSPARENT EMISSIVE DISPLAY EYEPIECE |
CN111386495B (zh) | 2017-10-16 | 2022-12-09 | 迪吉伦斯公司 | 用于倍增像素化显示器的图像分辨率的系统和方法 |
US11537895B2 (en) | 2017-10-26 | 2022-12-27 | Magic Leap, Inc. | Gradient normalization systems and methods for adaptive loss balancing in deep multitask networks |
AU2018354330A1 (en) | 2017-10-26 | 2020-05-14 | Magic Leap, Inc. | Augmented reality display having liquid crystal variable focus element and roll-to-roll method and apparatus for forming the same |
IL308526A (en) | 2017-10-26 | 2024-01-01 | Magic Leap Inc | Broadband adjustable lens assembly for augmented reality display |
AU2018355441B2 (en) | 2017-10-27 | 2023-11-09 | Magic Leap, Inc. | Virtual reticle for augmented reality systems |
WO2019099305A1 (en) | 2017-11-14 | 2019-05-23 | Magic Leap, Inc. | Meta-learning for multi-task learning for neural networks |
KR102717573B1 (ko) | 2017-12-11 | 2024-10-14 | 매직 립, 인코포레이티드 | 도파관 조명기 |
IL311263A (en) | 2017-12-14 | 2024-05-01 | Magic Leap Inc | Context-based processing of virtual characters |
IL274976B2 (en) | 2017-12-15 | 2024-05-01 | Magic Leap Inc | Improved positioning for a display device |
IL274977B2 (en) | 2017-12-15 | 2023-10-01 | Magic Leap Inc | Eyepieces for an augmented reality display system |
CN108072978A (zh) * | 2017-12-21 | 2018-05-25 | 成都理想境界科技有限公司 | 一种增强现实头戴显示设备 |
CN108267856A (zh) * | 2017-12-21 | 2018-07-10 | 成都理想境界科技有限公司 | 一种增强现实头戴显示设备 |
TWI647485B (zh) * | 2018-01-03 | 2019-01-11 | 國立交通大學 | Head-mounted virtual object imaging device |
US11656466B2 (en) * | 2018-01-03 | 2023-05-23 | Sajjad A. Khan | Spatio-temporal multiplexed single panel based mutual occlusion capable head mounted display system and method |
CA3085459A1 (en) | 2018-01-04 | 2019-07-11 | Magic Leap, Inc. | Optical elements based on polymeric structures incorporating inorganic materials |
EP3710876A4 (en) | 2018-01-08 | 2022-02-09 | DigiLens Inc. | SYSTEMS AND PROCESSES FOR THE MANUFACTURE OF WAVEGUIDE CELLS |
US10914950B2 (en) | 2018-01-08 | 2021-02-09 | Digilens Inc. | Waveguide architectures and related methods of manufacturing |
WO2019135796A1 (en) | 2018-01-08 | 2019-07-11 | Digilens, Inc. | Systems and methods for high-throughput recording of holographic gratings in waveguide cells |
KR20200110367A (ko) | 2018-01-17 | 2020-09-23 | 매직 립, 인코포레이티드 | 디스플레이 시스템들에서의 눈 회전 중심 결정, 깊이 평면 선택, 및 렌더 카메라 포지셔닝 |
US10917634B2 (en) | 2018-01-17 | 2021-02-09 | Magic Leap, Inc. | Display systems and methods for determining registration between a display and a user's eyes |
CN111869205B (zh) | 2018-01-19 | 2022-06-10 | Pcms控股公司 | 具有变化位置的多焦平面 |
EP3746938A4 (en) * | 2018-01-30 | 2021-10-06 | HRL Laboratories, LLC | SYSTEM AND METHOD FOR CLASSIFYING A NEUROMORPHIC VISUAL ACTIVITY BASED ON FOVEA DETECTION AND CONTEXT FILTERING |
US11567627B2 (en) | 2018-01-30 | 2023-01-31 | Magic Leap, Inc. | Eclipse cursor for virtual content in mixed reality displays |
US10540941B2 (en) | 2018-01-30 | 2020-01-21 | Magic Leap, Inc. | Eclipse cursor for mixed reality displays |
US20190250407A1 (en) * | 2018-02-15 | 2019-08-15 | Microsoft Technology Licensing, Llc | See-through relay for a virtual reality and a mixed environment display device |
US10735649B2 (en) | 2018-02-22 | 2020-08-04 | Magic Leap, Inc. | Virtual and augmented reality systems and methods using display system control information embedded in image data |
CN111771231A (zh) | 2018-02-27 | 2020-10-13 | 奇跃公司 | 用于虚拟化身的匹配网格 |
EP3759542B1 (en) | 2018-02-28 | 2023-03-29 | Magic Leap, Inc. | Head scan alignment using ocular registration |
JP7081473B2 (ja) * | 2018-03-02 | 2022-06-07 | 株式会社リコー | 撮像光学系、撮像システム及び撮像装置 |
US11467398B2 (en) | 2018-03-05 | 2022-10-11 | Magic Leap, Inc. | Display system with low-latency pupil tracker |
EP4212222A1 (en) | 2018-03-07 | 2023-07-19 | Magic Leap, Inc. | Visual tracking of peripheral devices |
US11656462B2 (en) | 2018-03-07 | 2023-05-23 | Magic Leap, Inc. | Adaptive lens assemblies including polarization-selective lens stacks for augmented reality display |
US11828942B2 (en) | 2018-03-12 | 2023-11-28 | Magic Leap, Inc. | Tilting array based display |
EP3765890A4 (en) | 2018-03-14 | 2022-01-12 | Magic Leap, Inc. | DISPLAY SYSTEMS AND CONTENT CROPPING METHODS TO INCREASE VIEWING COMFORT |
US11430169B2 (en) | 2018-03-15 | 2022-08-30 | Magic Leap, Inc. | Animating virtual avatar facial movements |
WO2019177869A1 (en) | 2018-03-16 | 2019-09-19 | Magic Leap, Inc. | Facial expressions from eye-tracking cameras |
JP7381482B2 (ja) | 2018-03-16 | 2023-11-15 | マジック リープ, インコーポレイテッド | ディスプレイシステムのための深度ベースの中心窩化レンダリング |
WO2019178614A1 (en) | 2018-03-16 | 2019-09-19 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
WO2019183399A1 (en) | 2018-03-21 | 2019-09-26 | Magic Leap, Inc. | Augmented reality system and method for spectroscopic analysis |
JP2021518701A (ja) | 2018-03-23 | 2021-08-02 | ピーシーエムエス ホールディングス インコーポレイテッド | Dibrシステムにおいて立体的視点を生じさせるための、多焦点面ベースの方法(mfp−dibr) |
EP3776029A4 (en) | 2018-04-02 | 2022-06-29 | Magic Leap, Inc. | Hybrid polymer waveguide and methods for making the same |
CN112119334A (zh) | 2018-04-02 | 2020-12-22 | 奇跃公司 | 具有集成光学元件的波导及其制造方法 |
WO2019195193A1 (en) | 2018-04-02 | 2019-10-10 | Magic Leap, Inc. | Waveguides having integrated spacers, waveguides having edge absorbers, and methods for making the same |
US11276219B2 (en) | 2018-04-16 | 2022-03-15 | Magic Leap, Inc. | Systems and methods for cross-application authoring, transfer, and evaluation of rigging control systems for virtual characters |
US11067805B2 (en) | 2018-04-19 | 2021-07-20 | Magic Leap, Inc. | Systems and methods for operating a display system based on user perceptibility |
WO2019209431A1 (en) | 2018-04-23 | 2019-10-31 | Magic Leap, Inc. | Avatar facial expression representation in multidimensional space |
WO2019212698A1 (en) | 2018-05-01 | 2019-11-07 | Magic Leap, Inc. | Avatar animation using markov decision process policies |
EP3787543A4 (en) | 2018-05-02 | 2022-01-19 | Augmedics Ltd. | REGISTRATION OF A REFERENCE MARK FOR AN AUGMENTED REALITY SYSTEM |
US11308673B2 (en) | 2018-05-03 | 2022-04-19 | Magic Leap, Inc. | Using three-dimensional scans of a physical subject to determine positions and/or orientations of skeletal joints in the rigging for a virtual character |
JP7328993B2 (ja) | 2018-05-17 | 2023-08-17 | マジック リープ, インコーポレイテッド | ニューラルネットワークの勾配型敵対的訓練 |
WO2019226494A1 (en) | 2018-05-21 | 2019-11-28 | Magic Leap, Inc. | Generating textured polygon strip hair from strand-based hair for a virtual character |
EP3797345A4 (en) | 2018-05-22 | 2022-03-09 | Magic Leap, Inc. | TRANSMODAL INPUT FUSION FOR A BODY WEARABLE SYSTEM |
WO2019226549A1 (en) | 2018-05-22 | 2019-11-28 | Magic Leap, Inc. | Computer generated hair groom transfer tool |
CN112437950A (zh) | 2018-05-22 | 2021-03-02 | 奇跃公司 | 用于对虚拟头像制作动画的骨架系统 |
WO2019226865A1 (en) | 2018-05-25 | 2019-11-28 | Magic Leap, Inc. | Compression of dynamic unstructured point clouds |
US12087022B2 (en) | 2018-06-01 | 2024-09-10 | Magic Leap, Inc. | Compression of dynamic unstructured point clouds |
WO2019236344A1 (en) | 2018-06-07 | 2019-12-12 | Magic Leap, Inc. | Augmented reality scrollbar |
WO2019241573A1 (en) | 2018-06-15 | 2019-12-19 | Magic Leap, Inc. | Wide field-of-view polarization switches and methods of fabricating liquid crystal optical elements with pretilt |
WO2019241575A1 (en) | 2018-06-15 | 2019-12-19 | Magic Leap, Inc. | Wide field-of-view polarization switches with liquid crystal optical elements with pretilt |
WO2019246129A2 (en) | 2018-06-18 | 2019-12-26 | Magic Leap, Inc. | Augmented reality display with frame modulation functionality |
US11624909B2 (en) | 2018-06-18 | 2023-04-11 | Magic Leap, Inc. | Head-mounted display systems with power saving functionality |
WO2019246058A1 (en) | 2018-06-18 | 2019-12-26 | Magic Leap, Inc. | Systems and methods for temporarily disabling user control interfaces during attachment of an electronic device |
CN112513969B (zh) * | 2018-06-18 | 2024-08-30 | 奇跃公司 | 集中式渲染 |
US11151793B2 (en) | 2018-06-26 | 2021-10-19 | Magic Leap, Inc. | Waypoint creation in map detection |
US11669726B2 (en) | 2018-07-02 | 2023-06-06 | Magic Leap, Inc. | Methods and systems for interpolation of disparate inputs |
EP4440104A3 (en) | 2018-07-05 | 2024-10-23 | InterDigital VC Holdings, Inc. | Method and system for near-eye focal plane overlays for 3d perception of content on 2d displays |
US11106033B2 (en) | 2018-07-05 | 2021-08-31 | Magic Leap, Inc. | Waveguide-based illumination for head mounted display system |
WO2020018938A1 (en) | 2018-07-19 | 2020-01-23 | Magic Leap, Inc. | Content interaction driven by eye metrics |
US11627587B2 (en) | 2018-07-23 | 2023-04-11 | Magic Leap, Inc. | Coexistence interference avoidance between two different radios operating in the same band |
JP7562504B2 (ja) | 2018-07-23 | 2024-10-07 | マジック リープ, インコーポレイテッド | 頭部姿勢予測のための深層予測器再帰ニューラルネットワーク |
USD918176S1 (en) | 2018-07-24 | 2021-05-04 | Magic Leap, Inc. | Totem controller having an illumination region |
USD930614S1 (en) | 2018-07-24 | 2021-09-14 | Magic Leap, Inc. | Totem controller having an illumination region |
EP3827294A4 (en) | 2018-07-24 | 2022-04-20 | Magic Leap, Inc. | BOUNCE-INDUCED LIGHT LOSS ATTENUATION DIFFRACTIVE OPTICS AND RELATED SYSTEMS AND METHODS |
US12099386B2 (en) | 2018-07-24 | 2024-09-24 | Magic Leap, Inc. | Thermal management system for electronic device |
WO2020023672A1 (en) | 2018-07-24 | 2020-01-30 | Magic Leap, Inc. | Display systems and methods for determining vertical alignment between left and right displays and a user's eyes |
US11567336B2 (en) | 2018-07-24 | 2023-01-31 | Magic Leap, Inc. | Display systems and methods for determining registration between display and eyes of user |
WO2020023404A1 (en) | 2018-07-24 | 2020-01-30 | Magic Leap, Inc. | Flicker mitigation when toggling eyepiece display illumination in augmented reality systems |
USD924204S1 (en) | 2018-07-24 | 2021-07-06 | Magic Leap, Inc. | Totem controller having an illumination region |
WO2020023779A1 (en) | 2018-07-25 | 2020-01-30 | Digilens Inc. | Systems and methods for fabricating a multilayer optical structure |
CN112753007A (zh) | 2018-07-27 | 2021-05-04 | 奇跃公司 | 虚拟角色的姿势空间变形的姿势空间维度减小 |
WO2020028867A1 (en) | 2018-08-03 | 2020-02-06 | Magic Leap, Inc. | Depth plane selection for multi-depth plane display systems by user categorization |
US11002971B1 (en) * | 2018-08-24 | 2021-05-11 | Apple Inc. | Display device with mechanically adjustable optical combiner |
US11103763B2 (en) | 2018-09-11 | 2021-08-31 | Real Shot Inc. | Basketball shooting game using smart glasses |
US11141645B2 (en) | 2018-09-11 | 2021-10-12 | Real Shot Inc. | Athletic ball game using smart glasses |
USD934872S1 (en) | 2018-09-18 | 2021-11-02 | Magic Leap, Inc. | Mobile computing support system having an illumination region |
USD950567S1 (en) | 2018-09-18 | 2022-05-03 | Magic Leap, Inc. | Mobile computing support system having an illumination region |
USD934873S1 (en) | 2018-09-18 | 2021-11-02 | Magic Leap, Inc. | Mobile computing support system having an illumination region |
USD955396S1 (en) | 2018-09-18 | 2022-06-21 | Magic Leap, Inc. | Mobile computing support system having an illumination region |
WO2020068594A1 (en) | 2018-09-25 | 2020-04-02 | Apple Inc. | Camera lens system |
WO2020069026A1 (en) | 2018-09-26 | 2020-04-02 | Magic Leap, Inc. | Diffractive optical elements with optical power |
US10861240B1 (en) * | 2018-09-26 | 2020-12-08 | Facebook Technologies, Llc | Virtual pupil camera in head mounted display |
EP3857289A4 (en) | 2018-09-26 | 2022-07-13 | Magic Leap, Inc. | GLASSES WITH PIN-HOLE AND SLOT CAMERAS |
CN113227879A (zh) | 2018-10-26 | 2021-08-06 | 奇跃公司 | 用于电磁跟踪的环境电磁失真校正 |
EP3881232A4 (en) | 2018-11-15 | 2022-08-10 | Magic Leap, Inc. | DEEP NEURON NETWORK POSE ESTIMATION SYSTEM |
JP2022509083A (ja) | 2018-11-20 | 2022-01-20 | マジック リープ, インコーポレイテッド | 拡張現実ディスプレイシステムのための接眼レンズ |
US11766296B2 (en) | 2018-11-26 | 2023-09-26 | Augmedics Ltd. | Tracking system for image-guided surgery |
US10939977B2 (en) | 2018-11-26 | 2021-03-09 | Augmedics Ltd. | Positioning marker |
EP3887925A4 (en) | 2018-11-30 | 2022-08-17 | Magic Leap, Inc. | MULTIMODAL HANDHELD LOCATION AND ORIENTATION TO AVATAR MOVEMENT |
EP3903135B1 (en) | 2018-12-28 | 2024-10-23 | Magic Leap, Inc. | Virtual and augmented reality display systems with emissive micro-displays |
JP7539386B2 (ja) | 2018-12-28 | 2024-08-23 | マジック リープ, インコーポレイテッド | 左眼および右眼のための共有ディスプレイを伴う拡張および仮想現実ディスプレイシステム |
EP3914997A4 (en) | 2019-01-25 | 2022-10-12 | Magic Leap, Inc. | OCULOMETRY USING IMAGES WITH DIFFERENT EXPOSURE TIMES |
JP7268372B2 (ja) * | 2019-01-31 | 2023-05-08 | 株式会社リコー | 撮像装置 |
JP2022523076A (ja) | 2019-02-01 | 2022-04-21 | マジック リープ, インコーポレイテッド | 直列内部結合光学要素 |
JP2022520472A (ja) | 2019-02-15 | 2022-03-30 | ディジレンズ インコーポレイテッド | 統合された格子を使用してホログラフィック導波管ディスプレイを提供するための方法および装置 |
JP7518844B2 (ja) | 2019-02-28 | 2024-07-18 | マジック リープ, インコーポレイテッド | 光エミッタアレイによって形成される複数の瞳孔内視差ビューを使用して可変遠近調節キューを提供するためのディスプレイシステムおよび方法 |
EP3938818B1 (en) | 2019-03-12 | 2024-10-09 | Magic Leap, Inc. | Method of fabricating display device having patterned lithium-based transition metal oxide |
WO2020186113A1 (en) | 2019-03-12 | 2020-09-17 | Digilens Inc. | Holographic waveguide backlight and related methods of manufacturing |
EP3938824A4 (en) | 2019-03-12 | 2022-11-23 | Magic Leap, Inc. | WAVEGUIDES WITH HIGH REFRESHING INDEX MATERIALS AND METHOD FOR THEIR MANUFACTURE |
US11435584B2 (en) * | 2019-03-13 | 2022-09-06 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Large field of view see through head mounted display having magnified curved intermediate image |
WO2020191170A1 (en) | 2019-03-20 | 2020-09-24 | Magic Leap, Inc. | System for providing illumination of the eye |
EP3942227A4 (en) | 2019-03-20 | 2022-12-07 | Magic Leap, Inc. | LIGHT COLLECTING SYSTEM |
US10554940B1 (en) | 2019-03-29 | 2020-02-04 | Razmik Ghazaryan | Method and apparatus for a variable-resolution screen |
US10466489B1 (en) | 2019-03-29 | 2019-11-05 | Razmik Ghazaryan | Methods and apparatus for a variable-resolution screen |
US11284053B2 (en) | 2019-03-29 | 2022-03-22 | Razmik Ghazaryan | Head-mounted display and projection screen |
US11016305B2 (en) | 2019-04-15 | 2021-05-25 | Magic Leap, Inc. | Sensor fusion for electromagnetic tracking |
US11800205B2 (en) * | 2019-04-18 | 2023-10-24 | University Of Florida Research Foundation, Incorporated | Fast foveation camera and controlling algorithms |
WO2020224371A1 (zh) | 2019-05-05 | 2020-11-12 | 华为技术有限公司 | 一种摄像模组、终端设备、成像方法及成像装置 |
CN110913096A (zh) * | 2019-05-05 | 2020-03-24 | 华为技术有限公司 | 一种摄像模组及电子设备 |
EP3973347A4 (en) | 2019-05-20 | 2023-05-31 | Magic Leap, Inc. | EYE POSITION ESTIMATION SYSTEMS AND TECHNIQUES |
TWI707193B (zh) * | 2019-05-22 | 2020-10-11 | 財團法人國家實驗研究院 | 遙測衛星的聚焦面組合件及其影像處理方法 |
WO2020243014A1 (en) | 2019-05-24 | 2020-12-03 | Magic Leap, Inc. | Variable focus assemblies |
EP3976726A4 (en) | 2019-05-28 | 2023-06-28 | Magic Leap, Inc. | Thermal management system for portable electronic devices |
USD962981S1 (en) | 2019-05-29 | 2022-09-06 | Magic Leap, Inc. | Display screen or portion thereof with animated scrollbar graphical user interface |
US20200386947A1 (en) | 2019-06-07 | 2020-12-10 | Digilens Inc. | Waveguides Incorporating Transmissive and Reflective Gratings and Related Methods of Manufacturing |
CN114286962A (zh) | 2019-06-20 | 2022-04-05 | 奇跃公司 | 用于增强现实显示系统的目镜 |
CN114270312A (zh) | 2019-06-21 | 2022-04-01 | 奇跃公司 | 经由模态窗口的安全授权 |
WO2020263866A1 (en) | 2019-06-24 | 2020-12-30 | Magic Leap, Inc. | Waveguides having integral spacers and related systems and methods |
US11029805B2 (en) | 2019-07-10 | 2021-06-08 | Magic Leap, Inc. | Real-time preview of connectable objects in a physically-modeled virtual space |
CN114424147A (zh) | 2019-07-16 | 2022-04-29 | 奇跃公司 | 利用一个或多个眼睛跟踪相机确定眼睛旋转中心 |
JP2022540691A (ja) | 2019-07-19 | 2022-09-16 | マジック リープ, インコーポレイテッド | 回折格子を加工する方法 |
CN114502991A (zh) | 2019-07-19 | 2022-05-13 | 奇跃公司 | 具有偏振敏感性降低的衍射光栅的显示设备 |
US11740458B2 (en) | 2019-07-26 | 2023-08-29 | Microsoft Technology Licensing, Llc | Projection device and projection method for head mounted display based on rotary MEMS fast scanner |
CN114341729A (zh) | 2019-07-29 | 2022-04-12 | 迪吉伦斯公司 | 用于使像素化显示器的图像分辨率和视场倍增的方法和设备 |
US11980506B2 (en) | 2019-07-29 | 2024-05-14 | Augmedics Ltd. | Fiducial marker |
WO2021021942A1 (en) | 2019-07-31 | 2021-02-04 | Magic Leap, Inc. | User data management for augmented reality using a distributed ledger |
US20220276125A1 (en) * | 2019-08-07 | 2022-09-01 | Agilent Technologies, Inc. | Optical imaging performance test system and method |
WO2021041949A1 (en) | 2019-08-29 | 2021-03-04 | Digilens Inc. | Evacuating bragg gratings and methods of manufacturing |
US11614573B2 (en) | 2019-09-11 | 2023-03-28 | Magic Leap, Inc. | Display device with diffraction grating having reduced polarization sensitivity |
CN114600035A (zh) * | 2019-09-13 | 2022-06-07 | 代表亚利桑那大学的亚利桑那校董事会 | 瞳孔匹配的具有遮挡能力的光学透视头戴式显示器 |
US11610290B2 (en) | 2019-09-24 | 2023-03-21 | Rockwell Collins, Inc. | Point source detection |
US11933949B2 (en) * | 2019-09-27 | 2024-03-19 | Apple Inc. | Freeform folded optical system |
US11176757B2 (en) | 2019-10-02 | 2021-11-16 | Magic Leap, Inc. | Mission driven virtual character for user interaction |
US11276246B2 (en) | 2019-10-02 | 2022-03-15 | Magic Leap, Inc. | Color space mapping for intuitive surface normal visualization |
WO2021070970A1 (ja) * | 2019-10-12 | 2021-04-15 | 国立大学法人奈良先端科学技術大学院大学 | シースルー型ディスプレイ装置 |
CN114641713A (zh) | 2019-11-08 | 2022-06-17 | 奇跃公司 | 具有包括多种材料的光重定向结构的超表面以及制造方法 |
USD982593S1 (en) | 2019-11-08 | 2023-04-04 | Magic Leap, Inc. | Portion of a display screen with animated ray |
US11493989B2 (en) | 2019-11-08 | 2022-11-08 | Magic Leap, Inc. | Modes of user interaction |
JP2023503257A (ja) | 2019-11-18 | 2023-01-27 | マジック リープ, インコーポレイテッド | パス可能世界のマッピングおよび位置特定 |
KR102244445B1 (ko) * | 2019-11-22 | 2021-04-26 | 인하대학교 산학협력단 | 단일 디지털 마이크로미러 장치를 이용한 오클루전 가능 증강현실용 근안 디스플레이 장치 및 방법 |
US12094139B2 (en) | 2019-11-22 | 2024-09-17 | Magic Leap, Inc. | Systems and methods for enhanced depth determination using projection spots |
WO2021102165A1 (en) | 2019-11-22 | 2021-05-27 | Magic Leap, Inc. | Method and system for patterning a liquid crystal layer |
CN114761859A (zh) | 2019-11-26 | 2022-07-15 | 奇跃公司 | 用于增强或虚拟现实显示系统的增强眼睛跟踪 |
EP4070150A4 (en) | 2019-12-06 | 2023-12-06 | Magic Leap, Inc. | DYNAMIC BROWSER STAGE |
CN114788251A (zh) | 2019-12-06 | 2022-07-22 | 奇跃公司 | 在静态图像中编码立体闪屏 |
USD940189S1 (en) | 2019-12-09 | 2022-01-04 | Magic Leap, Inc. | Portion of a display screen with transitional graphical user interface for guiding graphics |
USD941307S1 (en) | 2019-12-09 | 2022-01-18 | Magic Leap, Inc. | Portion of a display screen with graphical user interface for guiding graphics |
USD941353S1 (en) | 2019-12-09 | 2022-01-18 | Magic Leap, Inc. | Portion of a display screen with transitional graphical user interface for guiding graphics |
USD940749S1 (en) | 2019-12-09 | 2022-01-11 | Magic Leap, Inc. | Portion of a display screen with transitional graphical user interface for guiding graphics |
USD940748S1 (en) | 2019-12-09 | 2022-01-11 | Magic Leap, Inc. | Portion of a display screen with transitional graphical user interface for guiding graphics |
USD952673S1 (en) | 2019-12-09 | 2022-05-24 | Magic Leap, Inc. | Portion of a display screen with transitional graphical user interface for guiding graphics |
US11288876B2 (en) | 2019-12-13 | 2022-03-29 | Magic Leap, Inc. | Enhanced techniques for volumetric stage mapping based on calibration object |
US11382712B2 (en) | 2019-12-22 | 2022-07-12 | Augmedics Ltd. | Mirroring in image guided surgery |
CN111077679A (zh) * | 2020-01-23 | 2020-04-28 | 福州贝园网络科技有限公司 | 一种智能眼镜显示器及其成像方法 |
US11294461B2 (en) | 2020-01-24 | 2022-04-05 | Magic Leap, Inc. | Content movement and interaction using a single controller |
US11340695B2 (en) | 2020-01-24 | 2022-05-24 | Magic Leap, Inc. | Converting a 2D positional input into a 3D point in space |
USD948574S1 (en) | 2020-01-27 | 2022-04-12 | Magic Leap, Inc. | Portion of a display screen with a set of avatars |
USD949200S1 (en) | 2020-01-27 | 2022-04-19 | Magic Leap, Inc. | Portion of a display screen with a set of avatars |
US11574424B2 (en) | 2020-01-27 | 2023-02-07 | Magic Leap, Inc. | Augmented reality map curation |
JP2023511311A (ja) | 2020-01-27 | 2023-03-17 | マジック リープ, インコーポレイテッド | ユーザ入力デバイスの機能性の注視タイマベースの拡張 |
USD936704S1 (en) | 2020-01-27 | 2021-11-23 | Magic Leap, Inc. | Portion of a display screen with avatar |
EP4097685A4 (en) | 2020-01-27 | 2024-02-21 | Magic Leap, Inc. | NEUTRAL AVATARS |
USD948562S1 (en) | 2020-01-27 | 2022-04-12 | Magic Leap, Inc. | Portion of a display screen with avatar |
CN115004235A (zh) | 2020-01-27 | 2022-09-02 | 奇跃公司 | 基于锚的交叉现实应用的增强状态控制 |
EP4097532A4 (en) | 2020-01-31 | 2024-02-21 | Magic Leap, Inc. | AUGMENTED REALITY AND VIRTUAL REALITY DISPLAY SYSTEMS FOR OCULOMETRICAL ASSESSMENTS |
EP4104034A4 (en) | 2020-02-10 | 2024-02-21 | Magic Leap, Inc. | POSITIONING BODY-CENTRIC CONTENT RELATIVE TO A THREE-DIMENSIONAL CONTAINER IN A MIXED REALITY ENVIRONMENT |
US11709363B1 (en) | 2020-02-10 | 2023-07-25 | Avegant Corp. | Waveguide illumination of a spatial light modulator |
WO2021163354A1 (en) | 2020-02-14 | 2021-08-19 | Magic Leap, Inc. | Virtual object movement speed curve for virtual and augmented reality display systems |
JP7515604B2 (ja) | 2020-02-26 | 2024-07-12 | マジック リープ, インコーポレイテッド | 手続型電子ビームリソグラフィ |
JP2023516594A (ja) | 2020-02-28 | 2023-04-20 | マジック リープ, インコーポレイテッド | 統合されたスペーサを伴う接眼レンズを形成するための金型を加工する方法 |
US11262588B2 (en) | 2020-03-10 | 2022-03-01 | Magic Leap, Inc. | Spectator view of virtual and physical objects |
JP2023518421A (ja) | 2020-03-20 | 2023-05-01 | マジック リープ, インコーポレイテッド | 網膜結像および追跡のためのシステムおよび方法 |
JP7507872B2 (ja) | 2020-03-25 | 2024-06-28 | マジック リープ, インコーポレイテッド | 一方向ミラーを伴う光学デバイス |
US11604354B2 (en) | 2020-04-03 | 2023-03-14 | Magic Leap, Inc. | Wearable display systems with nanowire LED micro-displays |
WO2021202783A1 (en) | 2020-04-03 | 2021-10-07 | Magic Leap, Inc. | Avatar customization for optimal gaze discrimination |
US11994687B2 (en) | 2020-05-13 | 2024-05-28 | President And Fellows Of Harvard College | Meta-optics for virtual reality and augmented reality systems |
EP4154050A4 (en) | 2020-05-22 | 2024-06-05 | Magic Leap, Inc. | AUGMENTED AND VIRTUAL REALITY DISPLAY SYSTEMS WITH CORRELATED OPTICAL REGIONS |
WO2021247435A1 (en) | 2020-06-05 | 2021-12-09 | Magic Leap, Inc. | Enhanced eye tracking techniques based on neural network analysis of images |
US11389252B2 (en) | 2020-06-15 | 2022-07-19 | Augmedics Ltd. | Rotating marker for image guided surgery |
CN111580280B (zh) * | 2020-06-16 | 2022-10-28 | 京东方科技集团股份有限公司 | 透视头戴显示器 |
US11998275B2 (en) | 2020-07-15 | 2024-06-04 | Magic Leap, Inc. | Eye tracking using aspheric cornea model |
WO2022032198A1 (en) | 2020-08-07 | 2022-02-10 | Magic Leap, Inc. | Tunable cylindrical lenses and head-mounted display including the same |
EP4222551A4 (en) | 2020-09-29 | 2024-10-23 | Avegant Corp | ARCHITECTURE FOR ILLUMINATION OF A SCREENBOARD |
JP2022144057A (ja) * | 2021-03-18 | 2022-10-03 | 株式会社Jvcケンウッド | 表示装置、表示方法およびプログラム |
TWI775392B (zh) * | 2021-04-20 | 2022-08-21 | 宏碁股份有限公司 | 擴增實境眼鏡 |
US11936975B2 (en) | 2021-05-12 | 2024-03-19 | Nio Technology (Anhui) Co., Ltd. | Combined computer vision and human vision camera system |
KR20240025624A (ko) * | 2021-06-25 | 2024-02-27 | 가부시키가이샤 니콘 | 촬상 장치 및 수광 장치 |
US11896445B2 (en) | 2021-07-07 | 2024-02-13 | Augmedics Ltd. | Iliac pin and adapter |
US20230059918A1 (en) * | 2021-08-17 | 2023-02-23 | Texas Instruments Incorporated | Compact near eye display engine |
US20230236420A1 (en) * | 2021-08-17 | 2023-07-27 | Texas Instruments Incorporated | Compact near eye display engine |
AU2022328715A1 (en) * | 2021-08-18 | 2024-01-18 | Advanced Neuromodulation Systems, Inc. | Systems and methods for providing digital health services |
EP4388368A1 (en) * | 2021-08-20 | 2024-06-26 | Immervision Inc. | Dual field of view optical system |
US11417069B1 (en) * | 2021-10-05 | 2022-08-16 | Awe Company Limited | Object and camera localization system and localization method for mapping of the real world |
WO2023133301A1 (en) * | 2022-01-07 | 2023-07-13 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Occlusion-capable optical viewing device and associated method |
US11662591B1 (en) * | 2022-07-01 | 2023-05-30 | Brelyon Inc. | Display systems and imaging systems with dynamically controllable optical path lengths |
CN115220238B (zh) * | 2022-07-12 | 2024-06-28 | 李宪亭 | 近视防控结构和近视防控设备 |
WO2024057210A1 (en) | 2022-09-13 | 2024-03-21 | Augmedics Ltd. | Augmented reality eyewear for image-guided medical intervention |
US11776206B1 (en) | 2022-12-23 | 2023-10-03 | Awe Company Limited | Extended reality system and extended reality method with two-way digital interactive digital twins |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4026641A (en) * | 1975-12-30 | 1977-05-31 | The United States Of America As Represented By The Secretary Of The Army | Toric reflector display |
CN1089039A (zh) * | 1991-12-17 | 1994-07-06 | 德克萨斯仪器股份有限公司 | 虚象显示装置及其显示方法 |
JPH0792426A (ja) * | 1993-09-24 | 1995-04-07 | Sony Corp | 視覚装置 |
EP0977071A1 (en) * | 1998-07-27 | 2000-02-02 | Mixed Reality Systems Laboratory Inc. | Image observing apparatus |
US6341869B1 (en) * | 1998-08-11 | 2002-01-29 | Minolta Co., Ltd. | Method and device for providing information |
WO2003001275A2 (en) * | 2001-06-21 | 2003-01-03 | Koninklijke Philips Electronics N.V. | Display device |
CN1440513A (zh) * | 2000-06-05 | 2003-09-03 | 鲁姆斯有限公司 | 基片导引的光束扩展器 |
CN1452725A (zh) * | 2000-02-11 | 2003-10-29 | Emd有限公司 | 光学分束器单元和包括这种单元的双目显示装置 |
EP1430349A1 (de) * | 2000-10-07 | 2004-06-23 | Dickerson, David | Informationssystem |
CN1894617A (zh) * | 2003-12-12 | 2007-01-10 | 海德佩公司 | 用于头戴显示器的光学装置 |
CN101029968A (zh) * | 2007-04-06 | 2007-09-05 | 北京理工大学 | 可寻址光线屏蔽机制光学透视式头盔显示器 |
CN101034206A (zh) * | 2006-03-09 | 2007-09-12 | 比亚迪股份有限公司 | 一种头盔显示器的光学成像系统 |
US7639208B1 (en) * | 2004-05-21 | 2009-12-29 | University Of Central Florida Research Foundation, Inc. | Compact optical see-through head-mounted display with occlusion support |
WO2012037290A2 (en) * | 2010-09-14 | 2012-03-22 | Osterhout Group, Inc. | Eyepiece with uniformly illuminated reflective display |
Family Cites Families (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3909121A (en) * | 1974-06-25 | 1975-09-30 | Mesquita Cardoso Edgar Antonio | Panoramic photographic methods |
JPS54128217A (en) * | 1978-03-29 | 1979-10-04 | Olympus Optical Co Ltd | Pickup device |
JPS57171314A (en) | 1981-04-15 | 1982-10-21 | Mitsubishi Electric Corp | Optical branching and coupling circuit |
CN1058577C (zh) * | 1989-07-28 | 2000-11-15 | 佳能株式会社 | 图象形成装置 |
US5136183A (en) | 1990-06-27 | 1992-08-04 | Advanced Micro Devices, Inc. | Integrated comparator circuit |
US5307203A (en) * | 1990-12-06 | 1994-04-26 | Tandem Scanning Corporation | Confocal tandem scanning reflected light microscope |
US5135183A (en) * | 1991-09-23 | 1992-08-04 | Hughes Aircraft Company | Dual-image optoelectronic imaging apparatus including birefringent prism arrangement |
US5406415A (en) | 1992-09-22 | 1995-04-11 | Kelly; Shawn L. | Imaging system for a head-mounted display |
US5386313A (en) | 1993-03-11 | 1995-01-31 | Szegedi; Nicholas J. | Reflective magneto-optic spatial light modulator assembly |
JP3320252B2 (ja) * | 1995-04-24 | 2002-09-03 | キヤノン株式会社 | 反射型の光学系及びそれを用いた撮像装置 |
US6347744B1 (en) * | 1995-10-10 | 2002-02-19 | Symbol Technologies, Inc. | Retroreflective scan module for electro-optical readers |
JPH09166759A (ja) * | 1995-12-18 | 1997-06-24 | Olympus Optical Co Ltd | 画像表示装置 |
JP3222052B2 (ja) | 1996-01-11 | 2001-10-22 | 株式会社東芝 | 光走査装置 |
JPH1068899A (ja) * | 1996-08-26 | 1998-03-10 | Asahi Optical Co Ltd | カスケード走査光学系 |
US6204974B1 (en) | 1996-10-08 | 2001-03-20 | The Microoptical Corporation | Compact image display system for eyeglasses or other head-borne frames |
JP3924348B2 (ja) * | 1996-11-05 | 2007-06-06 | オリンパス株式会社 | 画像表示装置 |
JPH10197796A (ja) * | 1996-12-27 | 1998-07-31 | Olympus Optical Co Ltd | ファインダー光学系 |
US6466185B2 (en) | 1998-04-20 | 2002-10-15 | Alan Sullivan | Multi-planar volumetric display system and method of operation using psychological vision cues |
US6377229B1 (en) * | 1998-04-20 | 2002-04-23 | Dimensional Media Associates, Inc. | Multi-planar volumetric display system and method of operation using three-dimensional anti-aliasing |
JP2000105348A (ja) * | 1998-07-27 | 2000-04-11 | Mr System Kenkyusho:Kk | 画像観察装置 |
JP2000267038A (ja) | 1999-03-12 | 2000-09-29 | Mr System Kenkyusho:Kk | 画像観察装置 |
JP2000171750A (ja) * | 1998-12-03 | 2000-06-23 | Sony Corp | ヘッドマウントディスプレイ、表示方法、および提供媒体 |
JP2000227554A (ja) | 1999-02-05 | 2000-08-15 | Olympus Optical Co Ltd | 結像光学系 |
JP2000330025A (ja) * | 1999-05-19 | 2000-11-30 | Olympus Optical Co Ltd | ルーバーを用いた結像光学系 |
WO2001068540A2 (en) * | 2000-03-16 | 2001-09-20 | Lee Scott Friend | Imaging apparatus |
US20020000951A1 (en) * | 2000-06-26 | 2002-01-03 | Richards Angus Duncan | Display device enhancements |
US6457834B1 (en) | 2001-01-24 | 2002-10-01 | Scram Technologies, Inc. | Optical system for display panel |
EP1231780A3 (en) * | 2001-02-07 | 2004-01-14 | Sony Corporation | Image pickup apparatus |
JP2002244074A (ja) * | 2001-02-15 | 2002-08-28 | Mixed Reality Systems Laboratory Inc | 画像表示装置 |
FR2826221B1 (fr) | 2001-05-11 | 2003-12-05 | Immervision Internat Pte Ltd | Procede d'obtention et d'affichage d'une image panoramique numerique a resolution variable |
US7009773B2 (en) | 2001-05-23 | 2006-03-07 | Research Foundation Of The University Of Central Florida, Inc. | Compact microlenslet arrays imager |
US6593561B2 (en) * | 2001-06-22 | 2003-07-15 | Litton Systems, Inc. | Method and system for gathering image data using multiple sensors |
US7940299B2 (en) | 2001-08-09 | 2011-05-10 | Technest Holdings, Inc. | Method and apparatus for an omni-directional video surveillance system |
US6473241B1 (en) * | 2001-11-27 | 2002-10-29 | The United States Of America As Represented By The Secretary Of The Air Force | Wide field-of-view imaging system using a reflective spatial light modulator |
US7084904B2 (en) * | 2002-09-30 | 2006-08-01 | Microsoft Corporation | Foveated wide-angle imaging system and method for capturing and viewing wide-angle images in real time |
US7427996B2 (en) * | 2002-10-16 | 2008-09-23 | Canon Kabushiki Kaisha | Image processing apparatus and image processing method |
JP2004170386A (ja) * | 2002-10-28 | 2004-06-17 | Seiko Epson Corp | 検査装置及び検査方法、液滴吐出装置及び液滴吐出方法、デバイス及び電子機器 |
JP2004153605A (ja) * | 2002-10-31 | 2004-05-27 | Victor Co Of Japan Ltd | 撮像装置及び撮像画像伝送システム |
GB0228089D0 (en) * | 2002-12-02 | 2003-01-08 | Seos Ltd | Dynamic range enhancement of image display apparatus |
JP4288939B2 (ja) * | 2002-12-05 | 2009-07-01 | ソニー株式会社 | 撮像装置 |
JP4304973B2 (ja) * | 2002-12-10 | 2009-07-29 | ソニー株式会社 | 撮像装置 |
US6870653B2 (en) * | 2003-01-31 | 2005-03-22 | Eastman Kodak Company | Decoupled alignment axis for fold mirror adjustment |
US7542090B1 (en) * | 2003-03-21 | 2009-06-02 | Aerodyne Research, Inc. | System and method for high-resolution with a small-format focal-plane array using spatial modulation |
US20050117015A1 (en) * | 2003-06-26 | 2005-06-02 | Microsoft Corp. | Foveated panoramic camera system |
US7336299B2 (en) * | 2003-07-03 | 2008-02-26 | Physical Optics Corporation | Panoramic video system with real-time distortion-free imaging |
JP2005094417A (ja) * | 2003-09-18 | 2005-04-07 | Sony Corp | 撮像装置 |
DE10359691A1 (de) * | 2003-12-18 | 2005-07-14 | Carl Zeiss | Beobachtungssystem und -verfahren |
DE602005007403D1 (de) * | 2004-03-25 | 2008-07-24 | Olympus Corp | Scannendes konfokales Mikroskop |
KR100491271B1 (ko) * | 2004-04-30 | 2005-05-25 | 주식회사 나노포토닉스 | 전방위 거울 및 이를 이용한 영상 시스템 |
US20070182812A1 (en) * | 2004-05-19 | 2007-08-09 | Ritchey Kurtis J | Panoramic image-based virtual reality/telepresence audio-visual system and method |
US20060028459A1 (en) * | 2004-08-03 | 2006-02-09 | Silverbrook Research Pty Ltd | Pre-loaded force sensor |
US20060055811A1 (en) * | 2004-09-14 | 2006-03-16 | Frtiz Bernard S | Imaging system having modules with adaptive optical elements |
US7532771B2 (en) * | 2004-11-12 | 2009-05-12 | Microsoft Corporation | Image processing system for digital collage |
JP4689266B2 (ja) * | 2004-12-28 | 2011-05-25 | キヤノン株式会社 | 画像表示装置 |
US7884947B2 (en) | 2005-01-20 | 2011-02-08 | Zygo Corporation | Interferometry for determining characteristics of an object surface, with spatially coherent illumination |
US20070002131A1 (en) * | 2005-02-15 | 2007-01-04 | Ritchey Kurtis J | Dynamic interactive region-of-interest panoramic/three-dimensional immersive communication system and method |
DE102005012763A1 (de) * | 2005-03-19 | 2006-09-21 | Diehl Bgt Defence Gmbh & Co. Kg | Weitwinkeloptik |
US7023628B1 (en) * | 2005-04-05 | 2006-04-04 | Alex Ning | Compact fisheye objective lens |
JP5286638B2 (ja) | 2005-05-30 | 2013-09-11 | コニカミノルタ株式会社 | 映像表示装置およびヘッドマウントディスプレイ |
EP1798587B1 (en) * | 2005-12-15 | 2012-06-13 | Saab Ab | Head-up display |
ATE434200T1 (de) | 2005-12-29 | 2009-07-15 | Fiat Ricerche | Optisches system zur bildübertragung, besonders für projektionsgeräte der kopfmontierten art |
CN101021669A (zh) * | 2006-02-13 | 2007-08-22 | 耿忠 | 全视场成像与显示方法与系统 |
US20100045773A1 (en) * | 2007-11-06 | 2010-02-25 | Ritchey Kurtis J | Panoramic adapter system and method with spherical field-of-view coverage |
JP2007248545A (ja) * | 2006-03-14 | 2007-09-27 | Konica Minolta Holdings Inc | 映像表示装置および映像表示システム |
US20080097347A1 (en) | 2006-09-22 | 2008-04-24 | Babak Arvanaghi | Bendable needle assembly |
US8072482B2 (en) | 2006-11-09 | 2011-12-06 | Innovative Signal Anlysis | Imaging system having a rotatable image-directing device |
EP2142953B1 (en) * | 2007-04-22 | 2019-06-05 | Lumus Ltd | A collimating optical device and system |
US7589901B2 (en) * | 2007-07-10 | 2009-09-15 | Microvision, Inc. | Substrate-guided relays for use with scanned beam light sources |
KR100882011B1 (ko) * | 2007-07-29 | 2009-02-04 | 주식회사 나노포토닉스 | 회전 대칭형의 광각 렌즈를 이용하여 전방위 영상을 얻는 방법 및 장치 |
US7973834B2 (en) | 2007-09-24 | 2011-07-05 | Jianwen Yang | Electro-optical foveated imaging and tracking system |
JP2009122379A (ja) * | 2007-11-14 | 2009-06-04 | Canon Inc | 光学装置及びその制御方法、撮像装置、並びにプログラム |
JP5201957B2 (ja) * | 2007-11-21 | 2013-06-05 | キヤノン株式会社 | 撮像装置 |
JP5153351B2 (ja) * | 2008-01-18 | 2013-02-27 | キヤノン株式会社 | ズームレンズ及びそれを有する光学機器 |
EP2138886A3 (en) | 2008-06-25 | 2011-10-05 | Samsung Electronics Co., Ltd. | Compact virtual display |
US7952783B2 (en) * | 2008-09-22 | 2011-05-31 | Microvision, Inc. | Scanning mirror control |
US8654328B2 (en) | 2008-11-04 | 2014-02-18 | William Marsh Rice University | Image mapping spectrometers |
US20110164108A1 (en) * | 2009-12-30 | 2011-07-07 | Fivefocal Llc | System With Selective Narrow FOV and 360 Degree FOV, And Associated Methods |
US20110213664A1 (en) | 2010-02-28 | 2011-09-01 | Osterhout Group, Inc. | Local advertising content on an interactive head-mounted eyepiece |
AU2011220382A1 (en) * | 2010-02-28 | 2012-10-18 | Microsoft Corporation | Local advertising content on an interactive head-mounted eyepiece |
US8743199B2 (en) * | 2010-03-09 | 2014-06-03 | Physical Optics Corporation | Omnidirectional imaging optics with 360°-seamless telescopic resolution |
US8941559B2 (en) | 2010-09-21 | 2015-01-27 | Microsoft Corporation | Opacity filter for display device |
JP2012252091A (ja) | 2011-06-01 | 2012-12-20 | Sony Corp | 表示装置 |
WO2013012578A1 (en) * | 2011-07-17 | 2013-01-24 | Ziva Corporation | Optical imaging with foveation |
AU2011204946C1 (en) * | 2011-07-22 | 2012-07-26 | Microsoft Technology Licensing, Llc | Automatic text scrolling on a head-mounted display |
US9256117B2 (en) * | 2011-10-07 | 2016-02-09 | L-3 Communications Cincinnati Electronics Corporation | Panoramic imaging systems comprising rotatable mirrors for image stabilization |
EP2841991B1 (en) | 2012-04-05 | 2020-01-08 | Magic Leap, Inc. | Wide-field of view (fov) imaging devices with active foveation capability |
KR20140118770A (ko) | 2013-03-27 | 2014-10-08 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시 장치 |
US9494792B2 (en) | 2013-07-30 | 2016-11-15 | Global Oled Technology Llc | Local seal for encapsulation of electro-optical element on a flexible substrate |
US20160077345A1 (en) | 2014-09-17 | 2016-03-17 | Michael Bohan | Eliminating Binocular Rivalry in Monocular Displays |
EP3163379B1 (en) * | 2015-10-28 | 2019-10-16 | Samsung Electronics Co., Ltd. | See-through holographic display apparatus |
-
2013
- 2013-04-04 EP EP13772991.9A patent/EP2841991B1/en active Active
- 2013-04-04 KR KR1020147031167A patent/KR102022719B1/ko active IP Right Grant
- 2013-04-04 KR KR1020217005871A patent/KR102306729B1/ko active IP Right Grant
- 2013-04-04 KR KR1020197028502A patent/KR102095330B1/ko active IP Right Grant
- 2013-04-04 WO PCT/US2013/035293 patent/WO2013152205A1/en active Application Filing
- 2013-04-04 CN CN201810181619.5A patent/CN108391033B/zh active Active
- 2013-04-04 KR KR1020187009611A patent/KR102028732B1/ko active Application Filing
- 2013-04-04 RU RU2015156050A patent/RU2015156050A/ru not_active Application Discontinuation
- 2013-04-04 CA CA3111134A patent/CA3111134A1/en not_active Abandoned
- 2013-04-04 NZ NZ700887A patent/NZ700887A/en unknown
- 2013-04-04 JP JP2015504728A patent/JP6176747B2/ja active Active
- 2013-04-04 BR BR112014024941A patent/BR112014024941A2/pt not_active IP Right Cessation
- 2013-04-04 KR KR1020217030170A patent/KR102404537B1/ko active IP Right Grant
- 2013-04-04 NZ NZ725322A patent/NZ725322A/en unknown
- 2013-04-04 EP EP19193685.5A patent/EP3608717B1/en active Active
- 2013-04-04 CN CN201380029492.0A patent/CN104541201B/zh active Active
- 2013-04-04 KR KR1020207008629A patent/KR102223290B1/ko active IP Right Grant
- 2013-04-04 CA CA2869781A patent/CA2869781C/en active Active
- 2013-04-04 AU AU2013243380A patent/AU2013243380B2/en active Active
- 2013-04-04 US US13/856,847 patent/US9851563B2/en active Active
- 2013-04-05 NZ NZ725339A patent/NZ725339A/en unknown
- 2013-04-05 AU AU2013289157A patent/AU2013289157B2/en active Active
- 2013-04-05 KR KR1020187009709A patent/KR102099156B1/ko active IP Right Grant
- 2013-04-05 NZ NZ740631A patent/NZ740631A/en unknown
- 2013-04-05 CN CN201380029550.XA patent/CN104937475B/zh active Active
- 2013-04-05 EP EP20206176.8A patent/EP3796071B1/en active Active
- 2013-04-05 KR KR1020207034778A patent/KR102345444B1/ko active IP Right Grant
- 2013-04-05 CN CN201711317230.0A patent/CN107843988B/zh active Active
- 2013-04-05 JP JP2015504750A patent/JP6126682B2/ja active Active
- 2013-04-05 CN CN201711317271.XA patent/CN107976818B/zh active Active
- 2013-04-05 BR BR112014024945-8A patent/BR112014024945A2/pt not_active IP Right Cessation
- 2013-04-05 KR KR1020187009706A patent/KR102129330B1/ko active IP Right Grant
- 2013-04-05 NZ NZ700898A patent/NZ700898A/en unknown
- 2013-04-05 WO PCT/US2013/035486 patent/WO2014011266A2/en active Application Filing
- 2013-04-05 CA CA3138549A patent/CA3138549A1/en active Pending
- 2013-04-05 IL IL308962A patent/IL308962A/en unknown
- 2013-04-05 CA CA2874576A patent/CA2874576C/en active Active
- 2013-04-05 US US13/857,656 patent/US9547174B2/en active Active
- 2013-04-05 EP EP13817261.4A patent/EP2834699B1/en active Active
- 2013-04-05 KR KR1020187009715A patent/KR102124350B1/ko active IP Right Grant
- 2013-04-05 KR KR1020147031031A patent/KR102188748B1/ko active IP Right Grant
- 2013-04-05 EP EP24154095.4A patent/EP4339690A3/en active Pending
- 2013-04-05 IL IL300033A patent/IL300033B2/en unknown
- 2013-04-05 NZ NZ724344A patent/NZ724344A/en unknown
-
2015
- 2015-12-22 RU RU2015154980A patent/RU2015154980A/ru not_active Application Discontinuation
-
2016
- 2016-09-27 US US15/277,887 patent/US9726893B2/en active Active
-
2017
- 2017-03-10 AU AU2017201669A patent/AU2017201669B2/en active Active
- 2017-04-07 JP JP2017076771A patent/JP6434076B2/ja active Active
- 2017-05-15 AU AU2017203227A patent/AU2017203227B2/en active Active
- 2017-05-26 US US15/607,335 patent/US9874752B2/en active Active
- 2017-06-20 JP JP2017120476A patent/JP6322753B2/ja active Active
- 2017-11-13 US US15/811,543 patent/US10061130B2/en active Active
- 2017-12-06 US US15/833,945 patent/US10048501B2/en active Active
-
2018
- 2018-04-09 JP JP2018074580A patent/JP2018139421A/ja not_active Withdrawn
- 2018-05-11 US US15/977,593 patent/US10175491B2/en active Active
- 2018-06-12 US US16/006,717 patent/US10162184B2/en active Active
- 2018-08-15 IL IL261165A patent/IL261165B/en active IP Right Grant
- 2018-09-25 US US16/141,730 patent/US20190018249A1/en not_active Abandoned
- 2018-11-07 JP JP2018209499A patent/JP6768046B2/ja active Active
- 2018-11-20 US US16/196,886 patent/US10451883B2/en active Active
-
2019
- 2019-09-02 US US16/558,241 patent/US10901221B2/en active Active
-
2020
- 2020-06-25 IL IL275662A patent/IL275662B/en unknown
- 2020-09-18 JP JP2020157204A patent/JP6944578B2/ja active Active
- 2020-12-18 US US17/127,316 patent/US11656452B2/en active Active
-
2021
- 2021-06-20 IL IL284204A patent/IL284204B/en unknown
- 2021-09-10 JP JP2021147476A patent/JP7216165B2/ja active Active
-
2022
- 2022-04-06 IL IL292007A patent/IL292007B2/en unknown
-
2023
- 2023-01-19 JP JP2023006331A patent/JP7527415B2/ja active Active
- 2023-04-04 US US18/295,685 patent/US20230244074A1/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4026641A (en) * | 1975-12-30 | 1977-05-31 | The United States Of America As Represented By The Secretary Of The Army | Toric reflector display |
CN1089039A (zh) * | 1991-12-17 | 1994-07-06 | 德克萨斯仪器股份有限公司 | 虚象显示装置及其显示方法 |
JPH0792426A (ja) * | 1993-09-24 | 1995-04-07 | Sony Corp | 視覚装置 |
EP0977071A1 (en) * | 1998-07-27 | 2000-02-02 | Mixed Reality Systems Laboratory Inc. | Image observing apparatus |
US6341869B1 (en) * | 1998-08-11 | 2002-01-29 | Minolta Co., Ltd. | Method and device for providing information |
CN1452725A (zh) * | 2000-02-11 | 2003-10-29 | Emd有限公司 | 光学分束器单元和包括这种单元的双目显示装置 |
CN1440513A (zh) * | 2000-06-05 | 2003-09-03 | 鲁姆斯有限公司 | 基片导引的光束扩展器 |
EP1430349A1 (de) * | 2000-10-07 | 2004-06-23 | Dickerson, David | Informationssystem |
WO2003001275A2 (en) * | 2001-06-21 | 2003-01-03 | Koninklijke Philips Electronics N.V. | Display device |
CN1316286C (zh) * | 2001-06-21 | 2007-05-16 | 皇家菲利浦电子有限公司 | 显示装置 |
CN1894617A (zh) * | 2003-12-12 | 2007-01-10 | 海德佩公司 | 用于头戴显示器的光学装置 |
US7639208B1 (en) * | 2004-05-21 | 2009-12-29 | University Of Central Florida Research Foundation, Inc. | Compact optical see-through head-mounted display with occlusion support |
CN101034206A (zh) * | 2006-03-09 | 2007-09-12 | 比亚迪股份有限公司 | 一种头盔显示器的光学成像系统 |
CN101029968A (zh) * | 2007-04-06 | 2007-09-05 | 北京理工大学 | 可寻址光线屏蔽机制光学透视式头盔显示器 |
WO2012037290A2 (en) * | 2010-09-14 | 2012-03-22 | Osterhout Group, Inc. | Eyepiece with uniformly illuminated reflective display |
Non-Patent Citations (3)
Title |
---|
《An Occlusion-Capable Optical See-through Head Mount Display for Supporting Co-located Collaboration 》;Kiyoshi Kiyokawa 等;《Proceedings of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality》;20031231;第133-141页 * |
《An Optical See-through Display for Mutual Occlusion of Real and Virtual Environments》;Kiyoshi Kiyokawa 等;《Proceedings of Augmented Reality》;20001231;第60-65页 * |
《Resolving Multiple Occluded Layers in Augmented Reality》;Mark A. Livingston 等;《Proc. of Intl. Symposium on Mixed and Augmented Reality》;20031010;第1-10页 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7527415B2 (ja) | 相互遮蔽および不透明度制御能力を有する光学式シースルー型ヘッドマウントディスプレイのための装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |