KR20210032022A - 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들 - Google Patents

광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들 Download PDF

Info

Publication number
KR20210032022A
KR20210032022A KR1020217007754A KR20217007754A KR20210032022A KR 20210032022 A KR20210032022 A KR 20210032022A KR 1020217007754 A KR1020217007754 A KR 1020217007754A KR 20217007754 A KR20217007754 A KR 20217007754A KR 20210032022 A KR20210032022 A KR 20210032022A
Authority
KR
South Korea
Prior art keywords
nanobeam
light
metasurface
optical system
optically transmissive
Prior art date
Application number
KR1020217007754A
Other languages
English (en)
Inventor
디안민 린
마우로 멜리
피에르 세인트 힐레르
크리스토프 페로즈
이브게니 유리 폴리아코브
Original Assignee
매직 립, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매직 립, 인코포레이티드 filed Critical 매직 립, 인코포레이티드
Priority to KR1020237003924A priority Critical patent/KR102603675B1/ko
Publication of KR20210032022A publication Critical patent/KR20210032022A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/35Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using reflective optical elements in the optical path between the images and the observer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B2005/1804Transmission gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • G02B2027/0109Head-up displays characterised by optical features comprising holographic elements comprising details concerning the making of holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Polarising Elements (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

광학 시스템은 복수의 유닛 셀들을 포함하는 격자를 포함하는 메타표면(metasurface)을 포함하는 광학적으로 투과성 기판을 포함한다. 각각의 유닛 셀은 제1 폭을 가진 측방향으로 세장형의 제1 나노빔(nanobeam); 및 갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가진다. 유닛 셀들의 피치는 10 nm 내지 1 μm이다. 제1 나노빔 및 제2 나노빔의 높이들은, 기판의 굴절률이 3.3 초과인 경우 10 nm 내지 450 nm; 및 굴절률이 3.3 또는 그 미만인 경우 10 nm 내지 1 μm이다.

Description

광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들{METASURFACES WITH ASYMMETRIC GRATINGS FOR REDIRECTING LIGHT AND METHODS FOR FABRICATING}
[0001] 본 출원은 2016년 5월 6일에 출원된 미국 가출원 번호 제 62/333,067호; 및 2017년 3월 21일에 출원된 미국 특허 출원 번호 제 62/474,432호를 35 U.S.C. § 119(e) 하에서 우선권으로 주장한다. 이들 우선권 서류들 각각의 전체 개시내용은 인용에 의해 본원에 포함된다.
[0002] 본 출원은 다음 특허 공개물들: 미국 공개 번호 제 2015/0016777호; 미국 공개 번호 제 2015/0178939호; 및 미국 공개 번호 제 2015/0346490호 각각의 전체를 인용에 의해 포함한다.
[0003] 본 개시내용은 증강 현실 이미징 및 시각화 시스템들을 포함하는 광학 디바이스들에 관한 것이다.
[0004] 현대 컴퓨팅 및 디스플레이 기술들은 소위 "가상 현실" 또는 "증강 현실" 경험들을 위한 시스템들의 개발을 가능하게 하였고, 여기서 디지털적으로 재생된 이미지들 또는 이미지들의 부분들이, 그들이 실제인 것으로 보이거나, 실제로서 인식될 수 있는 방식으로 사용자에게 제시된다. 가상 현실, 또는 "VR" 시나리오는 통상적으로 다른 실제 실세계 시각적 입력에 대한 투명성(transparency) 없는 디지털 또는 가상 이미지 정보의 프리젠테이션(presentation)을 수반하고; 증강 현실, 또는 "AR" 시나리오는 통상적으로 사용자 주위 실제 세계의 시각화에 대한 증강으로서 디지털 또는 가상 이미지 정보의 프리젠테이션을 수반한다. 혼합 현실, 또는 "MR" 시나리오는 AR 시나리오의 타입이고 통상적으로 자연 세계에 통합되고 이에 응답하는 가상 객체들을 수반한다. 예컨대, MR 시나리오는 실세계의 객체들에 의해 차단되는 것으로 보이거나 그렇지 않으면 이 객체들과 상호작용하는 것으로 인식되는 AR 이미지 콘텐츠를 포함할 수 있다.
[0005] 도 1을 참조하면, 증강 현실 장면(10)이 묘사된다. AR 기술의 사용자는 배경 내의 사람들, 나무들, 빌딩들, 및 콘크리트 플랫폼(30)을 특징으로 하는 실세계 공원형 세팅(20)을 본다. 사용자는 또한, 자신이 "가상 콘텐츠", 이를테면 실세계 플랫폼(30)에 서 있는 로봇 동상(40), 및 호박벌의 의인화인 것으로 보이는 날고 있는 만화형 아바타 캐릭터(50)를 "보는" 것을 인식한다. 이들 엘리먼트들(50, 40)은, 이들이 실세계에 존재하지 않는다는 점에서 "가상"이다. 인간 시각 인식 시스템이 복잡하기 때문에, 다른 가상 또는 실세계 이미저리(imagery) 엘리먼트들 사이에서 가상 이미지 엘리먼트들의 편안하고, 자연스럽고, 풍부한 프리젠테이션을 가능하게 하는 AR 기술을 만들어내는 것은 난제이다.
[0006] 본원에 개시된 시스템들 및 방법들은 AR 및 VR 기술에 관련된 다양한 난제들을 처리한다.
[0007] 일부 실시예들에서, 광학 시스템은 복수의 유닛 셀(unit cell)들을 포함하는 격자(grating)를 포함하는 메타표면(metasurface)을 포함하는 광학적으로 투과성 기판을 포함한다. 각각의 유닛 셀은 제1 폭을 가진 측방향으로 세장형의 제1 나노빔(nanobeam); 및 갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가진다. 제1 나노빔 및 제2 나노빔의 높이들은, 기판의 굴절률이 3.3 초과인 경우 10 nm 내지 450 nm; 및 굴절률이 3.3 또는 그 미만인 경우 10 nm 내지 1 μm이다.
[0008] 일부 다른 실시예들에서, 광학 시스템은 복수의 유닛 셀들을 포함하는 격자를 포함하는 메타표면을 포함하는 광학적으로 투과성 기판을 포함한다. 각각의 유닛 셀은 제1 폭을 가진 측방향으로 세장형의 제1 나노빔; 및 갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함한다. 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가진다. 광학 시스템은 또한 반사기를 포함한다. 반사기 및 기판은 격자의 대향 측들 상에 있다.
[0009] 또 다른 실시예들에서, 메타표면을 형성하기 위한 방법은 광학적으로 투과성 기판을 제공하는 단계; 기판 위에 광학적으로 투과성 층을 제공하는 단계; 및 복수의 유닛 셀들을 포함하는 격자를 정의하기 위해 광학적으로 투과성 층을 패터닝하는 단계를 포함한다. 각각의 유닛 셀은 제1 폭을 가진 측방향으로 세장형의 제1 나노빔; 및 갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가진다. 제1 나노빔 및 제2 나노빔의 높이들은, 기판의 굴절률이 3.3 초과인 경우 10 nm 내지 450 nm; 및 굴절률이 3.3 또는 그 미만인 경우 10 nm 내지 1 μm이다.
[0010] 일부 다른 실시예들에서, 메타표면을 형성하기 위한 방법은 광학적으로 투과성 기판을 제공하는 단계 및 복수의 유닛 셀들을 포함하는 격자를 형성하는 단계를 포함한다. 각각의 유닛 셀은 제1 폭을 가진 측방향으로 세장형의 제1 나노빔; 및 갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가진다. 방법은 또한 갭 내에 그리고 유닛 셀들 사이에 반사성 재료의 층을 제공하는 단계를 포함한다.
[0011] 일부 다른 실시예들에서, 메타표면을 형성하기 위한 방법은 광학적으로 투과성 기판을 제공하는 단계; 및 복수의 유닛 셀들을 포함하는 격자를 형성하는 단계를 포함한다. 각각의 유닛 셀은 제1 폭을 가진 측방향으로 세장형의 제1 나노빔; 및 갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가진다. 방법은 갭 내에 그리고 유닛 셀들 사이에 광학적으로 투과성 스페이서(spacer) 재료의 층을 증착하는 단계; 및 스페이서 재료의 층 상에 반사성 층을 증착하는 단계를 더 포함하고, 스페이서 재료는 반사성 층으로부터 격자를 분리시킨다.
[0012] 또 다른 실시예들에서, 광학 시스템은 복수의 유닛 셀들을 포함하는 격자를 포함하는 메타표면을 포함하는 광학적으로 투과성 기판을 포함한다. 각각의 유닛 셀은 제1 폭을 가진 측방향으로 세장형의 제1 나노빔; 및 갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가진다. 유닛 셀들의 피치는 10 nm 내지 1 μm이다.
[0013] 일부 다른 실시예들에서, 메타표면을 형성하기 위한 방법은 광학적으로 투과성 기판을 제공하는 단계; 기판 위에 광학적으로 투과성 층을 제공하는 단계; 및 복수의 유닛 셀들을 포함하는 격자를 정의하기 위해 광학적으로 투과성 층을 패터닝하는 단계를 포함한다. 각각의 유닛 셀은 제1 폭을 가진 측방향으로 세장형의 제1 나노빔; 및 갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가진다. 유닛 셀들의 피치는 10 nm 내지 1 μm이다.
[0014] 또 다른 실시예들에서, 광학 시스템은 멀티레벨 메타표면을 포함하는 광학적으로 투과성 기판을 포함한다. 멀티레벨 메타표면은 복수의 멀티레벨 유닛 셀들을 포함하는 격자를 포함한다. 각각의 유닛 셀은, 유닛 셀의 최하부 레벨 상에, 제1 폭을 가진 측방향으로 세장형의 제1 최하부 레벨 나노빔; 및 제2 폭을 가진 측방향으로 세장형의 제2 최하부 레벨 나노빔을 포함하고, 여기서 제2 폭은 제1 폭보다 더 크다. 유닛 셀의 최상부 레벨 상에는 제1 최하부 레벨 나노빔 위의 측방향으로 세장형의 제1 최상부 레벨 나노빔; 및 제2 최하부 레벨 나노빔 위의 측방향으로 세장형 제2 최상부 레벨 나노빔이 있다.
[0015] 일부 다른 실시예들에서, 메타표면을 형성하기 위한 방법은 광학적으로 투과성 기판을 제공하는 단계; 기판 위에 광학적으로 투과성 층을 제공하는 단계; 및 복수의 반복 유닛들을 정의하기 위해 광학적으로 투과성 층을 패터닝하는 단계를 포함한다. 각각의 반복 유닛은 제1 폭을 가진 측방향으로 세장형의 제1 나노빔; 및 갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가진다. 방법은 또한, 나노빔들 위에 광학적으로 투과성 재료의 이격된 플래토스(plateaus)를 형성하기 위해 제1 나노빔 및 제2 나노빔 상에 그리고 나노빔들 사이의 갭들 내로 광학적으로 투과성 재료를 증착하는 단계를 포함한다.
[0016] 부가적인 예시적인 실시예들이 아래에 제공된다.
1. 광학 시스템으로서,
메타표면을 포함하는 광학적으로 투과성 기판을 포함하고, 메타표면은, 하향식(top-down) 도면에서 볼 때:
복수의 유닛 셀들을 포함하는 격자를 포함하고, 각각의 유닛 셀은:
제1 폭을 가진 측방향으로 세장형의 제1 나노빔, 및
갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가지며,
제1 나노빔 및 제2 나노빔의 높이들은:
기판의 굴절률이 3.3 초과인 경우 10 nm 내지 450 nm이고; 그리고
굴절률이 3.3 또는 그 미만인 경우 10 nm 내지 1 μm이다.
2 실시예 1의 광학 시스템에 있어서, 유닛 셀들은 측방향으로 세장형이고 서로 평행하다.
3. 실시예 1의 광학 시스템에 있어서, 메타표면은 가시 파장의 입사 광을 제1 회절 차수로 회절시키도록 구성된다.
4. 실시예 1의 광학 시스템에 있어서, 제2 폭은 10 nm 내지 1 μm이다.
5. 실시예 4의 광학 시스템에 있어서, 제2 폭은 10 nm 내지 300 nm이다.
6. 실시예 1의 광학 시스템에 있어서, 유닛 셀들의 피치는 10 nm 내지 1 μm이다.
7. 실시예 6의 광학 시스템에 있어서, 유닛 셀들의 피치는 10 nm 내지 500 nm이다.
8. 실시예 1의 광학 시스템에 있어서, 제1 나노빔 및 제2 나노빔은 10 nm 내지 1 μm의 갭에 의해 분리된다.
9. 실시예 8의 광학 시스템에 있어서, 갭은 10 nm 내지 300 nm 폭이다.
10. 실시예 1의 광학 시스템에 있어서, 광학적으로 투과성 기판은 유리를 포함한다.
11. 실시예 1의 광학 시스템에 있어서, 제1 나노빔 및 제2 나노빔은 실리콘을 포함한다.
12. 실시예 11의 광학 시스템에 있어서, 제1 나노빔 및 제2 나노빔은 실리콘 질화물을 포함한다.
13. 실시예 1의 광학 시스템에 있어서, 광학적으로 투과성 기판 및 메타표면은 편광 빔 분할기를 형성한다.
14. 실시예 1의 광학 시스템에 있어서, 광학적으로 투과성 기판은 도파관 플레이트이다.
15. 실시예 14의 광학 시스템에 있어서, 광학적으로 투과성 기판들의 스택(stack)을 더 포함하고, 유닛 셀들의 피처(feature)들의 치수들은 기판들마다 다르다.
16. 실시예 1의 광학 시스템에 있어서, 메타표면은 인커플링(incoupling) 광학 엘리먼트이고, 광학 시스템은 광을 인커플링 광학 엘리먼트에 투사하도록 구성된 이미지 주입 디바이스를 더 포함하고, 메타표면은 내부 전반사에 의해 기판을 통해 광을 전파시키기 위해 광을 재지향시키도록 구성된다.
17. 실시예 1의 광학 시스템에 있어서, 메타표면은 아웃커플링(outcoupling) 광학 엘리먼트이고, 메타표면은 광을 기판 밖으로 추출하도록 구성된다.
18. 광학 시스템으로서,
메타표면을 포함하는 광학적으로 투과성 기판 ― 메타표면은:
복수의 유닛 셀들을 포함하는 격자를 포함하고, 각각의 유닛 셀은, 하향식 도면에서 볼 때:
제1 폭을 가진 측방향으로 세장형의 제1 나노빔, 및
갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가짐 ―; 및
반사기를 포함하고, 반사기 및 기판은 격자의 대향 측들 상에 있다.
19. 실시예 18의 광학 시스템에 있어서, 반사기는 격자로부터 이격된다.
20 실시예 19의 광학 시스템에 있어서, 격자는 광학적으로 투과성 재료에 임베딩(embed)된다.
21. 실시예 20의 광학 시스템에 있어서, 광학적으로 투과성 재료는 반사기를 격자로부터 떨어지게 이격시킨다.
22. 실시예 18의 광학 시스템에 있어서, 기판은:
메타표면과 대향하는 기판 측 상의 제2 메타표면을 포함하고, 제2 메타표면은:
복수의 제2 유닛 셀들을 포함하는 제2 격자를 포함하고, 각각의 제2 유닛 셀은, 하향식 도면에서 볼 때:
측방향으로 세장형의 제3 나노빔; 및
갭에 의해 제3 나노빔으로부터 이격된 측방향으로 세장형의 제4 나노빔을 포함하고, 제4 나노빔은 제3 나노빔보다 더 넓다.
23 실시예 18의 광학 시스템에 있어서, 유닛 셀들은 측방향으로 세장형이고 서로 평행하다.
24 실시예 18의 광학 시스템에 있어서, 메타표면은 가시 파장의 입사 광을 제1 회절 차수로 회절시키도록 구성된다.
25 실시예 18의 광학 시스템에 있어서, 제2 폭은 10 nm 내지 1 μm이다.
26. 실시예 25의 광학 시스템에 있어서, 제2 폭은 10 nm 내지 300 nm이다.
27. 실시예 18의 광학 시스템에 있어서, 유닛 셀들의 피치는 10 nm 내지 1 μm이다.
28. 실시예 27의 광학 시스템에 있어서, 유닛 셀들의 피치는 10 nm 내지 500 nm이다.
29. 실시예 18의 광학 시스템에 있어서, 제1 나노빔 및 제2 나노빔은 10 nm 내지 1 μm의 갭에 의해 분리된다.
30. 실시예 29의 광학 시스템에 있어서, 갭은 10 nm 내지 300 nm 폭이다.
31. 실시예 18의 광학 시스템에 있어서, 광학적으로 투과성 기판은 유리를 포함한다.
32. 실시예 18의 광학 시스템에 있어서, 제1 나노빔 및 제2 나노빔은 실리콘을 포함한다.
33. 실시예 32의 광학 시스템에 있어서, 제1 나노빔 및 제2 나노빔은 실리콘 질화물을 포함한다.
34. 실시예 18의 광학 시스템에 있어서, 광학적으로 투과성 기판 및 메타표면은 편광 빔 분할기를 형성한다.
35. 실시예 27의 광학 시스템에 있어서, 광학적으로 투과성 기판은 도파관 플레이트이다.
36. 실시예 35의 광학 시스템에 있어서, 광학적으로 투과성 기판들의 스택을 더 포함하고, 유닛 셀들의 피처들의 치수들은 기판들마다 다르다.
37. 실시예 18의 광학 시스템에 있어서, 메타표면은 인커플링 광학 엘리먼트이고, 광학 시스템은 광을 인커플링 광학 엘리먼트에 투사하도록 구성된 이미지 주입 디바이스를 더 포함하고, 메타표면은 내부 전반사에 의해 기판을 통해 광을 전파시키기 위해 광을 재지향시키도록 구성된다.
38. 실시예 18의 광학 시스템에 있어서, 메타표면은 아웃커플링 광학 엘리먼트이고, 메타표면은 광을 기판 밖으로 추출하도록 구성된다.
39. 메타표면을 형성하기 위한 방법으로서,
광학적으로 투과성 기판을 제공하는 단계;
기판 위에 광학적으로 투과성 층을 제공하는 단계;
복수의 유닛 셀들을 포함하는 격자를 정의하기 위해 광학적으로 투과성 층을 패터닝하는 단계를 포함하고, 각각의 유닛 셀은, 하향식 도면에서 볼 때:
제1 폭을 가진 측방향으로 세장형의 제1 나노빔, 및
갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가지며,
제1 나노빔 및 제2 나노빔의 높이들은:
기판의 굴절률이 3.3 초과인 경우 10 nm 내지 450 nm이고; 그리고
굴절률이 3.3 또는 그 미만인 경우 10 nm 내지 1 μm이다.
40. 실시예 39의 방법에 있어서, 광학적으로 투과성 층을 패터닝하는 단계는:
광학적으로 투과성 층 위에 레지스트 층을 제공하는 단계;
레지스트 층에 패턴을 정의하는 단계; 및
레지스트 층으로부터의 패턴을 광학적으로 투과성 층에 전사하는 단계를 포함한다.
41. 실시예 40의 방법에 있어서, 격자 사이에 그리고 격자 위에 광학적으로 투과성 재료를 증착시키는 단계를 더 포함한다.
42. 실시예 41의 방법에 있어서, 광학적으로 투과성 재료 상에 반사성 층을 형성하는 단계를 더 포함한다.
43. 실시예 40의 방법에 있어서, 전사하는 단계는 이방성 에칭을 수행하는 단계를 포함한다.
44. 메타표면을 형성하기 위한 방법으로서,
광학적으로 투과성 기판을 제공하는 단계;
복수의 유닛 셀들을 포함하는 격자를 형성하는 단계 ― 각각의 유닛 셀은, 하향식 도면에서 볼 때:
제1 폭을 가진 측방향으로 세장형의 제1 나노빔, 및
갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가짐 ―; 및
갭 내에 그리고 유닛 셀들 사이에 반사성 재료의 층을 제공하는 단계를 포함한다.
45. 실시예 44의 방법에 있어서, 반사성 재료의 층을 제공하는 단계는 제1 나노빔과 제2 나노빔 사이에 그리고 제1 나노빔과 제2 나노빔 위에 반사성 재료를 증착하는 단계를 포함한다.
46. 실시예 45의 방법에 있어서, 반사성 재료는 알루미늄을 포함한다.
47 실시예 44의 방법에 있어서, 격자를 형성하는 단계는:
기판 위에 광학적으로 투과성 층을 증착하는 단계; 및
격자를 정의하기 위해 광학적으로 투과성 층을 패터닝하는 단계를 포함한다.
48. 실시예 47의 방법에 있어서, 광학적으로 투과성 층을 패터닝하는 단계는:
광학적으로 투과성 층 위에 레지스트 층을 제공하는 단계;
레지스트 층에 패턴을 정의하는 단계; 및
레지스트 층으로부터의 패턴을 광학적으로 투과성 층에 전사하는 단계를 포함한다.
49. 메타표면을 형성하기 위한 방법으로서,
광학적으로 투과성 기판을 제공하는 단계;
복수의 유닛 셀들을 포함하는 격자를 형성하는 단계 ― 각각의 유닛 셀은, 하향식 도면에서 볼 때:
제1 폭을 가진 측방향으로 세장형의 제1 나노빔, 및
갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가짐 ―;
갭 내에 그리고 유닛 셀들 사이에 광학적으로 투과성 스페이서 재료의 층을 증착하는 단계; 및
스페이서 재료의 층 상에 반사성 층을 증착하는 단계를 포함하고, 스페이서 재료는 반사성 층으로부터 격자를 분리시킨다.
50. 실시예 49의 방법에 있어서, 스페이서 재료는 1 내지 2의 굴절률을 가진다.
51. 광학 시스템으로서,
메타표면을 포함하는 광학적으로 투과성 기판을 포함하고, 메타표면은:
복수의 유닛 셀들을 포함하는 격자를 포함하고, 각각의 유닛 셀은, 하향식 도면에서 볼 때:
제1 폭을 가진 측방향으로 세장형의 제1 나노빔, 및
갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가지며,
유닛 셀들의 피치는 10 nm 내지 1 μm이다.
52. 실시예 51의 광학 시스템에 있어서, 피치는 300 nm 내지 500 nm이다.
53. 실시예 51의 광학 시스템에 있어서, 메타표면은 가시 파장의 입사 광을 제1 회절 차수로 회절시키도록 구성된다.
54. 실시예 51의 광학 시스템에 있어서, 유닛 셀들은 측방향으로 세장형이고 서로 평행하다.
55. 실시예 51의 광학 시스템에 있어서, 제2 폭은 10 nm 내지 1 μm이다.
56. 실시예 55의 광학 시스템에 있어서, 제2 폭은 10 nm 내지 300 nm이다.
57. 실시예 51의 광학 시스템에 있어서, 유닛 셀들의 피치는 10 nm 내지 1 μm이다.
58. 실시예 57의 광학 시스템에 있어서, 유닛 셀들의 피치는 10 nm 내지 500 nm이다.
59. 실시예 51의 광학 시스템에 있어서, 제1 나노빔 및 제2 나노빔은 10 nm 내지 1 μm의 갭에 의해 분리된다.
60. 실시예 59의 광학 시스템에 있어서, 갭은 10 nm 내지 300 nm 폭이다.
61. 실시예 51의 광학 시스템에 있어서, 광학적으로 투과성 기판은 유리를 포함한다.
62. 실시예 51의 광학 시스템에 있어서, 제1 나노빔 및 제2 나노빔은 실리콘을 포함한다.
63. 실시예 62의 광학 시스템에 있어서, 제1 나노빔 및 제2 나노빔은 실리콘 질화물을 포함한다.
64. 실시예 51의 광학 시스템에 있어서, 광학적으로 투과성 기판 및 메타표면은 편광 빔 분할기를 형성한다.
65. 실시예 51의 광학 시스템에 있어서, 광학적으로 투과성 기판은 도파관 플레이트이다.
66. 실시예 65의 광학 시스템에 있어서, 광학적으로 투과성 기판들의 스택을 더 포함하고, 유닛 셀들의 피처들의 치수들은 기판들마다 다르다.
67. 실시예 51의 광학 시스템에 있어서, 메타표면은 인커플링 광학 엘리먼트이고, 광학 시스템은 광을 인커플링 광학 엘리먼트에 투사하도록 구성된 이미지 주입 디바이스를 더 포함하고, 메타표면은 내부 전반사에 의해 기판을 통해 광을 전파시키기 위해 광을 재지향시키도록 구성된다.
68. 실시예 51의 광학 시스템에 있어서, 메타표면은 아웃커플링 광학 엘리먼트이고, 메타표면은 광을 기판 밖으로 추출하도록 구성된다.
69. 메타표면을 형성하기 위한 방법으로서,
광학적으로 투과성 기판을 제공하는 단계;
기판 위에 광학적으로 투과성 층을 제공하는 단계;
복수의 유닛 셀들을 포함하는 격자를 정의하기 위해 광학적으로 투과성 층을 패터닝하는 단계를 포함하고, 각각의 유닛 셀은, 하향식 도면에서 볼 때:
제1 폭을 가진 측방향으로 세장형의 제1 나노빔, 및
갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가지며,
유닛 셀들의 피치는 10 nm 내지 1 μm이다.
70. 실시예 69의 방법에 있어서, 피치는 300 nm 내지 500 nm이다.
실시예 51의 방법에 있어서, 메타표면은 가시 파장의 입사 광을 제1 회절 차수로 회절시키도록 구성된다.
71. 광학 시스템으로서,
멀티레벨 메타표면을 포함하는 광학적으로 투과성 기판을 포함하고, 멀티레벨 메타표면은:
복수의 멀티레벨 유닛 셀들을 포함하는 격자를 포함하고, 각각의 유닛 셀은, 하향식 도면에서 볼 때:
유닛 셀의 최하부 레벨 상에:
제1 폭을 가진 측방향으로 세장형의 제1 최하부 레벨 나노빔; 및
제2 폭을 가진 측방향으로 세장형의 제2 최하부 레벨 나노빔 ― 제2 폭은 제1 폭보다 더 큼 ― 을 포함하고; 그리고
유닛 셀의 최상부 레벨 상에:
제1 최하부 레벨 나노빔 위의 측방향으로 세장형의 제1 최상부 레벨 나노빔; 및
제2 최하부 레벨 나노빔 위의 측방향으로 세장형의 제2 최상부 레벨 나노빔을 포함한다.
72. 실시예 71의 광학 시스템에 있어서, 제1 최상부 레벨 나노빔 및 제2 최상부 레벨 나노빔은 제1 최하부 레벨 나노빔 및 제2 최하부 레벨 나노빔과 상이한 재료를 포함한다.
73. 실시예 71의 광학 시스템에 있어서, 제1 최하부 레벨 나노빔 및 제2 최하부 레벨 나노빔은 포토레지스트를 포함한다.
74. 실시예 73의 광학 시스템에 있어서, 제1 최하부 레벨 나노빔 및 제2 최하부 레벨 나노빔은 실리콘을 포함한다.
75. 실시예 74의 광학 시스템에 있어서, 제1 최하부 레벨 나노빔 및 제2 최하부 레벨 나노빔은 실리콘 질화물을 포함한다.
76. 실시예 73의 광학 시스템에 있어서, 제1 최하부 레벨 나노빔 및 제2 최하부 레벨 나노빔은 산화물을 포함한다.
77. 실시예 76의 광학 시스템에 있어서, 제1 최하부 레벨 나노빔 및 제2 최하부 레벨 나노빔은 티타늄 산화물을 포함한다.
78. 실시예 71의 광학 시스템에 있어서, 복수의 유닛 셀들의 제1 최하부 레벨 나노빔 및 제2 최하부 레벨 나노빔은 서로 평행하게 연장된다.
79. 실시예 71의 광학 시스템에 있어서, 제1 폭은 10 nm 내지 250 nm이다.
80. 실시예 79의 광학 시스템에 있어서, 제2 폭은 10 nm 내지 300 nm이다.
81. 실시예 71의 광학 시스템에 있어서, 유닛 셀들의 피치는 300 nm 내지 500 nm이다.
82. 실시예 71의 광학 시스템에 있어서, 제1 나노빔 및 제2 나노빔은 10 nm 내지 300 nm의 갭에 의해 분리된다.
83. 실시예 71의 광학 시스템에 있어서, 광학적으로 투과성 기판 및 메타표면은 편광 빔 분할기를 형성한다.
84. 실시예 71의 광학 시스템에 있어서, 광학적으로 투과성 기판은 도파관 플레이트이다.
85. 실시예 71의 광학 시스템에 있어서, 메타표면은 인커플링 광학 엘리먼트를 형성하고, 광학 시스템은 광을 인커플링 광학 엘리먼트에 투사하도록 구성된 이미지 주입 디바이스를 더 포함하고, 메타표면은 내부 전반사에 의해 기판을 통해 광을 전파시키기 위해 광을 재지향시키도록 구성된다.
86. 실시예 84의 광학 시스템에 있어서, 광학적으로 투과성 기판들의 스택을 더 포함하고, 유닛 셀들의 피처들의 치수들은 기판들마다 다르고, 메타표면은 인커플링 엘리먼트이고, 광학 시스템은 광을 인커플링 광학 엘리먼트에 투사하도록 구성된 이미지 주입 디바이스를 더 포함하고, 메타표면은 내부 전반사에 의해 기판을 통해 광을 전파시키기 위해 광을 재지향시키도록 구성된다.
87. 실시예 71의 광학 시스템에 있어서, 메타표면은 아웃커플링 광학 엘리먼트이고, 메타표면은 광을 기판 밖으로 추출하도록 구성된다.
88. 실시예 71의 광학 시스템에 있어서, 격자는 광학적으로 투과성 재료에 임베딩된다.
89. 메타표면을 형성하기 위한 방법으로서,
광학적으로 투과성 기판을 제공하는 단계;
기판 위에 광학적으로 투과성 층을 제공하는 단계;
복수의 반복 유닛들을 정의하기 위해 광학적으로 투과성 층을 패터닝하는 단계 ― 각각의 반복 유닛은, 하향식 도면에서 볼 때:
제1 폭을 가진 측방향으로 세장형의 제1 나노빔, 및
갭에 의해 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 제2 나노빔은 제1 폭보다 더 큰 제2 폭을 가짐 ―; 및
제1 및 제2 나노빔들 위에 광학적으로 투과성 재료의 이격된 플래토스를 형성하기 위해 제1 나노빔 및 제2 나노빔 상에 그리고 이 나노빔들 사이의 갭들 내로 광학적으로 투과성 재료를 증착하는 단계를 포함한다.
90. 실시예 89의 방법에 있어서, 광학적으로 투과성 재료는 패터닝된 레지스트 또는 기판보다 더 높은 굴절률을 가진다.
91. 실시예 89의 방법에 있어서, 광학적으로 투과성 층을 패터닝하는 단계는 레지스트를 패터닝하는 단계를 포함한다.
92. 실시예 91의 방법에 있어서, 레지스트를 패터닝하는 단계는 패턴을 레지스트에 임프린팅(imprinting)하는 단계를 포함한다.
93. 실시예 91의 방법에 있어서, 광학적으로 투과성 재료를 증착하는 단계는 패터닝된 레지스트 상에 광학적으로 투과성 재료를 스핀 코팅(spin coating)하는 단계를 포함한다.
94. 실시예 91의 방법에 있어서, 광학적으로 투과성 재료를 증착하는 단계는 광학적으로 투과성 재료의 등각 증착 또는 방향성 증착을 수행하는 단계를 포함한다.
95. 실시예 94의 방법에 있어서, 등각 증착은 광학적으로 투과성 재료의 화학 기상 증착 또는 원자 층 증착을 포함한다.
96. 실시예 95의 방법에 있어서, 방향성 증착은 광학적으로 투과성 재료를 증발 또는 스퍼터링하는 단계를 포함한다.
97. 실시예 89의 방법에 있어서, 제1 폭은 10 nm 내지 250 nm이다.
98. 실시예 97의 방법에 있어서, 제2 폭은 10 nm 내지 300 nm이다.
*18499. 실시예 89의 방법에 있어서, 유닛 셀들의 피치는 300 nm 내지 500 nm이다.
100. 실시예 89의 광학 시스템에 있어서, 제1 나노빔 및 제2 나노빔은 10 nm 내지 300 nm의 갭에 의해 분리된다.
101 실시예 89의 방법에 있어서, 광학적으로 투과성 기판은 도파관이다.
[0017] 본 발명의 부가적인 목적 및 다른 목적, 특징들, 및 장점들은 상세한 설명, 도면들, 및 청구항들에 설명된다.
[0018] 도 1은 증강 현실(AR) 디바이스를 통한 AR의 사용자의 뷰를 예시한다.
[0019] 도 2는 사용자에 대한 3차원 이미저리를 시뮬레이팅하기 위한 종래의 디스플레이 시스템을 예시한다.
[0020] 도 3a-도 3c는 곡률의 반경과 초점 반경 사이의 관계들을 예시한다.
[0021] 도 4a는 인간 시각 시스템의 원근조절-이접운동(vergence) 응답의 표현을 예시한다.
[0022] 도 4b는 사용자의 눈들의 쌍의 상이한 원근조절 상태들 및 이접운동 상태들의 예들을 예시한다.
[0023] 도 4c는 사용자가 디스플레이 시스템을 통해 콘텐츠를 보고 있는 하향식 도면의 표현의 예를 예시한다.
[0024] 도 4d는 사용자가 디스플레이 시스템을 통해 콘텐츠를 보고 있는 하향식 도면의 표현의 다른 예를 예시한다.
[0025] 도 5는 파면 발산을 수정함으로써 3차원 이미저리를 시뮬레이팅하기 위한 접근법의 양상들을 예시한다.
[0026] 도 6은 이미지 정보를 사용자에게 출력하기 위한 도파관 스택(stack)의 예를 예시한다.
[0027] 도 7은 도파관에 의해 출력된 출사(exit) 빔들의 예를 예시한다.
[0028] 도 8은, 각각의 깊이 평면이 다수의 상이한 컴포넌트 컬러들을 사용하여 형성된 이미지들을 포함하는 스택된 도파관 어셈블리의 예를 예시한다.
[0029] 도 9a는 인커플링 광학 엘리먼트를 각각 포함하는 스택된 도파관들의 세트의 예의 측단면도를 예시한다.
[0030] 도 9b는 도 9a의 복수의 스택된 도파관들의 예의 사시도를 예시한다.
[0031] 도 9c는 도 9a 및 도 9b의 복수의 스택된 도파관들의 예의 하향식 평면도를 예시한다.
[0032] 도 9d는 웨어러블 디스플레이 시스템의 예를 예시한다.
[0033] 도 10a 및 도 10b는 각각 메타표면의 측단면도 및 하향식 도면들의 예들을 예시한다.
[0034] 도 11a는 반사 모드에서 기능하도록 구성된 메타표면의 측단면도의 예를 예시한다.
[0035] 도 11b는 도 11a의 평면(11B) 상에서 볼 때 도 11a의 메타표면의 하향식 단면도의 예를 예시한다.
[0036] 도 12는 반사 모드에서 기능하도록 구성된 다른 메타표면의 측단면도의 예를 예시한다.
[0037] 도 13은 도 12의 평면(13) 상에서 볼 때 도 12의 메타표면의 하향식 단면도의 예를 예시한다.
[0038] 도 14a는 투과성 및 반사성 메타표면 둘 모두를 가진 기판의 측단면도의 예를 예시한다.
[0039] 도 14b는 도 14a의 메타표면의 하향식 도면의 예를 예시한다.
[0040] 도 14c는 도 14a의 평면(14C) 상에서 볼 때 도 14a의 메타표면의 하향식 도면의 예를 예시한다.
[0041] 도 15a-도 15e는 메타표면을 형성하기 위한 프로세스 흐름의 예를 예시한다.
[0042] 도 16a 및 도 16b는 메타표면의 스캐닝 전자 현미경 사진들을 예시한다.
[0043] 도 17은 투과성 메타표면에 대한 광의 회절 효율 대 입사각을 도시하는 플롯(plot)의 예를 예시한다.
[0044] 도 18a-도 18c는 반사성 메타표면에 대한 광의 회절 효율 대 입사각을 도시하는 플롯들의 예들을 예시한다. 입사 광의 파장들은 도 18a-도 18c 각각에 대해 상이하다.
[0045] 도 19a 및 도 19b는 도 10a 및 도 10b의 메타표면의 편광 감도를 도시하는 플롯들의 예들을 예시한다.
[0046] 도 20은 도 10a 및 도 10b의 메타표면에 대한 진폭 및 위상 시프트 대 나노빔 폭의 플롯들을 예시한다.
[0047] 도 21a는 멀티레벨 메타표면의 측단면도들의 예를 예시한다.
[0048] 도 21b는 도 21a에 도시된 일반적인 구조를 가진 광학 구조에 대한 광의 입사각의 함수로써 투과 및 반사의 플롯의 예를 예시한다.
[0049] 도 22a는 멀티레벨 메타표면의 측단면도들의 예를 예시한다.
[0050] 도 22b는 도 22a에 도시된 일반적인 구조를 가진 광학 구조에 대한 광의 입사각의 함수로써 투과 및 반사의 플롯의 예를 예시한다.
[0051] 도 23a-도 23d는 멀티레벨 메타표면들을 형성하기 위한 프로세스 흐름의 예를 예시한다.
[0052] 도면들은 본원에 설명된 예시적인 실시예들을 예시하기 위해 제공되고 본 개시내용의 범위를 제한하도록 의도되지 않는다. 도면들이 개략적이고 반드시 실척대로 도시되지 않는 것이 인식될 것이다.
[0053] 메타표면들, 메타재료 표면들은 기하학적 옵틱(optic)들과 비교하여 사실상 편평하고, 수차-없는 옵틱들을 훨씬 더 작은 실척들로 실현할 기회들을 제공한다. 이론에 의해 제한되지 않고, 일부 실시예들에서, 메타표면들은 공진 광학 안테나들로서 기능하는 표면 구조들의 밀집된 어레인지먼트들을 포함한다. 광 표면 구조 상호작용의 공진 성질은 광학 파면들을 조작할 수 있는 능력을 제공한다. 일부 경우들에서, 메타표면들은 단순한 패터닝 프로세스들에 의해 형성된 얇고 평면인 엘리먼트들로의, 제조하기에 부피가 크거나 어려운 광학 컴포넌트들의 대체를 허용할 수 있다.
[0054] 하나의 타입의 종래의 광학 엘리먼트는 블레이즈(blaze) 격자이고, 이는 일부 애플리케이션들에서 광을 재지향시키는 데 높은 선택성을 갖는 것이 바람직할 수 있다. 그러나, 이들 격자들은 통상적으로 경사진 표면들을 가지며 제조하기에 어려울 수 있다. 유리하게, 일부 실시예들에서, 다양한 인입 각도들에 걸쳐 비교적 평평한 응답을 가지며, 그리고 더 쉽게 제조되는 구조를 제공하면서, 블레이징된(blazed) 격자와 유사하게, 가시 범위의 광을 재지향시킬 수 있는 메타표면들이 개시된다.
[0055] 메타표면들은 복수의 반복 유닛 셀들에 의해 형성된 비대칭 격자 형태를 취할 수 있다. 각각의 유닛 셀은 또한 나노빔들 또는 나노와이어들이라 지칭될 수 있는 2개의 측방향으로 세장형의 돌출부들을 포함하고, 하나의 돌출부는 다른 돌출부보다 더 넓다. 본원에서 사용된 바와 같이, 돌출부, 나노빔 또는 나노와이어는 세장형 볼륨의 재료, 이를테면 단일의 실질적으로 균일한 재료이다. 이들 세장형 구조들이 임의의 특정 단면 형상으로 제한되지 않는다는 것이 인식될 것이다. 일부 실시예들에서, 단면 형상은 직사각형이다. 바람직하게, 나노빔들은 서브파장 폭을 가지며 서로 간격을 두고 있다. 예컨대, 나노빔들의 폭들은, 메타표면이 재지향시키도록 구성된 광의 파장들 미만일 수 있다. 일부 실시예들에서, 나노빔들에 의해 형성된 유닛 셀들은 광학적으로 투과성 기판, 예컨대 도파관의 표면 상에 또는 이에 가까이 있을 수 있다.
[0056] 일부 실시예들에서, 메타표면들은, 광이 메타표면의 제1 측으로부터 메타표면 상에 입사하고, 메타표면을 통해 전파되고, 그리고 이후 메타표면의 대향 측 상의 메타표면을 떠나게 전파되는 투과성 모드로 작동할 수 있다. 광은 제1 측 상의 광의 입사 방향과 상이한 방향으로 메타표면을 떠나게 전파된다.
[0057] 일부 다른 실시예들에서, 메타표면은, 광이 메타표면의 제1 측으로부터 입사되고, 그리고 제1 측 상에서 다시 반사되어 메타표면을 떠나게 전파되는 반사성 모드로 작동할 수 있다. 반사성 모드에서, 메타표면은 반사성 층 내에 임베딩된 나노빔들을 포함할 수 있다. 일부 다른 실시예들에서, 나노빔들은 스페이서 층 내에 임베딩될 수 있고, 그리고 반사성 층은 제1 측과 대향하는 메타표면의 측 상의 스페이서 층 상에 직접 제공될 수 있다.
[0058] 바람직하게, 메타표면들을 형성하는 피처들은 예컨대 회절에 의해 광을 재지향시키도록 구성된다. 일부 실시예들에서, 광은 350 nm 내지 800 nm 범위의 파장을 가진 가시 광이다. 일부 실시예들에서, 메타표면은 가시 파장의 입사 광을 제1 회절 차수로 회절시키도록 구성된다.
[0059] 일부 실시예들에서, 유닛 셀들을 형성하는 나노빔들의 폭들은 10 nm 내지 300 nm 또는 10 nm 내지 250 nm를 포함하는, 10 nm 내지 1 μm 범위이다. 나노빔들은 10 nm 내지 1 μm 폭 또는 10 nm 내지 300 nm 폭을 포함하는, 5 nm 내지 1 μm 폭 범위의 갭에 의해 분리될 수 있다. 유닛 셀들의 피치(즉, 바로 이웃하는 유닛 셀들에서 동일한 포인트들 사이의 거리)는 10 nm 내지 500 nm, 또는 300 nm 내지 500 nm를 포함하는, 10 nm 내지 1 μm 범위일 수 있다. 일부 실시예들에서, 나노빔들의 높이들은 10 nm 내지 500 nm 또는 10 nm 내지 450 nm를 포함하는, 10 nm 내지 1 μm 범위일 수 있다.
[0060] 유닛 셀들의 피처들의 치수들이 메타표면을 형성하는 데 사용된 재료들의 특성들에 따라 가변할 수 있다는 것이 발견되었다. 예컨대, 나노빔들의 높이는 이들 나노빔들에 사용된 재료의 굴절률에 따라 가변할 수 있다. 일부 실시예들에서, 나노빔들의 높이들은, 재료의 굴절률이 3.3 초과인 경우 10 nm 내지 450 nm; 및 굴절률이 3.3 또는 그 미만인 경우 10 nm 내지 1 μm일 수 있다. 다른 예로서, 나노빔들의 높이는, 나노빔들이 실리콘(예컨대, 비결정질 또는 폴리실리콘)으로 형성되는 경우 10 nm 내지 450 nm일 수 있다.
[0061] 일부 실시예들에서, 메타표면은 최하부 레벨 상에서 위에서 주목된 바와 같이 비교적 좁고 그리고 비교적 넓은 나노빔들을 그리고 최하부 레벨 상의 나노빔들 사이에 제2 광학적으로 투과성 재료를 갖는 유닛 셀들을 가지는 멀티레벨(예컨대, 2-레벨) 구조이다. 메타표면은 또한 나노빔들의 최상부 표면들 상에 배치된 제2 광학적으로 투과성 재료에 의해 형성된 제2 레벨을 포함할 수 있다. 제2 레벨 상의 재료는, 나노빔들의 길이방향 축에 직교하는 평면을 따라 취해진 단면도에서 보여지는 바와 같이, 나노빔들의 최상부 표면들 상에 로컬라이징(localize)될 수 있고 재료의 이격된 플래토스를 형성할 수 있다. 일부 실시예들에서, 제2 레벨 상의 재료의 높이들은 10 nm 내지 600 nm를 포함하는, 10 nm 내지 1 μm 범위일 수 있다.
[0062] 일부 실시예들에서, 메타표면이, 일부 파장들의 광을 선택적으로 재지향시키는 반면, 다른 파장들의 광에 투과성인 것이 인식될 것이다. 그런 특성들은 통상적으로 미크론 스케일들의 구조들(예컨대, 포토닉스에서 결정 섬유들 또는 분산형 브래그(bragg) 반사기들)로 엔지니어링되지만, 본원의 다양한 실시예들은 나노-스케일들(예컨대, 10-100x보다 더 작은 스케일들)의 기하구조들을 포함하고, 그리고 전자기 스펙트럼의 가시 부분의 광의 선택적인 재지향을 제공한다. 일부 실시예들에서, 나노빔들은 기판의 표면 상에 단일 레벨로 형성될 수 있고, 이에 의해 제조하기에 간단한 구조를 제공한다. 유리하게, 메타표면들은 패터닝 및 증착 프로세스들, 예컨대 리소그래피 및 화학 에칭을 사용하여 형성될 수 있다. 일부 실시예들에서, 메타표면들은 나노임프린팅(nanoimprinting)을 사용하여 패터닝될 수 있어서, 많은 돈이 드는 리소그래피 및 에치 프로세스들이 회피된다.
[0063] 다양한 실시예들에 따라 형성된 메타표면들은 다음 장점들 중 하나 또는 그 초과를 제공한다. 예컨대, 메타표면들은 광을 재지향시키거나 회절시킬 수 있는 비교적 큰 각도 대역폭을 가질 수 있다. 게다가, 메타표면들은 이 대역폭에 걸쳐 우수한 회절 효율을 가질 수 있다. 예컨대, 회절 효율은 (표면에 대해 수직으로부터 측정될 때) 40°, 또는 50°의 각도 대역폭(FWHM)에 걸쳐 25% 또는 그 초과, 30% 또는 그 초과, 또는 40% 또는 그 초과일 수 있다. 게다가, 각도 대역폭에 걸친 회절 효율은 유리하게 평탄(flat)할 수 있고, 예컨대 각도 대역폭에 걸쳐 25%, 20%, 15%, 또는 10% 미만만큼 가변한다. 메타표면들은 또한, 광이 내부 전반사(TIR)에 적절한 각도들로 전파되도록 광을 재지향시킴으로써 각도 대역폭 내의 광을 인커플링하도록 유리하게 적용될 수 있는 큰 굴절각을 가질 수 있다. 게다가, 위에서 주목된 장점들은 이미지들을 형성하기 위한 상이한 컴포넌트 컬러들에 대응하는 다수의 파장들의 광으로 실현될 수 있다. 예컨대, 파장들은 적색, 녹색 및 청색(예컨대, 455 nm, 520 nm 및 638 nm의 파장들)에 대응할 수 있다. 반사 모드에서, 메타표면은 높은 소광비(extinction ratio)(예컨대, 5 또는 그 초과, 10 또는 그 초과, 20 또는 그 초과)를 갖는 컬러 선택적 빔 성형을 제공할 수 있다. 일부 실시예들에서, 메타표면들은 강한 편광 의존성을 나타내고 편광 빔 분할기로서 기능할 수 있다. 예컨대, 상이한 편광들의 광의 경우, 메타표면은 5 또는 그 초과, 7 또는 그 초과, 또는 9 또는 그 초과의 소광비들을 나타낼 수 있다.
[0064] 일부 실시예들에서, 메타표면들을 지지하는 도파관들은 다이렉트 뷰(direct view) 디스플레이 디바이스들 또는 니어-아이(near-eye) 디스플레이 디바이스들을 형성할 수 있고, 도파관들은 입력 이미지 정보를 수신하고 입력 이미지 정보에 기반하여 출력 이미지를 생성하도록 구성된다. 이들 디바이스들은 착용가능할 수 있고 일부 실시예들에서 안경류를 구성할 수 있다. 도파관들에 의해 수신된 입력 이미지 정보는 하나 또는 그 초과의 도파관들에 인커플링되는 상이한 파장들(예컨대, 적색, 녹색 및 청색 광)의 멀티플렉싱된(multiplexed) 광 스트림들로 인코딩될 수 있다. 인커플링된 광은 내부 전반사로 인해 도파관을 통해 전파될 수 있다. 인커플링된 광은 하나 또는 그 초과의 아웃커플링 광학 엘리먼트들에 의해 도파관으로부터 아웃커플링(또는 출력)될 수 있다.
[0065] 일부 실시예들에서, 메타표면들은 인커플링 및/또는 아웃커플링 광학 엘리먼트들일 수 있다. 메타표면의 조밀성 및 평면성은, 컴팩트한(compact) 도파관, 및 다수의 도파관들이 스택을 형성하는, 도파관들의 컴팩트한 스택을 허용한다. 게다가, 메타표면의 높은 파장 선택성은 광을 인커플링 및/또는 아웃커플링하는데 높은 정밀도를 허용하고, 이는, 광이 이미지 정보를 포함하는 애플리케이션들에서 높은 이미지 품질을 제공할 수 있다. 예컨대, 높은 선택성은, 풀(full) 컬러 이미지들이 동시에 상이한 컬러들 또는 파장들의 광을 출력함으로써 형성되는 구성들에서 채널 누화를 감소시킬 수 있다.
[0066] 이제 도면들에 대해 참조가 이루어질 것이고, 여기서 유사한 참조 번호들은 전체에 걸쳐 유사한 피처들을 지칭한다.
예시적인 디스플레이 시스템들
[0067] 본원에서 개시된 다양한 실시예들은 광을 조종 또는 재지향시키는 광학 디바이스들로 구현될 수 있고, 그리고 특히 유리하게 디스플레이 시스템들의 부분들로서 이용될 수 있다. 일부 실시예들에서, 디스플레이 시스템들은 유리하게 높은 실감형 VR 또는 AR 경험을 제공할 수 있는 안경류(예컨대, 그들이 착용가능함)의 형태를 취한다. 예컨대, 다수의 깊이 평면들을 디스플레이하기 위한 도파관들, 예컨대 도파관들의 스택(각각의 깊이 평면에 대한 하나의 도파관 또는 도파관들의 세트)을 포함하는 디스플레이들은 사용자, 또는 뷰어(viewer)의 눈들의 전면에 포지셔닝되어 착용되도록 구성될 수 있다. 일부 실시예들에서, 다수의 도파관들, 예컨대 도파관들의 2개의 스택들(뷰어의 각각의 눈에 대해 하나씩)은 각각의 눈에 상이한 이미지들을 제공하기 위해 활용될 수 있다.
[0068] 도 2는 사용자에 대한 3차원 이미저리를 시뮬레이팅하기 위한 종래의 디스플레이 시스템을 예시한다. 사용자의 눈들은 이격되며, 그리고 공간 내의 실제 객체를 보고 있을 때, 각각의 눈은 객체의 약간 상이한 뷰를 가질 것이며, 각각의 눈의 망막 상의 상이한 위치들에 객체의 이미지를 형성할 수 있다는 것이 인식될 것이다. 이것은 양안 시차로 지칭될 수 있고 그리고 깊이의 인식을 제공하기 위해 인간 시각 시스템에 의해 활용될 수 있다. 종래의 디스플레이 시스템들은, 가상 객체가 원하는 깊이에 있는 실제 객체이면, 각각의 눈에 의해 보여질 가상 객체의 뷰들에 대응하는 동일한 가상 객체의 약간 상이한 뷰들(각각의 눈(210, 220)에 대해 하나씩)을 갖는 2개의 별개의 이미지들(190, 200)을 제시함으로써 양안 시차를 시뮬레이팅한다. 이들 이미지들은, 사용자의 시각 시스템이 깊이의 인식을 유도하기 위해 해석할 수 있는 양안 단서들을 제공한다.
[0069] 도 2를 계속 참조하면, 이미지들(190, 200)은 z-축 상에서 거리(230)만큼 눈들(210, 220)로부터 이격된다. z-축은 뷰어의 광학 축과 평행하고, 뷰어의 눈들은 뷰어의 바로 앞에서 광학 무한대에 있는 객체를 응시한다. 이미지들(190, 200)은 편평하고 눈들(210, 220)로부터 고정된 거리에 있다. 눈들(210, 220)에게 각각 제시된 이미지들 내의 가상 객체의 약간 상이한 뷰들에 기반하여, 눈들은, 단일 양안 비전을 유지하기 위해, 객체의 이미지가 눈들의 각각의 망막들 상의 대응하는 포인트들에 떨어지도록 자연스럽게 회전할 수 있다. 이런 회전은, 눈들(210, 220)의 각각의 시선들이, 가상 객체가 존재하는 것으로 인식되는 공간 내의 포인트 상으로 수렴하게 할 수 있다. 결과적으로, 3차원 이미저리를 제공하는 것은 통상적으로, 사용자의 눈들(210, 220)의 이접운동을 조작할 수 있는, 그리고 인간 시각 시스템이 깊이의 인식을 제공하기 위해 해석하는 양안 단서들을 제공하는 것을 포함한다.
[0070] 그러나, 현실적이고 편안한 깊이의 인식을 생성하는 것은 어렵다. 눈들로부터 상이한 거리들에 있는 객체들로부터의 광이 상이한 발산 양들을 가진 파면들을 가지는 것이 인식될 것이다. 도 3a-도 3c는 광선들의 거리와 발산 사이의 관계들을 예시한다. 객체와 눈(210) 사이의 거리는 거리가 감소하는 순서로 R1, R2 및 R3로 표현된다. 도 3a-도 3c에 도시된 바와 같이, 광선들은, 객체에 대한 거리가 감소함에 따라 더 많이 발산하게 된다. 반대로, 거리가 증가함에 따라, 광선들은 더 시준된다. 다른 말로하면, 포인트(객체 또는 객체의 일부)에 의해 생성된 광 필드가 구체 파면 곡률을 갖는다고 말할 수 있으며, 구체 파면 곡률은, 그 포인트가 사용자의 눈으로부터 얼마나 멀리 떨어져 있는지의 함수이다. 곡률은 객체와 눈(210) 사이의 거리가 감소함에 따라 증가한다. 도 3a-도 3c 및 본원의 다른 도면들에서 예시의 명확성을 위해 단지 한쪽 눈(210)만이 예시되지만, 눈(210)에 대한 논의들은 뷰어의 양쪽 눈들(210 및 220)에 적용될 수 있다.
[0071] 도 3a-도 3c를 계속 참조하면, 뷰어의 눈들이 응시하는 객체로부터의 광은 상이한 파면 발산 정도들을 가질 수 있다. 상이한 파면 발산 양들로 인해, 광은 눈의 렌즈에 의해 상이하게 포커싱될 수 있고, 이는 차례로 눈의 망막 상에 포커싱된 이미지를 형성하기 위해 렌즈가 상이한 형상들을 취하는 것을 요구할 수 있다. 포커싱된 이미지가 망막 상에 형성되지 않는 경우, 결과적으로 망막 블러(blur)는, 포커싱된 이미지가 망막 상에 형성될 때까지 눈의 렌즈의 형상의 변화를 유발하는 원근조절에 대한 단서로서 작용한다. 예컨대, 원근조절에 대한 단서는 눈의 렌즈를 둘러싸는 섬모 체근(ciliary muscle)들을 이완 또는 수축시키도록 트리거할 수 있고, 이에 의해 렌즈를 홀딩하는 현수 인대(suspensory ligament)들에 적용되는 힘이 조절되고, 이에 의해 망막 블러가 제거되거나 최소화될 때까지 눈의 렌즈의 형상이 변경되게 되고, 이에 의해 눈의 망막/중심와 상에 응시 객체의 포커싱된 이미지가 형성된다. 눈의 렌즈가 형상을 변화시키는 프로세스는 원근조절로 지칭될 수 있고, 그리고 눈의 망막/중심와 상에 응시 객체의 포커싱되는 이미지를 형성하기 위해 요구되는 눈의 렌즈의 형상은 원근조절 상태로 지칭될 수 있다.
[0072] 이제 도 4a를 참조하면, 인간 시각 시스템의 원근조절-이접운동 응답의 표현이 예시된다. 물체를 응시하기 위한 눈들의 움직임은 눈들이 객체로부터 광을 수신하게 하고, 광은 눈들의 망막들 각각 상에 이미지를 형성한다. 망막 상에 형성된 이미지에서 망막 블러의 존재는 원근조절에 대한 단서를 제공할 수 있고, 그리고 망막들 상에서 이미지의 상대적 위치들은 이접운동에 대한 단서를 제공할 수 있다. 원근조절에 대한 단서는 원근조절이 발생하게 하고, 이는 눈들의 렌즈들이 각각 눈의 망막/중심와 상에 객체의 포커싱된 이미지를 형성하는 특정 원근조절 상태를 취하게 한다. 한편, 이접운동에 대한 단서는, 각각의 눈의 각각의 망막 상에 형성된 이미지들이 단일 양안 비전을 유지하는 대응하는 망막 포인트들에 있도록 이접운동 움직임들(눈들의 회전)이 발생하게 한다. 이들 포지션들에서, 눈들은 특정 이접운동 상태를 취했다고 말할 수 있다. 도 4a를 계속 참조하면, 원근조절은, 눈이 특정 원근조절 상태를 달성하게 하는 프로세스인 것으로 이해될 수 있고, 그리고 이접운동은, 눈이 특정 이접운동 상태를 달성하게 하는 프로세스인 것으로 이해될 수 있다. 도 4a에 표시된 바와 같이, 눈들의 원근조절 및 이접운동 상태들은, 사용자가 다른 객체를 응시하면 변할 수 있다. 예컨대, 원근조절된 상태는, 사용자가 z-축 상의 다른 깊이에 있는 새로운 객체를 응시하면 변할 수 있다.
[0073] 이론에 의해 제한되지 않고, 객체의 뷰어들이 이접운동 및 원근조절의 결합으로 인해 객체를 "3차원"인 것으로 인식할 수 있다는 것이 믿어진다. 위에서 주목된 바와 같이, 서로에 관해 2개의 눈들의 이접운동 움직임들(예컨대, 객체를 응시하기 위해 눈들의 시선들을 수렴하도록 서로를 향해 또는 서로 멀어지게 동공들이 움직이도록 하는 눈들의 회전)은 눈들의 렌즈들의 원근조절과 밀접하게 연관된다. 정상 조건들하에서, 하나의 객체로부터 상이한 거리에 있는 다른 객체로 포커스를 변화시키기 위하여 눈들의 렌즈들의 형상들을 변화시키는 것은 "원근조절-이접운동 반사(accommodation-vergence reflex)"로서 알려진 관계하에서, 동일한 거리로의 이접운동의 매칭 변화를 자동으로 유발할 것이다. 마찬가지로, 이접운동의 변화는 정상 조건들 하에서 렌즈 형상의 매칭 변화를 트리거할 것이다.
[0074] 이제 도 4b를 참조하면, 눈들의 상이한 원근조절 및 이접운동 상태들의 예들이 예시된다. 눈들의 쌍(222a)은 광학 무한대에 있는 객체를 응시하는 반면, 눈들의 쌍(222b)은 광학 무한대 미만에 있는 객체(221)를 응시한다. 특히, 눈들의 각각의 쌍의 이접운동 상태들은 상이하고, 눈들의 쌍(222a)은 똑바로 앞을 지향하는 반면, 눈들의 쌍(222b)은 객체(221) 상에 수렴한다. 눈들의 각각의 쌍(222a 및 222b)을 형성하는 눈들의 원근조절 상태들은, 렌즈들(210a, 220a)의 상이한 형상들에 의해 표현된 바와 같이, 또한 상이하다.
[0075] 바람직하지 않게, 종래의 "3D" 디스플레이 시스템들의 많은 사용자들은 그런 종래의 시스템들이 불편하다고 여기거나 또는 이들 디스플레이들의 원근조절 상태와 이접운동 상태 사이의 미스매칭으로 인해 깊이감을 전혀 인식하지 못할 수 있다. 위에서 주목된 바와 같이, 많은 입체 또는 "3D" 디스플레이 시스템들은 약간 상이한 이미지들을 각각의 눈에 제공함으로써 장면을 디스플레이한다. 그런 시스템들은 많은 뷰어들에게 불편한데, 그 이유는, 그런 시스템들이, 특히, 단순히 장면의 상이한 프리젠테이션들을 제공하고 눈들의 이접운동 상태들의 변화들을 유발하지만, 이들 눈들의 원근조절 상태들의 대응하는 변화를 유발하지 않기 때문이다. 오히려, 이미지들은 디스플레이에 의해 눈들로부터 고정된 거리에 보여져서, 눈들은 단일 원근조절 상태에서 모든 이미지 정보를 본다. 그런 어레인지먼트는 원근조절 상태의 매칭 변화 없이 이접운동 상태의 변화들을 유발함으로써 "원근조절-이접운동 반사"에 반하게 작동한다. 이런 미스매칭은 뷰어 불편함을 유발하는 것으로 믿어진다. 원근조절과 이접운동 사이의 더 나은 매칭을 제공하는 디스플레이 시스템들은 3차원 이미저리의 더 현실적이고 편안한 시뮬레이션들을 형성할 수 있다.
[0076] 이론에 의해 제한되지 않고, 인간 눈이 통상적으로 깊이 인식을 제공하기 위해 유한한 수의 깊이 평면들을 해석할 수 있다는 것이 믿어진다. 결과적으로, 인식된 깊이의 매우 믿을만한 시뮬레이션은, 눈에, 이들 제한된 수의 깊이 평면들 각각에 대응하는 이미지의 상이한 프리젠테이션들을 제공함으로써 달성될 수 있다. 일부 실시예들에서, 상이한 프리젠테이션들은 이접운동에 대한 단서들 및 원근조절에 대한 미스매칭 단서들 둘 모두를 제공할 수 있고, 이에 의해 생리학적으로 올바른 원근조절-이접운동 매칭이 제공된다.
[0077] 도 4b를 계속 참조하면, 눈들(210, 220)로부터 공간의 상이한 거리들에 대응하는 2개의 깊이 평면들(240)이 예시된다. 주어진 깊이 평면(240)의 경우, 이접운동 단서들은 각각의 눈(210, 220)에 대해 적절하게 상이한 조망들의 이미지들을 디스플레이함으로써 제공될 수 있다. 게다가, 주어진 깊이 평면(240)의 경우, 각각의 눈(210, 220)에 제공된 이미지들을 형성하는 광은 그 깊이 평면(240)의 거리에 있는 포인트에 의해 생성된 광 필드에 대응하는 파면 발산을 가질 수 있다.
[0078] 예시된 실시예에서, z-축을 따라, 포인트(221)를 포함하는 깊이 평면(240)의 거리는 1 m이다. 본원에서 사용된 바와 같이, z-축을 따른 거리들 또는 깊이들은 사용자의 눈들의 출사동들에 위치된 제로 포인트를 사용하여 측정될 수 있다. 따라서, 1 m의 깊이에 위치된 깊이 평면(240)은 이들 눈들의 광학 축 상에서, 사용자의 눈들의 출사동들로부터 1 m 떨어진 거리에 대응한다. 근사치로서, z-축을 따른 깊이 또는 거리는 사용자의 눈들의 전면의 디스플레이(예컨대, 도파관의 표면) 외에(plus), 디바이스와 사용자의 눈들의 출사동들 사이의 거리에 대한 값으로부터 측정될 수 있다. 그 값은 눈동자 거리(eye relief)라 칭해지고 그리고 사용자의 눈의 출사동과, 눈의 전면에 사용자가 착용한 디스플레이 사이의 거리에 대응한다. 실제로, 눈동자 거리에 대한 값은 일반적으로 모든 뷰어들에게 일반적으로 사용되는 정규화된 값일 수 있다. 예컨대, 눈동자 거리는 20 mm인 것으로 가정될 수 있고 1 m의 깊이에 있는 깊이 평면은 디스플레이의 전면에서 980 mm의 거리에 있을 수 있다.
[0079] 이제 도 4c 및 도 4d를 참조하면, 매칭된 원근조절-이접운동 거리들 및 미스매칭된 원근조절-이접운동 거리들의 예들이 각각 예시된다. 도 4c에 예시된 바와 같이, 디스플레이 시스템은 가상 객체의 이미지들을 각각의 눈(210, 220)에 제공할 수 있다. 이미지들은, 눈들(210, 220)이 깊이 평면(240) 상의 포인트(15) 상에 수렴하는 이접운동 상태를 그 눈들이 취하게 할 수 있다. 게다가, 이미지들은 그 깊이 평면(240)에 있는 실제 객체들에 대응하는 파면 곡률을 가진 광에 의해 형성될 수 있다. 결과적으로, 눈들(210, 220)은, 이미지들이 이들 눈들의 망막들 상에 인 포커스(in focus)하는 원근조절 상태를 취한다. 따라서, 사용자는 가상 객체를 깊이 평면(240) 상의 포인트(15)에 있는 것으로 인식할 수 있다.
[0080] 눈들(210, 220)의 원근조절 및 이접운동 상태들 각각이 z-축 상의 특정 거리와 연관되는 것이 인식될 것이다. 예컨대, 눈들(210, 220)로부터 특정 거리에 있는 객체는 이들 눈들이 객체의 거리들에 기반하여 특정 원근조절 상태들을 취하게 한다. 특정 원근조절 상태와 연관된 거리는 원근조절 거리(Ad)라 지칭될 수 있다. 유사하게, 서로에 대한 포지션들 또는 특정 이접운동 상태들의 눈들과 연관된 특정 이접운동 거리들(Vd)이 있다. 원근조절 거리와 이접운동 거리가 매칭하는 경우, 원근조절과 이접운동 사이의 관계는 생리학적으로 올바른 것이라 말할 수 있다. 이것은 뷰어에게 가장 편안한 시나리오인 것으로 고려된다.
[0081] 그러나, 입체 디스플레이들에서, 원근조절 거리와 이접운동 거리가 항상 매칭하지 않을 수 있다. 예컨대, 도 4d에 예시된 바와 같이, 눈들(210, 220)에 디스플레이되는 이미지들은 깊이 평면(240)에 대응하는 파면 발산으로 디스플레이될 수 있고, 눈들(210, 220)은, 그 깊이 평면 상의 포인트들(15a, 15b)이 인 포커스되는 특정 원근조절 상태를 취할 수 있다. 그러나, 눈들(210, 220)에 디스플레이되는 이미지들은 눈들(210, 220)이 깊이 평면(240) 상에 위치되지 않은 포인트(15) 상에 수렴하게 하는 이접운동에 대한 단서들을 제공할 수 있다. 결과적으로, 일부 실시예들에서, 원근조절 거리는 눈들(210, 220)의 출사동들로부터 깊이 평면(240)까지의 거리에 대응하는 반면, 이접운동 거리는 눈들(210, 220)의 출사동들로부터 포인트(15)까지의 더 먼 거리에 대응한다. 원근조절 거리는 이접운동 거리와 상이하다. 결과적으로, 원근조절-이접운동 미스매칭이 존재한다. 그런 미스매칭은 바람직하지 않은 것으로 고려되며 사용자에게 불편함을 유발할 수 있다. 미스매칭이 거리(예컨대, Vd-Ad)에 대응하며, 디옵터(diopter)들을 사용하는 것을 특징으로 할 수 있다는 것이 인식될 것이다.
[0082] 이론에 의해 제한되지 않고, 미스매칭 자체가 상당한 불편함을 유발하지 않으면, 사용자들이 최대 0.25 디옵터, 최대 0.33 디옵터 및 최대 약 0.5 디옵터의 원근조절-이접운동 미스매칭들을 생리학적으로 올바른 것으로 여전히 인식할 수 있다는 것이 믿어진다. 일부 실시예들에서, 본원에서 개시된 디스플레이 시스템들(예컨대, 디스플레이 시스템(250), 도 6)은 파면 발산을 가진 광을 사용하여 뷰어에게 이미지들을 제시하도록 그리고 0.5 디옵터 또는 그 미만의 원근조절-이접운동 미스매칭을 제공하는 양안 단서들을 가진 이미지들을 제시하도록 구성된다. 일부 다른 실시예들에서, 디스플레이 시스템들은 파면 발산을 가진 광을 사용하여 뷰어에게 이미지들을 제시하도록 그리고 0.33 디옵터 또는 그 미만의 원근조절-이접운동 미스매칭을 제공하는 양안 단서들을 가진 이미지들을 제시하도록 구성된다. 또 다른 실시예들에서, 디스플레이 시스템들은 파면 발산을 가진 광을 사용하여 뷰어에게 이미지들을 제시하도록 그리고 약 0.1 디옵터 또는 그 미만을 포함하는, 0.25 디옵터 또는 그 미만의 원근조절-이접운동 미스매칭을 제공하는 양안 단서들을 가진 이미지들을 제시하도록 구성된다.
[0083] 일부 실시예들에서, 동일한 기준 포인트가 원근조절 거리 및 이접운동 거리에 활용되는 한, 눈들(210, 220)의 출사동들 외의 기준 포인트가 거리를 결정하는 데 활용될 수 있다는 것이 인식될 것이다. 예컨대, 거리들은 카메라로부터 깊이 평면까지, 망막으로부터 깊이 평면까지, 접안렌즈(예컨대, 디스플레이 디바이스의 도파관)으로부터 깊이 평면까지 등으로 측정될 수 있다.
[0084] 도 5는 파면 발산을 수정함으로써 3차원 이미저리를 시뮬레이팅하기 위한 접근법의 양상들을 예시한다. 디스플레이 시스템은 이미지 정보로 인코딩된 광(770)을 수신하도록, 그리고 그 광을 사용자의 눈(210)에 출력하도록 구성된 도파관(270)을 포함한다. 도파관(270)은 원하는 깊이 평면(240) 상의 포인트에 의해 생성된 광 필드의 파면 발산에 대응하는 정의된 파면 발산 양을 가진 광(650)을 출력할 수 있다. 일부 실시예들에서, 동일한 파면 발산 양은 그 깊이 평면 상에 제시되는 모든 객체들에 대해 제공된다. 게다가, 사용자의 다른 눈에 유사한 도파관으로부터의 이미지 정보가 제공될 수 있다는 것이 예시될 것이다.
[0085] 일부 실시예들에서, 단일 도파관은 단일 또는 제한된 수의 깊이 평면들에 대응하는 세팅된 파면 발산 양을 가진 광을 출력하도록 구성될 수 있고 그리고/또는 도파관은 제한된 범위의 파장들의 광을 출력하도록 구성될 수 있다. 결과적으로, 일부 실시예들에서, 복수의 도파관들 또는 도파관들의 스택은 상이한 깊이 평면들에 대해 상이한 파면 발산 양들을 제공하는 데 그리고/또는 상이한 범위들의 파장들의 광을 출력하는 데 활용될 수 있다.
[0086] 도 6은 이미지 정보를 사용자에게 출력하기 위한 도파관 스택(stack)의 예를 예시한다. 디스플레이 시스템(250)은 복수의 도파관들(270, 280, 290, 300, 310)을 사용하여 3차원 인식을 눈/뇌에 제공하기 위해 활용될 수 있는 도파관들의 스택, 또는 스택된 도파관 어셈블리(260)를 포함한다. 디스플레이 시스템(250)이 일부 실시예들에서 광 필드 디스플레이로 고려될 수 있다는 것이 인식될 것이다. 게다가, 도파관 어셈블리(260)는 또한 접안 렌즈로 지칭될 수 있다.
[0087] 일부 실시예들에서, 디스플레이 시스템(250)은 이접운동에 대한 실질적으로 연속적인 단서들 및 원근조절에 대한 다수의 이산 단서들을 제공하도록 구성될 수 있다. 이접운동에 대한 단서들은 상이한 이미지들을 사용자의 눈들의 각각에 디스플레이함으로써 제공될 수 있고, 그리고 원근조절에 대한 단서들은 이산 파면 발산 양들을 가진 이미지들을 형성하는 광을 출력함으로써 제공될 수 있다. 일부 실시예들에서, 파면 발산의 각각의 이산 레벨은 특정 깊이 평면에 대응하고 그리고 도파관들(270, 280, 290, 300, 310) 중 특정 하나의 도파관에 의해 제공될 수 있다.
[0088] 도 6을 계속 참조하면, 도파관 어셈블리(260)는 또한 도파관들 사이에 복수의 피처들(320, 330, 340, 350)을 포함할 수 있다. 일부 실시예들에서, 피처들(320, 330, 340, 350)은 하나 또는 그 초과의 렌즈들일 수 있다. 도파관들(270, 280, 290, 300, 310) 및/또는 복수의 렌즈들(320, 330, 340, 350)은 다양한 레벨들의 파면 곡률 또는 광선 발산으로 이미지 정보를 눈에 전송하도록 구성될 수 있다. 각각의 도파관 레벨은 특정 깊이 평면과 연관될 수 있고 그 깊이 평면에 대응하는 이미지 정보를 출력하도록 구성될 수 있다. 이미지 주입 디바이스들(360, 370, 380, 390, 400)은 도파관들에 대한 광의 소스로서 기능할 수 있고 이미지 정보를 도파관들(270, 280, 290, 300, 310)에 주입하는 데 활용될 수 있고, 이 도파관들 각각은, 본원에 설명된 바와 같이, 눈(210)을 향한 출력을 위해 각각의 개별 도파관에 걸쳐 인입 광을 분배하도록 구성될 수 있다. 광은 이미지 주입 디바이스들(360, 370, 380, 390, 400)의 출력 표면(410, 420, 430, 440, 450)을 출사하고 도파관들(270, 280, 290, 300, 310)의 대응하는 입력 표면(460, 470, 480, 490, 500)으로 주입된다. 일부 실시예들에서, 입력 표면들(460, 470, 480, 490, 500)의 각각은 대응하는 도파관의 에지일 수 있거나, 대응하는 도파관의 주 표면(즉, 세계(510) 또는 뷰어의 눈(210)을 직접 향하는 도파관 표면들 중 하나)의 부분일 수 있다. 일부 실시예들에서, 단일 광빔(예컨대, 시준된 빔)은 특정 도파관과 연관된 깊이 평면에 대응하는 특정 각도들(및 발산량들)로 눈(210)을 향하여 지향되는 복제된 시준된 빔들의 전체 필드를 출력하기 위해 각각의 도파관으로 주입될 수 있다. 일부 실시예들에서, 이미지 주입 디바이스들(360, 370, 380, 390, 400) 중 하나의 이미지 주입 디바이스는 복수(예컨대, 3개)의 도파관들(270, 280, 290, 300, 310)과 연관되어 이들에 광을 주입할 수 있다.
[0089] 일부 실시예들에서, 이미지 주입 디바이스들(360, 370, 380, 390, 400)은, 이산 디스플레이들이며, 이 각각은 대응하는 도파관(270, 280, 290, 300, 310)으로의 주입을 위한 이미지 정보를 각각 생성한다. 일부 다른 실시예들에서, 이미지 주입 디바이스들(360, 370, 380, 390, 400)은, 예컨대 이미지 정보를 하나 또는 그 초과의 광학 도관들(이를테면, 광섬유 케이블들)을 통하여 이미지 주입 디바이스들(360, 370, 380, 390, 400)의 각각에 파이핑(pipe)할 수 있는 단일 멀티플렉싱된 디스플레이의 출력단들이다. 이미지 주입 디바이스들(360, 370, 380, 390, 400)에 의해 제공된 이미지 정보가 상이한 파장들, 또는 컬러들(예컨대, 본원에 논의된 바와 같이, 상이한 컴포넌트 컬러들)의 광을 포함할 수 있다는 것이 인식될 것이다.
[0090] 일부 실시예들에서, 도파관들(270, 280, 290, 300, 310)로 주입된 광은 광 투사기 시스템(520)에 의해 제공되고, 광 투사기 시스템(520)은 광 방출기, 이를테면 LED(light emitting diode)를 포함할 수 있는 광 모듈(530)을 포함한다. 광 모듈(530)로부터의 광은 빔 분할기(550)를 통해 광 변조기(540), 예컨대 공간 광 변조기로 지향되어 이에 의해 수정될 수 있다. 광 변조기(540)는 도파관들(270, 280, 290, 300, 310)로 주입된 광의 인식된 세기를 변화시켜 광을 이미지 정보로 인코딩하도록 구성될 수 있다. 공간 광 변조기들의 예들은 LCOS(liquid crystal on silicon) 디스플레이들을 포함하는 LCD(liquid crystal displays)를 포함한다. 이미지 주입 디바이스들(360, 370, 380, 390, 400)이 개략적으로 예시되고 그리고 일부 실시예들에서, 이들 이미지 주입 디바이스들이, 광을 도파관들(270, 280, 290, 300, 310) 중 연관된 도파관들로 출력하도록 구성된 공통 투사 시스템의 상이한 광 경로들 및 위치들을 나타낼 수 있다는 것이 인식될 것이다. 일부 실시예들에서, 도파관 어셈블리(260)의 도파관들은 도파관들로 주입된 광을 사용자의 눈들로 중계하면서 이상적인 렌즈로 기능할 수 있다. 이런 개념에서, 객체는 공간 광 변조기(540)일 수 있고 이미지는 깊이 평면 상의 이미지일 수 있다.
[0091] 일부 실시예들에서, 디스플레이 시스템(250)은 다양한 패턴들(예컨대, 래스터(raster) 스캔, 나선형 스캔, 리사주(Lissajous) 패턴들 등)의 광을 하나 또는 그 초과의 도파관들(270, 280, 290, 300, 310) 및 궁극적으로 뷰어의 눈(210)으로 투사하도록 구성된 하나 또는 그 초과의 스캐닝 섬유들을 포함하는 스캐닝 섬유 디스플레이일 수 있다. 일부 실시예들에서, 예시된 이미지 주입 디바이스들(360, 370, 380, 390, 400)은 광을 하나 또는 복수의 도파관들(270, 280, 290, 300, 310)로 주입하도록 구성된 단일 스캐닝 섬유 또는 스캐닝 섬유들의 번들(bundle)을 개략적으로 나타낼 수 있다. 일부 다른 실시예들에서, 예시된 이미지 주입 디바이스들(360, 370, 380, 390, 400)은 복수의 스캐닝 섬유들 또는 복수의 스캐닝 섬유들의 번들들을 개략적으로 나타낼 수 있고, 이들 각각은 도파관들(270, 280, 290, 300, 310) 중 연관된 도파관으로 광을 주입하도록 구성된다. 하나 또는 그 초과의 광섬유들이 광 모듈(530)로부터의 광을 하나 또는 그 초과의 도파관들(270, 280, 290, 300, 310)로 전송하도록 구성될 수 있다는 것이 인식될 것이다. 하나 또는 그 초과의 개재 광학 구조들이 스캐닝 섬유 또는 섬유들과, 하나 또는 그 초과의 도파관들(270, 280, 290, 300, 310) 사이에 제공되어, 예컨대 스캐닝 섬유를 출사하는 광을 하나 또는 그 초과의 도파관들(270, 280, 290, 300, 310)로 재지향시킬 수 있다는 것이 인식될 것이다.
[0092] 제어기(560)는, 이미지 주입 디바이스들(360, 370, 380, 390, 400), 광 소스(530) 및 광 변조기(540)의 동작을 포함하는, 스택된 도파관 어셈블리(260) 중 하나 또는 그 초과의 동작을 제어한다. 일부 실시예들에서, 제어기(560)는 로컬 데이터 프로세싱 모듈(140)의 부분이다. 제어기(560)는, 예컨대 본원에 개시된 다양한 방식들 중 임의의 방식에 따라, 도파관들(270, 280, 290, 300, 310)로의 이미지 정보의 프로비전(provision) 및 타이밍을 조절하는 프로그래밍(예컨대, 비-일시적 매체 내의 명령들)을 포함한다. 일부 실시예들에서, 제어기는 단일 일체형 디바이스, 또는 유선 또는 무선 통신 채널들에 의해 연결되는 분산형 시스템일 수 있다. 제어기(560)는 일부 실시예들에서 프로세싱 모듈들(140 또는 150)(도 9d)의 부분일 수 있다.
[0093] 도 6을 계속 참조하면, 도파관들(270, 280, 290, 300, 310)은 내부 전반사(TIR)에 의해 각각의 개별 도파관 내에서 광을 전파시키도록 구성될 수 있다. 도파관들(270, 280, 290, 300, 310)은 각각 주 최상부 표면 및 주 최하부 표면, 그리고 이들 주 최상부 표면과 주 최하부 표면 사이에서 연장되는 에지들을 가진 평면형일 수 있거나 다른 형상(예컨대, 곡선형)일 수 있다. 예시된 구성에서, 도파관들(270, 280, 290, 300, 310)은 각각, 이미지 정보를 눈(210)에 출력하기 위해 각각의 개별 도파관 내에서 전파되는 광을 도파관 밖으로 재지향시킴으로써 도파관 밖으로 광을 추출하도록 구성된 아웃커플링 광학 엘리먼트들(570, 580, 590, 600, 610)을 포함할 수 있다. 추출된 광은 또한 아웃커플링된 광이라 지칭될 수 있고 아웃커플링 광학 엘리먼트들은 또한 광 추출 광학 엘리먼트들이라 지칭될 수 있다. 추출된 광 빔은, 도파관 내에서 전파되는 광이 광 추출 광학 엘리먼트를 가격하는 위치들에서 도파관에 의해 출력될 수 있다. 아웃커플링 광학 엘리먼트들(570, 580, 590, 600, 610)은 예컨대, 본원에서 추가로 논의된 바와 같이 회절 광학 피처들을 포함하는 격자들일 수 있다. 아웃커플링 광학 엘리먼트들(570, 580, 590, 600, 610)은, 설명의 용이함 및 도면 명확성을 위해 도파관들(270, 280, 290, 300, 310)의 최하부 주 표면들에 배치된 것으로 예시되지만, 본원에서 추가로 논의된 바와 같이, 일부 실시예들에서는, 최상부 및/또는 최하부 주 표면들에 배치될 수 있고, 그리고/또는 도파관들(270, 280, 290, 300, 310)의 볼륨 내에 직접 배치될 수 있다. 일부 실시예들에서, 아웃커플링 광학 엘리먼트들(570, 580, 590, 600, 610)은 도파관들(270, 280, 290, 300, 310)을 형성하기 위해 투명 기판에 부착된 재료의 층으로 형성될 수 있다. 일부 다른 실시예들에서, 도파관들(270, 280, 290, 300, 310)은 모놀리식 재료 피스(piece)일 수 있고 아웃커플링 광학 엘리먼트들(570, 580, 590, 600, 610)은 그 재료 피스의 표면 상에 및/또는 그 내부에 형성될 수 있다.
[0094] 도 6을 계속 참조하면, 본원에 논의된 바와 같이, 각각의 도파관(270, 280, 290, 300, 310)은 특정 깊이 평면에 대응하는 이미지를 형성하기 위해 광을 출력하도록 구성된다. 예컨대, 눈에 가장 가까운 도파관(270)은, (그런 도파관(270)에 주입된) 시준된 광을 눈(210)에 전달하도록 구성될 수 있다. 시준된 광은 광학 무한대 초점 평면을 나타낼 수 있다. 위쪽(up) 다음 도파관(280)은, 시준된 광이 눈(210)에 도달할 수 있기 전에 제1 렌즈(350)(예컨대, 네거티브 렌즈)를 통과하는 시준된 광을 전송하도록 구성될 수 있고; 그런 제1 렌즈(350)는 약간 볼록한 파면 곡률을 생성하도록 구성될 수 있어서, 눈/뇌는 위쪽 그 다음 도파관(280)으로부터 오는 광을, 광학 무한대로부터 눈(210)을 향해 내측으로 더 가까운 제1 초점 평면으로부터 오는 것으로 해석한다. 유사하게, 위쪽 제3 도파관(290)은 눈(210)에 도달하기 전에 제1 렌즈(350) 및 제2 렌즈(340) 둘 모두를 통하여 자신의 출력 광을 통과시키고; 제1 렌즈(350) 및 제2 렌즈(340)의 결합된 광학 파워는 다른 증분 양의 파면 곡률을 생성하도록 구성될 수 있어서, 눈/뇌는 제3 도파관(290)으로부터 오는 광을, 위쪽 다음 도파관(280)으로부터의 광보다는, 광학적 무한대로부터 사람을 향하여 안쪽으로 훨씬 더 가까운 제2 초점 평면으로부터 오는 것으로 해석한다.
[0095] 다른 도파관 층들(300, 310) 및 렌즈들(330, 320)은 유사하게 구성되고, 스택 내 가장 높은 도파관(310)은, 자신의 출력을, 사람과 가장 가까운 초점 평면을 대표하는 총(aggregate) 초점 파워에 대해 자신과 눈 사이의 렌즈들 모두를 통하여 전송한다. 스택된 도파관 어셈블리(260)의 다른 측 상에서 세계(510)로부터 오는 광을 보고/해석할 때, 렌즈들(320, 330, 340, 350)의 스택을 보상하기 위하여, 보상 렌즈 층(620)이 아래쪽 렌즈 스택(320, 330, 340, 350)의 총 파워를 보상하도록 스택의 최상부에 배치될 수 있다. 그런 구성은 이용가능한 도파관/렌즈 쌍들이 존재하는 만큼 많은 인식되는 초점 평면들을 제공한다. 도파관들의 아웃커플링 광학 엘리먼트들과 렌즈들의 포커싱 양상들 둘 모두는 정적(즉, 동적이거나 전자-활성이지 않음)일 수 있다. 일부 대안적인 실시예들에서, 어느 하나 또는 둘 모두는 전자-활성 피처들을 사용하여 동적일 수 있다.
[0096] 일부 실시예들에서, 도파관들(270, 280, 290, 300, 310) 중 2개 또는 그 초과는 동일한 연관된 깊이 평면을 가질 수 있다. 예컨대, 다수의 도파관들(270, 280, 290, 300, 310)은 이미지들 세트를 동일한 깊이 평면에 출력하도록 구성될 수 있거나, 또는 도파관들(270, 280, 290, 300, 310)의 다수의 서브세트들은 이미지들 세트를, 각각의 깊이 평면에 대해 하나의 세트씩, 동일한 복수의 깊이 평면들에 출력하도록 구성될 수 있다. 이것은 이들 깊이 평면들에서 확장된 시야를 제공하기 위해 타일화된(tiled) 이미지를 형성하 데 장점들을 제공할 수 있다.
[0097] 도 6을 계속 참조하면, 아웃커플링 광학 엘리먼트들(570, 580, 590, 600, 610)은 자신의 개별 도파관들 밖으로 광을 재지향시키고 그리고 도파관과 연관된 특정 깊이 평면에 대해 적절한 양의 발산 또는 시준으로 이 광을 출력하도록 구성될 수 있다. 결과적으로, 상이한 연관된 깊이 평면들을 가진 도파관들은 상이한 구성들의 아웃커플링 광학 엘리먼트들(570, 580, 590, 600, 610)을 가질 수 있고, 아웃커플링 광학 엘리먼트들(570, 580, 590, 600, 610)은 연관된 깊이 평면에 따라 상이한 발산 양으로 광을 출력한다. 일부 실시예들에서, 광 추출 광학 엘리먼트들(570, 580, 590, 600, 610)은 특정 각도들로 광을 출력하도록 구성될 수 있는 볼류메트릭(volumetric) 또는 표면 피처들일 수 있다. 예컨대, 광 추출 광학 엘리먼트들(570, 580, 590, 600, 610)은 볼륨 홀로그램들, 표면 홀로그램들, 및/또는 회절 격자들일 수 있다. 일부 실시예들에서, 피처들(320, 330, 340, 350)은 렌즈들이 아닐 수 있고; 오히려, 이들은 단순히 스페이서들(예컨대, 공기 갭들을 형성하기 위한 구조들 및/또는 클래딩(cladding) 층들)일 수 있다.
[0098] 일부 실시예들에서, 아웃커플링 광학 엘리먼트들(570, 580, 590, 600, 610)은 "회절 광학 엘리먼트"(또한 본원에서 "DOE"로서 지칭됨) 또는 회절 패턴을 형성하는 회절 피처들이다. 바람직하게, DOE들은 충분히 낮은 회절 효율을 가져서, 빔의 광의 일부만이 DOE의 각각의 교차로 인해 눈(210)을 향하여 편향되지만, 나머지는 TIR에 의해 도파관을 통해 계속 이동한다. 따라서, 이미지 정보를 운반하는 광은 다수의 위치들에서 도파관을 출사하는 다수의 관련된 출사 빔들로 나뉘어지고, 그 결과는 도파관 내에서 이리저리 바운싱(bouncing)되는 이런 특정 시준된 빔에 대해 눈(210)을 향하여 상당히 균일한 출사 방출 패턴이다.
[0099] 일부 실시예들에서, 하나 또는 그 초과의 DOE들은, 이들이 활발하게 회절하는 "온" 상태들과 이들이 현저하게 회절하지 않는 "오프" 상태들 사이에서 스위칭가능할 수 있다. 예컨대, 스위칭가능 DOE는, 마이크로액적(microdroplet)들이 호스트 매질에 회절 패턴을 포함하는 폴리머 확산형 액정 층을 포함할 수 있고, 마이크로액적들의 굴절률은 호스트 재료의 굴절률과 실질적으로 매칭하도록 스위칭될 수 있거나(이 경우에 패턴은 입사 광을 뚜렷하게 회절시키지 않음) 또는 마이크로액적은 호스트 매질의 인덱스(index)와 매칭하지 않는 인덱스로 스위칭될 수 있다(이 경우 패턴은 입사 광을 활발하게 회절시킴).
[0100] 일부 실시예들에서, 카메라 어셈블리(630)(예컨대, 가시 광 및 적외선 광 카메라들을 포함하는 디지털 카메라)는, 예컨대 사용자 입력들을 검출하고 그리고/또는 사용자의 생리학적 상태를 모니터링하도록 눈(210)의 이미지들 및/또는 눈(210) 주위의 조직을 캡처하기 위해 제공될 수 있다. 본원에서 사용된 바와 같이, 카메라는 임의의 이미지 캡처 디바이스일 수 있다. 일부 실시예들에서, 카메라 어셈블리(630)는 이미지 캡처 디바이스 및 눈에 광(예컨대, 적외선 광)을 투사하기 위한 광 소스를 포함할 수 있고, 이후 광은 눈에 의해 반사되고 이미지 캡처 디바이스에 의해 검출될 수 있다. 일부 실시예들에서, 카메라 어셈블리(630)는 프레임(80)에 부착될 수 있고(도 9d) 그리고 카메라 어셈블리(630)로부터의 이미지 정보를 프로세싱할 수 있는 프로세싱 모듈들(140 및/또는 150)과 전기적으로 통신할 수 있다. 일부 실시예들에서, 하나의 카메라 어셈블리(630)는 각각의 눈을 별개로 모니터링하기 위해 각각의 눈에 활용될 수 있다.
[0101] 이제 도 7을 참조하면, 도파관에 의해 출력된 출사 빔들의 예가 도시된다. 하나의 도파관이 예시되지만, 도파관 어셈블리(260)가 다수의 도파관들을 포함하는 경우, 도파관 어셈블리(260)(도 6)의 다른 도파관들이 유사하게 기능할 수 있다는 것이 인식될 것이다. 광(640)은 도파관(270)의 입력 표면(460)에서 도파관(270)으로 주입되고 TIR에 의해 도파관(270) 내에서 전파된다. 광(640)이 DOE(570) 상에 충돌하는 포인트들에서, 광의 일부는 출사 빔들(650)로서 도파관을 출사한다. 출사 빔들(650)은 실질적으로 평행한 것으로 예시되지만, 본원에 논의된 바와 같이, 이들 출사 빔들(650)은 또한 도파관(270)과 연관된 깊이 평면에 따라, (예컨대, 발산하는 출사 빔들을 형성하는) 각도로 눈(210)으로 전파되도록 재지향될 수 있다. 실질적으로 평행한 출사 빔들이 눈(210)으로부터 먼 거리(예컨대, 광학 무한대)에 있는 깊이 평면 상에 세팅되는 것으로 보이는 이미지들을 형성하기 위해 광을 아웃커플링하는 아웃커플링 광학 엘리먼트들을 갖는 도파관을 나타낼 수 있다는 것이 인식될 것이다. 다른 도파관들 또는 아웃커플링 광학 엘리먼트들의 다른 세트들은 더 발산하는 출사 빔 패턴을 출력할 수 있고, 이 출사 빔 패턴은 눈(210)이 망막 상에 포커스를 맞추기 위해 더 가까운 거리에 원근조절되는 것을 요구할 것이고 뇌에 의해 광학 무한대보다 눈(210)에 더 가까운 거리로부터의 광으로서 해석될 것이다.
[0102] 일부 실시예들에서, 풀 컬러 이미지는 컴포넌트 컬러들, 예컨대 3개 또는 그 초과의 컴포넌트 컬러들 각각에 이미지들을 오버레잉함으로써 각각의 깊이 평면에 형성될 수 있다. 도 8은, 각각의 깊이 평면이 다수의 상이한 컴포넌트 컬러들을 사용하여 형성된 이미지들을 포함하는 스택된 도파관 어셈블리의 예를 예시한다. 비록 더 많거나 더 적은 깊이들이 또한 고려되지만, 예시된 실시예는 깊이 평면들(240a - 240f)을 도시한다. 각각의 깊이 평면은, 제1 컬러(G)의 제1 이미지; 제2 컬러(R)의 제2 이미지; 및 제3 컬러(B)의 제3 이미지를 포함하는, 자신과 연관된 3 또는 그 초과의 컴포넌트 컬러 이미지들을 가질 수 있다. 상이한 깊이 평면들은 문자들 G, R 및 B 다음에 디옵터들(dpt)에 대한 상이한 숫자들로 도면에 표시된다. 단지 예들로서, 이들 문자들 각각 다음의 숫자들은 디옵터들(1/m), 또는 뷰어로부터 깊이 평면의 역거리(inverse distance)를 표시하고, 도면들에서 각각의 박스는 개별 컴포넌트 컬러 이미지를 나타낸다. 일부 실시예들에서, 상이한 파장들의 광의 눈의 포커싱의 차이들을 고려하기 위해, 상이한 컴포넌트 컬러들에 대해 깊이 평면들의 정확한 배치는 달라질 수 있다. 예컨대, 주어진 깊이 평면에 대해 상이한 컴포넌트 컬러 이미지들이 사용자로부터 상이한 거리들에 대응하는 깊이 평면들 상에 배치될 수 있다. 그런 어레인지먼트는 시력 및 사용자 편안함을 증가시킬 수 있고 그리고/또는 색수차들을 감소시킬 수 있다.
[0103] 일부 실시예들에서, 각각의 컴포넌트 컬러의 광은 단일 전용 도파관에 의해 출력될 수 있고, 결과적으로 각각의 깊이 평면은 자신과 연관된 다수의 도파관들을 가질 수 있다. 그런 실시예들에서, 도면들에서 문자들 G, R 또는 B를 포함하는 각각의 박스는 개별 도파관을 나타내는 것으로 이해될 수 있고, 그리고 깊이 평면당 3개의 도파관들이 제공될 수 있고, 여기서 깊이 평면당 3개의 컴포넌트 컬러 이미지들이 제공된다. 각각의 깊이 평면과 연관된 도파관들이 설명의 용이함을 위해 이 도면에서 서로 인접하게 도시되지만, 물리적 디바이스에서, 도파관들 모두가 레벨당 하나의 도파관을 가진 스택으로 배열될 수 있다는 것이 인식될 것이다. 일부 다른 실시예들에서, 다수의 컴포넌트 컬러들은 동일한 도파관에 의해 출력될 수 있어서, 예컨대 깊이 평면당 단일 도파관만이 제공될 수 있다.
[0104] 도 8을 계속 참조하면, 일부 실시예들에서, G는 녹색이고, R은 적색이고, 그리고 B는 청색이다. 일부 다른 실시예들에서, 자홍색 및 청록색을 포함하는, 광의 다른 파장들과 연관된 다른 컬러들이 적색, 녹색 또는 청색 중 하나 또는 그 초과 외에 사용될 수 있거나 적색, 녹색 또는 청색 중 하나 또는 그 초과를 대체할 수 있다.
[0105] 본 개시내용 전반에 걸쳐 광의 주어진 컬러에 대한 참조들이 그 주어진 컬러인 것으로서 뷰어에 의해 인식되는 광의 파장 범위 내의 하나 또는 그 초과의 파장들의 광을 포함하는 것으로 이해될 것이라는 것이 인식될 것이다. 예컨대, 적색 광은 약 620-780 nm 범위의 하나 또는 그 초과의 파장들의 광을 포함할 수 있고, 녹색 광은 약 492-577 nm의 범위의 하나 또는 그 초과의 파장들의 광을 포함할 수 있고, 그리고 청색 광은 약 435-493 nm의 범위의 하나 또는 그 초과의 파장들의 광을 포함할 수 있다.
[0106] 일부 실시예들에서, 광 소스(530)(도 6)는 뷰어의 시각 인식 범위를 벗어난 하나 또는 그 초과의 파장들, 예컨대 적외선 및/또는 자외선 파장들의 광을 방출하도록 구성될 수 있다. 게다가, 디스플레이(250)의 도파관들의 인커플링, 아웃커플링 및 다른 광 재지향 구조들은, 예컨대 이미징 및/또는 사용자 시뮬레이션 애플리케이션들을 위해, 디스플레이로부터의 이런 광을 사용자의 눈(210)을 향해 지향시키고 방출하도록 구성될 수 있다.
[0107] 이제 도 9a를 참조하면, 일부 실시예들에서, 도파관에 충돌하는 광은 도파관에 그 광을 인커플링하기 위해 재지향될 필요가 있을 수 있다. 인커플링 광학 엘리먼트는 자신의 대응하는 도파관으로 광을 재지향시키고 인커플링하는 데 사용될 수 있다. 도 9a는 인커플링 광학 엘리먼트를 각각 포함하는 복수의 스택된 도파관들 또는 스택된 도파관들의 세트(660)의 예의 측단면도를 예시한다. 도파관들은 하나 또는 그 초과의 상이한 파장들, 또는 하나 또는 그 초과의 상이한 범위들의 파장들의 광을 출력하도록 각각 구성될 수 있다. 이미지 주입 디바이스들(360, 370, 380, 390, 400) 중 하나 또는 그 초과로부터의 광이 인커플링을 위해 광이 재지향되기를 요구하는 포지션으로부터 도파관들로 주입되는 것을 제외하고, 스택(660)이 스택(260)(도 6)에 대응할 수 있고 스택(660)의 예시된 도파관들이 복수의 도파관들(270, 280, 290, 300, 310)의 부분에 대응할 수 있다는 것이 인식될 것이다.
[0108] 스택된 도파관들의 예시된 세트(660)는 도파관들(670, 680 및 690)을 포함한다. 각각의 도파관은 연관된 인커플링 광학 엘리먼트(도파관 상의 광 입력 영역으로 또한 지칭될 수 있음)를 포함하는데, 예컨대 도파관(670)의 주 표면(예컨대, 상부 주 표면) 상에 인커플링 광학 엘리먼트(700)가 배치되고, 도파관(680)의 주 표면(예컨대, 상부 주 표면) 상에 인커플링 광학 엘리먼트(710)가 배치되고, 그리고 도파관(690)의 주 표면(예컨대, 상부 주 표면) 상에 인커플링 광학 엘리먼트(720)가 배치된다. 일부 실시예들에서, 인커플링 광학 엘리먼트들(700, 710, 720) 중 하나 또는 그 초과는 (특히 하나 또는 그 초과의 인커플링 광학 엘리먼트들이 반사성, 편향 광학 엘리먼트들인 경우) 개별 도파관(670, 680, 690)의 최하부 주 표면 상에 배치될 수 있다. 예시된 바와 같이, 인커플링 광학 엘리먼트들(700, 710, 720)은, 특히, 이들 인커플링 광학 엘리먼트들이 투과성, 편향 광학 엘리먼트들인 경우, 이들 개별 도파관(670, 680, 690)의 상부 주 표면(또는 그 다음의 하부 도파관의 최상부) 상에 배치될 수 있다. 일부 실시예들에서, 인커플링 광학 엘리먼트들(700, 710, 720)은 개별 도파관(670, 680, 690)의 몸체에 배치될 수 있다. 일부 실시예들에서, 본원에 논의된 바와 같이, 인커플링 광학 엘리먼트들(700, 710, 720)은 파장 선택적이어서, 이들 인커플링 광학 엘리먼트들은 다른 파장들의 광을 투과시키면서 하나 또는 그 초과의 파장들의 광을 선택적으로 재지향시킨다. 인커플링 광학 엘리먼트들(700, 710, 720)이, 이들 개개의 도파관(670, 680, 690)의 일 측부 또는 모서리 상에 예시되지만, 일부 실시예들에서, 이들은, 그 개별 도파관(670, 680, 690)의 다른 영역들에 배치될 수 있다는 것이 인식될 것이다.
[0109] 예시된 바와 같이, 인커플링 광학 엘리먼트들(700, 710, 720)은 서로 측방향으로 오프셋될 수 있다. 일부 실시예들에서, 각각의 인커플링 광학 엘리먼트는 오프셋될 수 있어서, 각각의 인커플링 광학 엘리먼트는, 다른 인커플링 광학 엘리먼트를 통과하지 않는 광을 수신한다. 예컨대, 각각의 인커플링 광학 엘리먼트(700, 710, 720)는 도 6에 도시된 바와 같이 상이한 이미지 주입 디바이스(360, 370, 380, 390 및 400)로부터 광을 수신하도록 구성될 수 있고, 그리고 실질적으로 인커플링 광학 엘리먼트들(700, 710, 720) 중 다른 인커플링 광학 엘리먼트들로부터 광을 수신하지 않도록 다른 인커플링 광학 엘리먼트들(700, 710, 720)로부터 분리(예컨대, 측방향으로 이격)될 수 있다.
[0110] 각각의 도파관은 또한 연관된 광 분배 엘리먼트들을 포함하는데, 예컨대, 도파관(670)의 주 표면(예컨대, 최상부 주 표면) 상에 광 분배 엘리먼트들(730)이 배치되고, 도파관(680)의 주 표면(예컨대, 최상부 주 표면) 상에 광 분배 엘리먼트들(740)이 배치되고, 그리고 도파관(690)의 주 표면(예컨대, 최상부 주 표면) 상에 광 분배 엘리먼트들(750)이 배치된다. 일부 다른 실시예들에서, 광 분배 엘리먼트들(730, 740, 750)은 각각 연관된 도파관들(670, 680, 690)의 최하부 주 표면 상에 배치될 수 있다. 일부 다른 실시예들에서, 광 분배 엘리먼트들(730, 740, 750)은 각각 연관된 도파관들(670, 680, 690)의 최상부 및 최하부 주 표면 둘 모두 상에 배치될 수 있거나; 또는 광 분배 엘리먼트들(730, 740, 750)은 각각 상이한 연관된 도파관들(670, 680, 690)의 최상부 및 최하부 주 표면들 중 상이한 주 표면들 상에 배치될 수 있다.
[0111] 도파관들(670, 680, 690)은 예컨대, 가스, 액체 및/또는 고체 재료 층들에 의해 이격되고 분리될 수 있다. 예컨대, 예시된 바와 같이, 층(760a)은 도파관들(670 및 680)을 분리할 수 있고; 그리고 층(760b)은 도파관들(680 및 690)을 분리할 수 있다. 일부 실시예들에서, 층들(760a 및 760b)은 낮은 굴절률 재료들(즉, 도파관들(670, 680, 690) 중 바로 인접한 도파관을 형성하는 재료보다 더 낮은 굴절률을 가진 재료들)로 형성된다. 바람직하게, 층들(760a, 760b)을 형성하는 재료의 굴절률은 도파관들(670, 680, 690)을 형성하는 재료의 굴절률보다 0.05 또는 그 초과, 또는 0.10 또는 그 미만이다. 유리하게, 더 낮은 굴절률 층들(760a, 760b)은 도파관들(670, 680, 690)을 통해 광의 내부 전반사(TIR)(예컨대, 각각의 도파관의 최상부 주 표면과 최하부 주 표면 사이의 TIR)를 가능하게 하는 클래딩 층들로서 기능할 수 있다. 일부 실시예들에서, 층들(760a, 760b)은 공기로 형성된다. 예시되지 않았지만, 도파관들의 예시된 세트(660)의 최상부 및 최하부가 바로 이웃하는 클래딩 층들을 포함할 수 있다는 것이 인식될 것이다.
[0112] 바람직하게, 제조의 용이함 및 다른 고려 사항들 때문에, 도파관들(670, 680, 690)을 형성하는 재료는 유사하거나 동일하고, 층들(760a, 760b)을 형성하는 재료는 유사하거나 동일하다. 일부 실시예들에서, 도파관들(670, 680, 690)을 형성하는 재료는 하나 또는 그 초과의 도파관들 사이에서 상이할 수 있고, 그리고/또는 층들(760a, 760b)을 형성하는 재료는 상이하지만, 위에서 주목된 다양한 굴절률 관계들을 여전히 유지할 수 있다.
[0113] 도 9a를 계속 참조하면, 광선들(770, 780, 790)은 도파관들의 세트(660) 상에 입사한다. 광선들(770, 780, 790)이 하나 또는 그 초과의 이미지 주입 디바이스들(360, 370, 380, 390, 400)(도 6)에 의해 도파관들(670, 680, 690)로 주입될 수 있다는 것이 인식될 것이다.
[0114] 일부 실시예들에서, 광선들(770, 780, 790)은 상이한 특성들, 예컨대 상이한 컬러들에 대응할 수 있는 상이한 파장들 또는 상이한 범위들의 파장들을 가진다. 인커플링 광학 엘리먼트들(700, 710, 720) 각각은 입사 광을 편향시켜, 광은 TIR에 의해 도파관들(670, 680, 690) 중 각 도파관을 통해 전파된다. 일부 실시예들에서, 인커플링 광학 엘리먼트들(700, 710, 720) 각각은, 하나 또는 그 초과의 특정 파장들의 광을 선택적으로 편향시키지만, 다른 파장들을 아래 놓인 도파관 및 연관된 인커플링 광학 엘리먼트로 투과시킨다.
[0115] 예컨대, 인커플링 광학 엘리먼트(700)는, 제1 파장 또는 파장들의 범위를 가진 광선(770)을 편향시키지만, 각각 상이한 제2 및 제3 파장들 또는 파장들의 범위들을 가진 광선들(780 및 790)을 투과시키도록 구성될 수 있다. 투과된 광선(780)은 제2 파장 또는 파장들의 범위의 광을 편향시키도록 구성된 인커플링 광학 엘리먼트(710)에 충돌하여 이에 의해 편향된다. 광선(790)은 제3 파장 또는 파장들의 범위의 광을 선택적으로 편향시키도록 구성된 인커플링 광학 엘리먼트(720)에 의해 편향된다.
[0116] 도 9a를 계속 참조하면, 편향된 광선들(770, 780, 790)은, 그들이 대응하는 도파관(670, 680, 690)을 통해 전파되도록 편향된다; 즉, 각각의 도파관의 인커플링 광학 엘리먼트들(700, 710, 720)은 광을 그 대응하는 도파관(670, 680, 690)에 인커플링하기 위해 광을 그 대응하는 도파관으로 편향시킨다. 광선들(770, 780, 790)은 광이 TIR에 의해 개별 도파관(670, 680, 690)을 통해 전파되게 하는 각도들로 편향된다. 광선들(770, 780, 790)은, 도파관의 대응하는 광 분배 엘리먼트들(730, 740, 750)에 충돌할 때까지 TIR에 의해 개별 도파관(670, 680, 690)을 통해 전파된다.
[0117] 이제 도 9b를 참조하면, 도 9a의 복수의 스택된 도파관들의 예의 사시도가 예시된다. 위에서 주목된 바와 같이, 인커플링된 광선들(770, 780, 790)은 각각 인커플링 광학 엘리먼트들(700, 710, 720)에 의해 편향되고, 이어서 각각 도파관들(670, 680, 690) 내에서 TIR에 의해 전파된다. 이어서, 광선들(770, 780, 790)은 각각 광 분배 엘리먼트들(730, 740, 750)에 충돌한다. 광 분배 엘리먼트들(730, 740, 750)은 광선들(770, 780, 790)을 편향시켜, 이들 광선들(770, 780, 790)은 각각 아웃커플링 광학 엘리먼트들(800, 810, 820)을 향해 전파된다.
[0118] 일부 실시예들에서, 광 분배 엘리먼트들(730, 740, 750)은 OPE(orthogonal pupil expander)들이다. 일부 실시예들에서, OPE들은, 광을 아웃커플링 광학 엘리먼트들(800, 810, 820)로 편향 또는 분배하고, 그리고 일부 실시예들에서, 광이 아웃커플링 광학 엘리먼트들로 전파될 때 이 광의 빔 또는 스폿(spot) 사이즈를 또한 증가시킬 수 있다. 일부 실시예들에서, 광 분배 엘리먼트들(730, 740, 750)은 생략될 수 있고 인커플링 광학 엘리먼트들(700, 710, 720)은 광을 직접 아웃커플링 광학 엘리먼트들(800, 810, 820)로 편향시키도록 구성될 수 있다. 예컨대, 도 9a를 참조하면, 광 분배 엘리먼트들(730, 740, 750)은 각각 아웃커플링 광학 엘리먼트들(800, 810, 820)로 대체될 수 있다. 일부 실시예들에서, 아웃커플링 광학 엘리먼트들(800, 810, 820)은 뷰어의 눈(210)(도 7)으로 광을 지향시키는 EP(exit pupil)들 또는 EPE(exit pupil expander)들이다. OPE들이 적어도 하나의 축에서 눈 박스의 치수들을 증가시키도록 구성될 수 있고 EPE들이 OPE들의 축을 교차하는, 예컨대 수직하는 축에서 눈 박스를 증가시킬 수 있다는 것이 인식될 것이다. 예컨대, 각각의 OPE는, OPE에 부딪치는 광의 일부를 동일한 도파관의 EPE로 재지향시키면서, 광의 나머지 부분이 도파관 아래로 계속 전파되는 것을 허용하도록 구성될 수 있다. 다시 OPE에 충돌할 때, 이 나머지 광의 일부가 EPE로 재지향되고, 그리고 이 나머지 광의 나머지 부분은 도파관 아래로 추가로 계속 전파되는 식이다. 유사하게, EPE에 부딪칠 때, 충돌 광의 일부는 도파관으로부터 사용자를 향해 지향되고, 그리고 이 출돌 광의 나머지 부분은, 다시 EP에 부딪칠 때까지 도파관을 통해 계속 전파되고, 다시 충돌할 때 이 충돌 광의 일부가 도파관의 밖으로 지향되는 식이다. 결과적으로, 인커플링된 광의 단일 빔은, 그 광의 일부가 OPE 또는 EPE에 의해 재지향될 때마다 "복제"될 수 있고, 이에 의해 도 6에 도시된 바와 같이, 복제된 광 빔들의 필드가 형성된다. 일부 실시예들에서, OPE 및/또는 EPE는 광 빔들의 사이즈를 수정하도록 구성될 수 있다.
[0119] 따라서, 도 9a 및 도 9b를 참조하면, 일부 실시예들에서, 도파관들의 세트(660)는 도파관들(670, 680, 690); 인커플링 광학 엘리먼트들(700, 710, 720); 광 분배 엘리먼트들(예컨대, OPE들)(730, 740, 750); 및 각각의 컴포넌트 컬러에 대한 아웃커플링 광학 엘리먼트들(예컨대, EP들)(800, 810, 820)을 포함한다. 도파관들(670, 680, 690)은 서로의 사이에 공기 갭/클래딩 층이 있게 스택될 수 있다. 인커플링 광학 엘리먼트들(700, 710, 720)은 입사 광을 자신의 도파관으로 재지향시키거나 편향시킨다(상이한 인커플링 광학 엘리먼트들은 상이한 파장들의 광을 수신함). 이어서, 광은 개별 도파관(670, 680, 690) 내에서 TIR을 초래할 각도로 전파된다. 도시된 예에서, 광선(770)(예컨대, 청색 광)은 이전에 설명된 방식으로, 제1 인커플링 광학 엘리먼트(700)에 의해 편향되고, 이어서 도파관 아래로 계속 바운스하여, 광 분배 엘리먼트(예컨대, OPE들)(730) 및 이어서 아웃커플링 광학 엘리먼트(예컨대, EP들)(800)와 상호작용한다. 광선들(780 및 790)(예컨대, 각각 녹색 및 적색 광)은 도파관(670)을 통과할 것이고, 광선(780)은 인커플링 광학 엘리먼트(710)에 충돌하여 이에 의해 편향된다. 이어서, 광선(780)은 TIR에 의해 도파관(680) 아래로 바운스하고, 자신의 광 분배 엘리먼트(예컨대, OPE들)(740) 및 이어서 아웃커플링 광학 엘리먼트(예컨대, EP들)(810)로 진행된다. 마지막으로, 광선(790)(예컨대, 적색 광)은 도파관(690)을 통과하여 도파관(690)의 광 인커플링 광학 엘리먼트들(720) 상에 충돌한다. 광 인커플링 광학 엘리먼트들(720)은 광선(790)을 편향시켜, 광선은 TIR에 의해 광 분배 엘리먼트(예컨대, OPE들)(750)로, 이어서 TIR에 의해 아웃커플링 광학 엘리먼트(예컨대, EP들)(820)로 전파된다. 이어서, 아웃커플링 광학 엘리먼트(820)는 마지막으로 광선(790)을, 다른 도파관들(670, 680)로부터 아웃커플링된 광을 또한 수신하는 뷰어에게 아웃커플링한다.
[0120] 도 9c는 도 9a 및 도 9b의 복수의 스택된 도파관들의 예의 평면도를 예시한다. 예시된 바와 같이, 각각의 도파관의 연관된 광 분배 엘리먼트(730, 740, 750) 및 연관된 아웃커플링 광학 엘리먼트(800, 810, 820)와 함께, 도파관들(670, 680, 690)은 수직으로 정렬될 수 있다. 그러나, 본원에서 논의된 바와 같이, 인커플링 광학 엘리먼트들(700, 710, 720)은 수직으로 정렬되지 않고; 오히려, 인커플링 광학 엘리먼트들은 바람직하게 비-오버랩핑된다(예컨대, 하향식 도면에서 도시된 바와 같이 측방향으로 이격됨). 본원에서 추가로 논의된 바와 같이, 이런 비오버랩핑 공간 어레인지먼트는 일대일 방식으로 상이한 리소스들로부터 상이한 도파관들로 광의 주입을 가능하게 하고, 이에 의해 특정 광 소스가 특정 도파관에 고유하게 커플링되는 것이 허용된다. 일부 실시예들에서, 비오버랩핑 공간-분리 인커플링 광학 엘리먼트들을 포함하는 어레인지먼트들은 시프트된 동공 시스템으로 지칭될 수 있고, 그리고 이들 어레인지먼트들 내의 인커플링 광학 엘리먼트들은 서브 동공들에 대응할 수 있다.
[0121] 도 9d는, 본원에 개시된 다양한 도파관들 및 관련된 시스템들이 통합될 수 있는 웨어러블 디스플레이 시스템(60)의 예를 예시한다. 일부 실시예들에서, 디스플레이 시스템(60)은 도 6의 시스템(250)이고, 도 6은 그 시스템(60)의 일부 부분들을 더 상세히 개략적으로 보여준다. 예컨대, 도 6의 도파관 어셈블리(260)는 디스플레이(70)의 부분일 수 있다.
[0122] 도 9d를 계속 참조하면, 디스플레이 시스템(60)은 디스플레이(70), 및 그 디스플레이(70)의 기능을 지원하기 위한 다양한 기계적 및 전자적 모듈들 및 시스템들을 포함한다. 디스플레이(70)는 디스플레이 시스템 사용자 또는 뷰어(90)에 의해 착용가능하고 그리고 사용자(90)의 눈들의 전면에 디스플레이(70)를 포지셔닝하도록 구성된 프레임(80)에 커플링될 수 있다. 디스플레이(70)는 일부 실시예들에서 안경류로 고려될 수 있다. 일부 실시예들에서, 스피커(100)는 프레임(80)에 커플링되고 사용자(90)의 외이도(ear canal)에 인접하게 포지셔닝되도록 구성된다(일부 실시예들에서, 도시되지 않은 다른 스피커가 선택적으로 사용자의 다른 외이도에 인접하게 포지셔닝되어 스테레오/형상화가능 사운드 제어를 제공할 수 있음). 디스플레이 시스템(60)은 또한 하나 또는 그 초과의 마이크로폰들(110) 또는 사운드를 검출하기 위한 다른 디바이스들을 포함할 수 있다. 일부 실시예들에서, 마이크로폰은 사용자가 입력들 또는 커맨드들(예컨대, 음성 메뉴 커맨드들, 자연어 질문들 등의 선택)을 시스템(60)에 제공하게 하도록 구성되고 그리고/또는 다른 사람들(예컨대, 유사한 디스플레이 시스템들의 다른 사용자들)과 오디오 통신을 허용할 수 있다. 마이크로폰은 추가로 오디오 데이터(예컨대, 사용자 및/또는 환경으로부터의 사운드들)를 수집하도록 주변 센서로서 구성될 수 있다. 일부 실시예들에서, 디스플레이 시스템은 또한 주변 센서(120a)를 포함할 수 있고, 주변 센서(120a)는 프레임(80)으로부터 분리되고 사용자(90)의 몸체에(예컨대, 사용자(90)의 머리, 몸통, 손발 등에) 부착될 수 있다. 주변 센서(120a)는 일부 실시예들에서 사용자(90)의 생리학적 상태를 특징으로 하는 데이터를 획득하도록 구성될 수 있다. 예컨대, 센서(120a)는 전극일 수 있다.
[0123] 도 9d를 계속 참조하면, 디스플레이(70)는 다양한 구성들로 장착될 수 있는, 이를테면 프레임(80)에 고정되게 부착되거나, 사용자에 의해 착용된 헬멧 또는 모자에 고정되게 부착되거나, 헤드폰들에 임베딩되거나, 그렇지 않으면 (예컨대, 백팩(backpack)-스타일 구성으로, 벨트-커플링 스타일 구성으로) 사용자(90)에게 제거가능하게 부착되는 로컬 데이터 프로세싱 모듈(140)에, 통신 링크(130), 이를테면 유선 리드 또는 무선 연결성에 의해 동작가능하게 커플링된다. 유사하게, 센서(120a)는 통신 링크(120b), 예컨대 유선 리드 또는 무선 연결성에 의해 로컬 프로세서 및 데이터 모듈(140)에 동작가능하게 커플링될 수 있다. 로컬 프로세싱 및 데이터 모듈(140)은 하드웨어 프로세서뿐 아니라, 디지털 메모리 이를테면 비-휘발성 메모리(예컨대, 플래시 메모리 또는 하드 디스크 드라이브들)를 포함할 수 있고, 이 둘 모두는 데이터의 프로세싱, 캐싱(caching) 및 저장을 돕는 데 활용될 수 있다. 선택적으로, 로컬 프로세서 및 데이터 모듈(140)은 하나 또는 그 초과의 CPU(central processing unit)들, GPU(graphics processing unit)들, 전용 프로세싱 하드웨어 등을 포함할 수 있다. 데이터는, a) (예컨대 프레임(80)에 동작가능하게 커플링되거나 그렇지 않으면 사용자(90)에게 부착될 수 있는) 센서들, 이를테면 이미지 캡처 디바이스들(이를테면 카메라들), 마이크로폰들, 관성 측정 유닛들, 가속도계들, 컴파스(compass)들, GPS 유닛들, 라디오 디바이스들, 자이로(gyro)들 및/또는 본원에 개시된 다른 센서들로부터 캡처되고; 그리고/또는 b) 원격 프로세싱 모듈(150) 및/또는 원격 데이터 저장소(160)(가상 콘텐츠에 관련된 데이터를 포함함)를 사용하여 획득 및/또는 프로세싱되고, 그런 프로세싱 또는 리트리벌(retrieval) 후 가능하게 디스플레이(70)에 전달되는 데이터를 포함한다. 로컬 프로세싱 및 데이터 모듈(140)은 통신 링크들(170, 180)에 의해, 이를테면 유선 또는 무선 통신 링크들을 통하여, 원격 프로세싱 모듈(150) 및 원격 데이터 저장소(160)에 동작가능하게 커플링될 수 있어서, 이들 원격 모듈들(150, 160)은 서로 동작가능하게 커플링되고 로컬 프로세싱 및 데이터 모듈(140)에 대한 리소스들로서 이용가능하다. 일부 실시예들에서, 로컬 프로세싱 및 데이터 모듈(140)은 이미지 캡처 디바이스들, 마이크로폰들, 관성 측정 유닛들, 가속도계들, 컴파스들, GPS 유닛들, 라디오 디바이스들 및/또는 자이로들 중 하나 또는 그 초과를 포함할 수 있다. 일부 다른 실시예들에서, 이들 센서들 중 하나 또는 그 초과는 프레임(80)에 부착될 수 있거나, 또는 유선 또는 무선 통신 경로들에 의해 로컬 프로세싱 및 데이터 모듈(140)과 통신하는 독립형 구조들일 수 있다.
[0124] 도 9d를 계속 참조하면, 일부 실시예들에서, 원격 프로세싱 모듈(150)은, 예컨대 하나 또는 그 초과의 CPU(central processing unit)들, GPU(graphics processing unit)들, 전용 프로세싱 하드웨어 등을 포함하는, 데이터 및/또는 이미지 정보를 분석 및 프로세싱하도록 구성된 하나 또는 그 초과의 프로세서들을 포함할 수 있다. 일부 실시예들에서, 원격 데이터 저장소(160)는 "클라우드" 리소스 구성에서 인터넷 또는 다른 네트워킹 구성을 통하여 이용가능할 수 있는 디지털 데이터 저장 설비를 포함할 수 있다. 일부 실시예들에서, 원격 데이터 저장소(160)는 하나 또는 그 초과의 원격 서버들을 포함할 수 있고, 상기 원격 서버들은 정보, 예컨대 증강 현실 콘텐츠를 생성하기 위한 정보를 로컬 프로세싱 및 데이터 모듈(140) 및/또는 원격 프로세싱 모듈(150)에 제공한다. 일부 실시예들에서, 모든 데이터는 저장되고 모든 컴퓨테이션(computation)들은 로컬 프로세싱 및 데이터 모듈에서 수행되는데, 이는 원격 모듈들로부터 완전히 자율적인 사용을 허용한다. 선택적으로, CPU들, GPU들 등을 포함하는 외측 시스템(예컨대, 하나 또는 그 초과의 프로세서들의 시스템, 하나 또는 그 초과의 컴퓨터들)은 프로세싱(예컨대, 이미지 정보를 생성, 데이터를 프로세싱) 중 적어도 일부를 수행하고 그리고 예컨대 무선 또는 유선 연결들을 통해 모듈들(140, 150, 160)에 정보를 제공하고 그리고 이 모듈로부터 정보를 수신할 수 있다.
메타표면들
[0125] 도 10a 및 도 10b는 일부 실시예들에 따른 메타표면(2002)의 측단면도 및 하향식 도면의 예들을 각각 예시한다. 기판(2000)은, 복수의 메타표면 유닛 셀들(2010)을 포함하는 메타표면(2002)이 배치된 표면(2000a)을 가진다. 유닛 셀들 각각은 광학적으로 투과성 재료로 형성된 복수의 나노빔들(2020a, 2020b)을 포함한다. 나노빔들(2020a, 2020b)은 페이지의 안팎으로 측방향으로 세장형이고 이웃하는 나노빔들 사이에 트렌치들을 정의하는 리지(ridge)들(또는 나노와이어들)일 수 있다. 일부 실시예들에서, 나노빔들(2020a, 2020b)은 선형일 수 있다. 바람직하게, 나노빔들(2020a, 2020b)은 자신의 길이들을 따라 연속되고, 이는 높은 회절 효율을 제공하는 이익들을 가질 수 있다. 일부 다른 실시예들에서, 나노빔들(2020a, 2020b)은 자신의 길이들을 따라 불연속일 수 있고, 예컨대 나노빔들(2020a, 2020b)은 라인을 따라 각각 연장될 수 있고, 나노빔들(2020a, 2020b) 내의 갭들은 이들 라인들 따라 있다.
[0126] 유닛 셀들(2010)은 표면(2000a)에 걸쳐 규치적인 간격들로 반복될 수 있고, 그리고 나노빔들(2020a, 2020b)이 또한 서로 평행하도록 서로 평행할 수 있다. 유닛 셀들(2010)은 바로 이웃하는 유닛 셀들(2010)의 동일 포인트들 사이의 거리인 폭(P)을 가질 수 있다. 일부 실시예들에서, P는 10 nm 내지 500 nm 또는 300 nm 내지 500 nm를 포함하는, 10 nm 내지 1 μm 범위일 수 있다. P가 유닛 셀들(2010)의 피치인 것으로 고려되고 이들 유닛 셀들에 의해 형성된 격자에 걸처 실질적으로 일정할 수 있다는 것이 인식될 것이다. 일부 다른 실시예들에서, P는 표면(2000a)에 걸쳐 가변할 수 있다.
[0127] 바람직하게, 나노빔들(2020a, 2020b)을 형성하는 재료의 굴절률은 기판(2000)의 굴절률보다 더 높다. 일부 실시예들에서, 기판(2000)은 도파관일 수 있고, 그리고 도파관들(270, 280, 290, 300, 310)(도 6) 및/또는 도파관들(670, 680, 및 690)(도 9a)에 대응할 수 있다. 그런 애플리케이션들에서, 기판은 바람직하게, 그 기판(2000)으로부터 광을 출력함으로써 이미지를 형성하는 디스플레이의 시야를 증가시키기 위한 이익들을 제공할 수 있는 비교적 높은 굴절률, 예컨대 1.5, 1.6, 1.7, 1.8, 1.9 또는 그 초과를 가진다. 기판(2000)을 형성하기 위한 재료들의 예들은 유리(예컨대, 도핑된 유리), 리튬 니오베이트, 플라스틱, 폴리머, 사파이어 또는 다른 광학적으로 투과성 재료를 포함한다. 일부 실시예들에서, 나노빔들(2020a, 2020b)을 형성하는 재료의 굴절률은 2.0 또는 그 초과, 2.5 또는 그 초과, 3.0 또는 그 초과, 3.3 또는 그 초과, 또는 3.5 또는 그 초과일 수 있다. 나노빔들(2020a, 2020b)을 형성하기 위한 재료들의 예들은 실리콘-함유 재료들(예컨대, 비결정질 또는 폴리실리콘, 및 실리콘 질화물), 산화물들 및 갈륨 인화물을 포함한다. 산화물들의 예들은 티타늄 산화물, 지르코늄 산화물 및 아연 산화물을 포함한다. 바람직하게, 나노빔들(2020a, 2020b)을 형성하는 재료는 동일하며, 이는 메타표면(2002)의 제작을 단순화시키는 장점들을 가진다.
[0128] 도 10a 및 도 10b를 계속 참조하면, 나노빔들 중 하나(2020b)는 예시된 나노빔들의 다른 하나(2020a)의 폭(NW1)보다 더 큰 폭(NW2)을 가진다. 일부 실시예들에서, 폭들(NW1 및 NW2) 각각은 10 nm 내지 300 nm를 포함하는, 10 nm 내지 1 μm의 범위이고, NW1은 위에서 주목된 바와 같이 NW2보다 더 크다. 예시된 바와 같이, 나노빔들(2020a, 2020b)은 10 nm 내지 300 nm 폭을 포함하는, 10 nm 내지 1 μm 폭의 범위의 갭에 의해 분리될 수 있다. 또한 예시된 바와 같이, 나노빔들(2020a, 2020b)은 10 nm 내지 450 nm를 포함하는, 10 nm 내지 1 μm 범위일 수 있는 높이(hnw)를 가진다. 바람직하게, 나노빔들(2020a, 2020b)의 높이들은 실질적으로 동일하다.
[0129] 본원에서 개시된 바와 같이, 나노빔들(2020a, 2020b) 및 유닛 셀들(2010)의 피처들의 다양한 치수들은 메타표면(2002)을 형성하는 데 사용되는 재료들의 특성들 및 주위 구조들, 이를테면 기판(2000)의 특성들에 따라 가변할 수 있다. 일부 실시예들에서, 나노빔들(2020a, 2020b)의 높이(hnw)는 이들 나노빔들에 사용된 재료의 굴절률에 따라 가변할 수 있다. 일부 실시예들에서, 나노빔들의 높이들은, 재료의 굴절률이 3.3 초과인 경우 10 nm 내지 450 nm; 및 굴절률이 3.3 또는 그 미만인 경우 10 nm 내지 1 μm일 수 있다. 다른 예로서, 나노빔들의 높이는, 나노빔들이 실리콘(예컨대, 비결정질 또는 폴리실리콘)으로 형성되는 경우 10 nm 내지 450 nm일 수 있다.
[0130] 도 10a 및 도 10b를 계속 참조하면, 이들 도면들에 예시된 메타표면(2002)은 투과성 모드로 작동한다. 광선들(2021a, 2021b)은 나노빔들(2020a, 2020b)에 의해 형성된 메타표면(2002)을 통해 전파될 때 재지향된다. 예시된 바와 같이, 광선(2021a)은 표면(2000a)에 대한 법선에 관해 각도(α)로 메타표면(2002) 상에 입사한다. 바람직하게, 각도(α)는, 광선(2021a)이, 기판(2000) 내에서 내부 전반사를 가능하게 하는 각도들로 그 기판(2000) 내에서 전파하게 메타표면(2002)에 의해 재지향되도록, 메타표면(2002)에 대한 각도 대역폭 내에 있다. 예시된 바와 같이, 광선(2021b)은, 표면(2000a)에 대한 법선과 각도(θTIR)를 이루도록 재지향된다. 바람직하게, 각도(θTIR)는 기판(2000) 내에서 내부 전반사를 가능하게 하는 각도들의 범위 내에 있다. 본원에서 개시된 바와 같이, 일부 실시예들에서, 메타표면(2002)은, 광이 내부 전반사를 통해 기판(2000)을 통하여 전파되도록 입사 광을 인커플링하기 위한 인커플링 광학 엘리먼트(예컨대, 인커플링 광학 엘리먼트들(700, 710, 720) 중 하나 또는 그 초과(도 9a))로서 활용될 수 있다.
[0131] 메타표면(2002)은 또한 기판(2000) 안으로부터 메타표면 상에 충돌하는 광을 편향시킬 것이다. 이런 기능성의 장점을 취하면, 일부 실시예들에서, 본원에서 개시된 메타표면들은, 표면(2000a) 상의 상이한 위치들에 인커플링 광학 엘리먼트를 형성하는 대신, 또는 그에 부가하여, 아웃커플링 광학 엘리먼트들, 이를테면 아웃커플링 광학 엘리먼트들(570, 580, 590, 600, 610(도 6) 또는 800, 810, 820(도 9b)) 중 하나 또는 그 초과를 형성하는 데 적용될 수 있다. 상이한 도파관들이 상이한 연관된 컴포넌트 컬러들을 가지는 경우, 생성된 각각의 도파관과 연관된 아웃커플링 광학 엘리먼트들 및/또는 인커플링 광학 엘리먼트들은, 도파관이 전파하도록 구성된 광의 파장들 또는 컬러들에 특정한 기하학적 사이즈 및/또는 주기성을 가진다는 것이 인지될 것이다. 따라서, 상이한 도파관들은 상이한 기하학적 사이즈들 및/또는 주기성들을 가진 메타표면들을 가질 수 있다. 예들로서, 적색, 녹색 또는 청색 광을 인커플링하거나 아웃커플링하기 위한 메타표면들은 각각 예컨대, 638 nm, 520 nm, 및 455 nm의 파장들의 광을 재지향시키거나 회절시키도록 구성된 기하학적 사이즈들 및/또는 주기성들(피치들)을 가질 수 있다. 일부 실시예들에서, 나노빔들(2020a, 2020b) 및 유닛 셀들(2010)의 기하학적 사이즈 및 주기성은 파장들이 더 길어짐에 따라 증가하고, 나노빔들(2020a, 2020b) 중 하나 또는 둘 모두의 높이 또는 두께는 또한, 파장들이 길어짐에 따라 증가한다.
[0132] 일부 실시예들에서, 메타표면(2002)이 아웃커플링 광학 엘리먼트들로서 활용되는 경우, 메타표면들(2002)은 메타표면들이 광 파워를 회절된 광에 부여하게 하는 기하학적 사이즈들 및/또는 피치들을 가질 수 있다. 예컨대, 메타표면들은 광이 발산 또는 수렴 방향들로 메타표면을 출사하게 하도록 구성될 수 있다. 메타표면의 상이한 부분들은 상이한 피치들을 가질 수 있고, 상이한 피치들은, 예컨대 광선들이 발산하거나 수렴하도록, 상이한 광선들이 상이한 방향들로 편향하게 한다.
[0133] 일부 다른 실시예들에서, 메타표면(2002)은, 광이 시준된 광선들로서 메타표면(2002)으로부터 멀리 전파되도록 광을 재지향시킬 수 있다. 예컨대, 시준된 광이 유사한 각도들로 메타표면(2002) 상에 충돌하는 경우, 메타표면(2002)은 유사한 각도들로 광을 재지향시키기 위해 메타표면(2002)의 전체에 걸쳐 일관적인 기하학적 사이즈들 및 일관적인 피치를 가질 수 있다.
[0134] 이제 도 11a-도 11b를 참조하면, 메타표면(2002)은, 재지향된 광이 메타표면 상에 충돌하기 이전 및 이후 메타표면(2002)의 동일한 측 상에 유지되는 "반사 모드"로 광을 편향시킬 수 있다. 도 11a는 반사 모드로 기능하도록 구성된 메타표면의 측단면도의 예를 예시하고, 그리고 도 11b는 평면(11B)에서 볼 때 도 11a의 메타표면들의 하향식 단면도의 예를 예시한다. 도시된 바와 같이, 메타표면(2002)의 나노빔들(2020a, 2020b)은 반사 층(2100)에 임베딩될 수 있다. 반사 층(2100)은 반사 재료, 예컨대, 금속, 이를테면 알루미늄, 은, 금 및 구리로 형성될 수 있다. 바람직하게, 반사 층(2100)을 형성하는 재료는 나노빔들(2020a, 2020b) 사이 및 유닛 셀들(2010) 사이의 공간들을 채운다. 게다가, 반사 층(2100)의 높이 또는 두께(hr)는 나노빔들(2020a, 2020b)의 높이(hnw)보다 더 클 수 있다. 일부 실시예들에서, 높이(hr)는 150 nm 또는 그 초과, 또는 1 μm 또는 그 초과일 수 있다. 바람직하게, 반사 층(2100)은 입사 광을 차단하기에 충분히 두껍고, hr은 층(2100)의 광학 깊이보다 더 크다. 유닛 셀(2010)을 형성하는 다양한 피처들의 치수들의 범위들이 도 10a 및 도 10b에 대해 본원에서 논의된 것과 유사하다는 것이 인식될 것이다.
[0135] 이제 도 12-도 13을 참조하면, 반사 모드 메타표면의 다른 예가 예시된다. 도 12는 반사 모드로 기능하도록 구성된 메타표면(2002)의 측단면도의 예를 예시하고, 그리고 도 13은 도 13의 평면(13)에서 볼 때 도 12의 메타표면의 하향식 단면도의 예를 예시한다. 예시된 바와 같이, 나노빔들(2020a, 2020b)은 광학적으로 투과성 스페이서 층(2110)에 임베딩된다. 이들 실시예들에서, 반사 층(2100)은 기판(2000)에 대향하는 스페이서 층(2110)의 표면 상에 직접 배치된다. 스페이서 층(2110)은 높이(hs)만큼 나노빔들(2020a, 2020b)의 높이보다 더 큰 높이 또는 두께(hsl)를 가지며, 이에 의해 hs와 동일한 거리만큼 반사 층(2100)으로부터 나노빔들(2020a, 2020b)을 이격시킨다. 일부 실시예들에서, 높이(hs)는 10 nm 내지 300 nm를 포함하는, 5 nm 내지 1 μm의 범위 내에 있을 수 있다. 스페이서 층(2100)에 적절한 재료들의 예들이 폴리(메틸 메타크릴레이트)(PMMA), 스핀-온 글래스(spin-on glass), 전자 빔 레지스트 또는 포토레지스트 및 폴리머를 포함하는, 스핀 온 코팅에 의해 증착될 수 있는 재료를 포함할 수 있다는 것이 인식될 것이다. 일부 실시예들에서, 스페이서 층은 1 내지 2의 굴절률을 가진다.
[0136] 일부 실시예들에서, 기판(2000)에는 투과성 메타표면들 및 반사성 메타표면들 둘 모두가 제공될 수 있다. 도 14a는 각각 투과성 및 반사성 메타표면들(2002a, 2002b) 둘 모두를 가진 기판(2000)의 측단면도의 예를 예시한다. 일부 실시예들에서, 투과성 및 반사성 메타표면들(2002a, 2002b)은 기판의 대향 측들 상에 있을 수 있다. 도 14b는 도 14a의 메타표면(2002a)의 하향식 도면의 예를 예시한다. 도 14c는 도 14a의 평면(14C) 상에서 볼 때 도 14a의 메타표면(2002b)의 하향식 도면의 예를 예시한다.
[0137] 도 14a를 참조하면, 메타표면(2002a)은 나노빔들(2020a, 2020b)을 포함하는 복수의 유닛 셀들(2010a)을 포함한다. 유사하게, 메타표면(2002b)은 나노빔들(2020c, 2020d)을 포함하는 복수의 유닛 셀들(2010b)을 포함한다. 나노빔들(2020a, 2020b)에서 처럼, 나노빔들(2020c, 2020d) 중 하나는 다른 하나보다 더 넓다. 본원에서 개시된 바와 같이, 유닛 셀들(2010a, 2010b)의 피처들의 치수들은, 메타표면들이 재지향시키도록 구성된 광의 파장들, 및 원하는 재지향 정도에 기반하여 선택될 수 있다. 메타표면이 상이한 파장들의 광을 재지향시키도록 구성되는 경우, 나노빔들(2020a 및 2020c)의 폭들은 서로 상이할 수 있고, 그리고/또는 나노빔들(2020b 및 2020d)의 폭들은 서로 상이할 수 있다. 예컨대, 메타표면(2002a)은 녹색에 대응하는 광을 재지향시키도록 구성될 수 있는 반면, 메타표면(2002b)은 적색에 대응하는 광을 재지향시키도록 구성될 수 있다. 일부 실시예들에서, 각각의 메타표면이 상이한 파장들의 범위의 광을 재지향시키도록 구성된 그런 어레인지먼트는 유리하게, 상이한 도파관들이 상이한 파장들의 광을 전파시키는 데 사용되는 도파관 스택의 사이즈를 감소시킬 수 있다. 유리하게, 메타표면들(2002a, 2002b)은, 단일 도파관이 상이한 컴포넌트 컬러들에 대응하는 광을 안내하는 데 사용되는 것을 허용하기 위해 인커플링 광학 엘리먼트들 및/또는 아웃커플링 광학 엘리먼트들로서 사용될 수 있고, 그에 의해 하나의 도파관의 사용이 회피된다.
[0138] 예시된 바와 같이, 메타표면(2002a)은 투과성 모드로 기능하고 광선(2040a)을 선택적으로 재지향시키면서, 광선(2040b)이 재지향되지 않고 메타표면을 통해 전파되는 것을 허용한다. 이어서, 광선(2040b)은, 원하는 방향(정반사기에 대해 예상된 방향과 상이함)으로 전파되도록 광선(2040b)을 반사시키는 반사 모드 메타표면(2002b) 상에 충돌한다.
[0139] 이제 도 15a-도 15e를 참조하면, 투과성 메타표면을 형성하기 위한 프로세스 흐름의 예가 예시된다. 도 15a를 참조하면, 나노빔들(2020a, 2020b)을 형성하기 위한 광학적으로 투과성 재료의 층(2020)이 기판(2000) 상에 증착된다. 증착은 예컨대, 기상 증착 프로세스, 이를테면 플라즈마 강화 화학 기상 증착을 포함하는 화학 기상 증착(CVD)을 사용하여 달성될 수 있다. 이후, 도 15b를 참조하면, 선택적으로 정의가능한 재료, 예컨대 레지스트(2022)(이를테면 나노임프린트 레지스트)가 층 상에 증착된다. 레지스트(2022)는 제트 코팅(예컨대, 잉크젯 프린팅)에 의해 증착될 수 있고, 제트 코팅은 특히 얇은 층들, 및 또한 가변 조성 및/또는 두께를 가진 층들을 형성하는 데 장점들을 제공할 수 있다.
[0140] 도 15c를 참조하면, 임프린트 템플릿(template) 또는 마스터(master)(2024)는 레지스트(2022)를 패터닝하기 위해 그 레지스트와 콘택하게 된다. 일부 다른 실시예들에서, 임프린트 템플릿(2024)의 패턴은 예컨대 전자 빔 리소그래피 또는 EUV 리소그래피를 포함하는 리소그래피에 의해 형성될 수 있다.
[0141] 도 15d를 참조하면, 레지스트 층(2022)에 형성된 패턴은 광학적으로 투과성 층(2020)으로 전사된다. 이 패턴 전사는 다른 노출된 재료들에 비해 광학적으로 투과성 층(2020)을 형성하는 재료에 대해 선택적인 에칭을 사용하여 달성될 수 있다는 것이 인식될 것이다. 일부 실시예들에서, 패턴 전사 에칭은 이방성 에칭, 이를테면 반응성 이온 에칭일 수 있다. 이후, 일부 실시예들에서, 레지스트 층(2022)은 예컨대 애싱(ashing) 프로세스를 사용하여 제거될 수 있다.
[0142] 이제 도 15e를 참조하면, 나노빔들(2020a, 2020b)을 포함하는 복수의 유닛 셀들(2010)이 형성된다. 예시의 용이함을 위해 유사한 폭들을 가지는 것으로 개략적으로 도시되지만, 본원에서 개시된 바와 같이, 나노빔들(2020a, 2020b)이 상이한 폭들을 가지는 것이 인식될 것이다.
[0143] 도 16a 및 도 16b는 메타표면의 스캐닝 전자 현미경 이미지들을 예시한다. 메타표면은 도 15a-도 15e에 대해 일반적으로 설명된 바와 같이 형성되었고, 레지스트는 전자 빔 리소그래피에 의해 패터닝된다. 유리하게, 나노빔들(2020a, 2020b)에 대응하는 고도로 균일한 재료의 행들이 형성되었다. 도 16b에 도시된 바와 같이, 각각의 나노빔은, 예시된 측면도에서 보여지는 바와 같이, 실질적으로 균일한 단면 형상을 가진다.
[0144] 예시되지 않았지만, 반사 모드 메타표면들이 도 15e에 도시된 구조의 부가적인 프로세싱을 통해 형성될 수 있다는 것이 인식될 것이다. 예컨대, 반사성 재료는 도 11a 및 도 11b에 예시된 구조를 형성하기 위해 나노빔들(2020a, 2020b) 사이의 그리고 이들 나노빔들 위의 개방 볼륨들 내에 증착될 수 있다. 일부 다른 실시예들에서, 나노빔들(2020a, 2020b)은 반사성 층에 트렌치들을 에칭하고 이후 나노빔들(2020a, 2020b)의 재료로 트렌치들을 채움으로써 형성될 수 있다.
[0145] 다른 예로서, 도 12에 예시된 구조는 나노빔들(2020a, 2020b) 상에 그리고 사이에 광학적으로 투과성 스페이서 재료의 층을 증착함으로써 형성될 수 있다. 반사성 층은 이후 스페이서 층 상에 증착될 수 있다. 일부 실시예들에서, 증착들은 기상 증착 프로세스들, 예컨대 화학 기상 증착(CVD) 프로세스들 및/또는 물리 기상 증착(PVD) 프로세스들을 사용하여 달성될 수 있다.
[0146] 본원에서 논의된 바와 같이, 다양한 실시예들에 따른 메타표면들은 넓은 범위의 무해(innocent)한 각도들에 걸쳐 매우 균일한 회절 효율을 제공한다. 도 17은 투과성 메타표면에 대한 광의 회절 효율 대 입사각을 도시하는 플롯의 예를 예시한다. 유리하게, 약 50° 범위의 각도들 폭에 걸쳐 회절 효율은 매우 균일하다.
[0147] 높은 균일성은 또한 반사성 메타표면의 다양한 실시예들에 의해 제공된다. 도 18a-도 18c는 반사성 메타표면에 대한 광의 회절 효율 대 입사각을 도시하는 플롯들의 예들을 예시한다. 입사 광의 파장들은 도 18a-도 18c 각각에 대해 상이하다. 유리하게, 플롯들은 넓은 범위의 입사각들에 걸쳐 매우 편평하다. 게다가, 플롯들은 유리하게 적색, 녹색 및 청색에 대응하는 상이한 파장들에 대해 유사하다. 그런 균일성은 상이한 컴포넌트 컬러들을 활용하는 디스플레이 시스템들에 유리하게 적용될 수 있다. 회절 균일성은 높은 컬러 정확도로 높은 품질 이미지들의 형성을 도울 수 있다.
[0148] 메타표면들의 회절 효율이 인스턴트(instant) 광의 편광에 크게 의존하는 것이 또한 발견되었다. 도 19a 및 도 19b는 도 10a 및 도 10b의 투과성 메타표면의 편광 감도를 도시하는 플롯들의 예들을 예시한다. 도 19a에 도시된 바와 같이, 회절 효율은 비대칭 비대칭 레이팅(rating)을 형성하는, 나노빔들과 평행한 편광을 가진 입사 광에 대해 높다. 그러나, 나노빔들에 수직인 편광을 가진 광은 낮은 회절 효율을 가진다. 편광에 대해 이런 감도가 주어지면, 본원에서 주목된 바와 같이, 메타표면은 편광 빔 분할기로서 유리하게 활용될 수 있다. 바람직하게, 메타표면은 상이한 편광들의 광에 대해 5 또는 그 초과, 7 또는 그 초과 또는 9 또는 그 초과의 소광비들을 제공한다.
[0149] 본원에서 논의된 바와 같이, 본원에서 개시된 메타표면들에 의해 재지향된 광의 진폭 및 위상은 금속 표면들을 형성하는 나노빔들의 폭들에 의존한다. 도 20은 도 10a 및 도 10b의 메타표면에 대한 진폭 및 위상 시프트 대 나노빔 폭의 플롯들을 예시한다. 플롯들에 의해 표시된 바와 같이, 나노빔들 또는 나노와이어들의 폭들은 재지향된 광의 진폭 및 위상을 조작하기 위해 조정될 수 있다.
[0150] 이제 도 21a를 참조하면, 일부 실시예들에서, 메타표면은 멀티레벨 비대칭 격자를 포함할 수 있다. 도 21a는 복수의 레벨들의 광학적으로 투과성 재료들을 포함하는 멀티레벨 메타표면(2008)의 측단면도의 예를 예시한다. 측단면도가, 예시된 나노빔들(2020a, 2020b)의 세장형 축에 직교하는 평면 상에서 취해지는 것이 인식될 것이다. 나노빔들(2020a, 2020b)은 기판(2000)의 표면(2000a) 상에 형성된다. 예시된 바와 같이, 일부 실시예들에서, 메타표면(2008)은 각각 최하부 및 최상부 레벨들(2012, 2014)을 가진 2개-레벨 구조이다. 최하부 레벨(2012)은 제1 광학적으로 투과성 재료로 형성된 나노빔들(2020a, 2020b) 및 나노빔들(2020a, 2020b) 사이의 제2 광학적으로 투과성 재료의 질량체들(2030c)을 포함한다. 최상부 레벨(2014)은 나노빔들(2020a, 2020b)에 수직으로 바로 인접하고 그리고 나노빔들(2020a) 상에 직접 형성된 제2 광학적으로 투과성 재료의 최상부 레벨 나노빔들(2030a) 및 나노빔들(2020b) 상에 직접 형성된 제2 광학적으로 투과성 재료의 최상부 레벨 나노빔들(2030b)을 포함한다. 제2 광학적으로 투과성 재료의 최상부 레벨 나노빔들(2030a, 2030b)이 나노빔들(2020a, 2020b)과 콘택할 수 있다는 것이 인식될 것이다. 예시된 바와 같이, 최상부 레벨(2014) 상에서, 제2 광학적으로 투과성 재료의 나노빔들(2030a, 2030b)은 나노빔들(2020a, 2020b)의 표면 상에 로컬라이징될 수 있고, 이는 제2 광학적으로 투과성 재료의 다른 로컬라이징된 증착부들(또는 플래토)로부터 이격된 재료의 플래토를 형성한다.
[0151] 도 21a를 계속 참조하면, 바람직하게, 나노빔들(2030a, 2030b) 및 질량체들(2030c)을 형성하는 제2 광학적으로 투과성 재료의 굴절률은 나노빔들(2020a, 2020b)을 형성하는 제1 광학적으로 투과성 재료, 및 기판(2000)을 형성하는 재료 둘 모두의 굴절률보다 더 높다. 일부 실시예들에서, 나노빔들(2020a, 2020b)을 형성하는 제1 광학적으로 투과성 재료의 굴절률은 기판(2000)을 형성하는 재료의 굴절률보다 낮거나 유사하다.
[0152] 도 21a를 계속 참조하면, 나노빔들(2020a, 2020b)의 제1 광학적으로 투과성 재료는 바람직하게, 예컨대 리소그래피 및 에칭 프로세스들에 의해 패터닝될 수 있는 재료이다. 더 바람직하게, 제1 광학적으로 투과성 재료는 나노임프린팅에 의해 패터닝될 수 있는 나노임프린트 레지스트이다. 본원에서 논의된 바와 같이, 나노빔들(2030a, 2030b) 및 질량체들(2030c)을 형성하는 제2 광학적으로 투과성 재료는 나노빔들(2020a, 2020b)의 제1 광학적으로 투과성 재료 및 기판(2000)을 형성하는 재료 둘 모두보다 더 높은 굴절률을 가진다. 일부 실시예들에서, 제2 광학적으로 투과성 재료의 굴절률은 1.6, 1.7, 1.8, 또는 1.9보다 더 높다. 제2 광학적으로 투과성 재료에 대한 재료들의 예들은 실리콘-함유 재료들, 및 산화물들을 포함하는, 반도체 재료들을 포함한다. 실리콘 함유 재료들의 예들은 실리콘 질화물 및 실리콘 탄화물을 포함한다. 산화물들의 예들은 티타늄 산화물, 지르코늄 산화물 및 아연 산화물을 포함한다. 일부 실시예들에서, 제2 광학적으로 투과성 재료는 이들 산화물들보다 더 낮은 광학 투명도를 가질 수 있다. 예컨대, 제2 광학적으로 투과성 재료는 실리콘 또는 이의 파생물들일 수 있다. 일부 실시예들에서, 제1 및 제2 광학적으로 투과성 재료들은 비결정질 고체 상태 재료들, 또는 결정질 고체 상태 재료들이다. 이론에 의해 제한되지 않고, 비결정질 재료들은 일부 애플리케이션들에서 바람직할 수 있는데, 그 이유는 이들 비결정질 재료들이 일부 결정질 재료들보다 더 낮은 온도들 및 더 넓은 범위의 표면들에 걸쳐 형성될 수 있기 때문이다. 일부 실시예들에서, 피처들(2020a, 2020b, 2030a, 2030b, 2030c)을 형성하는 제1 및 제2 광학적으로 투과성 재료들 각각은 비결정질 또는 결정질 반도체 재료 중 하나일 수 있다.
[0153] 위에서 논의된 바와 같이, 일부 실시예들에서, 유닛 셀들(2010)을 형성하는, 각각, 나노빔들(2020a, 2020b)의 폭들(NW1, NW2)은 10 nm 내지 300 nm 또는 10 nm 내지 250 nm를 포함하는, 10 nm 내지 1 μm 범위일 수 있다. 유닛 셀(2010)의 나노빔들(2020a, 2020b)은 10 nm 내지 1 μm 폭 또는 10 nm 내지 300 nm 폭을 포함하는, 5 nm 내지 1 μm 폭의 갭에 의해 분리될 수 있다. 유닛 셀들(2010)의 피치(P)는 10 nm 내지 500 nm 또는 300 nm 내지 500 nm를 포함하는, 10 nm 내지 1 μm 범위일 수 있다. 일부 실시예들에서, 나노빔들(2020a, 2020b)의 높이들(hnw)은 10 nm 내지 500 nm 또는 10 nm 내지 450 nm를 포함하는, 10 nm 내지 1 μm 범위일 수 있다. 질량체들(2030c)의 높이들은 10 nm 내지 600 nm를 포함하는, 10 nm 내지 1 μm 범위일 수 있다. 바람직하게, 나노빔들(2030a, 2030b) 및 질량체들(2030c)의 높이들은 실질적으로 유사하다.
[0154] 유닛 셀들의 피처들의 치수들은 메타표면을 형성하는 데 사용된 재료들의 특성들에 따라 가변할 수 있다는 것이 발견되었다. 예컨대, 나노빔들의 높이는 이들 나노빔들에 사용된 재료의 굴절률에 따라 가변할 수 있다. 일부 실시예들에서, 나노빔들의 높이들은, 재료의 굴절률이 3.3 초과인 경우 10 nm 내지 450 nm; 및 굴절률이 3.3 또는 그 미만인 경우 10 nm 내지 1 μm일 수 있다. 다른 예로서, 나노빔들의 높이는, 나노빔들이 실리콘(예컨대, 비결정질 또는 폴리실리콘)으로 형성되는 경우 10 nm 내지 450 nm일 수 있다. 일부 실시예들에서, 나노빔들(2030a, 2030b) 및 질량체들(2030c)의 재료의 높이들은 10 nm 내지 600 nm를 포함하는, 10 nm 내지 1 μm의 범위일 수 있다.
[0155] 위에서 주목된 치수들의 범위 내에서, 일부 실시예들에서, 메타표면이, 피처들(2030a, 2030b, 2030c)에 대한 재료들과 함께 치수들의 적합한 선택에 따라, 주로 반사 모드로 또는 주로 투과 모드로 기능할 수 있다는 것이 인식될 것이다. 예컨대, 주어진 광의 파장의 경우, 반사 모드로 작동하는 메타표면(2008)에 대한 피처들(2030a, 2030b, 2030c)의 두께는 투과 모드로 작동하는 메타표면에 대한 피처들(2030a, 2030b, 2030c)의 두께보다 더 작을 수 있다. 게다가, 투과 모드 또는 반사 모드에서, 피처들(2030a, 2030b, 2030c)에 대한 더 높은 굴절률 재료의 사용은 유사한 광 재지향 특성들을 달성하면서 이들 피처들의 두께의 감소를 허용할 수 있다.
[0156] 도 21a를 계속 참조하면, 메타표면(2008)은 반사 모드로 작동하고, 입사 광선(2200)은 메타표면(2008) 상에 충돌하고 그리고 내부 전반사에 의해 기판(2000)을 통해 전파되도록 하는 각도로 회절에 의해 재지향된다. 일부 실시예들에서, 피처들(2030a, 2030b, 2030c)의 높이들은 예시된 바와 같이, 나노빔들(2020a, 2020b)의 높이들보다 더 낮을 수 있다. 광은 반사 모드로 작동하는 메타표면들을 통해 2회 통과하는 것이 이해될 수 있고(입사 광이 메타표면 상에 충돌할 때 1회, 및 입사 광이 메타표면을 통해 반사되어 멀어질 때 2회), 이에 의해 유사한 광 재지향 능력들을 가진 투과 모드로 작동하는 메타표면보다 더 낮은 높이들을 가진 피처들(2030a, 2030b, 2030c) 및 나노빔들(2020a, 2020b)이 허용되는 것이 인식될 것이다.
[0157] 이제 도 21b를 참조하면, 도 21a에 도시된 일반적인 구조를 가진 메타표면에 대한 광의 입사각의 함수로써 투과 및 반사의 플롯의 예가 예시된다. 투과된 광 및 반사된 광의 다양한 회절 차수들은 각각 "T" 및 "R"에 의해 표시된다. 이 예에서, 나노빔들(2020a, 2020b)은 광학적으로 투과성 레지스트로 형성되고 피처들(2030a, 2030b, 2030c)은 티타늄 산화물로 형성된다. 티타늄 산화물은 유리하게 2.6의 높은 굴절률을 가지며, 이는 더 낮은 굴절률 재료들에 비해 피처들(2030a, 2030b, 2030c) 및 나노빔들(2020a, 2020b)의 두께들 또는 높이들의 감소를 가능하게 할 수 있다. 각각의 유닛 셀에 대해, 나노빔(2020a)의 폭은 50 nm이고; 나노빔(2020b)의 폭은 110 nm이고; 나노빔들(2020a 및 2020b) 사이의 갭은 40 nm이고; 나노빔들(2020a, 2020b)의 높이들은 100 nm이고; 피처들(2030a, 2030b, 2030c)의 높이들은 50 nm이고; 그리고 유닛 셀들(2010)의 피치는 382 nm이다.
[0158] 도 22b를 계속 참조하면, TIR에 적절한 각도들로 반사되고 1차 회절(R1)을 겪는, 메타표면(2008) 상에 입사되는 광의 퍼센티지는 0°의 입사각에 대해 약 25%이고, 그리고 약 -10° 내지 약 10°의 입사각들에 대해 25% 내지 42%에서 가변한다. 예시된 바와 같이, 0차 반사는 유리하게 낮다. 메타표면(2008)이 디스플레이 디바이스, 이를테면 반사성 공간 광 변조기를 활용하는 디스플레이 시스템(250)(도 6)에 활용되는 경우, 0차 반사는 바람직하지 않게 다시 공간 광 변조기로의 광의 반사를 유발할 수 있고, 이어서 다시 뷰어로 광을 반사시키고, 이에 의해 바람직하지 않은 이미지 아티팩트(artifact)들, 이를테면 고스팅(ghosting)이 유발된다. 결과적으로, 작은 양의 0차 반사는 그런 애플리케이션들에 바람직할 수 있다. 게다가, 예시된 바와 같이, 입사 광의 일부는 투과(T0)되고 입사 광의 다른 부분은 네거티브 1차 회절(R-1)을 겪는다.
[0159] 이제 도 22a를 참조하면, 투과 모드로 동작하는 메타표면(2008)이 예시된다. 특히, 이 실시예에서, 메타표면(2008)은, 피처들(2030a, 2030b, 2030c)의 높이들, 및 선택적으로 이들 피처들(2030a, 2030b, 2030c)을 형성하는 재료를 제외하고, 도 21a에 도시된 것과 유사하다. 예시된 바와 같이, 질량체들(2030c)의 높이들(및 나노빔들(2030a, 2030b)의 대응하는 높이들)은 일부 실시예들에서 나노빔들(2020a, 2020b)의 높이들보다 더 클 수 있다. 예시된 실시예에서, 광선(2200)은 메타표면(2008)을 통해 전파되고 그리고 내부 전반사에 의해 기판(2000)을 통해 전파되도록 하는 각도로 회절된다.
[0160] 이제 도 22b를 참조하면, 도 22a에 도시된 일반적인 구조를 가진 메타표면에 대한 광의 입사각의 함수로써 투과 및 반사의 플롯의 예가 예시된다. 위에서와 같이, 투과된 광 및 반사된 광의 회절 차수들은 각각 "T" 및 "R"에 의해 표시된다. 각각의 유닛 셀에 대해, 나노빔(2020a)의 폭은 50 nm이고; 나노빔(2020b)의 폭은 110 nm이고; 나노빔들(2020a 및 2020b) 사이의 갭은 50 nm이고; 나노빔들(2020a, 2020b)의 높이들은 150 nm이고; 피처들(2030a, 2030b, 2030c)의 높이들은 190 nm이고; 그리고 유닛 셀들(2010)의 피치는 382 nm이다. 이 예에서, 나노빔들(2020a, 2020b)은 광학적으로 투과성 레지스트로 형성되고 피처들(2030a, 2030b, 2030c)은 2.0의 굴절률을 가진 실리콘 질화물로 형성된다.
[0161] 도 22b를 계속 참조하면, TIR에 적절한 각도들로 투과되고 네거티브 1차 회절(T-1)을 겪는, 메타표면 상에 입사되는 광의 퍼센티지는 0°의 입사각에 대해 약 35%이고, 그리고 약 -10° 내지 약 10°의 입사각들에 대해 35% 내지 56%에서 가변한다. 0차 반사는 유리하게 낮게 유지된다. 또한 예시된 바와 같이, 입사 광의 일부는 재반사되지 않고 투과(T0)되고, 입사 광의 다른 부분은 포지티브 1차 회절(T1)을 겪는다.
[0162] 이제 도 23a-도 23d를 참조하면, 메타표면(2008)을 형성하기 위한 프로세스 흐름의 예가 예시된다. 도 14a를 참조하면, 제1 재료, 예컨대 레지스트(이를테면 나노임프린트 레지스트)의 층(2020)은 기판(2000) 상에 증착된다. 층(2020)은 바람직하게 광학적으로 투과성이고 예컨대 스핀 코팅에 의해 증착될 수 있다. 일부 실시예들에서, 층(2020)은 제트 코팅(예컨대, 잉크젯 프린팅)에 의해 증착될 수 있고, 제트 코팅은 특히 얇은 층들, 및 또한 가변 조성 및/또는 두께를 가진 층들을 형성하는 데 장점들을 제공할 수 있다.
[0163] 도 23b를 참조하면, 임프린트 템플릿 또는 마스터(2024)는 레지스트 층(2020)을 패터닝하기 위해 그 레지스트 층과 콘택하게 된다. 임프린트 템플릿(2024)의 패턴이 형성될 메타표면의 나노빔들의 패턴의 네거티브일 수 있다는 것이 인식될 것이다. 임프린트 템플릿(2024)의 패턴은 예컨대, 전자 빔 리소그래피 또는 EUV 리소그래피를 포함하는 리소그래피에 의해 형성될 수 있다. 유리하게, 동일한 템플릿(2024)은 다수의 기판들 상에 레지스트를 패터닝하는 데 재사용될 수 있고, 이에 의해 결국 형성된 메타표면들에 대한 유닛당 제작 비용들이 감소된다.
[0164] 임프린트 템플릿(2024)을 콘택한 이후, 레지스트(2020)는 템플릿(2024)의 개구들에 의해 정의된 패턴을 취한다. 일부 실시예들에서, 레지스트(2020)는 레지스트를 고정시키기 위해 예컨대 광(이를테면 UV 광) 및/또는 열에 대한 노출에 의해 경화될 수 있다. 이어서, 템플릿(2024)은 도 23c에 도시된 바와 같이, 나노빔들(2020a, 2020b)을 가진 패터닝된 레지스트를 남기기 위해 철회될 수 있다. 일부 다른 실시예들에서, 레지스트 층의 패턴은 아래 놓인 재료 층으로 전사될 수 있고(예컨대, 도 15a-도 15e에 도시됨) 그리고 레지스트는 제거될 수 있고, 이에 의해 그 아래 놓인 재료 층에 나노빔들(2020a, 2020b)이 형성된다.
[0165] 이제 도 23d를 참조하면, 이후에 나노빔들(2030a, 2030b)을 형성하기 위해 제2 재료가 나노빔들(2020a, 2020b) 상에 증착된다. 제2 재료에 대한 재료들의 예들은 실리콘 함유 재료들, 이를테면 실리콘, 실리콘 질화물, 실리콘 탄화물을 포함하는 반도체 재료들; 지르코늄 산화물, 아연 산화물 및 티타늄 산화물을 포함하는 산화물들; 및 광학적으로 투과성 레지스트들을 포함한다. 본원에 개시된 바와 같이, 제2 재료(2030)는 바람직하게 광학적으로 투과성 재료이다. 제2 재료(2030)는 블랭킷 증착들, 방향성 증착들, 및 스핀 또는 제트 코팅을 포함하는 다양한 프로세스들에 의해 증착될 수 있다. 블랭킷 증착들의 예들은, 레지스트가 기판(2000)을 포함하는 증착 챔버에 존재하는 상호 반응성 전구체들에 동시에 노출되는 CVD(chemical vapor deposition), 및 레지스트가 전구체들에 교번적으로 노출되는 ALD(atomic layer deposition)를 포함한다. ALD는, 고정밀도가 원해지는 경우, 증착된 층들의 두께를 정밀하게 제어하고, 또한 저온들에서 재료들을 증착하는 데 장점들을 제공할 수 있다. 방향성 증착들의 예들은 제2 재료를 우선적으로 나노빔들(2020a, 2020b) 및 기판(2000)의 최상부 표면들 상으로 전달하기 위한 증발 및 스퍼터링을 포함한다.
[0166] 본원에서 개시된 다양한 실시예들에 따른 메타표면들을 가진 기판들(2000)이 디스플레이 시스템들, 이를테면 본원에서 개시된 시스템(1000)(도 6)을 형성하는 데 사용될 수 있다는 것이 인식될 것이다. 예컨대, 메타표면들은 본원에서 주목된 바와 같이 인커플링 및/또는 아웃커플링 광학 엘리먼트들로서 활용될 수 있다. 일부 실시예들에서, 메타표면의 제작 이후, 도파관(2000)은 광 파이프, 이를테면 이미지 정보를 도파관에 주입하기 위한 광 파이프에 광학적으로 커플링될 수 있다. 광 파이프는 일부 실시예들에서 광섬유일 수 있다. 광 파이프들의 예들은 이미지 주입 디바이스들(200, 202, 204, 206, 208)(도 6) 및 스캐닝 광섬유들을 포함한다. 일부 실시예들에서, 메타표면들(2010)을 각각 가진 복수의 도파관들이 제공될 수 있고, 이들 도파관들 각각은 하나 또는 그 초과의 이미지 주입 디바이스들에 광학적으로 커플링될 수 있다.
[0167] 본 발명의 다양한 예시적인 실시예들이 본원에 설명된다. 비-제한적 의미로 이들 예들에 대해 참조가 이루어진다. 이들 예들은 본 발명의 더 넓게 적용가능한 양상들을 예시하기 위하여 제공된다. 설명된 본 발명에 대해 다양한 변화들이 이루어질 수 있고 등가물들은 본 발명의 진정한 사상 및 범위에서 벗어나지 않고 대체될 수 있다.
[0168] 예컨대, 다수의 깊이 평면들에 걸쳐 이미지들을 제공하는 AR 디스플레이들에 대해 유리하게 활용될 수 있기는 하지만, 본원에 개시된 증강 현실 콘텐츠는 또한 단일 깊이 평면 상에, 그리고/또는 가상 현실 디스플레이들로 이미지들을 제공하는 시스템들에 의해 디스플레이될 수 있다. 멀티플렉싱된 이미지 정보(예컨대, 상이한 컬러들의 광)이 도파관으로 지향되는 일부 실시예들에서, 다수의 메타표면들이 도파관 상에 제공될 수 있고, 예컨대 하나의 메타표면은 광의 각각의 컬러에 대해 활성이다. 일부 실시예들에서, 나노빔들, 즉 메타표면을 형성하는 나노빔들의 피치 또는 주기성, 및/또는 기하학적 사이즈들은 메타표면에 걸쳐 가변할 수 있다. 그런 메타표면은, 광이 메타표면들 상에 충돌하는 위치들에서의 기하구조들 및 피치들에 의존하여 상이한 파장들의 광을 재지향시키는데 능동적일 수 있다. 일부 다른 실시예들에서, 메타표면 피처들의 기하구조들 및 피치들은, 심지어 유사한 파장들의 편향된 광선들이 상이한 각도들로 메타표면으로부터 전파하도록 가변되게 구성된다. 다수의 분리된 메타표면들이 기판 표면에 걸쳐 배치될 수 있고, 메타표면들 각각이 일부 실시예들에서 동일한 기하구조들 및 피치들을 가지거나, 메타표면들 중 적어도 일부가 일부 다른 실시예들에서 다른 메타표면들과 상이한 기하구조들 및/또는 피치들을 가지는 것이 또한 인지될 것이다.
[0169] 배향을 특정하는 다양한 용어들이 본원에서 활용된다. 예컨대, 나노빔들은 기판 상에 또는 위에 있는 것으로 설명될 수 있고, 그리고 높이(또는 두께)를 가지는 것으로 설명될 수 있다. 이들 용어들은, 기판이 나노빔들 수직으로 아래에 있는 기준 배향 상에 배치될 때의 나노빔들 및 기판에 관련된다는 것이 인식될 것이다. 그런 배향에서, 높이는 수직 치수를 설명하는 반면, 갭, 피치 또는 폭은, 예컨대 나노빔들이 배치된 기판의 표면에 면하는 평면으로 연장되는(예컨대, 실질적으로 평행한) 측방향 치수를 설명한다. 그러나, 나노빔들 및 기판들이 이들의 상대적 배향들로 제한되지 않고 서로에 관하여 다른 배향들로 포지셔닝될 수 있다는 것이 인식될 것이다.
[0170] 또한, 디스플레이들, 이를테면 웨어러블 디스플레이들에 유리하게 적용되기는 하지만, 메타표면들은, 컴팩트, 저-프로파일 광 재지향 엘리먼트가 원해지는 다양한 다른 디바이스들에 적용될 수 있다. 예컨대, 금속 표면들은 일반적으로 광학 플레이트들(예컨대, 유리판들), 광섬유들, 마이크로스코프들, 센서들, 시계들, 카메라들 및 이미지 투사 디바이스들의 광 재지향 부분들을 형성하기 위해 적용될 수 있다.
[0171] 게다가, 특정 상황, 재료, 물질 조성, 프로세스, 프로세스 동작(들) 또는 단계(들)를 본 발명의 목적(들), 사상 또는 범위에 적응시키기 위하여 많은 수정들이 이루어질 수 있다. 추가로, 당업자는, 본원에 설명되고 예시된 각각의 변동들 각각이 본 발명들의 범위 또는 사상에서 벗어나지 않고 다른 몇몇 실시예들 중 임의의 실시예의 피처들로부터 쉽게 분리되거나 결합될 수 있는 이산 컴포넌트들 및 피처들을 가지는 것을 인식할 것이다. 모든 그런 수정들은 본 개시내용과 연관된 청구항들의 범위 내에 있는 것으로 의도된다.
[0172] 본 발명은 청구대상 디바이스들을 사용하여 수행될 수 있는 방법들을 포함한다. 방법들은 그런 적절한 디바이스를 제공하는 동작을 포함할 수 있다. 그런 제공은 사용자에 의해 수행될 수 있다. 다른 말로, "제공" 동작은 단순히, 사용자가 청구대상 방법에 필수적인 디바이스를 제공하기 위하여 획득, 액세스, 접근, 포지셔닝, 셋-업, 활성화, 전력-인가 또는 달리 동작하는 것을 요구한다. 본원에 설명된 방법들은 논리적으로 가능한 설명된 이벤트들의 임의의 순서로, 및 이벤트들의 설명된 순서로 수행될 수 있다.
[0173] 재료 선택 및 제조에 관한 세부사항들과 함께, 본 발명의 예시적인 양상들은 위에서 설명되었다. 본 발명의 다른 세부사항들에 관해서, 이들은 당업자들에게 일반적으로 알려지거나 인식되는 것뿐 아니라 위에서-참조된 특허들 및 공개물들과 관련하여 인식될 수 있다. 공통적으로 또는 논리적으로 이용되는 바와 같은 부가적인 동작들 측면에서 본 발명의 방법-기반 양상들에 대해서도 마찬가지이다.
[0174] 설명의 용이함을 위해, 피처들의 상대적 포지션들을 표시하는 다양한 단어들이 본원에 사용된다. 예컨대, 다양한 피처들은 다른 피처들 "상", "위", "측", "더 높게" 또는 "더 아래에" 있는 것으로 설명될 수 있다. 상대적 포지션의 다른 단어들이 또한 사용될 수 있다. 상대적 포지션의 모든 그런 단어들은, 전체로서 피처들에 의해 형성된 어그리게이트(aggregate) 구조 또는 시스템이 설명 목적들 위한 참조의 포인트로서 소정 배향 내에 있는 것으로 가정되지만, 사용 시, 구조가 옆으로, 뒤집어져, 또는 임의의 수의 다른 배향들로 포지셔닝될 수 있다는 것이 인지될 것이다.
[0175] 게다가, 본 발명이 다양한 피처들을 선택적으로 통합하는 몇몇 예들을 참조하여 설명되었지만, 본 발명은 본 발명의 각각의 변형에 관하여 고려된 바와 같이 설명되거나 표시된 것으로 제한되지 않는다. 설명된 본 발명에 대해 다양한 변화들이 이루어질 수 있고 본 발명의 진정한 사상 및 범위에서 벗어나지 않고 등가물들(본원에 설명되든 일부 간략성을 위하여 포함되지 않든)이 대체될 수 있다. 게다가, 다양한 값들이 제공되는 경우, 그 범위의 상한과 하한 간의 모든 각각의 개재 값 및 그 언급된 범위 내의 임의의 다른 언급되거나 개재된 값이 본 발명 내에 포함되는 것으로 이해된다.
[0176] 또한, 설명된 본 발명의 변형들의 임의의 선택적인 특징이 본원에 설명된 특징들 중 임의의 하나 또는 그 초과와 독립적으로 또는 결합하여 설명되고 청구될 수 있다는 것이 고려된다. 단수 아이템에 대한 참조는, 복수의 동일한 아이템들이 존재할 가능성을 포함한다. 보다 구체적으로, 본원 및 본원에 연관된 청구항들에서 사용된 바와 같이, 단수 형태들은, 명확하게 다르게 언급되지 않으면 복수의 지시 대상들을 포함한다. 다른 말로, 단수들의 사용은 본 개시내용과 연관된 청구항들뿐 아니라 위의 상세한 설명의 청구대상 아이템 중 "적어도 하나"를 허용한다. 그런 청구항들이 임의의 선택적인 엘리먼트를 배제하도록 작성될 수 있다는 것이 추가로 주목된다. 이와 같이, 이런 서술은 청구항 엘리먼트들의 언급과 관련하여 "오로지", "오직" 등 같은 그런 배타적인 용어의 사용, 또는 "네거티브" 제한의 사용을 위한 선행 기초로서 역할을 하도록 의도된다.
[0177] 그런 배타적 용어의 사용 없이, 본 개시내용과 연관된 청구항들에서 "포함하는"이라는 용어는, 정해진 수의 엘리먼트들이 그런 청구항들에 열거되는지 또는 특징의 부가가 그런 청구항들에 설명된 엘리먼트의 성질을 변환하는 것으로 간주될 수 있는지 여부에 무관하게 임의의 부가적인 엘리먼트의 포함을 허용할 수 있다. 본원에 구체적으로 정의된 바를 제외하고, 본원에서 사용된 모든 기술적 및 과학적 용어들은 청구 유효성을 유지하면서 가능한 한 일반적으로 이해되는 의미로 넓게 제공되어야 한다.
[0178] 본 발명의 폭은 제공된 예들 및/또는 청구대상 명세서로 제한되는 것이 아니라, 오히려 본 개시내용과 연관된 청구항 언어의 범위에 의해서만 제한된다.

Claims (20)

  1. 광학 시스템으로서,
    메타표면을 포함하는 광학적으로 투과성 기판을 포함하고, 상기 메타표면은:
    복수의 유닛 셀들을 포함하는 격자 ― 각각의 유닛 셀은, 하향식 도면에서 볼 때:
    제1 폭을 가진 측방향으로 세장형의 제1 나노빔, 및
    갭에 의해 상기 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔
    을 포함하고, 상기 제2 나노빔은 상기 제1 폭보다 더 큰 제2 폭을 가짐 ―; 및
    반사기
    를 포함하고,
    상기 반사기 및 상기 기판은 상기 격자의 대향 측들 상에 있는,
    광학 시스템.
  2. 제1 항에 있어서,
    상기 반사기는 상기 격자로부터 이격되는,
    광학 시스템.
  3. 제2 항에 있어서,
    상기 격자는 광학적으로 투과성 재료에 임베딩(embed)되는,
    광학 시스템.
  4. 제1 항에 있어서,
    상기 광학적으로 투과성 재료는 상기 반사기를 상기 격자로부터 이격시키는,
    광학 시스템.
  5. 제1 항에 있어서,
    상기 기판은:
    상기 메타표면과 대향하는 상기 기판의 측 상의 제2 메타표면을 포함하고, 상기 제2 메타표면은:
    복수의 제2 유닛 셀들을 포함하는 제2 격자를 포함하고, 각각의 제2 유닛 셀은, 하향식 도면에서 볼 때:
    측방향으로 세장형의 제3 나노빔; 및
    갭에 의해 상기 제3 나노빔으로부터 이격된 측방향으로 세장형의 제4 나노빔
    을 포함하고,
    상기 제4 나노빔은 상기 제3 나노빔보다 더 넓은,
    광학 시스템.
  6. 제1 항에 있어서,
    상기 유닛 셀들은 측방향으로 세장형이고 서로 평행한,
    광학 시스템.
  7. 제1 항에 있어서,
    상기 메타표면은 가시 파장의 입사 광을 제1 회절 차수로 회절시키도록 구성되는,
    광학 시스템.
  8. 제1 항에 있어서,
    상기 제2 폭은 10 nm 내지 300 nm인,
    광학 시스템.
  9. 제1 항에 있어서,
    상기 유닛 셀들의 피치는 10 nm 내지 500 nm인,
    광학 시스템.
  10. 제1 항에 있어서,
    상기 제1 나노빔 및 상기 제2 나노빔은 10 nm 내지 300 nm 폭의 갭에 의해 분리되는,
    광학 시스템.
  11. 제1 항에 있어서,
    상기 광학적으로 투과성 기판은 유리를 포함하는,
    광학 시스템.
  12. 제1 항에 있어서,
    상기 제1 나노빔 및 상기 제2 나노빔은 실리콘을 포함하는,
    광학 시스템.
  13. 제12 항에 있어서,
    상기 제1 나노빔 및 상기 제2 나노빔은 실리콘 질화물을 포함하는,
    광학 시스템.
  14. 제1 항에 있어서,
    상기 광학적으로 투과성 기판 및 상기 메타표면은 편광 빔 분할기를 형성하는,
    광학 시스템.
  15. 제1 항에 있어서,
    상기 광학적으로 투과성 기판은 도파관 플레이트인,
    광학 시스템.
  16. 제15 항에 있어서,
    상기 광학적으로 투과성 기판들의 스택을 더 포함하고, 상기 유닛 셀들의 피처들의 치수들은 상기 기판들마다 다른,
    광학 시스템.
  17. 제1 항에 있어서,
    상기 메타표면은 인커플링 광학 엘리먼트이고, 상기 광학 시스템은 광을 상기 인커플링 광학 엘리먼트에 투사하도록 구성된 이미지 주입 디바이스를 더 포함하고, 상기 메타표면은 내부 전반사에 의해 상기 기판을 통해 광을 전파시키기 위해 광을 재지향시키도록 구성되는,
    광학 시스템.
  18. 제1 항에 있어서,
    상기 메타표면은 아웃커플링 광학 엘리먼트이고, 상기 메타표면은 광을 상기 기판 밖으로 추출하도록 구성되는,
    광학 시스템.
  19. 메타표면을 형성하기 위한 방법으로서,
    광학적으로 투과성 기판을 제공하는 단계;
    복수의 유닛 셀들을 포함하는 격자를 형성하는 단계 ― 각각의 유닛 셀은, 하향식 도면에서 볼 때:
    제1 폭을 가진 측방향으로 세장형의 제1 나노빔, 및
    갭에 의해 상기 제1 나노빔으로부터 이격된 측방향으로 세장형의 제2 나노빔을 포함하고, 상기 제2 나노빔은 상기 제1 폭보다 더 큰 제2 폭을 가짐 ―;
    상기 갭 내에 그리고 상기 유닛 셀들 사이에 광학적으로 투과성 스페이서 재료의 층을 증착하는 단계; 및
    상기 스페이서 재료의 층 상에 반사성 층을 증착하는 단계
    를 포함하고,
    상기 스페이서 재료는 상기 반사성 층으로부터 상기 격자를 분리시키는,
    메타표면을 형성하기 위한 방법.
  20. 제19 항에 있어서,
    상기 스페이서 재료는 1 내지 2의 굴절률을 가지는,
    메타표면을 형성하기 위한 방법.
KR1020217007754A 2016-05-06 2017-05-05 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들 KR20210032022A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237003924A KR102603675B1 (ko) 2016-05-06 2017-05-05 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662333067P 2016-05-06 2016-05-06
US62/333,067 2016-05-06
US201762474432P 2017-03-21 2017-03-21
US62/474,432 2017-03-21
PCT/US2017/031328 WO2017193012A1 (en) 2016-05-06 2017-05-05 Metasurfaces with asymetric gratings for redirecting light and methods for fabricating

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020187035062A Division KR102230642B1 (ko) 2016-05-06 2017-05-05 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237003924A Division KR102603675B1 (ko) 2016-05-06 2017-05-05 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들

Publications (1)

Publication Number Publication Date
KR20210032022A true KR20210032022A (ko) 2021-03-23

Family

ID=60203658

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020237039226A KR20230159898A (ko) 2016-05-06 2017-05-05 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들
KR1020187035062A KR102230642B1 (ko) 2016-05-06 2017-05-05 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들
KR1020237003924A KR102603675B1 (ko) 2016-05-06 2017-05-05 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들
KR1020217007754A KR20210032022A (ko) 2016-05-06 2017-05-05 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020237039226A KR20230159898A (ko) 2016-05-06 2017-05-05 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들
KR1020187035062A KR102230642B1 (ko) 2016-05-06 2017-05-05 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들
KR1020237003924A KR102603675B1 (ko) 2016-05-06 2017-05-05 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들

Country Status (11)

Country Link
US (4) US10527851B2 (ko)
EP (1) EP3452301B1 (ko)
JP (5) JP6961619B2 (ko)
KR (4) KR20230159898A (ko)
CN (2) CN113484944A (ko)
AU (2) AU2017260208B2 (ko)
CA (1) CA3022876A1 (ko)
IL (1) IL262613B (ko)
NZ (1) NZ747834A (ko)
TW (1) TWI720194B (ko)
WO (1) WO2017193012A1 (ko)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3062142B1 (en) 2015-02-26 2018-10-03 Nokia Technologies OY Apparatus for a near-eye display
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
CN113484944A (zh) 2016-05-06 2021-10-08 奇跃公司 具有用于重定向光的非对称光栅的超表面及其制造方法
IL266271B2 (en) 2016-10-28 2024-01-01 Magic Leap Inc Method and system for displaying a large field of view with a scanner reflector
US10650552B2 (en) 2016-12-29 2020-05-12 Magic Leap, Inc. Systems and methods for augmented reality
EP4300160A3 (en) 2016-12-30 2024-05-29 Magic Leap, Inc. Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light
IL307294A (en) 2017-01-27 2023-11-01 Magic Leap Inc Diffraction gratings produced using a surface cell with differently oriented nanobeams
WO2018140502A1 (en) 2017-01-27 2018-08-02 Magic Leap, Inc. Antireflection coatings for metasurfaces
IL269103B2 (en) 2017-03-22 2024-07-01 Magic Leap Inc A variable focus display system with a dynamic field of view
WO2018218063A1 (en) 2017-05-24 2018-11-29 The Trustees Of Columbia University In The City Of New York Broadband achromatic flat optical components by dispersion-engineered dielectric metasurfaces
KR102642282B1 (ko) 2017-07-12 2024-02-28 호야 가부시키가이샤 도광판 및 화상 표시 장치
US10578870B2 (en) 2017-07-26 2020-03-03 Magic Leap, Inc. Exit pupil expander
SG11202001717VA (en) 2017-08-31 2020-03-30 Metalenz Inc Transmissive metasurface lens integration
JP7282090B2 (ja) 2017-12-10 2023-05-26 マジック リープ, インコーポレイテッド 光学導波管上の反射防止性コーティング
CA3083105A1 (en) 2017-12-11 2019-06-20 Magic Leap, Inc. Waveguide illuminator
KR20200100720A (ko) 2017-12-20 2020-08-26 매직 립, 인코포레이티드 증강 현실 뷰잉 디바이스용 인서트
FI129113B (en) 2017-12-22 2021-07-15 Dispelix Oy Waveguide display and display element with new lattice configuration
US11137602B2 (en) * 2017-12-29 2021-10-05 Microsoft Technology Licensing, Llc Pupil-expanding display device
JP7474696B2 (ja) * 2018-01-04 2024-04-25 マジック リープ, インコーポレイテッド 無機材料を組み込むポリマー構造に基づく光学要素
US12061347B2 (en) 2018-01-29 2024-08-13 University Of Washington Metasurfaces for full-color imaging
US10866426B2 (en) * 2018-02-28 2020-12-15 Apple Inc. Scanning mirror display devices
CN111954837A (zh) * 2018-03-12 2020-11-17 奇跃公司 基于折射率极高的目镜基板的观察光学组件架构
US10755676B2 (en) 2018-03-15 2020-08-25 Magic Leap, Inc. Image correction due to deformation of components of a viewing device
US11222987B2 (en) * 2018-03-21 2022-01-11 Intel Corporation Optical receiver employing a metasurface collection lens having concentric belts or rings
CN110297331A (zh) * 2018-03-23 2019-10-01 京东方科技集团股份有限公司 显示装置及显示方法
EP3776029A4 (en) * 2018-04-02 2022-06-29 Magic Leap, Inc. Hybrid polymer waveguide and methods for making the same
JP7025280B2 (ja) 2018-05-08 2022-02-24 浜松ホトニクス株式会社 メタレンズユニット、半導体故障解析装置、及び半導体故障解析方法
US11885871B2 (en) 2018-05-31 2024-01-30 Magic Leap, Inc. Radar head pose localization
CN108828717B (zh) * 2018-06-08 2019-08-20 武汉大学 基于超表面闪耀光栅的光路单向导通元件结构及其应用
US20200003937A1 (en) * 2018-06-29 2020-01-02 Applied Materials, Inc. Using flowable cvd to gap fill micro/nano structures for optical components
WO2020010097A1 (en) 2018-07-02 2020-01-09 Magic Leap, Inc. Pixel intensity modulation using modifying gain values
US11856479B2 (en) 2018-07-03 2023-12-26 Magic Leap, Inc. Systems and methods for virtual and augmented reality along a route with markers
US11402543B2 (en) * 2018-07-13 2022-08-02 The Regents Of The University Of California All silicon broadband ultra-violet metasurfaces
WO2020023543A1 (en) 2018-07-24 2020-01-30 Magic Leap, Inc. Viewing device with dust seal integration
US11112862B2 (en) 2018-08-02 2021-09-07 Magic Leap, Inc. Viewing system with interpupillary distance compensation based on head motion
US10795458B2 (en) 2018-08-03 2020-10-06 Magic Leap, Inc. Unfused pose-based drift correction of a fused pose of a totem in a user interaction system
JP7487176B2 (ja) 2018-08-22 2024-05-20 マジック リープ, インコーポレイテッド 患者視認システム
JP7226966B2 (ja) * 2018-10-26 2023-02-21 デクセリアルズ株式会社 偏光板及び偏光板の製造方法
CN109584226B (zh) * 2018-11-26 2021-02-05 浙江瑞度新材料科技有限公司 一种质检系统以及方法
JP7390378B2 (ja) * 2018-11-30 2023-12-01 マジック リープ, インコーポレイテッド 拡張現実デバイスにおける高効率接眼レンズのための方法およびシステム
CN113454507B (zh) 2018-12-21 2024-05-07 奇跃公司 用于促进波导内的全内反射的气穴结构
EP3939030A4 (en) 2019-03-12 2022-11-30 Magic Leap, Inc. REGISTRATION OF LOCAL CONTENT BETWEEN FIRST AND SECOND VIEWERS OF AUGMENTED REALITY
WO2020185954A1 (en) 2019-03-12 2020-09-17 Magic Leap, Inc. Waveguides with high index materials and methods of fabrication thereof
WO2020200931A1 (en) 2019-03-29 2020-10-08 Sony Corporation Metalens portion, electronic device and method
JP7297548B2 (ja) * 2019-06-21 2023-06-26 株式会社日立エルジーデータストレージ 導光板の製造方法、導光板モジュールの製造方法、および画像表示装置の製造方法
CN110161611A (zh) * 2019-06-27 2019-08-23 华南师范大学 一种波长依赖型双功能全介质超表面结构
EP3999884A4 (en) * 2019-07-19 2023-08-30 Magic Leap, Inc. DISPLAY DEVICE HAVING DIFFRACTION GRATINGS WITH REDUCED POLARIZATION SENSITIVITY
EP4004608A4 (en) 2019-07-26 2023-08-30 Metalenz, Inc. APERTURE META-SURFACE AND HYBRID REFRACTIVE META-SURFACE IMAGING SYSTEMS
JP7406622B2 (ja) 2019-08-21 2023-12-27 マジック リープ, インコーポレイテッド 高屈折率材料を使用した平坦スペクトル応答格子
CN114616210A (zh) 2019-09-11 2022-06-10 奇跃公司 带有具有降低的偏振灵敏度的衍射光栅的显示装置
US11467406B2 (en) 2019-09-27 2022-10-11 Microsoft Technology Licensing, Llc Field of view expanding system
US11448883B2 (en) 2019-09-27 2022-09-20 Microsoft Technology Licensing, Llc Non-linear angular momentum metasurface
EP3798716A1 (en) * 2019-09-27 2021-03-31 Schott AG Waveguide device comprising optical elements of selected refractive index
KR102328062B1 (ko) * 2019-10-25 2021-11-17 홍익대학교 산학협력단 넓은 대역폭 및 고효율의 평면형 메타표면 역반사체
JP7467619B2 (ja) * 2019-11-08 2024-04-15 マジック リープ, インコーポレイテッド 複数の材料を含む光再指向構造を伴うメタ表面およびその加工方法
US12033081B2 (en) 2019-11-14 2024-07-09 Magic Leap, Inc. Systems and methods for virtual and augmented reality
EP4058979A4 (en) 2019-11-15 2023-01-11 Magic Leap, Inc. VIEWING SYSTEM FOR USE IN A SURGICAL ENVIRONMENT
KR20210086297A (ko) 2019-12-31 2021-07-08 엘지디스플레이 주식회사 전자기기
WO2021231789A1 (en) * 2020-05-14 2021-11-18 Magic Leap, Inc. Method and system for integration of refractive optics with a diffractive eyepiece waveguide display
CN112630966B (zh) * 2020-12-16 2022-04-05 浙江大学 超表面微纳结构单片全色彩波导镜片及ar显示装置
KR102565450B1 (ko) * 2021-01-27 2023-08-11 홍익대학교 산학협력단 낮은 높이를 갖는 tm 편파 역 반사 메타표면 안테나
JP2024509371A (ja) * 2021-02-26 2024-03-01 イマジア,インコーポレイテッド 光学メタレンズシステム
CN112965158B (zh) * 2021-03-01 2021-12-21 南京航空航天大学 一种实现单向增强光子自旋霍尔效应位移的方法
CN114185123B (zh) * 2022-02-16 2022-07-26 北京亮亮视野科技有限公司 超表面光栅、光波导和头戴式设备
US11927769B2 (en) 2022-03-31 2024-03-12 Metalenz, Inc. Polarization sorting metasurface microlens array device
CN115373053B (zh) * 2022-08-29 2023-09-19 武汉大学 实现三通道独立纳米印刷图像复用的超表面及其构建方法
US11933940B1 (en) 2022-09-14 2024-03-19 Imagia, Inc. Materials for metalenses, through-waveguide reflective metasurface couplers, and other metasurfaces

Family Cites Families (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1588370A (en) 1978-05-11 1981-04-23 Standard Telephones Cables Ltd Infra-red transmitting elements
JPS60140204A (ja) 1983-12-28 1985-07-25 Toshiba Corp 光導波路レンズ及びその製造方法
JPS6286307A (ja) 1985-10-11 1987-04-20 Canon Inc グレ−テイングカツプラ
US4839464A (en) 1987-08-25 1989-06-13 Regents Of The University Of Minnesota Polypeptides with fibronectin activity
US6222525B1 (en) 1992-03-05 2001-04-24 Brad A. Armstrong Image controllers with sheet connected sensors
US5336073A (en) 1992-12-16 1994-08-09 Sumitomo Heavy Industries, Ltd. Injection pressure limiting device for injection molding machine
JPH06347630A (ja) 1993-04-13 1994-12-22 Matsushita Electric Ind Co Ltd 回折素子およびその製造方法ならびに光波長変換素子およびその製造方法
DE4338969C2 (de) * 1993-06-18 1996-09-19 Schott Glaswerke Verfahren zur Herstellung anorganischer diffraktiver Elemente und Verwendung derselben
US5670988A (en) 1995-09-05 1997-09-23 Interlink Electronics, Inc. Trigger operated electronic device
JP4164895B2 (ja) 1998-04-08 2008-10-15 松下電器産業株式会社 偏光性回折格子の作成方法
US6728034B1 (en) * 1999-06-16 2004-04-27 Matsushita Electric Industrial Co., Ltd. Diffractive optical element that polarizes light and an optical pickup using the same
US6122103A (en) * 1999-06-22 2000-09-19 Moxtech Broadband wire grid polarizer for the visible spectrum
JP2002319551A (ja) * 2001-04-23 2002-10-31 Nec Corp 半導体装置およびその製造方法
JP4183444B2 (ja) 2002-05-29 2008-11-19 アルプス電気株式会社 光学部材
US20040047039A1 (en) 2002-06-17 2004-03-11 Jian Wang Wide angle optical device and method for making same
US20040263981A1 (en) 2003-06-27 2004-12-30 Coleman Christopher L. Diffractive optical element with anti-reflection coating
US7794831B2 (en) 2003-07-28 2010-09-14 Vampire Optical Coating, Inc. Anti-reflective coating
US9255955B2 (en) 2003-09-05 2016-02-09 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US7315426B2 (en) 2003-12-05 2008-01-01 University Of Pittsburgh Metallic nano-optic lenses and beam shaping devices
USD514570S1 (en) 2004-06-24 2006-02-07 Microsoft Corporation Region of a fingerprint scanning device with an illuminated ring
JP5314282B2 (ja) 2004-08-31 2013-10-16 デジタルオプティクス・コーポレイション・イースト モノリシック偏光制御角拡散器および関連方法
WO2006041596A2 (en) 2004-09-01 2006-04-20 Optical Research Associates Compact head mounted display devices with tilted/decentered lens element
US7278775B2 (en) 2004-09-09 2007-10-09 Fusion Optix Inc. Enhanced LCD backlight
US7570424B2 (en) * 2004-12-06 2009-08-04 Moxtek, Inc. Multilayer wire-grid polarizer
US7961393B2 (en) 2004-12-06 2011-06-14 Moxtek, Inc. Selectively absorptive wire-grid polarizer
JP2006162981A (ja) 2004-12-07 2006-06-22 Fujitsu Ltd 光スイッチ装置および光学部材ユニット
JP2006163291A (ja) 2004-12-10 2006-06-22 Canon Inc 光学素子及びその製造方法
US7206107B2 (en) * 2004-12-13 2007-04-17 Nokia Corporation Method and system for beam expansion in a display device
US20060154044A1 (en) 2005-01-07 2006-07-13 Pentax Corporation Anti-reflection coating and optical element having such anti-reflection coating for image sensors
JPWO2006095612A1 (ja) 2005-03-10 2008-08-14 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス用樹脂フィルム基板および有機エレクトロルミネッセンスデバイス
US7573640B2 (en) 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
CN100523879C (zh) 2005-05-02 2009-08-05 冲电气工业株式会社 衍射光学元件的制造方法
JP4720984B2 (ja) 2005-05-18 2011-07-13 日産化学工業株式会社 段差を有する基板上に被覆膜を形成する方法
JP4645309B2 (ja) 2005-06-02 2011-03-09 富士ゼロックス株式会社 3次元フォトニック結晶の製造方法及び3次元フォトニック結晶製造用基板
JP2007033558A (ja) 2005-07-22 2007-02-08 Nippon Zeon Co Ltd グリッド偏光子及びその製法
GB2430760A (en) 2005-09-29 2007-04-04 Bookham Technology Plc Chirped Bragg grating structure
US20070081123A1 (en) 2005-10-07 2007-04-12 Lewis Scott W Digital eyewear
US11428937B2 (en) 2005-10-07 2022-08-30 Percept Technologies Enhanced optical and perceptual digital eyewear
US8696113B2 (en) 2005-10-07 2014-04-15 Percept Technologies Inc. Enhanced optical and perceptual digital eyewear
KR100697614B1 (ko) 2006-01-31 2007-03-22 주식회사 엘지에스 회절격자 및 그 제조 방법
JP2007219106A (ja) 2006-02-16 2007-08-30 Konica Minolta Holdings Inc 光束径拡大光学素子、映像表示装置およびヘッドマウントディスプレイ
JP2007265581A (ja) 2006-03-30 2007-10-11 Fujinon Sano Kk 回折素子
US7821691B2 (en) 2006-07-28 2010-10-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA—Recherche et Développement Zero-order diffractive filter
KR100818272B1 (ko) 2006-08-21 2008-04-01 삼성전자주식회사 색분산이 개선된 홀로그래픽 도광판
WO2008023375A1 (en) 2006-08-23 2008-02-28 Mirage Innovations Ltd. Diffractive optical relay device with improved color uniformity
US7905650B2 (en) 2006-08-25 2011-03-15 3M Innovative Properties Company Backlight suitable for display devices
CN101177237A (zh) 2006-11-07 2008-05-14 财团法人工业技术研究院 纳米阵列及其形成方法
EP2088123A1 (en) 2006-11-10 2009-08-12 Sumitomo Electric Industries, Ltd. Si-O CONTAINING HYDROGENATED CARBON FILM, OPTICAL DEVICE INCLUDING THE SAME, AND METHOD FOR MANUFACTURING THE Si-O CONTAINING HYDROGENATED FILM AND THE OPTICAL DEVICE
US7991257B1 (en) 2007-05-16 2011-08-02 Fusion Optix, Inc. Method of manufacturing an optical composite
US8165436B2 (en) 2007-11-05 2012-04-24 Lightsmyth Technologies Inc. Highly efficient optical gratings with reduced thickness requirements and impedance-matching layers
KR100918381B1 (ko) 2007-12-17 2009-09-22 한국전자통신연구원 광통신을 위한 회절격자 커플러를 포함하는 반도체집적회로 및 그 형성 방법
JP2009169213A (ja) 2008-01-18 2009-07-30 Seiko Epson Corp ワイヤーグリッド偏光素子の製造方法及び液晶装置の製造方法
JP2009169214A (ja) 2008-01-18 2009-07-30 Seiko Epson Corp カラーフィルター用インクセット、カラーフィルター、画像表示装置、および、電子機器
JP5272434B2 (ja) 2008-02-18 2013-08-28 凸版印刷株式会社 表示体
JP2009288718A (ja) 2008-05-30 2009-12-10 Kyoto Institute Of Technology 共振グレーティングカップラ
US9116302B2 (en) 2008-06-19 2015-08-25 Ravenbrick Llc Optical metapolarizer device
JPWO2010016559A1 (ja) 2008-08-07 2012-01-26 旭硝子株式会社 回折格子、収差補正素子および光ヘッド装置
US7929815B2 (en) 2008-08-27 2011-04-19 International Business Machines Corporation Optical coupling device
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
WO2010057219A1 (en) 2008-11-17 2010-05-20 Luminit Llc Holographic substrate-guided wave-based see-through display
JP5145516B2 (ja) * 2008-12-10 2013-02-20 綜研化学株式会社 波長分波光学素子およびカプラー
JP5671455B2 (ja) 2009-01-21 2015-02-18 レイブンブリック,エルエルシー 光学的メタポラライザ・デバイス
CN101556356B (zh) * 2009-04-17 2011-10-19 北京大学 一种光栅耦合器及其在偏振和波长分束上的应用
US10642039B2 (en) 2009-04-20 2020-05-05 Bae Systems Plc Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface
KR101556356B1 (ko) 2009-06-23 2015-10-02 주성엔지니어링(주) 가스 분사 장치 및 이를 구비하는 박막 제조 장치
JP4491555B1 (ja) 2009-06-29 2010-06-30 ナルックス株式会社 光学素子及びその製造方法
US11320571B2 (en) 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US20110166045A1 (en) 2009-12-01 2011-07-07 Anuj Dhawan Wafer scale plasmonics-active metallic nanostructures and methods of fabricating same
US8786852B2 (en) 2009-12-02 2014-07-22 Lawrence Livermore National Security, Llc Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto
US8194302B2 (en) 2009-12-15 2012-06-05 Hewlett-Packard Development Company, L.P. Active chiral photonic metamaterial
US8917447B2 (en) 2010-01-13 2014-12-23 3M Innovative Properties Company Microreplicated film for attachment to autostereoscopic display components
JP5424154B2 (ja) 2010-04-28 2014-02-26 公立大学法人大阪府立大学 光学部品
US9347829B2 (en) * 2010-05-07 2016-05-24 President And Fellows Of Harvard College Integrated nanobeam cavity array spectrometer
KR101432115B1 (ko) 2010-07-15 2014-08-21 한국전자통신연구원 메타 물질 및 그의 제조방법
JP2012027221A (ja) * 2010-07-23 2012-02-09 Asahi Kasei Corp ワイヤーグリッド偏光子
US8467643B2 (en) 2010-08-13 2013-06-18 Toyota Motor Engineering & Mfg. North America, Inc. Optical device using double-groove grating
US8798414B2 (en) * 2010-09-29 2014-08-05 President And Fellows Of Harvard College High quality factor photonic crystal nanobeam cavity and method of designing and making same
WO2012046414A1 (ja) 2010-10-04 2012-04-12 パナソニック株式会社 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置
US9304319B2 (en) 2010-11-18 2016-04-05 Microsoft Technology Licensing, Llc Automatic focus improvement for augmented reality displays
CN102073103B (zh) 2010-11-22 2013-11-13 北京交通大学 基于亚波长二元衍射光栅的波长分离器
US10156722B2 (en) 2010-12-24 2018-12-18 Magic Leap, Inc. Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality
CA2822978C (en) 2010-12-24 2019-02-19 Hong Hua An ergonomic head mounted display device and optical system
CN102540306B (zh) 2010-12-31 2015-03-25 北京京东方光电科技有限公司 光栅片、液晶显示装置及光栅片、液晶面板的制造方法
WO2012143701A1 (en) * 2011-04-18 2012-10-26 Bae Systems Plc A projection display
JP2012230246A (ja) 2011-04-26 2012-11-22 Asahi Glass Co Ltd 光学ローパスフィルタ及び撮像装置
JP6316186B2 (ja) 2011-05-06 2018-04-25 マジック リープ, インコーポレイテッドMagic Leap,Inc. 広範囲同時遠隔ディジタル提示世界
WO2012162880A1 (zh) * 2011-05-31 2012-12-06 苏州苏大维格光电科技股份有限公司 一种反射式彩色滤光片
EP2530499A1 (en) 2011-06-01 2012-12-05 Université Jean-Monnet Planar grating polarization transformer
WO2013033591A1 (en) * 2011-08-31 2013-03-07 President And Fellows Of Harvard College Amplitude, phase and polarization plate for photonics
KR101871803B1 (ko) 2011-09-06 2018-06-29 한국전자통신연구원 유기발광다이오드 및 그의 제조방법
US10795448B2 (en) 2011-09-29 2020-10-06 Magic Leap, Inc. Tactile glove for human-computer interaction
RU2017115669A (ru) 2011-10-28 2019-01-28 Мэджик Лип, Инк. Система и способ для дополненной и виртуальной реальности
CN103091747B (zh) 2011-10-28 2015-11-25 清华大学 一种光栅的制备方法
KR102116697B1 (ko) 2011-11-23 2020-05-29 매직 립, 인코포레이티드 3차원 가상 및 증강 현실 디스플레이 시스템
GB2500631B (en) 2012-03-27 2017-12-27 Bae Systems Plc Improvements in or relating to optical waveguides
KR102028732B1 (ko) 2012-04-05 2019-10-04 매직 립, 인코포레이티드 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
KR20140138886A (ko) 2012-04-13 2014-12-04 아사히 가세이 이-매터리얼즈 가부시키가이샤 반도체 발광 소자용 광추출체 및 발광 소자
EP2841980A4 (en) * 2012-04-27 2016-01-13 Leia Inc PIXEL DIRECTIONAL FOR USE IN A DISPLAY SCREEN
US9952096B2 (en) 2012-06-05 2018-04-24 President And Fellows Of Harvard College Ultra-thin optical coatings and devices and methods of using ultra-thin optical coatings
US9310559B2 (en) 2012-06-11 2016-04-12 Magic Leap, Inc. Multiple depth plane three-dimensional display using a wave guide reflector array projector
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US9739950B2 (en) * 2012-07-25 2017-08-22 CSEM Centre Suisse d'Electronique et de Microtechnique SA-Recherche et Développement Method to optimize a light coupling waveguide
DE102012015900A1 (de) * 2012-08-10 2014-03-06 Giesecke & Devrient Gmbh Sicherheitselement mit farbeffekterzeugendem Gitter
IN2015DN01063A (ko) * 2012-08-13 2015-06-26 Bayer Materialscience Ag
US20140063585A1 (en) 2012-08-31 2014-03-06 John G. Hagoplan Phase-controlled magnetic mirror, mirror system, and methods of using the mirror
US8885997B2 (en) 2012-08-31 2014-11-11 Microsoft Corporation NED polarization system for wavelength pass-through
AU2013315607A1 (en) 2012-09-11 2015-04-02 Magic Leap, Inc Ergonomic head mounted display device and optical system
FI125270B (en) * 2012-09-20 2015-08-14 Teknologian Tutkimuskeskus Vtt Oy Optical device with diffractive grating
JP2014134739A (ja) 2013-01-11 2014-07-24 Toppan Printing Co Ltd 画像表示体及び情報媒体
IL293789B2 (en) 2013-01-15 2023-08-01 Magic Leap Inc A system for scanning electromagnetic imaging radiation
JP6197295B2 (ja) 2013-01-22 2017-09-20 セイコーエプソン株式会社 光学デバイス及び画像表示装置
CN105188516B (zh) 2013-03-11 2017-12-22 奇跃公司 用于增强和虚拟现实的系统与方法
US20140264998A1 (en) 2013-03-14 2014-09-18 Q1 Nanosystems Corporation Methods for manufacturing three-dimensional metamaterial devices with photovoltaic bristles
US20140272295A1 (en) 2013-03-14 2014-09-18 Sdc Technologies, Inc. Anti-fog nanotextured surfaces and articles containing the same
KR102458124B1 (ko) 2013-03-15 2022-10-21 매직 립, 인코포레이티드 디스플레이 시스템 및 방법
JP5867439B2 (ja) 2013-03-29 2016-02-24 ウシオ電機株式会社 グリッド偏光素子及び光配向装置
JP6245495B2 (ja) * 2013-05-23 2017-12-13 オリンパス株式会社 光検出器
US9874749B2 (en) * 2013-11-27 2018-01-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
US10262462B2 (en) 2014-04-18 2019-04-16 Magic Leap, Inc. Systems and methods for augmented and virtual reality
US20150040978A1 (en) 2013-08-07 2015-02-12 Purdue Research Foundation Solar-cell efficiency enhancement using metasurfaces
JP2016527571A (ja) * 2013-08-12 2016-09-08 スリーエム イノベイティブ プロパティズ カンパニー 光取り出しフィルムを有する発光物品
JP6171740B2 (ja) * 2013-09-02 2017-08-02 セイコーエプソン株式会社 光学デバイス及び画像表示装置
US9887459B2 (en) 2013-09-27 2018-02-06 Raytheon Bbn Technologies Corp. Reconfigurable aperture for microwave transmission and detection
IL302408B2 (en) 2013-10-16 2024-09-01 Magic Leap Inc An augmented or virtual reality head device with intrapupillary distance adjustment
CN110542938B (zh) 2013-11-27 2023-04-18 奇跃公司 虚拟和增强现实系统与方法
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
JP6322975B2 (ja) 2013-11-29 2018-05-16 セイコーエプソン株式会社 光学デバイスおよび電子機器
US9880328B2 (en) 2013-12-12 2018-01-30 Corning Incorporated Transparent diffusers for lightguides and luminaires
WO2015093752A1 (ko) 2013-12-16 2015-06-25 (주)엠아이케이테크 영구자석형 전자기 제동 실린더
US9823392B2 (en) 2014-01-10 2017-11-21 Jx Nippon Oil & Energy Corporation Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
NZ722903A (en) 2014-01-31 2020-05-29 Magic Leap Inc Multi-focal display system and method
CN106461955B (zh) 2014-01-31 2019-08-13 奇跃公司 显示增强现实的方法
US9482796B2 (en) 2014-02-04 2016-11-01 California Institute Of Technology Controllable planar optical focusing system
JP6534114B2 (ja) 2014-02-12 2019-06-26 国立大学法人三重大学 光学装置の製造方法及び光学装置
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
JP6287487B2 (ja) 2014-03-31 2018-03-07 セイコーエプソン株式会社 光学デバイス、画像投影装置及び電子機器
WO2015166852A1 (ja) 2014-05-02 2015-11-05 日本碍子株式会社 光学素子およびその製造方法
WO2016018488A2 (en) 2014-05-09 2016-02-04 Eyefluence, Inc. Systems and methods for discerning eye signals and continuous biometric identification
USD759657S1 (en) 2014-05-19 2016-06-21 Microsoft Corporation Connector with illumination region
CN113253476B (zh) 2014-05-30 2022-12-27 奇跃公司 采用虚拟或增强现实装置生成虚拟内容显示的方法和系统
USD752529S1 (en) 2014-06-09 2016-03-29 Comcast Cable Communications, Llc Electronic housing with illuminated region
TWI514097B (zh) * 2014-06-13 2015-12-21 Univ Nat Taiwan 可由偏振調控重建影像的多光學維度超穎全像片
RU2603238C2 (ru) 2014-07-15 2016-11-27 Самсунг Электроникс Ко., Лтд. Световодная структура, голографическое оптическое устройство и система формирования изображений
US20160025626A1 (en) * 2014-07-23 2016-01-28 California Institute Of Technology Silicon photonic crystal nanobeam cavity without surface cladding and integrated with micro-heater for sensing applications
US9507064B2 (en) 2014-07-27 2016-11-29 The Board Of Trustees Of The Leland Stanford Junior University Dielectric metasurface optical elements
CN105374918B (zh) 2014-08-26 2018-05-01 清华大学 发光装置以及采用该发光装置的显示装置
WO2016044104A1 (en) * 2014-09-15 2016-03-24 California Institute Of Technology Simultaneous polarization and wavefront control using a planar device
CN104659179A (zh) 2015-03-10 2015-05-27 江苏新广联半导体有限公司 用于GaN基LED的抗反射透明电极结构及其制备方法
CA2981652C (en) 2015-04-02 2023-08-22 University Of Rochester Freeform nanostructured surface for virtual and augmented reality near eye display
US10267956B2 (en) 2015-04-14 2019-04-23 California Institute Of Technology Multi-wavelength optical dielectric metasurfaces
WO2016168173A1 (en) 2015-04-14 2016-10-20 California Institute Of Technology Multi-wavelength optical dielectric metasurfaces
USD758367S1 (en) 2015-05-14 2016-06-07 Magic Leap, Inc. Virtual reality headset
KR20230025933A (ko) 2015-06-15 2023-02-23 매직 립, 인코포레이티드 멀티플렉싱된 광 스트림들을 인-커플링하기 위한 광학 엘리먼트들을 가진 디스플레이 시스템
US11268854B2 (en) * 2015-07-29 2022-03-08 Samsung Electronics Co., Ltd. Spectrometer including metasurface
WO2017036815A1 (en) 2015-08-31 2017-03-09 Koninklijke Philips N.V. Actuator or sensor device based on an electroactive or photoactive polymer
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
JP6925358B2 (ja) 2015-11-24 2021-08-25 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 可視スペクトルの波長のための誘電体メタサーフェス(metasurface)を製造するための原子層堆積プロセス
USD805734S1 (en) 2016-03-04 2017-12-26 Nike, Inc. Shirt
USD794288S1 (en) 2016-03-11 2017-08-15 Nike, Inc. Shoe with illuminable sole light sequence
US10725290B2 (en) 2016-04-29 2020-07-28 The Board Of Trustees Of The Leland Stanford Junior University Device components formed of geometric structures
CN113484944A (zh) 2016-05-06 2021-10-08 奇跃公司 具有用于重定向光的非对称光栅的超表面及其制造方法
TWI649259B (zh) * 2016-12-05 2019-02-01 中央研究院 寬頻超穎光學裝置
WO2018140502A1 (en) 2017-01-27 2018-08-02 Magic Leap, Inc. Antireflection coatings for metasurfaces
IL307294A (en) 2017-01-27 2023-11-01 Magic Leap Inc Diffraction gratings produced using a surface cell with differently oriented nanobeams
WO2019122295A2 (de) 2017-12-21 2019-06-27 Seereal Technologies S.A. Anzeigevorrichtung und verfahren zur nachführung eines virtuellen sichtbarkeitsbereichs
JP7474696B2 (ja) 2018-01-04 2024-04-25 マジック リープ, インコーポレイテッド 無機材料を組み込むポリマー構造に基づく光学要素
US20200135703A1 (en) * 2018-10-31 2020-04-30 Intel Corporation Light field display for head mounted apparatus using metapixels
EP3938818B1 (en) * 2019-03-12 2024-10-09 Magic Leap, Inc. Method of fabricating display device having patterned lithium-based transition metal oxide

Also Published As

Publication number Publication date
US11360306B2 (en) 2022-06-14
JP2020118997A (ja) 2020-08-06
CN109476175B (zh) 2021-07-30
KR20190004330A (ko) 2019-01-11
AU2021290251A1 (en) 2022-01-20
EP3452301B1 (en) 2024-08-14
IL262613A (en) 2018-12-31
KR20230021190A (ko) 2023-02-13
JP7366206B2 (ja) 2023-10-20
WO2017193012A8 (en) 2018-11-15
TW201741694A (zh) 2017-12-01
JP6961619B2 (ja) 2021-11-05
JP2019523895A (ja) 2019-08-29
US20230418074A1 (en) 2023-12-28
AU2021290251A8 (en) 2022-03-10
JP2020122984A (ja) 2020-08-13
EP3452301A4 (en) 2019-12-25
CN113484944A (zh) 2021-10-08
NZ747834A (en) 2023-06-30
AU2017260208B2 (en) 2021-09-23
US10527851B2 (en) 2020-01-07
AU2017260208A1 (en) 2018-11-22
JP7085585B2 (ja) 2022-06-16
EP3452301A1 (en) 2019-03-13
WO2017193012A1 (en) 2017-11-09
KR20230159898A (ko) 2023-11-22
US11796818B2 (en) 2023-10-24
KR102230642B1 (ko) 2021-03-19
US20220283438A1 (en) 2022-09-08
TWI720194B (zh) 2021-03-01
US20170322418A1 (en) 2017-11-09
JP2023171792A (ja) 2023-12-05
US20200150437A1 (en) 2020-05-14
IL262613B (en) 2022-04-01
CA3022876A1 (en) 2017-11-09
JP2022166056A (ja) 2022-11-01
KR102603675B1 (ko) 2023-11-16
AU2021290251B2 (en) 2023-12-07
JP7117341B2 (ja) 2022-08-12
CN109476175A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
KR102230642B1 (ko) 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들
US11579353B2 (en) Metasurfaces with light-redirecting structures including multiple materials and methods for fabricating
JP2018538582A (ja) 光を再指向させるためのメタ表面および製造方法
NZ787902A (en) Metasurfaces with asymmetric gratings for redirecting light and methods for fabricating

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination