CN111954837A - 基于折射率极高的目镜基板的观察光学组件架构 - Google Patents

基于折射率极高的目镜基板的观察光学组件架构 Download PDF

Info

Publication number
CN111954837A
CN111954837A CN201980024825.8A CN201980024825A CN111954837A CN 111954837 A CN111954837 A CN 111954837A CN 201980024825 A CN201980024825 A CN 201980024825A CN 111954837 A CN111954837 A CN 111954837A
Authority
CN
China
Prior art keywords
light
waveguide
head mounted
mounted display
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980024825.8A
Other languages
English (en)
Inventor
M·A·克鲁格
K·R·柯蒂斯
V·辛格
K·罗
M·B·D·沃恩
S·巴尔加瓦
杨书强
M·N·米勒
F·Y·徐
K·梅塞尔
R·D·泰克尔斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magic Leap Inc
Original Assignee
Magic Leap Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magic Leap Inc filed Critical Magic Leap Inc
Publication of CN111954837A publication Critical patent/CN111954837A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • G02B2027/012Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility comprising devices for attenuating parasitic image effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/0154Head-up displays characterised by mechanical features with movable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/0154Head-up displays characterised by mechanical features with movable elements
    • G02B2027/0159Head-up displays characterised by mechanical features with movable elements with mechanical means other than scaning means for positioning the whole image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0185Displaying image at variable distance
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2236Details of the viewing window
    • G03H2001/2239Enlarging the viewing window

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Eyeglasses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

折射率极高(n>2.2)的导光基板允许制造70°视场目镜,其中在单个目镜层中具有所有三种原色。本文公开了利用这种目镜来减小尺寸和成本,简化制造和组件,以及更好地适应新颖的微显示器设计的观察光学组件架构。

Description

基于折射率极高的目镜基板的观察光学组件架构
优先权声明
本申请主张2018年3月12日提交的序列号为62/641,976的美国临时专利申请的优先权,该申请的全部内容在此通过引用并入此文。
纳入参考的申请
本申请通过引用纳入以下每个专利申请的全部内容作为参考:2018年10月4日公开的,公开序列号为2018/0284585的,题为“LOW-PROFILE BEAM SPLITTER(低轮廓分束器)”(代理人案号MLEAP.111A)的美国申请以及2017年3月21日提交的,序列号为62/474543的美国专利申请,以及2017年10月11日提交的,序列号为62/570995的美国专利申请;2018年12月13日公开的,公开序列号为2018/0356639的,题为“AUGMENTED REALITY DISPLAY HAVINGMULTI-ELEMENT ADAPTIVE LENS FOR CHANGING DEPTH PLANES(具有改变深度平面的多元件自适应透镜的增强现实显示器)”(代理人案号MLEAP.119A)的美国专利以及2017年6月12日提交的序列号为62/518539的美国专利申请以及2017年7月25日提交的序列号为62/536872的美国专利申请;2017年10月27日提交的序列号为15/796,669的美国专利申请;题为“WAVEGUIDE ILLUMINATOR(波导照明器)”(代理人案号MLEAP.154A)的2018年12月10日提交的序列号为16/215,477的美国专利申请,于___________公开的,公开序列号为___________的美国申请,以及2017年12月11日提交的序列号为62/597359的美国专利申请;2018年1月30日提交的序列号为62/624109的美国专利申请;以及于___________公开为公开序列号为___________美国申请的序列号为16/262,659美国专利申请,以及2018年1月31日提交的序列号为62/624762的美国专利申请。上述每个申请的内容特此通过引用并入。
技术领域
本申请涉及观察光学组件,更具体地说,涉及被配置为利用折射率极高的光导基板的观察光学组件架构。该观察光学组件可用于光学系统,包括增强现实成像和可视化系统。
背景技术
现代计算和显示技术促进了用于所谓“虚拟现实”或“增强现实”体验的系统的开发,在这些体验当中,数字再现的图像或其部分以看起来真实或可以被感知为真实的方式呈现给用户。虚拟现实或“VR”场景通常涉及以其它实际的真实世界视觉输入不透明的方式呈现数字或虚拟图像信息;增强现实或“AR”场景通常涉及将数字或虚拟图像信息呈现为对用户周围真实世界的可视化的增强。混合现实或“MR”场景是一种AR场景,并且通常涉及集成到自然世界中,并对自然世界做出响应的虚拟对象。例如,MR场景可以包括AR图像内容,其呈现为被真实世界中的对象遮挡或者以其它方式被感知为与真实世界中的对象交互。
参考图1,示出了增强现实场景10。AR技术的用户看到真实世界的公园式设置20,该设置以人、树、位于背景中的建筑物以及混凝土平台30为特征。用户还感知到他/她“看到”“虚拟内容”,诸如站在真实世界平台30上的机器人雕像40,以及看起来是大黄蜂的化身的飞舞的卡通式化身角色50,这些元素40、50是“虚拟的”,因为它们在真实世界中不存在。由于人类视觉感知系统复杂,所以开发促进虚拟图像元素从其它虚拟或真实世界图像元素当中舒适、感觉自然、丰富呈现的AR技术极具挑战的。
本文公开系统和方法解决了与AR和VR技术相关的各种挑战。
发明内容
一种头戴式显示系统可被配置为将光投射到用户的眼睛以在用户的视场中显示增强现实图像内容。该头戴式显示系统可以包括被配置为被支撑在用户的头部的框架。该头戴式显示系统还可以包括被设置在该框架上的目镜。该目镜的至少一部分可以是透明的和/或当用户穿戴该头戴式显示器时被设置在用户的眼睛前方的位置处,以使得透明部分将来自用户前方环境的光透射到用户的眼睛,以提供用户前方的该环境的视图。该目镜可以包括一个或多个波导,该一个或多个波导被设置为将光引导到用户的眼睛中以形成增强现实图像内容。
头戴式显示系统的各种实施例包括至少一个投影仪,该投影仪具有一个或多个光瞳,该一个或多个光瞳输出具有多个颜色或波长范围(例如两个或三个颜色或波长范围)的光(例如图像光),以产生不同颜色的图像或图像分量,诸如红色图像分量、绿色图像分量和蓝色图像分量。可以将这些图像分量进行组合,以提供几乎全彩色的影像。这些颜色分量可以被导入用户的眼睛,以显示增强现实或虚拟图像内容。在一些实施方式中,该头戴式显示系统中的目镜包括波导组件,该波导组件包括彼此堆叠的多个波导。
在本申请构想的显示设备的各种实施方式中,包括一个或多个波导,该一个或多个波导包括折射率大于玻璃的折射率的材料。例如,在本申请构想的显示设备的各种实施例中的一个或多个波导可以包括铌酸锂(LiNbO3)或碳化硅(SiC)。在各种实施例中,在本申请构想的显示设备的各种实施例中的一个或多个波导可以包括对可见光透明并且折射率大于玻璃的折射率的材料(例如,折射率大于或等于约1.79)。与包括折射率小于大约1.79的玻璃和/或材料的波导相比,包括折射率相对较高(例如,折射率大于玻璃的折射率和/或折射率大于或等于约1.79)的材料的一个或多个波导可以有利地扩大通过该一个或多个波导输出到用户眼睛的来自一个或多个投影仪的图像内容的视场。有利地,在显示设备的各种实施方式中,可以将多个颜色或波长的光(例如,红色、绿色和/或蓝色波长的光)同时耦入包括折射率相对较高(例如,折射率大于玻璃的折射率和/或折射率大于或等于约1.79)的材料的单个波导内,并在该单个波导中进行引导,然后使该光针对每个颜色或波长以相似的角度输出从该单个波导耦出,进入用户的眼睛内。因此,与使用三个波导,例如针对三个颜色(例如红色、绿色和蓝色)中的每一者使用一个波导,相反,可以采用单个波导来传播来自一个或多个投影仪的图像的三个颜色分量。这种波导数量的减少可以潜在地具有一个或多个优点,诸如减小重量、目镜总厚度、复杂度、外形尺寸和/或增加光透射和/或图像质量。
在一些实施方式中,可以将来自一个或多个投影仪的图像内容的两个颜色分量而不是三个颜色分量耦入单个波导并在该单个波导中进行引导,然后耦出到用户的眼睛。在一些这样的设计中,可以使用两个波导来容纳三个颜色。例如,第一波导可以接收并在该第一波导中引导两个颜色(例如,红色和绿色、红色和蓝色或绿色和蓝色),并且第二波导可以接收、引导和向用户输出第三颜色(例如,分别为蓝色、绿色和红色)。在一些实施方式中,第一波导可以接收并在该第一波导中引导两个颜色(例如,红色和绿色、红色和蓝色、绿色和蓝色),并且第二波导可以接收、引导和向观看者输出单个第三颜色或颜色分量(例如,分别为蓝色、绿色和红色)。在其它实施方式中,第一波导可以接收并在该第一波导引导两个颜色(例如,红色和绿色),并且第二波导可以接收、引导和向观看者耦出两个颜色或颜色分量,其中,该颜色分量之一不同于在第一波导中引导的图像颜色分量(例如,绿色和蓝色)。使用两个波导,而不是三个(例如,每个深度或深度平面一个),仍然可以减小厚度、复杂度并潜在地提供本文所讨论的优点中一个或多个。
同样,多个波导中的不同波导可以包括耦入光学元件,该耦入光学元件被配置为耦入从一个或多个投影仪的光瞳输出的光中的颜色或多个波长范围之一的光。在一些实施方式中,例如,波导中的单个耦入光学元件被用于将三个颜色或颜色分量耦入该波导内以在该波导中进行引导。在一些实施方式中,波导中的单个耦入光学元件被用于将两个颜色或颜色分量耦入该波导内以在该波导中进行引导。在其它实施方式中,不同的耦入光学元被件用于将相应的不同的颜色或颜色分量耦入单个波导内以在该单个波导中进行引导。例如,三个耦入光学元件可以被用于将三个相应的颜色或颜色分量耦入单个波导内。类似地,两个耦入光学元件可被用于将两个相应的颜色或颜色分量耦入单个波导内。
因此,在一种或多种实施方式中,可以使用一个或多个耦入光学元件将两个或更多个颜色(例如,两个或三个颜色)耦入包括折射率相对较高(例如,折射率大于玻璃的折射率和/或折射率大于或等于大约1.79)的材料的单个波导内,以使得所耦入的两个或更多个颜色可以经由全内反射在包括具有相对较高的折射率(例如,折射率大于玻璃的折射率和/或折射率大于或等于大约1.79)的材料的单个波导内传播,并且耦出到观看者以呈现虚拟图像内容。在一些实施方式中,单个耦入光学元件可被配置为接收来自成像系统(例如,投影装置)的包含图像信息的两个或更多个颜色的光,并且将所接收到的包含图像信息的两个或更多个颜色的光耦入包括具有相对较高折射率(例如,折射率大于玻璃的折射率和/或折射率大于或等于大约1.79)的材料的单个波导内,以使得该包含图像信息的两个或更多个颜色的光通过全内反射传播通过该单个波导,并且耦出到观看者以呈现虚拟图像内容。在一些实施方式中,两个或更多个耦入光学元件可被配置为接收来自成像系统(例如,投影装置)的包含图像信息的两个或更多个颜色的光,并且将所接收到的包含图像信息的两个或更多个颜色的光耦入包括相对较高的折射率(例如,折射率大于玻璃的折射率和/或折射率大于或等于大约1.79)的材料的单个波导内,以使得该包含图像信息的两个或更多个颜色的光通过全内反射传播通过该单个波导,并且耦出到观看者以呈现虚拟图像内容。该一个或多个耦入光学元件可以与发射该包含图像信息的两个或更多个颜色的光的投影仪或成像系统的一个或多个出射光瞳对准。
本文公开的系统、方法和设备分别具有几个创新方面,其中没有单个方面单独负责本文公开的期望属性。下面提供了各种示例系统和方法。
实施例1:一种显示系统,包括:
图像投影设备,其被配置为发射包括第一颜色的第一光流、第二颜色的第二光流和第三颜色的第三光流的复用光流,所述第一颜色、所述第二颜色和所述第三颜色是不同的,所述第一光流、所述第二光流和所述第三光流包括图像内容;以及
波导,其包括折射率大于1.79的材料,所述波导被配置为接收从所述图像投影设备发射的所述复用光流,以使得所述第一光流、所述第二光流和所述第三光流通过多次全内反射在所述波导内被引导。
实施例2:根据实施例1所述的显示系统,其中,所述波导包括折射率大于或等于2.2的材料。
实施例3:根据实施例1至2中任一项所述的显示系统,其中,所述波导包括折射率大于或等于2.3的材料。
实施例4:根据实施例1至3中任一项所述的显示系统,其中,所述波导包括铌酸锂。
实施例5:根据实施例1至4中任一项所述的显示系统,其中,所述波导的视场在水平方向上大于约30度,在垂直方向上大于约24度。
实施例6:根据实施例5所述的显示系统,其中,所述波导的所述视场在所述水平方向上是大约45度,在所述垂直方向上是大约56度。
实施例7:根据实施例1至6中任一项所述的显示系统,进一步包括至少一个可变焦光学元件,其被设置为接收从所述波导输出的所述复用光流,以使得所述复用光流的至少一部分被引导到用户的眼睛,所述可变焦光学元件被配置为改变来自所述波导的光看起来源自的深度。
实施例8:根据实施例1至6中任一项所述的显示系统,其中,所述复用光流包括第一复用光流,所述第一复用光流包括与第一深度平面相关联的图像信息。
实施例9:根据实施例8所述的显示系统,其中,所述波导包括与所述第一深度平面相关联的第一波导,其中,从所述第一波导发射的光被配置为将所述第一复用光流引导到观看者,以产生看起来源自所述第一深度平面的图像。
实施例10:根据实施例8至9中任一项所述的显示系统,其中,所述图像投影设备还被配置为输出包括与第二深度平面相关联的图像信息的第二复用光流,所述第二复用光流包括具有所述第一颜色、所述第二颜色和所述第三颜色的多个光流,所述第一颜色、所述第二颜色和所述第三颜色是不同的。
实施例11:根据实施例10所述的显示系统,进一步包括:
与所述第二深度平面相关联的第二波导,所述第二波导包括折射率大于1.79的材料,所述第二波导被配置为接收从所述图像投影设备发射的所述第二复用光流,以使得与所述第二复用光流相关联的所述多个光流通过多次全内反射被引导通过所述第二波导。
实施例12:根据实施例11所述的显示系统,其中,从所述第二波导发射的光被配置为将所述第二复用光流引导到观看者,以产生看起来源自所述第一深度平面的图像。
实施例13:根据实施例11至12中任一项所述的显示系统,其中,所述第二波导被包括在头戴式显示器的目镜中。
实施例14:根据实施例9至13中任一项所述的显示系统,其中,所述第一波导被包括在头戴式显示器的目镜中。
实施例15:根据实施例1至7中任一项所述的显示系统,其中,所述波导被包括在头戴式显示器的目镜中。
实施例16:根据实施例1至7和15中任一项所述的显示系统,进一步包括耦入光学元件,其被配置为接收从所述图像投影设备发射的所述复用光流,并将所述第一光流、所述第二光流和所述第三光流中的每一者耦入所述波导内以便通过多次全内反射在所述波导内被引导。
实施例17:根据实施例1至16中任一项所述的显示系统,其中,所述图像投影设备包括光调制设备。
实施例18:一种显示系统,包括:
图像投影设备,其被配置为发射包括第一颜色的第一光流、第二颜色的第二光流和第三颜色的第三光流的复用光流,所述第一颜色、所述第二颜色和所述第三颜色是不同的,所述第一光流、所述第二光流和所述第三光流包括图像内容;以及
第一波导和第二波导,其包括折射率大于1.79的材料,
其中,所述第一波导被配置为接收所述第一颜色和所述第二颜色,所述第二波导被配置为接收所述第三颜色,不同的颜色或颜色组合被耦入所述第一波导和所述第二波导内,以使得所述第一光流和所述第二光流通过多次全内反射在所述第一波导内被引导,并且所述第三光流通过多次全内反射在所述第二波导内被引导。
实施例19:根据实施例18所述的显示系统,其中,所述第二波导还被配置为接收所述第一颜色,以使得所述第一光流通过多次全内反射在所述第二波导内被引导。
实施例20:根据实施例18所述的显示系统,其中,所述第二波导还被配置为接收所述第二颜色,以使得所述第二光流通过多次全内反射在所述第二波导内被引导。
实施例21:根据实施例18所述的显示系统,其中所述第二波导被配置为不耦入所述第一颜色或所述第二颜色,以使得所述第三光流通过多次全内反射主要在所述第二波导内被引导。
实施例22:根据实施例18至21中任一项所述的显示系统,进一步包括在所述第一波导中的第一耦入光学元件,所述第一耦入光学元件被配置为将所述第一光流和所述第二光流两者耦入所述第一波导内,以使得所述第一光流和所述第二光流通过多次全内反射在所述第一波导内被引导。
实施例23:根据实施例18至21中任一项所述的显示系统,进一步包括在所述第一波导中的第一耦入光学元件和第二耦入光学元件,所述第一耦入光学元件和所述第二耦入光学元件被配置为分别将所述第一光流和所述第二光流两者耦入所述第一波导内,以使得所述第一光流和所述第二光流通过多次全内反射在所述第一波导内被引导。
实施例24:根据实施例18至21中任一项所述的显示系统,进一步包括在所述第二波导中的第三耦入光学元件,所述第三耦入光学元件被配置为将所述第三光流耦入所述第二波导内,以使得所述第三光流通过多次全内反射在所述第二波导内被引导。
实施例25:根据实施例24所述的显示系统,其中,所述第三耦入光学元件还被配置为将所述第一光流或所述第二光流耦入所述第二波导内,以使得所述第一光流或所述第二光流通过多次全内反射在所述第二波导内被引导。
实施例26:根据实施例24所述的显示系统,进一步包括第四耦入光学元件,所述第四耦入光学元件被配置为将所述第一光流或所述第二光流耦入所述第二波导内,以使得所述第一光流或所述第二光流通过多次全内反射在所述第二波导内被引导。
实施例27:一种制造衍射光学元件的方法,所述方法包括:
提供基板,所述基板包括对可见光透明的折射率大于1.79的材料;
在所述基板的表面之上设置可图案化层;
对所述可图案化层进行图案化,所述图案包括多个特征;以及
通过所述可图案化层来蚀刻所述基板的所述表面以在所述基板的所述表面上制造结构,其中,所述结构包括被配置为衍射可见光的衍射特征。
实施例28:根据实施例27所述的方法,其中,所述透明材料包括LiNbO3
实施例29:根据实施例27或28所述的方法,其中,在所述基板的所述表面之上设置所述可图案化层包括:将所述可图案化层溅射沉积在所述基板的所述表面之上。
实施例30:根据实施例27至29中任一项所述的方法,其中,在设置所述可图案化层之前,对所述基板的所述表面进行放电。
实施例31:根据实施例27至30中任一项所述的方法,其中,所述可图案化层包括抗蚀剂或聚合物。
实施例32:一种制造衍射光学元件的方法,所述方法包括:
提供基板,所述基板包括对可见光透明的折射率大于1.79的材料;
在所述基板的表面之上设置可图案化层;以及
对所述可图案化层进行图案化,所述图案包括多个特征,
其中,被图案化后的可图案化层的所述多个特征被配置为将可见光衍射到所述基板内以在所述基板中被引导,或者被配置为将在所述基板内被引导的可见光衍射出所述基板。
实施例33:根据实施例32所述的方法,其中,所述透明材料包括LiNbO3
实施例34:根据实施例32或33所述的方法,其中,在所述基板的所述表面之上设置所述可图案化层包括:将所述可图案化层溅射沉积在所述基板的所述表面之上。
实施例35:根据实施例32至34中任一项所述的方法,其中,在设置所述可图案化层之前,对所述基板的所述表面进行放电。
实施例36:根据实施例32至35中任一项所述的方法,其中,所述可图案化层包括抗蚀剂或聚合物。
实施例37:一种制造衍射光学元件的方法,所述方法包括:
提供基板,所述基板包括对可见光透明的折射率大于1.79的材料;
在所述基板的表面之上溅射沉积可图案化层;以及
对所述可图案化层进行图案化,所述图案包括多个特征。
实施例38:根据实施例37所述的方法,其中,所述透明材料包括LiNbO3。
实施例39:根据实施例37或38所述的方法,其中,在设置所述可图案化层之前,对所述基板的所述表面进行放电。
实施例40:根据实施例37至39中任一项所述的方法,其中,所述可图案化层包括抗蚀剂或聚合物。
实施例41:一种用于通过全内反射传播图像内容的波导,所述波导包括:
基板,其包括对可见光透明的折射率大于1.79的材料,所述基板能够通过全内反射在其中传播图像内容;
在所述基板的表面之上的层,所述层包括折射率低于所述基板的材料,所述层包括具有多个特征的图案,
其中,被图案化后的可图案化层的所述多个特征被配置为将可见光衍射到所述基板内以在其中被引导,或者被配置为将在所述基板内被引导的可见光衍射出所述基板。
实施例42:根据实施例41所述的波导,其中,所述透明材料包括LiNbO3
实施例43:根据实施例41或42所述的波导,其中,在设置所述可图案化层之前,对所述基板的所述表面进行放电。
实施例44:根据实施例41至43中任一项所述的波导,其中,所述可图案化层包括抗蚀剂。
实施例45:根据实施例41至44中任一项所述的波导,其中,所述可图案化层包括聚合物。
实施例46:一种头戴式显示设备,包括:
目镜,其包括至少一个波导,所述至少一个波导包括折射率大于1.79的材料,所述波导包括第一主表面、与所述第一主表面相对的第二主表面、以及在所述第一主表面与所述第二主表面之间的多个边缘;以及
多个衍射特征,其被形成在所述第一主表面或所述第二主表面中的至少一者中。
实施例47:根据实施例46所述的头戴式显示设备,其中,通过蚀刻所述第一主表面或所述第二主表面中的至少一者,所述多个衍射特征被形成在所述第一主表面或所述第二主表面中的至少一者中。
实施例48:根据实施例46或47所述的头戴式显示设备,其中,所述波导包括折射率大于2.2的材料。
实施例49:根据实施例46至48中任一项所述的头戴式显示设备,其中,所述波导包括铌酸锂。
实施例50:根据实施例46至48中任一项所述的头戴式显示设备,其中,所述波导包括碳化硅。
实施例51:根据实施例46至50中任一项所述的头戴式显示设备,其中,所述多个衍射特征中的至少一些被配置为耦入入射图像光,以使得所耦入的图像光通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导。
实施例52:根据实施例46至52中任一项所述的头戴式显示设备,进一步包括在所述波导与观看者之间的可变焦透镜,其中,所述可变焦透镜被配置为改变图像光的焦平面,所述图像光通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导,并朝着所述观看者被耦出所述波导。实施例53:根据实施例52所述的头戴式显示设备,其中,所述可变焦透镜包括负透镜。
实施例54:根据实施例52至53中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括充液透镜。
实施例55:根据实施例52至53中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括液晶。
实施例56:根据实施例52、53或55中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括几何相位透镜。
实施例57:根据实施例46至51中任一项所述的头戴式显示设备,进一步包括在所述波导与观看者之间的负透镜,以使得所述负透镜接收通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导并朝着所述观看者被耦出所述波导的光。
实施例58:根据实施例57所述的头戴式显示设备,其中,所述负透镜包括静态透镜。
实施例59:根据实施例57或58所述的头戴式显示设备,其中,所述波导和所述负透镜被包括在堆叠波导组件中。
实施例60:根据实施例57至59中任一项所述的头戴式显示设备,进一步包括与附加负透镜成对的附加波导。
实施例61:根据实施例57至60中任一项所述的头戴式显示设备,进一步包括被设置在所述波导与真实世界之间的正透镜。
实施例62:根据实施例46至61中任一项所述的头戴式显示设备,进一步包括与所述波导进行堆叠的偏振器。
实施例63:根据实施例46至62中任一项所述的头戴式显示设备,其中,所述多个衍射特征中的至少一些被配置为朝着所述观看者耦出通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导的图像光。
实施例64:根据实施例46至62中任一项所述的头戴式显示设备,进一步包括被配置为提供图像光的成像系统。
实施例65:根据实施例64所述的头戴式显示设备,其中,所述成像系统在观看所述波导的观看者的视场之外。
实施例66:根据实施例64至65中任一项所述的头戴式显示设备,其中所述成像系统包括:
照明系统;
调制元件,其被配置为接收来自所述照明系统的未调制光;以及
投影光学系统,其被配置为透射由所述调制元件输出的图像光。
实施例67:根据实施例66所述的头戴式显示设备,其中,所述调制元件是反射性的。
实施例68:根据实施例67所述的头戴式显示设备,其中,来自所述照明系统的未调制图像光通过所述投影光学系统朝着所述反射性调制元件被透射,从所述调制元件被反射,并通过所述投影光学系统被透射返回到所述波导内。
实施例69:根据实施例66至68中任一项所述的头戴式显示设备,其中,所述照明系统包括:
光源,其被配置为输出可见光;
导光管,其被配置为接收从所述光源输出的所述可见光;以及
光重定向元件,
其中,所述导光管被配置为通过多次全内反射朝着所述光重定向元件传送从所述光源输出的光;以及
其中,所述光重定向元件被配置为朝着所述调制元件重定向在所述导光管中传播的光。
实施例70:根据实施例69所述的头戴式显示设备,其中,所述光源包括被配置为发射多个颜色的光的多个发光元件。
实施例71:根据实施例70所述的头戴式显示设备,其中,所述多个发光元件包括发光二极管或激光器。
实施例72:根据实施例70至71中任一项所述的头戴式显示设备,进一步包括被配置为合成由所述多个发光元件发射的光的光学元件。
实施例73:根据实施例72所述的头戴式显示设备,其中,所述光学元件是二向色光束合成器。
实施例74:根据实施例69至73中任一项所述的头戴式显示设备,其中,所述光重定向元件被配置为通过所述波导朝着所述调制元件重定向在所述导光管中传播的光。
实施例75:根据实施例69至74中任一项所述的头戴式显示设备,其中,所述波导进一步包括被配置为定制由所述光重定向元件重定向的光的分布的光调节光学器件。
实施例76:一种头戴式显示设备,包括:
图像投影设备;以及
目镜,其包括包含碳化硅的波导,所述波导包括第一主表面、与所述第一主表面相对的第二主表面、以及在所述第一主平面与所述第二主表面之间的多个边缘,
其中,所述波导被配置为在其中接收和引导来自所述图像投影设备的光,以将图像引导到所述头戴式显示器的穿戴者的眼睛中。
实施例77:根据实施例76所述的头戴式显示设备,进一步包括被设置在所述第一主表面或所述第二主表面中的至少一者上的多个衍射特征。
实施例78:根据实施例77所述的头戴式显示设备,其中,通过蚀刻所述第一主表面或所述第二主表面中的至少一者,所述多个衍射特征被形成在所述第一主表面或所述第二主表面中的至少一者中。
实施例79:根据实施例77至78中任一项所述的头戴式显示设备,其中,所述多个衍射特征中的至少一些被配置为耦入入射图像光,以使得所耦入的图像光通过在所述第一主平面和所述第二主表面处的多次全内反射传播通过所述波导。
实施例80:根据实施例76至79中任一项所述的头戴式显示设备,进一步包括在所述波导和观看者之间的可变焦透镜,其中,所述可变焦透镜被配置为改变图像光的焦平面,所述图像光通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导,并朝着所述观看者被耦出所述波导。
实施例81:根据实施例80所述的头戴式显示设备,其中,所述可变焦透镜包括负透镜。
实施例82:根据实施例80至81中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括充液透镜。
实施例83:根据实施例80至81中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括液晶。
实施例84:根据实施例80、81或83中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括几何相位透镜。
实施例85:根据实施例76至79中任一项所述的头戴式显示设备,进一步在位于所述波导与观看者之间的负透镜,以使得所述负透镜接收通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导,并朝着所述观看者被耦出所述波导的光。
实施例86:根据实施例85所述的头戴式显示设备,其中,所述负透镜包括静态透镜。
实施例87:根据实施例85或86所述的头戴式显示设备,其中,所述波导和所述负透镜被包括在堆叠波导组件中。
实施例88:根据实施例85至87中任一项所述的头戴式显示设备,进一步包括与附加负透镜成对的附加波导。
实施例89:根据实施例85至88中任一项所述的头戴式显示设备,进一步包括被设置在所述波导与真实世界之间的正透镜。
实施例90:根据实施例76至89中任一项所述的头戴式显示设备,进一步包括与所述波导进行堆叠的偏振器。
实施例91:根据实施例76至90中任一项所述的头戴式显示设备,其中,所述多个衍射特征中的至少一些被配置为朝着所述观看者耦出通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导的图像光。
实施例92:根据实施例76至91中任一项所述的头戴式显示设备,进一步包括被配置为提供图像光的成像系统。
实施例93:根据实施例92所述的头戴式显示设备,其中,所述成像系统在观看所述波导的观看者的视场之外。
实施例94:根据实施例92至93中任一项所述的头戴式显示设备,其中,所述成像系统包括:
照明系统;
调制元件,其被配置为接收来自所述照明系统的未调制光;以及
投影光学系统,其被配置为透射由所述调制元件输出的图像光。
实施例95:根据实施例94所述的头戴式显示设备,其中,所述调制元件是反射性的。
实施例96:根据实施例95所述的头戴式显示设备,其中,来自所述照明系统的未调制图像光通过所述投影光学系统朝着所述反射性调制元件透射,从所述调制元件被反射,并通过所述投影光学系统被透射返回到所述波导内。
实施例97:根据实施例94至96中任一项所述的头戴式显示设备,其中,所述照明系统包括:
光源,其被配置为输出可见光;
导光管,其被配置为接收从所述光源输出的所述可见光;以及
光重定向元件,
其中,所述导光管被配置为通过多次全内反射朝着所述光重定向元件传送从所述光源输出的光;以及
其中,所述光重定向元件被配置为朝着所述调制元件重定向在所述导光管中传播的光。
实施例98:根据实施例98所述的头戴式显示设备,其中,所述光源包括被配置为发射多个颜色的光的多个发光元件。
实施例99:根据实施例98所述的头戴式显示设备,其中,所述多个发光元件包括发光二极管或激光器。
实施例100:根据实施例98至99中任一项所述的头戴式显示设备,进一步包括被配置为合成由所述多个发光元件发射的光的光学元件。
实施例101:根据实施例100所述的头戴式显示设备,其中,所述光学元件是二向色光束合成器。
实施例102:根据实施例98至101中任一项所述的头戴式显示设备,其中,所述光重定向元件被配置为通过所述波导朝着所述调制元件重定向在所述导光管中传播的光。
实施例103:根据实施例98至102中任一项所述的头戴式显示设备,其中,所述波导进一步包括被配置为定制由所述光重定向元件重定向的光的分布的光调节光学器件。
实施例104:一种显示系统,包括:
图像注入设备,其被配置为发射复用光流,所述复用光流包括:第一光流,其包括与第一颜色相关联的图像内容;第二光流,其包括与第二颜色相关联的图像内容;以及第三光流,其包括与第三颜色相关的图像内容;
波导,其包括折射率大于1.79的材料;以及
第一耦入光学元件,其被配置为接收从所述图像注入设备发射的所述复用光流并耦入所述复用光流,以使得所述第一光流、所述第二光流和所述第三光流通过多次全内反射传播通过所述波导。
实施例105:根据实施例104所述的显示系统,其中,所述波导包括折射率大于或等于2.2的材料。
实施例106:根据实施例104至105中任一项所述的显示系统,其中所述波导包括折射率大于或等于2.3的材料。
实施例107:根据实施例104至106中任一项所述的显示系统,其中,所述波导包括铌酸锂或碳化硅。
实施例108:根据实施例104至107中任一项所述的显示系统,其中,所述波导的视场在水平方向上大于约30度,在垂直方向上大于约24.7度。
实施例109:根据实施例108所述的显示系统,其中,所述波导的所述视场在所述水平方向上是大约45.9度,在所述垂直方向上是大约56.1度。
实施例110:根据实施例104至109中任一项所述的显示系统,其中,所述复用光流包括与第一深度平面相关联的图像信息。
实施例111:根据实施例110所述的显示系统,其中,所述波导与所述第一深度平面相关联,并且其中,从所述波导发射的光被配置为产生看起来源自所述第一深度平面的图像。
实施例112:根据实施例110至111中任一项所述的显示系统,其中,所述图像注入设备被进一步配置为输出包括与第二深度平面相关联的图像信息的第二复用光流,所述第二复用光流包括与所述第一颜色、所述第二颜色和所述第三颜色相关联的多个光流。
实施例113:根据实施例112所述的显示系统,进一步包括:
与所述第二深度平面相关联的第二波导,所述第二波导包括折射率大于1.79的材料;以及
第二耦入光学元件,其被配置为接收从所述图像注入设备发射的所述第二复用光流,并被配置为耦入所述第二复用光流,以使得所述多个光流通过多次全内反射传播通过所述第二波导。
实施例114:根据实施例113所述的显示系统,其中,从所述第二波导发射的光被配置为产生看起来源自所述第二深度平面的图像。
实施例115:根据实施例114至115中任一项所述的显示系统,其中,所述第二波导被包括在头戴式显示器的目镜中。
实施例116:根据实施例104至115中任一项所述的显示系统,其中,所述波导被包括在头戴式显示器的目镜中。
实施例117:根据实施例115至116中任一项所述的显示系统,其中,所述头戴式显示器包括眼镜。
实施例118:根据实施例104至117中任一项所述的显示系统,其中,所述图像注入设备包括光调制设备。
实施例119:一种显示系统,包括:
图像注入设备,其被配置为发射复用光流,所述复用光流包括:第一光流,其包括与第一颜色相关联的图像内容;第二光流,其包括与第二颜色相关联的图像内容;以及第三光流,其包括与第三颜色相关的图像内容;
波导,其包括折射率大于1.79的材料;以及
第一多个耦入光学元件,其被配置为接收从所述图像注入设备发射的所述复用光流并耦入所述复用光流,以使得所述第一光流、所述第二光流和所述第三光流通过多次全内反射传播通过所述波导。
实施例120:根据实施例119所述的显示系统,其中,所述波导包括折射率大于或等于2.2的材料。
实施例121:根据实施例119至120中任一项所述的显示系统,其中,所述波导包括折射率大于或等于2.3的材料。
实施例122:根据实施例119至121中任一项所述的显示系统,其中,所述波导包括铌酸锂或碳化硅。
实施例123:根据实施例119至122中任一项所述的显示系统,其中,所述波导的视场在水平方向上大于约30度,在垂直方向上大于约24.7度。
实施例124:根据实施例123所述的显示系统,其中,所述波导的所述视场在所述水平方向上是大约45.9度,在所述垂直方向上是大约56.1度。
实施例125:根据实施例119至124中任一项所述的显示系统,其中,所述第一多个耦入光学元件包括:
第一耦入光学元件,其被配置为耦入所述第一光流;
第二耦入光学元件,其被配置为耦入所述第二光流;以及
第三耦入光学元件,其被配置为耦入所述第三光流。
实施例126:根据实施例119至125中任一项所述的显示系统,其中,所述复用光流包括与第一深度平面相关联的图像信息。
实施例127:根据实施例126所述的显示系统,其中,所述波导与所述第一深度平面相关联,并且其中,从所述波导发射的光被配置为产生看起来源自所述第一深度平面的图像。
实施例128:根据实施例125至127中任一项所述的显示系统,其中,所述图像注入设备被进一步配置为输出包括与第二深度平面相关联的图像信息的第二复用光流,所述第二复用光流包括与所述第一颜色、所述第二颜色和所述第三颜色相关联的多个光流。
实施例129:根据实施例128所述的显示系统,进一步包括:
与所述第二深度平面相关联的第二波导,所述第二波导包括折射率大于1.79的材料;以及
第二多个耦入光学元件,其被配置为接收从所述图像注入设备发射的所述第二复用光流,并被配置为耦入所述第二复用光流,以使得所述多个光流通过多次全内反射传播通过所述第二波导。
实施例130:根据实施例129所述的显示系统,其中,从所述第二波导发射的光被配置为产生看起来源自所述第二深度平面的图像。
实施例131:根据实施例129至130中任一项所述的显示系统,其中,所述第二波导被包括在头戴式显示器的目镜中。
实施例132:根据实施例119至131中任一项所述的显示系统,其中,所述波导被包括在头戴式显示器的目镜中。
实施例133:根据实施例131至132中任一项所述的显示系统,其中,所述头戴式显示器包括眼镜。
实施例134:根据实施例119至133中任一项所述的显示系统,其中,所述图像注入设备包括光调制设备。
实施例135:一种显示系统,包括:
图像注入设备,其被配置为发射复用光流,所述复用光流包括:第一光流,其包括与第一颜色相关联的图像内容;第二光流,其包括与第二颜色相关联的图像内容;以及第三光流,其包括与第三颜色相关联的图像内容;
第一波导,其包括折射率大于1.79的材料;
第二波导,其包括折射率大于1.79的材料;
第一耦入光学元件,其被配置为接收从所述图像注入设备发射的复用光流,并被配置为将所述第一光流和所述第二光流耦入所述第一波导内,以使得所述第一光流和所述第二光流通过多次全内反射传播通过所述第一波导;以及
第二耦入光学元件,其被配置为接收从所述图像注入设备发射的复用光流,并被配置为将所述第三光流耦入所述第二波导内,以使得所述第三光流通过多次全内反射传播通附所述第二波导。
实施例136:根据实施例135所述的显示系统,其中,所述第二耦入光学元件被进一步配置为将所述第一光流或所述第二光流耦入所述第二波导内,以使得所述第一光流或所述第二光流通过多次全内反射传播通过所述第一波导。
实施例137:根据实施例135至136中任一项所述的显示系统,其中,所述第一波导和所述第二波导中的至少一者包括折射率大于或等于2.2的材料。
实施例138:根据实施例135至137中任一项所述的显示系统,其中,所述第一波导和所述第二波导中的至少一者包括折射率大于或等于2.3的材料。
实施例139:根据实施例135至137中任一项所述的显示系统,其中,所述第一波导和所述第二波导中的至少一者包括铌酸锂或碳化硅。
实施例140:根据实施例135至139中任一项所述的显示系统,其中,所述第一波导和所述第二波导中的至少一者的所述视场在水平方向上大于约30度,在垂直方向上大于约24.7度。
实施例141:根据实施例140的显示系统,其中,所述第一波导和所述第二波导中的至少一者的视场在所述水平方向上是大约45.9度,在所述垂直方向上是大约56.1度。
实施例142:根据实施例135至141中任一项所述的显示系统,其中,所述复用光流包括与第一深度平面相关联的图像信息。
实施例143:根据实施例142所述的显示系统,其中,所述第一波导和所述第二波导与所述第一深度平面相关联,并且其中,从所述第一波导和所述第二波导发射的光被配置为产生看起来源自所述第一深度平面的图像。
实施例144:根据实施例135至143中任一项所述的显示系统,其中,所述图像注入设备被进一步配置为输出包括与第二深度平面相关联的图像信息的第二复用光流,所述第二复用光流包括与所述第一颜色、所述第二颜色和所述第三颜色相关联的多个光流。
实施例145:根据实施例144所述的显示系统,进一步包括:
与所述第二深度平面相关联的两个波导,所述两个波导包括折射率大于1.79的材料;
第三耦入光学元件,其被配置为接收从所述图像注入设备发射的所述第二复用光流,并被配置为将与所述第一颜色和所述第二颜色相关联的光流耦入所述两个波导中的第一波导内,以使得与所述第一颜色和所述第二颜色相关联的所述光流通过多次全内反射传播通过所述两个波导中的所述第一波导;以及
第四耦入光学元件,其被配置为接收从所述图像注入设备发射的所述复用光流,并被配置为将与所述第三颜色相关联的光流耦入所述两个波导中的第二波导内,以使得与所述第三颜色相关联的光流通过多次全内反射传播通过所述两个波导中的所述第二波导。
实施例146:根据实施例145所述的显示系统,其中,所述第四耦入光学元件被进一步配置为将与所述第一颜色或所述第二颜色相关联的光流耦入所述两个波导中的第二波导内,以使得与所述第一颜色或所述第二颜色相关联的所述光流通过多次全内反射传播通过所述两个波导中的所述第二波导。
实施例147:根据实施例145至146中任一项所述的显示系统,其中,从所述两个波导发射的光被配置为产生看起来源自所述第二深度平面的图像。
实施例148:根据实施例145至147中任一项所述的显示系统,其中,与所述第二深度平面相关联的所述两个波导被包括在头戴式显示器的目镜中。
实施例149:根据实施例135至148中任一项所述的显示系统,其中,所述第一波导和所述第二波导被包括在头戴式显示器的目镜中。
实施例150:根据实施例148至149中任一项所述的显示系统,其中,所述头戴式显示器包括眼镜。
实施例151:根据实施例135至150中任一项所述的显示系统,其中,所述图像注入设备包括光调制设备。
实施例152:一种显示系统,包括:
图像注入设备,其被配置为发射复用光流,所述复用光流包括:第一光流,其包括与第一颜色相关联的图像内容;第二光流,其包括与第二颜色相关联的图像内容;以及第三光流,其包括与第三颜色相关联的图像内容;
第一波导,其包括折射率大于1.79的材料;
第二波导,其包括折射率大于1.79的材料;
第一耦入光学元件,其被配置为接收从所述图像注入设备发射的复用光流,并被配置为将所述第一光流耦入所述第一波导内,以使得所述第一光流通过多次全内反射传播通过所述第一波导;以及
第二耦入光学元件,其被配置为接收从所述图像注入设备发射的复用光流,并被配置为将所述第二光流耦入所述第一波导内,以使得所述第二光流通过多次全内反射传播通过所述第一波导;以及
第三耦入光学元件,其被配置为接收从所述图像注入设备发射的复用光流,并被配置为将所述第三光流耦入所述第二波导内,以使得所述第三光流通过多次全内反射传播通过所述第二波导。
实施例153:根据实施例152所述的显示系统,其中,所述第三耦入光学元件被进一步配置为将所述第一光流或所述第二光流耦入所述第二波导内,以使得所述第一光流或所述第二光流光通过多次全内反射传播通过所述第一波导。
实施例154:根据实施例152所述的显示系统,进一步包括第四耦入光学元件,其被配置为将所述第一光流或所述第二光流耦入所述第二波导内,以使得所述第一光流或所述第二光流通过多次全内反射传播通过所述第一波导。
实施例155:根据实施例152至154中任一项所述的显示系统,其中,所述第一波导和所述第二波导中的至少一者包括折射率大于或等于2.2的材料。
实施例156:根据实施例152至155中任一项所述的显示系统,其中,所述第一波导和所述第二波导中的至少一者包括折射率大于或等于2.3的材料。
实施例157:根据实施例152至156中任一项所述的显示系统,其中,所述第一波导和所述第二波导中的至少一者包括铌酸锂或碳化硅。
实施例158:根据实施例152至157中任一项所述的显示系统,其中,所述第一波导和所述第二波导中的至少一者的视场在水平方向上大于约30度,在垂直方向上大于约24.7度。
实施例159:根据实施例158所述的显示系统,其中,所述第一波导和所述第二波导中的至少一者的所述视场在所述水平方向上是大约45.9度,在所述垂直方向上是大约56.1度。
实施例160:根据实施例152至159中任一项所述的显示系统,其中,所述复用光流包括与第一深度平面相关联的图像信息。
实施例161:根据实施例160所述的显示系统,其中,所述第一波导和所述第二波导与所述第一深度平面相关联,并且其中,从所述第一波导和所述第二波导发射的光被配置为产生看起来源自所述第一深度平面的图像。
实施例162:根据实施例152至161中任一项所述的显示系统,其中,所述图像注入设备被进一步配置为输出包括与第二深度平面相关联的图像信息的第二复用光流,所述第二复用光流包括与所述第一颜色、所述第二颜色和所述第三颜色相关联的多个光流。
实施例163:根据实施例162所述的显示系统,进一步包括:
与所述第二深度平面相关联的两个波导,所述两个波导包括折射率大于1.79的材料;
第五耦入光学元件,其被配置为接收从所述图像注入设备发射的所述第二复用光流,并被配置为将与所述第一颜色和所述第二颜色相关联的光流耦入所述两个波导中的第一波导内,以使得与所述第一颜色和所述第二颜色相关联的所述光流通过多次全内反射传播通过所述两个波导中的所述第一波导;以及
第六耦入光学元件,其被配置为接收从所述图像注入设备发射的所述复用光流,并被配置为将与所述第三颜色相关联的光流耦入所述两个波导中的第二波导内,以使得与所述第三颜色相关联的光流通过多次全内反射传播通过所述两个波导中的所述第二波导。
实施例164:根据实施例163所述的显示系统,其中,所述第六耦入光学元件被进一步配置为将与所述第一颜色或所述第二颜色相关联的光耦入所述两个波导中的第二波导内,以使得与所述第一颜色或所述第二颜色相关联的所述光流通过多次全内反射传播通过所述两个波导中的所述第二波导。
实施例165:根据实施例163至165中任一项所述的显示系统,其中,从所述两个波导发射的光被配置为产生看起来源自所述第二深度平面的图像。
实施例166:根据实施例163至165中任一项所述的显示系统,其中,与所述第二深度平面相关联的所述两个波导包括被在头戴式显示器的目镜中。
实施例167:根据实施例152至166中任一项所述的显示系统,其中,所述第一波导和所述第二波导被包括在头戴式显示器的目镜中。
实施例168:根据实施例166至167中任一项所述的显示系统,其中,所述头戴式显示器包括眼镜。
实施例169:根据实施例152至168中任一项所述的显示系统,其中,所述图像注入设备包括光调制设备。
实施例170:一种制造衍射光学元件的方法,所述方法包括:
提供基板,所述基板包括对可见光透明的折射率大于1.79的材料;
在所述基板的表面之上设置可图案化层;
对所述可图案化层进行图案化,所述图案包括多个特征;以及
通过所述可图案化层来蚀刻所述基板的所述表面以在所述基板的所述表面上制造结构,其中,所述结构包括被配置为衍射可见光的衍射特征。
实施例171:根据实施例170所述的方法,其中,所述透明材料包括LiNbO3或碳化硅。
实施例172:根据实施例170所述的方法,其中,在所述基板的所述表面之上设置所述可图案化层包括:将所述可图案化层溅射沉积在所述基板的所述表面之上。
实施例173:根据实施例170所述的方法,其中,在设置所述可图案化层之前,对所述基板的所述表面进行放电。
实施例174:根据实施例170所述的方法,其中,所述可图案化层包括抗蚀剂或聚合物。
实施例175:一种制造衍射光学元件的方法,所述方法包括:
提供基板,所述基板包括对可见光透明的折射率大于1.79的材料;
在所述基板的表面之上设置可图案化层;以及
对所述可图案化层进行图案化,所述图案包括多个特征,
其中,所述被图案化的可图案化层的所述多个特征被配置为衍射可见光。
实施例176:根据实施例175所述的方法,其中,所述透明材料包括LiNbO3或碳化硅。
实施例177:根据实施例175所述的方法,其中,在所述基板的所述表面之上设置所述可图案化层包括:将所述可图案化层溅射沉积在所述基板的所述表面之上。
实施例178:根据实施例175所述的方法,其中,在设置所述可图案化层之前,对所述基板的所述表面进行放电。
实施例179:根据实施例175所述的方法,其中,所述可图案化层包括抗蚀剂或聚合物。
实施例180:根据实施例1至26中任一项所述的显示系统,其中,所述波导材料包括碳化硅。
实施例181:根据实施例27至40中任一项所述的方法,其中,所述透明材料包括碳化硅。
实施例182:根据实施例41至45中任一项所述的波导,其中,所述透明材料包括碳化硅。
实施例183:一种头戴式显示设备,包括:
图像投射设备;以及
目镜,其包括波导,所述波导包括折射率大于1.79的材料,所述波导包括第一主表面、与所述第一主表面相对的第二主表面、以及在所述第一主表面与所述第二主表面之间的多个边缘,
其中,所述波导被配置为在其中接收和引导来自所述图像投射设备的光,以将图像引导到所述头戴式显示器的穿戴者的眼睛中。
实施例184:根据实施例183所述的头戴式显示设备,其中,所述波导材料具有大于或等于2.2的折射率。
实施例185:根据实施例183至184中任一项的头戴式显示设备,其中,所述波导材料具有大于或等于2.3的折射率。
实施例186:根据实施例183至185中任一项所述的头戴式显示设备,其中,所述材料包括铌酸锂。
实施例187:根据实施例183至185中任一项所述的头戴式显示设备,其中,所述材料包括碳化硅。
实施例188:根据实施例183至187中任一项所述的头戴式显示设备,其中,所述波导的视场在水平方向上大于约30度,在垂直方向上大于约24度。
实施例189:根据实施例188所述的头戴式显示设备,其中,所述波导的所述视场在所述水平方向上是大约45度,在所述垂直方向上是大约56度。
实施例190:根据实施例183至189中任一项所述的头戴式显示设备,进一步包括被设置在所述第一主表面或所述第二主表面中的至少一者上的多个衍射特征。
实施例191:根据实施例190所述的头戴式显示设备,其中,通过蚀刻所述第一主表面或所述第二主表面中的至少一者,所述多个衍射特征被形成在所述第一主表面或所述第二主表面中的至少一者中。
实施例192:根据实施例183至191中任一项所述的头戴式显示设备,其中,所述多个衍射特征中的至少一些被配置为耦入入射图像光,以使得所耦入的图像光通过在所述第一主表面和所述第二主表面处的多次全内反射传播通过所述波导。
实施例193:根据实施例183至192中任一项所述的头戴式显示设备,进一步包括在所述波导与观看者之间的可变焦透镜,其中,所述可变焦透镜被配置为改变图像光的焦平面,所述图像光通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导并朝着所述观看者被耦出所述波导。
实施例194:根据实施例193所述的头戴式显示设备,其中,所述可变焦透镜包括负透镜。
实施例195:根据实施例193至194中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括充液透镜。
实施例196:根据实施例193至195中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括液晶。
实施例197:根据实施例193、194或196中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括几何相位透镜。
实施例198:根据实施例183至192中任一项所述的头戴式显示设备,进一步包括在所述波导与观看者之间的负透镜,以使得所述负透镜接收通过在所述第一主平面和所述第二主表面处的多次全内反射而传播通过所述波导并朝着所述观看者被耦出所述波导的光。
实施例199:根据实施例198所述的头戴式显示设备,其中,所述负透镜包括静态透镜。
实施例200:根据实施例198或199所述的头戴式显示设备,其中,所述波导和所述负透镜被包括在堆叠波导组件中。
实施例201:根据实施例198至200中任一项所述的头戴式显示设备,进一步包括与附加负透镜成对的附加波导。
实施例202:根据实施例198至201中任一项所述的头戴式显示设备,进一步包括被设置在所述波导与真实世界之间的正透镜。
实施例203:根据实施例183至202中任一项所述的头戴式显示设备,进一步包括与所述波导进行堆叠的偏振器。
实施例204:根据实施例183至203中任一项所述的头戴式显示设备,其中,所述多个衍射特征中的至少一些被配置为朝着所述观看者耦出通过在所述第一主平面和所述第二主表面处的多次全内反射而传播通过所述波导的图像光。
实施例205:根据实施例183至204中任一项所述的头戴式显示设备,进一步包括被配置为提供图像光的成像系统。
实施例206:根据实施例205所述的头戴式显示设备,其中,所述成像系统在观看所述波导的观看者的视场之外。
实施例207:根据实施例205至206中任一项所述的头戴式显示设备,其中,所述成像系统包括:
照明系统;
调制元件,其被配置为接收来自所述照明系统的未调制光;以及
投影光学系统,其被配置为透射由所述调制元件输出的图像光。
实施例208:根据实施例207所述的头戴式显示设备,其中,所述调制元件是反射性的。
实施例209:根据实施例208所述的头戴式显示设备,其中,来自所述照明系统的未调制图像光通过所述投影光学系统朝着所述反射性调制元件被透射,从所述调制元件被反射,并通过所述投影光学系统透射返回到所述波导内。
实施例210:根据实施例207至209中任一项所述的头戴式显示设备,其中,所述照明系统包括:
光源,其被配置为输出可见光;
导光管,其被配置为接收从所述光源输出的所述可见光;以及
光重定向元件,
其中,所述导光管被配置为通过多次全内反射朝着所述光重定向元件传送从所述光源输出的光;以及
其中,所述光重定向元件被配置为朝着所述调制元件重定向在所述导光管中传播的光。
实施例211:根据实施例210所述的头戴式显示设备,其中,所述光源包括被配置为发射多个颜色的光的多个发光元件。
实施例212:根据实施例211所述的头戴式显示设备,其中,所述多个发光元件包括发光二极管或激光器。
实施例213:根据实施例211至212中任一项所述的头戴式显示设备,进一步包括被配置为合成由所述多个发光元件发射的光的光学元件。
实施例214:根据实施例213所述的头戴式显示设备,其中,所述光学元件是二向色光束合成器。
实施例215:根据实施例210至214中任一项所述的头戴式显示设备,其中,所述光重定向元件被配置为通过所述波导朝着所述调制元件重定向在所述导光管中传播的光。
实施例216:根据实施例210至215中任一项所述的头戴式显示设备,其中,所述波导进一步包括被配置为定制由所述光重定向元件重定向的光的分布的光调节光学器件。
实施例217:根据实施例183至216中任一项所述的头戴式显示设备,进一步包括在所述波导中或所述波导上的衍射光栅。
附图说明
图1示出了根据一些实施例的用户通过AR设备看到的增强现实(AR)的视图。
图2示出了根据一些实施例的可穿戴显示系统的示例。
图3示出了根据一些实施例的用于为用户模拟三维影像的显示系统。
图4示出了根据一些实施例的使用多个深度平面模拟三维影像的方法的各方面。
图5A至5C示出了根据一些实施例的曲率半径与焦半径之间的关系。
图6示出了根据一些实施例的用于将图像信息输出给用户的波导堆叠的示例。
图7示出了根据一些实施例的由波导输出的出射光束的示例。
图8示出了根据一些实施例的堆叠波导组件的示例,其中每个深度平面包括使用多种不同分量颜色形成的图像。
图9A示出了根据一些实施例的堆叠波导组的示例的横截面侧视图,每个堆叠波导包括耦入光学元件。
图9B示出了根据一些实施例的图9A的堆叠波导组的示例的透视图。
图9C示出了根据一些实施例的图9A和9B的堆叠波导组的示例的俯视平面图。
图10示出了显示系统的示例,所述显示系统包括成像系统、包括高折射率材料的波导以及多个可变焦元件,并且包括例如充液透镜,其被配置为提供就像源自多个深度平面或深度一样的图像。
图11示出了显示系统的示例,所述显示系统包括成像系统、包括高折射率材料的波导以及多个可变焦元件,并且包括例如几何相位(GP)透镜,其被配置为提供就像源自多个深度平面或深度一样的图像。
图12示出了显示系统的示例,所述显示系统包括成像系统和两个包括高折射率材料的波导,所述两个波导被包括在被被配置为提供至少一个焦平面或深度的波导组件中。
图13示出了成像系统,其中未调制照明光通过投影光学系统朝着反射性调制元件输入到所述成像系统中,以使得包括图像信息的调制光从调制元件被反射并通过投影光学系统朝着波导堆叠被透射返回。
图14A示出了具有用于为两个深度平面配置第一波导组和第二波导组的约束工作距离的显示系统,每个波导组包括三个波导。图14B示出了类似于图14A所示的显示系统,所述显示系统附加地包括透镜,所述透镜被包括在第一波导组和第二波导组中。图14C示出了根据一些实施例的具有用于配置波导的改进的工作距离的显示系统。
图14D-1、14D-2、14D-3、14E-1、14E-2和14E-3示出了根据一些实施例的用于配置显示系统的工作距离的各种设计考虑。
图15示出了显示系统的示例,所述显示系统包括成像系统和三个包括高折射率材料的波导,所述三个波导被配置为提供三个焦平面或深度。
图16示出了包括照明管1630的显示系统的实施例。
图17A和17B示出了包括各个照明管的侧视图和俯视图,所述照明管被配置为向成像系统的实施例提供各个彩色照明。
图18A和18B示出了在包括高折射率材料的基板(例如,波导)的表面上制造衍射光栅的两种不同的方法的流程图。
提供附图是为了说明示例实施例,并非旨在限制本公开的范围。贯穿全文,相同的参考标号表示相同的部分。
具体实施方式
VR和AR体验可以通过具有显示器的显示系统来提供,在显示器中,与多个深度平面相对应的图像被提供给观看者。可以通过投影仪的出射光瞳来中继图像,该出射光瞳与被配置为显示来自特定深度平面的图像的特定显示光学器件(诸如,波导)相关联。因此,显示系统有助于基于眼睛的调节向用户提供深度线索,或者类似地基于图像或虚拟内容的深度向用户提供调节线索。眼睛的调节可以使位于场景中不同深度平面上的不同内容对焦。如本文所讨论的,这样的深度线索有助于观看者提供可靠的深度感知。
在一些配置中,可以通过覆盖各自具有特定分量颜色的分量图像来针对各种深度平面形成全色图像。例如,可以分别输出红色、绿色和蓝色图像以形成各个全彩色图像。因此,每个深度平面可以具有与其相关联的多个分量彩色图像。如本文所公开的,可以使用波导来输出分量彩色图像,该波导耦入包含图像信息的光,在整个波导上分布所耦入的光,然后朝着观看者耦出光。可以使用诸如衍射元件(例如衍射光栅)之类的耦入光学元件来将光耦入波导,然后使用耦出光学元件(也可以是诸如光栅之类的衍射元件)将光耦出波导。
在许多情况下,需要提供VR和AR体验的显示系统(例如混合现实或增强现实(AR)、近眼显示器)重量轻、成本低、外形尺寸小、虚拟图像视场宽,并且至少对可见光波长是尽可能透明的。另外,在各种实施方式中,需要在多个焦平面(例如,两个或更多个)中呈现虚拟图像信息的配置,以便在不超出可接受的辐辏-调节失配容忍度的情况下对于多种应用是实用的。多个焦平面在本文中也可以被称为多个深度平面或深度(例如,图像内容看起来源自该深度平面或深度)。存在许多可以实现这些目标的一部分的架构,但是很少有架构可以全面实现所有这些目标。为了实现上面确定的目标中的许多目标,需要找到一种集成小型,甚至是最小的可能成像系统的架构,例如针对给定视场包括所需数量的像素的微显示器(例如投影仪)。另外还可能需要传送所需数量的焦平面(或深度平面)或深度所需的目镜层的数量较少、减少或最少。此外,可能需要负责在预期位置处对所设计的焦平面或深度平面进行成像的高效、透明和/或低成本的聚焦元件,以及实现所需的视场和小外形尺寸的轻巧、高光学质量的紧凑目镜设计。
可用于产生混合现实光场的多种观察光学元件组合中的一种架构类别在无限远聚焦目镜的两侧都包含静态光学元件,用于为观看者提供与位于无限远一外的某一位置(例如深度)处的虚拟图像相结合的无动力的真实世界视图。这可以通过使用正/负透镜组合来实现,在该组合中,两个透镜具有相同的光焦度。
一组紧凑的目镜解决方案结合了承载漏光栅(例如出射光瞳扩展器(“EPE”)/正交光瞳扩展器(“OPE”)配置)的光导,该光导从成像系统中重定向并复制一个输入光瞳以产生大光瞳的宽视场,从而促进舒适、灵活的多IPD(瞳孔间距离)观看和眼睛运动。在本申请中,术语光导和波导可以互换地使用。在各种实施例中,光导可以包括纳米结构或微结构光栅。在一些实施例中,目镜包括在光导的两侧(例如,主表面、前表面和后表面等)上形成EPE/OPE组合的光栅或衍射光学元件。在一些实施例中,光栅或衍射光学元件包括在光导的单个表面上形成的组合的光瞳扩展器(既扩展又耦出光的光瞳扩展器)。
用于产生图像的紧凑成像系统,例如微显示器,可以包括空间光调制器、投射由空间光调制器形成的图像的光学系统(例如,投影光学器件)、以及照射空间光调制器以产生图像的照明模块。其它微显示技术,诸如,多芯或单芯光纤、或微LED显示器,也可以用作光源或图像源。可能需要照明模块是紧凑的,并且将减少或最少的热量传送给微显示器的光学元件。
光学系统(例如,投影光学器件)可被配置为产生微显示器的输出光瞳。不失一般性地,输出光瞳可以对应于光学系统的光瞳,光通过该光瞳从该光学系统出射。可以使从微显示器的输出光瞳出射的光与目镜的光导上的耦入元件(例如,光栅)相交或接近。可以配置许多微显示器解决方案以针对从已经描述和说明的成像系统发射的不同颜色的图像光产生单独的子光瞳。例如,成像系统的一个实施例具有第一组三个单独的输出子光瞳,以针对第一深度或焦平面输出与红色、绿色和蓝色图像分量相对应的光,以及第二组三个单独的输出子光瞳,以针对第二深度或焦平面输出与红色、绿色和蓝色图像分量相对应的光。在一些实施方式中,对于每个深度平面,目镜中可以包括三个输入子光瞳,以接收来自一个或多个光源的红色、绿色和蓝色光。然而,这样的系统可能较笨重,并且对于实现小架构外形尺寸和减小的体积/重量的目标可能是不实用的。
目镜中的一个或多个波导可以包括特定折射率的光导材料,该特定折射率适合于实现(host)系统视场所需的视场角范围。例如,由于单个目镜层无法实现显示所有三个彼此叠加的颜色所需的所有光栅矢量和视场角,因此优选地针对红色、绿色和蓝色图像分量中的每一者使用单独的目镜层。然而,头戴式VR和/或AR设备的目镜的波导堆叠的制造成本会随着波导堆叠中波导数量的增加而增加。头戴式VR和/或AR设备的目镜的波导堆叠的制造成本还可以取决于波导堆叠的旋向性(例如,“左”或“右”)。例如,制造被配置为位于右眼和左眼前面的不同波导堆叠的制造成本高于制造可以位于左眼前面的单个波导堆叠和可以位于右眼前面的单个波导堆叠的制造成本。如上所述,头戴式VR和/或AR设备的目镜的波导堆叠的各种实施方式可以包括6个单独的设计和6个单独的波导。由于在制造和组装过程期间监视波导堆叠中各个波导的质量导致成本增加,因此可以进一步增加制造和组装这种波导堆叠的成本。由于在波导堆叠中的单个波导的质量不达标的情况下,包括较多波导的波导堆叠很有可能被拒绝,因此可能进一步增加制造和组装这种波导堆叠的成本。此外,存在光学质量降低的可能性增加,因为需要每个彩色分量产生与其它彩色分量在x、y和z中共同入射的其图像。另外,包括6个波导的波导堆叠的总厚度的变化可以独立地改变每个彩色分量的像素位置,并可能导致某些彩色像素失焦。可以实施计算上昂贵的校准/图像变形来校正由厚度变化导致的彩色分量变化。由于这些原因,可能需要具有更少波导的波导堆叠,例如一个或两个波导,这些波导可以支持多个(诸如三个)不同颜色图像分量(例如,红色、绿色和蓝色图像分量)的传播。
对于以功耗为优先的可穿戴计算系统,可能需要增加或最大化虚拟图像光的光通量。另外,可能还需要制造一种增加或最大化外部环境对可穿戴计算系统的穿戴者的可见性的系统,例如以促进与其他人的眼神接触。对于可穿戴计算系统的穿戴者或混合或增强现实系统的操作者来说,可能还需要能够感知衰减尽可能减少或尽可能小的真实世界,以避免危险并促进工作日的舒适度和功能。在不依赖任何特定理论的情况下,随着穿戴者的眼睛和真实世界之间的光学界面数量的增加,来自外部环境(例如,真实世界)的光的透射率可能会降低和/或受损。由于这个附加原因,在位于穿戴者的眼睛与真实世界之间的目镜的波导堆叠中,可能需要减少或最小化波导中的波导层和/或其它可以散射和/或吸收来自外部环境的光的光学元件的数量。
另外,通常较高的折射率提供较大的视场。因此,在本文所述的一些设计中,基板可具有约1.79或更高的折射率。一种这样的材料是铌酸锂(LiNbO3),这是一种结晶材料,可以以薄晶片的形式获得,在可见光波长中,折射率约为2.3。在本申请中构想的另一高折射率材料是碳化硅(SiC)SiC是至少部分地透射可见光的高折射率材料。因此,可以将包括SiC的一个或多个波导集成在显示设备中(例如,合并在头戴式显示设备的目镜中)。由于高折射率,经由全内反射传播通过包括SiC的波导的两个或更多个不同颜色的光可以朝着宽视场的观看者发射。包括SiC的波导可以具有抗划伤性和/或由于高硬度系数(例如约9至10Mohs)而更难折断的其它优点,这对于容易受掉落或不当处理影响的眼镜可能是有利的。
因此,本文所述的各种实施方式包括具有波导的目镜,该波导包括高折射率材料(例如,大于玻璃的折射率的材料和/或大于或等于约1.79的折射率的材料),该目镜可以支持多个不同颜色的图像分量(例如,红色、绿色和蓝色图像分量)在一个单个波导中或在两个波导中的引导传播,其中至少一个波导支持两个颜色分量的引导传播。例如,可以将包含图像信息的两个或更多个不同颜色的光流(例如,包含图像信息的红色、绿色和蓝色图像流)耦入包括折射率大于约1.79和/或2.2的材料(例如铌酸锂)的一个波导内,以使得这些光流经由全内反射在该波导内传播。另外,包括具有高折射率材料(例如,折射率大于玻璃的折射率的材料和/或折射率大于或等于约1.79的材料)的一个或多个波导的显示设备的视场可以大于包括一个或多个玻璃波导或者具有折射率小于约1.79的材料的一个或多个波导的显示设备的视场。
因此,本文描述的显示设备的各种实施方式包括一个或多个波导,该一个或多个波导包括高折射率材料(例如,大于玻璃的折射率的材料和/或大于或等于约1.79的折射率的材料),该显示设备可以有效地耦入从成像系统(例如,微显示器和/或投影仪)发射的红色、绿色和蓝色图像光,并以增大的视场朝着观看者投射红色、绿色和蓝色图像。例如,在本申请中描述的显示设备的一些实施方式中,包括高折射率材料(例如,大于玻璃的折射率的材料和/或大于或等于约1.79的折射率的材料)的单个波导可以有效地耦入两个颜色,例如从成像系统(例如,微显示器和/或投影仪)发射的红色和绿色或绿色和蓝色或红色和蓝色图像光或图像分量,并以增大的视场朝着观看者投射这些图像(例如,红色和绿色或绿色和蓝色或红色和蓝色图像)。在本申请中描述的显示设备的一些实施方式中,包括高折射率材料(例如,大于玻璃的折射率的材料和/或大于或等于约1.79的折射率的材料)的单个波导可以有效地耦入三个颜色,例如从成像系统(例如,微显示器和/或投影仪)发射的红色、绿色和蓝色图像光或图像分量,并以增大的视场朝着观看者投射这些图像(例如红色、绿色和蓝色图像)。
现在将参考附图,在附图中,相同的参考标号始终指代相同的部分。
图2示出了可穿戴显示系统60的示例。显示系统60包括显示器70,以及支持该显示器70的功能的各种机械及电子模块和系统。显示器70可以被耦接到框架80,该框架80可由显示系统用户或观看者90穿戴,并且被配置为将显示器70定位在用户90的眼前。在一些实施例中,显示器70可以被视为眼镜。在一些实施例中,扬声器100被耦接到框架80并且被配置为被定位在用户90的耳道附近(在一些实施例中,另一扬声器(未示出)可以选择性地被定位在用户的另一耳道附近以提供立体/可塑形的声音控制)。显示系统还可以包括一个或多个麦克风110或其它检测声音的设备。在一些实施例中,麦克风被配置为允许用户向系统60提供输入或命令(例如,语音菜单命令的选择、自然语言问题等)和/或可以允许与其它人(例如,与类似显示系统的其他用户)进行音频通信。麦克风还可被配置为外围传感器以收集音频数据(例如,来自用户和/或环境的声音)。在一些实施例中,显示系统还可以包括外围传感器120a,该外围传感器120a可以与框架80分离并且被附接到用户90的身体(例如,用户90的头部、躯干、四肢等上)。在一些实施例中,外围传感器120a可被配置为获取表征用户90的生理状态的数据。例如,传感器120a可以是电极。
继续参考图2,显示器70通过通信链路130,诸如通过有线引线或无线连接,被可操作地耦接到本地数据处理模块140,本地数据处理模块140可以以各种配置安装,诸如固定地附接到框架80,固定地附接到用户戴的头盔或帽子,嵌入耳机中,或以其它方式可移除地附接到用户90(例如,采取背包式配置,采取束带耦接式配置)。类似地,传感器120a可以通过通信链路120b,例如通过有线引线或无线连接,被可操作地耦接到本地处理和数据模块140。本地处理和数据模块140可以包括硬件处理器以及数字存储器,诸如非易失性存储器(例如,闪存或硬盘驱动器),这两者都可用于辅助处理、缓存和存储数据。这些数据包括:a)从通过传感器(其例如可以被可操作地耦接到框架80或以其它方式附接到用户90)捕获的数据,这些传感器诸如图像捕获设备(诸如相机)、麦克风、惯性测量单元、加速度计、指南针、GPS单元、无线电设备、陀螺仪和/或本文公开的其它传感器;和/或b)使用远程处理模块150和/或远程数据存储库160获取和/或处理的数据(包括有关虚拟内容的数据),这些数据可以在被执行完这样的处理或检索之后传送到显示器70。本地处理和数据模块140可以通过通信链路170、180,诸如经由有线或无线通信链路,被可操作地耦接到远程处理模块150和远程数据存储库160,以使得这些远程模块150、160被可操作地彼此耦接,并且作为资源可用于本地处理和数据模块140。在一些实施例中,本地处理和数据模块140可以包括图像捕获设备、麦克风、惯性测量单元、加速度计、指南针、GPS单元、无线电设备和/或陀螺仪中的一者或多者。在一些其它实施例中,这些传感器中的一者或多者可以被附接到框架80,或者可以是通过有线或无线通信路径与本地处理和数据模块140通信的独立结构。
继续参考图2,在一些实施例中,远程处理模块150可以包括被配置为分析和处理数据和/或图像信息的一个或多个处理器。在一些实施例中,远程数据存储库160可以包括数字数据存储设施,该数字数据存储设施可以通过因特网或“云”资源配置中的其它网络配置获得。在一些实施例中,远程数据存储库160可以包括一个或多个远程服务器,该一个或多个远程服务器向本地处理和数据模块140和/或远程处理模块150提供信息,例如用于生成增强现实内容的信息。在一些实施例中,在本地处理和数据模块中存储所有数据并执行所有计算,允许从远程模块完全自主地使用。
现在参考图3,可以通过向观看者的每只眼睛提供略微不同的图像的呈现来实现将图像感知为“三维”或“3-D”。图3示出了用于为用户模拟三维影像的常规显示系统。向用户输出两个有区别的图像190、200,每只眼睛210、220一个图像。图像190、200沿着与观看者的视线平行的光轴或z轴与眼睛210、220相隔距离230。图像190、200是平坦的,眼睛210、220可以通过假设单个调节状态而聚焦在图像上。这样的3D显示系统依赖于人类视觉系统来合成图像190、200以提供合成图像的深度感和/或缩放感。
然而,应当理解,人类视觉系统更复杂的并且提供逼真的深度感更具挑战性的。例如,常规的“3-D”显示系统的许多观看者发现这样的系统不舒服或者根本无法感知到深度感。不受理论的限制,可以认为由于辐辏和调节的组合对象的观看者可能将对象感知为“三维的”。两只眼睛相对于彼此的辐辏运动(即,使得瞳孔彼此靠近或远离以使眼睛的视线会聚而固定在对象上的眼睛旋转)与眼睛晶状体和瞳孔的聚焦(或“调节”)密切相关。在静息情况下,根据被称为“调节-辐辏反射”的关系更改眼睛晶状体的焦点或调节眼睛以将焦点从一个对象改变到不同距离处的另一对象将自动导致到同一距离的辐辏匹配变化,以及瞳孔放大或收缩。同样,在静息情况下,辐辏变化将引发晶状体形状和瞳孔大小的调节中的匹配变化。如本文所述,许多立体或“3D”显示系统使用略微不同的呈现(并因此使用略微不同的图像)向每只眼睛显示场景,以使得人类视觉系统感知到三维透视。然而,这些系统对于许多观看者来说是不舒服的,因为它们尤其是仅提供场景的不同呈现,但是眼睛在单个调节状态下观看所有图像信息,并且违反“调节-辐辏反射”起作用。在调节与辐辏之间提供更好匹配的显示系统可以形成更逼真和舒适的三维影像模拟。
图4示出了使用多个深度平面模拟三维影像的方法的各方面。参考图4,z轴上相对于眼睛210、220在不同距离处的对象由眼睛210、220调节,以使这些对象处于聚焦状态。眼睛210、220呈现特定的调节状态,以沿z轴不同距离处的对聚。因此,可以认为特定的调节状态与深度平面40中的特定一者相关联,具有相关联的焦距,以使得当眼睛针对特定深度平面处于调节状态时,该特定深度平面中的对象或对象的一部分处于聚焦状态。在一些实施例中,可以通过为每只眼睛210、220提供图像的不同呈现,并且还通过提供与每个深度平面相对应的图像的不同呈现来模拟三维影像。尽管为了清楚地说明而示出为是分开的,但是应当理解,眼睛210、220的视场可以重叠,例如在沿z轴的距离增加时。此外,尽管为了便于说明而示出为平坦的,但是应当理解,深度平面的轮廓在物理空间中可以是弯曲的,以使得深度平面中的所有特征在眼睛处于特定调节状态时处于聚焦状态。
如眼睛所看到的,对象与眼睛210或220之间的距离也可以改变来自对象的光的发散量。图5A至5C示出了距离与光线发散之间的关系。对象与眼睛210之间的距离按照递减的次序由距离R1、R2和R3表示。如图5A至5C所示,随着到对象的距离减小,光线变得更加发散。随着距离的增加,光线变得更加准直。换句话说,可以认为由点(对象或对象的一部分)产生的光场具有球面波前曲率,其是该点相对于用户眼睛的距离的函数。随着对象与眼睛210之间的距离减小,曲率增加。因此,在不同的深度平面处,光线的发散程度也不同,发散度随着深度平面与观看者眼睛210之间的距离的减小而增加。尽管为了在图5A至5C和本文中的其它图中清楚地说明而仅示出单只眼睛210,但是应当理解,有关眼睛210的讨论可以应用于观看者的双眼210和220。
不受理论的限制,可以认为人眼通常可以解释有限数量的深度平面以提供深度感。因此,可以通过向眼睛提供与这些有限数量的深度平面中的每一者相对应的图像的不同呈现来实现高度可信的感知深度模拟。不同的呈现可以由观看者的眼睛单独聚焦,从而有助于基于使不同深度平面上的场景的不同图像特征聚焦所需的眼睛调节和/或基于观察到不同深度平面上的不同图像特征处于失焦来为用户提供深度线索。
图6示出了用于将图像信息输出给用户的波导堆叠的示例。显示系统250包括波导堆叠或堆叠波导组件260,其可用于使用多个波导270、280、290、300、310向眼睛/大脑提供三维感知。在一些实施例中,显示系统250是图2的系统60,图6更详细地示意性地示出了该系统60的一些部分。例如,波导组件260可以是图2的显示器70的一部分。将理解,在一些实施例中,显示系统250可以被视为光场显示器。此外,波导组件260也可被称为目镜。
继续参考图6,波导组件260还可以包括在波导之间的多个特征320、330、340、350。在一些实施例中,特征320、330、340、350可以是一个或多个透镜。波导270、280、290、300、310和/或多个透镜320、330、340、350可被配置为以各种水平的波前曲率或光线发散度向眼睛发送图像信息。每个波导水平可以与特定深度平面相关联,并且可被配置为输出与该深度平面相对应的图像信息。图像注入设备360、370、380、390、400可以用作波导的光源,并且可用于将图像信息注入波导270、280、290、300、310内,如本文所述,波导270、280、290、300、310中的每一者可以被配置将入射光分布在每个相应的整个波导上以便朝着眼睛210输出。光从图像注入设备360、370、380、390、400的输出表面410、420、430、440、450射出,并且被注入波导270、280、290、300、310的对应的输入表面460、470、480、490、500内。在一些实施例中,输入表面460、470、480、490、500中的每一者可以是对应的波导的边缘,或者可以是对应的波导的主表面的一部分(即,直接面向世界510或观看者眼睛210的波导表面中的一者)。在一些实施例中,可以将单个光束(例如准直后光束)注入每个波导内以输出克隆的准直后光束的整个场,这些准直后光束以对应于与特定波导相关联的深度平面的特定角度(和发散量)朝向眼睛210被引导。在一些实施例中,图像注入设备360、370、380、390、400中的单个设备可以与波导270、280、290、300、310中的多者(例如三者)相关联并将光注入该波导270、280、290、300、310中的多者(例如三者)内。
在一些实施例中,图像注入设备360、370、380、390、400是分立的显示器,每个显示器产生用于分别注入对应的波导270、280、290、300、310内的图像信息。在一些其它实施例中,图像注入设备360、370、380、390、400是单个复用显示器的输出端,该复用显示器例如可以经由一个或多个光学导管(诸如光纤光缆)将图像信息管道传输到图像注入设备360、370、380、390、400中的每一者。将理解,由图像注入设备360、370、380、390、400提供的图像信息可以包括不同波长或颜色(例如,如本文所讨论的不同的分量颜色)的光。
在一些实施例中,注入波导270、280、290、300、310内的光由光投影系统520提供,光投影仪系统520包括光模块540,其可以包括诸如发光二极管(LED)之类的光发射器。来自光模块540的光可以经由分束器550被光调制器530(例如,空间光调制器)引导和修改。光调制器530可被配置为改变注入波导270、280、290、300、310内的光的感知强度。空间光调制器的示例包括液晶显示器(LCD),其包括硅基液晶(LCOS)显示器。将理解,图像注入设备360、370、380、390、400被示意性地示出,在一些实施例中,这些图像注入设备可以表示公共投影系统中的不同光路和位置,该公共投影系统被配置为将光输出到与波导270、280、290、300、310中的关联的一者内。
在一些实施例中,显示系统250可以是扫描光纤显示器,其包括一个或多个扫描光纤,这些扫描光纤被配置为以各种图案(例如,光栅扫描、螺旋扫描、利萨如图案等)将光投射到一个或多个波导270、280、290、300、310被并最终投射到观看者的眼睛210。在一些实施例中,所示图像注入设备360、370、380、390、400可示意性地表示单个扫描光纤或扫描光纤束,该单个扫描光纤或扫描光纤束被配置为将光注入波导270、280、290、300、310中的一者或多者内。在一些其它实施例中,所示的图像注入设备360、370、380、390、400可以示意性地表示多个扫描光纤或多个扫描光纤束,该多个扫描光纤或多个扫描光纤束中的每一者被配置为将光注入波导270、280、290、300、310中的关联的一者内。应当理解,一个或多个光纤可被配置为将光从光模块540透射到一个或多个波导270、280、290、300、310。应当理解,可以在一个或多个扫描光纤与一个或多个波导270、280、290、300、310之间提供一个或多个中间光学结构,以例如将从扫描光纤出射的光重定向到一个或多个波导270、280、290、300、310内。
控制器560控制堆叠波导组件260中的一者或多者的操作,包括图像注入设备360、370、380、390、400、光源540和光调制器530的操作。在一些实施例中,控制器560是本地数据处理模块140的一部分。控制器560包括编程(例如,非暂时性介质中的指令),其根据例如本文公开的多种方案中的任一项来调节图像信息到波导270、280、290、300、310的定时和提供。在一些实施例中,控制器可以是单个集成设备,或者是通过有线或无线通信信道连接的分布式系统。在一些实施例中,控制器560可以是处理模块140或150(图2)的一部分。
继续参考图6,波导270、280、290、300、310可被配置为通过全内反射(TIR)在每个相应的波导内传播光。波导270、280、290、300、310可以各自是平面的或具有另一形状(例如,弯曲的),其具有主要的顶部表面和底部表面以及在这些主要的顶部表面与底部表面之间延伸的边缘。在所示的配置中,波导270、280、290、300、310可各自包括耦出光学元件570、580、590、600、610,该耦出光学元件570、580、590、600、610被配置为通过将在每个相应的波导内传播的光重定向出波导来从波导中提取光,从而向眼睛210输出图像信息。所提取的光也可以被称为耦出光,并且耦出光学元件也可以被称为光提取光学元件。在波导内传播的光照射光提取光学元件的位置处,可以由波导输出所提取的光束。耦出光学元件570、580、590、600、610例如可以是光栅,其包括本文进一步所讨论的衍射光学特征。尽管为了便于描述和描绘清楚而示出了耦出光学元件570、580、590、600、610被设置在波导270、280、290、300、310的底部主表面处,但是在一些实施例中,如本文进一步所讨论的,耦出光学元件570、580、590、600、610可以被设置在顶部主表面和/或底部主表面,和/或可以直接被设置在波导270、280、290、300、310的体中。在一些实施例中,耦出光学元件570、580、590、600、610可以在附接到透明基板的材料层中被形成,从而形成波导270、280、290、300、310。在一些其它实施例中,波导270、280、290、300、310可以是整块材料,并且耦出光学元件570、580、590、600、610可以被形成在该块材料的表面上和/或该块材料的内部中。
继续参考图6,如本文所讨论的,每个波导270、280、290、300、310被配置为输出光以形成对应于特定深度平面的图像。例如,最靠近眼睛的波导270可被配置为准直后光(该光被注入这种波导270内)传送到眼睛210。该准直后光可以代表光学无限远焦平面。下一上行波导280可被配置为发出准直后光,该准直后光在能到达眼睛210之前传播通过第一透镜350(例如,负透镜)。这样的第一透镜350可被配置为产生微凸的波前曲率,以使得眼睛/大脑将来自下一上行波导280的光解释为来自从光学无限远向内较接近眼睛210的第一焦平面。类似地,下一第三上行波导290使其输出光在到达眼睛210之前传播通过第一透镜350和第二透镜340。第一透镜350和第二透镜340的组合光焦度可被配置为产生另一波前曲率增量,以使得眼睛/大脑将来自第三波导290的光解释为来自从光学无限远向内更加靠近人的第二焦平面的光,而不是来自下一上行波导280的光。
其它波导层300、310和透镜330、320被类似地配置,其中堆叠中的最高波导310通过其与眼睛之间的所有透镜发送其输出,以获得代表与人最接近的焦平面的总焦度。为了在观察/解释来自堆叠波导组件260的另一侧面上的世界510的光时补偿透镜堆叠320、330、340、350,可以在堆叠的顶部处设置补偿透镜层620以补偿下面的透镜堆叠320、330、340、350的总焦度。这种配置提供与可用的波导/透镜配对一样多的感知焦平面。波导的耦出光学元件和透镜的聚焦方面两者可以是静态的(即,不是动态的或电活性的)。在一些备选实施例中,通过使用电活性特征,它们中的一者或两者可以是动态的。
在一些实施例中,波导270、280、290、300、310中的两者或更多者可具有相同的关联深度平面。例如,多个波导270、280、290、300、310可被配置为将图像集输出到相同的深度平面,或者波导270、280、290、300、310的多个子集可被配置为将图像集输出到相同的多个深度平面,每个深度平面一个图像集。这可以提供形成拼接图像以在那些深度平面上提供扩展的视场的优势。
继续参考图6,耦出光学元件570、580、590、600、610可被配置为既将光重定向出它们各自的波导又针对与波导相关联的特定深度平面以适当的发散量或准直度来输出该光。因此,具有不同的关联深度平面的波导可以具有不同的耦出光学元件570、580、590、600、610的配置,这些耦出光学元件570、580、590、600、610取决于关联深度平面以不同的发散量输出光。在一些实施例中,光提取光学元件570、580、590、600、610可以是体特征或表面特征,其可被配置为以特定角度输出光。例如,光提取光学元件570、580、590、600、610可以是体全息图、表面全息图和/或衍射光栅。在一些实施例中,特征320、330、340、350可以不是透镜。相反,它们可以仅仅是间隔物(例如,包层和/或用于形成气隙的结构)。
在一些实施例中,耦出光学元件570、580、590、600、610是形成衍射图案的衍射特征,或“衍射光学元件”(在本文中也被称为“DOE”)。优选地,DOE具有足够低的衍射效率,以使得只有光束的一部分借助DOE的每个交叉点朝着眼睛210偏转离开,而其余部分经由TIR继续行进通过波导。因此,携带图像信息的光被分成多个相关的出射光束,这些出射光束在多个位置处从波导出射,结果是针对在波导内四处弹跳的特定准直后光束的,朝着眼睛210的相当均匀的出射图案。
在一些实施例中,一个或多个DOE可以是在积极衍射的“接通”状态与不明显衍射的“关断”状态之间可切换的。例如,可切换的DOE可以包括聚合物分散液晶层,其中微滴在主体介质中包括衍射图案,并且微滴的折射率可以被切换为基本匹配主体材料的折射率(在这种情况下,图案不会明显地衍射入射光)或者微滴可以被切换到与主体介质的折射率不匹配的折射率(在这种情况下,图案积极地衍射入射光)。
在一些实施例中,可提供相机组件630(例如,数码相机,包括可见光和红外光相机)以捕获眼睛210和/或眼睛210周围的组织的图像,从而例如检测用户输入和/或监测用户的生理状态。如本文所使用的,相机可以是任何图像捕获设备。在一些实施例中,相机组件630可以包括图像捕获设备和光源,以将光(例如,红外光)投射到眼睛,然后光可以由眼睛反射并被图像捕获设备检测。在一些实施例中,相机组件630可以被附接到框架80(图2)并且可以与处理模块140和/或150电通信,该处理模块140和/或150可以处理来自相机组件630的图像信息。在一些实施例中,可以针对每只眼睛使用一个相机组件630以分别监测每只眼睛。
现在参考图7,示出了由波导输出的出射光束的示例。示出了一个波导,但是将理解,波导组件260(图6)中的其它波导可以发挥类似的作用,其中波导组件260包括多个波导。光640在波导270的输入表面460处被注入波导270内,并通过TIR在波导270内传播。在光640照射DOE 570的点处,光的一部分作为出射光束650从波导出射。出射光束650被示为基本上平行,但是如本文所讨论的,它们也可以被重定向为以一定角度(例如,形成发散的出射光束)传播到眼睛210,该角度取决于与波导270相关联的深度平面。将理解,基本上平行的出射光束可以指示具有耦出光学元件的波导,该光学元件将光耦出以形成看起来被设置在距离眼睛210较远距离(例如,光学无限远)处的深度平面上的图像。其它波导或其它耦出光学元件组可以输出更加发散的出射光束图案,该更加发散的出射光束图案将需要眼睛210适应更近的距离以将其聚焦在视网膜上,并且将被大脑解释为来自比光学无限远更接近眼睛210的距离的光。
在一些实施例中,可以通过在分量颜色(例如,三个或更多个分量颜色)中的每一者中叠加图像来在每个深度平面处形成全色图像。图8示出了堆叠波导组件的示例,其中每个深度平面包括使用多个不同分量颜色形成的图像。所示的实施例示出了深度平面240a至240f,但也可以构想更多或更少的深度。每个深度平面可以具有与其相关联的三个或更多个分量颜色图像,包括:第一颜色的第一图像G;第二颜色的第二图像R;以及第三颜色的第三图像B。不同的深度平面在图中通过字母G、R和B之后的不同屈光度(dpt)指示。例如,这些字母的每一者后面的数字指示屈光度(1/m),或深度平面与观看者的距离的倒数,并且图中的每个框表示单独的分量彩色图像。在一些实施例中,为了解决眼睛对不同波长的光的聚焦的差异,不同分量颜色的深度平面的精确放置可以变化。例如,给定深度平面的不同分量颜色图像可以放置在与相对于用户的不同距离对应的深度平面上。这样的布置可以增加视敏度和用户舒适度和/或可以减少色差。
在一些实施例中,每个分量颜色的光可以由单个专用波导输出,因此,每个深度平面可以具有与其相关联的多个波导。在这样的实施例中,图中包括字母G、R或B的每个框可以被理解为表示单独的波导,并且可以为每个深度平面提供三个波导,其中为每个深度平面提供三个分量颜色图像。尽管为了便于描述,在该图中示出了与每个深度平面相关联的波导彼此相邻,但是将理解,在物理设备中,波导可以全部被布置成每层具有一个波导的堆叠。在一些其它实施例中,多个分量颜色可以由相同的波导输出,以使得例如可以为每个深度平面仅提供单个波导。
继续参考图8,在一些实施例中,G是绿色,R是红色,B是蓝色。在一些其它实施例中,除了红色、绿色或蓝色之外或者可以替换红色、绿色或蓝色中的一种或多种,可以使用与其它波长的光相关联的其它颜色(包括品红色和青色)。
将理解,本公开通篇对给定颜色的光的引用将被理解为包括被观看者感知为具有该给定颜色的光波长范围内的一个或多个波长的光。例如,红光可以包括在约620nm至780nm范围内的一个或多个波长的光,绿光可以包括在约492nm至577nm范围内的一个或多个波长的光,以及蓝光可以包括在约435nm至493nm的范围内一个或多个波长的光。
在一些实施例中,光源540(图6)可被配置为发射观看者视觉感知范围之外的一个或多个波长(例如,红外和/或紫外波长)的光。此外,显示器250的波导的耦入、耦出和其它光重定向结构可被配置为将该光从显示器引导出并朝着用户的眼睛210发射,例如用于成像和/或用户激励应用。
现在参考图9A,在一些实施例中,可能需要将照射在波导上的光重定向以将该光耦入该波导内。可以使用耦入光学元件来将光重定向并将该光耦入其对应的波导内。图9A示出了多个或堆叠波导组660的示例的横截面侧视图,其中每个堆叠波导包括耦入光学元件。波导可各自被配置为输出一个或多个不同波长的光,或一个或多个不同波长范围的光。将理解,堆叠660可以对应于堆叠260(图6),并且所示的堆叠660的波导可以与多个波导270、280、290、300、310的一部分相对应,除了来自图像注入设备360、370、380、390、400中的一者或多者的光从需要重定向光以进行耦入的位置注入波导内。
所示的堆叠波导组660包括波导670、680和690。波导670位于图像光源之前或者比波导680更接近图像光源,波导690位于图像光源之后或者比波导680距图像光源更远。每个波导包括关联的耦入光学元件(其也可以称为波导上的光输入区域),例如,设置在波导670的主表面(例如,顶部主表面)上的耦入光学元件700、设置在波导680的主表面(例如,顶部主表面)上的耦入光学元件710以及设置在波导690的主表面(例如,顶部主表面)上的耦入光学元件720。在一些实施例中,耦入光学元件700、710、720中的一者或多者可以被设置在相应波导670、680、690的底部主表面上(特别是在一个或多个耦入光学元件是反射的偏转光学元件的情况下)。如图所示,耦入光学元件700、710、720可以被设置在其相应波导670、680、690的顶部主表面(或下一下行波导的顶部)上,特别是在那些耦入光学元件是透射性的偏转光学元件的情况下。在一些实施例中,耦入光学元件700、710、720可以被设置在相应波导670、680、690的主体中。在一些实施例中,如本文所讨论的,耦入光学元件700、710、720是波长选择性的,以使得它们选择性地重定向一个或多个波长的光,同时透射其它波长的光。尽管示出为在其相应波导670、680、690的一个侧面或角上,但是将理解,在一些实施例中,耦入光学元件700、710、720可以被设置在其相应波导670、680、690的其它区域中。
如图所示,耦入光学元件700、710、720可以彼此横向偏移。在一些实施例中,每个耦入光学元件可以发生偏移,以使得其接收光而无需该光传播通过另一耦入光学元件光。例如,每个耦入光学元件700、710、720可被配置为从不同的图像注入设备360、370、380、390和400接收光,如图6所示,并且可以与其它耦入光学元件700、710、720分开(例如,横向地隔开),以使得其基本上不接收来自耦入光学元件700、710、720中的其它耦入光学元件的光。
每个波导还包括关联的光分布元件,例如,设置在波导670的主表面(例如,顶部主表面)上的光分布元件730、设置在波导680的主表面(例如,顶部主表面)上的光分布元件740、以及设置在波导690的主表面(例如,顶部主表面)上的光分布元件750。在一些其它实施例中,光分布元件730、740、750可以被分别设置在关联波导670、680、690的底部主表面上。在一些其它实施例中,光分布元件730、740、750可以被分别设置在关联波导670、680、690的顶部主表面和底部主表面上,或者光分布元件730、740、750可以被分别设置在不同的关联波导670、680、690中的不同的顶部主表面和底部主表面上。
波导670、680、690可以由例如气体、液体和/或固体材料层间隔开并分开。例如,如图所示,层760a可以分开波导670和680;层760b可以分开波导680和690。在一些实施例中,层760a和760b由低折射率材料(即,该材料的折射率低于形成波导670、680、690中的紧邻波导的材料)形成。优选地,形成层760a、760b的材料的折射率是0.05或大于形成波导670、680、690的材料的折射率,或者是0.10或小于形成波导670、680、690的材料的折射率。有利地,低折射率层760a、760b可以作为包层,其促进光通过波导670、680、690的全内反射(TIR)(例如,每个波导的顶部主表面与底部主表面之间的TIR)。在一些实施例中,层760a、760b由空气形成。尽管未示出,但将理解,所示的波导组660的顶部和底部可以包括紧邻的包层。
优选地,为了便于制造和出于其它考虑,形成波导670、680、690的材料相似或相同,并且形成层760a、760b的材料相似或相同。在一些实施例中,形成波导670、680、690的材料在一个或多个波导之间可以是不同的,和/或形成层760a、760b的材料可以是不同的,同时仍然保持上述各种折射率关系。
继续参考图9A,光线770、780、790入射在波导组660上。将理解,光线770、780、790可以由一个或多个图像注入设备360、370、380、390、400(图6)注入波导670、680、690内。光线770、780、790可以构成图像光,编码有图像信息的光。例如,光可能已被空间调制,或者以其它方式在不同的位置被提供不同的强度和/或不同的波长,例如以形成构成图像的像素。
在一些实施例中,光线770、780、790具有不同的特性,例如,不同的波长或不同的波长范围,该不同的波长或波长范围可以对应于不同的颜色。耦入光学元件700、710、720各自偏转入射光,以使得光通过TIR传播通过波导670、680、690中的相应一者。在一些实施例中,耦入光学元件700、710、720各自选择性地偏转一个或多个特定波长的光,同时将其它波长透射到底层波导以及关联的耦入光学元件。
例如,耦入光学元件700可被配置为偏转具有第一波长或波长范围的光线770,同时透射分别具有不同的第二和第三波长或波长范围的光线780和790。所透射的光线780照射在耦入光学元件710上并被该耦入光学元件710偏转,该耦入光学元件710被配置为偏转第二波长或波长范围的光。光线790被耦入光学元件720偏转,该耦入光学元件720被配置为选择性地偏转第三波长或波长范围的光。
继续参考图9A,所偏转的光线770、780、790被偏转,以使得它们传播通过对应的波导670、680、690内传播;也就是说,每个波导的耦入光学元件700、710、720将光偏转到对应的波导670、680、690内,以将光耦入对应的波导内。光线770、780、790以一定角度被偏转,这些角度使光通过TIR传播通过相应的波导670、680、690。光线770、780、790通过TIR传播通过相应的波导670、680、690,直到照射在波导的对应的光分布元件730、740、750上。
现在参考图9B,示出了图9A的多个堆叠波导的示例的透视图。如上所述,耦入光线770、780、790分别被耦入光学元件700、710、720偏转,然后通过TIR分别在波导670、680、690内传播。然后,光线770、780、790分别照射在光分布元件730、740、750上。光分布元件730、740、750使光线770、780、790偏转,以使得它们分别朝向耦出光学元件800、810、820传播。
在一些实施例中,光分布元件730、740、750是正交光瞳扩展器(OPE)。在一些实施例中,OPE将光偏转或分布到耦出光学元件800、810、820,并且在一些实施例中,还可以在光传播到耦出光学元件时增加该光的光束或光斑尺寸。在一些实施例中,可以省略光分布元件730、740、750,并且可以将耦入光学元件700、710、720配置为将光直接偏转到耦出光学元件800、810、820。例如。参考图9A,光分布元件730、740、750可分别用耦出光学元件800、810、820代替。在一些实施例中,耦出光学元件800、810、820是出射光瞳(EP)或出射光瞳扩展器(EPE),其引导观看者眼睛210(图7)中的光。将理解,OPE可被配置为在至少一个轴上增加眼动范围的尺寸,并且EPE可以被配置为在与OPE的轴相交(例如正交)的轴上增加眼动范围的尺寸。例如,每个OPE可被配置为将照射OPE的光的一部分重定向到同一波导的EPE,同时允许光的其余部分继续沿波导向下传播。当再次照射OPE时,剩余光的另一部分被重定向到EPE,并且该部分的剩余部分继续沿波导向下进一步传播,依此类推。同样,当照射EPE时,照射光的一部分朝着用户被引导出波导,该光的其余部分继续传播通过波导,直到再次照射EP,此时照射光的另一部分被引导出波导,依此类推。因此,每当光的一部分被OPE或EPE重定向时,可以“复制”单个耦入光束,从而形成克隆光束的场,如图6所示。在一些实施例中,OPE和/或EPE可被配置为改变光束的尺寸。
因此,参考图9A和9B,在一些实施例中,波导组660包括用于每个分量颜色的波导670、680、690;耦入光学元件700、710、720;光分布元件(例如,OPE)730、740、750;以及耦出光学元件(例如,EP)800、810、820。波导670、680、690在每个波导之间可以堆叠有气隙/包层。耦入光学元件700、710、720将入射光(通过接收不同波长的光的不同耦入光学元件)重定向或偏转到其波导内。然后光以一定角度传播,该角度将导致相应波导670、680、690内的TIR。在所示的示例中,光线770(例如,蓝光)以先前描述的方式被第一耦入光学元件700偏转,然后继续沿波导向下反弹,与光分布元件(例如,OPE)730相互作用,然后与耦出光学元件(例如,EP)800相互作用。光线780和790(例如,分别为绿光和红光)将传播通过波导670,光线780照射在耦入光学元件710上并被耦入光学元件710偏转。光线780然后经由TIR沿波导680向下反弹,继续到其光分布元件(例如,OPE)740,然后继续到耦出光学元件(例如,EP)810。最后,光线790(例如,红光)传播通过波导690而照射在波导690的光耦入光学元件720上。该光耦入光学元件720偏转光线790,以使得该光线通过TIR传播到光分布元件(例如,OPE)750,然后通过TIR传播到耦出光学元件(例如,EP)820。然后,耦出光学元件820最终将光线790耦出到观看者,观看者还接收从其它波导670、680耦出的光。
图9C示出了图9A和9B的多个堆叠波导的示例的俯视平面图。如图所示,波导670、680、690以及每个波导的关联光分布元件730、740、750和关联耦出光学元件800、810、820可以是垂直对准的。然而,如本文所讨论的,耦入光学元件700、710、720不是垂直对准的;相反,耦入光学元件优选地是非重叠的(例如,如俯视图所示,横向地间隔开)。如本文进一步所讨论的,该非重叠空间布置有助于将来自不同源的光一对一地注入不同波导内,从而允许特定光源被唯一地耦合到特定波导。在一些实施例中,包括非重叠空间分离的耦入光学元件的布置可以被称为移位或分割的光瞳系统,并且这些布置内的耦入光学元件可以对应于子光瞳。
如上所述,显示系统60或显示系统250的各种实施例可以包括具有高折射率材料的波导。例如,显示系统60或显示系统250的各种实施例可以包括具有折射率大于玻璃的折射率的材料的一个或多个波导。在显示系统60或显示系统250的各种实施例中,可以包括具有折射率大于或等于约1.79且小于或等于约4.5的材料的一个或多个波导。例如,显示系统60或显示系统250的各种实施例可以包括具有以下折射率的材料的一个或多个波导:大于或等于1.8且小于或等于2.1、大于或等于2.1且小于或等于2.2、大于或等于2.2且小于或等于2.3、大于或等于2.3且小于或等于2.4、大于或等于2.4且小于或等于2.5、大于或等于2.5且小于或等于2.6、大于或等于2.6且小于或等于2.7、大于或等于2.7且小于或等于2.8、大于或等于2.8且小于或等于2.9、大于或等于2.9且小于或等于3.0、大于或等于3.0且小于或等于3.1、大于或等于3.1且小于或等于3.2、大于或等于3.2且小于或等于3.3、大于或等于3.3且小于或等于3.4、大于或等于3.4且小于或等于3.5、大于或等于3.5且小于或等于3.6、大于或等于3.6且小于或等于3.7、大于或等于3.7且小于大于或等于3.8、大于或等于3.8且小于或等于3.9、大于或等于3.9且小于或等于4.0、大于或等于4.0且小于或等于4.2、大于或等于4.0且小于或等于4.4、大于或等于4.0且小于或等于4.5或由这些值限定的任何范围/子范围中的任何值。不失一般性地,本申请中构想的高折射率材料可以是对可见光透明的。例如,在本申请的一些实施方式中构想的高折射率材料可被配置为以大于或等于约80%或90%的效率透射约450nm至约750nm之间的光谱范围内的可见光。然而,在某些实施方式中,波导的界面处可能发生菲涅耳反射。
如上所述,与包括具有玻璃和/或折射率小于约1.79的材料的一个或多个波导的显示系统60或显示系统250的实施例相比,包括具有高折射率(例如,折射率大于玻璃的折射率和/或折射率大于或等于约1.79)材料的一个或多个波导的显示系统60或显示系统250的各种实施例可以具有增大的视场。此外,如上所述,可以将多个颜色或波长的光(例如,两个或可能三个颜色)同时耦入包括高折射率材料的单个波导内。因此,显示系统60或显示系统250的各种实施例可以包括与不同深度平面相关联的不同波导。在一些实施方式中,与深度平面相关联的波导可以包括高折射率材料,以使得诸如三个颜色(例如,红色、绿色和蓝色波长)之类的不同颜色的入射光可被耦入单个波导内并在其中进行引导。因此,关联的波导能够朝着观看者投射包括不同波长(例如,红色、绿色和蓝色波长)的光的彩色图像。类似地,在一些实施方式中,与深度平面相关联的一个波导可以包括高折射率材料,以使得诸如两个颜色(例如,红色和绿色或绿色和蓝色波长)之类的不同颜色的入射光可被耦入单个波导内并在其中进行引导。与该深度平面相关联的另一波导可以被配置为使得至少一个不同的颜色(分别是蓝色或红色)可被耦入单个波导内并在其中进行引导。该波导还可以包括高折射率材料。因此,用于该深度平面或深度的波导的组合能够朝着观看者投射包括不同波长(例如,红色、绿色和蓝色波长)的光的彩色图像。一个或多个其它波导配置可以用于其它深度平面或深度。本申请中构想的各种高折射率材料包括诸如折射率约为2.3的铌酸锂(LiNbO3)或折射率高于2.7的碳化硅,或其它类似的材料,甚至可能是具有较高折射率的材料。
如上所述,显示系统60或显示系统250的各种实施方式中的一个或多个波导可以包括将光耦入一个或多个波导内的耦入光学元件(例如,耦入光学元件700、710、720)和/或将光耦出一个或多个波导的耦出光学元件(例如570、580、590、800、810、820)。在显示系统60或显示系统250的各种实施例中,一个或多个波导可以包括光分布元件(例如,光分布元件730、740、750)。在各种实施例中,光分布元件(例如,光分布元件730、740、750)可被配置为正交光瞳扩展器(OPE)和/或耦出元件(例如800、810、820)可被配置为出射光瞳扩展器(EPE),或被配置为展示正交扩展和耦出功能两者的组合光瞳扩展器(CPE)。目镜可以包括耦入光学元件(ICG)、正交光瞳扩展器(OPE)、出射光瞳扩展器(EPE)和组合光瞳扩展器(CPE)中的任一种或任何组合。因此,各种各样的配置是可能的。例如,一些目镜不包括正交光瞳扩展器(OPE)。耦入光学元件、耦出光学元件和光分布元件可以包括衍射特征。衍射光学元件可以包括微米级和/或纳米级特征。不失一般性地,可以将耦入光学元件、耦出光学元件和/或光分布元件设置在显示系统60或显示系统250的不同实施例中的波导的一个或两个表面(例如,主表面、前表面和后表面等)上。例如,本申请中描述的波导的各种实施例可以具有设置在波导的两个表面(例如,主表面、前表面和后表面等)上、或全部设置在单个表面上、甚至重叠在单个表面上的衍射结构,。
在用于混合现实系统的观察光学组件架构中使用包括高折射率材料(例如,折射率大于玻璃的折射率和/或折射率大于约1.79)的一个或多个波导可以有利地提供光学界面和波导层数量减少的波导堆叠,并潜在地允许使用低成本、轻量级虚拟图像焦距移位元件,增加或最大化波导堆叠的透明度,降低或最小化制造成本,或者减小或最小化波导堆叠的外形尺寸、重量和/或质量,或者潜在地提供这些特征的任何组合。
因此,本申请中描述的显示系统(例如,头戴式AR/VR显示设备)的各种实施例包括具有高折射率(例如,折射率大于1.79,诸如折射率大于或等于约2.3)材料的一个或多个波导。一个或多个波导包括顶部主表面和底部主表面以及在顶部主表面与底部主表面之间的多个边缘。一个或多个波导可以进一步包括耦入光学元件(例如,类似于耦入光学元件700、710、720的耦入光学元件)和耦出光学元件(例如,类似于元件570、580、590、800、810、820的耦出光学元件),该耦入光学元件被配置为耦入从成像系统(例如,微显示器和/或投影仪)发射的不同颜色的图像光,该耦出光学元件被配置为朝着穿戴者的眼睛投射耦入的光。在一些实施例中,一个或多个波导可以进一步包括光分布元件(例如,类似于光分布元件730、740、750的光分布元件)。如上所讨论的,耦入光学元件、耦出光学元件和光分布元件中的一者或多者可以包括衍射光栅。在各种实施例中,衍射光栅可以包括微米级或纳米级特征。衍射光栅可以包括表面或体积特征。不失一般性地,可以在一个或多个波导的一个或两个主表面上设置耦入光学元件、耦出光学元件和光分布元件。
如上所述,在本申请中描述的显示系统(例如,头戴式AR/VR显示设备)的各种实施例中,一个或多个耦入光学元件可被配置为将从成像系统(例如,微显示器和/或投影仪)发射的包含图像信息的两个或更多个不同颜色的光流耦入包括高折射率(例如,折射率大于1.79,例如折射率大于或等于约2.3)材料的单个波导内,使得所耦入的不同颜色的光通过全内反射在该单个波导内传播。例如,在一些实施例中,包含图像信息的第一、第二和第三颜色(例如,红色、绿色和蓝色)的光流可被耦入包括高折射率(例如,折射率大于1.79,例如折射率大于或等于约2.3)材料的一个或两个波导内,以使所耦入的第一、第二和第三(例如红色、绿色和蓝色)光通过全内反射在对应的波导内传播。例如,在一些这样的实施例中,包含图像信息的第一、第二和第三颜色(例如,红色、绿色和蓝色)的光流可被耦入包括高折射率(例如,折射率大于1.79,例如折射率大于或等于约2.3)材料的单个波导内。
如上所述,从包括高折射率(例如,折射率大于1.79,例如折射率大于或等于约2.3)的波导投射出的光可以具有增大的视场,光通过该视场由波导输出,因此,观看者可以通过该视场看到虚拟图像内容。视场可以基于波导材料的折射率和耦入波导内的波长数而变化。下面的表1A和表1B包括当一(1)个颜色或单色、两(2)个颜色或双色(例如,绿色和蓝色或红色和蓝色)以及三(3)个颜色或三色(例如,红色、绿色和蓝色)的光被耦入波导内时,由头戴式AR/VR显示设备的各种波导实施例提供的垂直和水平视场的以度为单位的计算值,该各种波导包括折射率在大约1.73至约2.3之间的材料。
Figure BDA0002716051690000571
表1A:当一(1)个颜色或单色、两(2)个颜色或双色(例如,绿色和蓝色或红色和蓝色)、以及三(3)个颜色或三色(例如,红色、绿色和蓝色)的光被耦入波导内时,由头戴式AR/VR显示设备的各种波导实施例提供的垂直和水平视场的以度为单位的计算值,这些波导包括折射率在大约1.73至大约2.3之间的材料。
Figure BDA0002716051690000581
表1B:当一(1)个颜色或单色、两(2)个颜色或双色(例如,绿色和蓝色或红色和蓝色)、以及三(3)个颜色或三色(例如,红色、绿色和蓝色)的光被耦入波导内时,由头戴式AR/VR显示设备的各种波导实施例提供的垂直和水平视场的以度为单位的计算值,这些波导包括折射率在大约1.73至大约2.3之间的材料。
从表1A和1B注意到,随着波导的材料的折射率的增加,垂直和水平视场的度数也增加。例如,取决于一(1)个颜色或单色、两(2)个颜色或双色(例如,绿色和蓝色或红色和蓝色)、以及三(3)个颜色或三色(例如,红色、绿色和蓝色)的光是否被耦入波导内,包括折射率大于约1.79的材料的波导具有大于约20.2度的水平视场和大于约20.2度的垂直视场。从表1A进一步注意到,当所有三(3)个颜色(例如红色、绿色和蓝色)的光被耦入波导内时,由头戴式AR/VR显示设备的各种波导实施例,该波导包括折射率约为2.3的材料(例如铌酸锂),提供的水平和垂直视场分别大约是45.9度和56.1度,这大约是约70度的对角线视场。因此,包括具有折射率约为2.3的材料(例如,铌酸锂)或更高的材料(例如,碳化硅)的波导的目镜的实施例是获得视场增大的显示设备的有吸引力的解决方案。
除了具有高折射率之外,铌酸锂还具有其它优点。例如,铌酸锂通常以晶片形式获得,对可见光是光学透明的并且具有低散射性。尽管铌酸锂可能之前尚未被考虑作为上面可以制造大面积浮雕漏光栅结构(诸如在混合现实目镜的ICG、EPE和OPE中使用的光栅结构)的基板材料的首选材料,但是光栅可以如本文所述地制造,以用于头戴式显示器。铌酸锂不是特别理想地作为上面可以制造用于ICG、EPE和OPE的光栅结构的基板材料的一个原因可以至少部分归因于难以经济地生产大面积光栅结构。铌酸锂的铁电和热电性质在使用通过对抗蚀剂层进行溅射沉积并对该抗蚀剂层进行图案化而获得的蚀刻掩模来制造大面积光栅结构方面存在困难。然而,本文所述的铌酸锂处理方法可用于制造大面积光栅结构。下面包括关于制造铌酸锂的方法的附加讨论。
这样的高折射率波导可以有利地包括在用于诸如图10所示的头戴式显示器的光学系统中。图10示出了显示系统1000的示例,该显示系统1000包括成像系统1001、包括高折射率(例如,折射率大于约1.79)材料的波导1003以及多个可变焦元件1005a和1005b。成像系统1001包括投影光学系统1009;照明光学系统1011,其提供三个颜色(例如,红色、绿色和蓝色光);以及空间光调制元件1013,其调制从照明光学系统1011发射的光(例如,红色、绿色和蓝色光)以形成包括图像信息的光流。由空间光学调制器调制的包含图像信息的三个不同颜色(例如红色、绿色和蓝色)的光流从投影光学系统1009的单个输出光瞳输出。该从投影光学系统1009的单个输出光瞳射出的包含图像信息的三个不同颜色(例如红色、绿色和蓝色)的光流被与波导1003相关联的一个或多个耦入光学元件接收并衍射,以使得包括图像信息的三个颜色(例如红色、绿色和蓝色)光流被耦入波导1003内。如上所讨论的,在各种实施方式中,一个或多个耦入光学元件可以与投影光学系统1009的单个输出光瞳对准(例如,垂直对准),以使得在俯视图中,一个或多个耦入光学元件的至少一部分与投影光学系统1009的单个输出光瞳重叠。
在某些实施方式中,成像系统1001可以包括低质量的紧凑型微显示器。在一些实施方式中,成像系统1001可以包括混色光瞳,紧密间隔开的红-绿-蓝(“RGB”)子光瞳组,或内部光瞳(如在MEMs系统中那样,其中光瞳位于扫描镜平面处)。在各种实施例中,成像系统1001可以具有与以下参考图11至17B讨论的成像系统中的任一者相似的特征。
波导1003可以包括折射率大于或等于约2.3的材料,例如铌酸锂。当波导1003包括铌酸锂时,对于红色、绿色和蓝色波长,从波导输出的光的对角视场可以是大约70°。在一些实施方式中,显示系统1000可以包括两个波导而不是单个波导1003。例如,两个波导中的第一波导可被配置为耦入包括图像信息的一个或两个不同颜色的光流(例如,红色图像流、或红色和绿色图像流),且两个波导中的第二波导可被配置为耦入包括图像信息的另外的一个或两个不同颜色的光流(例如,分别为蓝色和绿色图像流、或蓝色图像流)。在第一波导包括两个不同颜色的光流的一些实施方式中,两个波导中的第二波导可被配置为耦入与第一波导中的颜色不同的一个颜色的光流,以及与第一波导中包括的颜色相同或相似的一个光流(例如,绿色和蓝色图像流、或红色和蓝色图像流)。
系统1000可被配置为聚焦于无限远的系统,该系统向观看者或观看者的眼睛1007呈现无动力的真实世界视图,以及位于无限远之外的某一位置处的虚拟图像。可变焦元件1005a和1005b提供了移位虚拟图像焦平面的能力。可变焦元件1005a可被配置为正连续可变聚焦元件,可变焦元件1005b可被配置为负连续可变聚焦元件。在各种实施例中,可变焦元件1005a和1005b可以包括充液可变焦透镜对。在一些实施例中,可变焦元件1005a和1005b可以包括基于液晶(LC)的像素可编程菲涅耳透镜对。对于同时通过可变焦元件对1005a和1005b观看的真实世界,负聚焦元件1005b可被配置为移位虚拟图像位置,正聚焦元件1005a可被配置为中和负聚焦元件1005b的光焦度。从波导1003投射出的光仅遍历(traverse)负聚焦元件1005b。取决于可变焦元件1005a和1005b的特定能力,这种方法和元件组合可以产生焦平面、深度平面或深度的连续体(continuum)。图10中示出了示例近平面和远平面。开关或控制模块示意性地示出了将空间光调制器1013与可变焦元件1005a和1005b进行协调,以使得各种图像在适当的深度处被呈现。包括可变焦元件1005a和1005b以及单个波导1003的集成堆叠可被制成足够薄并且质量足够低主要取决于使可变焦元件1005a和1005b小型化的能力。不失一般性地,当显示系统1000包括在头戴式显示器中时,包括可变焦元件1005a和1005b以及单个波导1003的集成堆叠可被称为目镜。在一些实施方式中,目镜可以是无限远聚焦的目镜,其被设计为在至少一种状态下在远距离具有焦点。
图10所示的显示系统1000的设计可以有利地提供基本上很小的微显示器,由于仅使用具有混色的单个光瞳,并且移位焦平面完全通过液体透镜对或基于液晶(“LC”)的可编程透镜对完成。然而,在一些实施方式中,由于液体透镜或可编程菲涅耳透镜系统的重量增加,显示系统1000的重量也可能增加。另外,使用液体透镜或可编程菲涅耳透镜系统可能增加光学失真。此外,由于支撑可变焦元件1005a和1005b所需的框架,包括波导1003以及可变焦元件1005a和1005b的集成堆叠的厚度会增加。
图11示出了显示系统1100的另一实施例。显示系统1100采用上面讨论的成像系统1001以及波导1003。因此,显示系统1100的各种元件可以类似于显示系统1000的对应元件。在显示系统1100中,可切换几何相位(GP)透镜堆叠,而不是充液透镜对或基于LC的像素化可编程菲涅耳透镜对被用作可变焦元件1005a和1005b。显示系统1100可能比显示系统1000更薄、更轻。但是,由于几何相位(GP)透镜堆叠仅对偏振光进行操作,因此显示系统1100可以包括偏振器以对进入系统的真实世界的光进行滤波。引入偏振器会导致进入系统的真实世界的光的亮度降低。例如,在一些实施例中,引入偏振器可导致亮度降低约50%。在一些实施方式中,再加上GP透镜堆叠的其它损失,真实世界的光的总通量可能低于30%。另外,在一些实施例中,来自GP透镜堆叠中的透镜的散射可使光学性能降到期望水平以下。另外,显示系统1100的衰减特性可能导致附近的人们至少部分不能看见穿戴者的眼睛,从而使眼神接触更加困难,这可能与戴墨镜的人的情况类似。显示系统1100还可导致由未衍射光的泄漏引起的其它伪像,并且可涉及使用可切换波片来改变跨越2至4个可用深度平面的相对光焦度。在一些实施例中,显示系统1100可以包括两个波导,而不是单个波导1003。例如,两个波导中的第一波导可被配置为耦入包括图像信息的一个或两个不同颜色的光流(例如,红色图像流、或红色和绿色图像流),并且两个波导中的第二波导可被配置为耦入包括图像信息的另外的一个或两个不同颜色的光流(例如,分别为蓝色和绿色图像流、或蓝色图像流)。在其中第一波导包括两个不同颜色的光流的一些实施方式中,两个波导中的第二波导可被配置为耦入与第一波导中的颜色不同的一个颜色光流,以及与第一波导中包括的颜色相同或相似的一个光流(例如,绿色和蓝色图像流、或红色和蓝色图像流)。
图12示出了显示系统1200的另一实施例,该显示系统包括成像系统1201和包括高折射率材料的波导。成像系统1201的各个部件可以类似于成像系统1001的对应的组件。然而,投影光学系统1209被配置为具有两个输出光瞳,每个输出光瞳被配置为发射三个颜色,例如,第一、第二和第三颜色(例如,红色、绿色和蓝色)。第一输出投影仪出射光瞳被配置为发射包括用于第一深度平面或焦平面的图像信息的第一、第二、第三(例如,红色、绿色和蓝色)光流,第二投影仪出射光瞳被配置为发射包括用于第二深度平面或焦平面的图像信息的第一、第二、第三(例如,红色、绿色和蓝色)光流。从第一输出光瞳发射的包括用于第一深度平面或焦平面的图像信息的第一、第二、第三(例如,红色、绿色和蓝色)光流被耦入波导组件1203的第一波导1203a内。从第二输出光瞳发射的包括用于第二深度平面或焦平面的图像信息的第一、第二、第三(例如,红色、绿色和蓝色)光流被耦入波导组件1203的第二波导1203b内。因此,显示系统1200的实施例被配置为两个深度平面系统,在该两个深度平面系统中通过独立的波导配对(波导与设置在波导表面上的诸如折射性透镜或光学元件之类的光焦度组件进行配对,以赋予与深度平面关联的光功率)寻址(address)每个深度平面。在一些实施例中,波导1203a和1203b可以彼此相同。与波导1003类似,波导1203a和1203b可以包括具有高折射率(例如,折射率大于约1.79,例如约2.3)的材料。例如,在一些实施例中,波导1203a和1203b可以包括铌酸锂或碳化硅。与波导1003类似,波导1203a和1203b可以是无限远聚焦的。从波导1203a和1203b发射的光的焦点位置的可变性可以由静态折射性透镜1205a、1205b和1205c(例如,薄折射性透镜)提供,例如,类似于在眼镜中通常使用的那些透镜。静态折射性透镜1205b位于第一波导1203a与穿戴者的眼睛1207之间,静态折射性透镜1205c位于第一波导1203a与第二波导1203b之间,并且静态折射性透镜1205a位于外部世界与第二波导1203b之间。在一些实施方式中,第一波导1203a与第二波导1203b之间的间隙可以是足够大的以容纳静态折射性透镜1205c,但是是足够小的以减小包括波导1203a和1203b的目镜的外形尺寸,并提供工作距离配置和容差方面的灵活性。例如,在一些实施方式中,第一波导1203a与第二波导1203b之间的间隙可以在约1.0mm至约1.5mm之间。
折射性透镜1205b和1205c可被配置为负光焦度透镜,并且折射性透镜1205a被配置为正光焦度透镜。在图12所示的显示系统1200的实施例中,折射性透镜1205b是平凹透镜,其光焦度为-0.5屈光度;折射性透镜1205c是平凹透镜,其光焦度为-1.5屈光度;以及折射性透镜1205a是平凸透镜,其光焦度为+2.0屈光度。在一些实施例中,可以模制静态折射性透镜。在一些实施例中,可以通过其它制造技术来形成静态折射性透镜。在一些实施例中,可以通过聚合物(例如,高折射率聚合物)大量生产静态折射性透镜。在各种实施例中,抗反射层可以在包括聚合物的静态折射性透镜之上设置。例如,在一些实施例中,可以使用廉价的方法,将包含聚合物的静态折射性透镜涂覆有抗反射层/涂层来折射性透镜。来自第一波导1203a的光传播通过单个负折射性透镜1205b,并根据该单个负折射性透镜1205b的光焦度被聚焦在一定距离处。来自第二波导1203b的光传播两个负折射性透镜1205b和1205c,并根据两个负折射性透镜1205b和1205c的组合光焦度聚焦在一定距离处。外部正折射性透镜1205a抵消两个负折射性透镜1205b和1205c的组合,导致真实世界视图不受透镜1205b和1205c影响。
图12所示的显示系统1200的实施例可以利用多光瞳微显示器,以便独立地寻址每个层(因此,每个深度平面或深度可以具有唯一的图像内容)。如上所述,在示例中,成像系统1201包括两个RGB混合的输出光瞳,其输出用于两个深度平面的图像内容。应当认识到,在各种实施例中,成像系统1201可被配置为通过几何偏移和单独的R、G和B子光瞳或至少部分组合的RGB子光瞳(其中使用同一耦入光学元件将至少两个颜色输入到同一波导内),输出用于特定深度平面的图像的红色(R)、绿色(G)和蓝色(B)分量。如上所讨论的,成像系统中的输出子光瞳数量的减少通常可以导致投影光学器件明显更小,并且对应地,成像系统更小,这对于可穿戴系统可以是有利的。在显示系统1200的各种实施例中,成像系统1201可以包括两个独立的单光瞳微显示器。独立的单光瞳微显示器可以是基于LCOS的单光瞳系统,也可以是独立的MEMs扫描投影仪。在这样的实施例中,每个独立的单光瞳微显示器被配置为将图像光引导到对应的波导。
在一些实施例中,显示系统1200可以包括用于每个深度平面的两个波导组件,而不是每个深度平面一个波导。对于每个深度平面,两个波导中的第一波导可被配置为耦入包括用于该深度平面的图像信息的一个或两个不同颜色的光流(例如,红色图像流、或红色和绿色图像流),两个波导中的第二波导可被配置为将包括用于该深度平面的图像信息的另外的一个或两个不同颜色的光流(例如,分别为蓝色和绿色图像流、或蓝色图像流)。在其中第一波导包括两个不同颜色的光流的一些实施方式中,两个波导中的第二波导可被配置为耦入与第一波导中的颜色不同的一个颜色光流,以及与第一波导中包括的颜色相同或相似的一个光流(例如,绿色和蓝色图像流、或红色和蓝色图像流)。
图13示出了成像系统1300的实施例,该成像系统被配置为将包括图像信息的多个颜色的光流提供给堆叠1303,该堆叠1303包括设置在眼镜(诸如头戴式显示器)上以便定位在穿戴者眼睛前方的一个或多个波导。在一些实施例中,一个或多个波导可以包括高折射率(例如,折射率大于约1.79)材料。在各种实施例中,针对每个深度平面,堆叠1303可包括一个或多个波导(例如,包括高折射率材料的波导)。例如,针对每个深度平面,堆叠1303可以包括一个波导,该波导包括高折射率材料。两个波导可被配置为耦入从成像系统1300输出的具有一个或多个不同波长的图像光,以使得所耦入的图像光通过全内反射在波导内传播。包括高折射率材料的一个或多个波导可被进一步配置为在宽视场(例如,大于约20度的水平视场和大于约20度的垂直视场)上向观看者投射所耦入的光。
成像系统被配置为前照式成像系统,在该成像系统中多色未调制的照明光通过投影光学系统1307,经由一个或多个输入光瞳朝着调制元件1305被输入到成像系统内。调制元件1305是反射性的,并且被来自投影光学系统1307的照明光前照。包括图像信息的调制光从调制元件1305反射,并通过一个或多个输出光瞳透射通过投影光学系统1307返回,朝着波导堆叠1303。在各种实施例中,成像系统1300可被配置为具有两个输入光瞳,每个输入光瞳被配置为提供多色照明以产生用于两个不同深度平面或焦平面的图像。在一些这样的实施例中,成像系统1300可以类似地被配置为具有两个输出光瞳,每个输出光瞳被配置为输出用于两个不同的深度平面或焦平面的多色图像光。从两个输出光瞳发射的用于两个不同深度平面或焦平面的多色图像光可以被导向堆叠1303的对应波导。图13所示的成像系统具有几个优点,包括但不限于小尺寸和/或可能减少的光瞳数量。
其它配置也是可能的。例如,堆叠1303可以包括两个波导,该两个波导针对每个深度平面包括高折射率材料。例如,在一个说明性设计中,两个波导中的第一波导可被配置为耦入从成像系统1300输出的诸如红色、绿色和蓝色图像光之类的第一、第二或第三颜色中的一者或多者(例如,红色图像光、或红色和绿色的图像光、或红色和蓝色的图像光),以使得所耦入的图像光通过全内反射在波导内传播;以及两个波导中的第二波导可被配置为耦入从成像系统1300输出的诸如红色、绿色和蓝色图像光之类的第一、第二或第三颜色中的一者或多者(例如,蓝色图像光、或蓝色和绿色的图像光、或蓝色和红色的图像光),以使得所耦入的图像光通过全内反射在波导内传播。
如上所述,投影光学系统(例如,投影光学系统1107、1207和1307)的设计可能是有挑战性的,特别是当需要由多个波导或波导组件输出来自投影光学系统的光时。设计这样的投影光学系统时遇到的一个困难是工作距离有限(例如,从投影光学系统的最后一个光学表面到相关波导的表面的距离)。如上所述,采用包括高折射率(例如,折射率大于大约1.79)材料的波导的一个优点是减少了用于每个深度平面或焦平面的波导的数量(例如,可能将波导数量从每个深度平面三个波导减少到每个深度平面一个或两个波导)。通过使用高折射率材料而导致的波导数量的减少可以提供附加工作距离增益,这可允许使用在具有大量波导的系统或目镜中不可行的投影透镜设计选项。下面参考图14A至14E-3进一步说明这种附加工作距离增益,以及针对其部件的最佳工作距离配置的显示系统的实施例。
图14A示出了显示系统(例如,头戴式系统的目镜),该显示系统具有用于两个深度平面的第一波导组1401和第二波导组1403。每个波导组1401、1403具有三个波导,该三个波导被配置为从投影光学器件接收跨宽角度范围的多个光束,并将所述光耦入波导内以通过全内反射进行传播。例如,多个光束可以是跨与显示系统的视场相关联的角度范围的第一、第二和第三颜色(诸如,包括用于该深度平面的图像信息的红色、蓝色和绿色光)。
图14A中的每个波导可被视为具有相应的工作距离(从投影光学系统1405的最后一个光学表面到子光瞳附近的该波导表面的距离,该波导表面可以是与投影光学系统1405更近或更远的波导表面)。如图14A所示,与距离波导堆叠的中间更近的波导处的子光瞳相比,在最左侧和最右侧波导处的用于多个光束的子光瞳较大,因为光束由投影光学器件通过在视场角上使承载图像数据的光束变窄然后变宽来操控。因此,用于那些最左侧和最右侧波导的耦入元件必须对应地变大,以捕获相应子光瞳的所有光。
然而,大耦入元件可能会引起图像效率问题,诸如在通过全内反射开始传播之前,通过相同的耦入元件将一些角度的耦入波导的光反射出该波导。图14E-1示出了波导1403的示例,该波导1403包括耦入元件1416a,该耦入元件1416a的尺寸足够大以通过相同的耦入元件1416a将耦入光的一些反射出波导1403。通过相同的耦入元件耦出耦入光的现象在本文中称为“回弹”。降低通过相同的耦入元件耦出耦入光的风险的一种方法是使耦入元件的尺寸减小。图14E-2示出了波导1403的示例,该波导1403具有尺寸小于耦入元件1416a的耦入元件1416b。然而,仅为了减少回弹而减小耦入元件的尺寸会减少耦入元件可接收的光量。例如,如果波导处的子光瞳大于同一波导处的耦入元件,则未入射在耦入元件上的接收到的光的一些将不会被耦入而会丢失。
另外,在全内反射期间的每次反弹时,波导构造中的一些瑕疵量在光路中引入像差,从而每个波导的反弹次数越多,图像质量就越劣化。使用较厚的波导可以减少此问题,该波导可以通过全内反射引起较少的反弹。图14E-3示出了比图14E-1和14E-2的波导1403厚的波导1403c的示例。较厚的波导可以具有足够大的耦入元件,以接收所有入射光,同时降低通过耦入元件耦出耦入光的风险。但是,增加任一波导(更不用说全部波导)的厚度会使波导组件1401(图14A)的最左侧波导离投影光学系统1405更远,从而导致子光瞳尺寸甚至更大,并且需要甚至更大的耦入元件,这将进一步加剧上述效率问题。这样,如根据图14A注意到的,波导组件1401和1403的工作距离总体有限,因为对波导的度量(例如,波导的厚度或波导与投影光学系统1405的距离)做出任何改变都会对子光瞳尺寸增加产生负面影响。
图14B示出了如果在波导组件1401与1403之间引入折射性透镜1409a的情况。通过将折射性透镜1409a放置在波导组件之间,波导组件1401上的子瞳交点甚至比在图14A中的更远,这将需要更薄的波导来保持外形尺寸(通过增加反弹来增加图像中像差的数量)和/或更大的耦入元件以接收新的子光瞳距离处的所有角度(降低波导的效率)。换句话说,放置有助于改善观看者的深度线索的折射性透镜1409a,由于工作距离增加,导致图像质量劣化。
如图14C所示,通过用包括高折射率材料的波导代替第一波导组1401和第二波导组1403,每组中的波导数量可以从每个深度平面三个波导减少到每个深度平面一个波导。在一些实施例中,波导的数量可以从每个深度平面三个波导减少到每个深度平面两个波导。这种配置可以减小任一波导的工作距离,因为整个波导组件现在更薄了。假设每个波导的波导厚度在约300至400微米之间,图14C示出了恢复或“重新获得”最多1.2mm的工作距离,这是由于凭借图14C的高折射率波导减少用于每个深度平面的波导的数量。图14C所示的配置由于改进的一个或多个工作距离而具有多个附加优点。例如,可以使用较小的耦入光栅将光耦入波导,这是因为工作距离(如波导于投影仪之间的工作距离)减小;替代地,因为入射在波导上的光束尺寸较小,或者可以增加波导的厚度(这实际上可能增加工作距离),以通过全内反射来优化反弹的次数,并减少易受图14E-1的“回弹”问题影响的角度的数量。尽管之前由于堆叠中相继波导的工作距离增加,不希望这种波导厚度的增加,但是由于工作距离已经缩短了,这种波导厚度的增加的性能影响可以忽略不计。作为另一示例,一个或多个另外的深度平面可以被合并到系统中,如下图15所示。
图14D-1、14D-2和14D-3示出了包括两个波导对(波导和折射性透镜)的显示系统的实施例。图14D-1示出了具有透射性耦入元件1414和1416的显示系统,其中,光在到达波导之前传播通过该元件,然后再,而图14D-2示出了具有反射性耦入元件1414-1和1416-1的显示系统,其中,光在与该元件相互作用之前进入波导;图14D-3示出了利用透射性和反射性耦入元件两者的显示系统。
图14D-1、14D-1和14D-3中的每一者都描述了具有最后一个透镜1405的投影光学系统,该最后一个透镜1405以多个角度从整个投影仪(未示出)投射多个光束,该多个角度与具有视场的图像相关联。角度范围涵盖从光束1412到光束1410的角度范围。投影光学系统因此在角度范围内创建先窄后宽的多个光束的锥体。尽管仅示出了一个角度范围,但是将理解,图14D-1、14D-2和14D-3也可以在多光瞳投影仪(如图14C所示)上执行操作,为了便于描述,图14D-1、14D-2和14D-3仅示出了单个光瞳。
波导1401和1403在不同位置处与子光瞳锥相交。波导1401位于锥体变宽的位置,而波导1403位于锥体变窄的位置。在一些实施例中,折射性透镜被放置在波导1401与1403之间。
耦入元件(例如,衍射性光栅)位于波导1401和1403上主表面与子光瞳相交的位置。在描绘透射性耦入元件的图14D-1中,耦入元件位于距离投影光学系统的最后一个透镜1405较近的波导的表面上。在描绘反射性耦入元件的图14D-2中,耦入元件位于距离投影光学系统的最后一个透镜1405较远的波导的表面上。将理解,耦入元件的尺寸可以取决于耦入元件被设置在哪个表面上,以及耦入元件被设置在哪个波导上。如图14D-1所示,耦入元件1414小于耦入元件1416;对于图14D-2,情况则相反。增加或减小波导工作距离1410或1412可以调整捕获一系列光束所需的耦入元件的尺寸。图14D-3示出了将耦入元件放置在近侧或远侧以增加或优化相应波导的耦入元件尺寸的实施例。换句话说,图14D-1和14D-2的耦入元件的表面位置不是互相排斥的并且可以互换的。
现有技术中的波导显示系统可以将波导尽可能地靠近投影仪放置,以通过最小化耦入尺寸来最小化外形尺寸并最大化总效率。通过实施本文所述的高折射率波导,工作距离的优化可以替代地与理想的耦入元件尺寸相关联,然后进一步优化波导的厚度以及有益的中间光学器件(诸如折射性或变焦透镜)的存在。
图14D-1示出了位于从耦入元件1414到投影光学系统的最后一个透镜1405测量的第一工作距离1412处的第一波导1403,其具有位于波导近表面上的耦入元件1416。具有位于波导近平面上的耦入元件1414的第二波导1401被放置在从耦入元件1414到投影光学系统的最后一个透镜1405测量的第二工作距离1410处。图14D-2和14D-3示出了类似的实施例,但是耦入元件表面位置有变化,并且工作距离也有对应的变化;值得注意的是,图14D-3可以使用第一工作距离1412-1和第二工作距离1410,并且对于其耦入元件表面布置的特定可变配置,不必使用唯一的工作距离。
在一些实施例中,至少一个折射性透镜1420被设置在波导1401与1403之间,该至少一个折射性透镜1420被配置为向传播通过其的光提供深度线索。在一些实施例中,折射性透镜1420具有光学处方(prescription)或光焦度。将理解,在一些实施方式中,透镜1420可能越厚,其赋予的光焦度可能就越大,并且透镜1420的厚度的增加也将至少增加第二工作距离。
在一些实施例中,将波导1401和1403(或至少它们相应的耦入元件1414或1414-1和1416或1416-1)放置在子光瞳过渡点1418的任一侧,其中包含视场图像数据的多个光束的角度范围从窄锥体过渡到宽锥体。在一些实施例中,波导(或至少它们相应的耦入元件)被放置在子光瞳过渡点1418的公共侧上。尽管图14D-1、14D-2和14D-3示出了前者,但是本领域技术人员之一将理解,通过本文提供的描述对后者的应用。还应注意,本文应用的子光瞳过渡点1418或工作距离不一定共置于投影仪的光瞳处。
本文讨论的各种系统、架构和设计(例如图10、12、13、14C、14D-1和14D-2所示的实施例)的益处包括但不限于:与其它两个深度平面的架构相比,透明度高,外形尺寸和厚度相对较小(例如,目镜的标称厚度小于约5mm),制造成本低,并且重量较低。与包括三个玻璃波导的全色目镜相比,由于将三个波导合并为一个,包括单个具有高折射率材料(例如,折射率大于1.79和/或折射率大于2.2)的波导的全色目镜的重量可以降低。
如上所述,采用包括高折射率材料(例如,折射率大于1.79和/或折射率大于2.2)的波导可以减少每个深度平面的波导的数量,这允许包括一个或多个附加深度平面。图15示出了包括目镜的显示系统1500的实施例,该目镜包括具有多个波导1520、1522和1524的堆叠1518。每个波导1520、1522和1524可以与对应的深度平面相关联。(在一些其它实施例中,两个波导可以与每个深度相关联)。在一些实施方式中,波导之间的间隙是大约0.3mm。在一些情况下,波导可以包括约400微米的基板。包含每个深度平面的图像信息的光可以从成像系统1501的一个或多个输出光瞳发射。例如,在图15所示的实施例中,成像系统1501可以包括三个输出光瞳,每个输出光瞳被配置为输出用于对应的深度平面的多色图像光。(对于与三个输出光瞳相反的用于提供深度或深度平面的类似系统,可以使用两个输出光瞳)。在各种实施例中,堆叠1518中的波导可以是无限远聚焦的,并且可以包括固定距离的多焦点元件。特别地,在一些这样的实施例中,堆叠1518可以包括多个负静态几何相位1530(“GP”)透镜(例如,液晶偏振光栅),这些透镜位于深度平面与穿戴者眼睛1507之间以改变从与不同深度平面相关联的波导投射的虚拟图像的焦点位置。堆叠1518可以进一步包括正GP透镜1526,该透镜被设置在外部世界与穿戴者眼睛1507之间,以补偿由负GP透镜引入的光焦度。与使用其它类型的可变焦透镜相比,使用静态GP透镜可减小堆叠1518的厚度和重量。GP透镜的许多实施例可能对偏振敏感。因此,堆叠1518可以进一步包括偏振器1528(例如,圆偏振器或基于偏振器的可变衰减器,其例如包括一个或多个液晶层和偏振器),以确保显示系统1500正确地工作。在堆叠1518中包括偏振器的一个缺陷是光通量或亮度降低。例如,在一些实施例中,在堆叠1518中包括偏振器可使光通量降低约50%。在一些实施例中,可以将基于液晶的可变衰减器和偏振器的组合集成在堆叠1518中。
本申请构想了上述显示系统的变型和组合,其中包括折射性和衍射性(GP)透镜与成像系统的混合组合。
在前照式成像系统的各种实施例中,例如,图13所示的成像系统1300、照明管或光管可被用于向成像系统的调制元件1305提供照明光。图16示出了包括照明管1630的显示系统1600的实施例。显示系统1600包括具有一个或多个波导的堆叠1603,其可以集成在眼镜或头戴式显示器中。照明管1630可以被设置在堆叠1603中的波导之间。在一些设计中受波导之间的一个或多个透镜元件的厚度影响的波导的间隔可以是1至1.2mm宽。来自包括调制元件1605和投影光学系统1607的成像系统的光被朝着堆叠1603引导,并使用如本文所述的耦入光学元件耦入波导内。显示系统1600还包括一个或多个单色或多色的单独光源(例如,激光器或LED)1632a-1632c。在所示的实施方式中,单独光源1632a-1632c包括第一、第二和第三颜色的光源,诸如红色、绿色和蓝色光。来自单独光源1632a-1632c的光与二向色分束器1634组合以产生白光束,并将其注入照明管1630内。在一些实施例中,白光源(例如,白光LED)可用于将白光向下引导到照明管1630。在这样的实施例中,可以消除组合二向色分束器1634的光束。入射的白光束可以用光重定向器或转向元件1636(例如,楔(wedge)和/或反色镜)重定向以从照明管1630出射。在一些实施例中,该光沿着相对于照明管1630和/或堆叠1603的波导的主表面的名义上正交的方向重定向,并且通过堆叠1603的一个或多个波导,经由投影光学系统1607朝着调制元件1605引导。光从调制元件1605反射出来,然后,调制后光流通过投影光学器件1607传播返回并耦入堆叠1603中的波导内。在一些实施例中,可以使用调节光学器件1638修改或调制重定向的光,该调节光学器件包括发散透镜或衍射性光学元件,该光学元件被设计为在传播通过投影光学系统1607之后,在调制元件1605上产生期望的光分布。在一些实施方式中,调节光学器件1638可以包括礼帽式(top-hat)光束轮廓衍射光学元件。在一些情况下,调节光学器件1638可以根据显示系统1600的需要将光分布有效地定制为任意设计。调节光学器件1638可以设置在波导的一个或全部两个主表面上。在一些实施例中,可以与在波导表面上制造的耦入光学元件和耦出光学元件同时制造包括衍射性光学元件的调节光学器件。采用光管照明器配置的另一个优点是,它将光源从通常对热波动或高温敏感的波导处移开。
在一些实施例中,单独的照明管可用于提供不同颜色的照明光。图17A和17B示出了被配置为向成像系统提供单独的彩色照明的单独的照明管1730a、1730b和1730c的侧视图和俯视图。与图16所示的设计相反,在图17A和图17B所示的实施方式中,不使用二向色分束器1634,并且光从光管的端部耦入光管1630。在所示的实施方式中,光管1730a被配置为提供第一颜色(例如,红色)照明,光管1730b被配置为提供第一颜色(例如,绿色)照明,并且光管1730c被配置为提供第三颜色(例如,蓝色)照明。可以使用用于任何颜色组合的光管。在这样的实施例中,可以使用针对每个颜色设计或优化的单独的衍射性光学元件(DOE)来在调制之前调节照明光。另外,例如也可以针对每个单独的颜色设计或优化从成像系统接收图像光的耦入光栅,以提高耦入效率。在各种实施例中,波导可以是锥形的以允许更近的间隔。
每深度平面一个波导
上述显示设备的各种实施例针对每个深度平面包括单个波导,该单个波导包括高折射率材料(例如,折射率大于或等于约1.79)。包含深度平面的图像信息的包括第一颜色、第二颜色和第三颜色的复用光流使用至少一个耦入光学元件耦入用于该深度平面的波导。不失一般性地,第一颜色、第二颜色和第三颜色可以从包括红色、绿色和蓝色的组中选择。在一些实施例中,可以将单个耦入光学元件配置为将包含深度平面的图像信息的第一颜色、第二颜色和第三颜色的光重定向(例如,衍射)到波导中内。在其它实施例中,两个耦入光学元件可以被配置为将包含深度平面的图像信息的第一颜色、第二颜色和第三颜色的光重定向(例如,衍射)到波导内,通过该两个耦入光学元件将不同的颜色或颜色组合耦入波导内。例如,在一些实施例中,分别地,两个耦入光学元件中的第一耦入光学元件可被配置为重定向(例如,衍射)第一颜色和第二颜色的光,并且两个耦入光学元件中的第二耦入光学元件可被配置为重定向(例如,衍射)第三颜色的光。在其它实施例中,两个耦入光学元件中的第一耦入光学元件可被配置为重定向(例如,衍射)第一颜色和第二颜色的光,并且两个耦入光学元件中的第二耦入光学元件可被配置为重定(例如,衍射)第三颜色的光和第一颜色或第二颜色之一的光。在一些实施例中,三个耦入光学元件(第一、第二和第三耦入光学元件)可被配置为分别将包含深度平面的图像信息的第一颜色、第二颜色和第三颜色的光重定向(例如,衍射)到波导内。例如,在一些实施例中,分别地,三个耦入光学元件中的第一光学元件可被配置为重定向(例如,衍射)第一颜色的光,三个耦入光学元件中的第二光学元件可被配置为重定向(例如,衍射)第二颜色的光,且三个耦入光学元件中的第三耦入光学元件可被配置为重定向(例如,衍射)第三颜色的光。
每个深度平面两个波导
上述显示设备的各种实施例针对每个深度平面可以包括两个波导,这两个波导包括高折射率材料(例如,折射率大于或等于约1.79)。包含深度平面的图像信息的包括第一颜色、第二颜色和第三颜色的复用光流被耦入两个波导内,第一和第二不同的颜色或颜色组合被耦入两个波导内。不失一般性地,第一颜色、第二颜色和第三颜色可以从包括红色、绿色和蓝色的组中选择。在一些实施例中,分别地,第一波导可被配置为在其中接收和引导包含深度平面的图像信息的第一颜色和第二颜色,并且第二波导可被配置为在其中接收并引导包含深度平面的图像信息的第三颜色。在其它实施例中,分别地,第一波导可被配置为在其中接收和引导包含深度平面的图像信息的第一颜色和第二颜色,并且第二波导可被配置为在其中接收和引导包含深度平面的图像信息的第三颜色和第一颜色或第二颜色之一。例如,分别地,第一波导可以在其中接收和引导红色和绿色,且第二波导可以在其中接收和引导绿色和蓝色或红色和蓝色。
在各种实施方式中,使用至少两个耦入光学元件将包括包含深度平面的图像信息的第一颜色、第二颜色和第三颜色的光的复用光流耦入两个波导内。在一些实施例中,分别地,第一耦入光学元件可被配置为将包含深度平面的图像信息的第一颜色和第二颜色的光重定向(例如,衍射)到第一波导内,并且第二耦入光学元件可被配置为将包含深度平面的图像信息的第三颜色的光重定向(例如,衍射)到第二波导内。在一些实施例中,第二耦入光学元件还可以被进一步被配置为将第一颜色或第二颜色的光重定向(例如,衍射)到第二波导内。在一些实施例中,第一耦入光学元件可被配置为将包含深度平面的图像信息的第一颜色的光重定向(例如,衍射)到第一波导内;并且第二耦入光学元件可被配置为将包含深度平面的图像信息的第二颜色的光重定向(例如,衍射)到第一波导内。第三耦入光学元件可被配置为将包含深度平面的图像信息的第三颜色的光重定向(例如,衍射)到该深度平面的第二波导内。在一些实施例中,第二耦入光学元件可被进一步配置为将第一颜色或第二颜色的光重定向(例如,衍射)到第二波导内。在一些其它实施例中,第四耦入光学元件可被配置为将第一颜色或第二颜色的光重定向(例如,衍射)到第二波导内。
在高折射率波导上制造光栅的方法
包括本申请中构想的包括高折射率材料(例如,折射率大于或等于约1.79)的波导的显示设备的各种实施例可以包括设置在波导表面上的衍射结构。如上所述,具有衍射结构的包括高折射率材料(例如,折射率大于或等于约1.79)的波导可被配置为耦入从成像系统(例如,微显示器或投影仪)发射到包含图像信息的多色光,沿着一个或多个所需方向分布耦入光和/或朝着观看者耦出耦入光。下面描述制造具有衍射特征的包括高折射率材料(例如,折射率大于或等于约1.79)的波导的不同方法。
图18A和18B示出了在包括高折射率材料(例如,折射率大于1.79)的基板(例如,波导)的表面上制造衍射光栅的两种不同方法的流程图。在一些实施方式中,基板可以包括铌酸锂(LiNbO3)或碳化硅(SiC)。如框1801所示,该方法包括提供高折射率的基板。如框1803所示,该方法进一步包括在基板的表面上设置可图案化材料层。在一些实施例中,可图案化材料可以包括一层抗蚀剂。在一些实施例中,可图案化材料可以包括聚合物。例如,可图案化层可以包括紫外线(UV)可固化聚合物。可图案化层的折射率可以小于基板材料的折射率(例如,折射率小于1.79)。例如,可图案化层的折射率可以在约1.2至约1.8之间。在各种实施例中,可图案化层的折射率可以大于或等于约1.2且小于或等于约1.3,大于或等于约1.3且小于或等于约1.4,大于或等于约1.4且小于或等于约1.5,大于或等于约1.5且小于或等于约1.6,大于或等于约1.6且小于或等于约1.7,大于或等于约1.7且小于或等于约1.79,或这些值之间的任何范围/子范围。在各种实施例中,可图案化层的厚度可以在约10nm至约1000nm之间。
可使用溅射沉积技术(例如,喷墨沉积)将可图案化层设置在基板的表面之上。如上所述,某些高折射率材料,例如铌酸锂(LiNbO3)可具有压电性、铁电性和/或热电性,并且在准备沉积可图案化材料时可以产生大量的表面电荷。使用溅射沉积技术将可图案化材料设置在基板的带电表面之上可能是不实际的。因此,在一些实施例中,可以在使用溅射沉积技术设置可图案化材料之前,对包括高折射率材料的基板的带电表面进行放电。
如框1805所示,可以使用所需的(例如,光栅或衍射光学元件)图案对可图案化层进行图案化。如方框1807所示,图案化后层可以用作蚀刻掩模以蚀刻包括高折射率(例如,折射率大于或等于约1.79)材料的基板的表面,以在基板的表面上制造衍射结构。
在一些实施例中,可以将图案化层保留在包括高折射率材料(例如,折射率大于或等于约1.79)的基板的表面上。在这样的实施例中,图案化后层可被配置为用作衍射性光学元件。因此,图案化层可被配置为功能层。
本文描述的本发明的各种示例性实施例。在非限制性意义上参考这些示例。提供它们是为了说明本发明的更广泛适用的方面。在不脱离本发明的真实精神和范围的情况下,可以对所描述的本发明进行各种改变,并且可以用等同物进行替换替代。另外,可以进行许多修改以使特定情况、材料、物质组成、过程、一个或多个处理动作或一个或多个步骤符合本发明的一个或多个目的、精神或范围。此外,如本领域技术人员将理解的,本文描述和示出的每个单独的变型具有离散的部件和特征,这些部件或特征可以容易地与任何其它几个实施例的特征分离或组合,而不脱离本发明的范围或精神。所有这些修改旨在落入与本公开相关联的权利要求的范围内。
本发明包括可以使用主题设备执行的方法。该方法可以包括提供这种合适设备的动作。这种提供可以由最终用户执行。换句话说,“提供”动作仅需要终端用户获得、访问、接近、定位、设置、激活、加电或以其它方式行动以在主题方法中提供必需的设备。本文所述的方法可以以所述事件的任何在逻辑上是可能的顺序进行,并且可以以所述的事件顺序执行。
上面已经阐述了本发明的示例性方面以及关于材料选择和制造的细节。至于本发明的其它细节,可以结合上面引用的专利和出版物以及本领域技术人员通常已知或理解的方式进行理解。就通常或逻辑上采用的附加动作而言,本发明的基于方法的方面也是如此。另外,尽管已经参考任选地结合各种特征的若干示例描述了本发明,但是本发明不限于关于本发明的每个变型所描述或指示的那些。在不脱离本发明的真实精神和范围的情况下,可以对所描述的本发明进行各种改变,并且可以用等同物(无论是在本文中引用还是为了简洁起见而未包括)替代。另外,在提供一系列值的情况下,应理解,在该范围的上限和下限之间的每个中间值以及在所述范围内的任何其它所述值或中间值都包含在本发明内。
此外,可以构想,所描述的本发明变型的任何可选特征可以独立地阐述和要求保护,或者与本文描述的任何一个或多个特征组合。对单数项目的引用包括存在多个相同项目的可能性。更具体地,如本文和与此相关联的权利要求中所使用的,单数形式“一”、“一个”、“所述”和“该”包括多个指示物,除非另有具体说明。换句话说,制品的使用允许上述说明书以及与本公开相关联的权利要求中具有“至少一个”主题项目。还应注意,可以起草这样的权利要求以排除任何可选要素。因此,本声明旨在用作结合权利要求要素的叙述使用诸如“单独”、“仅”等之类的排他性术语,或者使用“否定”限制的先行基础。
在不使用这种排他性术语的情况下,与本公开相关联的权利要求中的术语“包括”应允许包括任何附加要素,不管在这样的权利要求中是否列举了给定数量的要素,或者可以将添加特征视为改变这些权利要求中阐述的要素的性质。除非本文中具体定义,否则本文使用的所有技术和科学术语在保持权利要求有效性的同时尽可能广泛地给出通常理解的含义。
本发明的广度不限于所提供的示例和/或主题说明书,而是仅由与本公开相关联的权利要求语言的范围限制。
已经提供了设备(例如,光学设备、显示设备、照明器、集成光学设备等)和系统(例如,照明系统)的各种示例。这些设备和/或系统中的任一者可以包括在头戴式显示系统中,以将光(例如,通过一个或多个耦入光学元件)耦入波导内和/或目镜内以形成图像。另外,设备和/或系统可以相对较小(例如,小于1cm),以使得设备和/或系统中的一者或多者可以被包括在头戴式显示系统中。例如,相对于目镜,设备和/或系统可以较小(例如,小于目镜的长度和/或宽度的三分之一)。
在上述说明书中,已经参考本发明的特定实施例对其进行了描述。但是显而易见的是,在不偏离本发明的较广泛的精神和范围的情况下,可以对本发明做出各种修改和更改。因此,说明书和附图应该被视为出于说明的目的,而非进行限制。
实际上,将理解,本公开的系统和方法各自具有若干创新性方面,它们不能独立地单独对本文公开的所需属性负责或要求。上述各种特征和处理可以彼此独立地使用,或者可以以各种方式进行组合。所有可能的组合和子组合均旨在落入本公开的范围内。
本说明书中通过分开的实施例的上下文描述的某些特征也可以在单个实施例中组合地实现。相反地,在单个实施例的上下文中描述的各种特征也可以在多个实施例中单独实施,或以任何合适的子组合实施。此外,尽管特征可以像上文描述的那样以特定组合起作用,甚至最初以此方式作为示例,但是示例组合中的一个或多个特征在某些情况下可以从该组合中剔除,并且示例组合可以涉及子组合或子组合的变体。对于每个实施例而言,没有任何单个特征或特征组是必需的或不可或缺的。
将理解,除非另有明确说明,或者在所使用的上下文中以其它方式理解,否则在此使用的诸如“可”、“可以”、“可能”、“能够”、“例如”等之类的条件语言通常旨在表达某些实施例包括,而其它实施例不包括某些特征、元素和/或步骤。因此,这种条件语言通常不旨在暗示特征、元素和/或步骤在任何方面都是一个或多个实施例所必需的,也不意在暗示在有或者没有作者输入或提示的情况下,一个或多个实施例必然包括用于决定是否包括这些特征、元素和/或步骤或否是在任何特定实施例中执行这些特征、元素和/或步骤的逻辑。术语“包括”、“包含”、“具有”等是同义词,并且以开放的方式包含性地使用,并且不排除其它元素、特征、动作、操作等等。此外,术语“或”在使用时具有包含性含义(而非排他性含义),因此,当用于例如连接元素列表时,术语“或”表示一个、一些或全部列表元素。另外,除非另有说明,否则在本申请和所附示例中使用的冠词“一”、“一个”和“所述”应被解释为表示“一个或多个”或“至少一个”。类似地,尽管操作在附图中示出为采取特定顺序,但应认识到,这些操作不需要以所示的特定顺序或按顺序执行,或者执行所有示出的操作以实现所需的结果。此外,附图可以以流程图的形式示意性地示出一个或多个示例处理。然而,其它未示出的操作可以并入示意性说明的示例方法和处理中。例如,一个或多个附加操作可以在任何所示的操作之前、之后、之间执行,或者与其并行地执行。另外,在其它实施例中,操作可以重新排列或排序。在某些情况下,多任务和并行处理是有利的。此外,上述实施例中的各种系统组件的分离不应该被理解为在所有实施例中都需要这种分离,需要理解,所描述的程序组件和系统通常可以一起集成在单个软件产品中或者封装到多个软件产品中。另外,其它实施例在以下示例的范围内。在一些情况下,在示例中列出的动作可以以不同的顺序执行并且仍能实现所需的结果。
因此,本公开并非旨在限于此处所示的实施例,而是被赋予与此处披露的本公开、原理和新颖特征一致的最广泛的范围。

Claims (106)

1.一种显示系统,包括:
图像投影设备,其被配置为发射包括第一颜色的第一光流、第二颜色的第二光流和第三颜色的第三光流的复用光流,所述第一颜色、所述第二颜色和所述第三颜色是不同的,所述第一光流、所述第二光流和所述第三光流包括图像内容;以及
波导,其包括折射率大于1.79的材料,所述波导被配置为接收从所述图像投影设备发射的所述复用光流,以使得所述第一光流、所述第二光流和所述第三光流通过多次全内反射在所述波导内被引导。
2.根据权利要求1所述的显示系统,其中,所述波导包括折射率大于或等于2.2的材料。
3.根据权利要求1至2中任一项所述的显示系统,其中,所述波导包括折射率大于或等于2.3的材料。
4.根据权利要求1至3中任一项所述的显示系统,其中,所述波导包括铌酸锂。
5.根据权利要求1至4中任一项所述的显示系统,其中,所述波导的视场在水平方向上大于约30度,在垂直方向上大于约24度。
6.根据权利要求5所述的显示系统,其中,所述波导的所述视场在所述水平方向上是大约45度,在所述垂直方向上是大约56度。
7.根据权利要求1至6中任一项所述的显示系统,进一步包括至少一个可变焦光学元件,其被设置为接收从所述波导输出的所述复用光流,以使得所述复用光流的至少一部分被引导到用户的眼睛,所述可变焦光学元件被配置为改变来自所述波导的光看起来源自的深度。
8.根据权利要求1至6中任一项所述的显示系统,其中,所述复用光流包括第一复用光流,所述第一复用光流包括与第一深度平面相关联的图像信息。
9.根据权利要求8所述的显示系统,其中,所述波导包括与所述第一深度平面相关联的第一波导,其中,从所述第一波导发射的光被配置为将所述第一复用光流引导到观看者,以产生看起来源自所述第一深度平面的图像。
10.根据权利要求8至9中任一项所述的显示系统,其中,所述图像投影设备被进一步配置为输出包括与第二深度平面相关联的图像信息的第二复用光流,所述第二复用光流包括具有所述第一颜色、所述第二颜色和所述第三颜色的多个光流,所述第一颜色、所述第二颜色和所述第三颜色是不同的。
11.根据权利要求10所述的显示系统,进一步包括:
与所述第二深度平面相关联的第二波导,所述第二波导包括折射率大于1.79的材料,所述第二波导被配置为接收从所述图像投影设备发射的所述第二复用光流,以使得与所述第二复用光流相关联的所述多个光流通过多次全内反射被引导通过所述第二波导。
12.根据权利要求11所述的显示系统,其中,从所述第二波导发射的光被配置为将所述第二复用光流引导到观看者,以产生看起来源自所述第一深度平面的图像。
13.根据权利要求11至12中任一项所述的显示系统,其中,所述第二波导被包括在头戴式显示器的目镜中。
14.根据权利要求9至13中任一项所述的显示系统,其中,所述第一波导被包括在头戴式显示器的目镜中。
15.根据权利要求1至7中任一项所述的显示系统,其中,所述波导被包括在头戴式显示器的目镜中。
16.根据权利要求1至7和15中任一项所述的显示系统,进一步包括耦入光学元件,其被配置为接收从所述图像投影设备发射的所述复用光流,并将所述第一光流、所述第二光流和所述第三光流中的每一者耦入所述波导内以便通过多次全内反射在所述波导内被引导。
17.根据权利要求1至16中任一项所述的显示系统,其中,所述图像投影设备包括光调制设备。
18.一种显示系统,包括:
图像投影设备,其被配置为发射包括第一颜色的第一光流、第二颜色的第二光流和第三颜色的第三光流的复用光流,所述第一颜色、所述第二颜色和所述第三颜色是不同的,所述第一光流、所述第二光流和所述第三光流包括图像内容;以及
第一波导和第二波导,其包括折射率大于1.79的材料,
其中,所述第一波导被配置为接收所述第一颜色和所述第二颜色,所述第二波导被配置为接收所述第三颜色,不同的颜色或颜色组合被耦入所述第一波导和所述第二波导内,以使得所述第一光流和所述第二光流通过多次全内反射在所述第一波导内被引导,并且所述第三光流通过多次全内反射在所述第二波导内被引导。
19.根据权利要求18所述的显示系统,其中,所述第二波导还被配置为接收所述第一颜色,以使得所述第一光流通过多次全内反射在所述第二波导内被引导。
20.根据权利要求18所述的显示系统,其中,所述第二波导还被配置为接收所述第二颜色,以使得所述第二光流通过多次全内反射在所述第二波导内被引导。
21.根据权利要求18所述的显示系统,其中,所述第二波导被配置为不耦入所述第一颜色或所述第二颜色,以使得所述第三光流通过多次全内反射主要在所述第二波导内被引导。
22.根据权利要求18至21中任一项所述的显示系统,进一步包括在所述第一波导中的第一耦入光学元件,所述第一耦入光学元件被配置为将所述第一光流和所述第二光流两者耦入所述第一波导内,以使得所述第一光流和所述第二光流通过多次全内反射在所述第一波导内被引导。
23.根据权利要求18至21中任一项所述的显示系统,进一步包括在所述第一波导中的第一耦入光学元件和第二耦入光学元件,所述第一耦入光学元件和所述第二耦入光学元件被配置为分别将所述第一光流和所述第二光流两者耦入所述第一波导内,以使得所述第一光流和所述第二光流通过多次全内反射在所述第一波导内被引导。
24.根据权利要求18至21中任一项所述的显示系统,进一步包括在所述第二波导中的第三耦入光学元件,所述第三耦入光学元件被配置为将所述第三光流耦入所述第二波导内,以使得所述第三光流通过多次全内反射在所述第二波导内被引导。
25.根据权利要求24所述的显示系统,其中,所述第三耦入光学元件还被配置为将所述第一光流或所述第二光流耦入所述第二波导内,以使得所述第一光流或所述第二光流通过多次全内反射在所述第二波导内被引导。
26.根据权利要求24所述的显示系统,进一步包括第四耦入光学元件,所述第四耦入光学元件被配置为将所述第一光流或所述第二光流耦入所述第二波导内,以使得所述第一光流或所述第二光流通过多次全内反射在所述第二波导内被引导。
27.一种制造衍射光学元件的方法,所述方法包括:
提供基板,所述基板包括对可见光透明的折射率大于1.79的材料;
在所述基板的表面之上设置可图案化层;
对所述可图案化层进行图案化,所述图案包括多个特征;以及
通过所述可图案化层来蚀刻所述基板的所述表面以在所述基板的所述表面上制造结构,其中,所述结构包括被配置为衍射可见光的衍射特征。
28.根据权利要求27所述的方法,其中,所述透明材料包括LiNbO3
29.根据权利要求27或28所述的方法,其中,在所述基板的所述表面之上设置所述可图案化层包括:将所述可图案化层溅射沉积在所述基板的所述表面之上。
30.根据权利要求27至29中任一项所述的方法,其中,在设置所述可图案化层之前,对所述基板的所述表面进行放电。
31.根据权利要求27至30中任一项所述的方法,其中,所述可图案化层包括抗蚀剂或聚合物。
32.一种制造衍射光学元件的方法,所述方法包括:
提供基板,所述基板包括对可见光透明的折射率大于1.79的材料;
在所述基板的表面之上设置可图案化层;以及
对所述可图案化层进行图案化,所述图案包括多个特征,
其中,被图案化后的可图案化层的所述多个特征被配置为将可见光衍射到所述基板内以在所述基板中被引导,或者被配置为将在所述基板内被引导的可见光衍射出所述基板。
33.根据权利要求32所述的方法,其中,所述透明材料包括LiNbO3
34.根据权利要求32或33所述的方法,其中,在所述基板的所述表面之上设置所述可图案化层包括:将所述可图案化层溅射沉积在所述基板的所述表面之上。
35.根据权利要求32至34中任一项所述的方法,其中,在设置所述可图案化层之前,对所述基板的所述表面进行放电。
36.根据权利要求32至35中任一项所述的方法,其中,所述可图案化层包括抗蚀剂或聚合物。
37.一种制造衍射光学元件的方法,所述方法包括:
提供基板,所述基板包括对可见光透明的折射率大于1.79的材料;
在所述基板的表面之上溅射沉积可图案化层;以及
对所述可图案化层进行图案化,所述图案包括多个特征。
38.根据权利要求37所述的方法,其中,所述透明材料包括LiNbO3。
39.根据权利要求37或38所述的方法,其中,在设置所述可图案化层之前,对所述基板的所述表面进行放电。
40.根据权利要求37至39中任一项所述的方法,其中,所述可图案化层包括抗蚀剂或聚合物。
41.一种用于通过全内反射传播图像内容的波导,所述波导包括:
基板,其包括对可见光透明的折射率大于1.79的材料,所述基板能够通过全内反射在其中传播图像内容;
在所述基板的表面之上的层,所述层包括折射率低于所述基板的材料,所述层包括具有多个特征的图案,
其中,被图案化后的可图案化层的所述多个特征被配置为将可见光衍射到所述基板内以在其中被引导,或者被配置为将在所述基板内被引导的可见光衍射出所述基板。
42.根据权利要求41所述的波导,其中,所述透明材料包括LiNbO3
43.根据权利要求41或42所述的波导,其中,在设置所述可图案化层之前,对所述基板的所述表面进行放电。
44.根据权利要求41至43中任一项所述的波导,其中,所述可图案化层包括抗蚀剂。
45.根据权利要求41至44中任一项所述的波导,其中,所述可图案化层包括聚合物。
46.一种头戴式显示设备,包括:
目镜,其包括至少一个波导,所述至少一个波导包括折射率大于1.79的材料,所述波导包括第一主表面、与所述第一主表面相对的第二主表面、以及在所述第一主表面与所述第二主表面之间的多个边缘;以及
多个衍射特征,其被形成在所述第一主表面或所述第二主表面中的至少一者中。
47.根据权利要求46所述的头戴式显示设备,其中,通过蚀刻所述第一主表面或所述第二主表面中的至少一者,所述多个衍射特征被形成在所述第一主表面或所述第二主表面中的至少一者中。
48.根据权利要求46或47所述的头戴式显示设备,其中,所述波导包括折射率大于2.2的材料。
49.根据权利要求46至48中任一项所述的头戴式显示设备,其中,所述波导包括铌酸锂。
50.根据权利要求46至48中任一项所述的头戴式显示设备,其中,所述波导包括碳化硅。
51.根据权利要求46至50中任一项所述的头戴式显示设备,其中,所述多个衍射特征中的至少一些被配置为耦入入射图像光,以使得所耦入的图像光通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导。
52.根据权利要求46至52中任一项所述的头戴式显示设备,进一步包括在所述波导与观看者之间的可变焦透镜,其中,所述可变焦透镜被配置为改变图像光的焦平面,所述图像光通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导,并朝着所述观看者被耦出所述波导。
53.根据权利要求52所述的头戴式显示设备,其中,所述可变焦透镜包括负透镜。
54.根据权利要求52至53中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括充液透镜。
55.根据权利要求52至53中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括液晶。
56.根据权利要求52、53或55中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括几何相位透镜。
57.根据权利要求46至51中任一项所述的头戴式显示设备,进一步包括在所述波导与观看者之间的负透镜,以使得所述负透镜接收通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导并朝着所述观看者被耦出所述波导的光。
58.根据权利要求57所述的头戴式显示设备,其中,所述负透镜包括静态透镜。
59.根据权利要求57或58所述的头戴式显示设备,其中,所述波导和所述负透镜被包括在堆叠波导组件中。
60.根据权利要求57至59中任一项所述的头戴式显示设备,进一步包括与附加负透镜成对的附加波导。
61.根据权利要求57至60中任一项所述的头戴式显示设备,进一步包括被设置在所述波导与真实世界之间的正透镜。
62.根据权利要求46至61中任一项所述的头戴式显示设备,进一步包括与所述波导进行堆叠的偏振器。
63.根据权利要求46至62中任一项所述的头戴式显示设备,其中,所述多个衍射特征中的至少一些被配置为朝着所述观看者耦出通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导的图像光。
64.根据权利要求46至62中任一项所述的头戴式显示设备,进一步包括被配置为提供图像光的成像系统。
65.根据权利要求64所述的头戴式显示设备,其中,所述成像系统在观看所述波导的观看者的视场之外。
66.根据权利要求64至65中任一项所述的头戴式显示设备,其中,所述成像系统包括:
照明系统;
调制元件,其被配置为接收来自所述照明系统的未调制光;以及
投影光学系统,其被配置为透射由所述调制元件输出的图像光。
67.根据权利要求66所述的头戴式显示设备,其中,所述调制元件是反射性的。
68.根据权利要求67所述的头戴式显示设备,其中,来自所述照明系统的未调制图像光通过所述投影光学系统朝着所述反射性调制元件被透射,从所述调制元件被反射,并通过所述投影光学系统被透射返回到所述波导内。
69.根据权利要求66至68中任一项所述的头戴式显示设备,其中,所述照明系统包括:
光源,其被配置为输出可见光;
导光管,其被配置为接收从所述光源输出的所述可见光;以及
光重定向元件,
其中,所述导光管被配置为通过多次全内反射朝着所述光重定向元件传送从所述光源输出的光;以及
其中,所述光重定向元件被配置为朝着所述调制元件重定向在所述导光管中传播的光。
70.根据权利要求69所述的头戴式显示设备,其中,所述光源包括被配置为发射多个颜色的光的多个发光元件。
71.根据权利要求70所述的头戴式显示设备,其中,所述多个发光元件包括发光二极管或激光器。
72.根据权利要求70至71中任一项所述的头戴式显示设备,进一步包括被配置为合成由所述多个发光元件发射的光的光学元件。
73.根据权利要求72所述的头戴式显示设备,其中,所述光学元件是二向色光束合成器。
74.根据权利要求69至73中任一项所述的头戴式显示设备,其中,所述光重定向元件被配置为通过所述波导朝着所述调制元件重定向在所述导光管中传播的光。
75.根据权利要求69至74中任一项所述的头戴式显示设备,其中,所述波导进一步包括被配置为定制由所述光重定向元件重定向的光的分布的光调节光学器件。
76.一种头戴式显示设备,包括:
图像投影设备;以及
目镜,其包括包含碳化硅的波导,所述波导包括第一主表面、与所述第一主表面相对的第二主表面、以及在所述第一主表面与所述第二主表面之间的多个边缘,
其中,所述波导被配置为在其中接收和引导来自所述图像投影设备的光,以将图像引导到所述头戴式显示器的穿戴者的眼睛中。
77.根据权利要求76所述的头戴式显示设备,进一步包括被设置在所述第一主表面或所述第二主表面中的至少一者上的多个衍射特征。
78.根据权利要求77所述的头戴式显示设备,其中,通过蚀刻所述第一主表面或所述第二主表面中的至少一者,所述多个衍射特征被形成在所述第一主表面或所述第二主表面中的至少一者中。
79.根据权利要求77至78中任一项所述的头戴式显示设备,其中,所述多个衍射特征中的至少一些被配置为耦入入射图像光,以使得所耦入的图像光通过在所述第一主表面和所述第二主表面处的多次全内反射传播通过所述波导。
80.根据权利要求76至79中任一项所述的头戴式显示设备,进一步包括在所述波导与观看者之间的可变焦透镜,其中,所述可变焦透镜被配置为改变图像光的焦平面,所述图像光通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导,并朝着所述观看者被耦出所述波导。
81.根据权利要求80所述的头戴式显示设备,其中,所述可变焦透镜包括负透镜。
82.根据权利要求80至81中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括充液透镜。
83.根据权利要求80至81中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括液晶。
84.根据权利要求80、81或83中任一项所述的头戴式显示设备,其中,所述可变焦透镜包括几何相位透镜。
85.根据权利要求76至79中任一项所述的头戴式显示设备,进一步包括在所述波导与观看者之间的负透镜,以使得所述负透镜接收通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导并朝着所述观看者被耦出所述波导的光。
86.根据权利要求85所述的头戴式显示设备,其中,所述负透镜包括静态透镜。
87.根据权利要求85或86所述的头戴式显示设备,其中,所述波导和所述负透镜被包括在堆叠波导组件中。
88.根据权利要求85至87中任一项所述的头戴式显示设备,进一步包括与附加负透镜成对的附加波导。
89.根据权利要求85至88中任一项所述的头戴式显示设备,进一步包括被设置在所述波导与真实世界之间的正透镜。
90.根据权利要求76至89中任一项所述的头戴式显示设备,进一步包括与所述波导进行堆叠的偏振器。
91.根据权利要求76至90中任一项所述的头戴式显示设备,其中,所述多个衍射特征中的至少一些被配置为朝着所述观看者耦出通过在所述第一主表面和所述第二主表面处的多次全内反射而传播通过所述波导的图像光。
92.根据权利要求76至91中任一项所述的头戴式显示设备,进一步包括被配置为提供图像光的成像系统。
93.根据权利要求92所述的头戴式显示设备,其中,所述成像系统在观看所述波导的观看者的视场之外。
94.根据权利要求92至93中任一项所述的头戴式显示设备,其中,所述成像系统包括:
照明系统;
调制元件,其被配置为接收来自所述照明系统的未调制光;以及
投影光学系统,其被配置为透射由所述调制元件输出的图像光。
95.根据权利要求94所述的头戴式显示设备,其中,所述调制元件是反射性的。
96.根据权利要求95所述的头戴式显示设备,其中,来自所述照明系统的未调制图像光通过所述投影光学系统朝着所述反射性调制元件被透射,从所述调制元件被反射,并通过所述投影光学系统被透射返回到所述波导内。
97.根据权利要求94至96中任一项所述的头戴式显示设备,其中,所述照明系统包括:
光源,其被配置为输出可见光;
导光管,其被配置为接收从所述光源输出的所述可见光;以及
光重定向元件,
其中,所述导光管被配置为通过多次全内反射朝着所述光重定向元件传送从所述光源输出的光;以及
其中,所述光重定向元件被配置为朝着所述调制元件重定向在所述导光管中传播的光。
98.根据权利要求98所述的头戴式显示设备,其中,所述光源包括被配置为发射多个颜色的光的多个发光元件。
99.根据权利要求98所述的头戴式显示设备,其中,所述多个发光元件包括发光二极管或激光器。
100.根据权利要求98至99中任一项所述的头戴式显示设备,进一步包括被配置为合成由所述多个发光元件发射的光的光学元件。
101.根据权利要求100所述的头戴式显示设备,其中,所述光学元件是二向色光束合成器。
102.根据权利要求98至101中任一项所述的头戴式显示设备,其中,所述光重定向元件被配置为通过所述波导朝着所述调制元件重定向在所述导光管中传播的光。
103.根据权利要求98至102中任一项所述的头戴式显示设备,其中,所述波导进一步包括被配置为定制由所述光重定向元件重定向的光的分布的光调节光学器件。
104.根据权利要求1至26中任一项所述的显示系统,其中,所述波导材料包括碳化硅。
105.根据权利要求27至40中任一项所述的方法,其中,所述透明材料包括碳化硅。
106.根据权利要求41至45中任一项所述的波导,其中,所述透明材料包括碳化硅。
CN201980024825.8A 2018-03-12 2019-03-12 基于折射率极高的目镜基板的观察光学组件架构 Pending CN111954837A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862641976P 2018-03-12 2018-03-12
US62/641,976 2018-03-12
PCT/US2019/021884 WO2019178120A1 (en) 2018-03-12 2019-03-12 Very high index eyepiece substrate-based viewing optics assembly architectures

Publications (1)

Publication Number Publication Date
CN111954837A true CN111954837A (zh) 2020-11-17

Family

ID=67908061

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201980024825.8A Pending CN111954837A (zh) 2018-03-12 2019-03-12 基于折射率极高的目镜基板的观察光学组件架构
CN201980019015.3A Pending CN111886533A (zh) 2018-03-12 2019-03-12 基于倾斜阵列的显示器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201980019015.3A Pending CN111886533A (zh) 2018-03-12 2019-03-12 基于倾斜阵列的显示器

Country Status (6)

Country Link
US (3) US11971549B2 (zh)
EP (2) EP3765892A4 (zh)
JP (5) JP7240410B2 (zh)
CN (2) CN111954837A (zh)
AU (1) AU2019236460A1 (zh)
WO (2) WO2019178060A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3083105A1 (en) * 2017-12-11 2019-06-20 Magic Leap, Inc. Waveguide illuminator
US11971549B2 (en) 2018-03-12 2024-04-30 Magic Leap, Inc. Very high index eyepiece substrate-based viewing optics assembly architectures
US11962928B2 (en) 2018-12-17 2024-04-16 Meta Platforms Technologies, Llc Programmable pixel array
US11888002B2 (en) 2018-12-17 2024-01-30 Meta Platforms Technologies, Llc Dynamically programmable image sensor
CN113490873A (zh) 2018-12-28 2021-10-08 奇跃公司 带有机械致动图像投影仪的可变像素密度显示系统
EP3938824A4 (en) * 2019-03-12 2022-11-23 Magic Leap, Inc. WAVEGUIDES WITH HIGH REFRESHING INDEX MATERIALS AND METHOD FOR THEIR MANUFACTURE
US20220091420A1 (en) * 2019-04-23 2022-03-24 Directional Systems Tracking Limited Augmented reality system
US11822191B2 (en) * 2019-06-12 2023-11-21 Apple Inc. Display system with localized optical adjustments
US11237402B2 (en) * 2019-10-15 2022-02-01 Facebook Technologies, Llc Multipass scanner for near-eye display
US11935291B2 (en) 2019-10-30 2024-03-19 Meta Platforms Technologies, Llc Distributed sensor system
US11948089B2 (en) 2019-11-07 2024-04-02 Meta Platforms Technologies, Llc Sparse image sensing and processing
MX2022006341A (es) * 2019-12-09 2022-06-23 Claudio Oliveira Egalon Sistemas y metodos de iluminacion lateral de guias de ondas.
US11428938B2 (en) * 2019-12-23 2022-08-30 Meta Platforms Technologies, Llc Switchable diffractive optical element and waveguide containing the same
US11709363B1 (en) 2020-02-10 2023-07-25 Avegant Corp. Waveguide illumination of a spatial light modulator
KR20210107408A (ko) * 2020-02-24 2021-09-01 삼성전자주식회사 광학 장치 및 이를 포함한 근안 디스플레이 장치
CN113448089B (zh) * 2020-03-28 2023-05-09 华为技术有限公司 增强现实设备及其显示方法
US11825228B2 (en) 2020-05-20 2023-11-21 Meta Platforms Technologies, Llc Programmable pixel array having multiple power domains
US11435037B2 (en) * 2020-08-31 2022-09-06 Meta Platforms Technologies, Llc Coupling light source to photonic integrated circuit
CN116438479B (zh) * 2020-09-29 2024-05-10 阿维甘特公司 用于对显示面板照明的架构
US11531202B2 (en) * 2020-11-05 2022-12-20 Microsoft Technology Licensing, Llc Waveguide assembly with virtual image focus
WO2022104229A1 (en) * 2020-11-13 2022-05-19 Raxium, Inc. Eyebox expanding viewing optics assembly for stereo-viewing
EP4275090A1 (en) * 2021-01-08 2023-11-15 Magic Leap, Inc. Single pupil rgb light source
WO2022170287A2 (en) 2021-06-07 2022-08-11 Panamorph, Inc. Near-eye display system
CN113433704B (zh) * 2021-07-26 2023-11-21 Oppo广东移动通信有限公司 眼镜及其充电方法、电子设备系统
US20230204958A1 (en) * 2021-12-28 2023-06-29 David Fliszar Eyewear electronic tinting lens with integrated waveguide
WO2024010600A1 (en) * 2022-07-08 2024-01-11 Magic Leap, Inc. Method and system for eyepiece waveguide displays utilizing multi-directional launch architectures
US11988828B1 (en) * 2022-11-16 2024-05-21 Meta Platforms Technologies, Llc Multi-pupil display and eye-tracking with interferometric sensing
US11709325B1 (en) * 2023-01-06 2023-07-25 Mloptic Corp. Waveguide calibration
US11892640B1 (en) 2023-03-07 2024-02-06 Microsoft Technology Licensing, Llc Waveguide combiner with stacked plates

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2789741B2 (ja) 1989-12-04 1998-08-20 株式会社デンソー レーザレーダ走査装置
JPH0478985A (ja) 1990-07-23 1992-03-12 Okamoto Kosaku Kikai Seisakusho:Kk 情報記憶再生装置
US6222525B1 (en) 1992-03-05 2001-04-24 Brad A. Armstrong Image controllers with sheet connected sensors
US5929951A (en) 1994-10-21 1999-07-27 Canon Kabushiki Kaisha Illumination device and display apparatus including same
US5670988A (en) 1995-09-05 1997-09-23 Interlink Electronics, Inc. Trigger operated electronic device
JPH11194295A (ja) 1997-11-06 1999-07-21 Olympus Optical Co Ltd 光学系
JP3279265B2 (ja) 1998-03-26 2002-04-30 株式会社エム・アール・システム研究所 画像表示装置
US6222677B1 (en) 1999-04-12 2001-04-24 International Business Machines Corporation Compact optical system for use in virtual display applications
US6515781B2 (en) 1999-08-05 2003-02-04 Microvision, Inc. Scanned imaging apparatus with switched feeds
JP4325064B2 (ja) 2000-03-17 2009-09-02 コニカミノルタホールディングス株式会社 情報表示光学系
US6542307B2 (en) 2000-10-20 2003-04-01 Three-Five Systems, Inc. Compact near-eye illumination system
JP2002277816A (ja) 2001-03-21 2002-09-25 Minolta Co Ltd 映像表示装置
WO2002088825A2 (en) 2001-04-27 2002-11-07 Koninklijke Philips Electronics N.V. Compact display device
JP4029662B2 (ja) 2002-05-17 2008-01-09 ソニー株式会社 画像表示装置
JP2005148468A (ja) 2003-11-17 2005-06-09 Sony Corp 光導波路、光源モジュール及び光情報処理装置
EP1731943B1 (en) 2004-03-29 2019-02-13 Sony Corporation Optical device and virtual image display device
JP2008508621A (ja) 2004-08-03 2008-03-21 シルバーブルック リサーチ ピーティワイ リミテッド ウォークアップ印刷
US7206107B2 (en) 2004-12-13 2007-04-17 Nokia Corporation Method and system for beam expansion in a display device
US11428937B2 (en) 2005-10-07 2022-08-30 Percept Technologies Enhanced optical and perceptual digital eyewear
US8696113B2 (en) 2005-10-07 2014-04-15 Percept Technologies Inc. Enhanced optical and perceptual digital eyewear
US20070081123A1 (en) 2005-10-07 2007-04-12 Lewis Scott W Digital eyewear
JP5226528B2 (ja) 2005-11-21 2013-07-03 マイクロビジョン,インク. 像誘導基板を有するディスプレイ
US20070177275A1 (en) * 2006-01-04 2007-08-02 Optical Research Associates Personal Display Using an Off-Axis Illuminator
US7798698B2 (en) 2007-03-23 2010-09-21 Victor Company Of Japan, Limited Lighting device and display device
WO2009101236A1 (en) 2008-02-13 2009-08-20 Nokia Corporation Display device and a method for illuminating a light modulator array of a display device
US20100079865A1 (en) 2008-09-26 2010-04-01 Nokia Corporation Near-to-eye scanning display with exit-pupil expansion
US8310764B2 (en) 2008-10-06 2012-11-13 Konica Minolta Holdings, Inc. Image display device and head mount display
KR20100057302A (ko) 2008-11-21 2010-05-31 삼성전자주식회사 이미지 센서 및 이의 제조 방법
US11320571B2 (en) * 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US8698705B2 (en) 2009-12-04 2014-04-15 Vuzix Corporation Compact near eye display with scanned image generation
CN102207214A (zh) 2010-03-29 2011-10-05 刘永 水表用倒流防止器
WO2012062681A1 (de) 2010-11-08 2012-05-18 Seereal Technologies S.A. Anzeigegerät, insbesondere ein head-mounted display, basierend auf zeitlichen und räumlichen multiplexing von hologrammkacheln
US9304319B2 (en) 2010-11-18 2016-04-05 Microsoft Technology Licensing, Llc Automatic focus improvement for augmented reality displays
AU2011348122A1 (en) 2010-12-24 2013-07-11 Magic Leap Inc. An ergonomic head mounted display device and optical system
US10156722B2 (en) 2010-12-24 2018-12-18 Magic Leap, Inc. Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality
CN102109677B (zh) 2011-03-10 2015-11-25 北京理工大学 头戴式立体视觉观片器
CA2835120C (en) 2011-05-06 2019-05-28 Magic Leap, Inc. Massive simultaneous remote digital presence world
CN104040410B (zh) * 2011-08-29 2017-06-09 伊奎蒂公司 用于近眼显示器应用的可控波导
US10795448B2 (en) 2011-09-29 2020-10-06 Magic Leap, Inc. Tactile glove for human-computer interaction
AU2012348348B2 (en) 2011-10-28 2017-03-30 Magic Leap, Inc. System and method for augmented and virtual reality
CN102402005B (zh) 2011-12-06 2015-11-25 北京理工大学 自由曲面双焦面单目立体头盔显示器装置
US9158113B2 (en) 2012-03-14 2015-10-13 Google Inc. Integrated display and photosensor
US8985803B2 (en) 2012-03-21 2015-03-24 Microsoft Technology Licensing, Llc Freeform-prism eyepiece with illumination waveguide
KR102223290B1 (ko) 2012-04-05 2021-03-04 매직 립, 인코포레이티드 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US9740006B2 (en) 2012-09-11 2017-08-22 Magic Leap, Inc. Ergonomic head mounted display device and optical system
DE102012020877A1 (de) 2012-10-17 2014-04-17 Carl Zeiss Microscopy Gmbh Optikanordnung und Lichtmikroskop
US9703101B2 (en) 2012-10-23 2017-07-11 Lusospace, Projectos Engenharia Lda See-through head or helmet mounted display device
US20140160543A1 (en) 2012-12-10 2014-06-12 Samsung Electronics Co., Ltd. Holographic imaging optical device
NZ710096A (en) 2013-01-15 2018-11-30 Magic Leap Inc Ultra-high resolution scanning fiber display
US20140240351A1 (en) * 2013-02-27 2014-08-28 Michael Scavezze Mixed reality augmentation
KR102387314B1 (ko) 2013-03-11 2022-04-14 매직 립, 인코포레이티드 증강 및 가상 현실을 위한 시스템 및 방법
US10386558B2 (en) 2013-03-13 2019-08-20 Imagineoptix Corporation Polarization conversion systems with geometric phase holograms
CN105229719B (zh) 2013-03-15 2018-04-27 奇跃公司 显示系统和方法
US9128285B2 (en) 2013-04-30 2015-09-08 Google Inc. Head-mounted display including integrated projector
JP6225474B2 (ja) 2013-05-14 2017-11-08 セイコーエプソン株式会社 表示装置
US9740030B2 (en) 2013-05-23 2017-08-22 Omnivision Technologies, Inc. Near-eye display systems, devices and methods
US9874749B2 (en) 2013-11-27 2018-01-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
US10262462B2 (en) 2014-04-18 2019-04-16 Magic Leap, Inc. Systems and methods for augmented and virtual reality
WO2014209431A1 (en) 2013-06-27 2014-12-31 Fusao Ishii Wearable display
US9664905B2 (en) 2013-06-28 2017-05-30 Microsoft Technology Licensing, Llc Display efficiency optimization by color filtering
JP6468182B2 (ja) 2013-07-04 2019-02-13 ソニー株式会社 表示装置
KR20230098359A (ko) 2013-10-16 2023-07-03 매직 립, 인코포레이티드 조절가능한 동공간 거리를 가지는 가상 또는 증강 현실 헤드셋들
KR102378457B1 (ko) * 2013-11-27 2022-03-23 매직 립, 인코포레이티드 가상 및 증강 현실 시스템들 및 방법들
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
KR102177133B1 (ko) 2014-01-31 2020-11-10 매직 립, 인코포레이티드 멀티-포컬 디스플레이 시스템 및 방법
CA2938264C (en) 2014-01-31 2020-09-22 Magic Leap, Inc. Multi-focal display system and method
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
JP2015194654A (ja) * 2014-03-31 2015-11-05 セイコーエプソン株式会社 光学デバイス、画像投影装置及び電子機器
WO2015170505A1 (ja) 2014-05-09 2015-11-12 国立大学法人福井大学 合波器、この合波器を用いた画像投影装置及び画像投影システム
AU2015255652B2 (en) 2014-05-09 2018-03-29 Google Llc Systems and methods for using eye signals with secure mobile communications
NZ727350A (en) 2014-05-30 2020-08-28 Magic Leap Inc Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
JP2016020831A (ja) 2014-07-14 2016-02-04 船井電機株式会社 レーザレンジファインダ
US9606354B2 (en) 2014-07-17 2017-03-28 Google Inc. Heads-up display with integrated display and imaging system
US20160067087A1 (en) 2014-09-09 2016-03-10 LumiThera, Inc. Wearable devices and methods for multi-wavelength photobiomodulation for ocular treatments
US20160077338A1 (en) 2014-09-16 2016-03-17 Steven John Robbins Compact Projection Light Engine For A Diffractive Waveguide Display
JP6863896B2 (ja) 2014-09-29 2021-04-21 マジック リープ,インコーポレイティド 導波路から異なる波長の光を出力する構造および方法
US10571696B2 (en) 2014-12-26 2020-02-25 Cy Vision Inc. Near-to-eye display device
KR102320737B1 (ko) 2015-01-14 2021-11-03 삼성디스플레이 주식회사 헤드-장착 전자장치
US9779512B2 (en) * 2015-01-29 2017-10-03 Microsoft Technology Licensing, Llc Automatic generation of virtual materials from real-world materials
CN113050280B (zh) 2015-05-04 2024-01-19 奇跃公司 用于虚拟和增强现实的分离光瞳光学系统以及用于使用其显示图像的方法
AU2016278006B2 (en) 2015-06-15 2021-09-02 Magic Leap, Inc. Virtual and augmented reality systems and methods
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
US9671615B1 (en) 2015-12-01 2017-06-06 Microsoft Technology Licensing, Llc Extended field of view in near-eye display using wide-spectrum imager
US10747001B2 (en) * 2016-01-06 2020-08-18 Vuzix Corporation Double-sided imaging light guide with embedded dichroic filters
WO2017134412A1 (en) 2016-02-04 2017-08-10 Milan Momcilo Popovich Holographic waveguide optical tracker
AU2017224004B2 (en) 2016-02-24 2021-10-28 Magic Leap, Inc. Polarizing beam splitter with low light leakage
CN109073821B (zh) 2016-02-26 2021-11-02 奇跃公司 具有用于多个光发射器的多个光管的显示系统
NZ760857A (en) 2016-02-26 2024-02-23 Magic Leap Inc Light output system with reflector and lens for highly spatially uniform light output
IL299514B2 (en) 2016-02-29 2024-02-01 Magic Leap Inc Virtual and augmented reality systems and methods
US20170255020A1 (en) 2016-03-04 2017-09-07 Sharp Kabushiki Kaisha Head mounted display with directional panel illumination unit
EP3440497B1 (en) * 2016-04-08 2023-08-16 Magic Leap, Inc. Augmented reality systems and methods with variable focus lens elements
KR20210032022A (ko) 2016-05-06 2021-03-23 매직 립, 인코포레이티드 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들
CA3023539A1 (en) 2016-05-12 2017-11-16 Magic Leap, Inc. Distributed light manipulation over imaging waveguide
EP3464996B1 (en) 2016-05-23 2022-09-14 RealD Spark, LLC Wide angle imaging directional backlights
US9964769B2 (en) 2016-06-10 2018-05-08 Google Llc Head-wearable displays with a tiled field of view using a single microdisplay
CN107561698A (zh) 2016-07-01 2018-01-09 成都理想境界科技有限公司 一种近眼显示系统、虚拟现实设备和增强现实设备
CN105911700A (zh) 2016-07-01 2016-08-31 成都理想境界科技有限公司 近眼显示系统、虚拟现实设备及增强现实设备
US10444419B2 (en) 2016-08-22 2019-10-15 Magic Leap, Inc. Dithering methods and apparatus for wearable display device
EP3532881A4 (en) 2016-10-28 2019-11-13 Magic Leap, Inc. METHOD AND SYSTEM FOR A BROAD FIELD OF VISION DISPLAY DEVICE HAVING A SCAN REFLECTOR
US10564533B2 (en) 2017-03-21 2020-02-18 Magic Leap, Inc. Low-profile beam splitter
WO2018231784A1 (en) 2017-06-12 2018-12-20 Magic Leap, Inc. Augmented reality display having multi-element adaptive lens for changing depth planes
FR3068489B1 (fr) 2017-06-29 2019-08-02 B<>Com Procede de generation numerique d'un hologramme, dispositif, equipement terminal, systeme et programme d'ordinateur associes
CN107544117B (zh) 2017-08-03 2019-04-09 浙江大学 集成光源倾斜光栅耦合器件及其制备方法
CA3083105A1 (en) 2017-12-11 2019-06-20 Magic Leap, Inc. Waveguide illuminator
AU2019214951A1 (en) 2018-01-31 2020-06-25 Magic Leap, Inc. Method and system for large field of view display with scanning mirror having optical power
US11971549B2 (en) 2018-03-12 2024-04-30 Magic Leap, Inc. Very high index eyepiece substrate-based viewing optics assembly architectures
CN113490873A (zh) 2018-12-28 2021-10-08 奇跃公司 带有机械致动图像投影仪的可变像素密度显示系统

Also Published As

Publication number Publication date
EP3765878A4 (en) 2022-01-12
EP3765892A1 (en) 2021-01-20
WO2019178060A1 (en) 2019-09-19
JP7304874B2 (ja) 2023-07-07
AU2019236460A1 (en) 2020-09-03
WO2019178120A1 (en) 2019-09-19
US20200409156A1 (en) 2020-12-31
JP2024036416A (ja) 2024-03-15
JP2021517664A (ja) 2021-07-26
US20210294103A1 (en) 2021-09-23
JP7429727B2 (ja) 2024-02-08
JP2021517663A (ja) 2021-07-26
JP7240410B2 (ja) 2023-03-15
US20240036332A1 (en) 2024-02-01
US11971549B2 (en) 2024-04-30
EP3765878A1 (en) 2021-01-20
JP2022069518A (ja) 2022-05-11
EP3765892A4 (en) 2021-12-15
US11828942B2 (en) 2023-11-28
CN111886533A (zh) 2020-11-03
JP2023067960A (ja) 2023-05-16

Similar Documents

Publication Publication Date Title
JP7429727B2 (ja) 超高屈折率接眼レンズ基板ベースの視認光学系アセンブリアーキテクチャ
US11774823B2 (en) Display system with variable power reflector
CN110462460B (zh) 用于虚拟、增强或混合现实系统的目镜
US20230400693A1 (en) Augmented reality display comprising eyepiece having a transparent emissive display
WO2019118357A1 (en) Waveguide illuminator
KR20180117181A (ko) 상이한 파장들의 광을 도파관들로 입력하기 위한 반사성 스위칭 디바이스
US20220099976A1 (en) Inline in-coupling optical elements
US20230004005A1 (en) Illumination layout for compact projection system
WO2023121650A1 (en) Method and system for performing optical imaging in augmented reality devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination