KR20090033458A - 베이스 확산 영역을 축소한 태양 전지 - Google Patents

베이스 확산 영역을 축소한 태양 전지 Download PDF

Info

Publication number
KR20090033458A
KR20090033458A KR1020097001699A KR20097001699A KR20090033458A KR 20090033458 A KR20090033458 A KR 20090033458A KR 1020097001699 A KR1020097001699 A KR 1020097001699A KR 20097001699 A KR20097001699 A KR 20097001699A KR 20090033458 A KR20090033458 A KR 20090033458A
Authority
KR
South Korea
Prior art keywords
solar cell
diffusion region
diffusion regions
metal grid
base
Prior art date
Application number
KR1020097001699A
Other languages
English (en)
Other versions
KR101365852B1 (ko
Inventor
데니스 데 세스터
피터 제이 코우신스
Original Assignee
선파워 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 선파워 코포레이션 filed Critical 선파워 코포레이션
Publication of KR20090033458A publication Critical patent/KR20090033458A/ko
Application granted granted Critical
Publication of KR101365852B1 publication Critical patent/KR101365852B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/061Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being of the point-contact type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

일 실시예에 있어서, 태양 전지(500)는 배면에 형성되는 베이스 및 이미터 확산 영역들을 갖는다. 이미터 확산 영역(502)은 태양 전지에 소수 전하 캐리어들을 수집하도록 구성되는 한편, 베이스 확산 영역(503)은 다수 전하 캐리어들을 수집하도록 구성된다. 이미터 확산 영역(502)은 베이스 확산 영역들(503)을 분리하는 연속적인 영역일 수 있다. 각각의 베이스 확산 영역들(503)은 다수 전하 캐리어들의 측방향 흐름으로 인한 직렬 저항 손실을 실질적으로 증가시키지 않고 소수 전하 캐리어의 재결합 손실을 감소시키기 위해 감소된 영역을 가질 수 있다. 예를 들어, 각각의 베이스 확산 영역들(503)은 도트의 형태를 가질 수 있다.
태양 전지, 이미터 확산 영역, 베이스 확산 영역, 금속 그리드, 전하 캐리어

Description

베이스 확산 영역을 축소한 태양 전지{SOLAR CELL WITH REDUCED BASE DIFFUSION AREA}
본 발명은 일반적으로 태양 전지에 관한 것으로, 더 구체적으로는 태양 전지 구조물에 관한 것으로 이에 한정되지 않는다.
태양 전지는 태양 복사선(radiation)을 전기 에너지로 변환하는 디바이스로 잘 알려져 있다. 그것은 반도체 프로세스 기술을 이용하여 반도체 웨이퍼 상에 제조될 수 있다. 일반적으로, 태양 전지는 실리콘 기판에 P-형 및 N-형 확산 영역들을 형성함으로써 제조될 수 있다. 태양 복사선은 태양 전지에 충돌하여 확산 영역들로 이동하는 전자와 정공을 생성하고, 이로 인해 확산 영역들 사이에 전압차를 생성한다. 배면 컨택트 태양 전지에 있어서, 확산 영역들 및 그것들과 결합된 금속 그리드(grid)들 모두는 태양 전지의 배면에 존재한다. 금속 그리드들은 외부의 전기 회로를 태양 전지에 결합시켜 태양 전지에 의해 전원을 공급받게 한다. 배면 컨택트 태양 전지는 또한 미국특허번호 제5,053,083호 및 제4,927,770호에 개시되어 있으며, 이들 모두는 그 전체가 본 명세서에 참조로서 포함된다.
효율은, 전력을 발생시키는 태양 전지의 성능과 직접 연관되기 때문에 태양 전지의 중요한 특성이다. 따라서, 태양 전지의 효율을 증가시키기 위한 기술들이 일반적으로 선호된다. 본 발명은 종래의 태양 전지에 비해 더 높은 효율을 가능하게 하는 향상된 배면 컨택트 태양 전지 구조물을 개시한다.
일 실시예에 있어서, 태양 전지는 배면에 형성되는 베이스(base) 및 이미터(emitter) 확산 영역들을 갖는다. 이미터 확산 영역은 태양 전지에서 소수 전하 캐리어들을 수집하도록 구성되는 한편, 베이스 확산 영역은 다수 전하 캐리어들을 수집하도록 구성된다. 이미터 확산 영역은 베이스 확산 영역들을 분리하는 연속적인 영역일 수 있다. 각각의 베이스 확산 영역들은, 다수 전하 캐리어들의 측방향 흐름으로 인한 직렬 저항 손실을 거의 증가시키지 않고 소수 전하 캐리어의 재결합 손실을 감소시키기 위해 축소된 영역을 가질 수 있다. 각각의 베이스 확산 영역들은, 예를 들어 도트(dot)의 형태를 가질 수 있다.
본 발명의 이러한 특징들 및 그외의 특징들은 당업자가 첨부된 도면들 및 청구범위를 포함하는 본 개시를 모두 읽는다면 쉽게 알 수 있을 것이다.
도 1은 전하 캐리어들의 측방향 수송을 개략적으로 도시하는 배면 컨택트 태양 전지의 단면을 도시한다.
도 2는 확산 영역들의 피치가 웨이퍼의 두께보다 더 작게 만들어진 경우 도 1의 태양 전지에서의 전하 캐리어들의 종방향 수송을 개략적으로 도시한다.
도 3a 및 도 3b는 집광기(concentrator) 시스템에 이용되는 예시적인 태양 전지의 단면도 및 투시도를 각각 도시한다
도 4는 스트립(strip) 확산 영역들을 구비한 예시적인 태양 전지를 개략적으로 도시한다.
도 5는 본 발명의 실시예에 따른 태양 전지를 개략적으로 도시한다.
도 6a, 도 6b, 도 7a, 도 7b, 도 8a, 및 도 8b는 본 발명의 실시예들에 따른 도 5의 태양 전지의 변형들을 개략적으로 도시한다.
도 9a 내지 도 9e는 본 발명의 실시예에 따라 제조되는 태양 전지의 단면도를 도시한다.
상이한 도면들에 사용된 동일한 참조 표시는 동일하거나 또는 유사한 구성요소들을 나타낸다.
본 개시에 있어서, 구조물들 및 제조 단계들의 예시들과 같은 다수의 특정한 세부사항들은 본 발명의 실시예들을 완전히 이해하도록 제공된다. 그러나, 당업자라면 하나 이상의 특정한 세부사항들 없이도 본 발명을 실시할 수 있다는 것을 인식할 것이다. 그외의 예시들에 있어서, 잘 알려진 세부사항들은 본 발명의 양태들을 불명확하게 하는 것을 피하기 위해 도시되거나 또는 설명되지 않는다.
본 개시는 태양 전지의 제조에 관한 것이다. 태양 전지 제조 프로세스들은, 그 전체가 본 명세서에 참조로 포함되는, 이하의 공동 양도된 개시들에도 개시되어 있다: William P. Mulligan, Michael J. Cudzinovic, Thomas Pass, David Smith, Neil Kaminar, Keith Mclntosh, 및 Richard M. Swanson에 의해 2003년 4월 10일에 출원된, 발명의 명칭이 "Improved Solar Cell and Method of Manufacture"인 미국 특허출원번호 제10/412,638호; William P. Mulligan, Michael J. Cudzinovic, Thomas Pass, David Smith 및 Richard M. Swanson에 의해 2003년 4월 10일에 출원된, 발명의 명칭이 "Metal Contact Structure For Solar Cell And Method Of Manufacture"인 미국특허공개번호 제2004/0200520(출원번호 제10/412,711호); 및 Smith 등에 의해 발행된 미국특허번호 제6,998,288호.
정상 동작에서, 소수 전하 캐리어들은 태양 전지의 이미터 확산 영역들에서 수집되고 다수 전하 캐리어들은 베이스 확산 영역들에서 수집된다. N-형 기판을 구비한 배면 컨택트 태양 전지의 경우에 있어서, 소수 전하 캐리어들은 P-형 확산 영역(이 경우에서는 "이미터 확산 영역")에 의해 수집되어, 금속 그리드를 통해 포지티브(positive) 단자로 도전된다. 다수 전하 캐리어들은 N-형 확산 영역(이 경우에서는 "베이스 확산 영역")에 의해 수집되어 금속 그리드에 의해 네거티브(negative) 단자로 도전된다. 캐리어의 생성이 대부분 태양 전지의 앞면에서 발생하는 경우, 다수 및 소수 전하 캐리어들 모두는 확산 영역들에 의해 수집되기 위해 생성 지점으로부터 배면으로 이동해야 한다. 이 거리는, "캐리어 경로 길이"라고도 하며, 배면 컨택트 태양 전지의 성능을 결정하는 중요한 파라미터이다.
다수 및 소수 전하 캐리어 경로 길이는 태양 전지의 배면의 확산 영역들의 피치(pitch)(즉, 간격)에 의존한다. 피치가 클수록, 전하 캐리어들은 수집되기 위해 생성 지점으로부터 측방향으로 더 이동해야 한다. 도 1은 전하 캐리어들의 측방향 수송을 개략적으로 도시하는, 예시적인 배면 컨택트 태양 전지의 단면을 도시한다. 도 1의 예시에 있어서, 태양 전지는 그 배면에 베이스 확산 영역(102) 및 이미터 확산 영역(103)을 갖는 웨이퍼(101)를 포함한다. 베이스 금속 핑거(finger)(105)는 베이스 확산 영역(102)에 대한 외부의 전기 접속을 허용하는 한편, 이미터 금속 핑거(106)는 이미터 확산 영역에 대한 외부의 전기 접속을 허용한다. 확산 영역들 위에는 절연층(104)이 형성된다. 도 1의 예시에 있어서, 웨이퍼(101)는 약 0.200㎜의 두께를 갖는 N-형 실리콘 웨이퍼이고, 확산 영역들의 피치는 약 2.000㎜이다. 채워진 원들은 본 예시에서 다수 전하 캐리어들인 전자들을 나타낸다. 비어있는 원들은 본 예시에서 소수 전하 캐리어들인 정공들을 나타낸다. 점선들은 웨이퍼(101)에서 전하 캐리어의 이동 경로들을 나타낸다.
소수 및 다수 전하 캐리어들의 측방향 수송은 배면 컨택트 태양 전지에 바람직하지 않은 두가지의 손실 메카니즘(mechanism)을 일으킨다: (a) 소수 전하 캐리어의 측방향 수송으로 인한 소수 전하 캐리어의 재결합의 증가 및 (b) 다수 전하 캐리어의 측방향 수송으로 인한 직렬 저항의 증가. 도 1의 예시에 있어서, 피치가 웨이퍼의 두께보다 몇 배 더 크기 때문에, 전하 캐리어들의 측방향 수송 및 그것과 연관된 손실들이 중요하게 된다.
피치가 웨이퍼의 두께보다 몇 배 더 작은 경우, 전하 캐리어의 수송은 대부분 1차원적이고(종방향 수송), 전술된 측방향 손실 메카니즘들은 최소화된다. 이것은, 확산 영역들의 피치가 웨이퍼(101)의 두께보다 더 작게 만들어진 경우, 도 1의 태양 전지에서의 전하 캐리어들의 종방향 수송을 도시하는 도 2에 개략적으로 도시된다. 도 1 및 도 2의 태양 전지들은 웨이퍼(101)의 두께 및 확산 영역들의 피치를 제외하고는 동일하다. 도 2의 예시에 있어서, 웨이퍼(101)의 두께는 0.150 ㎜이고, 확산 영역들의 피치는 약 0.050㎜이다. 채워진 원들은, 본 예시에서 다수 전하 캐리어들인 전자들을 나타낸다. 비어있는 원들은, 본 예시에서 소수 전하 캐리어들인 정공들을 나타낸다. 점선들은 웨이퍼(101)에서 전하 캐리어의 이동 경로들을 나타낸다. 도 2의 다른 구성요소들은 도 1을 참조하여 전술되었다.
고효율 배면 확산 태양 전지 설계의 두개의 유형들은 태양 전지 내의 손실을 최소화하는데 사용되었다. 먼저, 집광기 시스템에 일반적으로 사용되는 포인트(point) 확산이다(예를 들어, "An Optimization Study of Point-Contact Concentrator Solar Cells", R.A. Sinton and R.M. Swanson, IEEE Photovoltaic Specialist Conference, 1987, pp1201-1208을 참조). 다음으로, 원-선(one-sun)(비집광형(non-concentrating)) 애플리케이션들에 일반적으로 사용되는 스트립형(striped) 확산이다(예를 들어, "7000 High-efficiency Cells for a Dream", P.J. Verlinden, R.M. Swanson and R.A. Crane, Progress in PhotoVoltaics, Vol2, 1994, p143-152를 참조).
집광기 시스템은, 넓은 영역을 비추는 태양 에너지를 캡쳐(capture)하여 그 에너지를 태양 전지가 배치된 더 작은 영역으로 집속하기 위해 광학계(optics)를 사용한다. R.A. Sinton 및 R.M. Swanson의 인용 문헌에 있는, 도 3a 및 도 3b는 집광기 시스템에 이용되는 예시적인 태양 전지의 단면도 및 투시도를 각각 도시한다. 그러한 포인트 확산 태양 전지에서의 일반적인 웨이퍼 두께는 약 150 마이크로미터이다. 포인트 확산 배면 접합 설계는 다수 및 소수 전하 캐리어 경로 길이를 짧게 유지하면서 확산과 연관된 오거(Auger) 재결합을 최소화하기 위한 집광기 시스템에 사용된다. 집광하에서 태양 전지는 높은 주입 레벨들에서 동작하는데, 이 때 주된 캐리어 재결합 메카니즘은 확산 내의 오거 재결합이다. 성능을 최적화하기 위해, N-형 및 P-형 확산 영역들 모두의 크기, 따라서 오제 재결합이 최소화되는 포인트 확산 설계를 사용하는 것이 바람직하다. 작은 크기의 베이스 및 이미터 확산 영역들(예를 들어, 약 10 마이크로미터) 모두는 재결합 손실을 감소시킨다. 그러나, 다수 및 소수 전하 캐리어 경로 길이 모두를 감소시키기 위해 확산 영역들 사이의 거리를 짧게 유지하는 것도 중요하다. 또한, 10 마이크로미터 정도의 확산 영역들은, 포인트 확산 설계에 대한 것들과 마찬가지로, 저비용의 태양 전지의 제조와 양립할 수 없는 상대적으로 낮은 수율의 고가의 설비를 수반한다는 것을 이해해야 한다.
스트립 확산 태양 전지는 비집광형 애플리케이션들에 사용되며, 또한 "원-선(one-sun)" 또는 "평판(flat-plate)" 시스템으로 지칭된다. 스트립 확산 배면 접합 설계는, 다수 및 소수 전하 캐리어 경로 길이를 짧게 유지하면서 표면 재결합을 최소화하기 위한 비집광형 애플리케이션들에 사용된다. 원-선 배면 접합 태양 전지에서의 주된 재결합 메카니즘은 실리콘 인터페이스, 즉 표면 재결합이다. 스트립 설계에 있어서, 태양 전지의 전체 배면은 N-형 확산 영역 또는 P-형 확산 영역 중 어느 하나를 가지며 이것은 재결합을 최소화한다. 소수 및 다수 전하 캐리어 경로 길이는 금속 핑거들의 피치를 허용되는 정렬 한도(alignment tolerance)만큼 작게 유지함으로써 최소화된다.
도 4는 스트립 확산을 구비한 예시적인 태양 전지(400)를 개략적으로 도시한 다. 태양 전지(400)에서, N-형 확산 영역(403) 및 P-형 확산 영역(402)은 N-형 실리콘 웨이퍼(401) 위의 태양 전지(400)의 배면에 형성되는 스트립, 장방형의 확산 영역들이다. 금속 그리드(406)는 N-형 확산 영역(403)(본 예시에서는 베이스 확산 영역)과 접촉하고 금속 그리드(405)는 또한 태양 전지(400)의 배면 위의 P-형 확산 영역(402)(본 예시에서는 이미터 확산 영역)과 접촉한다.
상업적인 원-선 애플리케이션들을 위한 스트립 확산 배면 접합 태양 전지는 스크린-프린팅(screen-printing)과 같은 상대적으로 저비용의 패터닝 기술들을 사용하여 제조된다(예를 들어, "The Choice of silicon wafer for the production of low-cost rear-contact solar cells", K. Mclntosh, M. Cudzinovic, D. Smith, W. Mulligan and R. Swanson, Proceedings of WCPEC-3, Osaka, Japan, May 11-18, 2003을 참조). 이러한 프린팅 기술들은 비용이 더 효과적으로 절감되지만, 포토리소그래피(photolithography)보다 훨씬 더 낮은 해상도 및 정렬 정확도를 가지며, 결과적으로 피치는 웨이퍼 두께보다 현저하게 크게 된다. 이 셀의 성능은 소수 전하 캐리어 및 다수 전하 캐리어 모두의 측방향 수송 손실에 의해 한정된다.
이러한 저비용 패터닝 기술들의 사용으로, 스트립 패턴의 설계에서는 소수 전하 캐리어들의 측방향 수송 손실과 다수 전하 캐리어들의 측방향 수송 손실 사이의 절충이 필요하다. 셀 설계자는 (a) 소수 전하 캐리어들의 측방향 수송으로 인한 소수 전하 캐리어의 재결합과 (b) 다수 전하 캐리어들의 측방향 수송으로 인한 직렬 저항 손실을 밸런싱(balance)하도록 핑거 피치를 선택해야 한다. 일반적으로, 대부분의 셀에 대하여 소수 전하 캐리어들이 1차원 종방향으로 흐르도록, 이미 터 확산 스트립들(예를 들어, P-형 확산 영역(402))은 베이스 확산 스트립들(예를 들어, N-형 확산 영역(403))보다 더 크게 만들어진다. 설계자가 피치를 증가시키는 경우, 소수 전하 캐리어의 수송이 대부분 종방향이기 때문에 소수 전하 캐리어의 확산 손실이 감소하지만, 이것은 다수 전하 캐리어들의 측방향 경로를 또한 증가시킴으로써 저항성 손실이 증가한다. 설계자가 피치를 감소시키는 경우, 저항성 손실이 감소하지만, 소수 전하 캐리어들의 유효 경로가 증가하여, 소수 전하 캐리어의 재결합 손실이 증가한다.
본 발명의 실시예들은 베이스 확산 영역을 축소한 배면 접합 태양 전지 구조물을 사용함으로써 2차원 효과들의 악영향을 감소시킨다. 이하의 예시들에 있어서, 각각이 도트의 형태(예를 들어, 원, 타원)를 갖는다는 점에서 베이스 확산 영역들은 "도트형(dotted)"이다. 도트들은 또한 장방형들로 대체될 수 있다는 것에 유의해야 한다. 도트형 확산 영역들은 또한 본 발명의 이점을 떨어뜨리지 않는 그외의 형태들을 가질 수 있다.
도 5는 본 발명의 실시예에 따른 태양 전지(500)를 개략적으로 도시한다. 태양 전지(500)는 원-선(즉, 비집광기) 애플리케이션들에 사용되도록 구성된다. 태양 전지(500)는 도트형 베이스 확산 영역들(503)의 형태로 영역들을 축소한 베이스 확산 영역들을 포함한다. 도 5의 예시에 있어서, 베이스 확산 영역들(503)은 N-형 확산 영역들을 포함하는 한편, 연속적인 이미터 확산 영역(502)은 P-형 확산 영역을 포함하며, 확산 영역들 모두는 N-형 실리콘 웨이퍼(501)에 형성된다. 금속 그리드(506)는 베이스 확산 영역들(503)(예를 들어, 두개 이상의 베이스 확산 영역 들(503))에 전기적으로 결합되고, 금속 그리드(505)는 연속적인 이미터 확산 영역(502)에 전기적으로 결합된다. 도 5의 금속 그리드들(506) 중 하나는 베이스 확산 영역들(503)이 비장방형(본 실시예에서는 도트)인 것을 보이도록 투명하게 도시된다. 금속 그리드들(505 및 506)은 서로 맞물린 형태일(inter-digitated) 수 있다. 외부의 전기 회로는 태양 전지(500)로부터 전류를 받기 위해 금속 그리드들(505 및 506)에 결합될 수 있다. 금속 그리드들(506 및 505) 뿐만 아니라 확산 영역들(502 및 503)이 태양 전지(500)의 배면에 형성된다는 점에서, 태양 전지(500)는 배면 컨택트 태양 전지이다. 확산 영역들(503 및 502)에 대향하는 웨이퍼(501)의 표면은 태양 전지(500)의 앞면이고, 정상 동작 중에 태양을 향한다.
도 5에 도시된 바와 같이, 도트형 베이스 확산 설계는 베이스 확산 영역들(503)의 주기적인 도트들을 구비한 태양 전지(500)의 배면의 표면의 대부분을 커버하는 이미터 확산 영역(502)의 뒷면에 블랭킷(blanket)을 갖는다. 즉, 도트형 베이스 확산 설계는, 스트립 설계에서와 같이 베이스 및 이미터 확산 영역들의 스트립들을 교번하는 것 대신에, 연속적인 이미터 확산 영역을 가지며, 복수의 베이스 확산 영역들이 이미터 확산 영역으로 채워지지 않는 태양 전지의 배면의 영역들에 형성된다. 연속적인 이미터 확산 영역(502)은 두개 이상의 개별 확산 영역들(503)을 둘러싼다. 서로 맞물린 형태의 금속 그리드들(506 및 505)은 확산 영역들을 각각의 단자에, 즉 P-형 확산 영역들(502)은 포지티브 단자에, N-형 확산 영역들(503)은 네거티브 단자에 접속시킨다. 이 설계의 하나의 장점은 소수 전하 캐리어들의 수송이 대부분 종방향(즉, 1차원)이어서 재결합 손실을 최소화한다는 것 이다. 소수 전하 캐리어 손실이 실질적으로 감소하는 경우, 소수 및 다수 전하 캐리어의 측방향 수송 사이의 설계 트레이드-오프(trade-off)는 더 작은 피치들 및 동일한 핑거 크기들로 현저하게 이동된다. 이것은 결과적으로 다수 전하 캐리어들의 측방향 수송과 연관된 직렬 저항을 또한 감소시키는 설계가 된다. 소수 전하 캐리어 손실의 감소는 낮은 수명의 실리콘을 기판으로 사용하는 경우 더 현저하다는 것에 또한 유의해야 한다. 이것은 더 저렴하고, 더 낮은 품질의 실리콘(예를 들어, 다결정 또는 저급 CZ 실리콘)을 사용하여 고효율의 배면 접합 태양 전지를 제조할 수 있는 가능성을 제기한다.
도 5의 예시에 있어서, 베이스 확산 영역들(503)은 산재되어 연속적인 이미터 확산 영역(502)에 의해 둘러싸여지기 때문에, 베이스 확산 영역들(503)의 금속 그리드들(506)은 이미터 확산 영역들 위에 형성된다. 따라서 분로(shunt) 손실의 유입을 방지하기 위해 금속 그리드들(506)이 하부의 이미터 확산 영역들(502)로부터 전기적으로 절연이 되는 것을 보장하도록 주의가 필요하다. 이것은 네거티브 그리드와 이미터 확산 영역 사이의 무결점(defect free)의 절연층으로 구현될 수 있다. 이 절연체에 형성되는 개구부들은 베이스 확산 영역들(503)과 금속 그리드(506) 사이를 접촉시킨다.
도 6a 및 도 6b는 본 발명의 실시예에 따른 태양 전지(500A)의 투시도 및 평면도를 각각 개략적으로 도시한다. 태양 전지(500A)는 도 5에 도시된 태양 전지(500)의 특정한 실시예이다. 따라서 구성요소들(501, 502, 503, 505, 및 506)은 도 5를 참조하여 전술된 것과 동일하다. 도 6a의 예시에 있어서, 절연체 층(504) 은 전기적인 분로를 방지하기 위해 금속 그리드들과 확산 영역들 사이에 형성된다. 컨택트 홀들(508)은 금속 그리드(506)를 하부의 베이스 확산 영역(503)에 전기적으로 접촉시킨다. 마찬가지로, 컨택트 홀들(507)은 금속 그리드(505)를 하부의 이미터 확산 영역(502)에 전기적으로 접촉시킨다. 도 6b는 태양 전지(500A)의 평면도를 도시한다. 도 6b의 예시에 있어서, 컨택트 홀들(508)은 베이스 확산 영역들(503)보다 더 작다. 컨택트 홀들(507)은 금속 그리드(505)로부터 연속적인 이미터 확산 영역(502)으로 단순하게 아래로 연장된다.
도 7a 및 도 7b는 본 발명의 실시예에 따른 태양 전지(500B)의 투시도 및 평면도를 각각 개략적으로 도시한다. 태양 전지(500B)는 도 6a 및 도 6b에 도시된 태양 전지(500A)의 특정한 실시예이다. 따라서, 구성요소들(501, 502, 503, 505, 및 506)은 도 5를 참조하여 전술된 것들과 동일하며, 구성요소들(504, 507, 및 508)은 도 6a 및 도 6b를 참조하여 전술된 것들과 동일하다. 본질적으로, 태양 전지(500B)는 절연체 층(504)과 금속 그리드들(506) 사이에 절연체 층들(701)을 추가한 것 외에는 태양 전지(500A)와 동일하다. 절연체 층들(701)은 금속 그리드들(506)과 이미터 확산 영역(502) 사이에 여분의 전기적인 절연층을 제공하기 위해 이미터 확산 영역(502)의 일부분 위에 연장된다. 절연체 층들(701)은, 절연체 층(504)이 금속 그리드들(506)이 이미터 확산 영역(502)과 단락되게 하는 핀홀(pinhole)들 또는 그외의 결함(imperfection)들을 가질 수 있는 애플리케이션에 유용하다. 도 7b는 태양 전지(500B)의 평면도를 도시한다. 도 7b의 예시에 있어서, 절연체 층들(701)은 금속 그리드들(506)의 하부의 영역들에 한정된다. 절연체 층들(701)은 또한 애플리케이션에 따라 금속 그리드들(505)의 하부에 형성될 수 있다.
설계 규칙들(즉, 주어진 패터닝 기술에 의해 허용되는 최소 정렬 한도 및 피쳐 크기)은 스트립 및 도트형 베이스 확산 설계 모두에서 베이스 확산 영역의 크기를 결정한다. 예를 들어, 200 마이크로미터의 컨택트 개구부들 및 200 마이크로미터의 층간 한도의 프린팅을 허용하는 패터닝 기술은 베이스 확산 영역의 크기를 대략 600 마이크로미터로 결정한다 - 표준 설계에 대해 600 마이크로미터 폭의 스트립 또는 도트형 설계에 대해 600 마이크로미터의 직경 - . 도트형 설계는 베이스 확산 영역 커버리지 부분을 감소시키는 한편 베이스 확산 영역들 사이의 거리를 동일하게 유지하여, 다수 전하 캐리어들의 측방향 흐름과 연관된 직렬 저항 손실의 증가 없이 소수 전하 캐리어의 재결합 손실을 감소시킨다. 대안적으로, 도트형 확산 영역들의 피치는 베이스 커버리지 부분을 동일하게 유지하면서 감소될 수 있으며, 이로 인해 베이스 확산 영역들 위로 소수 전하 캐리어들의 측방향 흐름과 연관된 소수 전하 캐리어의 재결합의 증가 없이 직렬 저항 손실이 감소한다. 이들 두개의 경계들 사이의 최적의 구성은 특정한 태양 전지에 의존한다. 임의의 경우에 있어서, 도트형 확산 설계는 원-선 애플리케이션들에 사용되는 스트립 확산 설계 또는 집광기 애플리케이션들에 사용되는 포인트 확산 설계 중 어느 하나보다 더 높은 효율이어야 한다.
도트형 베이스 확산 설계의 성능은 자기 정렬된(self-aligned) 컨택트들을 사용함으로써 더 강화될 수 있다. 자기 정렬된 컨택트는 연속적인 이미터 확산 영 역으로부터 베이스 확산 금속 그리드들(예를 들어, 금속 그리드(506))을 전기적으로 절연시키는데 사용된 절연체 층에 컨택트 홀들을 사용하여 베이스 확산 영역들을 패터닝하는 것을 포함한다. 자기 정렬된 컨택트 프로세스는 베이스 확산 영역의 크기를 컨택트 홀의 크기로 감소시킬 수 있다. 예를 들어, 전술된 동일한 설계 규칙들을 사용하여, 베이스 확산 영역들의 직경을 600 마이크로미터로부터 200 마이크로미터로 감소시킬 수 있다. 베이스 확산 영역들의 크기가 웨이퍼의 두께에 근접하는 경우, 소수 전하 캐리어들의 측방향 수송은 최소화되고 소수 전하 캐리어들은 대부분 종방향으로 수송된다.
도 8a 및 도 8b는 본 발명의 실시예에 따른 태양 전지(500C)의 투시도 및 평면도를 각각 개략적으로 도시한다. 태양 전지(500C)는 도 6a 및 도 6b에 도시된 태양 전지(500A)의 특정한 실시예이다. 태양 전지(500C)는 각각의 그 베이스 확산 영역(이하 "503A"로 기재됨)이 컨택트 홀(508)을 사용하여 패터닝되는 것을 제외하고 태양 전지(500A)와 동일하다. 즉, 태양 전지(500C)에 있어서, 절연체 층의 컨택트 홀들(508)(이하 "504A"로 기재됨)은 베이스 확산 영역들(503A)을 패터닝하는데 사용된다. 이것은 베이스 확산 영역들(503A)이 컨택트 홀들(508)과 동일한 직경을 갖게 한다(도 8b를 또한 참조). 태양 전지들(500A 및 500C)의 그외의 모든 구성요소들은 그외의 경우 동일하다.
도 9a 내지 도 9e는 본 발명의 실시예에 따라 제조되는 태양 전지(500B)(도 7a 및 도 7b를 참조)의 단면도를 도시한다. 이하의 단계들은 종래의 반도체 제조 기술들을 사용하여 수행될 수 있다.
도 9a에 있어서, 도트형 실리콘 이산화물 층(901)은 기판의 표면 위에 형성된다. 층(901)은 이미터의 극성으로 도핑된다. 기판이 N-형 실리콘 웨이퍼(501)인 본 예시에 있어서, 실리콘 이산화물 층(901)은 붕소(boron)(예를 들어, BSG)와 같은 P-형 불순물로 도핑된다. 이하에 더 명확하게될 바와 같이, 연속적인 이미터 확산 영역을 형성하기 위해 후속하여 웨이퍼(501)에 층(901)의 불순물들을 주입할 것이다. 산화물 층(901)의 개구부들(903)은 연속적인 이미터 확산 영역들로 둘러싸인 산재된 도트형 확산 영역들을 형성하는데 사용되기 위해 도핑된 다른 산화물 층(도 9b의 층(902))에 대해 공간을 남긴다. 따라서, 도 9a의 예시에서 개구부들(903)은 도트형 패턴을 갖는다.
도 9b에 있어서, 도트형 실리콘 이산화물 층(902)은 층(901) 및 웨이퍼(501)의 노출된 부분들(즉, 개구부들(903))에 형성된다. 층(902)은 베이스 확산 영역들의 극성으로 도핑된다. 기판이 N-형 실리콘 웨이퍼(501)인 본 실시예에 있어서, 층(902)은 인(phosphorus)(예를 들어, PSG)과 같은 N-형 불순물로 도핑된다.
도 9c에 있어서, 고온 확산 프로세스를 사용하여 웨이퍼(501)에 산화물 층들(901 및 902)의 불순물들을 주입한다. 이것은 웨이퍼(501)에 연속적인 이미터 확산 영역(502) 및 복수의 베이스 확산 영역들(503)을 형성한다(도 7a 및 도 7b를 또한 참조). 이미터 확산 영역(502)은 층(901)으로부터 웨이퍼(501)로 P-형 불순물을 확산시킴으로써 형성된다. 베이스 확산 영역들(502)은 개구부들(903)에서 층(902)의 일부분들로부터의 N-형 불순물의 확산에 의해 형성된다(도 9a를 참조). 층(901)은 층(902)(도 9b를 참조)으로부터의 N-형 불순물이 이미터 확산 영역(502) 이 형성되는 곳으로 확산하는 것을 방지하기 위한 확산 마스크로서 기능한다. 도핑된 층들(901 및 902)은 확산 프로세스 후에 절연체 층(504)으로서 함께 기능한다.
도 9d에 있어서, 베이스 확산 영역들(503) 및 이미터 확산 영역(502)의 일부분들 위에 배치된 절연체 층(504)의 일부분들 위에 절연체 층들(701)이 형성된다. 절연체 층들(701)은 바람직하게는 스크린-프린팅, 잉크젯 프린팅 또는 그외의 저비용 프린팅 기술에 의해 형성된다. 따라서, 절연체 층들(701)은 스크린-프린팅 또는 잉크젯 프린팅에 의해 형성될 수 있는 폴리마이드(polyimide) 또는 그외의 유전체를 포함할 수 있다. 컨택트 홀들(508)은, 후속하여 형성되는 금속 그리드들(506)을 베이스 확산 영역들(503)과 전기적으로 접촉시키기 위해 절연체 층들(701)에 정의된다.
도 9e에 있어서, 컨택트 홀들(508) 아래의 절연체 층(504)의 일부분들을 에칭한다. 마찬가지로, 컨택트 홀들(507)을 형성하기 위해 절연체 층(504)의 일부분들을 에칭한다. 금속 그리드들(506)은 금속 그리드들(506)과 베이스 확산 영역들(503) 사이에 전기적인 접속들을 생성하기 위해 컨택트 홀들(507)을 통해 절연체 층들(701) 위에 형성된다. 금속 그리드들(505)은 금속 그리드들(507)과 이미터 확산 영역들(502) 사이에 전기적인 접속들을 생성하기 위해 컨택트 홀들(507)을 통해 절연체 층들(504) 위에 형성된다.
태양 전지(500B) 및 본 명세서에 개시된 그외의 태양 전지들은 또한 공동 양도된 미국특허번호 6,998,288호에 개시된 제조 단계들을 사용하여 제조될 수 있으 며, 그것은 그 전체가 본 명세서에 참조로서 포함된다. 본 명세서에 개시된 태양 전지 구조를 제조하기 위한 그외의 제조 기술들은 또한 본 발명의 이점들을 손상시키지 않고 사용될 수 있다.
본 발명의 특정한 실시예들이 제공되는 한편, 이 실시예들은 설명의 목적이며 그에 한정되지 않는다는 것을 이해해야 한다. 다수의 추가의 실시예들은 본 개시를 읽는 당업자에게 명확해질 것이다.

Claims (20)

  1. 태양 전지에서 소수 전하 캐리어들을 수집하기 위한 연속적인 이미터 확산 영역 - 상기 연속적인 이미터 확산 영역은 태양 전지의 배면에 형성됨 - ;
    상기 태양 전지에서 다수 전하 캐리어들을 수집하기 위한 복수의 도트형(dotted) 베이스 확산 영역들 - 상기 복수의 도트형 베이스 확산 영역들은 태양 전지의 배면에서 상기 연속적인 이미터 확산 영역에 의해 둘러싸임 - ;
    상기 복수의 도트형 베이스 확산 영역들의 적어도 두개의 도트형 베이스 확산 영역들에 전기적으로 결합된 제1 금속 그리드;
    상기 제1 금속 그리드와 상기 적어도 두개의 도트형 베이스 확산 영역들 사이의 제1 절연체 층 - 상기 제1 금속 그리드는 상기 제1 절연체 층을 통과하는 적어도 두개의 컨택트 홀들을 통해 상기 적어도 두개의 도트형 베이스 확산 영역들에 전기적으로 결합됨 - ; 및
    상기 연속적인 이미터 확산 영역에 전기적으로 결합된 제2 금속 그리드 - 상기 제1 및 제2 금속 그리드들은 태양 전지의 배면 상에 형성됨 -
    를 포함하는 태양 전지.
  2. 제1항에 있어서,
    상기 연속적인 이미터 확산 영역과 상기 복수의 도트형 베이스 확산 영역들은 N-형 실리콘 웨이퍼에 형성되고, 상기 연속적인 이미터 확산 영역은 P-형으로 도핑된 영역을 포함하고, 상기 복수의 도트형 베이스 확산 영역들 각각은 N-형으로 도핑된 영역을 포함하는 태양 전지.
  3. 제2항에 있어서,
    상기 연속적인 이미터 확산 영역은 붕소(boron)로 도핑되고 상기 복수의 도트형 베이스 확산 영역들은 인(phosphorus)으로 도핑되는 태양 전지.
  4. 제1항에 있어서,
    상기 제1 절연체 층은 상기 제2 금속 그리드와 상기 연속적인 이미터 확산 영역 사이에 배치되고, 상기 제2 금속 그리드를 상기 연속적인 이미터 확산 영역에 전기적으로 결합시키는 적어도 다른 컨택트 홀을 포함하는 태양 전지.
  5. 제1항에 있어서,
    상기 제1 절연체 층을 통과하는 상기 적어도 두개의 컨택트 홀들 각각은 상기 복수의 도트형 베이스 확산 영역들의 점형 베이스 확산 영역의 직경 보다 더 작은 직경을 갖는 태양 전지.
  6. 제1항에 있어서,
    상기 제1 금속 그리드와 상기 제1 절연체 층 사이의 제2 절연체 층을 더 포함하고, 상기 제1 금속 그리드는 상기 제1 및 제2 절연체 층들을 통과하는 적어도 두개의 컨택트 홀들을 통해 상기 적어도 두개의 도트형 베이스 확산 영역들에 전기적으로 결합되는 태양 전지.
  7. 제5항에 있어서,
    상기 복수의 도트형 베이스 확산 영역들은 태양 전지의 배면에 주기적으로 배열되는 태양 전지.
  8. 태양 전지를 제조하는 방법으로서,
    기판의 제1 표면 위에 제1 도핑층을 형성하는 단계 - 상기 제1 도핑층은 상기 기판의 일부분들을 노출시키는 복수의 개구부들을 포함함 - ;
    상기 제1 도핑층에서 적어도 상기 복수의 개구부들에 제2 도핑층을 형성하는 단계;
    태양 전지의 배면에 연속적인 이미터 확산 영역을 형성하기 위해 상기 제1 도핑층으로부터 제1 불순물을 확산시키는 단계 - 상기 이미터 확산 영역은 태양 전지에서 소수 전하 캐리어들을 수집하도록 구성됨 - ;
    태양 전지의 배면에 복수의 베이스 확산 영역들을 형성하기 위해 상기 복수의 개구부들에 형성된 상기 제2 도핑층으로부터 제2 불순물을 확산시키는 단계 - 상기 복수의 베이스 확산 영역들은 태양 전지에서 다수 전하 캐리어들을 수집하도록 구성됨 - ;
    태양 전지의 배면 상에 제1 금속 그리드를 형성하는 단계 - 상기 제1 금속 그리드는 상기 이미터 확산 영역에 전기적으로 결합됨 - ; 및
    태양 전지의 배면 상에 제2 금속 그리드를 형성하는 단계 - 상기 제2 금속 그리드는 상기 복수의 베이스 확산 영역들의 베이스 확산 영역에 전기적으로 결합됨 -
    를 포함하는 태양 전지 제조 방법.
  9. 제8항에 있어서,
    상기 제2 도핑층은 또한 상기 제1 도핑층 위에 형성되는 태양 전지 제조 방법.
  10. 제8항에 있어서,
    상기 기판은 N-형 실리콘 웨이퍼를 포함하는 태양 전지 제조 방법.
  11. 제8항에 있어서,
    상기 제1 불순물은 P-형 불순물을 포함하고 상기 제2 불순물은 N-형 불순물을 포함하는 태양 전지 제조 방법.
  12. 제8항에 있어서,
    상기 복수의 개구부들 각각은 도트의 형태를 갖는 태양 전지 제조 방법.
  13. 제8항에 있어서,
    상기 제2 금속 그리드와 상기 이미터 확산 영역 사이에 절연체 층을 형성하는 단계 - 상기 절연체 층은 상기 제2 금속 그리드를 상기 이미터 확산 영역에 전기적으로 결합시키는 컨택트 홀을 포함함 -
    를 더 포함하는 태양 전지 제조 방법.
  14. 제8항에 있어서,
    상기 제1 및 제2 도핑층들은 실리콘 이산화물을 포함하는 태양 전지 제조 방법.
  15. 태양 전지의 배면에서 다수 전하 캐리어들을 수집하도록 구성된 복수의 베이스 확산 영역들;
    태양 전지의 배면에서 소수 전하 캐리어들을 수집하도록 구성된 연속적인 이미터 확산 영역 - 상기 연속적인 이미터 확산 영역은 상기 복수의 베이스 확산 영역들의 각각의 베이스 확산 영역을 둘러쌈 - ;
    상기 복수의 베이스 확산 영역들의 적어도 하나의 베이스 확산 영역에 전기적으로 결합된 제1 금속 그리드; 및
    상기 연속적인 이미터 확산 영역에 전기적으로 결합된 제2 금속 그리드
    를 포함하는 태양 전지.
  16. 제15항에 있어서,
    상기 복수의 베이스 확산 영역들 각각은 비장방형(non-rectangular shape)을 포함하는 태양 전지.
  17. 제15항에 있어서,
    상기 제1 금속 그리드와 상기 적어도 하나의 베이스 확산 영역 사이의 제1 절연체 층을 더 포함하고, 상기 제1 금속 그리드는 상기 제1 절연체의 컨택트 홀을 통해 상기 적어도 하나의 베이스 확산 영역에 전기적으로 결합되는 태양 전지.
  18. 제17항에 있어서,
    상기 제1 절연체 층과 상기 제1 금속 그리드 사이의 제2 절연체 층을 더 포함하고, 상기 제1 금속 그리드는 상기 제1 및 제2 절연체 층들을 통과하는 컨택트 홀을 통해 상기 적어도 하나의 베이스 확산 영역에 전기적으로 결합되는 태양 전지.
  19. 제15항에 있어서,
    상기 제1 및 제2 금속 그리드들은 태양 전지의 배면 상에 형성되는 태양 전지.
  20. 제15항에 있어서,
    상기 복수의 베이스 확산 영역들과 상기 연속적인 이미터 확산 영역은 N-형 실리콘 웨이퍼에 형성되는 태양 전지.
KR1020097001699A 2006-07-24 2007-06-06 베이스 확산 영역을 축소한 태양 전지 KR101365852B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/492,282 2006-07-24
US11/492,282 US8008575B2 (en) 2006-07-24 2006-07-24 Solar cell with reduced base diffusion area
PCT/US2007/013318 WO2008013604A2 (en) 2006-07-24 2007-06-06 Solar cell with reduced base diffusion area

Publications (2)

Publication Number Publication Date
KR20090033458A true KR20090033458A (ko) 2009-04-03
KR101365852B1 KR101365852B1 (ko) 2014-02-25

Family

ID=38970297

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097001699A KR101365852B1 (ko) 2006-07-24 2007-06-06 베이스 확산 영역을 축소한 태양 전지

Country Status (8)

Country Link
US (4) US8008575B2 (ko)
EP (2) EP2044632B1 (ko)
JP (8) JP5252403B2 (ko)
KR (1) KR101365852B1 (ko)
CN (1) CN101490851B (ko)
AU (1) AU2007277401B2 (ko)
TW (1) TWI349372B (ko)
WO (1) WO2008013604A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101335195B1 (ko) * 2012-02-01 2013-11-29 현대중공업 주식회사 후면전극형 태양전지 및 그 제조방법
KR20140027107A (ko) * 2011-02-15 2014-03-06 선파워 코포레이션 태양 전지의 제조를 위한 공정 및 구조물
KR101521872B1 (ko) * 2011-12-13 2015-05-20 삼성에스디아이 주식회사 광기전력소자
KR20200134434A (ko) * 2019-05-22 2020-12-02 한밭대학교 산학협력단 경사진 밴드갭 태양전지의 소수 캐리어 유효 확산 길이 깊이 프로파일 산출방법

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8008575B2 (en) 2006-07-24 2011-08-30 Sunpower Corporation Solar cell with reduced base diffusion area
US7820460B2 (en) 2007-09-07 2010-10-26 Varian Semiconductor Equipment Associates, Inc. Patterned assembly for manufacturing a solar cell and a method thereof
DE102008030880A1 (de) * 2007-12-11 2009-06-18 Institut Für Solarenergieforschung Gmbh Rückkontaktsolarzelle mit großflächigen Rückseiten-Emitterbereichen und Herstellungsverfahren hierfür
EP2109147A1 (en) * 2008-04-08 2009-10-14 FOM Institute for Atomic and Molueculair Physics Photovoltaic cell with surface plasmon resonance generating nano-structures
US8309446B2 (en) * 2008-07-16 2012-11-13 Applied Materials, Inc. Hybrid heterojunction solar cell fabrication using a doping layer mask
US20100037943A1 (en) * 2008-08-14 2010-02-18 Sater Bernard L Vertical multijunction cell with textured surface
US8106293B2 (en) * 2008-08-14 2012-01-31 Mh Solar Co., Ltd. Photovoltaic cell with buffer zone
US8293079B2 (en) * 2008-08-28 2012-10-23 Mh Solar Co., Ltd. Electrolysis via vertical multi-junction photovoltaic cell
US20100037937A1 (en) * 2008-08-15 2010-02-18 Sater Bernard L Photovoltaic cell with patterned contacts
DE102008044910A1 (de) * 2008-08-30 2010-03-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarzelle und Solarzellenmodul mit einseitiger Verschaltung
WO2010036807A1 (en) * 2008-09-24 2010-04-01 The Board Of Trustees Of The University Of Illinois Arrays of ultrathin silicon solar microcells
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
JP5646492B2 (ja) 2008-10-07 2014-12-24 エムシー10 インコーポレイテッドMc10,Inc. 伸縮可能な集積回路およびセンサアレイを有する装置
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
CN102318078B (zh) 2008-12-10 2013-10-30 应用材料公司 用于网版印刷图案对准的增强型检视系统
KR101464002B1 (ko) 2008-12-15 2014-11-21 엘지전자 주식회사 태양 전지의 제조 방법
AU2010229103A1 (en) * 2009-03-26 2011-11-03 Bp Corporation North America Inc. Apparatus and method for solar cells with laser fired contacts in thermally diffused doped regions
WO2011011764A2 (en) * 2009-07-23 2011-01-27 Gigasi Solar, Inc. Systems, methods and materials involving crystallization of substrates using a seed layer, as well as products produced by such processes
WO2011017179A2 (en) 2009-07-28 2011-02-10 Gigasi Solar, Inc. Systems, methods and materials including crystallization of substrates via sub-melt laser anneal, as well as products produced by such processes
WO2011020124A2 (en) * 2009-08-14 2011-02-17 Gigasi Solar, Inc. Backside only contact thin-film solar cells and devices, systems and methods of fabricating same, and products produced by processes thereof
WO2011041727A1 (en) 2009-10-01 2011-04-07 Mc10, Inc. Protective cases with integrated electronics
DE102010016122A1 (de) * 2010-03-24 2011-09-29 Q-Cells Se Herstellungsverfahren einer Halbleitersolarzelle
JP5213188B2 (ja) * 2010-04-27 2013-06-19 シャープ株式会社 裏面電極型太陽電池、および裏面電極型太陽電池の製造方法
ES2923774T3 (es) * 2010-05-21 2022-09-30 Asm Int Nv Método de fabricación de una celda solar
DE102010024834A1 (de) * 2010-06-23 2011-12-29 International Solar Energy Research Center Konstanz Verfahren zur Herstellung eines passivierten, Bor-dotierten Bereichs, insbesondere während der Herstellung einer Solarzelle, und Solarzelle mit einem passivierten, Bor-dotierten Bereich
EP2602834A1 (en) * 2010-08-03 2013-06-12 Sharp Kabushiki Kaisha Solar cell
US20120167978A1 (en) * 2011-01-03 2012-07-05 Lg Electronics Inc. Solar cell and method for manufacturing the same
KR101773837B1 (ko) 2011-01-21 2017-09-01 엘지전자 주식회사 태양전지 및 그 제조방법
KR101729745B1 (ko) * 2011-01-05 2017-04-24 엘지전자 주식회사 태양전지 및 이의 제조 방법
US8242005B1 (en) 2011-01-24 2012-08-14 Varian Semiconductor Equipment Associates, Inc. Using multiple masks to form independent features on a workpiece
US20120222736A1 (en) * 2011-03-04 2012-09-06 Applied Materials, Inc. Front contact solar cell manufacture using metal paste metallization
KR101724005B1 (ko) * 2011-04-29 2017-04-07 삼성에스디아이 주식회사 태양전지와 그 제조 방법
WO2012166686A2 (en) 2011-05-27 2012-12-06 Mc10, Inc. Electronic, optical and/or mechanical apparatus and systems and methods for fabricating same
US9757050B2 (en) 2011-08-05 2017-09-12 Mc10, Inc. Catheter balloon employing force sensing elements
US20140318611A1 (en) * 2011-08-09 2014-10-30 Solexel, Inc. Multi-level solar cell metallization
US8692111B2 (en) * 2011-08-23 2014-04-08 Sunpower Corporation High throughput laser ablation processes and structures for forming contact holes in solar cells
US9190548B2 (en) 2011-10-11 2015-11-17 Varian Semiconductor Equipment Associates, Inc. Method of creating two dimensional doping patterns in solar cells
US8889981B2 (en) * 2011-10-18 2014-11-18 Samsung Sdi Co., Ltd. Photoelectric device
WO2013096500A1 (en) * 2011-12-21 2013-06-27 Sunpower Corporation Hybrid polysilicon heterojunction back contact cell
US8822262B2 (en) * 2011-12-22 2014-09-02 Sunpower Corporation Fabricating solar cells with silicon nanoparticles
JP6108296B2 (ja) * 2011-12-26 2017-04-05 パナソニックIpマネジメント株式会社 太陽電池
JP5851284B2 (ja) * 2012-03-01 2016-02-03 三菱電機株式会社 太陽電池の製造方法
DE102012204680B4 (de) 2012-03-23 2019-04-25 Olympus Winter & Ibe Gmbh Verfahren und System zur Spüllösungsversorgung bei endoskopischen Eingriffen
US8993373B2 (en) * 2012-05-04 2015-03-31 Varian Semiconductor Equipment Associates, Inc. Doping pattern for point contact solar cells
US9640676B2 (en) * 2012-06-29 2017-05-02 Sunpower Corporation Methods and structures for improving the structural integrity of solar cells
US9295842B2 (en) 2012-07-05 2016-03-29 Mc10, Inc. Catheter or guidewire device including flow sensing and use thereof
JP2015521894A (ja) 2012-07-05 2015-08-03 エムシー10 インコーポレイテッドMc10,Inc. 流量センシングを含むカテーテルデバイス
US20140166093A1 (en) * 2012-12-18 2014-06-19 Paul Loscutoff Solar cell emitter region fabrication using n-type doped silicon nano-particles
US20140166094A1 (en) * 2012-12-18 2014-06-19 Paul Loscutoff Solar cell emitter region fabrication using etch resistant film
KR102044466B1 (ko) * 2013-01-16 2019-11-13 엘지전자 주식회사 태양 전지 및 그 제조 방법
KR101613843B1 (ko) * 2013-04-23 2016-04-20 엘지전자 주식회사 태양 전지 및 이의 제조 방법
TWM477049U (en) * 2013-09-25 2014-04-21 Inventec Solar Energy Corp Back contact electrode solar cell
CN105322032A (zh) * 2014-07-30 2016-02-10 英稳达科技股份有限公司 太阳能电池
US11060203B2 (en) * 2014-09-05 2021-07-13 Applied Materials, Inc. Liner for epi chamber
US9837576B2 (en) 2014-09-19 2017-12-05 Sunpower Corporation Solar cell emitter region fabrication with differentiated P-type and N-type architectures and incorporating dotted diffusion
JP6774163B2 (ja) * 2014-12-03 2020-10-21 シャープ株式会社 光電変換装置
US20160284917A1 (en) * 2015-03-27 2016-09-29 Seung Bum Rim Passivation Layer for Solar Cells
US20160284913A1 (en) * 2015-03-27 2016-09-29 Staffan WESTERBERG Solar cell emitter region fabrication using substrate-level ion implantation
EP3093889B8 (en) * 2015-05-13 2024-05-22 Trina Solar Co., Ltd Solar cell and method of manufacturing the same
USD822890S1 (en) 2016-09-07 2018-07-10 Felxtronics Ap, Llc Lighting apparatus
JPWO2018078669A1 (ja) * 2016-10-25 2018-10-25 信越化学工業株式会社 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
EP3349251B1 (en) 2016-11-15 2020-04-22 Shin-Etsu Chemical Co., Ltd High efficiency solar cell and method for manufacturing high efficiency solar cell
US10775030B2 (en) 2017-05-05 2020-09-15 Flex Ltd. Light fixture device including rotatable light modules
USD872319S1 (en) 2017-08-09 2020-01-07 Flex Ltd. Lighting module LED light board
USD877964S1 (en) 2017-08-09 2020-03-10 Flex Ltd. Lighting module
USD832494S1 (en) 2017-08-09 2018-10-30 Flex Ltd. Lighting module heatsink
USD846793S1 (en) 2017-08-09 2019-04-23 Flex Ltd. Lighting module locking mechanism
USD833061S1 (en) 2017-08-09 2018-11-06 Flex Ltd. Lighting module locking endcap
USD862777S1 (en) 2017-08-09 2019-10-08 Flex Ltd. Lighting module wide distribution lens
USD832495S1 (en) 2017-08-18 2018-10-30 Flex Ltd. Lighting module locking mechanism
USD862778S1 (en) 2017-08-22 2019-10-08 Flex Ltd Lighting module lens
USD888323S1 (en) 2017-09-07 2020-06-23 Flex Ltd Lighting module wire guard
JP6875252B2 (ja) 2017-10-26 2021-05-19 信越化学工業株式会社 ポリイミドペーストの乾燥方法及び高光電変換効率太陽電池の製造方法
JP6532518B2 (ja) * 2017-12-08 2019-06-19 信越化学工業株式会社 高効率太陽電池の製造方法
US11978815B2 (en) 2018-12-27 2024-05-07 Solarpaint Ltd. Flexible photovoltaic cell, and methods and systems of producing it
US11824126B2 (en) 2019-12-10 2023-11-21 Maxeon Solar Pte. Ltd. Aligned metallization for solar cells
CN112018196B (zh) * 2020-08-04 2022-11-29 隆基绿能科技股份有限公司 背接触太阳电池及生产方法、背接触电池组件
IL311088A (en) * 2021-08-31 2024-04-01 Solarpaint Ltd Improved flexible solar panels and photovoltaic devices, and methods and systems for their manufacture
CN113823704A (zh) * 2021-11-23 2021-12-21 陕西众森电能科技有限公司 一种p基硅背接触太阳能电池及其制备方法
CN113823705A (zh) * 2021-11-24 2021-12-21 陕西众森电能科技有限公司 一种异质结背接触太阳电池及其制备方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005862A (en) * 1958-09-15 1961-10-24 Int Rectifier Corp Solar battery mounting means
JPS57102077A (en) 1980-12-16 1982-06-24 Mitsubishi Electric Corp Photo coupling device by photo semiconductor element and optical fiber
US4414737A (en) * 1981-01-30 1983-11-15 Tokyo Shibaura Denki Kabushiki Kaisha Production of Schottky barrier diode
JPS57164585A (en) 1981-04-02 1982-10-09 Toshiba Corp Photosemiconductor device
US4427839A (en) * 1981-11-09 1984-01-24 General Electric Company Faceted low absorptance solar cell
US4665277A (en) * 1986-03-11 1987-05-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Floating emitter solar cell
US4927770A (en) * 1988-11-14 1990-05-22 Electric Power Research Inst. Corp. Of District Of Columbia Method of fabricating back surface point contact solar cells
US5217539A (en) 1991-09-05 1993-06-08 The Boeing Company III-V solar cells and doping processes
US5053083A (en) 1989-05-08 1991-10-01 The Board Of Trustees Of The Leland Stanford Junior University Bilevel contact solar cells
US5164019A (en) 1991-07-31 1992-11-17 Sunpower Corporation Monolithic series-connected solar cells having improved cell isolation and method of making same
US5360990A (en) 1993-03-29 1994-11-01 Sunpower Corporation P/N junction device having porous emitter
US5369291A (en) 1993-03-29 1994-11-29 Sunpower Corporation Voltage controlled thyristor
US5468652A (en) 1993-07-14 1995-11-21 Sandia Corporation Method of making a back contacted solar cell
US5641362A (en) 1995-11-22 1997-06-24 Ebara Solar, Inc. Structure and fabrication process for an aluminum alloy junction self-aligned back contact silicon solar cell
JPH11224954A (ja) * 1998-02-04 1999-08-17 Sanyo Electric Co Ltd 太陽電池、太陽電池モジュール、太陽電池モジュールの設置方法及び太陽電池の製造方法
US6337283B1 (en) * 1999-12-30 2002-01-08 Sunpower Corporation Method of fabricating a silicon solar cell
US6423568B1 (en) 1999-12-30 2002-07-23 Sunpower Corporation Method of fabricating a silicon solar cell
US6387726B1 (en) 1999-12-30 2002-05-14 Sunpower Corporation Method of fabricating a silicon solar cell
US6274402B1 (en) 1999-12-30 2001-08-14 Sunpower Corporation Method of fabricating a silicon solar cell
US6313395B1 (en) 2000-04-24 2001-11-06 Sunpower Corporation Interconnect structure for solar cells and method of making same
JP2002057352A (ja) * 2000-06-02 2002-02-22 Honda Motor Co Ltd 太陽電池およびその製造方法
US6333457B1 (en) 2000-08-29 2001-12-25 Sunpower Corporation Edge passivated silicon solar/photo cell and method of manufacture
JP2002124692A (ja) 2000-10-13 2002-04-26 Hitachi Ltd 太陽電池およびその製造方法
US7217883B2 (en) * 2001-11-26 2007-05-15 Shell Solar Gmbh Manufacturing a solar cell with backside contacts
US6872321B2 (en) 2002-09-25 2005-03-29 Lsi Logic Corporation Direct positive image photo-resist transfer of substrate design
US7339110B1 (en) 2003-04-10 2008-03-04 Sunpower Corporation Solar cell and method of manufacture
US7388147B2 (en) 2003-04-10 2008-06-17 Sunpower Corporation Metal contact structure for solar cell and method of manufacture
US7170001B2 (en) * 2003-06-26 2007-01-30 Advent Solar, Inc. Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
US7649141B2 (en) * 2003-06-30 2010-01-19 Advent Solar, Inc. Emitter wrap-through back contact solar cells on thin silicon wafers
US6998288B1 (en) 2003-10-03 2006-02-14 Sunpower Corporation Use of doped silicon dioxide in the fabrication of solar cells
US20060060238A1 (en) * 2004-02-05 2006-03-23 Advent Solar, Inc. Process and fabrication methods for emitter wrap through back contact solar cells
US20050172996A1 (en) 2004-02-05 2005-08-11 Advent Solar, Inc. Contact fabrication of emitter wrap-through back contact silicon solar cells
US7144751B2 (en) 2004-02-05 2006-12-05 Advent Solar, Inc. Back-contact solar cells and methods for fabrication
US20060130891A1 (en) * 2004-10-29 2006-06-22 Carlson David E Back-contact photovoltaic cells
US8008575B2 (en) 2006-07-24 2011-08-30 Sunpower Corporation Solar cell with reduced base diffusion area
DE102007059486A1 (de) 2007-12-11 2009-06-18 Institut Für Solarenergieforschung Gmbh Rückkontaktsolarzelle mit länglichen, ineinander verschachtelten Emitter- und Basisbereichen an der Rückseite und Herstellungsverfahren hierfür

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140027107A (ko) * 2011-02-15 2014-03-06 선파워 코포레이션 태양 전지의 제조를 위한 공정 및 구조물
KR20190044695A (ko) * 2011-02-15 2019-04-30 선파워 코포레이션 태양 전지의 제조를 위한 공정 및 구조물
KR101521872B1 (ko) * 2011-12-13 2015-05-20 삼성에스디아이 주식회사 광기전력소자
KR101335195B1 (ko) * 2012-02-01 2013-11-29 현대중공업 주식회사 후면전극형 태양전지 및 그 제조방법
KR20200134434A (ko) * 2019-05-22 2020-12-02 한밭대학교 산학협력단 경사진 밴드갭 태양전지의 소수 캐리어 유효 확산 길이 깊이 프로파일 산출방법

Also Published As

Publication number Publication date
JP2016146509A (ja) 2016-08-12
JP2019009460A (ja) 2019-01-17
JP5252403B2 (ja) 2013-07-31
EP2044632A4 (en) 2014-09-10
JP2017126797A (ja) 2017-07-20
WO2008013604A2 (en) 2008-01-31
EP2044632B1 (en) 2016-05-18
EP3073537A1 (en) 2016-09-28
JP2013153212A (ja) 2013-08-08
TWI349372B (en) 2011-09-21
US20200212234A1 (en) 2020-07-02
US8008575B2 (en) 2011-08-30
JP5628959B2 (ja) 2014-11-19
EP2044632A2 (en) 2009-04-08
JP5628960B2 (ja) 2014-11-19
US10573764B2 (en) 2020-02-25
JP2009545158A (ja) 2009-12-17
TW200814344A (en) 2008-03-16
KR101365852B1 (ko) 2014-02-25
US11107935B2 (en) 2021-08-31
JP2015026858A (ja) 2015-02-05
CN101490851A (zh) 2009-07-22
JP6837036B2 (ja) 2021-03-03
JP5999382B2 (ja) 2016-09-28
WO2008013604A3 (en) 2008-10-23
AU2007277401A1 (en) 2008-01-31
JP2014239249A (ja) 2014-12-18
JP2013153211A (ja) 2013-08-08
US20140190561A1 (en) 2014-07-10
CN101490851B (zh) 2012-06-27
US20080017243A1 (en) 2008-01-24
JP6134036B2 (ja) 2017-05-24
US20110272016A1 (en) 2011-11-10
JP6057090B2 (ja) 2017-01-11
US8664519B2 (en) 2014-03-04
JP6401331B2 (ja) 2018-10-10
AU2007277401B2 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
KR101365852B1 (ko) 베이스 확산 영역을 축소한 태양 전지
US4110122A (en) High-intensity, solid-state-solar cell device
US4330680A (en) Integrated series-connected solar cell
KR101231303B1 (ko) 후면전극형 태양전지 모듈
KR101348848B1 (ko) 후면전극형 태양전지의 제조방법
KR100366348B1 (ko) 실리콘 태양 전지의 제조 방법
AU2012201088B2 (en) Solar cell with reduced base diffusion area
US20120291864A1 (en) Solar cell and solar cell fabrication method
CN117650188B (zh) 太阳电池及其制备方法、光伏组件、光伏系统
US20120167974A1 (en) Solar Cell And Method For Manufacturing The Same
KR101219241B1 (ko) 후면전극형 태양전지 및 그 제조방법
USRE30383E (en) High-intensity, solid-state-solar cell device
JP2017037899A (ja) 太陽電池セル

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170119

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180131

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200131

Year of fee payment: 7