KR102634330B1 - 발광 다이오드 디바이스 - Google Patents
발광 다이오드 디바이스 Download PDFInfo
- Publication number
- KR102634330B1 KR102634330B1 KR1020237023497A KR20237023497A KR102634330B1 KR 102634330 B1 KR102634330 B1 KR 102634330B1 KR 1020237023497 A KR1020237023497 A KR 1020237023497A KR 20237023497 A KR20237023497 A KR 20237023497A KR 102634330 B1 KR102634330 B1 KR 102634330B1
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- mesa
- type
- led device
- quantum well
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 57
- 239000002184 metal Substances 0.000 claims abstract description 57
- 239000000758 substrate Substances 0.000 claims description 79
- 238000000034 method Methods 0.000 claims description 56
- 230000007480 spreading Effects 0.000 claims description 29
- 238000003892 spreading Methods 0.000 claims description 29
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 18
- 230000006911 nucleation Effects 0.000 claims description 17
- 238000010899 nucleation Methods 0.000 claims description 17
- 239000010936 titanium Substances 0.000 claims description 14
- 230000007547 defect Effects 0.000 claims description 11
- 230000009467 reduction Effects 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 9
- 229910001887 tin oxide Inorganic materials 0.000 claims description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 238000005424 photoluminescence Methods 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 238000009792 diffusion process Methods 0.000 claims description 5
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 claims description 5
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 3
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims description 3
- 238000000295 emission spectrum Methods 0.000 abstract description 15
- 239000000463 material Substances 0.000 description 34
- 230000008569 process Effects 0.000 description 28
- 235000012431 wafers Nutrition 0.000 description 25
- 238000000151 deposition Methods 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 230000003287 optical effect Effects 0.000 description 15
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 230000005855 radiation Effects 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 12
- 229910002601 GaN Inorganic materials 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 11
- 238000000231 atomic layer deposition Methods 0.000 description 10
- 238000005401 electroluminescence Methods 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- 229910052738 indium Inorganic materials 0.000 description 9
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 229910052594 sapphire Inorganic materials 0.000 description 6
- 239000010980 sapphire Substances 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 239000003989 dielectric material Substances 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 239000002318 adhesion promoter Substances 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000010849 ion bombardment Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 description 1
- UNRNJMFGIMDYKL-UHFFFAOYSA-N aluminum copper oxygen(2-) Chemical compound [O-2].[Al+3].[Cu+2] UNRNJMFGIMDYKL-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012707 chemical precursor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000224 chemical solution deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
- H01L27/153—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
- H01L27/156—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/08—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/12—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/14—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
- H01L33/405—Reflective materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
- H01L33/42—Transparent materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
- H01L33/46—Reflective coating, e.g. dielectric Bragg reflector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
- H01L33/60—Reflective elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Devices (AREA)
Abstract
에피택셜 성장 이후에 조정가능한 방출 스펙트럼들을 LED들에 제공하기 위해 동일한 웨이퍼 내의 전계발광 및 광발광 활성 영역들의 조합을 포함하는 발광 다이오드(LED) 디바이스들이 설명된다. LED 디바이스는 반사 금속 및 금속과 p-타입 층 표면 사이의 적어도 하나의 투명 전도성 산화물 층을 포함하는 다층 애노드 콘택을 포함한다. 투명 전도성 산화물 층의 두께는 상이한 방출 스펙트럼들로 제조된 LED들에 대해 달라질 수 있다.
Description
본 개시내용의 실시예들은 일반적으로 발광 다이오드(LED) 디바이스들의 어레이들 및 그 제조 방법들에 관한 것이다. 더 구체적으로, 실시예들은 광발광 양자 우물들 및 전계발광 양자 우물들을 포함하는 발광 다이오드 디바이스들, 및 이중층 콘택에 관한 것이다.
발광 다이오드(LED)는 전류가 그것을 통해 흐를 때 가시 광을 방출하는 반도체 광원이다. LED들은 P-타입 반도체를 N-타입 반도체와 결합한다. LED들은 일반적으로 III족 화합물 반도체를 이용한다. III족 화합물 반도체는 다른 반도체들을 이용하는 디바이스들보다 더 높은 온도에서 안정적인 동작을 제공한다. III족 화합물은 전형적으로 사파이어 또는 실리콘 탄화물(SiC)로 형성된 기판 상에 형성된다.
전형적으로, LED 웨이퍼의 방출 스펙트럼은 에피택셜 성장 이후에 고정된다(변경불가능함). 상이한 스펙트럼 특성들이 요구되는 경우, 상이한 웨이퍼가 성장되어야 한다. 에피택셜 성장 후에 다이 제조 프로세스의 일부로서 LED 웨이퍼의 방출 스펙트럼을 조정하는 능력을 갖는 것이 유리할 수 있다. 예를 들어, 상이한 방출 스펙트럼들을 갖는 LED들은 동일한 웨이퍼 상에서 서로 근접하게 제조될 수 있다. 이 속성은 디스플레이 및 카메라 플래시 모듈들의 제조에 적용될 수 있고, 여기서는 상이한 웨이퍼들로부터(또는 주어진 웨이퍼 상의 상이한 위치들로부터) LED들을 선택하여 모듈에 배치하는 것이 어렵고 비용이 많이 든다. 다른 이점은, 주어진 웨이퍼 내의(또는 동일한 에피택시 프로세스에 의해 성장된 웨이퍼들 사이의) 의도하지 않은 컬러 차이들이 보상될 수 있어서, 웨이퍼 레벨 인광체 집적과 같은 기술들의 구현을 용이하게 한다는 것이다.
따라서, 에피택셜 성장 후에 방출 스펙트럼이 조정될 수 있는 LED 디바이스들이 필요하다.
본 개시내용의 실시예들은 LED 디바이스들 및 LED 디바이스들을 제조하기 위한 방법들에 관한 것이다. 하나 이상의 실시예에서, 발광 다이오드(LED) 디바이스는: 트렌치에 의해 분리되는 제1 메사 및 제2 메사를 포함하는 메사 어레이(mesa array)를 포함하고, 제1 메사 및 제2 메사는 광발광 양자 우물(photoluminescent quantum well), 광발광 양자 우물 상의 n-타입 층, n-타입 층 상의 전계발광 양자 우물(electroluminescent quantum well), 및 전계발광 양자 우물 상의 p-타입 층을 포함하고, 제1 메사는 p-타입 층 상의 다층 콘택(multilayer contact)을 포함하고, 제2 메사는 p-타입 층 상의 p-타입 콘택(p-type contact)을 포함하고, 트렌치는 적어도 하나의 측벽을 갖고 기판 상의 n-타입 전류 확산 층(n-type current spreading layer)으로 연장된다.
본 개시내용의 다른 실시예들은: 트렌치에 의해 분리되는 제1 메사 및 제2 메사를 포함하는 메사 어레이를 포함하고, 제1 메사 및 제2 메사는 광발광 양자 우물, 광발광 양자 우물 상의 n-타입 층, n-타입 층 상의 전계발광 양자 우물, 및 전계발광 양자 우물 상의 p-타입 층을 포함하고, 제1 메사는 p-타입 층 상의 제1 콘택을 포함하고, 제1 콘택은 제1 투명 전도성 산화물 층 상의 제1 반사 금속 층을 포함하고, 제1 투명 전도성 산화물 층은 제1 두께를 갖고, 제2 메사는 p-타입 층 상의 제2 콘택을 포함하고, 제2 콘택은 제2 투명 전도성 산화물 층 상의 제2 반사 금속 층을 포함하고, 제2 투명 전도성 산화물 층은 제2 두께를 갖고, 트렌치는 적어도 하나의 측벽을 갖고 기판 상의 n-타입 전류 확산 층으로 연장되는, 발광 다이오드(LED) 디바이스에 관한 것이다.
하나 이상의 실시예는 LED 디바이스를 제조하는 방법에 관한 것이다. 하나 이상의 실시예에서, 방법은: 기판 상에 핵형성 층을 형성하는 단계; 핵형성 층 상에 결함 감소 층을 형성하는 단계; 결함 감소 층 상에 n-타입 전류 확산 층을 형성하는 단계; n-타입 전류 확산 층 상에 적어도 하나의 광발광 양자 우물을 형성하는 단계; 적어도 하나의 광발광 양자 우물 상에 n-타입 층을 형성하는 단계; n-타입 층 상에 적어도 하나의 전계발광 양자 우물을 형성하는 단계; 전계발광 양자 우물 상에 p-타입 층을 형성하는 단계; 트렌치에 의해 분리되는 제1 메사 및 제2 메사를 형성하기 위해 에칭하는 단계 - 트렌치는 적어도 하나의 측벽을 갖고 n-타입 전류 확산 층까지 연장됨 - ; 제1 메사 및 제2 메사 상에 유전체 층을 등각으로 퇴적하는 단계; 제1 메사 및 제2 메사에 콘택 홀을 형성하는 단계; 및 제1 메사 상에 제1 콘택을 형성하고, 제2 메사 상에 제2 콘택을 형성하는 단계를 포함한다.
위에서 언급된 본 개시내용의 특징들이 상세하게 이해될 수 있도록, 위에 간략하게 요약된 본 개시내용의 더 구체적인 설명은 실시예들을 참조할 수 있으며, 그 중 일부는 첨부 도면들에 예시되어 있다. 그러나, 본 개시내용은 동등한 효과의 다른 실시예들을 허용할 수 있으므로, 첨부 도면들은 본 개시내용의 전형적인 실시예들만을 예시하며, 따라서 그 범위를 제한하는 것으로 간주되어서는 안 된다는 점에 유의해야 한다. 본 명세서에 설명된 바와 같은 실시예들은, 유사한 참조 부호들이 유사한 요소들을 나타내는 첨부 도면들의 도면들에서 제한이 아닌 예로서 예시된다.
도 1은 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 단면도를 예시한다.
도 2는 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 단면도를 예시한다.
도 3은 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 단면도를 예시한다.
도 4는 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 단면도를 예시한다.
도 5는 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 단면도를 예시한다.
도 6a는 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 단면도를 예시한다.
도 6b는 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 상면도를 예시한다.
도 7은 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 단면도를 예시한다.
도 8은 이중층 콘택을 갖는 p-타입 층에 의해 반사된 방사선에 대해 GaN에서 계산된 각도 방사선 분포들을 예시하는 그래프이다.
도 9는 근자외선(near-UV) 전계발광 양자 우물들과 애노드 콘택 금속 사이에 상이한 광학 경로 길이들을 갖는 LED들에 대한 스펙트럼들을 예시하는 그래프이다.
도 10은 하나 이상의 실시예에 따른 방법의 프로세스 흐름도를 예시한다.
이해를 용이하게 하기 위해서, 가능한 경우에, 도면들에 공통인 동일한 요소들을 지시하는 데에 동일한 참조 번호들이 이용되었다. 도면들은 비율에 맞게 그려지는 것은 아니다. 예를 들어, 메사들의 높이들 및 폭들은 비율에 맞게 그려지는 것은 아니다.
도 1은 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 단면도를 예시한다.
도 2는 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 단면도를 예시한다.
도 3은 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 단면도를 예시한다.
도 4는 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 단면도를 예시한다.
도 5는 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 단면도를 예시한다.
도 6a는 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 단면도를 예시한다.
도 6b는 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 상면도를 예시한다.
도 7은 하나 이상의 실시예에 따른 다수의 양자 우물을 포함하는 LED 디바이스의 단면도를 예시한다.
도 8은 이중층 콘택을 갖는 p-타입 층에 의해 반사된 방사선에 대해 GaN에서 계산된 각도 방사선 분포들을 예시하는 그래프이다.
도 9는 근자외선(near-UV) 전계발광 양자 우물들과 애노드 콘택 금속 사이에 상이한 광학 경로 길이들을 갖는 LED들에 대한 스펙트럼들을 예시하는 그래프이다.
도 10은 하나 이상의 실시예에 따른 방법의 프로세스 흐름도를 예시한다.
이해를 용이하게 하기 위해서, 가능한 경우에, 도면들에 공통인 동일한 요소들을 지시하는 데에 동일한 참조 번호들이 이용되었다. 도면들은 비율에 맞게 그려지는 것은 아니다. 예를 들어, 메사들의 높이들 및 폭들은 비율에 맞게 그려지는 것은 아니다.
본 개시내용의 몇몇 예시적인 실시예들을 설명하기 전에, 본 개시내용은 이하의 설명에서 열거되는 구성 또는 프로세스 단계들의 세부사항들로 제한되지 않는다는 것을 이해해야 한다. 본 개시내용은 다른 실시예들이 가능하고, 다양한 방식들로 실시되거나 수행되는 것이 가능하다.
하나 이상의 실시예에 따라 본 명세서에 사용되는 바와 같은 "기판"이라는 용어는, 프로세스가 작용하는 표면 또는 표면의 일부분을 갖는, 중간 또는 최종 구조를 지칭한다. 게다가, 일부 실시예들에서 기판에 대한 언급은 또한, 문맥이 명확하게 달리 나타내지 않는 한, 기판의 일부만을 지칭한다. 또한, 일부 실시예들에 따라 기판 상에 퇴적하는 것에 대한 언급은 하나 이상의 층, 막, 피처 또는 재료가 그 위에 퇴적되거나 형성된 기판 상에 또는 베어 기판 상에 퇴적하는 것을 포함한다.
하나 이상의 실시예에서, "기판"은, 제조 프로세스 동안 막 처리가 수행되는 기판 상에 형성된 임의의 기판 또는 재료 표면을 의미한다. 예시적인 실시예들에서, 처리가 수행되는 기판 표면은, 응용에 따라, 실리콘, 실리콘 산화물, SOI(silicon on insulator), 스트레인드 실리콘, 비정질 실리콘, 도핑된 실리콘, 탄소 도핑된 실리콘 산화물, 게르마늄, 갈륨 비소, 유리, 사파이어와 같은 재료들, 및 금속들, 금속 질화물들, III-질화물들(예를 들어, GaN, AlN, InN 및 다른 합금들), 금속 합금들, 및 다른 전도성 재료들과 같은 임의의 다른 적합한 재료들을 포함한다. 기판들은, 제한 없이, 발광 다이오드(LED) 디바이스들을 포함한다. 일부 실시예들에서, 기판들은 기판 표면을 연마, 에칭, 환원, 산화, 히드록실화, 어닐링, UV 경화, e-빔 경화 및/또는 베이킹하기 위해 전처리 프로세스에 노출된다. 기판 자체의 표면에 대한 직접적인 막 처리에 추가하여, 일부 실시예들에서, 개시된 막 처리 단계들 중 임의의 단계는 또한, 기판 상에 형성되는 하부 층에 대해 수행되고, "기판 표면"이라는 용어는 문맥이 나타내는 바와 같이 그러한 하부 층을 포함하도록 의도된다. 따라서, 예를 들어, 막/층 또는 부분적인 막/층이 기판 표면 상에 퇴적된 경우, 새롭게 퇴적된 막/층의 노출된 표면이 기판 표면이 된다.
"웨이퍼" 및 "기판"이라는 용어는 본 개시내용에서 상호교환가능하게 사용될 것이다. 따라서, 본 명세서에서 이용될 때, 웨이퍼는 본 명세서에 설명된 LED 디바이스들의 형성을 위한 기판의 역할을 한다.
본 명세서에 설명된 실시예들은 LED 디바이스들, 및 LED 디바이스들을 형성하기 위한 방법들을 설명한다. 특히, 본 개시내용은 에피택셜 성장 이후에 조정가능한 방출 스펙트럼들을 LED들에 제공하기 위해 동일한 웨이퍼 내의 전계발광 및 광발광 활성 영역들의 조합을 유리하게 이용하는 LED 디바이스들 및 LED 디바이스들을 생성하는 방법들을 설명한다. 하나 이상의 실시예에서, 조정은 광발광 활성 영역에 흡수되는 전계발광 방출의 비율을 제어가능하게 변경하는 웨이퍼 제조 프로세스들을 통해 달성된다. 이러한 조정들은 반사 애노드 콘택과 전계발광 방출 양자 우물 사이의 광학 경로 길이를 변경하는 것, 및/또는 LED 칩의 외부 표면들에 저손실 파장 선택적 반사기 코팅들의 적용에 의한 것을 포함한다.
하나 이상의 실시예에서, LED의 방출 스펙트럼은 칩 레벨에서 국소화되는 성장 후 웨이퍼 처리에 의해 변경될 수 있고, 따라서 동일한 LED 웨이퍼로부터의 상이한 방출 스펙트럼들의 LED들을 제공한다. 하나 이상의 실시예에서, 동일한 웨이퍼에서 서로 매우 근접하여 상이한 방출 스펙트럼들을 갖는 LED들의 어레이가 구축될 수 있다. 다수의 (상이한) 타입들의 에피택셜 웨이퍼들을 성장시킬 필요성, 및 어레이를 형성하기 위해 별개의 웨이퍼들로부터의 칩들을 조작할 필요성이 유리하게 회피된다.
하나 이상의 실시예에서, 갈륨 질화물(GaN)계 LED 웨이퍼는 동일한 웨이퍼에서 상이한 방출 파장들의 둘 이상의 양자 우물 그룹을 포함한다. 제1 그룹의 전계발광 양자 우물들(최단 방출 파장을 가짐)은 p-타입 층과, p-타입 층과 p-n 접합을 형성하는 제1 n-타입 층 사이에 위치될 수 있다. 더 긴 방출 파장을 갖는 제2(및 제3, 또는 그 이상) 그룹의 광발광 양자 우물들은 p-n 접합의 n-타입 층과 n-타입 GaN 전류 확산 층 사이에 위치될 수 있다. 이러한 양자 우물들은 제1 그룹의 양자 우물들에 의해 방출되는 전계발광의 파장에서 무시할 수 없는 흡수 계수를 갖는다.
하나 이상의 실시예에서, LED 디바이스는 반사 금속 및 금속과 p-GaN 표면 사이의 적어도 하나의 투명 전도성 산화물 층을 포함하는 다층 애노드 콘택을 포함한다. 투명 전도성 산화물 층의 두께는 상이한 방출 스펙트럼들로 제조된 LED에 대해 달라질 수 있다.
하나 이상의 실시예에서, LED 디바이스는 완성된 LED 칩의 일부인 연마된 사파이어 기판의 후면 상의 선택적인 광학 코팅을 포함한다. 코팅은, 전계발광의 파장 대 광발광의 파장(들)에서 낮은 광학 손실들 및 더 높은 반사율을 갖는다.
본 개시내용의 실시예들은, 본 개시내용의 하나 이상의 실시예에 따른 디바이스들(예를 들어, 트랜지스터들) 및 디바이스들을 형성하기 위한 프로세스들을 예시하는 도면들에 의해 설명된다. 도시된 프로세스들은 개시된 프로세스들에 대한 예시적인 가능한 용도들일 뿐이며, 통상의 기술자는 개시된 프로세스들이 예시된 응용들로 제한되지 않는다는 것을 인식할 것이다.
본 개시내용의 하나 이상의 실시예가 도면들을 참조하여 설명된다. 도 1 내지 도 6a 및 도 7은 하나 이상의 실시예에 따른 디바이스(100)의 단면도들을 예시한다. 도 6b는 하나 이상의 실시예에 따른 디바이스(100)의 상면도를 예시한다. 본 개시내용의 양태는 LED 어레이를 제조하는 방법에 관한 것이다. 도 1을 참조하면, LED 디바이스(100)는 기판(102) 상에 광발광 양자 우물(112) 및 전계발광 양자 우물(116)에 의해 제조된다.
하나 이상의 실시예에서, 에피택시의 제1 부분은 핵형성 층(104), 결함 감소 층(106), 및 n-타입 전류 확산 층(108)의 성장을 수반하고 사파이어 또는 다른 적용가능한 성장 기판(102)을 사용하는 종래의 LED 성장 실행(run)에서와 동일할 수 있다.
기판(102)은 LED 디바이스들의 형성에 이용하도록 구성되는, 본 기술분야의 통상의 기술자에게 알려진 임의의 기판일 수 있다. 하나 이상의 실시예에서, 기판(102)은 사파이어, 실리콘 탄화물, 실리카(Si), 석영, 마그네슘 산화물(MgO), 아연 산화물(ZnO), 스피넬, 및 이와 유사한 것 중 하나 이상을 포함한다. 하나 이상의 실시예에서, 기판(102)은 투명 기판이다. 특정 실시예들에서, 기판(102)은 사파이어를 포함한다. 하나 이상의 실시예에서, 기판(102)은 LED들의 형성 이전에 패터닝되지 않는다. 따라서, 일부 실시예들에서, 기판(102)은 패터닝되지 않으며, 평평하거나 실질적으로 평평한 것으로 간주될 수 있다. 다른 실시예들에서, 기판(102)은 패터닝된 기판이다.
하나 이상의 실시예에서, n-타입 전류 확산 층(108)은 III-질화물 재료들로도 지칭되는, 갈륨(Ga), 알루미늄(Al), 인듐(In), 및 질소(N)의 이원, 삼원, 및 사원 합금들을 포함하는 임의의 III-V족 반도체들을 포함할 수 있다. 따라서, 일부 실시예들에서, n-타입 전류 확산 층(108)은 갈륨 질화물(GaN), 알루미늄 질화물(AlN), 인듐 질화물(InN), 갈륨 알루미늄 질화물(GaAlN), 갈륨 인듐 질화물(GaInN), 알루미늄 갈륨 질화물(AlGaN), 알루미늄 인듐 질화물(AlInN), 인듐 갈륨 질화물(InGaN), 인듐 알루미늄 질화물(InAlN), 및 이와 유사한 것 중 하나 이상을 포함한다. 특정 실시예에서, n-타입 전류 확산 층(108)은 갈륨 질화물(GaN)을 포함한다. 하나 이상의 실시예에서, n-타입 전류 확산 층(108)은 실리콘(Si) 또는 게르마늄(Ge)과 같은 n-타입 도펀트들로 도핑된다. n-타입 전류 확산 층(108)은 층을 통해 측방향으로 전기 전류를 운반하기에 충분히 상당한 도펀트 농도를 가질 수 있다.
하나 이상의 실시예에서, 제1 LED, 제2 LED 및 제3 LED를 형성하는 III-질화물 재료의 층들은 스퍼터 퇴적(sputter deposition), 원자 층 퇴적(atomic layer deposition, ALD), 금속유기 화학 기상 퇴적(metalorganic chemical vapor deposition, MOCVD), 물리 기상 퇴적(physical vapor deposition, PVD), 플라즈마 강화 원자 층 퇴적(plasma enhanced atomic layer deposition, PEALD), 및 플라즈마 강화 화학 기상 퇴적(plasma enhanced chemical vapor deposition, PECVD) 중 하나 이상에 의해 퇴적된다.
본 명세서에서 사용되는 바와 같은 "스퍼터 퇴적"은 스퍼터링에 의한 박막 퇴적의 물리 기상 퇴적(PVD) 방법을 지칭한다. 스퍼터 퇴적에서, 재료, 예를 들어, III-질화물은 소스인 타깃으로부터 기판 상으로 분출된다. 기법은 소스 재료인 타깃의 이온 충격에 기초한다. 이온 충격은 순수하게 물리적 프로세스, 즉, 타깃 재료의 스퍼터링으로 인해 증기를 초래한다.
본 명세서에서 일부 실시예들에 따라 사용되는 바와 같이, "원자 층 퇴적"(ALD) 또는 "주기적 퇴적(cyclical deposition)"은 박막들을 기판 표면 상에 퇴적하는 데에 사용되는 기상(vapor phase) 기법을 지칭한다. ALD의 프로세스는, 기판의 표면, 또는 기판의 일부가, 교번하는 전구체들, 즉, 2개 이상의 반응성 화합물들에 노출되어 기판 표면 상에 재료 층을 퇴적하는 것을 수반한다. 기판이 교번하는 전구체들에 노출될 때, 전구체들은 순차적으로 또는 동시에 도입된다. 전구체들은 처리 챔버의 반응 구역 내에 도입되고, 기판 또는 기판의 일부는 전구체들에 개별적으로 노출된다.
일부 실시예들에 따라 본 명세서에서 사용되는 바와 같이, "화학 기상 퇴적"은 재료들의 막들이, 기판 표면 상의 화학물질들의 분해에 의해 기상으로부터 퇴적되는 프로세스를 지칭한다. CVD에서, 기판 표면은 전구체들 및/또는 공-시약들(co-reagents)에 동시에 또는 실질적으로 동시에 노출된다. LED 제조에서 일반적으로 사용되는 CVD 프로세스들의 특정 하위세트는 금속유기 전구체 화학물질을 사용하고, MOCVD 또는 금속유기 기상 에피택시(metalorganic vapor phase epitaxy, MOVPE)로 지칭된다. 본 명세서에서 사용되는 바와 같이, "실질적으로 동시에"는 공동 흐름(co-flow) 또는 전구체들의 노출들의 대부분에 대해 중첩되는 곳을 지칭한다.
일부 실시예들에 따라 본 명세서에서 사용되는 바와 같이, "플라즈마 강화 원자 층 퇴적(PEALD)"은 박막들을 기판 상에 퇴적하기 위한 기법을 지칭한다. 열 ALD 프로세스들에 대한 PEALD 프로세스들의 일부 예들에서, 재료는, 동일한 화학 전구체들로부터 형성될 수 있지만, 더 높은 퇴적 속도 및 더 낮은 온도로 형성될 수 있다. PEALD 프로세스에서는, 일반적으로, 반응물 가스 및 반응물 플라즈마가 챔버에 기판을 갖는 프로세스 챔버 내로 순차적으로 도입된다. 제1 반응물 가스는 프로세스 챔버 내에서 펄스화되고, 기판 표면 상에 흡착된다. 그 후에, 반응물 플라즈마는 프로세스 챔버 내로 펄스화되고 제1 반응물 가스와 반응하여 기판 상에 퇴적 재료, 예를 들어, 박막을 형성한다. 열 ALD 프로세스와 유사하게, 반응물들 각각의 전달들 사이에 퍼지 단계가 수행될 수 있다.
하나 이상의 실시예에 따라 본 명세서에서 사용되는 바와 같이, "플라즈마 강화 화학 기상 퇴적(PECVD)"은 박막들을 기판 상에 퇴적하기 위한 기법을 지칭한다. PECVD 프로세스에서는, 캐리어 가스에 혼입된 기체 상 III-질화물 재료 또는 액체 상 III-질화물 재료의 증기와 같은, 기체 상 또는 액체 상인 소스 재료가 PECVD 챔버 내에 도입된다. 플라즈마 개시 가스가 또한 챔버 내에 도입된다. 챔버에서의 플라즈마의 생성은 여기된 라디칼들(radicals)을 생성한다. 여기된 라디칼들은 챔버에 위치된 기판의 표면에 화학적으로 결합되어, 원하는 막을 기판 상에 형성한다.
하나 이상의 실시예에서, LED 디바이스(100)는 LED 디바이스 층들이 에피택셜 성장되도록 금속유기 기상 에피택시(MOVPE) 반응기에 기판(102)을 배치함으로써 제조된다.
하나 이상의 실시예에서, 핵형성 층(104)은 결함 감소 층(106) 전에 기판(102) 상에 형성된다. 하나 이상의 실시예에서, 핵형성 층은 III-질화물 재료를 포함한다. 특정 실시예들에서, 핵형성 층(104)은 갈륨 질화물(GaN) 또는 알루미늄 질화물(AlN)을 포함한다.
하나 이상의 실시예에서, 복수의 광발광 방출 양자 우물들(112)이 전류 확산 층(108) 상에 성장되고, 선택적으로 광발광 양자 우물들(112) 전에 희석된 인듐 농도 층(들)(110)이 성장된다. 광발광 양자 우물들(112)은 광발광 양자 우물들(112) 양단의 전압 강하를 최소화하기 위해 실리콘(Si) 또는 게르마늄(Ge)으로 n-타입 도핑될 수 있다.
광발광 양자 우물들(112)은 본 기술분야의 통상의 기술자에게 알려진 임의의 퇴적 기법을 사용하여 형성될 수 있다. 광발광 양자 우물들(112)은 동일한 파장의 광을 방출하는 다수의 양자 우물들의 시퀀스를 포함할 수 있다. 광발광 양자 우물들(112)은 인듐 갈륨 질화물(InGaN) 및 갈륨 질화물(GaN)의 상이한 층들을 포함할 수 있다. 하나 이상의 실시예에서, 광발광 양자 우물들(112)은 약 500 nm 내지 약 650 nm 범위의 파장을 방출할 수 있다. 방출 컬러는 InGaN 층에서의 인듐(In) 및 갈륨(Ga)의 상대 몰 분율들에 의해 그리고/또는 다수의 양자 우물들의 두께들에 의해 제어될 수 있다. 일부 실시예들에서, 인듐(In)의 더 높은 몰 분율은 더 긴 파장을 초래할 수 있다.
하나 이상의 실시예에서, 광발광 양자 우물들(112) 내의 개별 양자 우물은 약 0.5 nm 내지 약 10 nm 범위의 InGaN 두께 및 약 2 nm 내지 약 100 nm 범위의 GaN 장벽 두께를 가질 수 있다. 광발광 양자 우물들(112) 내의 양자 우물들의 총 수는 1 내지 50의 범위에 있을 수 있다.
하나 이상의 실시예에서, 광발광 양자 우물들(112)의 성장 후에, n-타입 층(114)이 광발광 양자 우물들(112)의 최상부 표면 상에 성장된다. n-타입 층(114)은 매우 얇을 수 있거나, 또는 수십 또는 수백 나노미터의 두께로 훨씬 더 두꺼울 수 있다. 하나 이상의 실시예에서, n-타입 층(114)은 후속하여 성장될 전계발광 활성 영역의 효율 또는 순방향 전압에 유리하게 영향을 미치도록 성장 표면을 수정하는 속성을 가질 수 있다.
하나 이상의 실시예에서, n-타입 층(114)의 성장 후에, 전계발광-방출 활성 영역 또는 전계발광 양자 우물들(116), 이어서 전자 차단 층들 및 p-타입 층들(118)이, 이 기술분야의 통상의 기술자에게 알려진 퇴적 기법들을 사용하여 성장된다. 하나 이상의 실시예에서, p-타입 층들(118)은 갈륨 질화물(GaN)을 포함한다. 일부 실시예들에서, p-타입 층(118)의 두께는 아래에 논의되는 애노드 콘택 층들과 함께 최적화될 수 있다.
하나 이상의 실시예에서, 위에서 설명한 바와 같이 성장된 웨이퍼(101)는, 반사 애노드 콘택을 가지며 애노드 콘택에 반대되는 방향으로 광을 방출하는 LED 칩들을 제조하기 위해 이용된다. 광발광 양자 우물들(112)에 흡수되는 전계발광의 비율은 방출된 전계발광의 각도 방사선 패턴(angular radiation pattern)에 의존한다. 표면 법선 근처의 작은 각도들로 방출된 방사선은 흡수 없이 칩으로부터 탈출할 확률이 높은 반면, 큰 각도들로 방출된 방사선은 광발광 양자 우물들(112)에 흡수되고 더 긴 파장의 광자들로서 재방출될 확률이 높다. 전계발광의 각도 방사선 패턴은, 결국, 전계발광 양자 우물들(116)로부터 반사 애노드 콘택까지의 광학 경로 길이에 매우 민감하다. 특정 경로 길이에 따라, 보강 간섭이 더 크거나 더 작은 각도들에서 발생할 수 있다.
하나 이상의 실시예에서, 전계발광 양자 우물들(116)은 제1 파장을 갖는 제1 광을 방출하고, 광발광 양자 우물들(112)은 제1 광의 적어도 일부를 흡수하고 제1 광보다 더 긴 파장을 갖는 제2 광을 방출한다.
도 2를 참조하면, 제1 메사(105a) 및 제2 메사(105b)를 웨이퍼(101)에 에칭함으로써 메사 어레이(105)가 형성된다. 하나 이상의 실시예에서, 제1 메사(105a) 및 제2 메사(105b)는 트렌치(120)에 의해 분리된다. 일부 실시예들에서, 트렌치(120)는 건식 에칭과 같은 종래의 방향성 에칭 프로세스를 사용하여 형성될 수 있다. 트렌치(120)는 임의의 적절한 깊이일 수 있고 p-타입 층(118)의 최상부 표면으로부터 n-타입 전류 확산 층(108)까지 관통하여 연장될 수 있다. 트렌치(120)는 적어도 하나의 측벽(122) 및 최하부 표면(124)을 포함할 수 있다. 하나 이상의 실시예에서, 최하부 표면(124)은 n-타입 전류 확산 층(108)을 포함한다. 하나 이상의 실시예에서, 트렌치(120)는 방출 영역(121)을 정의할 수 있다.
도 3은 트렌치(120) 내 및 p-타입 층(118) 상의 유전체 층(126)의 형성을 보여준다. 유전체 층(126)은, 예를 들어, CVD, PECVD, ALD, 증발, 스퍼터링, 화학 용액 퇴적, 스핀-온 퇴적, 또는 다른 유사한 프로세스들과 같은 종래의 퇴적 기법을 사용하여 형성될 수 있다.
본 명세서에서 사용되는 바와 같이, "유전체"라는 용어는 인가된 전기장에 의해 분극될 수 있는 전기 절연체 재료를 지칭한다. 하나 이상의 실시예에서, 유전체 층(126)은 통상의 기술자에게 알려진 임의의 적합한 유전체 재료를 포함할 수 있다. 일부 실시예들에서, 유전체 재료는 실리콘 질화물(SiN), 티타늄 산화물(TiOx), 니오븀 산화물(NbOx), 알루미늄 산화물(AlOx), 하프늄 산화물(HfOx), 탄탈룸 산화물(TaOx), 알루미늄 질화물(AlN), 실리콘 산화물(SiOx), 및 하프늄 도핑된 실리콘 이산화물(HfSiOx) 중 하나 이상을 포함한다. "실리콘 산화물"이라는 용어가 등각 유전체 층(126)을 설명하는 데에 사용될 수 있지만, 통상의 기술자는 본 개시내용이 특정 화학량론에 제한되지 않는다는 것을 인식할 것이다. 예를 들어, "실리콘 산화물" 및 "실리콘 이산화물"이라는 용어들은 둘 다, 임의의 적합한 화학량론적 비율로 실리콘 및 산소 원자들을 갖는 물질을 설명하는 데에 사용될 수 있다. 하나 이상의 실시예에서, 유전체 층(126)은 약 300 nm 초과, 또는 약 500 nm 초과, 또는 약 1000 nm 초과의 두께를 갖는다.
하나 이상의 실시예에서, 유전체 층(126)은 실질적으로 등각이다. 본 명세서에서 사용되는 바와 같이, "실질적으로 등각(substantially conformal)"인 층은 전체에 걸쳐(예를 들어, p-타입 층(118) 상의, 적어도 하나의 측벽(122) 상의, 그리고 트렌치(120)의 최하부 표면(124) 상의) 두께가 거의 동일한 층을 지칭한다. 실질적으로 등각인 층은 두께가 약 5%, 2%, 1% 또는 0.5% 이하만큼 변한다.
일부 실시예들에서, 유전체 층(126)은 트렌치(120)의 최하부 표면(124) 상에 형성된다. 다른 실시예들에서, 유전체 층(126)은 트렌치(120)의 최하부 표면(124) 상에 있지 않고 n-타입 전류 확산 층(108)은 트렌치(120)의 최하부 표면(124) 상에 노출된다. 유전체 층(126)의 부분들은 트렌치(120)의 최하부 표면(124)으로부터 제거될 수 있다. 유전체 층(126)의 부분들은 건식 에칭과 같은 종래의 방향성 에칭 프로세스를 사용하여 제거될 수 있다.
도 4는 유전체 층(126)에서의 콘택 홀(128)의 형성을 도시한다. 일부 실시예들에서, 제1 콘택 홀(128a)이 제1 메사(105a)의 유전체 층(126)에 형성된다. 제2 콘택 홀(128b)이 제2 메사(105b)의 유전체 층(126)에 형성될 수 있다. 콘택 홀(128a, 128b)은 건식 에칭과 같은 종래의 방향성 에칭 프로세스를 사용하여 형성될 수 있다.
도 5를 참조하면, 투명 전도성 산화물(transparent conductive oxide, TCO) 층(130)은 제2 메사(105b)의 제2 콘택 홀(128b)이 아니라 제1 메사(105a)의 제1 콘택 홀(128a)에 선택적으로 퇴적될 수 있다. 하나 이상의 실시예에서, 투명 전도성 산화물 층(130)은 인듐 도핑된 주석 산화물, 알루미늄 도핑된 아연 산화물, 인듐 도핑된 카드뮴 산화물, 인듐 산화물, 주석 산화물, 플루오린 도핑된 주석 산화물, 구리 알루미늄 산화물, 스트론튬 구리 산화물, 및 아연 도핑된 주석 산화물 중 하나 이상을 포함한다. 하나 이상의 특정 실시예에서, 투명 전도성 산화물 층(130)은 인듐 주석 산화물(ITO), 갈륨 산화물(Ga2O3), 아연 산화물(ZnO), 주석 산화물(SnO2), 및 인듐 아연 산화물(InZnO) 중 하나 이상을 포함한다. TCO 층(130)은 2개 이상의 하위 층으로 구성될 수 있으며, 하위 층들 중 하나는 p-타입 GaN에 대한 더 낮은 전기 접촉 저항의 특성을 나타내고, 다른 하위 층(들)은 감소된 광학 흡수 계수의 특성을 나타낸다. 하위 층들은 위의 리스트로부터 선택된 상이한 재료들일 수 있거나, 하위 층들은 퇴적 및/또는 어닐링 프로세스 조건들에서 차이들을 갖는, 명목상 동일한 재료의 2개의 층일 수 있다. 특정 실시예들에서, 투명 전도성 산화물 층(130)은 인듐 주석 산화물(ITO)을 포함한다.
도 6a를 참조하면, 애노드 콘택 금속(132)이 제1 메사(105a) 상에 퇴적된다. 하나 이상의 실시예에서, 애노드 콘택 금속(132)은 통상의 기술자에게 알려진 임의의 적합한 재료를 포함할 수 있다. 하나 이상의 실시예에서, 애노드 콘택 금속(132)은 알루미늄(Al), 은(Ag), 금(Au), 백금(Pt), 및 팔라듐(Pd) 중 하나 이상으로부터 선택된 p-콘택 재료를 포함한다. 특정 실시예들에서, 애노드 콘택 금속(132)은 은(Ag)을 포함한다. 일부 실시예들에서, 부가적인 금속들이 접착 촉진제들로서 애노드 콘택 금속에 적은 양으로 첨가될 수 있다. 그러한 접착 촉진제들은 니켈(Ni), 티타늄(Ti), 및 크로뮴(Cr) 중 하나 이상을 포함하지만, 이에 제한되지 않는다.
하나 이상의 실시예에서, 제1 메사(105a) 상의 애노드 콘택 금속(132)의 퇴적은 이중층 콘택(134)을 형성한다. 이중층 콘택(134)은 투명 전도성 산화물 층(130) 및 애노드 콘택 금속(132), 예를 들어, 반사 금속 층을 포함한다. 다른 실시예들에서, 제1 메사(105a) 상의 애노드 콘택 금속(132)의 퇴적은 다층 콘택을 형성한다. 본 명세서에서 사용되는 바와 같이, "다층 콘택(multilayer contact)"이라는 용어는 TCO 층(130)과 애노드 콘택 금속(132) 사이에 개재된 비전도성 유전체 재료의 경우를 지칭한다. 복수의 비아 홀(via hole)들이 유전체를 통해 패터닝되어, 금속이 TCO 층에 터치할 수 있게 한다. 다층 콘택은 실리콘 산화물(SiO2)과 같은 비전도성 유전체 재료들이 TCO 재료들보다 낮은 광 흡수 계수들을 갖는 경향이 있다는 이점을 갖는다. 다시 말해서, 다층 콘택은 이중층 콘택으로 획득된 광학 경로에서 동일한 차이를 제공할 수 있지만, 흡수 TCO 재료의 감소된 두께로 인해 패스(pass) 당 더 낮은 흡수 손실을 갖는다. 비전도성 유전체 재료는, 실리콘 산화물(SiO2), 실리콘 질화물(SiNx), 니오븀 산화물(Nb2O5), 지르코늄 산화물(ZrO2), 알루미늄 산화물(Al2O3), 및 티타늄 산화물(TiO2)을 포함하지만 이에 제한되지는 않는 그룹으로부터 선택된 상이한 굴절률들을 갖는 하나 이상의 층으로 구성될 수 있다.
하나 이상의 실시예에서, 제2 애노드 콘택 금속(136)이 제2 메사(105b) 상에 퇴적된다. 하나 이상의 실시예에서, 제2 애노드 콘택 금속(136)은 통상의 기술자에게 알려진 임의의 적합한 재료를 포함할 수 있다. 하나 이상의 실시예에서, 제2 애노드 콘택 금속(136)은 알루미늄(Al), 은(Ag), 금(Au), 백금(Pt), 및 팔라듐(Pd) 중 하나 이상으로부터 선택된 p-콘택 재료를 포함한다. 특정 실시예들에서, 제2 애노드 콘택 금속(136)은 은(Ag)을 포함한다. 일부 실시예들에서, 부가적인 금속들이 접착 촉진제들로서 제2 애노드 콘택 금속에 적은 양으로 첨가될 수 있다. 그러한 접착 촉진제들은 니켈(Ni), 티타늄(Ti), 및 크로뮴(Cr) 중 하나 이상을 포함하지만, 이에 제한되지 않는다.
하나 이상의 실시예에서, p-타입 층(118)과 애노드 콘택 금속(132) 사이에 배치된 투명 전도성 산화물(TCO) 층(130)의 두께에 대한 내부 방사선 패턴의 의존성이 도 8에 도시된다. 구체적으로, 도 8은 p-타입 층(118)/투명 전도성 산화물(TCO) 층(130)/애노드 콘택 금속(132)에 의해 반사된 방사선에 대해 p-타입 층(118)에서 계산된 각도 방사선 분포들을 예시한다. 방출 방사선은 약 445 nm의 중심 파장(centroid wavelength)을 갖고, 방출 양자 우물은 p-타입 층(118)/투명 전도성 산화물(TCO) 층(130) 계면으로부터 약 100 nm의 거리에 있다. 더 두꺼운 투명 전도성 산화물(TCO) 층(130)과 연관된 방사선 분포들은, 투명 전도성 산화물(TCO) 층(130) 두께가 더 작거나 투명 전도성 산화물(TCO) 층(130)이 없는 것과 비교하여, 더 많은 445 nm 방사선이 LED 칩 내부에 흡수되는 것을 초래한다. 위의 결과는 방출 QW들과 p-GaN/TCO 계면 사이에 약 100 nm의 거리를 갖는 LED들에 특정하다는 점이 강조되어야 한다. 일반적으로, 445nm 방사선의 흡수는 TCO 두께와 상기 계면까지의 거리 둘 다에 의존한다.
도 9는 이러한 방식으로 생성된 상이한 스펙트럼들의 실험 예를 예시한다. 구체적으로, 도 9에는, 근자외선 전계발광 QW들과 애노드 콘택 금속(132) 사이에 상이한 광학 경로 길이들을 갖는 LED들에 대한 실험 스펙트럼들이 예시되어 있다. 근자외선 방출의 내부 흡수는 Dc/Ln = 0.55에서 향상된다. 본 명세서에서 사용되는 바와 같이, "Dc/Ln"은, 파장의 분율로서 표현되는, 애노드 콘택 금속과 방출 양자 우물들 사이의 광학 경로 길이를 지칭한다. 더 긴 파장(광발광) 방출은 p-타입 층(118)에 비해 더 높은 강도를 갖고, 투명 전도성 산화물(TCO) 층(130) 두께는 큰 각도 대 표면 법선(large angles versus the surface normal)에서 간섭을 최대화하도록 구성되었다. 도 9는 본 발명의 기초가 되는 물리적 원리의 증명을 도시하지만, 실험 구현은 본 발명의 하나 이상의 실시예와 상이하다. 도 9에 도시된 실험에서는 TCO 층이 사용되지 않았다. 도 9의 경우, 본 발명에 개시된 TCO 층의 존재를 모방하는 p-GaN 두께의 차이를 가지고 2개의 웨이퍼가 성장되었다.
하나 이상의 실시예에서, 전자 차단 층(electron blocking layer, EBL) 및 p-타입 층(118)의 두께는 에피택셜 성장에 의해 고정되고, 광학 경로 길이의 이 부분은 성장 후 웨이퍼 팹 처리(post-growth wafer fab processing)에서 변경될 수 없다. 애노드 콘택 금속(132) 또는 p-타입 콘택의 위상 시프트는 콘택을 만들기 위해 상이한 반사성 금속들을 선택함으로써 성장 후 처리에서 제어될 수 있다. 그러나, 다양한 고반사율 금속들의 위상 시프트에서의 차이들은 상당히 작고, LED 칩의 방출 스펙트럼에서 충분히 큰 차이를 생성하지 못할 수 있다. 하나 이상의 실시예에서, 성장 후 처리에서 광학 경로 길이를 제어하기 위해, 제어된 두께의 투명 전도성 산화물(TCO) 층(130)이 p-타입 층(118)과 접촉하기 위해 이용되고, 그 후 반사 금속, 예를 들어, 애노드 콘택 금속(132)이 투명 전도성 산화물(TCO) 층(130)의 최상부에 배치된다. 이러한 배열에서, 광학 경로 길이는 투명 전도성 산화물(TCO) 층(130)의 두께뿐만 아니라 p-타입 층의 두께에 직접 의존한다. 층(130)은 낮은 광학 흡수 손실들을 갖는 전도성 및/또는 비전도성 층들의 다수의 층으로 구성될 수 있다. 도 6a 및 도 6b에 도시된 바와 같이, 웨이퍼 상에서 서로 인접한 상이한 LED들은, LED들 중 일부(예를 들어, 제1 메사(105a))에 대해 p-콘택으로서 투명 전도성 산화물(TCO) 층(130)을 사용하고, 다른 LED들(예를 들어, 제2 메사(105b))에 대해 p-타입 층(118) 표면에 직접 애노드 콘택(136)을 형성함으로써, 상이한 방출 스펙트럼들을 갖도록 만들어질 수 있다. 하나 이상의 실시예에서, 투명 전도성 산화물(TCO) 층(130)은 전계발광 양자 우물들(116)로부터 애노드 콘택 금속(132)까지의 경로 길이를 약 0.2 파장(여기서는 EL 방출의 중심 파장으로 지칭됨)만큼 증가시킬 수 있다. 투명 전도성 산화물(TCO) 층(130)은 애노드 콘택 금속(132) 퇴적 전에 HCl-계 습식 에칭 또는 건식 에칭으로 패터닝될 수 있다.
도 6a를 참조하면, 하나 이상의 실시예에서, 캐소드 콘택 금속(138) 또는 n-타입 콘택이 트렌치(120)에 퇴적된다. 따라서, 어레이 내의 LED들은 도 6a에 묘사된 바와 같이 공통 n-콘택 전극을 공유할 수 있다. 하나 이상의 실시예에서, 캐소드 콘택 금속(138)은 통상의 기술자에게 알려진 임의의 적합한 재료를 포함할 수 있다. 하나 이상의 실시예에서, 캐소드 콘택 금속(138)은 알루미늄(Al), 티타늄(Ti), 및 크로뮴(Cr) 중 하나 이상으로부터 선택된 n-콘택 재료를 포함한다.
하나 이상의 실시예에서, 도 6a에 도시된 바와 같이 애노드 콘택(136)/p-타입 층(118) 및 애노드 콘택 금속(132)/투명 전도성 산화물(TCO) 층(130)/p-타입 층(118) LED들의 어레이를 이용하는 대신에, 상이한 투명 전도성 산화물(TCO) 층(130) 두께의 애노드 콘택 금속(132)/투명 전도성 산화물(TCO) 층(130)/p-타입 층(118) LED들을 갖는 어레이를 대신 이용하는 것이 또한 가능할 것이다. 이 접근법은, p-타입 층(118) 두께가 2개의 투명 전도성 산화물(TCO) 층 두께 레벨들과 함께 공동 최적화되었다면, 도 6a에 도시된 것과 동일한 효과를 생성할 수 있다. 도 6a에 도시된 접근법은, 비교적 단순한 에칭 프로세스 및 오직 하나의 투명 전도성 산화물(TCO) 층 퇴적 단계로 구현될 수 있다는 이점을 갖는다.
일반적으로, 에칭된 표면(트렌치(120))은 45도까지의 경사각을 가질 수 있고, 도 6a의 단순화된 도면에 도시된 바와 같이 완전히 수직일 필요는 없다. 도 6a에 도시된 어레이는 동일한 수의 애노드 콘택 전용 LED들 및 동일한 크기들의 애노드 콘택/투명 전도성 산화물(TCO) 층 LED들의 규칙적인 패턴을 포함하지만, 본 개시내용은 도시된 타입의 어레이들로 제한되지 않는다. 일부 구현들은, 상이한 크기들, 동일하지 않은 수의 2가지 타입의 애노드 콘택들, 및/또는 랜덤 공간적 배열들의 LED들을 특징으로 할 수 있다. 다른 구현은 (어레이의 일부가 아닌) 상이한 방출 스펙트럼들을 갖는 개별 LED들을 포함할 수 있다.
하나 이상의 실시예(예시되지 않음)에서, 도 2 내지 도 6a에 예시된 것에 대한 대안적인 처리 실시예는 메사 에치(트렌치(120))가 기판(102)까지 완전히 연장되고, 캐소드 콘택(138)이 도 6a에 도시된 바와 같은 n-타입 전류 확산 층(108)의 노출된 수평 표면 대신에 메사(105a, 105b)의 측면에 형성되는 것이다.
도 7은 애노드 콘택(132/136)에 대향하는 디바이스(100)의 측면에 도포되는 외부 파장 선택적 반사기 코팅(142)의 형성을 예시한다. 하나 이상의 실시예에서, 외부 파장 선택적 반사기 코팅(142)은 기판(102)의 최하부 표면 상의 이색성 반사기(dichroic reflector) 또는 이색성 거울(dichroic mirror)이다. 이색성 거울은, 예를 들어, 니오븀 산화물(Nb2O5) 및 실리콘 산화물(SiO2)과 같이 굴절률의 차이가 큰 유전체 층들의 다층 스택을 포함할 수 있다. 하나 이상의 실시예에서, 외부 파장 선택적 반사기 코팅(142)은 더 긴 파장들에 비해 더 짧은 파장들에서 더 높은 반사율을 갖도록 설계된 박막 간섭 효과들을 이용하는 다층 유전체 코팅을 포함하여, 외부 코팅이 적용되지 않은 LED 칩에 비해 외부 코팅이 적용된 LED 칩에 대한 방출 스펙트럼을 추가로 수정한다. 하나 이상의 실시예에서, 외부 파장 선택적 반사기 코팅(142)은 좁은 스펙트럼 폭과 입사각에 대한 낮은 감도를 갖는다. 일부 실시예들에서, 외부 파장 선택적 반사기 코팅(142)은 EL 및 PL 방출 피크들이 파장에 있어서 큰 분리를 갖는 경우에 적용가능하다.
도 10은 하나 이상의 실시예에 따른 LED 디바이스를 제조하는 방법(500)의 프로세스 흐름도를 예시한다. 하나 이상의 실시예에서, 발광 다이오드(LED) 디바이스를 제조하는 방법은 반도체 층들이 기판 상에 퇴적되거나 성장되는 동작 502에서 시작한다. 하나 이상의 실시예에서, 반도체 층들은 기판(102), 핵형성 층(104), 결함 감소 층(defect reduction layer)(106), n-타입 전류 확산 층(108), 희석 인듐 농도 층(110), 광발광 양자 우물들(112), n-타입 층(114), 전계발광 양자 우물들(116), 및 p-타입 층(118) 중 하나 이상을 포함한다. 동작 504에서, 반도체 층들을 에칭하여, 트렌치(120)에 의해 분리되고 최상부 표면 및 적어도 하나의 측벽(122)을 갖는 적어도 제1 메사(105a) 및 제2 메사(105b)를 형성한다. 일부 실시예들에서, 측벽은 깊이 및 최하부 표면(124)을 갖는 트렌치를 정의할 수 있다. 동작 506에서, 유전체 층(126)이 반도체 표면 상에 퇴적된다. 하나 이상의 실시예에서, 동작 508에서, 콘택 홀(128)이 형성된다.
동작 510에서, 제1 메사(105a) 상의 콘택 홀(128)에 이중층 제1 애노드 콘택이 형성된다. 이중층 제1 애노드 콘택은 투명 전도성 산화물 층(130) 및 애노드 콘택 층(132)을 포함한다. 동작 512에서, 제2 메사(105b) 상에 제2 애노드 콘택(136)이 형성된다.
동작 514에서, 트렌치(120)에 캐소드 콘택 금속(138)이 퇴적된다. 따라서, 어레이 내의 LED들은 공통 n-콘택 전극을 공유할 수 있다.
일부 실시예들에서, 방법(500)은 동작 516에서 애노드 콘택(132/136)에 대향하는 디바이스(100)의 측면에 도포되는 외부 파장 선택적 반사기 코팅(142)의 형성을 추가로 포함한다. 하나 이상의 실시예에서, 외부 파장 선택적 반사기 코팅(142)은 기판(102)의 최하부 표면 상의 이색성 거울이다.
본 개시내용의 다른 양태는 전자 시스템에 관한 것이다. 하나 이상의 실시예에서, 전자 시스템은 본 명세서에 설명된 LED 디바이스들 및 어레이들과, p-콘택 층들 중 하나 이상에 독립적인 전압들을 제공하도록 구성되는 드라이버 회로를 포함한다. 하나 이상의 실시예에서, 전자 시스템은 LED 기반 조명기구, 발광 스트립, 발광 시트, 광학 디스플레이, 및 microLED 디스플레이로 이루어진 그룹으로부터 선택된다.
실시예들
다양한 실시예들이 아래에 열거된다. 이하에 열거되는 실시예들은 본 발명의 범위에 따라 모든 양태들 및 다른 실시예들과 조합될 수 있음을 이해할 것이다.
실시예 (a). 발광 다이오드(LED) 디바이스로서, 트렌치에 의해 분리되는 제1 메사 및 제2 메사를 포함하는 메사 어레이를 포함하고, 상기 제1 메사 및 상기 제2 메사는 광발광 양자 우물, 상기 광발광 양자 우물 상의 n-타입 층, 상기 n-타입 층 상의 전계발광 양자 우물, 및 상기 전계발광 양자 우물 상의 p-타입 층을 포함하고, 상기 제1 메사는 상기 p-타입 층 상의 다층 콘택을 포함하고, 상기 제2 메사는 상기 p-타입 층 상의 p-타입 콘택을 포함하고, 상기 트렌치는 적어도 하나의 측벽을 갖고 기판 상의 n-타입 전류 확산 층으로 연장되는, 발광 다이오드(LED) 디바이스.
실시예 (b). 실시예 (a)에 있어서, 상기 기판 상의 핵형성 층 및 상기 핵형성 층 상의 결함 감소 층을 추가로 포함하는, LED 디바이스.
실시예 (c). 실시예 (a) 또는 실시예 (b)에 있어서, 상기 다층 콘택은 투명 전도성 산화물 층 상에 반사 금속 층을 포함하는 이중층 콘택인, LED 디바이스.
실시예 (d). 실시예 (a) 내지 실시예 (c) 중 어느 하나에 있어서, 상기 반사 금속 층은 은(Ag), 니켈(Ni), 알루미늄(Al), 및 티타늄(Ti) 중 하나 이상을 포함하는, LED 디바이스.
실시예 (e). 실시예 (a) 내지 실시예 (d) 중 어느 하나에 있어서, 상기 투명 전도성 산화물 층은 인듐 주석 산화물(ITO), 갈륨 산화물(Ga2O3), 아연 산화물(ZnO), 주석 산화물(SnO2), 및 인듐 아연 산화물(InZnO) 중 하나 이상을 포함하는, LED 디바이스.
실시예 (f). 실시예 (a) 내지 실시예 (e) 중 어느 하나에 있어서, 상기 전계발광 양자 우물은 제1 파장을 갖는 제1 광을 방출하고, 상기 광발광 양자 우물은 상기 제1 광의 적어도 일부를 흡수하고 상기 제1 광보다 더 긴 파장을 갖는 제2 광을 방출하는, LED 디바이스.
실시예 (g). 실시예 (a) 내지 실시예 (f) 중 어느 하나에 있어서, 상기 n-타입 전류 확산 층 상의 상기 트렌치 내에 n-타입 콘택을 추가로 포함하는, LED 디바이스.
실시예 (h). 실시예 (a) 내지 실시예 (g) 중 어느 하나에 있어서, 상기 전계발광 양자 우물은 동일한 파장의 광을 방출하는 다수의 양자 우물들을 포함하는, LED 디바이스.
실시예 (i). 실시예 (a) 내지 실시예 (h) 중 어느 하나에 있어서, 상기 광발광 양자 우물은 동일한 파장의 광을 방출하는 다수의 양자 우물들을 포함하는, LED 디바이스.
실시예 (j). 실시예 (a) 내지 실시예 (i) 중 어느 하나에 있어서, 상기 기판은 투명 기판인, LED 디바이스.
실시예 (k). 실시예 (a) 내지 실시예 (j) 중 어느 하나에 있어서, 상기 n-타입 전류 확산 층에 대향하는 상기 기판 상의 이색성 반사기를 추가로 포함하는, LED 디바이스.
실시예 (l). 발광 다이오드(LED) 디바이스로서, 트렌치에 의해 분리되는 제1 메사 및 제2 메사를 포함하는 메사 어레이를 포함하고, 상기 제1 메사 및 상기 제2 메사는 광발광 양자 우물, 상기 광발광 양자 우물 상의 n-타입 층, 상기 n-타입 층 상의 전계발광 양자 우물, 및 상기 전계발광 양자 우물 상의 p-타입 층을 포함하고, 상기 제1 메사는 상기 p-타입 층 상의 제1 콘택을 포함하고, 상기 제1 콘택은 제1 투명 전도성 산화물 층 상의 제1 반사 금속 층을 포함하고, 상기 제1 투명 전도성 산화물 층은 제1 두께를 갖고, 상기 제2 메사는 상기 p-타입 층 상의 제2 콘택을 포함하고, 상기 제2 콘택은 제2 투명 전도성 산화물 층 상의 제2 반사 금속 층을 포함하고, 상기 제2 투명 전도성 산화물 층은 제2 두께를 갖고, 상기 트렌치는 적어도 하나의 측벽을 갖고 기판 상의 n-타입 전류 확산 층으로 연장되는, 발광 다이오드(LED) 디바이스.
실시예 (m). 실시예 (l)에 있어서, 상기 기판 상의 핵형성 층 및 상기 핵형성 층 상의 결함 감소 층을 추가로 포함하는, LED 디바이스.
실시예 (n). 실시예 (l) 내지 실시예 (m) 중 어느 하나에 있어서, 상기 제1 반사 금속 층 및 제2 반사 금속 층은 독립적으로 은(Ag), 니켈(Ni), 알루미늄(Al), 및 티타늄(Ti) 중 하나 이상을 포함하는, LED 디바이스.
실시예 (o). 실시예 (l) 내지 실시예 (n) 중 어느 하나에 있어서, 상기 제1 투명 전도성 산화물 층 및 상기 제2 투명 전도성 산화물 층은 독립적으로 인듐 주석 산화물(ITO), 아연 산화물(ZnO), 주석 산화물(SnO), 및 인듐 아연 산화물(InZnO) 중 하나 이상을 포함하는, LED 디바이스.
실시예 (p). 실시예 (l) 내지 실시예 (o) 중 어느 하나에 있어서, 상기 제1 두께와 상기 제2 두께 사이의 차이는 40 nm 내지 60 nm 범위에 있는, LED 디바이스.
실시예 (q). 실시예 (l) 내지 실시예 (p) 중 어느 하나에 있어서, 상기 전계발광 양자 우물은 제1 파장을 갖는 제1 광을 방출하고, 상기 광발광 양자 우물은 상기 제1 광의 적어도 일부를 흡수하고 상기 제1 광보다 더 긴 파장을 갖는 제2 광을 방출하는, LED 디바이스.
실시예 (r). 실시예 (l) 내지 실시예 (q) 중 어느 하나에 있어서, 상기 n-타입 전류 확산 층 상의 상기 트렌치 내에 n-타입 콘택을 추가로 포함하는, LED 디바이스.
실시예 (s). 실시예 (l) 내지 실시예 (r) 중 어느 하나에 있어서, 상기 n-타입 전류 확산 층에 대향하는 상기 기판 상의 이색성 반사기를 추가로 포함하는, LED 디바이스.
실시예 (t). LED 디바이스를 제조하는 방법으로서, 기판 상에 핵형성 층을 형성하는 단계; 상기 핵형성 층 상에 결함 감소 층을 형성하는 단계; 상기 결함 감소 층 상에 n-타입 전류 확산 층을 형성하는 단계; 상기 n-타입 전류 확산 층 상에 적어도 하나의 광발광 양자 우물을 형성하는 단계;상기 적어도 하나의 광발광 양자 우물 상에 n-타입 층을 형성하는 단계; 상기 n-타입 층 상에 적어도 하나의 전계발광 양자 우물을 형성하는 단계; 상기 전계발광 양자 우물 상에 p-타입 층을 형성하는 단계; 트렌치에 의해 분리되는 제1 메사 및 제2 메사를 형성하기 위해 에칭하는 단계 - 상기 트렌치는 적어도 하나의 측벽을 갖고 상기 n-타입 전류 확산 층까지 연장됨 - ; 상기 제1 메사 및 상기 제2 메사 상에 유전체 층을 등각으로 퇴적하는 단계; 상기 제1 메사 및 상기 제2 메사에 콘택 홀을 형성하는 단계; 및 상기 제1 메사 상에 제1 콘택을 형성하고, 상기 제2 메사 상에 제2 콘택을 형성하는 단계를 포함하는, 방법.
본 명세서에서 논의된 재료들 및 방법들을 설명하는 문맥에서(특히, 다음의 청구항들의 문맥에서) 단수형 용어들 및 유사한 참조대상들의 사용은, 본 명세서에서 달리 지시되거나 문맥에 의해 명확히 부정되지 않는 한, 단수형과 복수형 양자 모두를 포함하는 것으로 해석되어야 한다. 본 명세서에서 값들의 범위들의 언급은, 본 명세서에 달리 지시되지 않는 한, 범위 내에 속하는 각각의 별개의 값을 개별적으로 언급하는 간단한 방법(shorthand method)으로서 역할을 하고자 하는 것일 뿐이며, 각각의 별개의 값은 본원에서 개별적으로 언급된 것처럼 본 명세서에 포함된다. 본 명세서에 달리 지시되거나 문맥에 의해 달리 명확히 부정되지 않는 한, 본 명세서에 설명된 모든 방법들은 임의의 적합한 순서로 수행될 수 있다. 본 명세서에 제공된 임의의 그리고 모든 예들, 또는 예시적인 언어(예를 들어, "예컨대")의 사용은 재료들 및 방법들을 더 잘 설명하고자 하는 것일 뿐이며, 달리 청구되지 않는 한, 범위에 대한 제한을 제기하지 않는다. 본 명세서에서의 어떠한 언어도, 임의의 청구되지 않은 요소를 개시된 재료들 및 방법들의 실시에 필수적인 것으로서 나타내는 것으로 해석되어서는 안 된다.
본 명세서 전체에 걸쳐 제1, 제2, 제3 등의 용어들에 대한 언급은 본 명세서에서 다양한 요소를 설명하기 위해 사용될 수 있으며, 이 요소들은 이 용어들에 의해 제한되어서는 안 된다. 이 용어들은 하나의 요소를 다른 요소와 구별하는 데 사용될 수 있다.
본 명세서 전체에 걸쳐 다른 요소 "상에" 있거나 다른 요소 "상으로" 연장되는 것으로서 층, 영역, 또는 기판에 대한 언급은 그것이 다른 요소 상에 직접 있거나 다른 요소 상으로 직접 연장될 수 있거나 또는 개재 요소들이 또한 존재할 수 있다는 것을 의미한다. 한 요소가 또 다른 요소 "상에 직접(directly on)" 있거나 또 다른 요소 "상으로 직접(directly onto)" 연장되는 것으로 지칭될 때, 어떠한 개재 요소들도 존재하지 않을 수 있다. 또한, 한 요소가 또 다른 요소에 "연결(connected)" 또는 "결합(coupled)"되는 것으로 지칭될 때, 한 요소가 다른 요소에 직접 연결 또는 결합될 수 있고/있거나 하나 이상의 개재 요소를 통해 다른 요소에 연결 또는 결합될 수 있다. 한 요소가 또 다른 요소에 "직접 연결(directly connected)" 또는 "직접 결합(directly coupled)"되는 것으로 지칭될 때, 그 요소와 다른 요소 사이에 어떠한 개재 요소들도 존재하지 않는다. 이 용어들은 도면들에 묘사된 임의의 배향 이외에 요소의 상이한 배향들을 포괄하기 위한 것이라는 것을 이해할 것이다.
"아래에(below)", "위에(above)", "상부(upper)", "하부(lower)", "수평(horizontal)" 또는 "수직(vertical)"과 같은 상대적인 용어들이 도면들에 예시된 바와 같이 한 요소, 층, 또는 영역과 또 다른 요소, 층, 또는 영역의 관계를 설명하기 위해 본 명세서에서 사용될 수 있다. 이 용어들은 도면들에 묘사된 배향 이외에 디바이스의 상이한 배향들을 포괄하기 위한 것이라는 것을 이해할 것이다.
본 명세서 전체에 걸쳐 "일 실시예", "특정 실시예들", "하나 이상의 실시예" 또는 "실시예"에 대한 언급은, 그 실시예와 관련하여 설명된 특정 특징, 구조, 재료, 또는 특성이 본 개시내용의 적어도 하나의 실시예에 포함된다는 것을 의미한다. 따라서, 본 명세서 전체에 걸쳐 다양한 곳들에서 "하나 이상의 실시예에서", "특정 실시예들에서", "일 실시예에서" 또는 "실시예에서"와 같은 구문들의 출현들은, 반드시 본 개시내용의 동일한 실시예를 지칭하는 것은 아니다. 하나 이상의 실시예에서, 특정 특징들, 구조들, 재료들, 또는 특성들은 임의의 적합한 방식으로 조합된다.
본 명세서의 개시내용이 특정 실시예들을 참조하여 설명되었지만, 이러한 실시예들은 본 개시내용의 원리들 및 응용들을 예시하는 것일 뿐임을 이해해야 한다. 본 개시내용의 방법 및 장치에 대해 다양한 수정들 및 변형들이 본 개시내용의 사상 및 범위로부터 벗어나지 않고 이루어질 수 있다는 것이 본 기술분야의 통상의 기술자에게 명백할 것이다. 따라서, 본 개시내용은 첨부된 청구항들 및 그들의 등가물들의 범위 내에 있는 수정들 및 변형들을 포함하는 것으로 의도된다.
Claims (20)
- 발광 다이오드(LED) 디바이스로서,
트렌치에 의해 분리되는 제1 메사 및 제2 메사를 포함하는 메사 어레이(mesa array)를 포함하고, 상기 제1 메사 및 상기 제2 메사는 광발광 양자 우물(photoluminescent quantum well), 상기 광발광 양자 우물 상의 n-타입 층, 상기 n-타입 층 상의 전계발광 양자 우물(electroluminescent quantum well), 및 상기 전계발광 양자 우물 상의 p-타입 층을 포함하고, 상기 제1 메사는 상기 p-타입 층 상의 다층 콘택(multilayer contact)을 포함하고, 상기 제2 메사는 상기 p-타입 층 상의 p-타입 콘택(p-type contact)을 포함하고, 상기 트렌치는 적어도 하나의 측벽을 갖고 기판 상의 n-타입 전류 확산 층(n-type current spreading layer)으로 연장되는, 발광 다이오드(LED) 디바이스. - 제1항에 있어서, 상기 기판 상의 핵형성 층(nucleation layer) 및 상기 핵형성 층 상의 결함 감소 층(defect reduction layer)을 추가로 포함하는, LED 디바이스.
- 제1항에 있어서, 상기 다층 콘택은 투명 전도성 산화물 층 상에 반사 금속 층을 포함하는 이중층 콘택인, LED 디바이스.
- 제3항에 있어서, 상기 반사 금속 층은 은(Ag), 니켈(Ni), 알루미늄(Al), 및 티타늄(Ti) 중 하나 이상을 포함하는, LED 디바이스.
- 제3항에 있어서, 상기 투명 전도성 산화물 층은 인듐 주석 산화물(ITO), 갈륨 산화물(Ga2O3), 아연 산화물(ZnO), 주석 산화물(SnO2), 및 인듐 아연 산화물(InZnO) 중 하나 이상을 포함하는, LED 디바이스.
- 제1항에 있어서, 상기 전계발광 양자 우물은 제1 파장을 갖는 제1 광을 방출하고, 상기 광발광 양자 우물은 상기 제1 광의 적어도 일부를 흡수하고 상기 제1 광보다 더 긴 파장을 갖는 제2 광을 방출하는, LED 디바이스.
- 제1항에 있어서, 상기 n-타입 전류 확산 층 상의 상기 트렌치 내에 n-타입 콘택을 추가로 포함하는, LED 디바이스.
- 제6항에 있어서, 상기 전계발광 양자 우물은 동일한 파장의 광을 방출하는 다수의 양자 우물들을 포함하는, LED 디바이스.
- 제6항에 있어서, 상기 광발광 양자 우물은 동일한 파장의 광을 방출하는 다수의 양자 우물들을 포함하는, LED 디바이스.
- 제1항에 있어서, 상기 기판은 투명 기판인, LED 디바이스.
- 제10항에 있어서, 상기 n-타입 전류 확산 층에 대향하는 상기 기판 상의 이색성 반사기를 추가로 포함하는, LED 디바이스.
- 발광 다이오드(LED) 디바이스로서,
트렌치에 의해 분리되는 제1 메사 및 제2 메사를 포함하는 메사 어레이를 포함하고, 상기 제1 메사 및 상기 제2 메사는 광발광 양자 우물, 상기 광발광 양자 우물 상의 n-타입 층, 상기 n-타입 층 상의 전계발광 양자 우물, 및 상기 전계발광 양자 우물 상의 p-타입 층을 포함하고, 상기 제1 메사는 상기 p-타입 층 상의 제1 콘택을 포함하고, 상기 제1 콘택은 제1 투명 전도성 산화물 층 상의 제1 반사 금속 층을 포함하고, 상기 제1 투명 전도성 산화물 층은 제1 두께를 갖고, 상기 제2 메사는 상기 p-타입 층 상의 제2 콘택을 포함하고, 상기 제2 콘택은 제2 투명 전도성 산화물 층 상의 제2 반사 금속 층을 포함하고, 상기 제2 투명 전도성 산화물 층은 제2 두께를 갖고, 상기 트렌치는 적어도 하나의 측벽을 갖고 기판 상의 n-타입 전류 확산 층으로 연장되는, 발광 다이오드(LED) 디바이스. - 제12항에 있어서, 상기 기판 상의 핵형성 층 및 상기 핵형성 층 상의 결함 감소 층을 추가로 포함하는, LED 디바이스.
- 제12항에 있어서, 상기 제1 반사 금속 층 및 제2 반사 금속 층은 각각 은(Ag), 니켈(Ni), 알루미늄(Al), 및 티타늄(Ti) 중 하나 이상을 포함하는, LED 디바이스.
- 제12항에 있어서, 상기 제1 투명 전도성 산화물 층 및 상기 제2 투명 전도성 산화물 층은 각각 인듐 주석 산화물(ITO), 아연 산화물(ZnO), 주석 산화물(SnO), 및 인듐 아연 산화물(InZnO) 중 하나 이상을 포함하는, LED 디바이스.
- 제12항에 있어서, 상기 제1 두께와 상기 제2 두께 사이의 차이는 40 nm 내지 60 nm 범위에 있는, LED 디바이스.
- 제12항에 있어서, 상기 전계발광 양자 우물은 제1 파장을 갖는 제1 광을 방출하고, 상기 광발광 양자 우물은 상기 제1 광의 적어도 일부를 흡수하고 상기 제1 광보다 더 긴 파장을 갖는 제2 광을 방출하는, LED 디바이스.
- 제12항에 있어서, 상기 n-타입 전류 확산 층 상의 상기 트렌치 내에 n-타입 콘택을 추가로 포함하는, LED 디바이스.
- 제18항에 있어서, 상기 n-타입 전류 확산 층에 대향하는 상기 기판 상의 이색성 반사기를 추가로 포함하는, LED 디바이스.
- 삭제
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063125098P | 2020-12-14 | 2020-12-14 | |
US63/125,098 | 2020-12-14 | ||
US17/190,813 US11600656B2 (en) | 2020-12-14 | 2021-03-03 | Light emitting diode device |
US17/190,813 | 2021-03-03 | ||
PCT/US2021/051176 WO2022132264A1 (en) | 2020-12-14 | 2021-09-21 | Light emitting diode device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230112734A KR20230112734A (ko) | 2023-07-27 |
KR102634330B1 true KR102634330B1 (ko) | 2024-02-06 |
Family
ID=81941875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020237023497A KR102634330B1 (ko) | 2020-12-14 | 2021-09-21 | 발광 다이오드 디바이스 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11600656B2 (ko) |
EP (1) | EP4260381A4 (ko) |
JP (1) | JP7450127B2 (ko) |
KR (1) | KR102634330B1 (ko) |
CN (1) | CN116636023B (ko) |
WO (1) | WO2022132264A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11600656B2 (en) * | 2020-12-14 | 2023-03-07 | Lumileds Llc | Light emitting diode device |
US11862051B2 (en) * | 2022-03-02 | 2024-01-02 | Tcl China Star Optoelectronics Technology Co., Ltd. | Display panel and light board |
Family Cites Families (134)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5051800A (en) | 1988-04-30 | 1991-09-24 | Hajime Shoji | Thin film semiconductor device and liquid crystal display apparatus using thereof |
JP2001015452A (ja) | 1999-06-28 | 2001-01-19 | Hitachi Ltd | 化合物半導体装置及びその製造方法 |
CA2393081C (en) | 1999-12-03 | 2011-10-11 | Cree Lighting Company | Enhanced light extraction in leds through the use of internal and external optical elements |
US6410942B1 (en) | 1999-12-03 | 2002-06-25 | Cree Lighting Company | Enhanced light extraction through the use of micro-LED arrays |
CN1284250C (zh) | 2001-03-21 | 2006-11-08 | 三菱电线工业株式会社 | 半导体发光元件 |
US6547249B2 (en) | 2001-03-29 | 2003-04-15 | Lumileds Lighting U.S., Llc | Monolithic series/parallel led arrays formed on highly resistive substrates |
TW586246B (en) | 2002-10-28 | 2004-05-01 | Super Nova Optoelectronics Cor | Manufacturing method of white light LED and the light-emitting device thereof |
US20050194584A1 (en) | 2003-11-12 | 2005-09-08 | Slater David B.Jr. | LED fabrication via ion implant isolation |
US7274040B2 (en) | 2004-10-06 | 2007-09-25 | Philips Lumileds Lighting Company, Llc | Contact and omnidirectional reflective mirror for flip chipped light emitting devices |
US7329940B2 (en) | 2005-11-02 | 2008-02-12 | International Business Machines Corporation | Semiconductor structure and method of manufacture |
TWI288491B (en) | 2006-03-02 | 2007-10-11 | Nat Univ Chung Hsing | High extraction efficiency of solid-state light emitting device |
JP4637781B2 (ja) | 2006-03-31 | 2011-02-23 | 昭和電工株式会社 | GaN系半導体発光素子の製造方法 |
FR2902237B1 (fr) | 2006-06-09 | 2008-10-10 | Commissariat Energie Atomique | Procede de realisation d'un dispositif microelectronique emetteur de lumiere a nanofils semi-conducteurs formes sur un substrat metallique |
DE102006059612A1 (de) | 2006-12-12 | 2008-06-19 | Forschungsverbund Berlin E.V. | Halbleiterbauelement und Verfahren zu dessen Herstellung |
KR20090119862A (ko) | 2007-01-22 | 2009-11-20 | 크리 엘이디 라이팅 솔루션즈, 인크. | 고장 내성 발광기, 고장 내성 발광기를 포함하는 시스템 및 고장 내성 발광기를 제조하는 방법 |
US9024349B2 (en) | 2007-01-22 | 2015-05-05 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
DE102007015492B4 (de) | 2007-01-30 | 2011-03-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Beleuchtungsvorrichtung für eine Bilderfassungseinrichtung am distalen Ende eines Endoskops |
JP2010537408A (ja) * | 2007-08-14 | 2010-12-02 | ナイテック インコーポレイテッド | マイクロピクセル紫外発光ダイオード |
FR2922685B1 (fr) | 2007-10-22 | 2011-02-25 | Commissariat Energie Atomique | Dispositif optoelectronique a base de nanofils et procedes correspondants |
CN101257081A (zh) * | 2008-04-03 | 2008-09-03 | 北京大学 | 一种双波长单芯片发光二极管 |
US8507941B2 (en) | 2008-06-09 | 2013-08-13 | Nitek, Inc. | Ultraviolet light emitting diode with AC voltage operation |
FR2933538B1 (fr) | 2008-07-07 | 2012-09-21 | Commissariat Energie Atomique | Dispositif electroluminescent d'affichage, d'eclairage ou de signalisation, et son procede de fabrication |
JP5123269B2 (ja) | 2008-09-30 | 2013-01-23 | ソウル オプト デバイス カンパニー リミテッド | 発光素子及びその製造方法 |
FR2936651B1 (fr) | 2008-09-30 | 2011-04-08 | Commissariat Energie Atomique | Dispositif optoelectronique organique et son procede d'encapsulation. |
FR2941325B1 (fr) | 2009-01-22 | 2011-04-22 | Commissariat Energie Atomique | Procede de realisation d'une homojonction pn dans une nanostructure |
FI122622B (fi) * | 2009-06-05 | 2012-04-30 | Optogan Oy | Valoa emittoiva puolijohdelaite ja valmistusmenetelmä |
FR2951582A1 (fr) | 2009-10-16 | 2011-04-22 | Commissariat Energie Atomique | Source infrarouge integree sur silicium a base de nano-cristaux semi-conducteurs et dispositifs associes |
JP2011086882A (ja) | 2009-10-19 | 2011-04-28 | Citizen Electronics Co Ltd | Led発光装置 |
FR2951875B1 (fr) | 2009-10-23 | 2012-05-18 | Commissariat Energie Atomique | Procede de fabrication d?un ecran a tres haute resolution utilisant une couche conductrice anisotropique et emissive |
FR2954590B1 (fr) | 2009-12-23 | 2012-07-13 | Commissariat Energie Atomique | Procede de fabrication d'une electrode a nanostructures metallique et dielectrique pour le filtrage colore dans une oled et procede de fabrication d'une oled. |
FR2957941B1 (fr) | 2010-03-26 | 2012-06-08 | Commissariat Energie Atomique | Procede pour graver une couche d'oxyde metallique conducteur utilisant une microelectrode |
FR2952366A1 (fr) | 2010-04-07 | 2011-05-13 | Commissariat Energie Atomique | Procede d'elaboration d'un reseau de nanotubes de carbone |
FR2958795B1 (fr) | 2010-04-12 | 2012-06-15 | Commissariat Energie Atomique | Dispositif optoelectronique organique et son procede d'encapsulation. |
FR2960339B1 (fr) | 2010-05-18 | 2012-05-18 | Commissariat Energie Atomique | Procede de realisation d'elements a puce munis de rainures d'insertion de fils |
CN102386200B (zh) | 2010-08-27 | 2014-12-31 | 财团法人工业技术研究院 | 发光单元阵列与投影系统 |
CN102959740B (zh) | 2010-09-14 | 2018-08-03 | 原子能与替代能源委员会 | 用于光发射的基于纳米线的光电器件 |
FR2975532B1 (fr) | 2011-05-18 | 2013-05-10 | Commissariat Energie Atomique | Connexion electrique en serie de nanofils emetteurs de lumiere |
FR2964796B1 (fr) | 2010-09-14 | 2014-03-21 | Commissariat Energie Atomique | Dispositif optoelectronique a base de nanofils pour l'emission de lumiere |
JP4778107B1 (ja) | 2010-10-19 | 2011-09-21 | 有限会社ナプラ | 発光デバイス、及び、その製造方法 |
DE102010051286A1 (de) | 2010-11-12 | 2012-05-16 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung |
FR2969995A1 (fr) | 2011-01-03 | 2012-07-06 | Commissariat Energie Atomique | Procede de realisation d'un support comportant des nanostructures en nitrure(s) a phase zinc blende |
FR2972815B1 (fr) | 2011-03-15 | 2013-03-22 | Commissariat Energie Atomique | Tete optique bispectrale a usage unique pour videoendoscope et videoendoscope associe |
KR101244926B1 (ko) | 2011-04-28 | 2013-03-18 | 피에스아이 주식회사 | 초소형 led 소자 및 그 제조방법 |
FR2974940B1 (fr) | 2011-05-06 | 2015-11-13 | Commissariat Energie Atomique | Procede de realisation de nanocristaux de semi-conducteur orientes selon une direction pre-definie |
FR2974941B1 (fr) | 2011-05-06 | 2013-06-14 | Commissariat Energie Atomique | Procede de realisation de nanocristaux de |
FR2977720A1 (fr) | 2011-07-08 | 2013-01-11 | Commissariat Energie Atomique | Dispositif optoelectronique organique et son procede d'encapsulation. |
US8754426B2 (en) | 2011-07-27 | 2014-06-17 | Grote Industries, Llc | Lighting device utilizing light active sheet material with integrated light emitting diode, disposed in seam and/or in low profile application |
CN103367383B (zh) | 2012-03-30 | 2016-04-13 | 清华大学 | 发光二极管 |
FR2991342B1 (fr) | 2012-06-05 | 2014-07-04 | Commissariat Energie Atomique | Procede d'amelioration des performances electriques et optiques d'un materiau conducteur electrique et transparent a base de nanofils d'argent |
FR2991999B1 (fr) | 2012-06-15 | 2015-02-20 | Commissariat Energie Atomique | Methode de fabrication de nanofils de cuscn par voie electrochimique |
CN104412395B (zh) | 2012-07-11 | 2018-07-17 | 亮锐控股有限公司 | 降低或者消除ⅲ-氮化物结构中的纳米管缺陷 |
DE102012215705B4 (de) | 2012-09-05 | 2021-09-23 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Gehäuse für ein optisches bauelement, baugruppe, verfahren zum herstellen eines gehäuses und verfahren zum herstellen einer baugruppe |
DE102012217957B4 (de) | 2012-10-01 | 2014-10-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Herstellung einer Mikro-LED-Matrix |
DE102012109460B4 (de) | 2012-10-04 | 2024-03-07 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung eines Leuchtdioden-Displays und Leuchtdioden-Display |
TWI520378B (zh) | 2012-10-22 | 2016-02-01 | 錸鑽科技股份有限公司 | 覆晶式發光二極體及其應用 |
DE102013101262A1 (de) | 2013-02-08 | 2014-08-14 | Osram Opto Semiconductors Gmbh | Optoelektronisches Leuchtmodul, optoelektronische Leuchtvorrichtung und Kfz-Scheinwerfer |
US9923118B2 (en) | 2013-02-25 | 2018-03-20 | Sensor Electronic Technology, Inc. | Semiconductor structure with inhomogeneous regions |
KR20140118466A (ko) | 2013-03-29 | 2014-10-08 | 서울반도체 주식회사 | 발광 디바이스 및 이를 포함하는 조명장치 |
JP6444299B2 (ja) | 2013-04-17 | 2018-12-26 | 日亜化学工業株式会社 | 発光装置 |
US10236421B2 (en) | 2013-05-13 | 2019-03-19 | Seoul Semiconductor Co., Ltd. | Light-emitting device package, manufacturing method thereof, and vehicle lamp and backlight unit including same |
WO2014205003A1 (en) | 2013-06-18 | 2014-12-24 | Barlow Stephen P | Trench high electron mobility transistor |
US9507204B2 (en) | 2013-06-26 | 2016-11-29 | Seoul Semiconductor Co., Ltd. | Baffled micro-optical elements for thin liquid crystal display backlight units |
FR2998090A1 (fr) | 2013-06-26 | 2014-05-16 | Commissariat Energie Atomique | Procede de structuration de surface par modification locale de selectivite a la gravure |
FR3011383B1 (fr) | 2013-09-30 | 2017-05-26 | Commissariat Energie Atomique | Procede de fabrication de dispositifs optoelectroniques a diodes electroluminescentes |
FR3012345B1 (fr) | 2013-10-29 | 2017-07-28 | Commissariat Energie Atomique | Dispositif d'encapsulation d'un dispositif sensible et procede de realisation dudit dispositif |
FR3013719B1 (fr) | 2013-11-26 | 2018-01-12 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Encre pour former des couches p dans des dispositifs electroniques organiques |
FR3023065B1 (fr) | 2014-06-27 | 2017-12-15 | Commissariat Energie Atomique | Dispositif optoelectronique a jonction p-n permettant une ionisation de dopants par effet de champ |
DE102014112551A1 (de) | 2014-09-01 | 2016-03-03 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips |
JP6446951B2 (ja) | 2014-09-26 | 2019-01-09 | 日亜化学工業株式会社 | 素子の実装方法及び発光装置の製造方法 |
US9722160B2 (en) | 2014-10-31 | 2017-08-01 | Nichia Corporation | Light emitting device and adaptive driving beam headlamp system |
TWI552394B (zh) | 2014-11-18 | 2016-10-01 | 隆達電子股份有限公司 | 發光二極體結構與發光二極體模組 |
WO2016080768A1 (ko) | 2014-11-18 | 2016-05-26 | 서울반도체 주식회사 | 발광 장치 및 이를 포함하는 차량용 램프 |
GB201420452D0 (en) | 2014-11-18 | 2014-12-31 | Mled Ltd | Integrated colour led micro-display |
US9653642B1 (en) | 2014-12-23 | 2017-05-16 | Soraa Laser Diode, Inc. | Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes |
US9484492B2 (en) | 2015-01-06 | 2016-11-01 | Apple Inc. | LED structures for reduced non-radiative sidewall recombination |
DE102015101888A1 (de) | 2015-02-10 | 2016-08-11 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements |
US20160293811A1 (en) | 2015-03-31 | 2016-10-06 | Cree, Inc. | Light emitting diodes and methods with encapsulation |
EP3076069B1 (en) | 2015-03-31 | 2020-03-11 | Seoul Semiconductor Co., Ltd. | Light device of vehicle |
KR102454413B1 (ko) | 2015-05-26 | 2022-10-18 | 서울반도체 주식회사 | 발광 장치 및 이를 포함하는 차량용 램프 |
JP2018516466A (ja) * | 2015-06-05 | 2018-06-21 | オステンド・テクノロジーズ・インコーポレーテッド | 多重活性層へのキャリア注入を選定した発光構造 |
JP6995739B2 (ja) | 2015-07-23 | 2022-01-17 | ソウル セミコンダクター カンパニー リミテッド | ディスプレイ装置及びその製造方法 |
KR102328594B1 (ko) | 2015-08-10 | 2021-11-26 | 엘지전자 주식회사 | 발광 다이오드를 구비한 디스플레이 장치 |
FR3041274B1 (fr) | 2015-09-17 | 2017-09-29 | Commissariat Energie Atomique | Procede d'orientation d'objets allonges disposes en surface d'un substrat |
DE102015115810A1 (de) | 2015-09-18 | 2017-03-23 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauteil und 3D-Drucker |
CN113345988A (zh) | 2015-10-01 | 2021-09-03 | 克利公司 | 包括倒装芯片发光二极管的发光设备 |
DE102015219789A1 (de) | 2015-10-13 | 2017-04-13 | Osram Gmbh | Leuchtdichteregulierung an Randbereichen |
KR101627365B1 (ko) | 2015-11-17 | 2016-06-08 | 피에스아이 주식회사 | 편광을 출사하는 초소형 led 전극어셈블리, 이의 제조방법 및 이를 포함하는 led 편광램프 |
FR3044467B1 (fr) | 2015-11-26 | 2018-08-10 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dalle lumineuse et procede de fabrication d'une telle dalle lumineuse |
DE102016106841B3 (de) | 2015-12-18 | 2017-03-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Konverter zur Erzeugung eines Sekundärlichts aus einem Primärlicht, Leuchtmittel, die solche Konverter enthalten, sowie Verfahren zur Herstellung der Konverter und Leuchtmittel |
FR3046155B1 (fr) | 2015-12-28 | 2020-01-10 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de realisation de nanocristaux a dimensions et densite controlees |
WO2017116136A1 (ko) | 2015-12-31 | 2017-07-06 | 서울반도체주식회사 | 디스플레이 장치 |
KR102667851B1 (ko) | 2016-02-22 | 2024-05-23 | 삼성디스플레이 주식회사 | 디스플레이 장치 |
WO2017146477A1 (ko) | 2016-02-26 | 2017-08-31 | 서울반도체주식회사 | 디스플레이 장치 및 그의 제조 방법 |
WO2017146476A1 (ko) | 2016-02-26 | 2017-08-31 | 서울반도체주식회사 | 디스플레이 장치 및 그의 제조 방법 |
CN116469883A (zh) | 2016-04-01 | 2023-07-21 | 首尔半导体株式会社 | 显示模块和显示装置 |
KR102483955B1 (ko) | 2016-04-11 | 2023-01-03 | 삼성디스플레이 주식회사 | 디스플레이 장치 |
US10529696B2 (en) | 2016-04-12 | 2020-01-07 | Cree, Inc. | High density pixelated LED and devices and methods thereof |
WO2017184686A1 (en) | 2016-04-19 | 2017-10-26 | The Penn State Research Foundation | Gap-free microdisplay based on iii-nitride led arrays |
KR102559993B1 (ko) * | 2016-05-16 | 2023-07-26 | 엘지이노텍 주식회사 | 반도체 소자 |
KR101763072B1 (ko) | 2016-06-09 | 2017-08-04 | 고려대학교 산학협력단 | 광 추출 효율 및 전류 주입 효율 개선을 위한 led 소자 |
KR101987196B1 (ko) | 2016-06-14 | 2019-06-11 | 삼성디스플레이 주식회사 | 픽셀 구조체, 픽셀 구조체를 포함하는 표시장치 및 그 제조 방법 |
JP6729025B2 (ja) | 2016-06-14 | 2020-07-22 | 日亜化学工業株式会社 | 発光装置 |
FR3052915A1 (fr) | 2016-06-17 | 2017-12-22 | Commissariat Energie Atomique | Procede de fabrication d'une diode electroluminescente au nitrure de gallium |
KR102608419B1 (ko) | 2016-07-12 | 2023-12-01 | 삼성디스플레이 주식회사 | 표시장치 및 표시장치의 제조방법 |
FR3054037B1 (fr) | 2016-07-13 | 2018-08-17 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dispositif d’observation d’un echantillon |
KR102553434B1 (ko) | 2016-07-22 | 2023-07-12 | 제트카베 그룹 게엠베하 | 차량용 램프 |
KR102552298B1 (ko) | 2016-08-31 | 2023-07-10 | 삼성디스플레이 주식회사 | 표시장치 및 그의 구동방법 |
US10606121B2 (en) | 2016-09-12 | 2020-03-31 | Seoul Semiconductor Co., Ltd. | Display apparatus |
KR102701861B1 (ko) | 2016-11-15 | 2024-09-04 | 삼성디스플레이 주식회사 | 발광장치 및 그의 제조방법 |
DE102016122237A1 (de) | 2016-11-18 | 2018-05-24 | Osram Opto Semiconductors Gmbh | Multipixel-LED-Bauteil und Verfahren zum Betreiben eines Multipixel-LED-Bauteils |
US10804251B2 (en) | 2016-11-22 | 2020-10-13 | Cree, Inc. | Light emitting diode (LED) devices, components and methods |
DE102016223972A1 (de) | 2016-12-01 | 2018-06-07 | Osram Gmbh | Primäroptik, sekundäroptik, modul, anordnung, fahrzeugscheinwerfer und scheinwerfersystem |
KR20180065162A (ko) | 2016-12-07 | 2018-06-18 | 서울바이오시스 주식회사 | 디스플레이 장치 및 그의 전극 연결 방법 |
KR20190099004A (ko) | 2016-12-16 | 2019-08-23 | 테소로 사이언티픽, 인코포레이티드 | 발광 다이오드 테스트 장치 및 제조 방법 |
KR102605174B1 (ko) | 2016-12-19 | 2023-11-22 | 엘지디스플레이 주식회사 | 발광 다이오드 디스플레이 장치 |
KR102618811B1 (ko) | 2017-01-23 | 2023-12-28 | 삼성디스플레이 주식회사 | 색변환 패널 및 이를 포함하는 표시 장치 |
EP3571494A4 (en) | 2017-01-23 | 2020-08-12 | Tesoro Scientific, Inc. | TESTING DEVICE FOR LIGHT LIGHT DIODE (LED) AND METHOD OF MANUFACTURING |
KR101992342B1 (ko) | 2017-01-26 | 2019-06-24 | 주식회사 엘지화학 | 마이크로 led 및 이를 포함하는 디스플레이 장치 |
KR20180090006A (ko) | 2017-02-02 | 2018-08-10 | 서울반도체 주식회사 | 발광 다이오드 유닛 |
DE102017103320A1 (de) | 2017-02-17 | 2018-08-23 | Osram Gmbh | Fahrzeugscheinwerfer |
EP4365969A3 (en) | 2017-02-28 | 2024-07-31 | Seoul Semiconductor Co., Ltd. | Display device, backlight unit, light-emitting module and lens |
KR102514503B1 (ko) | 2017-03-13 | 2023-03-27 | 서울반도체 주식회사 | 디스플레이 장치 제조 방법 |
TWI699496B (zh) | 2017-03-31 | 2020-07-21 | 億光電子工業股份有限公司 | 發光裝置和照明模組 |
KR102146549B1 (ko) | 2017-04-10 | 2020-08-20 | 주식회사 엘지화학 | 마이크로 발광 다이오드 구조체 |
KR101989101B1 (ko) | 2017-05-29 | 2019-06-13 | 엘지전자 주식회사 | 차량용 램프 및 차량 |
KR101970249B1 (ko) | 2017-05-29 | 2019-04-18 | 엘지전자 주식회사 | 차량용 램프 및 차량 |
KR101989100B1 (ko) | 2017-06-09 | 2019-09-24 | 엘지전자 주식회사 | 차량용 램프 및 차량 |
US20190198564A1 (en) | 2017-12-20 | 2019-06-27 | Lumileds Llc | Monolithic segmented led array architecture with islanded epitaxial growth |
US11031527B2 (en) * | 2018-01-29 | 2021-06-08 | Creeled, Inc. | Reflective layers for light-emitting diodes |
KR20190140835A (ko) * | 2018-06-11 | 2019-12-20 | 서울바이오시스 주식회사 | Ⅲ-ⅴ족 발광 다이오드 |
US10868213B2 (en) | 2018-06-26 | 2020-12-15 | Lumileds Llc | LED utilizing internal color conversion with light extraction enhancements |
JP6780083B1 (ja) | 2019-06-11 | 2020-11-04 | 日機装株式会社 | 半導体発光素子 |
US11600656B2 (en) * | 2020-12-14 | 2023-03-07 | Lumileds Llc | Light emitting diode device |
US11476386B2 (en) * | 2020-12-16 | 2022-10-18 | Lumileds Llc | Light emitting diode device |
-
2021
- 2021-03-03 US US17/190,813 patent/US11600656B2/en active Active
- 2021-09-21 KR KR1020237023497A patent/KR102634330B1/ko active IP Right Grant
- 2021-09-21 EP EP21907379.8A patent/EP4260381A4/en active Pending
- 2021-09-21 WO PCT/US2021/051176 patent/WO2022132264A1/en active Application Filing
- 2021-09-21 CN CN202180083974.9A patent/CN116636023B/zh active Active
- 2021-09-21 JP JP2023535368A patent/JP7450127B2/ja active Active
-
2023
- 2023-01-25 US US18/159,331 patent/US11923402B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN116636023A (zh) | 2023-08-22 |
EP4260381A4 (en) | 2024-04-03 |
JP2023548630A (ja) | 2023-11-17 |
CN116636023B (zh) | 2024-07-02 |
US11600656B2 (en) | 2023-03-07 |
EP4260381A1 (en) | 2023-10-18 |
WO2022132264A1 (en) | 2022-06-23 |
US11923402B2 (en) | 2024-03-05 |
US20220190024A1 (en) | 2022-06-16 |
JP7450127B2 (ja) | 2024-03-14 |
US20230170379A1 (en) | 2023-06-01 |
KR20230112734A (ko) | 2023-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8268648B2 (en) | Silicon based solid state lighting | |
US20110108800A1 (en) | Silicon based solid state lighting | |
US11923402B2 (en) | Light emitting diode device | |
KR20090066185A (ko) | 발광 소자 및 그 제조 방법 | |
KR102649237B1 (ko) | 발광 다이오드 디바이스 | |
US11901491B2 (en) | Light emitting diode devices | |
US12040432B2 (en) | Light emitting diode devices with patterned TCO layer including different thicknesses | |
US20230155065A1 (en) | Composite cathode contact for monolithically integrated micro-leds, mini-leds and led arrays | |
US20230155066A1 (en) | Composite cathode contact with spacer layer for monolithically integrated micro-leds, mini-leds, and led arrays | |
US20230154969A1 (en) | Composite cathode contact with spacer layer for monolithically integrated micro-leds, mini-leds, and led arrays | |
KR20240101652A (ko) | 낮은 굴절률의 패터닝된 구조들을 갖는 박막 led 어레이 | |
WO2023086349A1 (en) | Thin-film led array with low refractive index patterned structures and reflector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |