KR102229915B1 - 자성 입자의 제조방법 - Google Patents

자성 입자의 제조방법 Download PDF

Info

Publication number
KR102229915B1
KR102229915B1 KR1020167024991A KR20167024991A KR102229915B1 KR 102229915 B1 KR102229915 B1 KR 102229915B1 KR 1020167024991 A KR1020167024991 A KR 1020167024991A KR 20167024991 A KR20167024991 A KR 20167024991A KR 102229915 B1 KR102229915 B1 KR 102229915B1
Authority
KR
South Korea
Prior art keywords
particles
raw material
treatment
material particles
magnetic
Prior art date
Application number
KR1020167024991A
Other languages
English (en)
Other versions
KR20160120318A (ko
Inventor
게이타로 나카무라
아키히로 기노시타
나오히토 우에무라
Original Assignee
가부시키가이샤 닛신 세이훈 구루프혼샤
닛신 엔지니어링 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 닛신 세이훈 구루프혼샤, 닛신 엔지니어링 가부시키가이샤 filed Critical 가부시키가이샤 닛신 세이훈 구루프혼샤
Publication of KR20160120318A publication Critical patent/KR20160120318A/ko
Application granted granted Critical
Publication of KR102229915B1 publication Critical patent/KR102229915B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F1/0018
    • B22F1/0088
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

자성 입자의 제조방법은, 철의 미립자의 표면에 산화규소층이 형성된 코어 쉘 구조의 원료 입자에 산화 처리, 환원 처리 및 질화 처리를, 이 순서로 실시하고, 코어 쉘 구조를 유지하면서, 철의 미립자를 질화시킨다. 이것에 의해, 질화철의 미립자의 표면에 산화규소층이 형성된 코어 쉘 구조를 가지는 입상의 자성 입자(Granular magnetic particles)를 얻는다.

Description

자성 입자의 제조방법{METHOD FOR MANUFACTURING MAGNETIC PARTICLES}
본 발명은, 질화철의 미립자의 표면에 산화규소층이 형성된 코어 쉘 구조(Core-shell structure)의 구 형상의 자성 입자, 구 형상의 자성 입자의 제조방법, 및 구 형상의 자성 입자를 이용한 자성체에 관한 것이다.
현재, 하이브리드 자동차 및 전기 자동차, 에어콘 및 세탁기 등의 가전 및 산업 기계 등의 모터로서, 에너지 절약, 고효율, 고성능인 것이 요구되고 있다. 이 때문에, 모터에 이용되는 자석에는, 보다 높은 자력(보자력, 포화 자속밀도)이 요구되고 있다. 현재, 자석을 구성하기 위한 자성 입자로서, 질화철계의 자성 입자가 주목받고 있고, 이 질화철계의 자성 입자에 대해서, 여러 가지의 제안이 이루어지고 있다(특허문헌 1 ~ 3 참조).
특허문헌 1에는, Fe16N2 단상으로 이루어지는 강자성 입자 분말로서, Fe16N2 입자 분말의 입자 표면이 Si 및/또는 Al 화합물로 피복되고, 강자성 입자 분말의 BHmax가 5MGOe 이상인 강자성 입자가 기재되어 있다. 이 강자성 입자는, 철화합물 입자 분말의 입자 표면을 Si 화합물 및/또는 Al 화합물로 피복한 후, 환원 처리를 행하고, 다음에, 질화 처리를 행하여 얻을 수 있다. 또한, 출발 원료인 철화합물 입자 분말에는, 산화철 또는 옥시수산화철이 이용된다.
특허문헌 2에는, 뫼스바우어 스펙트럼(Mossbauer spectrum)에 의해 Fe16N2 화합물상이 70% 이상으로 구성되는 강자성 입자 분말이며, 또한, 금속 원소 X를 Fe 몰 대비 0.04 ~ 25% 함유함과 함께, 입자 표면이 Si 및/또는 Al 화합물로 피복되어 있고, 강자성 입자 분말의 BHmax가 5MGOe 이상인 강자성 입자 분말이 기재되어 있다. 여기서, 금속 원소 X는, Mn, Ni, Ti, Ga, Al, Ge, Zn, Pt, Si로부터 선택되는 1종 또는 2종 이상이다.
이 강자성 입자는, BET 비표면적이 50 ~ 250㎡/g, 평균 장축 지름이 50 ~ 450nm, 아스펙트비(장축 지름/단축 지름)가 3 ~ 25이며 금속 원소 X(X는, Mn, Ni, Ti, Ga, Al, Ge, Zn, Pt, Si로부터 선택되는 1종 또는 2종 이상임)를 Fe 몰 대비 0.04 ~ 25% 함유하는 산화철 또는 옥시수산화철을 출발 원료로서 이용하여, 250㎛ 이하의 메쉬를 통과한 철화합물 입자 분말에 대해서 환원 처리를 행하고, 다음에, 질화 처리를 행하여 얻어진다.
특허문헌 3에는, 뫼스바우어 스펙트럼에 의해 Fe16N2 화합물상이 80% 이상의 비율로 구성되는 강자성 입자 분말이며, 강자성 입자는 입자 외각(Outer shell)에 FeO가 존재함과 함께 FeO의 막 두께가 5nm 이하인 강자성 입자 분말이 기재되어 있다.
이 강자성 입자 분말은, 평균 장축 지름이 40 ~ 5000nm, 아스펙트비(장축 지름/단축 지름)가 1 ~ 200의 산화철 또는 옥시수산화철을 출발 원료로서 이용하고, D50이 40㎛ 이하, D90이 150㎛ 이하가 되도록 응집입자 분산처리를 행하고, 또한 250㎛ 이하의 메쉬를 통과한 철화합물 입자 분말을 160 ~ 420℃에서 수소 환원하고, 130 ~ 170℃에서 질화 처리하여 얻어진다.
일본 공개특허공보 2011-91215호 일본 공개특허공보 2012-69811호 일본 공개특허공보 2012-149326호
그러나, 상술한 특허문헌 1 ~ 3에서는, 단축과 장축의 길이가 다른 자성 입자가 얻어지지만, 구 형상의 자성 입자를 얻을 수 없다. 이 단축과 장축의 길이가 다른 자성 입자는, 자기 특성의 이방성이 있다. 또한, 특허문헌 1 ~ 3에서 얻어지는 자성 입자는 고온으로 환원 처리할 때에, 융착되는 경향이 있고, 분산성이 나쁘다.
본 발명의 목적은, 상기 종래 기술에 근거하는 문제점을 해소하고, 질화철의 미립자의 표면에 산화규소층이 형성된 코어 쉘 구조의 구 형상의 자성 입자를 제조할 수 있는 자성 입자의 제조방법, 구 형상의 자성 입자 및 구 형상의 자성 입자를 이용한 자성체를 제공하는 것에 있다.
상기 목적을 달성하기 위해서, 본 발명의 제1의 형태는, 철의 미립자의 표면에 산화규소층이 형성된 코어 쉘 구조의 원료 입자에 산화 처리를 실시하는 산화 처리 공정과, 산화 처리된 원료 입자에 환원 처리를 실시하는 환원 처리 공정과, 환원 처리된 원료 입자에 질화 처리를 실시하고, 코어 쉘 구조를 유지하면서, 철의 미립자를 질화시키는 질화 처리 공정을 가지는 것을 특징으로 하는 자성 입자의 제조방법을 제공하는 것이다.
산화 처리는, 원료 입자에 대해서 공기 중에서 온도 100℃ ~ 500℃, 1 ~ 20시간으로 행하는 것이 바람직하다. 보다 바람직하게는, 산화 처리는 온도 200℃ ~ 400℃, 1 ~ 10시간으로 행한다.
환원 처리는, 수소 가스와 질소 가스의 혼합 가스를 원료 입자에 공급하면서, 온도 200℃ ~ 500℃, 1 ~ 50시간으로 행하는 것이 바람직하다. 보다 바람직하게는, 환원 처리는 온도 200℃ ~ 400℃, 1 ~ 30시간으로 행한다.
질화 처리는, 질소 원소를 포함하는 가스를 원료 입자에 공급하면서, 온도 140℃ ~ 200℃, 3 ~ 50시간으로 행하는 것이 바람직하다. 보다 바람직하게는, 질화 처리는 온도 140℃ ~ 160℃, 3 ~ 20시간으로 행한다.
원료 입자는, 구 형상이며, 입경이 200nm 미만인 것이 바람직하고, 보다 바람직하게는, 5 ~ 50nm이다.
본 발명의 제2의 형태는, 질화철의 미립자의 표면에 산화규소층이 형성된 코어 쉘 구조를 가지는 구 형상 입자인 것을 특징으로 하는 자성 입자를 제공하는 것이다.
본 발명의 제3의 형태는, 질화철의 미립자의 표면에 산화규소층이 형성된 코어 쉘 구조를 가지는 구 형상 입자를 이용하여 형성된 것을 특징으로 하는 자성체를 제공하는 것이다.
본 발명에 의하면, 질화철의 미립자의 표면에 산화규소층이 형성된 코어 쉘 구조의 구 형상의 자성 입자를 얻을 수 있다. 또한, 얻어진 구 형상의 자성 입자는, 표면이 산화규소층으로 구성되어 있기 때문에, 질화철의 미립자끼리가 직접, 접촉하지 않는다. 나아가서는, 절연체인 산화규소층에 의해, 질화철의 미립자가 다른 입자와 전기적으로 격리되고, 자성 입자 사이에 흐르는 전류를 억제할 수 있다. 이것에 의해, 전류에 의한 손실을 억제할 수 있다.
본 발명의 자성 입자, 및 이 자성 입자를 이용하여 형성된 자성체는, 미립자가 질화철로 구성되어 있기 때문에, 높은 보자력을 가지고, 우수한 자기 특성을 가진다.
도 1(a)는, 본 발명의 자성 입자를 나타내는 모식적 단면도이며, (b)는, 원료 입자를 나타내는 모식적 단면도이다.
도 2는 본 발명의 자성 입자의 제조방법을 나타내는 플로우차트이다.
도 3은 자성 입자 및 원료 입자의 자기 히스테리시스 곡선(B-H곡선)의 일례를 나타내는 그래프이다.
도 4(a)는, 처리 전의 원료 입자의 X선 회절법에 의한 결정 구조의 해석 결과를 나타내는 그래프이며, (b)는, 산화 처리 후의 원료 입자의 X선 회절법에 의한 결정 구조의 해석 결과를 나타내는 그래프이며, (c)는, 산화 처리 후에, 환원 처리 하고, 또한 질화 처리하여 얻어진 자성 입자의 X선 회절법에 의한 결정 구조의 해석 결과를 나타내는 그래프이다.
도 5는 도 4(a) ~ (c)에 대응하는 것이며, (a)는 처리 전의 원료 입자의 TEM상을 나타내는 모식도이며, (b)는 도 5(a)의 확대도이며, (c)는 산화 처리 후의 원료 입자의 TEM상을 나타내는 모식도이며, (d)는 도 5(c)의 확대도이며, (e)는 자성 입자의 TEM상을 나타내는 모식도이며, (f)는 도 5(e)의 확대도이다.
도 6(a), (b)는, 원료 입자의 질화 처리 후의 X선 회절법에 의한 결정 구조의 해석 결과를 나타내는 그래프이며, (c)는, 레퍼런스인 Fe16N2의 X선 회절법에 의한 결정 구조의 해석 결과를 나타내는 그래프이며, (d)는, 원료 입자의 질화 처리 전의 X선 회절법에 의한 결정 구조의 해석 결과를 나타내는 그래프이며, (e)는, 도 6(b)의 주요부 확대도이다.
이하에, 첨부의 도면에 나타내는 적합한 실시형태에 근거하여, 본 발명의 자성 입자의 제조방법, 자성 입자 및 자성체를 상세하게 설명한다.
도 1(a)는, 본 발명의 자성 입자를 나타내는 모식적 단면도이며, (b)는, 원료 입자를 나타내는 모식적 단면도이다. 도 2는, 본 발명의 자성 입자의 제조방법을 나타내는 플로우차트이다. 도 3은, 자성 입자 및 원료 입자의 자기 히스테리시스 곡선(B-H곡선)의 일례를 나타내는 그래프이다.
도 1(a)에 나타내는 바와 같이, 본 실시형태의 자성 입자(10)는, 질화철의 미립자(12)(코어)의 표면에, 산화규소층(SiO2층)(14)(쉘)이 형성된 코어 쉘 구조를 가지는 구 형상 입자이다.
자성 입자(10)는, 구 형상 입자이며, 그 입경이 50nm 정도이지만, 바람직하게는, 5 ~ 50nm이다. 또한, 입경은 비표면적 측정으로부터 환산하여 구한 값이다.
자성 입자(10)에 있어서, 질화철의 미립자(12)가, 자기 특성을 담당하는 것이다. 질화철로서는, 보자력 등의 자기 특성의 관점으로부터, 질화철 중에서, 자기 특성이 우수한 Fe16N2가 가장 바람직하다. 이 때문에, 미립자(12)는, Fe16N2 단상인 것이 가장 바람직하다. 또한, 미립자(12)가 Fe16N2 단상인 경우, 자성 입자(10)를 Fe16N2/SiO2 복합 미립자로도 나타낸다.
또한, 미립자(12)는, Fe16N2 단상이 아니고, 다른 질화철이 혼합하는 조성이라도 좋다.
산화규소층(14)는, 미립자(12)를 전기적으로 격리하고, 다른 자성 입자 등과 미립자(12)가 접촉하는 것을 방지함과 함께, 질화철의 미립자(12)의 산화 등을 억제하는 것이다. 이 산화규소층(14)는 절연체이다.
자성 입자(10)는, 질화철의 미립자(12)를 가지기 때문에, 높은 보자력을 가지고, 우수한 자기 특성을 가진다. 미립자(12)가 Fe16N2 단상인 경우, 후에 상세하게 설명하지만, 보자력으로서 예를 들면, 1700 0e(약 135.3kA/m)가 얻어진다. 또한, 자성 입자(10)는, 분산성도 양호하다.
또한, 자성 입자(10)는, 절연체인 산화규소층(14)에 의해, 자성 입자(10) 사이에 흐르는 전류를 억제할 수 있고, 전류에 의한 손실을 억제할 수 있다.
이러한 자성 입자(10)를 이용하여 형성한 자성체는, 높은 보자력을 가짐과 함께, 우수한 자기 특성을 가진다. 자성체로서는, 예를 들면, 본드 자석을 들 수 있다.
다음에, 자성 입자(10)의 제조방법에 대해서 설명한다.
자성 입자(10)는, 도 1(b)에 나타내는 원료 입자(20)를 원료로서 준비한다.
다음에, 도 2에 나타내는 바와 같이, 원료 입자(20)에 산화 처리를 실시하고, 철(Fe)의 미립자(22)를 산화시킨다(스텝 S10). 그 후, 원료 입자(20)에 환원 처리를 실시하고, 산화된 철(Fe)의 미립자(22)를 환원한다(스텝 S12). 다음에, 원료 입자(20)에 질화 처리를 실시하고, 환원된 철(Fe)의 미립자(22)를 질화한다(스텝 S14). 이것에 의해, 질화철의 미립자(12)를 가지는 자성 입자(10)를 제조할 수 있다.
원료 입자(20)는, 철(Fe)의 미립자(22)의 표면에, 산화규소층(24)이 형성된 코어 쉘 구조를 가지는 것이다. 원료 입자(20)를 Fe/SiO2 입자로도 나타낸다.
원료 입자(20)는, 구 형상이며, 그 입경이 50nm 정도이지만, 바람직하게는, 5 ~ 50nm이다. 또한, 입경은 비표면적 측정으로부터 환산하여 구한 값이다.
상술한 바와 같이 산화 처리 공정(스텝 S10)에 의해 철의 미립자(22)를 산화하고, 그 후, 환원 처리 공정(스텝 S12)에 의해, 산화 처리한 철의 미립자(22)를 환원한 후, 질화 처리 공정(스텝 S14)에 의해, 철의 미립자(22)를 질화하고, 질화철, 가장 바람직하게는 Fe16N2의 미립자로 한다. 이 때, 산화규소층(24)은, 안정된 물질이며, 산화 처리, 환원 처리 및 질화 처리에 의해, 다른 물질로 바뀌는 일이 없다. 이 때문에, 코어 쉘 구조가 유지된 상태로, 코어의 철의 미립자(22)를 산화하고, 환원하고, 그리고 질화하고, 질화철의 미립자(12)로 바꾸어서, 도 1(a)에 나타내는 자성 입자(10)가 얻어진다.
제조된 자성 입자(10)는, 후에 나타내지만 각 자성 입자(10)가 응집되는 일 없이, 높은 분산성을 가진다.
본 발명에서는, 원료 입자(20)를, 산화 처리, 환원 처리 및 질화 처리하는 것으로, 자성 입자(10)를 제조할 수 있다.
산화 처리의 방법으로서는, 원료 입자(20)를, 예를 들면, 유리 용기에 넣고, 이 용기 내에, 공기를 공급한다. 원료 입자(20)에 대해서 공기 중에서, 예를 들면, 온도 100℃ ~ 500℃, 1 ~ 20시간으로 산화 처리가 이루어진다. 산화 처리의 방법으로서보다 바람직하게는, 온도 200℃ ~ 400℃, 1 ~ 10시간으로 행한다.
산화 처리는, 온도가 100℃ 미만에서는, 산화가 충분하지 않다. 한편, 온도가 500℃를 초과하면, 원료 입자끼리가 융착된다. 또한, 산화 반응이 포화되고, 산화가 그 이상 진행되지 않는다.
또한, 산화 처리는, 산화 처리 시간이 1시간 미만에서는, 산화가 충분하지 않다. 한편, 산화 처리 시간이 20시간을 초과하면, 원료 입자끼리가 융착된다. 또한, 산화 반응이 포화되고, 산화가 그 이상 진행되지 않는다.
환원 처리의 방법으로서는, 산화 처리 후의 원료 입자(20)를, 예를 들면, 유리 용기에 넣고, 이 용기 내에, H2 가스(수소 가스)와 N2 가스(질소 가스)의 혼합 기체를 공급한다. 혼합 기체를 공급한 상태에서, 원료 입자(20)에 대해서, 예를 들면, 온도 200℃ ~ 500℃, 1 ~ 50시간으로 환원 처리가 이루어진다. 환원 처리의 방법으로서보다 바람직하게는, 온도 200℃ ~ 400℃, 1 ~ 30시간으로 행한다.
또한, 혼합 기체의 수소 가스의 농도는 상한치가 4체적% 정도(폭발 한계 미만)이다.
또한, 환원 처리의 방법에는, 상기 혼합 가스 이외에, H2 가스(수소 가스) 단체를 이용해도 좋다. 즉, 환원 처리에 100체적%의 수소 가스를 이용할 수도 있다. 취급의 관점에서, 수소 가스의 농도는 낮은 것이 바람직하다.
환원 처리는, 온도가 200℃ 미만에서는, 환원이 충분하지 않다. 한편, 온도가 500℃를 초과하면, 원료 입자끼리가 융착됨과 함께, 환원 반응이 포화되고, 환원이 그 이상 진행되지 않는다.
또한, 환원 처리는, 환원 처리 시간이 1시간 미만에서는, 환원이 충분하지 않다. 한편, 환원 처리 시간이 50시간을 초과하면, 원료 입자끼리가 융착됨과 함께, 환원 반응이 포화되고, 환원이 그 이상 진행되지 않는다.
질화 처리의 방법으로서는, 원료 입자(20)를, 예를 들면, 유리 용기에 넣고, 이 용기 내에, 질소원으로서 질소 원소를 포함한 가스, 예를 들면, NH3 가스(암모니아 가스)를 공급한다. NH3 가스(암모니아 가스)를 공급한 상태에서, 원료 입자(20)에 대해서, 예를 들면, 온도 140℃ ~ 200℃, 3 ~ 50시간으로 질화 처리가 이루어진다. 질화 처리의 방법으로서보다 바람직하게는, 온도 140℃ ~ 160℃, 3 ~ 20시간으로 행한다.
질화 처리에 대해서는, 질화 처리 온도가 140℃ 미만에서는, 질화가 충분하지 않다. 또한, 질화 처리 온도가 200℃를 초과하면, 원료 입자끼리가 융착됨과 함께 질화가 포화된다.
또한, 질화 처리 시간은, 3 ~ 50시간인 것이 바람직하다. 질화 처리 시간이 3시간 미만에서는, 질화가 충분하지 않다. 한편, 질화 처리 시간이 50시간을 초과하면, 원료 입자끼리가 융착됨과 함께 질화가 포화된다.
원료로서 상술한 바와 같이 도 1(b)에 나타내는 원료 입자(20)를 이용했지만, 이것으로 한정되는 것은 아니다. 원료로서는, 원료 입자(20)와 다른 입자가 혼재한 것이라도 좋다. 다른 입자란, 예를 들면, 원료 입자(20)와 동일한 정도의 사이즈이며, 철(Fe)의 미립자의 표면에, 산화철층이 형성된 코어 쉘 구조를 가지는 것이다. 산화철은 특별히 한정되는 것이 아니고, 예를 들면, Fe2O3 및 Fe3O4 등이다.
원료 입자(20)와 다른 입자가 혼재한 것을 원료로서 이용하고, 상술한 일련의 산화 처리 공정, 환원 처리 공정 및 질화 처리 공정을 행했을 경우, 다른 입자의 비율이 체적%에서 반 정도라도, 도 1(a)에 나타내는 자성 입자(10)가 형성되는 것은 물론, 질화철의 미립자(코어)의 표면에 산화철층(쉘)이 형성된 코어 쉘 구조를 가지는 자성 입자가 형성되는 것을 확인하고 있다. 상기 산화철층을 가지는 자성 입자는, 도 1(a)에 나타내는 자성 입자(10)와 동일한 정도의 사이즈인 것도 확인하고 있다. 게다가, 자성 입자(10)와 상기 산화철층을 가지는 자성 입자는 고착되지 않고 분산된다.
또한, 상술한 원료 입자(20)와 다른 입자가 혼재한 것을 원료로서 이용하여, 질화 처리 공정을 행하는 것만으로, 다른 입자의 비율이 체적%에서 반 정도라도, 상술한 바와 같이 동일한 정도의 사이즈로, 자성 입자(10)와 상기 산화철층을 가지는 자성 입자를 형성할 수 있고, 게다가 고착되지 않고 분산되는 것을 확인하고 있다. 이와 같이, 원료에 원료 입자(20)와 다른 입자가 혼재한 것을 이용해도, 자성 입자(10)를 얻을 수 있고, 이에 더하여 상술한 산화철층을 가지는 자성 입자를 얻을 수 있다.
본 발명에서는, 원료의 원료 입자(20)의 코어 쉘 구조를 유지하여, 코어의 철의 미립자(22)를 산화하고, 환원하고, 질화하여, 질화철의 미립자(12)로 할 수 있으면, 산화 처리, 환원 처리 및 질화 처리의 어느 방법도, 상술한 산화 처리방법, 환원 처리방법 및 질화 처리방법으로 한정되는 것은 아니다.
또한, 도 1(b)에 나타내는 원료 입자(20)(Fe/SiO2 입자)는, 예를 들면, 일본 특허공보 제4004675호(산화물 피복 금속 미립자의 제조방법)에 개시되고 있는 열 플라즈마를 이용한 초미립자의 제조방법에 의해 제조할 수 있다. 이 때문에, 그 상세한 설명은 생략한다. 또한, 원료 입자(20)(Fe/SiO2 입자)를 제조할 수 있으면, 원료 입자(20)의 제조방법은, 열 플라즈마를 이용한 것으로 한정되는 것은 아니다.
원료에 이용한 원료 입자(20)와, 자성 입자(10)의 자기 특성을 측정했다. 그 결과를 도 3에 나타낸다.
도 3에 나타내는 바와 같이, 원료 입자(20)는, 부호 A로 나타내는 자기 히스테리시스 곡선(B-H곡선)이 얻어지고, 자성 입자(10)는, 부호 B로 나타내는 자기 히스테리시스 곡선(B-H곡선)이 얻어졌다. 자기 히스테리시스 곡선 A와 자기 히스테리시스 곡선 B로부터 알 수 있듯이, 자성 입자(10)가 자기 특성이 우수하다. 자성 입자(10)는, 코어를 질화철의 미립자(12)로 하는 것으로써, 코어가 철의 원료 입자(20)에 비하여 높은 보자력, 예를 들면, 1700 0e(약 135.3kA/m)가 얻어진다. 또한, 포화 자속밀도로서 93.5emu/g(약 1.15×10-4 Wb·m/kg)가 얻어진다.
본 출원인은, 원료로서 평균입경이 10nm의 원료 입자(Fe/SiO2 입자)를 이용하고, 원료 입자(Fe/SiO2 입자)에 대해서 산화 처리, 환원 처리 및 질화 처리를, 그 순서로 실시하여 자성 입자를 형성했다. 제조 과정의 원료 입자 및 생성된 자성 입자에 대해서, X선 회절법에 의한 결정 구조의 해석을 행함과 함께, TEM(투과 전자현미경)를 이용하여 상태의 관찰을 행했다. 도 4(a) ~ (c) 및 도 5(a) ~ (f)에 나타내는 결과가 얻어졌다.
도 4(a)는, 처리 전의 원료 입자의 X선 회절법에 의한 결정 구조의 해석 결과를 나타내는 그래프이며, (b)는, 산화 처리 후의 원료 입자의 X선 회절법에 의한 결정 구조의 해석 결과를 나타내는 그래프이며, (c)는, 산화 처리 후에, 환원 처리하고, 또한 질화 처리하여 얻어진 자성 입자의 X선 회절법에 의한 결정 구조의 해석 결과를 나타내는 그래프이다.
도 5(a) ~ (f)는, 도 4(a) ~ (c)에 대응하는 것이며, 도 5(a)는 처리 전의 원료 입자의 TEM상을 나타내는 모식도이며, (b)는 도 5(a)의 확대도이며, 도 5(c)는 산화 처리 후의 원료 입자의 TEM상을 나타내는 모식도이며, (d)는 도 5(c)의 확대도이며, 도 5(e)는 자성 입자의 TEM상을 나타내는 모식도이며, (f)는 도 5(e)의 확대도이다.
산화 처리는, 공기 중에서, 온도 300℃에서 4시간의 조건으로 행했다.
환원 처리는, 수소 존재 분위기에서, 온도 300℃에서 10시간의 조건으로 행했다. 또한, 수소 존재 분위기의 형성에는, H2 가스 농도 100체적%의 H2 가스(수소 가스)를 이용했다.
질화 처리는, 암모니아 가스 분위기에서, 온도 145℃에서 10시간의 조건으로 행했다.
도 4(a)는 원료 입자의 결정 구조의 해석 결과이며, 도 5(a)는 원료 입자의 TEM상이며, (b)는 (a)의 확대도이다. 도 4(a)에 나타내는 바와 같이, 원료 입자의 조성은 Fe/SiO2이며, 도 5(a) 및 (b)에 나타내는 바와 같이 원료 입자는 코어 쉘 구조이다.
도 4(b)는 산화 처리 후의 원료 입자의 결정 구조의 해석 결과이며, 도 5(c)는 산화 처리 후의 원료 입자의 TEM상이며, 도 5(d)는 도 5(c)의 확대도이다. 도 4(b)에 나타내는 바와 같이 산화철의 회절 피크가 있고, 철(Fe)의 미립자가 산화되어 있다. 도 5(c) 및 (d)에 나타내는 바와 같이, 산화 처리 후의 원료 입자는 코어 쉘 구조이다.
도 4(c)는 얻어진 자성 입자의 결정 구조의 해석 결과이며, 도 5(e)는 자성 입자의 TEM상이며, (f)는 도 5(e)의 확대도이다. 도 4(c)에 나타내는 바와 같이 질화철(Fe16N2)로 변화하고 있고, 도 5(e) 및 도 5(f)에 나타내는 바와 같이, 자성 입자는 코어 쉘 구조이다. 또한, 각 자성 입자는, 응집되는 일 없이 분산하고 있다.
비교를 위하여, 원료로서 평균입경이 33nm의 원료 입자(Fe/SiO2 입자)를 이용하고, 원료 입자(Fe/SiO2 입자)에 대해서 산화 처리를 하지 않고 환원 처리 및 질화 처리를, 그 순서로 실시했다. 산화 처리를 하지 않고 환원 처리하고, 질화 처리한 원료 입자에 대해서, X선 회절법에 의한 결정 구조의 해석을 행했는데, 도 6(a), (b)에 나타내는 결과가 얻어졌다.
도 6(a)는, 산화 처리를 하지 않고 수소 가스(100 체적%) 분위기 중에서 환원 처리 300℃에서 3시간 환원 처리한 후, 질화 처리 온도 175℃에서 5시간 질화 처리한 후의 결정 구조의 해석 결과이며, 도 6(b)은, 산화 처리를 하지 않고 수소 가스(100 체적%) 분위기 중에서 환원 처리 300℃에서 3시간 환원 처리한 후, 질화 처리 온도 185℃에서 5시간 질화 처리한 후의 결정 구조의 해석 결과이다. 도 6(c)은, 레퍼런스인 Fe16N2의 X선 회절법에 의한 결정 구조의 해석 결과이다. 도 6(d)은, 원료 입자의 결정 구조의 해석 결과이다. 도 6(e)은, 도 6(b)의 영역 D의 확대도이다.
산화 처리를 하지 않고 환원 처리 및 질화 처리를 행한 도 6(a), (b), (d)와 레퍼런스인 도 6(c)을 비교하면, 산화 처리를 하지 않고 환원 처리 후에 질화 처리했을 경우는 Fe16N2가 생성되지만, Fe4N도 생성하는 것을 알 수 있다. 즉, 산화 처리를 행하지 않는 경우에는, Fe16N2 단상을 얻을 수 없다.
본 발명은, 기본적으로 이상과 같이 구성되는 것이다. 이상, 본 발명의 자성 입자의 제조방법, 자성 입자 및 자성체에 대해서 상세하게 설명했지만, 본 발명은 상기 실시형태로 한정되지 않고, 본 발명의 주지를 일탈하지 않는 범위에 있어서, 여러 가지의 개량 또는 변경을 해도 좋은 것은 물론이다.
10: 자성 입자
12, 22: 미립자
14, 24: 산화규소층
20: 원료 입자

Claims (11)

  1. 철의 미립자의 표면에 산화규소층이 형성된 코어 쉘 구조의 원료 입자에 산화 처리를 실시하는 산화 처리 공정과,
    상기 산화 처리된 상기 원료 입자에 환원 처리를 실시하는 환원 처리 공정과,
    상기 환원 처리된 상기 원료 입자에 질화 처리를 실시하고, 코어 쉘 구조를 유지하면서, 철의 미립자를 질화시키는 질화 처리 공정을 가지는 것을 특징으로 하는 자성 입자의 제조방법.
  2. 제 1 항에 있어서,
    상기 산화 처리는, 상기 원료 입자에 대해서 공기 중에서 온도 100℃ ~ 500℃, 1 ~ 20시간으로 행하는 자성 입자의 제조방법.
  3. 제 1 항에 있어서,
    상기 환원 처리는, 수소 가스와 질소 가스의 혼합 가스를 상기 원료 입자에 공급하면서, 온도 100℃ ~ 500℃, 1 ~ 20시간으로 행하는 자성 입자의 제조방법.
  4. 제 2 항에 있어서,
    상기 환원 처리는, 수소 가스와 질소 가스의 혼합 가스를 상기 원료 입자에 공급하면서, 온도 100℃ ~ 500℃, 1 ~ 20시간으로 행하는 자성 입자의 제조방법.
  5. 제 1 항에 있어서,
    상기 질화 처리는, 질소 원소를 포함하는 가스를 상기 원료 입자에 공급하면서, 온도 140℃ ~ 200℃, 3 ~ 50시간으로 행하는 자성 입자의 제조방법.
  6. 제 2 항에 있어서,
    상기 질화 처리는, 질소 원소를 포함하는 가스를 상기 원료 입자에 공급하면서, 온도 140℃ ~ 200℃, 3 ~ 50시간으로 행하는 자성 입자의 제조방법.
  7. 제 3 항에 있어서,
    상기 질화 처리는, 질소 원소를 포함하는 가스를 상기 원료 입자에 공급하면서, 온도 140℃ ~ 200℃, 3 ~ 50시간으로 행하는 자성 입자의 제조방법.
  8. 제 4 항에 있어서,
    상기 질화 처리는, 질소 원소를 포함하는 가스를 상기 원료 입자에 공급하면서, 온도 140℃ ~ 200℃, 3 ~ 50시간으로 행하는 자성 입자의 제조방법.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 원료 입자는, 구 형상이며, 입경이 200nm 미만인 자성 입자의 제조방법.
  10. 삭제
  11. 삭제
KR1020167024991A 2014-02-10 2015-01-20 자성 입자의 제조방법 KR102229915B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2014-023851 2014-02-10
JP2014023851 2014-02-10
PCT/JP2015/051403 WO2015118943A1 (ja) 2014-02-10 2015-01-20 磁性粒子の製造方法、磁性粒子及び磁性体

Publications (2)

Publication Number Publication Date
KR20160120318A KR20160120318A (ko) 2016-10-17
KR102229915B1 true KR102229915B1 (ko) 2021-03-18

Family

ID=53777750

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167024991A KR102229915B1 (ko) 2014-02-10 2015-01-20 자성 입자의 제조방법

Country Status (6)

Country Link
US (2) US10128031B2 (ko)
JP (1) JP6461828B2 (ko)
KR (1) KR102229915B1 (ko)
CN (1) CN106062907B (ko)
TW (1) TWI635518B (ko)
WO (1) WO2015118943A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10310374B2 (en) 2016-08-18 2019-06-04 International Business Machines Corporation Repatternable nanoimprint lithography stamp
JP6795791B2 (ja) * 2017-06-29 2020-12-02 Tdk株式会社 コイル部品およびlc複合部品
JP7111549B2 (ja) * 2018-07-27 2022-08-02 Tdk株式会社 窒化鉄系磁石
JP2022533257A (ja) * 2019-05-22 2022-07-21 ニロン マグネティクス,インコーポレイティド 高い飽和磁化を有する保磁力強化された窒化鉄ナノ粒子
EP4095698A4 (en) 2020-01-20 2023-03-15 Fujitsu Limited PROCESSOR, SIMULATION PROGRAM, ASSEMBLER PROGRAM AND INFORMATION PROCESSING PROGRAM
US11309107B2 (en) 2020-02-21 2022-04-19 Niron Magnetics, Inc. Anisotropic iron nitride permanent magnets

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036183A (ja) * 2005-06-21 2007-02-08 Fujifilm Holdings Corp 磁性粒子の製造方法、磁性粒子、磁気記録媒体
JP2007250096A (ja) * 2006-03-16 2007-09-27 Fujifilm Corp 磁気記録媒体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222483A (ja) * 1990-12-19 1993-08-31 Nkk Corp 窒化鉄系高密度焼結体の製造方法
JP3580435B2 (ja) 1994-10-12 2004-10-20 日鉄鉱業株式会社 窒化物粉体及びその製造方法
JP3932326B2 (ja) 1998-05-22 2007-06-20 Dowaエレクトロニクス株式会社 窒化鉄磁性材料の製法
GB2414852B (en) * 2003-02-19 2007-05-02 Hitachi Maxell Magnetic recording medium
JP4734602B2 (ja) * 2004-12-21 2011-07-27 Dowaエレクトロニクス株式会社 保存安定性に優れた窒化鉄系磁性粉末
JP4802795B2 (ja) 2006-03-23 2011-10-26 Tdk株式会社 磁性粒子及びその製造方法
JP2009084115A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp 窒化鉄粉末の製造方法、窒化鉄粉末および磁気記録媒体
JP5769223B2 (ja) 2009-10-22 2015-08-26 戸田工業株式会社 強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石
JP5822188B2 (ja) 2010-09-24 2015-11-24 戸田工業株式会社 強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石
JP5831866B2 (ja) 2011-01-21 2015-12-09 戸田工業株式会社 強磁性粒子粉末及びその製造方法、並びに異方性磁石、ボンド磁石及び圧粉磁石

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036183A (ja) * 2005-06-21 2007-02-08 Fujifilm Holdings Corp 磁性粒子の製造方法、磁性粒子、磁気記録媒体
JP2007250096A (ja) * 2006-03-16 2007-09-27 Fujifilm Corp 磁気記録媒体

Also Published As

Publication number Publication date
KR20160120318A (ko) 2016-10-17
JP6461828B2 (ja) 2019-01-30
TWI635518B (zh) 2018-09-11
US20180137960A1 (en) 2018-05-17
CN106062907A (zh) 2016-10-26
TW201603059A (zh) 2016-01-16
CN106062907B (zh) 2018-05-11
JPWO2015118943A1 (ja) 2017-03-23
WO2015118943A1 (ja) 2015-08-13
US10128031B2 (en) 2018-11-13
US20170186521A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
KR102229915B1 (ko) 자성 입자의 제조방법
JP4457682B2 (ja) 圧粉磁心およびその製造方法
JP5708454B2 (ja) アルコール系溶液および焼結磁石
JP5831866B2 (ja) 強磁性粒子粉末及びその製造方法、並びに異方性磁石、ボンド磁石及び圧粉磁石
US20130277601A1 (en) Composite, soft-magnetic powder and its production method, and dust core formed thereby
JP6296997B2 (ja) 磁性粒子の製造方法
JP5822188B2 (ja) 強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石
CN106663513B (zh) 磁芯、磁芯的制造方法以及线圈部件
WO2012147833A1 (ja) 強磁性粒子粉末の製造方法、異方性磁石、ボンド磁石及び圧粉磁石
JP2009185312A (ja) 複合軟磁性材料、それを用いた圧粉磁心、およびそれらの製造方法
JP4917355B2 (ja) 圧粉磁心
JP2008297622A (ja) 軟磁性材料、圧粉磁心、軟磁性材料の製造方法および圧粉磁心の製造方法
JP4586399B2 (ja) 軟磁性材料、圧粉磁心、および軟磁性材料の製造方法
WO2014148502A1 (ja) 磁性材料及びその製造方法及びその製造に用いるコーティング液
JP2008041685A (ja) 圧粉磁心
JP2020015968A (ja) 窒化鉄系磁石
JP2018145472A (ja) 窒化鉄系磁性粉末及びこれを含むボンド磁石

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant