WO2015118943A1 - 磁性粒子の製造方法、磁性粒子及び磁性体 - Google Patents
磁性粒子の製造方法、磁性粒子及び磁性体 Download PDFInfo
- Publication number
- WO2015118943A1 WO2015118943A1 PCT/JP2015/051403 JP2015051403W WO2015118943A1 WO 2015118943 A1 WO2015118943 A1 WO 2015118943A1 JP 2015051403 W JP2015051403 W JP 2015051403W WO 2015118943 A1 WO2015118943 A1 WO 2015118943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- raw material
- magnetic
- treatment
- iron
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/061—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/062—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/056—Submicron particles having a size above 100 nm up to 300 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a spherical magnetic particle having a core-shell structure in which a silicon oxide layer is formed on the surface of iron nitride fine particles, a method for producing the spherical magnetic particle, and a magnetic body using the spherical magnetic particle.
- Patent Document 1 a ferromagnetic particles consisting of Fe 16 N 2 single phase, the particle surface of the Fe 16 N 2 particles are coated with Si and / or Al compound, the BH max of the ferromagnetic particles Ferromagnetic particles greater than 5 MGOe are described.
- the ferromagnetic particles can be obtained by coating the surface of the iron compound particle powder with a Si compound and / or an Al compound, performing a reduction treatment, and then performing a nitriding treatment.
- iron oxide or iron oxyhydroxide is used for the iron compound particle powder which is a starting material.
- Patent Document 2 includes a ferromagnetic particle powder having a Fe 16 N 2 compound phase of 70% or more from a Mossbauer spectrum, and contains the metal element X in an amount of 0.04 to 25% relative to Fe mole, A ferromagnetic particle powder is described in which the particle surface is coated with Si and / or an Al compound, and the BH max of the ferromagnetic particle powder is 5 MGOe or more.
- the metal element X is one or more selected from Mn, Ni, Ti, Ga, Al, Ge, Zn, Pt, and Si.
- the ferromagnetic particles have a BET specific surface area of 50 to 250 m 2 / g, an average major axis diameter of 50 to 450 nm, an aspect ratio (major axis diameter / minor axis diameter) of 3 to 25, and a metal element X (X is , Mn, Ni, Ti, Ga, Al, Ge, Zn, Pt, Si) or iron oxide or iron oxyhydroxide containing 0.04 to 25% by mole of Fe mole It is obtained by reducing the iron compound particle powder that has been passed through a mesh of 250 ⁇ m or less as a raw material, and then performing a nitriding treatment.
- Patent Document 3 discloses a ferromagnetic particle powder having a Fe 16 N 2 compound phase of 80% or more based on the Mossbauer spectrum.
- the ferromagnetic particle has FeO in the outer shell of the particle and has a film thickness of FeO. Describes ferromagnetic particle powders having a diameter of 5 nm or less.
- This ferromagnetic particle powder uses iron oxide or iron oxyhydroxide having an average major axis diameter of 40 to 5000 nm and an aspect ratio (major axis diameter / minor axis diameter) of 1 to 200 as a starting material, and D50 is 40 ⁇ m or less.
- the agglomerated particles are dispersed so that D90 is 150 ⁇ m or less, and the iron compound particle powder that has passed through a mesh of 250 ⁇ m or less is reduced with hydrogen at 160 to 420 ° C. and nitridized at 130 to 170 ° C.
- Patent Documents 1 to 3 described above although magnetic particles having different short axis and long axis lengths can be obtained, spherical magnetic particles cannot be obtained. Magnetic particles having different short axis and long axis lengths have anisotropy in magnetic properties. In addition, the magnetic particles obtained in Patent Documents 1 to 3 tend to be fused when subjected to reduction treatment at a high temperature and have poor dispersibility.
- An object of the present invention is to solve the problems based on the prior art and to produce a magnetic particle having a core-shell structure in which a silicon oxide layer is formed on the surface of iron nitride fine particles.
- the object is to provide spherical magnetic particles and a magnetic body using the spherical magnetic particles.
- the first aspect of the present invention includes an oxidation treatment step in which a raw material particle having a core-shell structure in which a silicon oxide layer is formed on the surface of iron fine particles is oxidized, and an oxidized raw material Production of magnetic particles comprising: a reduction treatment step for subjecting the particles to a reduction treatment; and a nitridation treatment step of nitriding the raw material particles subjected to the reduction treatment to nitride iron fine particles while maintaining the core-shell structure
- a method is provided.
- the oxidation treatment is preferably performed on the raw material particles in air at a temperature of 100 ° C. to 500 ° C. for 1 to 20 hours. More preferably, the oxidation treatment is performed at a temperature of 200 ° C. to 400 ° C. for 1 to 10 hours.
- the reduction treatment is preferably performed at a temperature of 200 ° C. to 500 ° C. for 1 to 50 hours while supplying a mixed gas of hydrogen gas and nitrogen gas to the raw material particles. More preferably, the reduction treatment is performed at a temperature of 200 ° C. to 400 ° C. for 1 to 30 hours.
- the nitriding treatment is preferably performed at a temperature of 140 ° C. to 200 ° C.
- the nitriding treatment is performed at a temperature of 140 ° C. to 160 ° C. for 3 to 20 hours.
- the raw material particles are spherical and preferably have a particle size of less than 200 nm, more preferably 5 to 50 nm.
- the second aspect of the present invention provides magnetic particles characterized by being spherical particles having a core-shell structure in which a silicon oxide layer is formed on the surface of iron nitride fine particles.
- a magnetic material characterized in that it is formed using spherical particles having a core-shell structure in which a silicon oxide layer is formed on the surface of iron nitride fine particles.
- spherical magnetic particles having a core-shell structure in which a silicon oxide layer is formed on the surfaces of iron nitride fine particles can be obtained. Further, since the obtained spherical magnetic particles are composed of a silicon oxide layer, the iron nitride fine particles are not in direct contact with each other. Further, the silicon oxide layer as an insulator electrically isolates the iron nitride fine particles from other particles, thereby suppressing the current flowing between the magnetic particles. Thereby, the loss by an electric current can be suppressed.
- the magnetic particles of the present invention and the magnetic body formed using the magnetic particles have high coercive force and excellent magnetic properties because the fine particles are composed of iron nitride.
- (A) is typical sectional drawing which shows the magnetic particle of this invention
- (b) is typical sectional drawing which shows raw material particle
- 3 is a graph showing an example of a magnetic hysteresis curve (BH curve) of magnetic particles and raw material particles.
- (A) is a graph which shows the analysis result of the crystal structure by the X-ray diffraction method of the raw material particle before a process
- (b) is the analysis result of the crystal structure by the X-ray diffraction method of the raw material particle after an oxidation process.
- FIG. 4A is a schematic diagram showing a TEM image of raw material particles before processing
- FIG. 4B is an enlarged view of FIG.
- C) is a schematic diagram showing a TEM image of raw material particles after oxidation treatment
- (d) is an enlarged view of FIG. 5 (c)
- (e) is a schematic diagram showing a TEM image of magnetic particles.
- (F) is an enlarged view of FIG.
- (A), (b) is a graph showing the analysis results of the crystal structure by X-ray diffractometry after the nitriding treatment of the raw material particles, according to (c) are X-ray diffraction method of Fe 16 N 2 is the reference It is a graph which shows the analysis result of a crystal structure, (d) is a graph which shows the analysis result of the crystal structure by the X-ray-diffraction method before the nitridation process of raw material particle, (e) is a graph of FIG.6 (b). It is a principal part enlarged view.
- FIG. 1A is a schematic cross-sectional view showing magnetic particles of the present invention
- FIG. 1B is a schematic cross-sectional view showing raw material particles.
- FIG. 2 is a flowchart showing the method for producing magnetic particles of the present invention.
- FIG. 3 is a graph showing an example of a magnetic hysteresis curve (BH curve) of magnetic particles and raw material particles. As shown in FIG.
- the magnetic particle 10 of this embodiment has a core-shell structure in which a silicon oxide layer (SiO 2 layer) 14 (shell) is formed on the surface of iron nitride fine particles 12 (core). It has spherical particles.
- the magnetic particle 10 is a spherical particle, and its particle size is about 50 nm, preferably 5 to 50 nm.
- the particle size is a value obtained by conversion from specific surface area measurement.
- the iron nitride fine particles 12 bear the magnetic properties.
- Fe 16 N 2 having excellent magnetic properties is most preferable among iron nitrides from the viewpoint of magnetic properties such as coercive force.
- the fine particles 12 are most preferably an Fe 16 N 2 single phase.
- the magnetic particles 10 are also expressed as Fe 16 N 2 / SiO 2 composite fine particles.
- the fine particles 12 may have a composition in which other iron nitride is mixed instead of the Fe 16 N 2 single phase.
- the silicon oxide layer 14 electrically isolates the fine particles 12 to prevent the fine particles 12 from coming into contact with other magnetic particles and the like, and suppresses the oxidation of the fine particles 12 of the iron nitride.
- This silicon oxide layer 14 is an insulator. Since the magnetic particle 10 has the fine particles 12 of iron nitride, it has a high coercive force and excellent magnetic properties. When the fine particles 12 are Fe 16 N 2 single phase, which will be described in detail later, for example, 1700 Oe (about 135.3 kA / m) is obtained as the coercive force. Further, the magnetic particles 10 have good dispersibility.
- the magnetic particle 10 can suppress the electric current which flows between the magnetic particles 10 by the silicon oxide layer 14 which is an insulator, and can suppress the loss by an electric current.
- a magnetic body formed using such magnetic particles 10 has high coercive force and excellent magnetic properties.
- An example of the magnetic material is a bonded magnet.
- the magnetic particles 10 are prepared using the raw material particles 20 shown in FIG. Next, as shown in FIG. 2, the raw material particles 20 are oxidized to oxidize the fine particles 22 of iron (Fe) (step S10). Thereafter, the raw material particles 20 are subjected to a reduction treatment to reduce the oxidized iron (Fe) fine particles 22 (step S12). Next, the raw material particles 20 are subjected to nitriding treatment, and the reduced iron (Fe) fine particles 22 are nitrided (step S14). Thereby, the magnetic particles 10 having the iron nitride fine particles 12 can be manufactured.
- the raw material particles 20 have a core-shell structure in which a silicon oxide layer 24 is formed on the surface of iron (Fe) fine particles 22.
- the raw material particles 20 are also expressed as Fe / SiO 2 particles.
- the raw material particles 20 are spherical and have a particle size of about 50 nm, preferably 5 to 50 nm. The particle size is a value obtained by conversion from specific surface area measurement.
- the iron fine particles 22 are oxidized by the oxidation treatment step (step S10), and then the oxidized iron fine particles 22 are reduced by the reduction treatment step (step S12), and then the nitriding treatment step (step S14).
- the iron fine particles 22 are preferably Fe 16 N 2 fine particles.
- the silicon oxide layer 24 is a stable material, and is not changed to another material by oxidation treatment, reduction treatment, and nitridation treatment. For this reason, in the state where the core-shell structure is maintained, the core iron fine particles 22 are oxidized, reduced, nitrided, and changed to the iron nitride fine particles 12 to obtain the magnetic particles 10 shown in FIG. It is done.
- the produced magnetic particles 10 have high dispersibility, as will be described later, without aggregation of the magnetic particles 10.
- the magnetic particles 10 can be produced by subjecting the raw material particles 20 to oxidation treatment, reduction treatment and nitriding treatment.
- the raw material particles 20 are placed in, for example, a glass container, and air is supplied into the container.
- the raw material particles 20 are oxidized in air at a temperature of 100 ° C. to 500 ° C. for 1 to 20 hours, for example. More preferably, the oxidation treatment is performed at a temperature of 200 ° C. to 400 ° C. for 1 to 10 hours.
- oxidation is not sufficient when the temperature is less than 100 ° C.
- the temperature exceeds 500 ° C. the raw material particles are fused. Furthermore, the oxidation reaction is saturated and the oxidation does not proceed any further.
- the oxidation treatment is not sufficiently oxidized when the oxidation treatment time is less than 1 hour. On the other hand, when the oxidation treatment time exceeds 20 hours, the raw material particles are fused. Furthermore, the oxidation reaction is saturated and the oxidation does not proceed any further.
- the raw material particles 20 after the oxidation treatment are put in, for example, a glass container, and a mixed gas of H 2 gas (hydrogen gas) and N 2 gas (nitrogen gas) is supplied into the container.
- a mixed gas of H 2 gas (hydrogen gas) and N 2 gas (nitrogen gas) is supplied into the container.
- the raw material particles 20 are reduced at, for example, a temperature of 200 ° C. to 500 ° C. for 1 to 50 hours. More preferably, the reduction treatment is performed at a temperature of 200 ° C. to 400 ° C. for 1 to 30 hours.
- the upper limit of the concentration of hydrogen gas in the mixed gas is about 4% by volume (less than the explosion limit).
- H 2 gas (hydrogen gas) alone may be used in the reduction treatment method. That is, 100% by volume of hydrogen gas can be used for the reduction treatment. From the viewpoint of handling, the concentration of hydrogen gas is preferably low.
- the reduction is not sufficient when the temperature is less than 200 ° C.
- the temperature exceeds 500 ° C.
- the raw material particles are fused together, the reduction reaction is saturated, and the reduction does not proceed any further.
- the reduction treatment is not sufficiently reduced when the reduction treatment time is less than 1 hour.
- the reduction treatment time exceeds 50 hours, the raw material particles are fused together, the reduction reaction is saturated, and the reduction does not proceed any further.
- the raw material particles 20 are put in, for example, a glass container, and a gas containing nitrogen element, for example, NH 3 gas (ammonia gas) is supplied into the container as a nitrogen source.
- a gas containing nitrogen element for example, NH 3 gas (ammonia gas)
- the raw material particles 20 are nitrided at a temperature of 140 ° C. to 200 ° C. for 3 to 50 hours, for example. More preferably, the nitriding treatment is performed at a temperature of 140 ° C. to 160 ° C. for 3 to 20 hours.
- the nitriding treatment if the nitriding treatment temperature is less than 140 ° C., nitriding is not sufficient.
- the raw material particles are fused together and nitriding is saturated.
- the nitriding time is preferably 3 to 50 hours. If the nitriding time is less than 3 hours, nitriding is not sufficient. On the other hand, if the nitriding time exceeds 50 hours, the raw material particles are fused together and nitriding is saturated.
- the raw material particles 20 shown in FIG. 1B are used as described above, but the present invention is not limited to this.
- the raw material may be a mixture of raw material particles 20 and other particles.
- the other particles are, for example, the same size as the raw material particles 20 and have a core-shell structure in which an iron oxide layer is formed on the surface of iron (Fe) fine particles.
- the iron oxide is not particularly limited, and examples thereof include Fe 2 O 3 and Fe 3 O 4 .
- the proportion of other particles is about half by volume%.
- magnetic particles having a core-shell structure in which an iron oxide layer (shell) is formed on the surface of fine particles (core) of iron nitride. It is confirmed that it is formed. It has also been confirmed that the magnetic particles having the iron oxide layer have the same size as the magnetic particles 10 shown in FIG. Moreover, the magnetic particles 10 and the magnetic particles having the iron oxide layer are dispersed without being fixed.
- the ratio of the other particles is about half by volume% only by performing the nitriding treatment process using a mixture of the above-described raw material particles 20 and other particles as a raw material, the same as described above. It has been confirmed that magnetic particles having the magnetic particles 10 and the iron oxide layer can be formed with a size of about the size and dispersed without being fixed. Thus, even if the raw material particles 20 and other particles are mixed, the magnetic particles 10 can be obtained, and in addition, the magnetic particles having the iron oxide layer can be obtained.
- oxidation treatment and reduction treatment can be performed.
- nitriding treatment method nor the nitriding treatment method is limited to the above-described oxidation treatment method, reduction treatment method and nitriding treatment method.
- the raw material particles 20 (Fe / SiO 2 particles) shown in FIG. 1B are ultrafine particles using thermal plasma disclosed in, for example, Japanese Patent No. 4004675 (manufacturing method of oxide-coated metal fine particles). It can manufacture with the manufacturing method of. For this reason, the detailed description is abbreviate
- the magnetic properties of the raw material particles 20 used as the raw material and the magnetic particles 10 were measured. The result is shown in FIG. As shown in FIG. 3, the raw material particles 20 have a magnetic hysteresis curve (BH curve) indicated by symbol A, and the magnetic particles 10 have a magnetic hysteresis curve (BH curve) indicated by symbol B. It was. As can be seen from the magnetic hysteresis curve A and the magnetic hysteresis curve B, the magnetic particles 10 have better magnetic properties.
- the magnetic particles 10 are made of iron nitride fine particles 12 as a core, whereby a high coercive force, for example, 1700 Oe (about 135.3 kA / m) is obtained compared to the iron raw material particles 20. Further, a saturation magnetic flux density of 93.5 emu / g (about 1.15 ⁇ 10 ⁇ 4 Wb ⁇ m / kg) is obtained.
- the present applicant uses raw material particles (Fe / SiO 2 particles) having an average particle diameter of 10 nm as raw materials, and sequentially performs oxidation treatment, reduction treatment and nitriding treatment on the raw material particles (Fe / SiO 2 particles). To form magnetic particles.
- the raw material particles in the production process and the generated magnetic particles were analyzed for the crystal structure by X-ray diffraction, and the state was observed using a TEM (transmission electron microscope). The results shown in FIGS. 4 (a) to (c) and FIGS. 5 (a) to (f) were obtained.
- FIG. 4A is a graph showing the analysis result of the crystal structure of the raw material particles before the treatment by the X-ray diffraction method, and FIG.
- FIGS. 5A to 5F correspond to FIGS. 4A to 4C
- FIG. 5A is a schematic diagram showing a TEM image of raw material particles before processing
- ) Is an enlarged view of FIG. 5 (a)
- FIG. 5A is a schematic diagram showing a TEM image of raw material particles before processing
- FIG. 5 (c) is a schematic view showing a TEM image of the raw material particles after the oxidation treatment, and (d) is an enlarged view of FIG. 5 (c).
- FIG.5 (e) is a schematic diagram which shows the TEM image of a magnetic particle, (f) is an enlarged view of FIG.5 (e).
- the oxidation treatment was performed in air at a temperature of 300 ° C. for 4 hours.
- the reduction treatment was performed in a hydrogen presence atmosphere at a temperature of 300 ° C. for 10 hours. Note that the formation of hydrogen-containing atmosphere, with H 2 gas concentration of 100% by volume of H 2 gas (hydrogen gas).
- the nitriding treatment was performed in an ammonia gas atmosphere at a temperature of 145 ° C. for 10 hours.
- FIG. 4A is an analysis result of the crystal structure of the raw material particles
- FIG. 5A is a TEM image of the raw material particles
- FIG. 4B is an enlarged view of FIG.
- the composition of the raw material particles is Fe / SiO 2
- the raw material particles have a core-shell structure.
- FIG. 4B shows the analysis result of the crystal structure of the raw material particles after the oxidation treatment
- FIG. 5C shows the TEM image of the raw material particles after the oxidation treatment
- FIG. 5D shows the TEM image of FIG. FIG.
- FIG. 4B there is a diffraction peak of iron oxide, and iron (Fe) fine particles are oxidized.
- FIGS. 5C and 5D the raw material particles after the oxidation treatment have a core-shell structure.
- FIG. 4C shows the analysis result of the crystal structure of the obtained magnetic particles
- FIG. 5E is a TEM image of the magnetic particles
- FIG. 4F is an enlarged view of FIG.
- the structure is changed to iron nitride (Fe 16 N 2 ).
- the magnetic particles have a core-shell structure. Each magnetic particle is dispersed without agglomeration.
- FIGS. 6A and 6B show a crystal after reduction treatment at 300 ° C. for 3 hours in an atmosphere of hydrogen gas (100% by volume) without oxidation treatment and nitriding treatment at nitriding temperature 175 ° C. for 5 hours.
- FIG. 6A shows a crystal after reduction treatment at 300 ° C. for 3 hours in an atmosphere of hydrogen gas (100% by volume) without oxidation treatment and nitriding treatment at nitriding temperature 175 ° C. for 5 hours.
- FIG. 6B shows the structural analysis result.
- FIG. 6B shows a reduction treatment at 300 ° C. for 3 hours in an atmosphere of hydrogen gas (100% by volume) without oxidation treatment, followed by a nitriding treatment temperature of 185 ° C. It is an analysis result of the crystal structure after performing time nitriding treatment.
- FIG. 6C shows the analysis result of the crystal structure of the reference Fe 16 N 2 by the X-ray diffraction method.
- FIG. 6D shows the analysis result of the crystal structure of the raw material particles.
- FIG. 6E is an enlarged view of a region D in FIG. Comparing FIGS. 6A, 6B, and 6E, which have been subjected to reduction treatment and nitridation treatment without oxidation treatment, and FIG.
- the present invention is basically configured as described above. As mentioned above, although the manufacturing method of the magnetic particle of this invention, the magnetic particle, and the magnetic body were demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, various improvement or a change is carried out. Of course.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Magnetic Record Carriers (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
この強磁性粒子は、BET比表面積が50~250m2/g、平均長軸径が50~450nm、アスペクト比(長軸径/短軸径)が3~25であって金属元素X(Xは、Mn、Ni、Ti、Ga、Al、Ge、Zn、Pt、Siから選ばれる一種又は二種以上である)をFeモル対比0.04~25%含有する酸化鉄又はオキシ水酸化鉄を出発原料として用いて、250μm以下のメッシュを通した鉄化合物粒子粉末について還元処理を行い、次いで、窒化処理を行って得られる。
この強磁性粒子粉末は、平均長軸径が40~5000nm、アスペクト比(長軸径/短軸径)が1~200の酸化鉄又はオキシ水酸化鉄を出発原料として用い、D50が40μm以下、D90が150μm以下になるよう凝集粒子分散処理を行い、更に250μm以下のメッシュを通した鉄化合物粒子粉末を160~420℃にて水素還元し、130~170℃にて窒化処理して得られる。
還元処理は、水素ガスと窒素ガスの混合ガスを原料粒子に供給しつつ、温度200℃~500℃、1~50時間で行うことが好ましい。より好ましくは、還元処理は温度200℃~400℃、1~30時間で行う。
窒化処理は、窒素元素を含むガスを原料粒子に供給しつつ、温度140℃~200℃、3~50時間で行うことが好ましい。より好ましくは、窒化処理は温度140℃~160℃、3~20時間で行う。
原料粒子は、球状であり、粒径が200nm未満であることが好ましく、より好ましくは、5~50nmである。
本発明の第3の態様は、窒化鉄の微粒子の表面に酸化ケイ素層が形成されたコアシェル構造を有する球状粒子を用いて形成されたことを特徴とする磁性体を提供するものである。
本発明の磁性粒子、及びこの磁性粒子を用いて形成された磁性体は、微粒子が窒化鉄で構成されているため、高い保磁力を有し、優れた磁気特性を有する。
図1(a)は、本発明の磁性粒子を示す模式的断面図であり、(b)は、原料粒子を示す模式的断面図である。図2は、本発明の磁性粒子の製造方法を示すフローチャートである。図3は、磁性粒子及び原料粒子の磁気ヒステリシス曲線(B-H曲線)の一例を示すグラフである。
図1(a)に示すように、本実施形態の磁性粒子10は、窒化鉄の微粒子12(コア)の表面に、酸化ケイ素層(SiO2層)14(シェル)が形成されたコアシェル構造を有する球状粒子である。
磁性粒子10は、球状粒子であり、その粒径が50nm程度であるが、好ましくは、5~50nmである。なお、粒径は比表面積測定から換算し、求めた値である。
なお、微粒子12は、Fe16N2単相ではなく、他の窒化鉄が混合する組成であってもよい。
磁性粒子10は、窒化鉄の微粒子12を有するため、高い保磁力を有し、優れた磁気特性を有する。微粒子12がFe16N2単相である場合、後に詳細に説明するが、保磁力として、例えば、1700Oe(約135.3kA/m)が得られる。また、磁性粒子10は、分散性も良好である。
また、磁性粒子10は、絶縁体である酸化ケイ素層14により、磁性粒子10間に流れる電流を抑制することができ、電流による損失を抑制することができる。
このような磁性粒子10を用いて形成した磁性体は、高い保磁力を有するとともに、優れた磁気特性を有する。磁性体としては、例えば、ボンド磁石が挙げられる。
磁性粒子10は、図1(b)に示す原料粒子20を原料として用意する。
次に、図2に示すように、原料粒子20に酸化処理を施し、鉄(Fe)の微粒子22を酸化させる(ステップS10)。その後、原料粒子20に還元処理を施し、酸化された鉄(Fe)の微粒子22を還元する(ステップS12)。次に、原料粒子20に窒化処理を施し、還元された鉄(Fe)の微粒子22を窒化する(ステップS14)。これにより、窒化鉄の微粒子12を有する磁性粒子10を製造することができる。
原料粒子20は、鉄(Fe)の微粒子22の表面に、酸化ケイ素層24が形成されたコアシェル構造を有するものである。原料粒子20をFe/SiO2粒子とも表わす。
原料粒子20は、球状であり、その粒径が50nm程度であるが、好ましくは、5~50nmである。なお、粒径は比表面積測定から換算し、求めた値である。
本発明では、原料粒子20を、酸化処理、還元処理及び窒化処理することで、磁性粒子10を製造することができる。
酸化処理は、温度が100℃未満では、酸化が十分ではない。一方、温度が500℃を超えると、原料粒子同士が融着する。更には、酸化反応が飽和し、酸化がそれ以上進行しない。
また、酸化処理は、酸化処理時間が1時間未満では、酸化が十分ではない。一方、酸化処理時間が20時間を超えると、原料粒子同士が融着する。更には、酸化反応が飽和し、酸化がそれ以上進行しない。
なお、混合気体の水素ガスの濃度は上限値が4体積%程度(爆発限界未満)である。
また、還元処理の方法には、上記混合ガス以外に、H2ガス(水素ガス)単体を用いてもよい。すなわち、還元処理に100体積%の水素ガスを用いることもできる。ハンドリングの観点から、水素ガスの濃度は低い方が好ましい。
また、還元処理は、還元処理時間が1時間未満では、還元が十分ではない。一方、還元処理時間が50時間を超えると、原料粒子同士が融着するとともに、還元反応が飽和し、還元がそれ以上進行しない。
窒化処理については、窒化処理温度が140℃未満では、窒化が十分ではない。また、窒化処理温度が200℃を超えると、原料粒子同士が融着するとともに窒化が飽和する。
また、窒化処理時間は、3~50時間であることが好ましい。窒化処理時間が3時間未満では、窒化が十分ではない。一方、窒化処理時間が50時間を超えると、原料粒子同士が融着するとともに窒化が飽和する。
原料粒子20と他の粒子が混在したものを原料として用いて、上述の一連の酸化処理工程、還元処理工程及び窒化処理工程を施した場合、他の粒子の割合が体積%で半分程度であっても、図1(a)に示す磁性粒子10が形成されることはもちろんのこと、窒化鉄の微粒子(コア)の表面に酸化鉄層(シェル)が形成されたコアシェル構造を有する磁性粒子が形成されることを確認している。上記酸化鉄層を有する磁性粒子は、図1(a)に示す磁性粒子10と同程度のサイズであることも確認している。しかも、磁性粒子10と上記酸化鉄層を有する磁性粒子は固着せずに分散する。
図3に示すように、原料粒子20は、符号Aに示す磁気ヒステリシス曲線(B-H曲線)が得られ、磁性粒子10は、符号Bに示す磁気ヒステリシス曲線(B-H曲線)が得られた。磁気ヒステリシス曲線Aと磁気ヒステリシス曲線Bからわかるように、磁性粒子10の方が磁気特性が優れている。磁性粒子10は、コアを窒化鉄の微粒子12とすることにより、コアが鉄の原料粒子20に比して高い保磁力、例えば、1700Oe(約135.3kA/m)が得られる。また、飽和磁束密度として、93.5emu/g(約1.15×10-4Wb・m/kg)が得られる。
図4(a)は、処理前の原料粒子のX線回折法による結晶構造の解析結果を示すグラフであり、(b)は、酸化処理後の原料粒子のX線回折法による結晶構造の解析結果を示すグラフであり、(c)は、酸化処理後に、還元処理し、更に窒化処理して得られた磁性粒子のX線回折法による結晶構造の解析結果を示すグラフである。
図5(a)~(f)は、図4(a)~(c)に対応するものであり、図5(a)は処理前の原料粒子のTEM像を示す模式図であり、(b)は図5(a)の拡大図であり、図5(c)は酸化処理後の原料粒子のTEM像を示す模式図であり、(d)は図5(c)の拡大図であり、図5(e)は磁性粒子のTEM像を示す模式図であり、(f)は図5(e)の拡大図である。
還元処理は、水素存在雰囲気にて、温度300℃で10時間の条件で行った。なお、水素存在雰囲気の形成には、H2ガス濃度100体積%のH2ガス(水素ガス)を用いた。
窒化処理は、アンモニアガス雰囲気にて、温度145℃で10時間の条件で行った。
図4(b)は酸化処理後の原料粒子の結晶構造の解析結果であり、図5(c)は酸化処理後の原料粒子のTEM像であり、図5(d)は図5(c)の拡大図である。図4(b)に示すように酸化鉄の回折ピークがあり、鉄(Fe)の微粒子が酸化されている。図5(c)及び(d)に示すように、酸化処理後の原料粒子はコアシェル構造である。
図4(c)は得られた磁性粒子の結晶構造の解析結果であり、図5(e)は磁性粒子のTEM像であり、(f)は図5(e)の拡大図である。図4(c)に示すように窒化鉄(Fe16N2)に変化しており、図5(e)及び図5(f)に示すように、磁性粒子はコアシェル構造である。また、各磁性粒子は、凝集することなく分散している。
図6(a)は、酸化処理をせずに水素ガス(100体積%)雰囲気中にて還元処理300℃で3時間還元処理した後、窒化処理温度175℃で5時間窒化処理した後の結晶構造の解析結果であり、図6(b)は、酸化処理をせずに水素ガス(100体積%)雰囲気中にて還元処理300℃で3時間還元処理した後、窒化処理温度185℃で5時間窒化処理した後の結晶構造の解析結果である。図6(c)は、リファレンスであるFe16N2のX線回折法による結晶構造の解析結果である。図6(d)は、原料粒子の結晶構造の解析結果である。図6(e)は、図6(b)の領域Dの拡大図である。
酸化処理をせずに還元処理及び窒化処理を行った図6(a)、(b)、(e)とリファレンスである図6(c)を比較すると、酸化処理をせずに還元処理後に窒化処理した場合はFe16N2が生成されるものの、Fe4Nも生成することがわかる。すなわち、酸化処理を行わない場合には、Fe16N2単相を得ることができない。
12、22 微粒子
14、24 酸化ケイ素層
20 原料粒子
Claims (7)
- 鉄の微粒子の表面に酸化ケイ素層が形成されたコアシェル構造の原料粒子に酸化処理を施す酸化処理工程と、
前記酸化処理された前記原料粒子に還元処理を施す還元処理工程と、
前記還元処理された前記原料粒子に窒化処理を施し、コアシェル構造を維持しつつ、鉄の微粒子を窒化させる窒化処理工程を有することを特徴とする磁性粒子の製造方法。 - 前記酸化処理は、前記原料粒子に対して空気中で温度100℃~500℃、1~20時間で行う請求項1に記載の磁性粒子の製造方法。
- 前記還元処理は、水素ガスと窒素ガスの混合ガスを前記原料粒子に供給しつつ、温度100℃~500℃、1~20時間で行う請求項1又は2に記載の磁性粒子の製造方法。
- 前記窒化処理は、窒素元素を含むガスを前記原料粒子に供給しつつ、温度140℃~200℃、3~50時間で行う請求項1~3のいずれか1項に記載の磁性粒子の製造方法。
- 前記原料粒子は、球状であり、粒径が200nm未満である請求項1~4のいずれか1項に記載の磁性粒子の製造方法。
- 窒化鉄の微粒子の表面に酸化ケイ素層が形成されたコアシェル構造を有する球状粒子であることを特徴とする磁性粒子。
- 窒化鉄の微粒子の表面に酸化ケイ素層が形成されたコアシェル構造を有する球状粒子を用いて形成されたことを特徴とする磁性体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/116,103 US10128031B2 (en) | 2014-02-10 | 2015-01-20 | Method for manufacturing magnetic particles from a silicon oxide-iron core-shell structure |
KR1020167024991A KR102229915B1 (ko) | 2014-02-10 | 2015-01-20 | 자성 입자의 제조방법 |
CN201580006736.2A CN106062907B (zh) | 2014-02-10 | 2015-01-20 | 磁性粒子的制造方法、磁性粒子及磁性体 |
JP2015560917A JP6461828B2 (ja) | 2014-02-10 | 2015-01-20 | 磁性粒子の製造方法 |
US15/867,143 US20180137960A1 (en) | 2014-02-10 | 2018-01-10 | Method for manufacturing magnetic particles, magnetic particles, and magnetic body |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014023851 | 2014-02-10 | ||
JP2014-023851 | 2014-02-10 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/116,103 A-371-Of-International US10128031B2 (en) | 2014-02-10 | 2015-01-20 | Method for manufacturing magnetic particles from a silicon oxide-iron core-shell structure |
US15/867,143 Division US20180137960A1 (en) | 2014-02-10 | 2018-01-10 | Method for manufacturing magnetic particles, magnetic particles, and magnetic body |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015118943A1 true WO2015118943A1 (ja) | 2015-08-13 |
Family
ID=53777750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/051403 WO2015118943A1 (ja) | 2014-02-10 | 2015-01-20 | 磁性粒子の製造方法、磁性粒子及び磁性体 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10128031B2 (ja) |
JP (1) | JP6461828B2 (ja) |
KR (1) | KR102229915B1 (ja) |
CN (1) | CN106062907B (ja) |
TW (1) | TWI635518B (ja) |
WO (1) | WO2015118943A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10310374B2 (en) | 2016-08-18 | 2019-06-04 | International Business Machines Corporation | Repatternable nanoimprint lithography stamp |
JP2020015968A (ja) * | 2018-07-27 | 2020-01-30 | Tdk株式会社 | 窒化鉄系磁石 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6795791B2 (ja) * | 2017-06-29 | 2020-12-02 | Tdk株式会社 | コイル部品およびlc複合部品 |
WO2020237192A1 (en) | 2019-05-22 | 2020-11-26 | Niron Magnetics, Inc. | Coercivity-enhanced iron nitride nanoparticles with high saturation magnetization |
JP7315872B2 (ja) | 2020-01-20 | 2023-07-27 | 富士通株式会社 | プロセッサ、シミュレータプログラム、アセンブラプログラム、及び情報処理プログラム |
JP2023515070A (ja) | 2020-02-21 | 2023-04-12 | ニロン マグネティクス,インコーポレイティド | 異方性窒化鉄永久磁石 |
US12087483B2 (en) | 2022-02-14 | 2024-09-10 | General Electric Company | Dual phase soft magnetic particle combinations, components and manufacturing methods |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08108064A (ja) * | 1994-10-12 | 1996-04-30 | Nittetsu Mining Co Ltd | 窒化物粉体及びその製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05222483A (ja) * | 1990-12-19 | 1993-08-31 | Nkk Corp | 窒化鉄系高密度焼結体の製造方法 |
JP3932326B2 (ja) | 1998-05-22 | 2007-06-20 | Dowaエレクトロニクス株式会社 | 窒化鉄磁性材料の製法 |
GB2422949B (en) * | 2003-02-19 | 2007-05-30 | Hitachi Maxell | Magnetic recording medium |
JP4734602B2 (ja) * | 2004-12-21 | 2011-07-27 | Dowaエレクトロニクス株式会社 | 保存安定性に優れた窒化鉄系磁性粉末 |
JP2007036183A (ja) * | 2005-06-21 | 2007-02-08 | Fujifilm Holdings Corp | 磁性粒子の製造方法、磁性粒子、磁気記録媒体 |
JP2007250096A (ja) * | 2006-03-16 | 2007-09-27 | Fujifilm Corp | 磁気記録媒体 |
JP4802795B2 (ja) | 2006-03-23 | 2011-10-26 | Tdk株式会社 | 磁性粒子及びその製造方法 |
JP2009084115A (ja) * | 2007-09-28 | 2009-04-23 | Fujifilm Corp | 窒化鉄粉末の製造方法、窒化鉄粉末および磁気記録媒体 |
JP5769223B2 (ja) * | 2009-10-22 | 2015-08-26 | 戸田工業株式会社 | 強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石 |
JP5822188B2 (ja) * | 2010-09-24 | 2015-11-24 | 戸田工業株式会社 | 強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石 |
JP5831866B2 (ja) | 2011-01-21 | 2015-12-09 | 戸田工業株式会社 | 強磁性粒子粉末及びその製造方法、並びに異方性磁石、ボンド磁石及び圧粉磁石 |
-
2015
- 2015-01-20 WO PCT/JP2015/051403 patent/WO2015118943A1/ja active Application Filing
- 2015-01-20 KR KR1020167024991A patent/KR102229915B1/ko active IP Right Grant
- 2015-01-20 CN CN201580006736.2A patent/CN106062907B/zh active Active
- 2015-01-20 US US15/116,103 patent/US10128031B2/en active Active
- 2015-01-20 JP JP2015560917A patent/JP6461828B2/ja active Active
- 2015-02-03 TW TW104103569A patent/TWI635518B/zh active
-
2018
- 2018-01-10 US US15/867,143 patent/US20180137960A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08108064A (ja) * | 1994-10-12 | 1996-04-30 | Nittetsu Mining Co Ltd | 窒化物粉体及びその製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10310374B2 (en) | 2016-08-18 | 2019-06-04 | International Business Machines Corporation | Repatternable nanoimprint lithography stamp |
US10942448B2 (en) | 2016-08-18 | 2021-03-09 | International Business Machines Corporation | Repatternable nanoimprint lithography stamp |
JP2020015968A (ja) * | 2018-07-27 | 2020-01-30 | Tdk株式会社 | 窒化鉄系磁石 |
JP7111549B2 (ja) | 2018-07-27 | 2022-08-02 | Tdk株式会社 | 窒化鉄系磁石 |
Also Published As
Publication number | Publication date |
---|---|
CN106062907A (zh) | 2016-10-26 |
US10128031B2 (en) | 2018-11-13 |
TW201603059A (zh) | 2016-01-16 |
KR20160120318A (ko) | 2016-10-17 |
KR102229915B1 (ko) | 2021-03-18 |
TWI635518B (zh) | 2018-09-11 |
CN106062907B (zh) | 2018-05-11 |
US20180137960A1 (en) | 2018-05-17 |
US20170186521A1 (en) | 2017-06-29 |
JP6461828B2 (ja) | 2019-01-30 |
JPWO2015118943A1 (ja) | 2017-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6461828B2 (ja) | 磁性粒子の製造方法 | |
JP6296997B2 (ja) | 磁性粒子の製造方法 | |
US9378876B2 (en) | Ferromagnetic particles and process for producing the same, and anisotropic magnet, bonded magnet and compacted magnet | |
WO2012132783A1 (ja) | 複合軟磁性粉末及びその製造方法、並びにそれを用いた圧粉磁心 | |
WO2012147833A1 (ja) | 強磁性粒子粉末の製造方法、異方性磁石、ボンド磁石及び圧粉磁石 | |
WO2015019576A1 (ja) | 複合磁性材料とこれを用いたコイル部品ならびに電源装置 | |
US9607740B2 (en) | Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles | |
JP2019080055A (ja) | 複合磁性材料、磁石、モータ、および複合磁性材料の製造方法 | |
JP2008297622A (ja) | 軟磁性材料、圧粉磁心、軟磁性材料の製造方法および圧粉磁心の製造方法 | |
JP6225440B2 (ja) | 磁性材料及びその製造方法及びその製造に用いるコーティング液 | |
JP2010073967A (ja) | 圧粉磁心 | |
WO2018193900A1 (ja) | 複合磁性材料、モータ、および複合磁性材料の製造方法 | |
JP2005303007A (ja) | 軟磁性材料、圧粉磁心、および軟磁性材料の製造方法 | |
JP2008041685A (ja) | 圧粉磁心 | |
JP2009155700A (ja) | アルミニウム酸化物−鉄複合部材およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15746830 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015560917 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15116103 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167024991 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15746830 Country of ref document: EP Kind code of ref document: A1 |