KR101916504B1 - 방사선 촬상 장치 및 방사선 검지 시스템 - Google Patents

방사선 촬상 장치 및 방사선 검지 시스템 Download PDF

Info

Publication number
KR101916504B1
KR101916504B1 KR1020150113042A KR20150113042A KR101916504B1 KR 101916504 B1 KR101916504 B1 KR 101916504B1 KR 1020150113042 A KR1020150113042 A KR 1020150113042A KR 20150113042 A KR20150113042 A KR 20150113042A KR 101916504 B1 KR101916504 B1 KR 101916504B1
Authority
KR
South Korea
Prior art keywords
radiation
signal
circuit
detection
period
Prior art date
Application number
KR1020150113042A
Other languages
English (en)
Other versions
KR20160019870A (ko
Inventor
게이고 요코야마
미노루 와타나베
마사토 오후지
준 가와나베
겐타로 후지요시
히로시 와야마
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20160019870A publication Critical patent/KR20160019870A/ko
Application granted granted Critical
Publication of KR101916504B1 publication Critical patent/KR101916504B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/30Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/023Scintillation dose-rate meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/026Semiconductor dose-rate meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/30Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • H04N5/374
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Measurement Of Radiation (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

방사선 촬상 장치는 방사선에 대응하는 화상 신호를 취득하도록 화소 어레이 및 화소 어레이에 배치되며 방사선을 검지하도록 구성된 복수의 검지 소자를 포함하는 센서부와, 센서부로부터의 화상 신호를 판독하도록 구성된 판독 회로를 포함하고, 판독 회로는 방사선 조사의 유무를 판정하는 경우, 복수의 검지 소자로부터의 신호를 합성하여 처리하고, 그리고 방사선 양을 판정하는 경우, 각각의 검지 소자에 대한 신호를 처리하거나, 복수의 검지 소자 중에서, 복수의 검지 소자를 포함하는 검지 소자의 개수보다 적은 개수의 검지 소자로부터의 신호를 합성하여 처리하도록 배치된 신호 처리 회로를 포함한다.

Description

방사선 촬상 장치 및 방사선 검지 시스템 {RADIATION IMAGING APPARATUS AND RADIATION DETECTION SYSTEM}
본 발명은 방사선 촬상 장치 및 방사선 검지 시스템 관한 것이다.
X선에 의한 의료 화상 진단이나 비파괴 검사에 사용하는 촬상 장치로서, TFT(박막 트랜지스터) 등의 스위치 소자와 광전 변환 소자 등의 변환 소자를 조합하여 형성된 화소 어레이를 갖는 매트릭스 기판을 사용하는 방사선 촬상 장치가 실제 사용되어 왔다. 이러한 방사선 촬상 장치는 종종 방사선 발생기에 의한 방사선의 조사와 동기화하여 촬상 동작을 실행한다. 동기화는 주로 2개의 타이밍에서 행해진다. 제1 타이밍은 방사선 발생기에 의한 방사선 조사 및 방사선 촬상 장치의 누적 동작의 개시를 검지하는 타이밍이다. 일본 특허 공개 제2012-15913호 공보는 동기화 신호를 사용하지 않고 방사선 조사의 유무를 검지할 수 있는 방사선 검지 소자를 개시한다. 촬영 모드로의 변화가 통지되는 경우, 방사선 촬상 장치는 대기 상태로부터 방사선 검지 대기 상태로 천이하고, 방사선 조사의 유무를 판정한다.
제2 타이밍은 방사선 발생기로부터 센서까지 방사선의 누적 노출 선량에 대응하는 방사선 조사 정지 명령을 방사선 발생기에 발생시키는 타이밍이다. 이들 타이밍의 동기화를 행하도록 구성된 디바이스는 방사선 투과 선량을 제어하는 AEC(자동 노출 제어)로 지칭된다. 일본 특허 공개 제2006-334154호 공보는 선명한 X선 화상을 얻기 위해 간접 촬영 방법에 의해 획득된 ROI(Region Of Interest)의 화소로부터의 신호를 사용하여 방사선 양을 보정하는 것을 개시한다.
방사선 발생기로부터의 방사선의 조사 개시를 검지하기 위해, 일본 특허 공개 제2012-15913호 공보에 개시된 바와 같이, 방사선 검지 소자로부터의 신호를 연속적으로 모니터링할 필요가 있다. 더 구체적으로, 방사선 검지 소자로부터의 신호 출력을 검지하기 위해, 방사선 조사의 유무를 판정하기 위해 사용되는 회로가 수초 내지 수분의 시간 동안 연속적으로 동작될 필요가 있다. 또한, 관심 영역(ROI)에서의 방사선 노출 선량(방사선 양)을 검지하기 위해, 일본 특허 공개 제2006-334154호 공보에 개시된 바와 같이, 각각의 ROI에 대한 처리가 실행될 필요가 있다. 하나의 검지 소자가 방사선 조사의 유무를 검지하는 검지 소자 및 관심 영역(ROI)에서의 방사선 노출 선량을 검지하는 검지 소자로서 기능하는 경우, 검지 소자의 배치가 방사선 조사의 유무를 판정하도록 최적화될 때, 방사선 양 검지 시 공간 해상도가 부족할 수 있다. 한편, 검지 소자의 배치가 방사선 양을 판정하도록 최적화될 때, ROI의 개수가 증가하고 검지 소자로부터의 출력이 각각의 ROI에 대해 분산되어, 방사선 조사의 개시를 판정하는 신호 레벨을 충분히 획득하는 것이 불가능할 수 있다.
본 발명의 제1 양태는 방사선 조사의 유무를 판정하고 방사선 양을 판정하는 방사선 촬상 장치를 제공하고, 방사선 촬상 장치는 검지된 방사선을 나타내는 화상 신호를 취득하도록 구성된 화소 어레이, 및 화소 어레이에 배치되며 방사선을 검지하도록 구성된 복수의 검지 소자를 포함하는 센서부와, 센서부로부터의 화상 신호를 판독하도록 구성된 판독 회로를 포함하고, 판독 회로는 신호 처리 회로를 포함하고, 신호 처리 회로는 방사선 조사의 유무를 판정하는 경우, 복수의 검지 소자로부터의 신호를 합성하여 처리하고, 방사선 양을 판정하는 경우, 각각의 검지 소자에 대한 신호를 처리하거나, 복수의 검지 소자 중에서, 복수의 검지 소자를 포함하는 검지 소자의 개수보다 적은 개수의 검지 소자로부터의 신호를 합성하여 처리하도록 배치된다.
본 발명의 제2 양태는 방사선을 발생시키는 방사선원 및 상기 방사선 촬상 장치를 포함하는 방사선 검지 시스템을 제공한다.
본 발명의 추가의 특징은 첨부된 도면과 관련한 실시예의 이후 설명으로부터 명확해질 것이다.
도 1은 방사선 촬상 장치의 구성예를 도시하는 도면.
도 2는 본 발명의 제1 실시예에 따르는 방사선 촬상 장치의 구성을 도시하는 회로도.
도 3은 본 발명의 제1 실시예에 따르는 방사선 촬상 장치의 타이밍 차트.
도 4는 본 발명의 제1 실시예에 따르는 방사선 촬상 장치의 판독 회로와 지지 기판 사이의 접속의 예를 도시하는 도면.
도 5a 내지 도 5c는 본 발명의 제1 실시예에 따르는 방사선 촬상 장치의 화소의 구성예를 도시하는 도면.
도 6은 본 발명의 제2 실시예에 따르는 방사선 촬상 장치의 구성을 도시하는 회로도.
도 7은 본 발명의 제2 실시예에 따르는 방사선 촬상 장치의 타이밍 차트.
도 8은 본 발명의 제2 실시예에 따르는 방사선 촬상 장치의 화소의 구성예를 도시하는 도면.
도 9는 본 발명의 제3 실시예에 따르는 방사선 촬상 장치의 구성을 도시하는 회로도.
도 10은 본 발명의 제3 실시예에 따르는 방사선 촬상 장치의 타이밍 차트.
도 11은 본 발명의 제3 실시예에 따르는 방사선 촬상 장치의 변형예의 구성을 도시하는 회로도.
도 12는 본 발명의 제4 실시예에 따르는 방사선 촬상 장치의 구성을 도시하는 회로도.
도 13은 본 발명의 제4 실시예에 따르는 방사선 촬상 장치의 타이밍 차트.
도 14는 본 발명의 제5 실시예에 따르는 방사선 촬상 장치의 구성을 도시하는 회로도.
도 15는 본 발명의 제5 실시예에 따르는 방사선 촬상 장치의 타이밍 차트.
도 16은 방사선 검지 시스템의 구성예를 도시하는 도면.
(제1 실시예)
(a) 방사선 촬상 장치의 구성
본 실시예에 따르는 방사선 촬상 장치의 구성에 대하여 도 1 내지 도 5c를 참조하여 설명한다. 방사선 촬상 장치(200)는 적어도 제1 화소(101) 및 제2 화소(검지 화소)(121)를 포함하는 센서부가 장착되는 지지 기판(100)을 포함한다. 제2 화소는 검지 화소이다. 제1 화소(101)는 방사선 화상으로 변환되는 신호를 출력하는 화소이며, 변환 소자(102) 및 스위치 소자(103)을 포함한다. 검지 화소(121)는 방사선 화상으로 변환되는 신호에 추가로 방사선 조사 유무(즉, 존재 또는 부재)의 판정 및 방사선 노출 선량(방사선 양)을 판정하는데 사용되는 신호를 출력하는 화소이다. 검지 화소(121)는 변환 소자(102) 및 스위치 소자(103)에 추가로, 검지 소자(122) 및 검지 소자용 스위치 소자(123)를 포함한다. 방사선 촬상 장치(200)는 센서부를 구동시키는 구동 회로(221)와, 센서부로부터의 전기 신호를 화상 데이터로서 출력하는 판독 회로(222)를 포함하는 검지부(223)를 포함한다. 구동 회로(221)는 지지 기판(100)에 배치된 각각의 스위치의 선택 상태 및 비선택 상태를 제어한다.
도 2에 도시된 바와 같이, 판독 회로(222)는 화상 신호 입력 단자(107), 제1 신호 입력 단자(120), 및 제2 신호 입력 단자(117)를 포함한다. 판독 회로(222)는 방사선 조사의 유무를 판정할 때 동작하는 제1 신호 처리 회로 및 방사선 양을 판정할 때 동작하는 제2 신호 처리 회로를 포함한다. 더 구체적으로, 판독 회로(222)에서, 화상 신호 입력 단자(107) 또는 제2 신호 입력 단자(117)는 각각의 연산 증폭기(150)의 반전 입력 단자에 접속된다. 연산 증폭기(150 또는 154)의 반전 입력 단자는 피드백 커패시터를 통해 출력 단자에 접속되고, 비반전 입력 단자는 임의의 고정 전위에 접속되어 회로가 전하 전압 변환기로서 기능한다. A/D 변환기(153)는 샘플 홀드 회로(151) 및 멀티플렉서(152)를 통해 연산 증폭기(150)의 후단에 접속된다. 화상 신호 입력 단자(107) 및 제2 신호 입력 단자(117)로부터의 신호 전하는 A/D 변환기(153)에 의해 디지털 신호로 변환된다. 유사하게, 판독 회로(222)에서, 제1 신호 입력 단자(120)는 연산 증폭기(154)의 반전 입력 단자에 접속된다. A/D 변환기(157)는 샘플 홀드 회로(155) 및 멀티플렉서(156)를 통해 연산 증폭기(154)의 후단에 접속된다. 제1 신호 입력 단자(120)로부터의 신호 전하는 A/D 변환기(157)에 의해 디지털 신호로 변환된다.
본 실시예에서, 신호를 처리하도록 구성된 회로는 화상 신호 입력 단자(107) 및 제2 신호 입력 단자(117)로부터의 출력이 A/D 변환기(153)에 의해 처리되도록 분리되고, 제1 신호 입력 단자(120)로부터의 출력은 A/D 변환기(157)에 의해 처리된다. 본 실시예에서, 제1 신호 입력 단자(120)로부터 A/D 변환기(157)까지의 회로는 제1 신호 처리 회로에 대응하고, 프린트 기판(503) 상에 장착된다. 또한, 본 실시예에서, 화상 신호 입력 단자(107) 및 제2 신호 입력 단자(117)로부터 A/D 변환기(153)까지의 회로는 제2 신호 처리 회로에 대응하고, 가요성 기판(502) 상에 배치된 집적 회로(501) 상에 장착된다. 제2 신호 처리 회로는 검지 신호선(110)으로부터의 신호를 개별적으로 처리하여 이를 디지털 데이터로 변환한다. 방사선 촬상 장치(200)는 추가로 검지부(223)로부터의 화상 데이터를 처리 및 출력하는 신호 처리부(224), 제어 신호를 각각의 구성 요소에 공급하여 검지부(223)의 동작을 제어하는 제어 회로(225)를 포함한다. 또한, 방사선 촬상 장치(200)는 각각의 회로에 바이어스 전압 및 전력을 공급하는 전원 회로(226)를 포함한다. 신호 처리부(224)는 판독 회로(222)로부터 화상 신호선(106) 또는 검지 신호선(110)의 정보를 수신하고, 이 정보를 제어 컴퓨터(미도시) 또는 제어 회로(225)로 송신한다. 제어 컴퓨터(미도시) 또는 제어 회로(225)는 이 정보에 기초하는 제어 신호를 구동 회로(221) 또는 외부의 방사선 발생기(227)로 송신한다. 이와 달리, 외부 방사선 발생기(227)는 제어 회로(225)의 정보를 취득하여 방사선의 발생을 제어할 수 있다.
전원 회로(226)는 외부 전원 또는 내부 배터리(미도시)로부터 전력을 수신하고 센서부, 구동 회로(221), 판독 회로(222) 등으로 필요한 전력을 공급하는 조정기 회로를 포함한다. 구동 회로(221), 판독 회로(222), 신호 처리부(224), 제어 회로(225) 및 전원 회로(226) 각각은 1개의 블록에 의해 표시되지만, 이는 각각의 회로가 하나의 직접 회로로부터 형성되는 것을 의미하지 않는 점에 유의한다. 각각의 회로는 복수의 집적 회로로부터 형성될 수 있다. 이와 달리, 모든 회로가 하나의 집적 회로 상에 설치될 수 있다. 회로는 설명 편의성을 위해 분리된다. 그러나, 하나의 회로가 복수의 회로로서 기능할 수 있고, 또는 회로들이 분리되어 배치될 수 있다. 도 1에 도시된 구성에서, 신호 처리부(224), 제어 회로(225) 및 전원 회로(226)가 프린트 기판(229) 상에 장착된다. 구동 회로(221) 및 판독 회로(222)는 프린트 기판(230 및 503) 및 가요성 기판(502) 상에 각각 설치된다. 프린트 기판(230 및 503)은 가요성 기판(502)을 통해 지지 기판(100)의 센서부에 접속된다. 물론, 상기 설명은 본 발명의 다른 실시예에 적용될 수도 있다.
(b) 회로 구성
이어서, 본 실시예에 따르는 방사선 촬상 장치의 화소 및 검지 화소의 구성에 대하여 설명한다. 도 2에 도시된 바와 같이, 복수의 화소 및 주변 회로가 본 실시예에 따르는 방사선 촬상 장치에 배치된다. 매트릭스에 배치된 복수의 화소(101) 및 검지 화소(121)를 갖는 화소 어레이를 포함하는 센서부가 지지 기판(100) 상에 설치된다. 각각의 화소(101)는 방사선 또는 광에 대응하는 전기 신호를 출력하도록 구성되고, 방사선 또는 광을 전하로 변환시키는 변환 소자(102), 및 발생된 전하에 대응하는 전기 신호를 신호선에 출력하는 스위치 소자(103)를 포함한다. 본 실시예에서, 화소(101)는 변환 소자(102)로서 방사선을 광으로 변환하는 신틸레이터 및 광을 전하로 변환하는 광전 변환 소자를 포함한다. 그러나, 본 발명은 이에 한정되지 않는다. 신틸레이터에 의해 변환된 광을 전하로 변환하는 광전 변환 소자 또는 방사선을 직접 전하로 변환하는 직접 변환 소자가 변환 소자(102)로서 사용될 수 있다. 화소(101)는 스위치 소자(103)로서, 비정질 실리콘 또는 다결정 실리콘의 TFT(박막 트랜지스터)를 포함하고, 바람직하게는 다결정 실리콘의 TFT를 사용한다. 실리콘은 반도체 재료로서 예시되었다. 그러나, 본 발명은 이에 한정되지 않고, 게르마늄 등의 다른 반도체 재료가 사용될 수 있다.
스위치 소자(103)의 제1 주 전극은 변환 소자(102)의 제1 전극에 전기 접속되고, 바이어스 선(108)은 변환 소자(102)의 제2 전극에 전기 접속된다. 바이어스 선(108)은 열을 따라 배치된 복수의 변환 소자(102)의 제2 전극에 공통 접속된다. 각각의 열에 배치된 바이어스 선(108)은 행을 따라 배치된 바이어스 선에 공통 접속되고 전원 회로(226)의 바이어스 전원 단자(109)에 접속되어 바이어스 전압을 받는다. 화상 신호선(106)이 스위치 소자(103)의 제2 주 전극에 전기 접속된다. 화상 신호선(106)은 열을 따라 배치된 화소의 스위치 소자(103)의 제2 주 전극에 공통 접속된다. 화상 신호선(106)이 화소의 각각의 열에 대해 배치된다. 각각의 화상 신호선(106)은 외부 판독 회로(222)의 화상 입력 신호 단자(107)에 전기 접속된다.
구동선(104)은 화소(101)의 스위치 소자(103)의 제어 전극에 전기 접속된다. 구동선(104)은 행을 따라 배치된 화소(101)의 스위치 소자(103)의 제어 전극에 공통 접속된다. 게이트 제어 전압(Vg1 내지 Vgn)이 구동 회로(221)로부터 구동선(104)까지 구동 전압 단자(105)를 통해 인가된다. 검지 화소(121)는 화소 어레이 내에 배치된다. 검지 화소(121)는 상술한 변환 소자(102) 및 스위치 소자(103)를 포함하고, 또한 방사선을 검지하는 검지 소자(122), 및 검지 소자(122)에 접속된 스위치 소자(123)를 포함한다. 검지 소자(122)는 방사선을 광으로 변환시키는 신틸레이터 및 광을 전하로 변환하는 광전 변환 소자를 포함한다. 그러나, 본 발명은 이에 한정되지 않는다.
스위치 소자(123)의 제1 주 전극은 검지 소자(122)의 제1 전극에 접속된다. 열을 따라 배치된 검지 소자(122)의 제2 전극은 열마다 배치된 바이어스 선(108)에 접속된다. 열을 따라 배치된 검지 신호선(110)은 스위치 소자(123)의 제2 주 전극에 접속된다. 행마다 배치된 구동선(124)은 스위치 소자(123)의 제어 전극에 접속된다. 검지 소자의 스위치 소자(123)를 제어하는 게이트 제어 전압(Vd1 내지 Vdn)은 구동 회로(221)로부터 구동선(124)까지 구동 전압 단자(125)를 통해 인가된다. 하나 또는 복수의 검지 소자가 스위치 소자(123)를 통해 각각의 검지 신호선(110)에 접속된다. 스위치 소자(123)가 온 상태로 되는 경우, 각각의 구동선(124)에 접속된 각각의 검지 소자에 대해 검지 신호선(110)으로 신호가 출력된다. 각각의 검지 신호선(110)은 스위치 소자(111)의 제1 주 전극에 접속된다. 스위치 소자(111)의 제2 주 전극은 제2 신호 입력 단자(117)를 통해 외부 판독 회로(222)에 전기 접속된다. 스위치 소자(111)의 제어 단자는 행을 따라 배치된 구동선(113)에 접속된다. 게이트 제어 전압(Va)이 구동 회로(221)로부터 구동선(113)으로 인가된다.
스위치 소자(112)는 인접한 검지 신호선(110)들 사이에 배치된다. 스위치 소자(112)는 인접한 검지 신호선(110)에 접속될 수 있다. 다른 검지 신호선(110)은 1개의 스위치 소자(112)의 제1 주 전극 및 제2 주 전극에 접속된다. 구동선(114)이 스위치 소자(112)의 제어 전극에 접속된다. 게이트 제어 전압(Vb)이 구동 회로(221)로부터 구동선(114)에 인가된다.
스위치 소자(118)의 제1 주 전극은 스위치 소자(111)의 제1 주 전극과 공통으로 몇몇 검지 신호선(110)에 접속된다. 스위치 소자(118)의 제2 주 전극은 외부 판독 회로(222)의 제1 신호 입력 단자(120)에 전기 접속된다. 스위치 소자(118)의 제어 전극은 구동선(126)에 접속된다. 제어 전극을 제어하는 게이트 제어 전압(Vc)이 구동 회로(221)로부터 구동선(126)까지 구동 전압 단자(119)를 통해 인가된다. 스위치 소자(111, 112, 및 118)는 검지 신호선(110)의 신호를 합성하도록 구성된 합성부의 일부를 형성한다. 본 실시예에서, 판독 회로(222)의 화상 신호 입력 단자(107) 및 제2 신호 입력 단자(117)는 변환 소자(102) 및 검지 소자(122)로부터 화상을 얻기 위한 신호 및 방사선을 검지하기 위한 신호를 수신하는 단자이다.
(c) 검지 화소 구조
본 실시예에 따르는 방사선 촬상 장치의 화소 구조에 대해 도 5a 내지 도 5c를 참조하여 설명한다. 도 5a는 화소(101)의 평면도이고, 도 5b는 검지 화소(121)의 평면도이다. 화소(101)는 방사선 또는 광을 전하로 변환하는 변환 소자(102), 및 TFT로부터 형성되며 변환 소자(102)의 전하에 대응하는 전기 신호를 출력하는 스위치 소자(103)를 포함한다. 방사선 검지 신호를 출력하는 검지 화소(121)는 화상 신호를 출력하도록 구성된 부분으로서, 방사선 또는 광을 전하로 변환하는 변환 소자(102), 및 TFT로 형성되며 변환 소자(102)의 전하에 대응하는 전기 신호를 출력하는 스위치 소자(103)를 포함한다. 검지 소자(121)는 또한 검지 소자(122) 및 스위치 소자(123)를 포함한다.
도 5c는 도 5b의 A-A'선을 따르는 단면도이다. 본 실시예에서, PIN-형 포토다이오드(134)가 변환 소자(102)로서 사용된다. 변환 소자(102)는 유리 기판일 수 있는 절연성 지지 기판(100) 상에 설치된 스위치 소자(103) 상의 층간 절연막(130)에 적층된다. 검지 화소(121)는 검지 신호를 출력하도록 구성된 부분으로서, 방사선 또는 광을 전하로 변환하는 검지 소자(122), 및 TFT로부터 형성되며 검지 소자(122)의 전하에 대응하는 전기 신호를 출력하는 스위치 소자(123)를 포함한다. 본 실시예에서, PIN-형 포토다이오드(135)가 검지 소자(122)로서 사용된다. 검지 소자(122)는 유리 기판일 수 있는 절연성 지지 기판(100) 상에 설치된 검지 소자용 스위치 소자(123) 상의 층간 절연막(130)에 적층된다.
변환 소자(102 및 122)는 그들의 제1 전극(131 및 132)이 전기 접속되지 않도록 격리된다. 절연성은 소자들을 절연하기 위해 제1 전극(131 및 132)들 사이에 배치된 절연막(133)에 의해 향상된다. 상술한 PIN-형 다이오드(134 및 135)는 제1 전극(131 및 132) 및 절연막(133) 상에 n형 층 - i형 층 - p형 순서로 적층된다. 제2 전극(136 및 137), 보호막(138), 제2 층간 절연막(139), 바이어스 선(108), 및 보호막(140)이 PIN-형 포토다이오드(134 및 135) 상에 순서대로 배치된다. 평탄화 막 및 형광체(모두 미도시됨)가 보호막(140) 상에 배치된다. 제2 전극(136 및 137) 모두 접촉 구멍(도 5c에 미도시)에 형성된 접촉부를 통해 바이어스 선(108)에 접속된다. 형광체(미도시)에 의해 방사선으로부터 변환된 광이 이를 통해 투과할 수 있도록 광투과성을 갖는 ITO(산화인듐주석)이 제2 전극(136 및 137)에 사용된다.
도 5a는 본 발명에 따르는 화소(101)의 평면도이며, 도 5b에 도시된 화소와 비교할 때, 검지 신호를 출력하도록 구성된 변환 소자(122)를 포함하지 않는다. 변환 소자(102)의 크기는 화소(101)와 검지 화소(121) 사이에서 변한다. 이런 이유로, 화소에 진입하는 방사선 양이 동일한 경우에도, 출력되는 화상 신호의 양이 상이하다. 따라서, 캡처 화상이 진단을 위해 사용되는 경우, 화상 신호의 변동을 보정하는 보정이 실행된다.
(d) 동작
본 발명의 제1 실시예에 따르는 방사선 촬상 장치의 동작을 도 2 및 도 3을 참조하여 설명한다. 이하 설명에서, 구동선(113, 114, 및 126)에 인가되는 게이트 제어 전압을 각각 Va, Vb, 및 Vc로 한다. 구동선(104)에 인가되는 게이트 제어 전압을 Vg1 내지 Vgn으로 하고, 구동선(124)에 인가되는 게이트 제어 전압을 Vd1 내지 Vdn로 한다. 추가로, 도 3에서, 각각의 구동 선에 접속된 각각의 스위치가 온 상태로 변하는 전압을 HI로 표기하고, 각각의 스위치가 오프 상태로 변하는 전압을 LO로 표기한다.
먼저 도 3에 도시된 기간(T1)의 동작을 설명한다. 기간(T1)은 방사선 조사의 유무를 검지하는 기간이다. 이 기간은 예를 들어, 방사선 촬상 장치에 전원이 투입되어 촬영이 가능한 상태로 설정된 이후 촬영사가 실제로 대상을 방사선 촬상 장치에 배치하고 방사선 노광 스위치를 누르고 방사선 조사가 개시될 때까지의 기간에 대응한다. 이 기간 동안, 게이트 제어 전압(Vd1 내지 Vdn)은 HI로 변하고, 스위치 소자(123)는 온 상태로 설정된다. 추가로, 게이트 제어 전압(Va)은 LO로 설정되고, 게이트 제어 전압(Vb 및 Vc)는 HI로 설정된다. 스위치 소자(111)는 오프 상태로 되고, 검지 신호선(110)들 사이에 위치된 스위치 소자(112)는 온 상태로 된다. 이 때, 검지 신호선(110)과 제1 신호 입력 단자(120) 사이의 스위치 소자(118)가 온 상태로 된다. 그 결과, 복수의 검지 소자(122)는 제1 신호 입력 단자(120)에 전기 접속된다. 즉, 복수의 검지 소자(122)로부터의 신호가 전기적으로 합성되어 제1 신호 입력 단자(120)를 통해 판독 회로(222)에 입력된다. 신호는 연산 증폭기(154), 샘플 홀드 회로(155), 멀티플렉서(156), 및 A/D 변환기(157)를 통해 디지털 데이터로 변환된다.
판독 회로(222)에 의해 판독된 신호는 신호 처리부(224)에 의해 검지 및 처리된다. 제어 회로(225)는 신호 처리부(224)로부터의 신호에 기초하여 방사선 조사의 유무를 판정한다. 방사선 조사가 존재한다고 판정할 때, 도 3에 도시된 기간(T2)이 개시된다. 기간(T1) 동안, 변환 소자(102)에 발생되는 다크 전류를 제거하기 위해, 각각의 변환 소자(102)는 정기적으로 일정 전위로 리셋될 수 있다. 본 예에서, 구동선(104)의 게이트 제어 전압(Vg1 내지 Vgn)은 순차적으로 HI로 변경되어 변환 소자(102)를 일정 전압에 고정된 화상 신호선(106)에 전기 접속하고, 이에 의해 다크 전류가 변환 소자(102) 내에 오랜 시간 동안 누적되는 것을 방지한다. 기간(T1)의 구체적인 길이는 촬영 방법, 조건 등에 따라 크게 변하지만, 통상 수 초 내지 수분이다.
이어서, 기간(T2)에서의 동작을 설명한다. 기간(T2)는 방사선 조사 기간이다. 이 기간은 예를 들어, 방사선 조사 개시가 검지된 이후 방사선의 누적 노출 선량이 촬상에 적합한 선량이 될 때까지의 기간에 대응한다. 이 기간 동안, 게이트 제어 전압(Vd1 내지 Vdn)은 간헐적으로 HI로 변하고, 스위치 소자(123)는 간헐적으로 온 상태로 설정된다. 또한, 게이트 제어 전압(Va)이 HI로 설정되고, 게이트 제어 전압(Vb 및 Vc)는 LO로 설정되며, 이에 의해 스위치 소자(112 및 118)는 오프 상태로 된다. 검지 신호선(110)들 사이의 전기 접속은 해제된다. 각각의 검지 신호선(110)에 접속된 검지 소자(122)는 제2 신호 입력 단자(117) 중 하나에 전기 접속된다. 각각의 검지 신호선에 접속된 검지 소자(122)로부터의 신호가 전기적으로 합성된다. 그러나, 기간(T2)에서, 각각의 제2 신호 입력 단자(117)로 합성되어 입력된 신호의 검지 소자(122)의 개수는 기간(T1)에서보다 적다. 본 실시예에서, 모든 검지 소자(122)는 기간(T1)에서 제1 신호 입력 단자(120)에 접속된다. 한편, 기간(T2)에서, 화소의 열을 따라 배치된 각각의 검지 신호선(110)에 접속된 검지 소자(122)는 검지 신호선에 대응하는 제2 신호 입력 단자(117)에 접속된다.
검지 소자(122)로부터의 신호는 각각의 검지 신호선(110)에 대해 제2 신호 입력 단자(117)를 통해 판독 회로(222)에 입력되어, 연산 증폭기(150), 샘플 홀드 회로(151), 멀티플렉서(152), 및 A/D 변환기(153)를 통해 디지털 데이터로 변환된다. 판독 회로(222) 이후 회로 구성 및 처리 방법의 상세한 설명은 생략된다. 신호는 전하, 전압 및 전류의 형태 중 임의의 하나를 가질 수 있다. A/D 변환기(153)에 의해 개별적으로 디지털 변환된 복수의 디지털 신호는 신호 처리부(224)를 통해 제어 회로(225)로 송신된다. 제어 회로(225)는 판독 회로(222)로부터의 복수의 디지털 신호에 기초하여 방사선의 노출 선량을 검지한다. 기간(T2) 동안, 방사선에 의해 변환 소자(102)에서 발생되는 신호를 누적하기 위해, 구동선(104)의 게이트 제어 전압(Vg1 내지 Vgn)은 LO로 설정되고, 화소(101)에서 발생되는 신호는 변환 소자(102)에 누적된다. 기간(T2)의 구체적인 길이는 촬영 방법, 조건 등에 의존하여 크게 변하지만, 통상적으로 수백 μsec 내지 수백 msec이다. 제어 회로(225) 또는 외부 방사선 발생기(227)가 제어 회로(225)에 의한 방사선의 노출 선량의 검지 결과에 기초하여 방사선 조사 정지를 판정하는 경우, 동작은 도 3에 도시된 기간(T3)으로 천이하거나 천이하도록 제어된다.
마지막으로, 기간(T3)에서의 작동을 설명한다. 기간(T3)은 방사선 조사의 종료 이후 화소(101) 및 검지 화소(121)에 누적된 화상 신호를 판독하는 기간이다. 이 기간 동안, 게이트 제어 전압(Vd1 내지 Vdn)은 LO로 설정되고, 게이트 제어 전압(Va)은 HI로 설정되고, 게이트 제어 전압(Vb 및 Vc)는 LO로 설정된다. 검지 신호선(110)이 플로팅(floating) 상태가 되는 것을 방지하기 위해, 검지 신호선(110)은 제2 신호 입력 단자(117)를 통해 고정 전위에 접속된다. 또한, 구동선(104)을 주사하기 위해, 게이트 제어 전압(Vg1 내지 Vgn)이 순차적으로 HI로 설정된다. 이 주사에 의해, 화소(101) 및 검지 화소(121)의 변환 소자(102)에 누적된 화상 신호가 화상 신호 입력 단자(107)를 통해 판독 회로(222)로 전송된다. 신호는 진단에 사용되는 촬상 화상 정보로서 사용된다. 판독 회로(222) 이후의 회로 구성 및 처리 방법의 상세한 설명은 생략한다. 본 실시예에서, 각각의 변환 소자(102)에서의 미리 정해진 누적 시간을 달성하기 위해, 기간(T1)에서 구동선(104)의 마지막 주사로부터 기간(T3)에서 주사까지의 누적 시간을 일정하게 한다. 도 3에서, Vg1은 기간(T1) 동안 마지막으로 HI으로 설정된다. 따라서, 기간(T3)에서, 게이트 제어 전압(Vg2)을 최초에 HI로 설정함으로써 주사가 개시된다. 이는 게이트 제어 전압(Vg)이 시간(T1)에서 마지막으로 LO로 설정된 이후 게이트 제어 전압(Vg)이 기간(T3)에서 HI로 설정될 때까지 미리 정해진 누적 시간을 설정할 수 있다.
기간(T1)에서, 공간적 분해능의 요구는 낮거나 불필요하기 때문에, 복수의 검지 소자(122)가 접속되는 검지 신호선(110)으로부터의 신호는 합성되어 판독된다. 따라서, 높은 감도로 방사선 조사의 개시를 검지할 수 있다. 추가로, 본 실시예에서, 기간(T1) 동안, 집적 회로(501)를 동작시키지 않고서 하나의 채널에 대응하는 연산 증폭기(154) 및 A/D 변환기(157)만을 사용하여 신호가 판독될 수 있기 때문에, 소비 전력이 억제될 수 있다. 본 예에서, 설명 편의성을 위해 하나의 채널에 대응하는 연산 증폭기(154) 및 A/D 변환기(157)만이 설명된다. 그러나, 복수의 연산 증폭기 및 A/D 변환기가 제공될 수 있다. 이 경우에서도, 검지 신호선의 개수에 비해 채널 개수를 억제함으로써 소비 전력이 충분히 억제될 수 있다.
한편, 기간(T2)에서, 검지 소자로부터의 신호는 검지 소자(122)로부터의 전하 신호가 접속되는 각각의 제2 신호 입력 단자(117)에 대해 판독될 수 있기 때문에, 기간(T1)에 비해 공간 분해능이 상승한다. 이 기간 동안, 복수의 연산 증폭기(150), 샘플 홀드 회로(151), 멀티플렉서(152), 및 A/D 변환기(153)를 포함하는 집적 회로(501)가 동작하기 때문에, 기간(T1)에 비해 소비 전력이 상승한다. 그러나, 시간적으로 기간(T2)이 기간(T1)보다 훨씬 짧기 때문에 소비 전력이 억제될 수 있다.
본 실시예에서, 감도가 요구되는 기간(T1) 동안, 검지 소자(122)로부터의 신호는 묶여진다. 분해능이 요구되는 기간(T2) 동안, 각각의 검지 신호선으로부터의 출력이 검지될 수 있다. 따라서, 기간(T1) 동안 조사가 정확하게 검지될 수 있다. 기간(T1) 동안 처리될 신호의 개수가 감소될 수 있기 때문에, 처리에 사용되는 회로의 규모를 감소시키고 소비 전력을 감소시킬 수 있다. 기간(T2) 동안, 방사선 양은 높은 공간적 분해능을 갖는 방사선 노출 선량의 정보를 취득함으로써 판정될 수 있다. 따라서, 높은 선예도를 갖는 캡처 화상이 이를 사용하여 획득될 수 있다.
(제2 실시예)
(a) 방사선 촬상 장치의 구성
제1 실시예와 동일한 참조 번호가 이하 실시예에서 동일한 부분을 지시하고, 그 설명은 생략한다. 도 6을 참조하여 본 발명의 제2 실시예에 따르는 방사선 촬상 장치의 센서부를 설명한다. 도 6은 지지 기판(100)의 화소 배치를 도시한다. 도 2에 도시된 제1 실시예와 달리, 스위치 소자(123)는 검지 화소(121)의 검지 소자(122)에 접속되지 않는다. 따라서, 스위치 소자(123)를 구동하는데 사용되는 구동선(124)을 갖지 않는다. 하나 이상의 검지 소자(122)가 각각의 검지 신호선(110)에 직접 접속된다. 방사선 조사 개시를 검지할 때, 각 열에 대해 배치된 검지 소자(122)의 출력을 묶어서 추출하기 위해 스위치 소자(118)는 스위치 소자(112)와 함께 온 상태로 된다. 각각의 검지 신호선(110)에 대한 검지 소자(122)로부터의 출력을 추출하기 위해, 스위치 소자(112)는 오프 상태로 된다. 이 때, 스위치 소자(118)가 온 상태로 되고 스위치 소자(111)로서 기능한다. 도 8은 본 실시예에 따르는 검지 화소(121)의 평면도이다. 본 실시예에 따르는 검지 소자(122)의 영역에는 스위치 소자가 설치되지 않는다. 판독 회로(222)는 기간(T1) 동안 방사선 조사 개시를 판정하기 위해 제1 신호 입력 단자(120)로부터의 신호를 사용하고, 기간(T2) 동안 방사선 양을 판정하기 위해 제2 신호 입력 단자로부터의 신호를 사용한다.
(b) 동작
이어서, 도 7을 참조하여, 본 실시예에 따르는 방사선 촬상 장치의 동작을 설명한다. 도 2에 도시된 제1 실시예와 달리, 검지 소자용 스위치 소자(123)가 제공되지 않기 때문에, 게이트 제어 전압(Vd1 내지 Vdn)을 제어할 필요가 없다. 기간(T1) 동안, 게이트 제어 전압(Vb)은 HI이기 때문에, 스위치 소자(112)는 온 상태로 되고, 검지 소자(122)의 출력을 합성하도록 인접하는 검지 신호선(110)이 접속된다. 이 때, 게이트 제어 전압(Vc)이 HI이기 때문에, 스위치 소자(118)도 온 상태이다. 각각의 검지 신호선(110)에 접속된 검지 소자(122)로부터의 신호의 합성된 출력은 스위치 소자(118)를 통해 제1 신호 입력 단자(120)로 출력된다. 이어서, 기간(T2) 동안, 게이트 제어 전압(Vb)이 LO로 변하고, 게이트 제어 전압(Vc)은 HI로 변한다. 그 결과, 스위치 소자(112)가 오프 상태로 되고, 검지 소자(122)로부터의 신호는 제1 신호 입력 단자(120) 및 제2 신호 입력 단자(117)를 통해 판독 회로(222)로 전송되어, 방사선 노출 선량을 판정하는데 사용된다. 이 때, 제1 신호 입력 단자(120)는 제2 신호 입력 단자(117)와 동일하게, 검지 신호선으로부터의 검지 소자의 신호를 출력한다. 본 구성에 따르면, 제1 실시예에서와 같이, 기간(T1) 동안, 검지 소자로부터의 신호는 방사선 조사의 개시를 검지하도록 묶여진다. 따라서, 검지를 고감도로 실행할 수 있다. 기간(T2) 동안, 검지 신호선(110)으로부터의 신호는 합성되지 않고 판독 회로(222)로 제공된다. 따라서, 영역마다 방사선 양을 판정할 수 있어, 기간(T1)에서 보다 공간적 분해능을 높게 하고, 높은 선예도를 갖는 캡처 화상을 제공할 수 있다. 추가로, 기간(T1)에서 동작하는 회로의 규모가 억제될 수 있기 때문에, 기간(T1)에서의 소비 전력이 감소될 수 있다. 또한, 제1 신호 입력 단자(120)가 제2 신호 입력 단자(117)로서 사용되기 때문에, 접속 단자의 개수가 억제될 수 있다. 따라서 입력 회로의 규모를 감소시킬 수 있다.
(제3 실시예)
(a) 방사선 촬상 장치의 구성
도 9를 참조하여 본 실시예에 따르는 방사선 촬상 장치의 센서부를 설명한다. 도 9는 지지 기판(100)에 배치된 화소를 도시한다. 도 2에 도시된 제1 실시예와 달리, 검지 소자용 스위치 소자(123)는 검지 화소(121)에 설치되지 않는다. 따라서, 구동선(124)을 갖지 않는다. 추가로, 스위치 소자(112 및 118) 및 구동선(114 및 126)을 갖지 않는다. 구동선(127)은 제1 신호 입력 단자(120)에 접속된다. 신호선(127)은 용량부(128)를 통해 검지 신호선(110)에 접속된다. 용량부(128)는 검지 신호선(110)의 신호를 합성하는 합성부로서 기능한다. 도 11은 각각의 검지 화소(121)의 검지 소자(122)의 제1 전극이 화상 신호선(106)에 접속되고, 화상 신호선(106)이 검지 신호선(110)으로서 기능하는 본 실시예의 변형예를 도시한다. 유사하게, 판독 회로(222)의 화상 신호 입력 단자(107)가 제2 신호 입력 단자(117)로서 기능한다. 판독 회로(222)는 기간(T1) 동안 방사선 조사의 개시를 판정하기 위해 제1 신호 입력 단자(120)로부터의 신호를 사용하고, 기간(T2) 동안 방사선 양을 검지하기 위해 화상 신호 입력 단자(107)로부터의 신호를 사용한다. 기간(T3)에서, 판독 회로(222)는 화상 신호 입력 단자(107)로부터의 신호를 화상 신호로서 처리한다.
(b) 동작
도 10을 참조하여 본 실시예에 따르는 방사선 촬상 장치의 동작을 설명한다. 기간(T1) 동안, 게이트 제어 전압(Va)이 LO로 설정되고, 제2 신호 입력 단자(117)와 검지 신호선(110) 사이의 스위치 소자(111)가 오프 상태로 되고, 각각의 검지 신호선(110)은 플로팅된다. 따라서, 신호 전하가 검지 소자(122)에서 발생될 때, 각각의 검지 신호선(110)의 전위가 변동한다. 복수의 검지 신호선(110)의 전위 변동이, 복수의 검지 소자(122)로부터의 신호 전하에 의해 발생되는 전위의 변화로서 복수의 신호선들 사이의 용량부(128)를 통해 용량 결합된 신호선(127)에 전송된다. 기간(T2)에서, 게이트 제어 전압(Va)은 HI로 설정되어 스위치 소자(111)를 온 상태로 한다. 판독 회로(222)는 검지 소자(122)로부터의 신호를 제2 신호 입력 단자(117)를 통해 판독하여 방사선 양을 판정한다.
이 구성에 따르면, 기간(T1) 동안, 검지 소자(122)로부터의 신호가 전압의 변화로서 판독될 수 있다. 따라서, 판독에서 전하 이동이 발생하지 않는다. 기간(T1) 동안 방사선 조사의 유무를 판정하는 데 사용되는 전하는 또한 기간(T2) 동안 방사선 노출 선량을 검지하는 데 사용될 수 있다. 검지 정확성이 개선되고, 높은 선예도를 갖는 화상이 획득될 수 있다.
추가적으로, 도 11에 도시된 형태에서, 검지 신호 및 화상 신호가 동일한 신호 입력 단자를 사용하여 판독되기 때문에, 판독 회로(222)의 입력 단자의 개수가 감소될 수 있다. 이는 판독 회로(222)의 규모 및 소비 전력을 감소시키는데 유리하다.
(제4 실시예)
(a) 방사선 촬상 장치의 구성
도 12를 참조하여, 본 실시예에 따르는 방사선 촬상 장치를 설명한다. 도 12는 지지 기판(100) 상의 센서부의 배치를 도시한다. 도 2에 도시된 제1 실시예와 달리, 검지 소자용 스위치 소자(123)는 검지 화소(121)에 설치되지 않는다. 따라서, 구동선(124)을 갖지 않는다. 추가로, 스위치 소자(111, 112, 및 118), 구동선(113, 114, 및 126), 및 제1 신호 입력 단자(120)를 갖지 않는다. 본 실시예에 따르는 방사선 촬상 장치는 전원 회로(226)로부터 바이어스 선(108)까지 흐르는 전류의 변화를 모니터링함으로써 방사선 조사를 검지하도록 구성된다. 바이어스 전류는 전원 회로(226)가 바이어스 전류를 A/D 변환하고 변환된 데이터를 제어 회로(225)로 보냄으로써 모니터링된다. 이 경우, 전원 회로(226)는 또한 판독 회로(222)로서 기능한다.
바이어스 전원 단자(109) 및 바이어스 선(108)을 통해 전압이 인가되는 검지 소자(122)가 방사선으로 조사되는 경우, 검지 소자(122)에 신호 전하가 발생된다. 발생된 신호 전하는 바이어스 선(108)을 통해 바이어스 전원 단자(109)에 흐른다. 이와 달리, 변환 소자(102)에서도 전하 발생으로 인한 전위 변동이 발생하기 때문에, 전위 변동이 기생 용량(미도시)을 통해 바이어스 선(108)으로 전송되고, 바이어스 전원 단자(109)로 흐른다. 제어 회로(225)는 전원 회로(226)에 의해 모니터링되는 바이어스 전류에 기초하여 조사를 판정하고, 제어 신호를 구동 회로(221) 및 판독 회로(222)로 송신한다.
(b) 동작
도 13을 참조하여 본 실시예에 따르는 방사선 촬상 장치의 동작을 설명한다. 본 실시예에서, 기간(T1) 동안, 바이어스 선(108)에 흐르는 전류가 모니터링되고, 이에 의해 방사선 조사의 유무를 판정한다. 기간(T1) 동안, 게이트 제어 전압(Vg1 내지 Vgn)은 다크 전류를 리셋하기 위해 주기적으로 HI로 변한다. 방사선 조사가 개시될 때, 검지 소자(122) 및 변환 소자(102)의 출력이 변한다. 이 변화는 바이어스 선에 영향을 주고, 바이어스 전류가 변한다. 전원 회로(226)는 바이어스 전류의 변화를 모니터링한다. 변화가 발생하는 경우, 조사가 개시되었다고 판정한다. 기간(T2) 동안, 검지 소자(122)의 출력은 제2 신호 입력 단자(117)로부터 판독 회로(222)로 입력되고, 노출 선량이 측정된다. 미리 정해진 방사선 양이 검지될 때, 기간(T3)에서 스위치 소자(103)는 변환 소자(102)로부터의 화상 신호의 판독을 개시하도록 제어된다.
이 구성에 따르면, 기간(T1) 동안, 바이어스 선(108)에 흐르는 전류를 사용하여 많은 검지 소자(122)로부터의 신호를 묶어서 방사선을 검지할 수 있다. 기간(T2) 동안, 높은 공간 분해능을 갖는 방사선 노출 선량의 정보가 취득될 수 있기 때문에, 높은 선예도를 갖는 화상이 획득될 수 있다. 또한, 스위치 소자의 개수가 감소될 수 있고 구동 선의 배선이 생략될 수 있기 때문에, 소비 전력이 유리하게 감소될 수 있다.
(제5 실시예)
(a) 방사선 촬상 장치의 구성
도 14를 참조하여 본 실시예에 따르는 방사선 촬상 장치의 센서부를 설명한다. 본 실시예에 따르는 방사선 촬상 장치는 지지 기판(100) 상에 어레이로 배치된 복수의 화소(401)를 포함하는 센서부를 포함한다. 화소(401)는 방사선 또는 광에 대응하는 전기 신호를 출력하도록 구성되고, 방사선 또는 광을 전하로 변환하는 변환 소자(402), 리셋 스위치 소자(407), 소스 폴로어(source follower)(403), 부하 스위치 소자(404), 내부 커패시터(405), 및 화소 선택 스위치(406)를 포함한다. 바이어스 전원 단자(109)가 변환 소자(402)의 제2 전극에 전기 접속된다. 변환 소자(402)의 제1 전극은 소스 폴로워(403)의 제어 전극 및 리셋 스위치 소자(407)의 제1 주 전극에 접속된다. 소스 폴로워(403)는 변환 소자로부터의 전하에 대응하는 신호를 화상 신호선(106)에 출력하는 증폭 MOS 트랜지스터이다.
리셋 스위치 소자(407)의 제2 주 전극은 리셋 전위 공급 단자(300)에 전기 접속되고, 리셋 전위 공급 단자(300)를 통해 리셋 전압이 제2 주 전극에 인가된다. 리셋 스위치 소자(407)의 제어 전극은 화소 리셋 스위치 단자(305)에 전기 접속되고, 리셋 스위치 소자(407)를 온/오프 제어하는 전위(Vres)가 화소 리셋 스위치 단자(305)를 통해 제어 전극에 공급된다. 소스 폴로워(403)의 제1 주 전극은 양의 전위 공급 단자(303)에 전기 접속되고, 전원 전압이 제1 주 전극에 인가된다. 소스 폴로워(403)의 제2 주 전극은 부하 스위치 소자(404)의 제1 주 전극 및 내부 커패시터(405)의 제1 전극에 접속된다. 소스 폴로워(403)의 제2 주 전극, 부하 스위치 소자(404)의 제1 주 전극, 및 내부 커패시터(405)의 제1 전극이 접속되는 노드는 설명 편의성을 위해 이후 노드(A)로 지칭된다. 화소 선택 스위치(406)의 제1 주 전극이 내부 커페시터(405)의 제2 전극에 접속된다. 내부 커패시터(405)의 제2 전극 및 화소 선택 스위치(406)의 제1 주 전극이 접속되는 노드는 설명 편의성을 위해 이후 노드(B)로 지칭된다.
화소 선택 스위치(406)의 제2 주 전극은 화상 신호선(106)에 접속된다. 화소 선택 스위치(406)의 제어 전극은 화소 선택 스위치 단자(304)에 전기 접속되고, 화소 선택 스위치(406)를 온/오프 제어하는 전위(Vsel)가 화소 선택 스위치 단자(304)를 통해 제어 전극에 공급된다. 부하 스위치 소자(404)의 제2 주 전극은 GND 단자(301)에 접속되고, GND 전위가 제2 주 전극에 인가된다. 부하 스위치 소자(404)의 제어 전극은 부하 스위치 단자(306)에 접속되고, 스위치를 온/오프 제어하는 전위(Vload)가 부하 스위치 단자(306)를 통해 제어 전극에 공급된다. 화상 신호선(106)은 화상 신호 입력 단자(107)에 접속된다.
본 실시예에 따르는 방사선 촬상 장치의 구성에서, 구동 회로(221)는 화소 선택 스위치 단자(304), 화소 리셋 스위치 단자(305), 및 부하 스위치 단자(306)에 접속되고, 이들에 Vres, Vsel, 및 Vload를 각각 공급한다. 전원 회로(226)는 바이어스 전원 단자(109)에 바이어스 전위를 공급한다. 전원 회로(226)는 또한 리셋 전위 공급 단자(300), 양 전위 공급 단자(303), 및 GND 단자(301)에 접속되고 이들에 전위를 공급한다. 전원 회로(226)는 리셋 전위 공급 단자(300)에 리셋 전위를 인가하고, 또한 바이어스 전원으로부터 공급된 전류의 양을 모니터링한다. 제어 회로(225)는 전원 회로(226)에 의해 모니터링되는 전류량의 결과에 기초하여 제어 신호를 구동 회로(221) 및 판독 회로(222)로 전송한다.
(b) 동작
도 15를 참조하여, 본 실시예에 따르는 방사선 촬상 장치의 동작을 설명한다. Vsel1 내지 Vseln, Vres1 내지 Vresn, 및 Vload1 내지 Vloadn을 제1 내지 n번째 행의 화소 선택 스위치 단자(304), 화소 리셋 스위치 단자(305), 및 부하 스위치 단자(306)에 인가되는 전압으로 한다. 본 실시예의 설명의 범위 내에서, 전압(Vload1 내지 Vloadn)는 항상 HI이다. 본 실시예에서, 변환 소자(402)로부터의 신호는 캡처 화상 신호를 획득하기 위해 사용되고, 또한 방사선 조사의 유무를 판정하고 방사선 노출 선량을 판정하는데 사용된다.
먼저, 도 15에 도시된 기간(T1)의 작동을 설명한다. 기간(T1)은 방사선 조사의 유무를 검지하는 기간이다. 이 기간 동안, 전압(Vres1 내지 Vresn)는 HI로 설정되고, 노드(A)는 항상 리셋 전위 공급 단자(300)로부터 공급된 리셋 전압에 고정된다. 이 때, 복수의 변환 소자(402)로부터의 신호의 변화는 리셋 전위 공급 단자(300) 및 바이어스 전원 단자(109)를 통해 전원 회로(226)에 전송된다. 제어 회로(225)는 전원 회로(226)에 의한 바이어스 전원의 전류 변화 검지에 기초하여 방사선 조사의 유무를 판단한다. 제어 회로(225)가 방사선 조사가 존재한다고 판정하는 경우, 도 15에 도시된 기간(T2)이 시작된다. 기간(T1) 동안, 전압(Vsel1 내지 Vseln)은 HI로 설정되고, 이에 의해 화소 선택 스위치(406)를 온 상태로 하고, 고정 전위를 화상 신호 입력 단자(107)로부터 노드(B)에 공급한다.
이어서, 기간(T2)에서의 동작을 설명한다. 기간(T2)은 방사선이 조사되는 기간이다. 먼저, 전압(Vsel1 내지 Vseln)이 LO로 설정되어 화소 선택 스위치(406)을 오프 상태로 하고 노드(B)를 플로팅 상태로 한다. 전압(Vres1 내지 Vresn)이 LO로 설정되어 리셋 스위치 소자(407)를 오프 상태로 하고 화소(401)를 전하를 누적할 수 있는 상태로 설정한다. 방서선 노출 선량에 대응하는 전하가 발생될 때, 전하에 대응하는 전위가 각각의 노드(A)에서 발생된다. 노드(A)의 전위 변화는 플로팅 상태로 설정된 내부 커패시터(405)를 통해 노드(B)에서 나타난다.
이어서, 전압(Vsel1 내지 Vseln)이 순차적으로 HI로 설정되고, 화소 선택 스위치 단자(304)는 순차적으로 행 단위로 반복하여 주사된다. 각각의 화소(401)의 노드(B)에서 발생된 전위의 변화는 화상 신호선(106) 및 화상 신호 입력 단자(107)를 통해 판독 회로(222)에서 순차적으로 나타난다. 이 신호를 사용하여, 제어 회로(225)는 각각의 화소(401)에 진입한 방사선의 노출 선량을 검지한다. 도 15에서, 전압은 Vsel1, Vsel2, 및 Vseln의 순서로 HI로 설정된다. 그러나, 순서는 변경될 수 있다. 전압은 특정 화소의 화소 선택 스위치만 반복해서 온 상태로 되도록 인가될 수 있다. 전위의 변화는 판독 회로(222)의 화상 신호 입력 단자(107)에 입력된다. 기간(T2) 동안, 판독 회로(222)에 의해 판독된 전위에 기초하여 노출 선량이 판정되고, 제어 회로(225)는 방사선 조사를 정지하도록 제어된다. 이와 달리, 제어 회로는 신호를 외부 방사선 발생기로 출력할 수 잇고, 외부 방사선 발생기는 조사를 정지할지 여부를 판정할 수 있다. 방사선 조사가 정지되는 경우, 동작은 도 15에 도시된 기간(T3)으로 천이하고, 또는 외부 방사선 발생기는 방사선 촬상 장치가 기간(T3)으로 천이하도록 제어한다.
마지막으로, 방사선 조사 종료 이후 방사선에 의해 화소(401)에 누적된 신호를 판독하는 기간(T3)의 동작을 설명한다. 이 기간 도중, 먼저, 전압(Vsel1 내지 Vseln)이 HI로 설정된다. 따라서, 각각의 노드(B)는 화상 신호 입력 단자(107)의 전위에 고정되고, 소스 폴로워를 통해 내부 커패시터(405)의 전극들 사이에 조사가 정지할 때까지 방사선의 누적 노출 선량에 대응하는 전위차가 나타난다. 이어서, 전압(Vsel1 내지 Vseln)이 LO로 설정되어 노드(B)를 플로팅시키고, 이 상태에서, 전압(Vres1 내지 Vresn)이 HI로 설정된다. 내부 커패시터(405)의 노드(A)는 리셋 전위로 변하고, 노드(B)는 방사선의 누적 노출 선량에 대응하는 전압으로 충전된다. 마지막으로, 전압(Vsel1 내지 Vseln)이 순차적으로 HI로 설정된다. 각각의 화소(401)에 진입한 방사선의 누적 노출 선량에 대응하는 전하는 화상 신호 입력 단자(107)를 통해 행 단위로 판독 회로(222)에 흐른다. 이 신호는 진단을 위한 촬영 화상 정보로서 사용된다.
이 구성에 따르면, 기간(T1)에서의 방사선 조사 개시는 리셋 전위 공급 단자(300) 및 바이어스 전원 단자(109)에 접속된 복수의 화소(401)로부터의 다수의 출력을 묶어서 판정되기 때문에, 검지 감도가 향상될 수 있다. 한편, 기간(T2) 동안, 방사선 노출 선량의 정보가 공간적 분해능이 달성된 상태에서 변환 소자마다 취득되어 처리될 수 있다. 따라서 높은 선예도를 갖는 캡처 화상을 제공할 수 있다.
(제6 실시예)
이어서, 도 16을 참조하여, 본 발명에 따르는 방사선 촬영 장치를 사용한 방사선 검지 시스템에 대한 적용예를 설명한다. 방사선을 발생시키는 방사원인 X선 튜브(6050)에 의해 발생된 X선(6060)은 환자 또는 대상(6061)의 흉부(6062)를 투과하고 본 발명에 따르는 촬상 장치(6040)에 입사한다. 입사한 X선은 환자(6061)의 신체 내측에 관한 정보를 포함한다. 신틸레이터에 의해 X선을 광으로 변환하는 방법이 채용된 경우, 입사한 X선에 대응하는 광은 광전 변환 소자에 의해 광전 변환되고, 이에 의해 전기 정보를 얻는다. 이 정보는 디지털 데이터로 변환되어 신호 처리 수단으로서 기능하는 이미지 프로세서(6070)에 의해 처리된다. 데이터는 제어실의 표시 수단으로서 기능하는 디스플레이(6080) 상에서 관측될 수 있다.
또한, 이 정보는 전화 회선(6090) 등의 전송 처리 수단에 의해 원격 장소로 전송될 수 있고, 다른 장소의 진료실의 디스플레이 수단으로서 기능하는 디스플레이(6081) 상에 표시되고, 또는 광 디스크 등의 기록 수단에 저장되어, 원격 장소의 의사가 진단을 할 수 있다. 또한, 이 정보는 기록 수단으로서 기능하는 필름 프로세서(6100)에 의해 기록 매체로서 기능하는 필름(6110)에 기록될 수 있다.
본 발명은 예시적 실시예를 참조하여 설명되었지만, 본 발명은 개시된 예시적 실시예에 제한되지 않는다는 것이 이해되어야 한다. 다음 청구항의 범위는 모든 이러한 수정예 및 등가적 구성예 및 기능예를 포함하도록 가장 넓은 해석을 따른다.

Claims (9)

  1. 방사선 조사의 유무를 판정하고 방사선 양을 판정하는 방사선 촬상 장치이며,
    상기 방사선 촬상 장치는
    검지된 방사선을 나타내는 화상 신호를 취득하도록 구성된 화소 어레이, 및 상기 화소 어레이에 배치되며 방사선을 검지하도록 구성된 복수의 검지 소자를 포함하는, 센서부,
    상기 센서부로부터의 신호들을 판독하도록 구성된 회로를 포함하고,
    상기 회로는 방사선 조사의 유무를 판정하기 위한 제1 신호 및 방사선 양을 판정하기 위한 제2 신호를 발생시키고,
    상기 제1 신호는, 상기 복수의 검지 소자의 제1 서브세트의 검지 소자를 상기 회로에 전기 접속함으로써 제공되는, 상기 제1 서브세트의 검지 소자로부터 합성된 신호에 대응하고,
    상기 제2 신호는, 상기 복수의 검지 소자의 제2 서브세트의 검지 소자를 상기 회로에 전기 접속함으로써 제공되는, 상기 제2 서브세트의 검지 소자로부터 합성된 신호에 대응하고,
    상기 제1 서브세트의 검지 소자의 수는 상기 제2 서브세트의 검지 소자의 수보다 큰, 방사선 촬상 장치.
  2. 제1항에 있어서,
    상기 센서부는 상기 검지 소자가 접속되는 복수의 검지 신호선, 및 상기 회로에 집합적으로 전기 접속함으로써 상기 복수의 검지 신호선의 신호를 합성하는 합성부를 더 포함하고,
    상기 복수의 검지 소자는 상기 복수의 검지 신호선 중 어느 하나에 접속되는, 방사선 촬상 장치.
  3. 제2항에 있어서,
    상기 합성부는 상기 복수의 검지 신호선을 상기 회로에 접속하도록 동작 가능한 스위치 소자들을 포함하는, 방사선 촬상 장치.
  4. 제2항에 있어서,
    상기 회로는 상기 제1 신호를 처리하는 제1 신호 처리 회로 및 상기 제2 신호를 처리하는 제2 신호 처리 회로를 포함하고,
    상기 합성부는 상기 복수의 검지 신호선과 상기 제1 신호 처리 회로를 용량 결합하도록 구성된 소자를 포함하는, 방사선 촬상 장치.
  5. 제1항에 있어서,
    상기 회로는 바이어스 선을 통해 상기 복수의 검지 소자에 바이어스 전압을 인가하기 위한 전원 회로를 더 포함하고,
    상기 전원은 상기 바이어스 선 내의 전류 흐름을 모니터링하고,
    상기 방사선 조사의 유무는 상기 전원에 의해 모니터링되는 상기 바이어스 선에 흐르는 전류의 변화에 기초하는 제1 신호에 기초하여 판정되고,
    화상 신호선 및 검지 신호선 중 하나 이상을 통한 신호 판독에 기초하여 상기 회로에 의해 발생되는 상기 제2 신호에 기초하여 방사선 양이 판정되는, 방사선 촬상 장치.
  6. 제2항에 있어서,
    상기 검지 소자는 방사선에 대응하는 전하를 발생시키도록 구성된 변환 소자, 상기 변환 소자로부터의 전하에 대응하는 신호를 상기 검지 신호선에 출력하도록 배치된 증폭 MOS 트랜지스터, 및 상기 변환 소자를 리셋하도록 구성된 리셋 스위치를 포함하는, 방사선 촬상 장치.
  7. 제6항에 있어서,
    상기 검지 소자는 방사선에 대응하는 화상 신호를 상기 검지 신호선에 출력하도록 배치되는, 방사선 촬상 장치.
  8. 제1항에 있어서,
    상기 회로는
    상기 제1 신호를 처리하도록 구성된 제1 신호 처리 회로, 및
    상기 제2 신호를 처리하도록 구성된 제2 신호 처리 회로를 더 포함하고,
    방사선 조사의 유무를 판정하는 동안, 상기 제1 신호 처리 회로가 동작되고, 상기 제2 신호 처리 회로의 동작이 정지되고,
    방사선 양을 판정하는 동안, 상기 제2 신호 처리 회로가 동작되는, 방사선 촬상 장치.
  9. 방사선 검지 시스템이며,
    방사선을 발생시키도록 구성된 방사선원, 및
    제1항 내지 제8항 중 어느 한 항에 따른 방사선 촬상 장치를 포함하는, 방사선 검지 시스템.
KR1020150113042A 2014-08-12 2015-08-11 방사선 촬상 장치 및 방사선 검지 시스템 KR101916504B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014164530A JP6491434B2 (ja) 2014-08-12 2014-08-12 放射線撮像装置及び放射線検出システム
JPJP-P-2014-164530 2014-08-12

Publications (2)

Publication Number Publication Date
KR20160019870A KR20160019870A (ko) 2016-02-22
KR101916504B1 true KR101916504B1 (ko) 2018-11-07

Family

ID=54200542

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150113042A KR101916504B1 (ko) 2014-08-12 2015-08-11 방사선 촬상 장치 및 방사선 검지 시스템

Country Status (7)

Country Link
US (2) US9977135B2 (ko)
JP (1) JP6491434B2 (ko)
KR (1) KR101916504B1 (ko)
CN (1) CN105361897B (ko)
DE (1) DE102015113206A1 (ko)
GB (1) GB2532544B (ko)
RU (1) RU2627929C2 (ko)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6442163B2 (ja) * 2014-06-02 2018-12-19 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP6491434B2 (ja) * 2014-08-12 2019-03-27 キヤノン株式会社 放射線撮像装置及び放射線検出システム
JP6570315B2 (ja) * 2015-05-22 2019-09-04 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP6626301B2 (ja) 2015-09-28 2019-12-25 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
JP6649775B2 (ja) 2016-01-13 2020-02-19 キヤノン株式会社 放射線撮像装置、その駆動方法及び放射線撮像システム
JP6763186B2 (ja) * 2016-04-08 2020-09-30 コニカミノルタ株式会社 放射線画像撮影システム
JP6285995B2 (ja) * 2016-08-10 2018-02-28 浜松ホトニクス株式会社 固体撮像装置、放射線撮像システム及び固体撮像装置の制御方法
JP6420812B2 (ja) * 2016-11-25 2018-11-07 キヤノン株式会社 放射線撮像装置および放射線撮像システム
EP3570325B1 (en) * 2017-01-12 2020-10-28 Mitsubishi Electric Corporation Infrared sensor substrate and infrared sensor device
JP2018137336A (ja) * 2017-02-22 2018-08-30 ソニーセミコンダクタソリューションズ株式会社 受光装置
JP6929104B2 (ja) 2017-04-05 2021-09-01 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
JP6990986B2 (ja) 2017-04-27 2022-01-12 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
JP6853729B2 (ja) * 2017-05-08 2021-03-31 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
JP6788547B2 (ja) 2017-05-09 2020-11-25 キヤノン株式会社 放射線撮像装置、その制御方法、制御装置、及び、放射線撮像システム
CN110800288B (zh) * 2017-06-28 2021-12-21 富士胶片株式会社 放射线图像检测装置及其工作方法
JP6864092B2 (ja) * 2017-06-28 2021-04-21 富士フイルム株式会社 放射線画像検出装置とその作動方法
CN110869809B (zh) 2017-07-10 2023-07-25 佳能株式会社 放射线成像装置和放射线成像系统
JP7045834B2 (ja) 2017-11-10 2022-04-01 キヤノン株式会社 放射線撮像システム
CN108318907B (zh) * 2018-02-01 2019-10-01 北京京东方光电科技有限公司 X射线探测面板及其制造方法和x射线探测装置
JP7079113B2 (ja) 2018-02-21 2022-06-01 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
CN111902735B (zh) * 2018-03-26 2024-05-03 富士胶片株式会社 放射线图像摄影装置
JP7198003B2 (ja) 2018-06-22 2022-12-28 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法およびプログラム
EP3661190B1 (en) 2018-11-27 2024-05-22 Canon Kabushiki Kaisha Radiation imaging apparatus and radiation imaging system
JP7319809B2 (ja) * 2019-03-29 2023-08-02 キヤノン株式会社 放射線撮像装置、その制御方法及び放射線撮像システム
JP7157699B2 (ja) 2019-05-29 2022-10-20 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法および当該方法を実行させるプログラム
JP7410678B2 (ja) 2019-09-19 2024-01-10 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP7397635B2 (ja) 2019-11-22 2023-12-13 キヤノン株式会社 放射線検出装置、放射線検出システム、制御方法及びプログラム
CN110854242B (zh) * 2019-12-18 2024-03-19 中国原子能科学研究院 辐射探测探头及其制备方法、辐射探测芯片
JP2022022844A (ja) 2020-07-08 2022-02-07 キヤノン株式会社 放射線撮像装置
WO2022144782A1 (en) * 2020-12-29 2022-07-07 Analogic Canada Corporation Two-stage pixel device with adaptive frame grabbing for x-ray imaging with or without automatic exposure control, and related systems, methods and devices
JP2022164433A (ja) 2021-04-16 2022-10-27 キヤノン株式会社 放射線撮像装置および放射線撮像システム
CN115000109A (zh) * 2022-06-08 2022-09-02 京东方科技集团股份有限公司 射线探测器及射线探测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329777A (ja) * 2002-05-08 2003-11-19 Canon Inc 撮像装置
JP2013130568A (ja) * 2011-11-25 2013-07-04 Fujifilm Corp 放射線画像検出装置およびその作動方法
US20130228694A1 (en) * 2010-10-26 2013-09-05 Fujifilm Corporation Radiographic imaging device
JP2014059209A (ja) * 2012-09-18 2014-04-03 Fujifilm Corp 放射線画像検出装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4669653B2 (ja) 2003-04-22 2011-04-13 キヤノン株式会社 放射線撮像装置、放射線撮像システム及びコンピュータプログラム
JP4713952B2 (ja) 2005-06-02 2011-06-29 株式会社東芝 X線透視撮影用自動露出制御装置
JP5159065B2 (ja) 2005-08-31 2013-03-06 キヤノン株式会社 放射線検出装置、放射線撮像装置および放射線撮像システム
JP4834518B2 (ja) * 2005-11-29 2011-12-14 キヤノン株式会社 放射線撮像装置、その制御方法、及びそれを実行させるためのプログラムを記録した記録媒体
JP2007151761A (ja) 2005-12-02 2007-06-21 Canon Inc 放射線撮像装置、システム及び方法、並びにプログラム
JP4989197B2 (ja) 2005-12-13 2012-08-01 キヤノン株式会社 放射線撮像装置、放射線撮像システム、及び補正方法
JP4891096B2 (ja) 2006-01-30 2012-03-07 キヤノン株式会社 放射線撮像装置
JP5043448B2 (ja) 2006-03-10 2012-10-10 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP4847202B2 (ja) 2006-04-27 2011-12-28 キヤノン株式会社 撮像装置及び放射線撮像システム
JP2008042478A (ja) 2006-08-04 2008-02-21 Canon Inc 撮像装置、放射線撮像装置、及びその駆動方法
JP2008212644A (ja) 2007-02-06 2008-09-18 Canon Inc 放射線撮像装置及びその駆動方法、並びに放射線撮像システム
JP5311834B2 (ja) 2008-01-24 2013-10-09 キヤノン株式会社 撮像装置、撮像システム、信号処理方法及びプログラム
JP5137770B2 (ja) * 2008-09-30 2013-02-06 シャープ株式会社 放射線画像撮影システム
JP5517484B2 (ja) 2009-05-01 2014-06-11 キヤノン株式会社 撮像装置及び撮像システム、それらの制御方法及びそのプログラム
JP5233831B2 (ja) * 2009-05-14 2013-07-10 コニカミノルタエムジー株式会社 放射線画像撮影装置および放射線画像撮影システム
JP5475574B2 (ja) 2010-07-02 2014-04-16 富士フイルム株式会社 放射線検出素子、及び放射線画像撮影装置
JP2012118312A (ja) * 2010-12-01 2012-06-21 Fujifilm Corp 放射線画像検出装置およびその駆動制御方法
US8791419B2 (en) 2010-12-15 2014-07-29 Carestream Health, Inc. High charge capacity pixel architecture, photoelectric conversion apparatus, radiation image pickup system and methods for same
US8829348B2 (en) 2011-02-15 2014-09-09 Commscope, Inc. Of North Carolina Pair orbit management for communication cables
JP6008430B2 (ja) 2011-07-26 2016-10-19 富士フイルム株式会社 放射線画像検出装置及びその制御方法
JP5199497B2 (ja) * 2011-08-31 2013-05-15 富士フイルム株式会社 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御プログラム、及び放射線画像撮影装置の制御方法
JP5675537B2 (ja) 2011-09-05 2015-02-25 富士フイルム株式会社 放射線撮影システムおよび放射線撮影システムの自動露出制御方法、並びに放射線画像検出装置
JP5592962B2 (ja) 2012-02-03 2014-09-17 富士フイルム株式会社 放射線撮影装置とその制御方法、及び放射線撮影システム
JP5878444B2 (ja) 2012-09-04 2016-03-08 富士フイルム株式会社 放射線画像検出装置
JP2014068882A (ja) 2012-09-28 2014-04-21 Fujifilm Corp 放射線画撮影制御装置、放射線動画撮影システム、放射線画撮影装置の欠陥判定方法、及び放射線画撮影制御プログラム
JP6585910B2 (ja) 2014-05-01 2019-10-02 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP6442163B2 (ja) 2014-06-02 2018-12-19 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP6595803B2 (ja) 2014-06-13 2019-10-23 キヤノン株式会社 放射線撮像装置、放射線撮像システムおよびその制御方法
US9948871B2 (en) 2014-07-25 2018-04-17 Canon Kabushiki Kaisha Radiation imaging apparatus and radiation imaging system
JP6491434B2 (ja) * 2014-08-12 2019-03-27 キヤノン株式会社 放射線撮像装置及び放射線検出システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329777A (ja) * 2002-05-08 2003-11-19 Canon Inc 撮像装置
US20130228694A1 (en) * 2010-10-26 2013-09-05 Fujifilm Corporation Radiographic imaging device
JP2013130568A (ja) * 2011-11-25 2013-07-04 Fujifilm Corp 放射線画像検出装置およびその作動方法
JP2014059209A (ja) * 2012-09-18 2014-04-03 Fujifilm Corp 放射線画像検出装置

Also Published As

Publication number Publication date
CN105361897A (zh) 2016-03-02
US20160047920A1 (en) 2016-02-18
GB201514179D0 (en) 2015-09-23
CN105361897B (zh) 2018-12-25
US20180231672A1 (en) 2018-08-16
US9977135B2 (en) 2018-05-22
RU2015132748A (ru) 2017-02-09
GB2532544A (en) 2016-05-25
JP2016040880A (ja) 2016-03-24
DE102015113206A1 (de) 2016-02-18
KR20160019870A (ko) 2016-02-22
GB2532544B (en) 2019-03-06
RU2627929C2 (ru) 2017-08-14
JP6491434B2 (ja) 2019-03-27
US10634800B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
KR101916504B1 (ko) 방사선 촬상 장치 및 방사선 검지 시스템
CN110623682B (zh) 放射线摄像装置及控制方法、放射线摄像系统及存储介质
US9134435B2 (en) Image-pickup system capable of sensing an end of radiation during an accumulation operation and method of controlling same
KR101794404B1 (ko) 방사선 촬상 장치 및 방사선 촬상 시스템
JP6555909B2 (ja) 放射線撮像装置及び放射線撮像システム
US9661240B2 (en) Radiation imaging apparatus comprising a pixel including a conversion element and radiation imaging system
US20140061488A1 (en) Radiation imaging apparatus and radiation imaging system
US9360562B2 (en) Radiation imaging apparatus and radiation imaging system
US8436314B2 (en) Imaging apparatus, imaging system, method of controlling the apparatus and the system, and program
US11294078B2 (en) Radiation imaging apparatus and radiation imaging system
US20070158572A1 (en) Method, a system for generating a spatial roadmap for an interventional device and a quality control system for guarding the spatial accuracy thereof
WO2018135293A1 (ja) 放射線撮像装置及び放射線撮像システム
JP6808458B2 (ja) 放射線撮像装置および放射線撮像システム
US9239390B2 (en) Radiation imaging apparatus and radiation imaging system
JP6494387B2 (ja) 放射線撮像装置及び放射線撮像システム
JP7190913B2 (ja) 放射線撮像装置および放射線撮像システム
JP6436754B2 (ja) 放射線撮像装置および放射線撮像システム
JP6555893B2 (ja) 放射線撮像装置および放射線撮像システム
JP2019136403A (ja) 放射線撮像装置および放射線撮像システム
JP2024066979A (ja) 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の制御方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant