KR101617485B1 - 광학 부품, 조명 장치 및 표시 장치 - Google Patents

광학 부품, 조명 장치 및 표시 장치 Download PDF

Info

Publication number
KR101617485B1
KR101617485B1 KR1020117015393A KR20117015393A KR101617485B1 KR 101617485 B1 KR101617485 B1 KR 101617485B1 KR 1020117015393 A KR1020117015393 A KR 1020117015393A KR 20117015393 A KR20117015393 A KR 20117015393A KR 101617485 B1 KR101617485 B1 KR 101617485B1
Authority
KR
South Korea
Prior art keywords
convex portion
main surface
light
optical component
microlens
Prior art date
Application number
KR1020117015393A
Other languages
English (en)
Other versions
KR20110092343A (ko
Inventor
도모히로 나까고메
유끼 이가라시
가즈요시 에비나
히데노리 에찌젠
Original Assignee
도판 인사츠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도판 인사츠 가부시키가이샤 filed Critical 도판 인사츠 가부시키가이샤
Publication of KR20110092343A publication Critical patent/KR20110092343A/ko
Application granted granted Critical
Publication of KR101617485B1 publication Critical patent/KR101617485B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

출사광의 휘도를 향상시켜, 사이드 로브 및 므와레 간섭 줄무늬를 억제한다. 광학 부품(8)은, 기재(13)의 제1 주면(13a)에 대략 반구 형상의 마이크로 렌즈(14)와 단면 삼각형의 프리즘 렌즈(15)를 구비한다. 프리즘 렌즈(15)는 한 방향으로 복수 배열하였다. 제1 주면(13a)을 기준으로 하여 프리즘 렌즈(15)와 마이크로 렌즈(15)의 높이의 어스펙트비 TL2/TM1을 10% 내지 90%로 설정하였다. 평면에서 보아 제1 주면(13a)에 대한 마이크로 렌즈(15)의 면적율 Mb/Ma가 25%∼88%이다. 기재(13)의 제2 주면(13b)에서는 마이크로 렌즈로 이루어지는 제3 볼록부(18)를 랜덤하게 형성하여 입사하는 광의 확산성을 향상시켰다.

Description

광학 부품, 조명 장치 및 표시 장치{OPTICAL COMPONENT, LIGHTING DEVICE, AND DISPLAY DEVICE}
본 발명은, 크게는 조명 광로 제어에 이용되어 광을 집광 및/또는 확산하는 광학 부품에 관한 것으로, 주로 이 광학 부품을 이용한 조명 장치, 그 조명 장치를 구비한 액정 텔레비전 등의 표시 장치에 관한 것이다.
최근의 대형 액정 텔레비전이나 평면 표시 장치 패널 등에서는, 주로 직하형 방식의 조명 장치와, 엣지 라이트 방식의 조명 장치가 채용되고 있다. 직하형 방식의 조명 장치는, 광원으로서 복수의 냉음극관이나 LED(Light Emitting Diode)가, 패널의 배면에 규칙적으로 배치된다. 액정 패널 등의 화상 표시 소자와 광원 사이에는, 광 산란성이 강한 확산판이 이용되어, 광원으로서의 냉음극관이나 LED가 시인되지 않도록 하고 있다.
한편, 엣지 라이트 방식의 조명 장치는, 복수의 냉음극관이나 LED가, 도광판으로 불리는 투광성의 판의 끝면(端面)에 배치된다. 일반적으로, 도광판의 사출면(화상 표시 소자와 대향하는 면)의 반대측의 면에는, 그 도광판의 끝면으로부터 입사하는 입사광을 효율적으로 사출면으로 유도하는 광 편향면이 형성되고, 광 편향면으로서는 예를 들면 백색의 도트 패턴이 인쇄된 것, 혹은, 렌즈 형상이 부여된 것 등, 효율적으로 사출면으로 유도하기 위해서 다양한 광 편향면이 제안되어 있다.
종래, 직하형 방식과 엣지 라이트 방식의 조명 장치에서는, 표시 장치의 관찰자 방향의 휘도를 향상시키기 위해서, 단일, 또는 복수의 광학 필름이 배치된다.
액정 표시 화면의 휘도를 향상시키는 수단으로서, 미국 3M사의 등록 상표인 휘도 향상 필름(Brightness Enhancement Film : BEF)이 렌즈 시트로서 널리 사용되고 있다.
도 15 내지 도 17은 하기 특허 문헌 1, 2에 기재된 휘도 향상 필름을 도시하는 것이다. 도 15에 도시한 액정 표시 장치(100)는, 개략적으로 광원(101)과, 광원(101)으로부터 출사된 광을 입사시키는 휘도 향상 필름으로서의 BEF(102)와, 액정 패널(103)이 배설되어 있다. 도 16에 도시한 바와 같이, BEF(102)는, 투명 기재(104) 상에 단면 삼각형 형상의 단위 프리즘(105)이 한 방향으로 주기적으로 배열되어 이루어지는 광학 필름이다. 이 단위 프리즘(105)은 광의 파장에 비해 큰 사이즈(피치)로 구성되어 있다.
BEF(102)는, "축외(off-axis)"로부터의 광을 집광하고, 이 광을 관찰자를 향하여 "축상(on-axis)"으로 방향 전환(redirect) 또는 "리사이클(recycle)"시킬 수 있다. 즉 BEF(102)는, 액정 표시 장치(100)의 사용 시(관찰 시)에, 축외 휘도를 저하시킴으로써 축상 휘도를 증대시킬 수 있다. 여기서 말하는 「축상」이란, 도 15에서 관찰자의 시야 방향 F'에 일치하는 방향이며, 일반적으로는 액정 패널(103)의 표시 화면에 대한 법선 방향측이다.
또한, 특허 문헌 2에 기재된 표시 장치에서는, 프리즘을 한 방향으로 배열한 렌즈 시트와 액정 패널 사이에 광 확산 필름을 배치함과 함께, 렌즈 시트의 광 입사면에 투명한 볼록형 도트를 형성한 것으로, 휘도를 증강할 수 있음과 함께 규칙적으로 배열된 프리즘 렌즈와 액정 화소 사이에 생기는 므와레 간섭 줄무늬를 방지할 수 있다.
전술한 BEF(102)로 대표되는 프리즘의 반복적 어레이 구조를 갖는 휘도 제어 부재를 광원과 액정 패널 사이에 배설한 표시 장치로서, 하기 특허 문헌 1 및 2에 예시되는 바와 같이 다수의 것이 알려져 있다. BEF(102)의 채용에 의해, 디스플레이 설계자가 전력 소비를 저감하면서 원하는 축상 휘도를 달성할 수 있도록 되었다. BEF(102)를 휘도 제어 부재로서 이용한 광학 시트에서는, 광원으로부터의 광이 굴절 작용에 의해 최종적으로는 제어된 각도로 출사면으로부터 출사됨으로써, 관찰자의 시각 방향의 광의 강도를 높이도록 제어할 수 있다.
한편, 최근에는 특허 문헌 3에 나타내는 바와 같은, 마이크로 렌즈 시트의 채용이 증가하기 시작하고 있다. 특허 문헌 3에서 나타내어지는 마이크로 렌즈 시트는, 도 18에 도시된 바와 같이 투명 기재 상에 대략 반구 형상의 마이크로 렌즈가 불규칙적으로 배치된 시트이며, 전술한 바와 같이 프리즘 시트에서 생기는 사이드 로브, 므와레 간섭 줄무늬 등의 문제가 생기지 않는다. 그 시각 특성은 표면 확산 시트의 시각 특성에 가깝고, 표면 확산 시트보다도 정면 휘도가 높다.
특허 문헌 1 : 일본 특표평 10-506500호 공보 특허 문헌 2 : 일본 특개평6-102506호 공보 특허 문헌 3 : 일본 특개 2006-301582호 공보
그러나, 특허 문헌 1 및 2에 기재된 바와 같은 BEF(102)를 이용한 경우에는, 동시에 반사/굴절 작용에 의한 광 성분이, 관찰자의 시각 방향 F'로 진행하지 않고 광로로부터 벗어난 방향으로 불필요하게 출사되게 되는 경우가 있다. 도 17에 도시한 관찰자의 시야 방향에 대한 각도에 대한 광 강도 분포도에서, 파선 B는 BEF(105)의 광 강도 분포를 나타내는 것이다. 이 경우, 시야 방향 F'에 대한 각도 0°(축상 방향에 해당함)에서의 광 강도가 가장 높지만, 시야 방향 F'에 대한 각도 ±90°근변에는 작은 광 강도 피크(사이드 로브)가 발생한다. 이 사이드 로브는 시야 방향의 광로로부터 벗어나서 가로 방향으로 불필요하게 출사된다. 이와 같은 사이드 로브의 광 강도 피크를 갖는 휘도 분포는 바람직하지는 않고, 각도 ±90°근변에서의 광 강도 피크가 없는 도 17에서 실선 A로 나타내는 바와 같은 매끄러운 휘도 분포가 얻어지는 것이 바람직하다.
또한, 축상 휘도만이 과도하게 향상되면, 휘도 분포의 곡선의 피크폭이 현저하게 좁아져, 시역(視域)이 극단적으로 한정되기 때문에, 피크폭을 적절하게 넓히기 위해서, 또한 주기 구조인 프리즘과 화소 사이에 생기는 므와레 간섭 줄무늬를 없애기 위해서, 전술한 바와 같이 프리즘 시트와는 별도 부재의 광 확산 필름을 새롭게 병용할 필요가 있어, 부재수의 증가를 수반하게 된다고 하는 문제가 있다. 또한 BEF(105)로 대표되는 프리즘 시트는 선단이 뾰족하기 때문에, 표시 장치의 조립 공정이나 광 확산 필름과의 마찰 등에 의해 손상이 생기기 쉽다고 하는 문제가 이전부터 지적되고 있다.
또한, 특허 문헌 3에 기재된 바와 같은 마이크로 렌즈 시트는, 프리즘 시트에 비하면 휘도가 낮기 때문에, 고휘도가 요구되는 백라이트 유닛이나 디스플레이 장치에 사용하는 것은 곤란하였다.
본 발명은, 전술한 과제를 감안하여 이루어진 것으로, 휘도를 크게 손상시키지 않고 내찰성을 향상시킨 광학 부품, 사이드 로브를 거의 발생시키지 않고 관찰자측에의 휘도를 향상시킨 광학 부품, 그 광학 부품을 구비한 조명 장치 및 그 조명 장치를 구비한 표시 장치를 제공하는 것을 목적으로 한다.
제1 발명에 따른 광학 부품은, 제1 및 제2 주면을 구비하고, 상기 제1 주면에는, 2차원적으로 배치된 복수의 제1 볼록부와, 상기 제1 볼록부와 비교하여 높이가 보다 낮은 복수의 제2 볼록부가 형성되어 이루어지고, 상기 제1 볼록부는, 각각이 독립된 대략 반구 형상, 대략 타원 반구 형상, 또는 선단이 라운딩을 띠는 비구면 형상의 마이크로 렌즈이고, 상기 제2 볼록부는, 1차원 방향으로 연장되는 렌즈가, 1방향 또는 2방향으로 배치되어 이루어지는 것을 특징으로 한다.
제2 발명에 따른 광학 부품은, 상기 제2 볼록부의 높이가, 상기 제1 볼록부의 높이와 비교하여, 10% 내지 90%의 범위로 설정되어 이루어지는 것을 특징으로 한다.
제3 발명에 따른 광학 부품은, 상기 제1 주면에 접하는 상기 제2 볼록부의 폭이, 상기 제1 볼록부의 폭과 비교하여, 1.1배 내지 10배의 범위로 설정되어 이루어지는 것을 특징으로 한다.
제4 발명에 따른 광학 부품은, 상기 제1 볼록부는 상기 제1 주면에 불규칙하게 배치되고, 또한, 그 제1 주면의 단위 면적에 포함되는 그 제1 볼록부의 그 제1 주면에 접하는 면적의 총합은, 그 제1 주면의 장소에 상관없이 대략 일정한 것을 특징으로 한다.
제5 발명에 따른 광학 부품은, 상기 제2 주면에는, 2차원적으로 복수의 제3 볼록부가 불규칙하게 배치되고, 또한, 그 제2 주면의 단위 면적에 포함되는 그 제3 볼록부의 그 제2 주면에 접하는 면적의 총합은, 그 제2 주면의 장소에 상관없이 대략 일정한 것을 특징으로 한다.
제6 발명에 따른 광학 부품은, 상기 제3 볼록부가 마이크로 렌즈로 구성되고, 상기 제2 주면을 평면에서 보았을 때에 그 제2 주면의 면적에 대하여 그 제3 볼록부가 차지하는 비율이, 3% 이상 10% 이하의 범위에서 설정되고, 그 제3 볼록부의 높이를 TM3으로 하고, 그 제3 볼록부의 직경을 PM3으로 하였을 때, 그 제3 볼록부의 어스펙트비 TM3/PM3이, 10% 이상 40% 이하의 범위에서 설정되어 이루어지는 것을 특징으로 한다.
제7 발명에 따른 광학 부품은, 상기 제1 주면을 평면에서 보았을 때에, 그 제1 주면의 면적에 대하여 상기 제1 볼록부가 차지하는 비율이, 3% 이상 35% 이하의 범위에서 설정되어 이루어지는 것을 특징으로 한다.
제8 발명에 따른 광학 부품은, 상기 제1 주면을 평면에서 보았을 때에, 그 제1 주면의 면적에 대하여 상기 제1 볼록부가 차지하는 비율이, 25% 이상 88% 이하의 범위에서 설정되어 이루어지는 것을 특징으로 한다.
제9 발명에 따른 광학 부품은, 상기 제1 볼록부의 높이를 TM1으로 하고, 그 제1 볼록부의 직경을 PM1로 하였을 때, 그 제1 볼록부의 어스펙트비 TM1/PM1이, 10% 이상 100% 이하의 범위에서 설정되어 이루어지는 것을 특징으로 한다.
제10 발명에 따른 광학 부품은, 상기 제1 볼록부의 높이를 TM1로 하고, 그 제1 볼록부의 직경을 PM1로 하였을 때, 그 제1 볼록부의 어스펙트비 TM1/PM1이, 40% 이상 90% 이하의 범위에서 설정되어 이루어지는 것을 특징으로 한다.
제11 발명은, 제1∼제10 발명 중 어느 하나의 광학 부품과, 상기 광학 부품을 상기 제2 주면측으로부터 조명하는 광원을 구비하는 것을 특징으로 하는 조명 장치이다.
제12 발명은, 화소 단위로의 투과/차광에 따라서 표시 화상을 규정하는 화상 표시 소자와, 제11 발명에 의한 조명 장치를 구비하는 것을 특징으로 하는 표시 장치이다.
본 발명에 따른 광학 부품에 의하면, 제1 주면에 마이크로 렌즈가 배치되고, 복수의 마이크로 렌즈의 간극을 메우도록 1차원 방향으로 연장되는 렌즈가 1방향, 또는 2방향으로 형성됨으로써, 집광성이 높은 1차원 방향 렌즈의 효과와, 집광성과 확산성을 양립하는 마이크로 렌즈의 효과를 얻을 수 있기 때문에, 사이드 로브가 거의 생기지 않는 광학 부품을 얻을 수 있다.
1차원 방향 렌즈의 높이는, 마이크로 렌즈의 높이에 비해 10% 내지 90%의 범위로 낮아지도록 설정되어 있기 때문에, 예를 들면 1차원 방향 렌즈가 뾰족한 형상이어도, 내찰성이 높은 광학 부품이 얻어진다.
그리고 마이크로 렌즈는, 1차원 방향 렌즈의 폭에 비해 1.1배 내지 10배의 범위로 설정되어 있기 때문에, 반드시 2개 이상의 1차원 방향 렌즈와 마이크로 렌즈가 겹치는 형상으로 된다. 2개 이상의 1차원 방향 렌즈와 마이크로 렌즈가 겹침으로써, 1차원 방향 렌즈의 집광 성능과, 마이크로 렌즈의 집광 성능, 및 확산 성능이 균일화되기 쉬워져, 국소적인 휘도 얼룩이 생기지 않는 광학 부품을 얻을 수 있다.
또한 제2 주면에도 어스펙트비가 10% 내지 50%의 범위로 설정된 마이크로 렌즈가, 제2 주면의 면적에 대하여 3% 내지 10%의 범위에서 형성되기 때문에, 본 발명의 광학 부품의 광학 특성을 조절하는 것이 가능하다. 즉, 제2 주면이 평탄면인 것으로 한 경우, 제2 주면으로부터 입사하는 광이 광학 부품의 내부를 진행하는 각도 범위는, 광학 부품의 굴절률에 의해 제한된다. 그러나 제2 주면에 마이크로 렌즈가 형성됨으로써, 광학 부품의 내부를 진행하는 각도 범위를 넓히는 것이 가능해져, 본래 얻어지지 않는 광학 특성을 얻는 것이 가능하게 된다.
그리고 제1 주면에 형성되는 마이크로 렌즈와, 제2 주면에 형성되는 마이크로 렌즈가, 불규칙하게 배치되기 때문에, 1차원 방향 렌즈와의 사이에 므와레 간섭 줄무늬가 생기는 일은 없다.
전술한 바와 같은 효과가 얻어지는 광학 부품을 구비함으로써, 휘도가 높고, 국소적인 얼룩이 거의 생기지 않는 조명 장치를 제공할 수 있다.
그리고 그와 같은 조명 장치를, 화상 표시 소자를 비추는 면광원으로서 사용함으로써, 고휘도이며 얼룩이 없는 고정밀한 표시 장치를 제공할 수 있다.
도 1은 본 발명의 제1 실시 형태에 따른 표시 장치의 단면 모식도.
도 2는 도 1에 도시하는 표시 장치에 이용한 본 발명의 제1 실시 형태에 따른 광학 부품의 주요부 사시도.
도 3은 본 발명의 광학 부품을 형성하는 제1 볼록부의 상면도 및 단면도.
도 4는 본 발명의 광학 부품을 형성하는 제2 볼록부의 사시도.
도 5는 제1 볼록부의 어스펙트비, 및 제1 볼록부와 제2 볼록부와의 높이비와, 본 발명의 광학 부품의 휘도와의 관계를 도시하는 도면.
도 6은 제1 볼록부의 어스펙트비, 및 제1 볼록부와 제2 볼록부와의 높이비와, 본 발명의 광학 부품의 휘도와의 관계를 도시하는 도면.
도 7은 제1 볼록부의 면적율과 사이드 로브 저감률의 관계를 도시하는 도면.
도 8은 제1 볼록부의 면적율, 및 제1 볼록부와 제2 볼록부와의 높이비와, 본 발명의 광학 부품의 휘도와의 관계를 도시하는 도면.
도 9는 제3 볼록부에 의한 광선의 움직임을 도시한 도면.
도 10은 제3 볼록부에 의한 사이드 로브 저감률과 휘도 저하와의 관계를 도시하는 표.
도 11은 본 발명의 제2 실시 형태에 따른 표시 장치의 단면 모식도.
도 12는 본 발명의 제2 실시 형태에서의 제1 볼록부의 면적율과 휘도와의 관계를 도시하는 도면.
도 13은 본 실시예에 따른 휘도와 사이드 로브 저감률을 도시하는 도면.
도 14는 본 실시예에 따른 휘도와 사이드 로브 저감률을 도시하는 도면.
도 15는 종래예에 따른 BEF를 이용한 디스플레이 장치의 단면 모식도.
도 16은 BEF의 사시도.
도 17은 광 강도와 시야 방향에 대한 각도와의 관계를 도시하는 그래프.
도 18은 종래예에 따른 마이크로 렌즈 시트의 사시도.
이하, 본 발명의 실시 형태에 대하여 설명한다.
도 1은 본 발명의 제1 실시 형태에 따른 광학 부품을 구비한 조명 장치 및 표시 장치의 일례를 도시하는 종단면 모식도이다.
본 발명의 일 실시 형태인 표시 장치(1)는, 화상 표시 소자로서의 액정 패널(2)과 조명 장치(3)로 구성되어 있다. 액정 패널(2)은 편광판(편광 필름)(9, 10) 사이에 액정 소자(11)가 협지되어 구성되어 있다.
액정 소자(11)는 예를 들면 2매의 글래스 기판 사이에 액정층이 충전되어 구성되어 있다.
백라이트 유닛(3)으로부터 출사된 광 K는, 편광판(9)을 통하여 액정 소자(11)에 입사되고, 편광판(10)을 통하여 관찰자측 방향 F로 출사된다.
액정 패널(2)의 액정 소자(11)는, 화소 단위로 광을 투과/차광하여 화상을 표시하는 대표적인 소자이며, 다른 표시 소자에 비해 화상 품위를 높게 함과 함께 제조 코스트를 저감할 수 있다.
본 발명의 실시 형태인 조명 장치(3)는, 반사판(5a)을 갖는 램프 하우스(5) 내에 복수의 광원(6)이 배열되고, 광원(6)으로부터의 광 출사 방향(관찰자측 방향 F)으로, 광원(6)으로부터 입사하는 광을 확산하여 사출하는 확산판(7)과, 본 발명의 제1 실시 형태인 광학 부품(8)이 배치되어 구성되어 있다.
광원(6)으로부터 사출된 광 H는, 확산판(7)에서 확산되고, 그 위에 배치된 광학 부품(8)에서 집광 및/또는 확산되어 사출되는 광 K는, 액정 패널(2)에 입사하고, 관찰자측 방향 F로 사출된다.
광원(6)으로서는, 예를 들면 복수의 선 형상 광원 또는 점 광원을 이용할 수 있다. 복수의 선 형상 광원으로서는, 예를 들면 복수의 형광등, 냉음극관(CCFL) 혹은 외부 전극 형광 램프(EEFL) 등의 램프 광원을, 또한 점 광원으로서는 LED 등을 이용할 수 있다.
램프 하우스(5)는, 복수의 광원(6)에 대하여 관찰자측 방향 F와는 반대측에 배치되며, 광원(6)으로부터 전체 방향으로 출사된 광 중, 관찰자측 방향 F와 반대측의 방향으로 출사된 광을 반사시켜 관찰자측 방향 F로 출사시키는 반사판(5a)을 구비하고 있다. 그 결과, 관찰자측 방향 F로 출사된 광 H는, 거의 광원(6)으로부터 전체 방향으로 출사된 광으로 된다. 반사판(5a)으로서는, 광을 고효율로 반사시키는 부재이면 되고, 예를 들면 일반적인 반사 필름, 반사판 등을 사용할 수 있다.
다음으로, 제1 실시 형태인 광학 부품(8)에 대하여 도 2를 이용하여 설명한다. 예를 들면 시트 형상을 이루는 투광성의 기재(13)의 한쪽의 면(제1 주면)(13a)에, 제1 볼록부로서 예를 들면 대략 반구 형상의 마이크로 렌즈(14)가 일부의 영역에 분산되어 복수개 형성되어 있다. 마이크로 렌즈(14)의 간극을 메우도록, 1차원 방향으로 연장되는 대략 기둥 형상의 제2 볼록부로서, 예를 들면 단면 삼각형 기둥 형상의 프리즘 렌즈(15)가 표면(13a) 전역에 동일 방향으로 복수개 배열되어 형성되어 있고, 마이크로 렌즈(14)는 프리즘 렌즈(15)의 일부에 겹쳐서 형성된다. 그리고 제3 주면(13b)에는 제3 볼록부로서 예를 들면 마이크로 렌즈(18)가 형성된다.
마이크로 렌즈(14)의 높이를 TM1로 하고, 프리즘 렌즈(15)의 높이를 TL2로 하였을 때, TL2/TM1은 10% 이상 90% 이하인 것이 바람직하다. 프리즘 렌즈(15)의 높이 TL2가 마이크로 렌즈(14)의 높이 TM1에 대하여 90%를 초과하면, 프리즘 렌즈(15)의 광학 특성의 영향이 강해지기 때문에 사이드 로브가 생기므로 바람직하지 않다. 또한, 마이크로 렌즈(14)와 프리즘 렌즈(15)의 고저차가 작아져, 프리즘 렌즈(15)가 액정 패널(2)과 스치기 쉬워지기 때문에, 내찰성이 저하된다.
여기서, 마이크로 렌즈(14)의 직경 PM1은 10㎛ 이상 200㎛ 이하의 범위인 것이 바람직하다. 마이크로 렌즈(14)의 직경 PM1이 10㎛ 미만에서는 직경이 지나치게 작기 때문에, 정밀도가 좋은 마이크로 렌즈(14)를 제작하는 것은 어렵다. 한편, 직경 PM1이 200㎛를 초과하면 마이크로 렌즈(14)가 지나치게 크기 때문에, 화면 상으로부터 시인되기 쉬워지기 때문이다. 따라서, TL2/TM1이 10% 미만의 경우에서는, 프리즘 렌즈(15)가 최소로 1㎛ 미만으로 되어, 회절의 영향을 무시할 수 없게 되기 때문에 바람직하지 않다.
그리고 마이크로 렌즈(14)의 직경 PM1과 프리즘 렌즈의 피치 PL2와의 비인 PM1/PL2이 1.1 내지 10의 범위인 것이 바람직하다. 1.1보다 작은, 즉, 마이크로 렌즈(14)의 직경 PM1과 프리즘 렌즈의 피치 PL2가 거의 동일하거나, 또는 마이크로 렌즈(14)의 직경 PM1보다 프리즘 렌즈(15)의 피치 PL2가 커지면, 마이크로 렌즈(14)의 높이 TM1보다 프리즘 렌즈(15)의 높이 TL2 쪽이 높아지는 경우가, 또는 거의 동등하게 되기 때문에 바람직하지 않다. 내찰성이 저하되기 때문이다. 또 한편, 마이크로 렌즈(14)의 직경 PM1이 프리즘 렌즈(15)의 피치 PL2보다 반드시 큼으로써, 마이크로 렌즈(14)를 제1 주면(13a) 상의 적당한 위치에 배치해도, 반드시 2개 이상의 프리즘 렌즈(15)와 겹친다. 마이크로 렌즈(14)가 2개 이상의 프리즘 렌즈(15)와 겹침으로써, 광학적인 얼룩을 저감할 수 있다. 특히 마이크로 렌즈(14)와 프리즘 렌즈(15)가 1 : 1로 겹친 경우, 제1 주면(13a)에서 겹친 영역이 광학적인 특이점으로 되어, 점 결함(국소적인 휘도 얼룩)으로서 시인되기 쉬워진다. 이상(理想)으로서는, 1개의 마이크로 렌즈(14)가 3개 이상의 프리즘 렌즈(15)에 겹치는 것이 바람직하다.
한편, 제1 볼록부인 마이크로 렌즈(14)가 제1 주면(13a)의 면적에 대하여 차지하는 비율은, 적어도 3% 이상인 것이 바람직하다. 3%를 하회하면, 마이크로 렌즈(14)가 지나치게 적기 때문에, 눈으로 보아도 결함처럼 시인되기 때문에 바람직하지 않다. 또한, 본 발명의 광학 부품(8)의 내찰성을 향상시키기 위해서도, 3% 이상의 마이크로 렌즈(14)가 필요하다.
제1 볼록부로서는, 도 3의 (a)에 도시된 바와 같은 대략 반구 형상의 마이크로 렌즈 외에, 도 3의 (b)에 도시된 바와 같은, 단면이 대략 타원 반구 형상의 마이크로 렌즈를 들 수 있다. 또는 도 3의 (c)에 도시된 바와 같은 선단이 라운딩을 띠는 비구면 형상의 마이크로 렌즈를 들 수 있다. 이와 같은 마이크로 렌즈의 형상을 대략 타원 반구 형상이나 비구면 형상으로 함으로써, 대략 반구 형상과 비교하여 집광 성능을 향상시킬 수 있다. 또한, 도 3의 (d), (e)에 도시된 바와 같은, 상면에서 보와 대략 타원 형상의 마이크로 렌즈 등이어도 된다. 특히 타원의 장축ㆍ단축 방향을 일치시킴으로써, 사출광의 지향성을 조절하는 것이 가능하다. 도 3의 (d)에 도시된 바와 같이, 타원의 장축을 수평 방향으로 일치시킨 경우, 수직 방향의 지향성을 강하게 할 수 있고, 또한 도 3의 (e)에 도시된 바와 같이, 타원의 장축을 수직 방향으로 일치시킨 경우, 수평 방향의 지향성을 강하게 할 수 있다.
한편 제2 볼록부(15)로서는, 도 4의 (a)에 도시된 바와 같은, 단면이 삼각형 형상인 프리즘 렌즈를 들 수 있지만, 그 꼭지각은 70도 내지 110도인 것이, 집광 성능이 높아 바람직하다. 또한 80도 내지 100도가 보다 바람직하다. 또는 도 4의 (b), (c)에 도시된 바와 같은 단면이 구면, 또는 비구면 형상인 렌티큘러 렌즈를 들 수 있다. 프리즘 렌즈와 비교하여, 집광 성능은 뒤떨어지지만, 확산 성능을 높이기 위해서, 시야 범위를 넓힐 수 있기 때문에 바람직하다. 집광 성능도 높고, 또한 확산 성능도 높은 렌티큘러 렌즈의 형상으로서는, 이하의 수학식 1,
Figure 112011050881019-pct00001
로 정의되는 형상이 바람직하다. 여기서 z는 렌티큘러 렌즈의 높이 방향의 위치 함수, r은 렌티큘러 렌즈의 폭 방향 위치 변수이고, 렌티큘러 렌즈의 피치를 1로 정규화하였을 때에, 수학식 1의 각 계수 1/R, A, B, C가, -10<1/R<10, -5<A<5, -10<B<10, -30<C<30의 범위 내인 것이 바람직하다.
수학식 1에서, 특히 k=-1인 것이 더욱 바람직하고, 그 때의 수학식 1의 각 계수 (1/(2R)+A), B, C가, -5<(1/(2R)+A)<5, -10<B<10, -30<C<30의 범위 내인 것이 더욱 바람직하다.
상기 범위를 벗어난 렌티큘러 렌즈는, 집광 성능이 낮아, 본 발명의 목적인 조명 장치의 휘도를 높이는 것이 곤란해지기 때문에 바람직하지 않다.
한편, 제2 볼록부(15)로서는 도 4의 (d)에 도시된 바와 같은, 만곡 측면을 갖는 프리즘 렌즈인 것이 바람직하다. 삼각 프리즘 렌즈는 집광 성능이 높지만, 확산 성능이 낮다고 하는 문제점이 있다. 따라서, 집광 성능과 확산 성능을 양립한 만곡 프리즘 렌즈가 바람직하다.
만곡 프리즘 렌즈로서는, 수학식 1에 의해 규정되는 렌티큘러 렌즈 형상의 만곡 측면의 일부로 정의된다. 이때, 만곡 프리즘의 꼭대기부에서의 접선과, 제1 주면(13a)이 이루는 각도가, 25도 이상 50도 이하의 범위로 설정되는 것이 바람직하다. 25도를 하회하면, 집광 성능이 저하되기 때문이다. 한편, 50도를 초과해도 역시 집광 성능이 저하되고, 또한 사이드 로브가 매우 큰 만곡 프리즘으로 되기 때문이다.
여기서 수학식 1의 각 계수 1/R, A, B, C가, -10<1/R<10, -5<A<5, -10<B<10, -30<C<30의 범위 내인 것이 바람직하고, 또한, 각 계수 k, (1/(2R)+A), B, C가, k=-1, -5<(1/(2R)+A)<5, -10<B<10, -30<C<30의 범위 내인 것이 바람직하다.
제2 볼록부는 전술한 바와 같은 렌즈를, 단일의 형상, 또는 복수의 형상을 복합하는 것도 가능하다. 복합하는 형상으로서는, 단위 렌즈 피치로 배열하는 방법, 또는 도 4의 (e)에 도시된 바와 같은, 단위 렌즈 피치 이하로 시프트시킨 복합 형상으로 하는 방법을 들 수 있다. 이와 같이 단위 렌즈 피치 이하로 시프트시킨 복합 형상은, 휘도를 내리지 않고 단위 렌즈의 경우에 생기는 사이드 로브를 저감하는 것이 가능하다. 또는 휘도를 향상시키기 위해서 교차시키는 방법 등을 들 수 있다. 교차시키는 경우, 예를 들면 대략 직교하는 것이 바람직하다. 대략 직교시킨 렌즈로서는 예를 들면 피라미드 형상, 또는 역피라미드 형상의 렌즈 등을 들 수 있다.
도 2에서, 마이크로 렌즈(14)는, 기재(13)의 표면(13a)에 접하는 직경을 PM1로 하고, 제1 주면(13a)을 기준으로 한 높이를 TM1로 하고, 높이 TM1과 직경(폭) PM1과의 어스펙트비 TM1/PM1이 10% 이상 100% 이하의 범위에서 설정되는 것이 바람직하다. 어스펙트비 TM1/PM1이 10%를 하회하면, 렌즈로서의 집광, 혹은 확산의 효과가 매우 약해지기 때문이다. 또 한편 100%를 초과하는 마이크로 렌즈(14)는 사이드 로브광이 증가하고, 결과로서 집광 성능이 저하된다. 따라서, 어스펙트비 TM1/PM1은 10% 이상 100% 이하의 범위인 것이 바람직하고, 또한 40% 이상 90% 이하의 범위인 것이 바람직하다.
도 5는 어스펙트비 TM1/PM1이 35% 내지 50%에 대하여, 도 6은 어스펙트비 TM1/PM1이 50% 내지 100%의 경우에 대하여, 본 발명의 광학 부품(8)의 휘도를 그래프화한 것이다. 여기서 그래프의 횡축인 TL2/TM1은, 제1 볼록부인 마이크로 렌즈(14)의 높이 TM1과, 제2 볼록부인 프리즘 렌즈(15)의 높이 TL2와의 비이다. 종축은 휘도비이고, 여기서 휘도비 1.0은, 도 18에서 도시된 바와 같은 마이크로 렌즈 시트의 휘도값으로 하고 있다. 도 18에서 도시된 바와 같은 마이크로 렌즈 시트는, 투광성의 기재의 한쪽의 면에, 직경이 30㎛∼100㎛ 정도의 마이크로 렌즈가, 기재의 한쪽의 면에 대하여, 약 70∼80%의 면적을 차지하도록 배치된 것이다.
도 5로부터, 마이크로 렌즈(14)의 높이 TM1과 직경 PM1과의 어스펙트비 TM1/PM1이 35% 내지 50%의 사이에서는, 어스펙트비 TM1/PM1이 커질수록 휘도가 높아진다. 또한, 마이크로 렌즈(14)의 높이 TM1과, 프리즘 렌즈(15)의 높이 TL1과의 어스펙트비 TL2/TM1이 0.5 이하의 범위에서는, 마이크로 렌즈(14)의 높이 TM1과 직경 PM1과의 어스펙트비 TM1/PM1이 40% 이상이 아니면, 도 18에 도시된 바와 같은 마이크로 렌즈 시트 이상의 휘도가 얻어지지 않는다. 따라서, 마이크로 렌즈(14)의 높이 TM1과 직경 PM1과의 어스펙트비 TM1/PM1은 0.4 이상인 것이 바람직하다.
한편, 도 6으로부터는, 마이크로 렌즈(14)의 높이 TM1과 직경 PM1과의 어스펙트비 TM1/PM1이 60%∼70%에서 휘도가 가장 높아지고, 그 이상 어스펙트비 TM1/PM1이 커지면, 반대로 휘도가 저하된다. 마이크로 렌즈(14)의 높이 TM1과 직경 PM1과의 어스펙트비 TM1/PM1이 90%의 경우, 마이크로 렌즈(14)의 높이 TM1과 프리즘 렌즈(15)의 높이 TL2와의 어스펙트비 TL2/TM1이 0.4∼0.5의 범위에서는, 어스펙트비 TM1/PM1이 50%(반구 형상)의 경우와 비교하여 휘도가 높지만, 어스펙트비 TL2/TM1이 0.4 미만의 범위에서는, 어스펙트비 TM1/PM1이 50%의 경우보다도 휘도가 저하된다. 따라서, 마이크로 렌즈(14)의 높이 TM1과 직경 PM1과의 어스펙트비 TM1/PM1은 40% 이상 90% 이하인 것이 바람직하고, 가장 고휘도가 얻어지는 어스펙트비 TM/PM은 60%∼70%이다.
여기서, 본 실시 형태에서 나타내는 프리즘 렌즈(15)는 삼각 프리즘 형상으로 형성한 것으로 관찰자측 방향 F로의 집광 효과가 높아져, 고휘도의 표시 장치(1)를 얻을 수 있다. 고휘도의 표시 장치(1)를 얻기 위해서, 프리즘 렌즈(15)의 꼭지각 θ는 70도∼110도, 바람직하게는 80도∼100도의 범위로 설정하는 것이 바람직하다.
그러나, 삼각형 형상의 프리즘 렌즈(15)는, 관찰자측 방향 F로의 집광 효과가 높은 반면, 사이드 로브가 생긴다고 하는 문제가 있다. 따라서, 제1 주면(13a)의 면적 Ma와 마이크로 렌즈(14)의 총면적 Mb와의 비인 면적율 Mb/Ma는, 35% 이상 88% 이하로 하는 것이 바람직하다. 그 이유에 대하여 이하에 설명한다.
도 7은 프리즘 렌즈(15)의 꼭지각 θ를 90도로 설정하고, 마이크로 렌즈(14)의 높이 TM1과 프리즘 렌즈(15)의 높이 TL2와의 어스펙트비 TL2/TM1을 0.1부터 0.9까지 0.2씩 복수 설정한 경우에서의, 면적율 Mb/Ma와 사이드 로브 저감률과의 관계를 도시하는 그래프이다.
여기서 사이드 로브 저감률이란, 광학 부품(8)의 배광 휘도 분포를, 도 16에서 도시한 바와 같은 BEF(102)를 이용한 종래의 일반적인 표시 장치(100)에 의한 도 17에서 파선 B로 나타내는 휘도 분포를 나타내는 것으로 가정하여, 사이드 로브의 피크 휘도 p와, 정면 피크 휘도 r과 사이드 로브의 피크 휘도 p와의 사이에 생기는 골짜기의 보텀 휘도 q와의 비 q/p로 계산된다. 즉, 사이드 로브 저감률 q/p가 작아질수록, 큰 사이드 로브와 골짜기가 생기게 되어, 관찰자에게 사이드 로브가 시인되게 된다. 반대로 사이드 로브 저감률 q/p가 100%이면, 사이드 로브는 없다고 판단된다.
실제로 본 실시 형태에 따른 광학 부품(8)을 표시 장치(1)에 내장하여 목시 확인한 결과, 사이드 로브 저감률(q/p)이 80% 이상인 것에 대해서는, 표시 장치(1)에 의한 확산이나 광 시야각광의 감쇠 등의 효과에 의해, 사이드 로브의 영향이, 목시 확인할 수 없을 정도로 작았기 때문에, 사이드 로브 저감률(q/p)의 하한값을 80%로 설정하였다.
그 결과, 제1 주면(13a)의 면적 Ma와 마이크로 렌즈(14)의 총면적 Mb와의 비인 면적율 Mb/Ma가 35% 미만에서는, 프리즘 렌즈(15)에 의한 사이드 로브의 영향이 지나치게 강하기 때문에, 모든 어스펙트비 TL2/TM1의 광학 부품(8)에 대하여, 사이드 로브 저감률을 80% 이상으로 할 수 없다.
한편, 마이크로 렌즈(14)를 제1 주면(13a)에 최밀하게(close-packed) 델타 배열한 경우의 면적율 Mb/Ma는 이론상은 약 91%로 되지만, 1㎛의 오차도 없이 배열하는 것은 제조상 어렵고, 본 발명자들이 예의 검토한 결과, 88%가 실질적으로 상한으로 된다고 판단하였다. 그리고, 도 7에서, 면적율 Mb/Ma가 55% 이상에서는, 프리즘 렌즈(15)와 마이크로 렌즈(14)의 높이의 어스펙트비 TL2/TM1의 값에 상관없이 모두 사이드 로브 저감률은 80% 이상으로 되었다.
도 8은 본 제1 실시 형태에 따른 광학 부품(8)의 면적비 Mb/Ma와 휘도비와의 관계를 도시하는 그래프이다. 여기서 휘도비는, 도 18에서 도시되어 있는 마이크로 렌즈 시트의 휘도를 100%로 하였을 때의 값이다. 또한, 전술한 대로, 면적율 Mb/Ma는 35% 이상 없으면 어스펙트비 TL2/TM1에 상관없이 사이드 로브가 생기기 때문에, 여기서는 면적율 Mb/Ma가 35% 이상의 것에 대하여, 또한, 높이의 어스펙트비 TL2/TM1을 0.1부터 0.9까지 평가를 행하였다.
도 8에서, 어스펙트비 TL2/TM1이 커질수록, 본 발명의 광학 부품(8)은 휘도가 낮아지는 것을 알 수 있었다. 특히 어스펙트비 TL2/TM1=0.9에서는, 면적율이 35%∼50%의 범위에서만, 도 18의 마이크로 렌즈 시트의 휘도를 초과하는 휘도가 얻어진다.
여기서 도 7로부터, 어스펙트비 TL2/TM1=0.9에서는, 면적율 Mb/Ma가 45%를 초과하지 않으면 사이드 로브 감소율은 80% 이상으로 되지 않는다. 따라서, 도 8에 도시한 휘도비와 도 7에 도시한 사이드 로브 저감률을 고려하면, 면적율 Mb/Ma가 45%∼50%로 매우 좁은 범위에서만, 100% 이상의 휘도비와 80% 이상의 사이드 로브 저감률(q/p)이 얻어지는 것을 알 수 있었다.
이 결과로부터, 어스펙트비 TL2/TM1=0.9 이상을 제외한 TL2/TM1<0.9로 설정되는 것이 더욱 바람직하다.
또한, 어스펙트비 TL2/TM1=0.7의 경우라도, 면적율 Mb/Ma가 60%를 초과하면 휘도비는 100% 미만으로 된다. 그러나, 면적율 Mb/Ma가 35%∼60%의 사이에서 100% 이상의 휘도비가 얻어지므로, 광학 부품(8)을 제작할 때에 충분한 허용값의 범위를 가지므로 문제없다. 그리고, 모든 휘도비가 100% 이상으로 되는 최적의 높이의 어스펙트비 TL2/TM1은 0.5 이하이다.
그런데, 도 8로부터, 본 발명의 광학 부품(8)은 마이크로 렌즈(14)의 면적율 Mb/Ma가 작아질수록 휘도가 높아진다. 더욱 고휘도의 표시 장치(1)를 얻기 위해서, 본 발명자들은, 정면 방향으로의 집광 성능을 크게 손상시키지 않고, 사이드 로브 저감률을 향상시키는 방법을 발견하였다.
즉, 도 2의 제2 주면(13b)에 복수의 투명하고 투광성의 제3 볼록부(18)를 배설하고 있다. 이들 제3 볼록부(18)는 예를 들면 랜덤하게 배설되어 있고, 경사진 측면을 갖는 것이 더욱 바람직하다. 본 실시 형태에서는, 제3 볼록부(18)는 대략 반구 형상으로 형성되어 있는 마이크로 렌즈를 구성한다. 그리고, 평면에서 보아 제2 주면(13b)의 면적을 Ma로 하고, 복수의 제3 볼록부(18)의 총면적을 Mc로 하면, 제3 볼록부의 면적율은 Mc/Ma로 설정된다. 이에 의해, 정면 방향으로의 집광 성능을 크게 손상시키지 않고 사이드 로브 저감률을 향상시킬 수 있다. 도 9는 제2 주면(13b)에 마이크로 렌즈(18)를 배치시킨 경우에서, 제2 주면(13b)에 입사한 광선의 움직임을 나타낸다. 제2 주면(13b)이 평탄면인 경우, 확산판(7)으로부터 대략 램버트로 정의되는 180도 방향으로 강도를 갖는 확산광이 입사하였을 때, 공기와 기재(13)와의 굴절률차에 의해 집광된다.
여기서 기재(13)의 굴절률을 일반적인 글래스, 플라스틱 재료의 굴절률로 하여 가령 1.5로 하였을 때, 180도 방향으로 강도를 갖는 확산광은, 약 90도로 좁혀진다. 기재(13)의 법선 방향을 0도로 하였을 때, 제1 주면(13a)에 형성되는 마이크로 렌즈(14), 및 프리즘 렌즈(15)에는 ±45도의 범위의 광이 입사하고, 굴절, 반사, 투과 등의 작용에 의해, 관찰자측 방향 F로 광이 사출된다. 여기서, 제2 주면(13b)에 마이크로 렌즈(18)를 형성함으로써, 상기의 ±45도의 범위를 초과하는 광이 마이크로 렌즈(14), 및 프리즘 렌즈(15)에 입사된다. 이 ±45도의 범위를 초과하는 광(도면 중 L)이, 본 발명의 광학 부품(8)의 사이드 로브를 저감시키는 효과가 있는 것을, 본 발명자들은 발견하였다. 즉, 공기와 기재(13)와의 굴절률차에 의해 한정되는 광보다도 각도가 큰 광 L을 입사함으로써, 사이드 로브를 저감하는 것이 가능하게 된다.
제2 주면(13b)에 형성된 마이크로 렌즈(18)의 높이를 TM3, 직경을 PM3, 제2 주면에 대한 제3 볼록부(18)의 면적율 Mc/Ma로 하였을 때, 제3 볼록부(18)의 어스펙트비 TM3/PM3과 면적율 Mc/Ma와의 곱이 0.5% 이상 4.5% 이하의 범위인 것이 바람직하다. 도 10에 도시한 표는, 횡축이 제3 볼록부(18)의 면적율 Mc/Ma, 종축이 제3 볼록부(18)의 어스펙트비 TM3/PM3이고, 표의 수치는, 위가 정면 휘도의 저하율, 아래가 사이드 로브 저감률을 나타낸다. 제3 볼록부(18)의 어스펙트비 TM3/PM3이 커질수록, 낮은 면적율 Mc/Ma에서 사이드 로브 저감률 및 정면 휘도의 저하율이 커지는 것을 알 수 있다. 관점을 바꾸면, 사이드 로브 저감률이 커질수록, 정면 휘도의 저하도 커진다고 할 수 있다. 따라서, 실용적인 임계값을 설정할 필요가 있어, 본 발명자들은, 정면 휘도의 저하율은 5% 이내라고 하는 임계값을 설정하였다. 본 발명의 광학 부품(8)은, 도 18의 마이크로 렌즈 시트에 비해 고휘도인 것이 특징 중 하나이다. 따라서, 5% 이상 휘도가 저하되게 되는 것은, 본 발명의 목적으로부터 벗어나기 때문이다. 한편, 사이드 로브 저감률의 하한값으로서는 5%로 설정하였다. 사이드 로브 저감률이 5% 이하에서는, 그 효과는 작아, 제2 주면(13b)에 제3 볼록부(18)를 형성하는 의미가 없기 때문이다.
한편, 제2 주면(13b)에 제3 볼록부(18)를 형성하는 경우, 그 광학 특성뿐만 아니라, 제3 볼록부(18)의 성형성이나, 외관의 관점 등도 고려할 필요가 있다. 제3 볼록부(18)의 어스펙트비 TM3/PM3이 10%를 하회한 경우, 제3 볼록부(18)의 높이 TM3이 매우 작아지기 때문에, 직경이나 높이의 변동이 생기기 쉬워진다. 또한, 광학 특성적으로도, 제3 볼록부(18)의 측면의 경사가 작아, 거의 평탄면과 다름없는 효과로 되게 된다. 따라서 제1 주면(13a)에 형성된 마이크로 렌즈(14) 및 프리즘 렌즈(15)에 입사하는 광 L이 그다지 큰 각도로 되지 않기 때문에, 사이드 로브 저감률을 크게 하기 위해서는 면적율 Mc/Ma를 매우 크게 해야만 한다. 한편, 어스펙트비 TM3/PM3이 지나치게 높으면, 광 L의 각도가 커지고, 또한 그 광량이 증대하기 때문에, 정면 방향으로의 집광 성능이 저하되게 된다. 따라서 면적율 Mc/Ma를 작게 할 필요가 있지만, 면적율 Mc/Ma가 지나치게 작으면, 얼룩으로서 시인되기 쉬워지는 문제가 생긴다. 본 발명자들은, 다양한 면적율 Mc/Ma의 제3 볼록부(18)를 목시로 확인한 결과, 3% 이상 10% 이하의 범위가 적정이라고 하는 결론에 도달하였다. 이와 같은 결과로부터, 제3 볼록부(18)의 어스펙트비 TM3/PM3의 범위는, 10% 이상 40% 이하의 범위인 것이 바람직하다. 이 범위에서 설정함으로써, 휘도 저하를 5% 이하로 억제하면서, 사이드 로브 저감률을 5%∼20% 향상시키는 것이 가능하게 된다.
따라서, 본 발명의 광학 부품(8)은, 제1 주면(13a)에는 마이크로 렌즈(14)와 프리즘 렌즈(15)가 형성되고, 제2 주면(13b)에는 사이드 로브를 억제하는, 어스펙트비가 0.1 내지 0.4의 범위인 제3 볼록부(18)를, 면적율 3% 내지 10%의 범위에서 배치시킨다. 제2 주면(13b)에 형성되는 제3 볼록부(18)에 의해 최대 20%, 사이드 로브 저감률이 상승하기 때문에, 제1 주면(13a)에 형성되는 마이크로 렌즈(14)의 면적율 Mb/Ma는 25% 이상인 것이 바람직하다.
본 발명의 광학 부품(8)에는, 제1 주면(13a)에 형성되는 제1 볼록부(14)와, 제2 주면에 형성되는 제3 볼록부(18)는, 대략 반구 형상의 마이크로 렌즈인 것이 바람직하다. 그리고 제1 볼록부(14)와 제3 볼록부(18)는, 제1 주면(13a), 및 제2 주면(13b) 상에 규칙적으로 배열해도 된다. 단, 제1 볼록부(14), 및 제3 볼록부(18)를 규칙적으로 배열하면, 규칙적으로 배열된 제2 볼록부(15)와의 사이에 므와레 간섭 줄무늬가 생긴다. 따라서, 제1 볼록부(14), 및 제3 볼록부(18)는, 불규칙하게 배열되는 것이 바람직하다. 그러나, 불규칙해도, 제1 주면(13a), 및 제2 주면(13b)의 단위 면적당의 제1 볼록부(14), 및 제3 볼록부(18)가 접하는 면의 총면적에 변동이 생기면, 관찰자로부터 얼룩으로서 시인된다. 따라서, 제1 볼록부(14), 및 제3 볼록부(18)는 불규칙하게 배치되고, 또한, 제1 주면(13a), 및 제2 주면(13b)의 단위 면적당의 제1 볼록부(14), 및 제3 볼록부(18)가 접하는 면의 총면적은, 제1 주면(13a), 및 제2 주면(13b)의 어느 개소에서도 대략 일정한 것이 바람직하다. 여기서 단위 면적이란, 제1 주면(13a), 및 제2 주면(13b)의 표면적을 약 10∼100 정도로 분할하였을 때의 면적을 가리키고, 대략 일정이란, 제1 볼록부(14), 및 제3 볼록부(18)가 제1 주면(13a), 및 제2 주면(13b)에 접하는 면적의, 그 단위 면적당의 총합이, 대략 평균값 ±5% 이하의 범위에 들어가는 것을 가리킨다.
다음으로, 본 실시 형태에 따른 조명 장치(3) 및 표시 장치(1)에 대하여, 다른 구성에 대하여 더 설명한다.
확산판(7)은, 투명 수지에 광 확산 영역이 분산되어 형성되어 있다.
투명 수지로서는, 열가소성 수지, 열경화성 수지 등을 이용할 수 있고, 예를 들면, 폴리카보네이트 수지, 아크릴계 수지, 불소계 아크릴 수지, 실리콘계 아크릴 수지, 에폭시 아크릴레이트 수지, 폴리스티렌 수지, 시클로 올레핀 폴리머, 메틸 스티렌 수지, 플루오렌 수지, 폴리에틸렌테레프탈레이트(PET), 폴리프로필렌, 아크릴로니트릴 스티렌 공중합체, 아크릴로니트릴 폴리스티렌 공중합체 등을 이용할 수 있다.
확산판(7)에서, 투명 수지 중에 분산되는 광 확산 영역은 광 확산 입자로 이루어지는 것이 바람직하다. 바람직한 확산 성능을 용이하게 얻을 수 있기 때문이다.
광 확산 입자로서는, 무기 산화물 또는 수지로 이루어지는 투명 입자를 이용할 수 있다. 무기 산화물로 이루어지는 투명 입자로서는, 예를 들면, 실리카, 알루미나 등을 이용할 수 있다. 또한, 수지로 이루어지는 투명 입자로서는, 아크릴 입자, 스티렌 입자, 스티렌 아크릴 입자 및 그 가교체, 멜라민 포르말린 축합물의 입자, PTFE(폴리테트라플루오로에틸렌), PFA(퍼플루오로알콕시 수지), FEP(테트라플루오로에틸렌 헥사플루오로프로필렌 공중합체), PVDF(폴리플루오로비닐리덴), 및 ETFE(에틸렌 테트라플루오로에틸렌 공중합체) 등의 불소 폴리머 입자, 실리콘 수지입자 등을 이용할 수 있다.
또한, 전술한 투명 입자에 대하여 2종류 이상의 투명 입자를 조합하여 사용해도 된다. 또한 투명 입자의 크기나 형상은 특별히 규정되지 않는다.
광 확산 영역으로서 광 확산 입자를 이용한 경우에는, 확산판(7)의 두께가 0.1∼5㎜의 범위인 것이 바람직하다. 확산판(7)의 두께가 0.1∼5㎜인 경우에는, 최적의 확산 성능과 휘도를 얻을 수 있다. 반대로, 0.1㎜ 미만의 경우에는 확산 성능이 부족하고, 5㎜를 초과하는 경우에는 수지량이 많아지기 때문에 흡수에 의한 휘도 저하가 증대되므로 바람직하지 않다.
또한, 투명 수지로서 열가소성 수지를 이용한 경우에는, 광 확산 영역으로서 기포를 이용해도 된다. 열가소성 수지의 내부에 형성된 기포의 내부 표면이 광의 난반사를 발생시켜, 광 확산 입자를 분산시킨 경우와 동등 이상의 광 확산 기능을 발현시킬 수 있다. 그 때문에, 확산판(7)의 막 두께를 보다 얇게 하는 것이 가능하게 된다.
이와 같은 확산판(7)으로서, 백색 PET나 백색 PP 등을 예로 들 수 있다. 백색 PET는, PET와 상용성(相溶性)이 없는 수지나 산화티탄(TiO2), 황산화바륨(BaSO4), 탄산칼슘과 같은 필러를 PET에 분산시킨 후, PET를 2축 연신법에 의해 연신함으로써, 필러의 주위에 기포를 발생시켜 형성한다.
또한, 열가소성 수지로 이루어지는 확산판(7)은, 적어도 1축 방향으로 연신되어 이루어지면 된다. 적어도 1축 방향으로 연신시키면, 필러의 주위에 기포를 발생시킬 수 있기 때문이다.
열가소성 수지로서는, 예를 들면 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌-2, 6-나프탈레이트, 폴리프로필렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 시클로헥산디메탄올 공중합 폴리에스테르 수지, 이소프탈산 공중합 폴리에스테르 수지, 스필로글리콜 공중합 폴리에스테르 수지, 플루오렌 공중합 폴리에스테르 수지 등의 폴리에스테르계 수지, 폴리에틸렌, 폴리프로필렌, 폴리메틸펜텐, 지환식 올레핀 공중합 수지 등의 폴리올레핀계 수지, 폴리메틸메타크릴레이트 등의 아크릴 수지, 폴리카보네이트, 폴리스티렌, 폴리아미드, 폴리에테르, 폴리에스테르 아미드, 폴리에테르에스테르, 폴리염화비닐, 시클로 올레핀 폴리머, 및 이들을 성분으로 하는 공중합체, 또한 이들 수지의 혼합물 등을 이용할 수 있고, 특별히 제한되는 일은 없다.
광 확산 영역으로서 기포를 이용한 경우에는, 확산판(7)의 두께가 25∼500㎛인 것이 바람직하다. 확산판(7)의 두께가 25㎛ 미만인 경우에는, 시트의 탄성이 부족하여 제조 공정이나 디스플레이 내에서 주름이 발생하기 쉬워지므로 바람직하지 않다. 또한, 확산판(7)의 두께가 500㎛를 초과하는 경우에는, 광학 성능에 대해서는 특별히 문제가 없지만 강성이 증가하기 때문에 롤 형상으로 가공하기 어렵고, 슬릿이 용이하게 이루어지지 않는 등, 종래의 확산판과 비교하여 얻어지는 얇은 두께의 이점이 적어지므로 바람직하지 않다.
본 발명의 광학 부품(8)의 두께에 관해서는 광학 특성에의 영향보다는 오히려 제조 프로세스 혹은 요구되는 광학 부품(8)의 물리 특성 등에 의해 정해진다.
예를 들면, UV 성형에 의해 기재(13)의 제1 주면(13a), 및 제2 주면(13b)에 마이크로 렌즈(14) 및 프리즘 렌즈(15)와 제3 볼록부(18)로서 마이크로 렌즈(18)를 형성한 경우, 그 기재(13)를 형성하는 지지 기재 필름의 기재 두께 T는, 50㎛ 이하이면 주름이 생기게 되므로, 50㎛<T일 필요가 있다.
또한 기재(13)는, 사용하는 조명 장치(3)나 표시 장치(1)의 사이즈에 의해 그 두께 T는 변화한다. 예를 들면, 대각 37인치 사이즈 이상의 표시 장치(1)에서는 기재(13)의 두께 T는 0.05㎜ 내지 3㎜가 바람직하다.
다음으로, 본 발명의 광학 부품(8)의 제조 방법에 대하여 설명한다.
광학 부품(8)을 구성하는 기재(13)의 제1 주면(13a)에 설치한 마이크로 렌즈(14) 및 프리즘 렌즈(15)와, 제2 주면(13b)에 형성한 제3 볼록부(18)는, 투광성의 기재(13) 상에 UV 수지나 방사선 경화 수지를 이용하여 성형된다. 투광성의 기재(13)로서는, PET(폴리에틸렌테레프탈레이트), PC(폴리카보네이트), PMMA(폴리메틸메타크릴레이트), COP(시클로 올레핀 폴리머), PAN(폴리아크릴로니트릴 공중합체), AS(아크릴로니트릴 스티렌 공중합체) 등을 이용하여 성형된다. 한편, 기재(13)와, 제1 주면(13a)에 형성되는 마이크로 렌즈(14), 및 프리즘 렌즈(15), 제2 주면(13b)에 형성되는 제3 볼록부(18)를, 1종 이상의 재료로, 해당 기술 분야에서는 잘 알려져 있는 압출 성형법, 사출 성형법, 혹은 열 프레스 성형법에 의해 형성할 수 있다. 사용되는 재료로서는, PET(폴리에틸렌테레프탈레이트), PC(폴리카보네이트), PMMA(폴리메틸메타크릴레이트), COP(시클로 올레핀 폴리머), PAN(폴리아크릴로니트릴 공중합체), AS(아크릴로니트릴 스티렌 공중합체) 등을 들 수 있다.
또한 본 발명의 광학 부품(8)에서는, 돌기부(18)의 표면에, 예를 들면 백색안료로 이루어지는 광 반사층을 부여해도 된다. 여기서 백색 안료로서는, 산화티탄이나 산화알루미늄, 황산바륨 등을 들 수 있고, 인쇄법 등에 의해 형성한다.
다음으로 본 실시 형태에 따른 광학 부품(8)을 구비한 표시 장치(1)의 작용에 대하여 설명한다.
도 1에서, 광원(6)으로부터의 광은, 확산판(7)에 입사하여 확산광으로서 출사된다. 그 후, 확산판(7)의 출사면으로부터 확산된 광은 광학 부품(8)에 입사한다. 광학 부품(8)에서는, 기재(13)의 제2 주면(13b)에 입사하는 광의 일부가, 제3 볼록부(18)의 경사진 측면으로부터 입사함으로써, 제3 볼록부(18)를 형성하지 않은 경우와 비교하여, 내부에서 넓게 굴절, 반사하여 보다 넓은 각도로 확산시켜 광을 사출시킬 수 있다. 그 때문에, 이 제3 볼록부(18)에 의해서도 사이드 로브를 저감하는 것이 가능하게 된다. 여기서 제3 볼록부(18)를 형성하지 않고, 예를 들면 일반적으로 알려진 샌드 블러스트 등에 의해, 제2 주면(13b)을 조면화해도 된다. 또는, 제2 주면(13b)을 조면화하고, 또한 제3 볼록부(18)를 형성해도 된다.
그리고, 광학 부품(8)을 투과한 광은, 기재(13)의 제1 주면(13a)에 동일 방향으로 복수 배열된 단면 삼각형으로 기둥 형상을 이루는 프리즘 렌즈(15)를 투과하여 정면 방향으로 집광한 광으로서 사출하고, 동시에 프리즘 렌즈(15)에 겹쳐서 랜덤하게 배설된 복수의 마이크로 렌즈(14)를 투과하여 정면 방향으로 집광한 광으로서 출사한다.
여기서, 광학 부품(8)은, 프리즘 렌즈(15)의 높이 TL2와 마이크로 렌즈(14)의 높이 TM1과의 어스펙트비 TL2/TM1이 10∼90%의 범위로 설정되어 있다. 프리즘 렌즈(15)를 꼭지각 θ가 70도∼110도의 범위의 삼각형 단면 형상으로 형성하면 집광 효과가 높아지기 때문에 고휘도가 얻어지는 반면, 사이드 로브가 생기기 쉬운 문제점이 있다. 그러나, 어스펙트비 TL2/TM1이 전술한 범위 내이면, 사출광에 대하여 높은 휘도를 확보할 수 있음과 함께 프리즘 렌즈(15)의 사이드 로브의 발생을 억제할 수 있다.
또한, 마이크로 렌즈(14)의 직경(폭) PM1과 높이 TM1의 어스펙트비 TM1/PM1이 0.4 이상 0.9 이하에서 설정되기 때문에, 높은 휘도를 확보할 수 있다.
또한, 광학 부품(8)의 기재(13)의 제1 주면(13a)의 면적 Ma와 마이크로 렌즈(14)의 총면적 Mb와의 비인 면적율 Mb/Ma가 35%∼88%로 설정되어 있기 때문에, 사이드 로브 저감률이 약 80%∼100%로 되어 사이드 로브를 시인할 수 없다. 또한, 기재(13)의 제2 주면에, 제3 볼록부(18)가 형성되고, 제2 주면(13a)의 면적 Ma와 제3 볼록부(18)의 총면적 Mc와의 비인 면적율 Mc/Ma가 3% 내지 10%, 제3 볼록부(18)의 어스펙트비 TM3/PM3이 10% 내지 40%로 설정되어 있기 때문에, 보다 높은 휘도를 확보하기 위해서, 제1 주면(13a)에 형성된 마이크로 렌즈(14)의 면적율 Mb/Ma를 25% 이상으로 설정할 수 있다. 게다가 마이크로 렌즈(14)를 랜덤하게 배설함으로써, 프리즘 렌즈(15)와의 사이에 므와레 간섭 줄무늬를 발생시키지 않는다.
그리고, 광학 부품(8)을 투과한 광 K는 고휘도의 광으로서 집광시켜져 액정 패널(2)의 편광판(9, 10) 사이에 끼워진 액정 소자(11)에 도달하고, 여기를 투과한 광은 집광 후에 외부로 확산광으로 되어 사출되어, 관찰자에게 넓은 시야각에서 시인된다. 그 때, 광학 부품(8)의 마이크로 렌즈(14) 및 프리즘 렌즈(15)와 액정 소자(11)의 화소와의 사이에서 므와레 간섭 줄무늬를 발생시키는 일은 없다.
게다가 광원(6)의 램프 이미지를 광학 부품(8)과 확산판(7)에 의해 저감시켜, 전체적으로 휘도가 높고 광 강도의 시각 방향의 분포를 매끄럽게 함과 함께 광 강도의 시각도 의존성이 저감되어, 넓은 시야각에서 사이드 로브가 없는 선명한 화상을, 관찰자가 목시할 수 있다.
또한, 광학 부품(8) 상에 다른 광학 필름을 겹쳤다고 해도 마찰에 의한 손상이 프리즘 렌즈(15)에 생기는 것을 방지할 수 있다. 또한, 제3 볼록부(18)에 의해서도 내찰성도 향상시킬 수 있음과 함께 제2 주면(13b)측에 광학 특성을 향상시키기 위한 별도의 광학 필름을 배설해도, 제3 볼록부(18)에 의해 마찰에 의한 손상이 제2 주면(13b)에 생기는 일은 없다. 그 때문에, 광학 부품(8)의 제1 주면(13a)이나 제2 주면(13b)에 보호 필름을 붙일 필요가 없어, 재료 코스트를 저감함과 함께 조명 장치(3)에 내장할 때의 핸들링성이 좋다.
또한, 광학 부품(8)의 제2 주면(13b)에 복수의 제3 볼록부(18)를 구비함과 함께 광학 필름 또는 평탄한 사출면을 갖는 확산판(7)을 배설하고 있어도, 광학 밀착에 의한 뉴튼 링이 생기는 일은 없다.
또한, 본 실시 형태에 따른 광학 부품(8)을 구비한 조명 장치(3) 및 표시 장치(1)에 의하면, 조명 장치(3)로부터 출사되는 광 K는, 전술한 광학 부품(8)에 의해, 광 K의 집광ㆍ확산 특성을 향상시켜, 화소 단위로의 투과/차광에 따라서 표시 화상을 규정하는 액정 패널(2)을 투과하여 확산시키기 때문에, 휘도를 향상시킴과 함께 광 강도의 시각도 의존성을 저감하여 시각 방향의 분포를 매끄럽게 할 수 있다.
그 때문에, 표시 장치(1)에 의한 관찰 화상은, 고휘도이며 시각 방향의 분포가 매끄럽고, 사이드 로브를 억제하여 램프 이미지를 저감한, 액정 패널(2)의 선명한 화상이 얻어진다. 게다가, 액정 패널(2)의 각 화소와의 사이에 므와레 간섭 줄무늬를 발생시키지 않는다.
여기까지, 본 발명의 광학 부품(8)을 액정 디스플레이 장치에 이용한 경우에 대하여 설명하였지만 이에 한정되지 않고, 배면 투사형 스크린, 태양 전지, 유기 또는 무기 EL, 조명 장치 등, 광로 제어를 행하는 것이면, 어느 것에도 사용할 수 있다. 예를 들면 본 발명의 광학 부품(8)은 유기 EL 조명 장치의 광 취출 필름으로서 사용할 수 있다. 유기 EL 조명 장치의 광 취출 필름으로서는, 프리즘 렌즈나 피라미드 렌즈, 역피라미드 렌즈 등이, 정면 방향으로의 광 강도를 강하게 하는 반면, 색상 분리를 일으키기 쉽다고 하는 과제가 있다. 한편, 확산 필러를 도포한 확산 필름을 유기 EL 조명 장치의 광 취출 필름으로서 사용하면, 정면 방향으로의 광 강도는 프리즘 렌즈와 비교하면 약해진다고 하는 과제가 있다. 본 발명의 광학 부품(8)은, 선 형상 렌즈(15)가 정면 방향으로의 광 강도를 강하게 하고, 마이크로 렌즈(14)의 확산 효과에 의해 혼색되기 때문에 색상 분리를 일으키지 않는다고 하는 특징이 있다. 특히, 선 형상 렌즈(15)를 2방향으로 대략 직교하는 형태로 배치함으로써, 상하 좌우로 균일한 배광 특성을 갖는 유기 EL 조명 장치가 얻어진다. 본 발명의 광학 부품(8)은 선 형상 렌즈(15)와 마이크로 렌즈(14)와의 비율을 임의로 선택할 수 있기 때문에, 광 강도를 높이고자 하는 경우에는 마이크로 렌즈(14)를 줄이고, 혼색을 강화하고자 하는 경우에는 마이크로 렌즈(15)를 늘림으로써, 간단히 원하는 특성의 광 취출 필름이 얻어진다.
또한, 본 제1 실시 형태에 따른 디스플레이 장치(1)에, 확산 필름, 프리즘 시트, 편광 분리 반사 시트 등을 추가하여 배치해도 된다. 이에 의해, 화상 품위를 보다 향상시킬 수 있다.
본 제1 실시 형태에서는, 일반적으로 직하형으로 불리는 조명 장치(3)를 이용하여 설명하였지만 이에 한하지 않고, 엣지 라이트형으로 불리는 조명 장치(3)에도 적용할 수 있다. 엣지 라이트형의 조명 장치(3)에서는 전술한 확산판(7)이 아니라, 도광판으로 불리는 투명한 판이 사용된다. 일반적으로 도광판의 광 사출면, 즉 본 발명의 광학 부품(8)의 제2 주면(13b)측과 접하는 면은 평활면인 경우가 많다. 따라서 광학 부품(8)의 제2 주면(13b)에 형성되는 제3 볼록부(18)에 의해, 도광판과 광학 부품(8)과의 광학 밀착을 방지할 수 있다.
다음으로 본 발명의 제2 실시 형태에 대하여 설명한다. 도 11은 본 발명의 제2 실시 형태에 따른 광학 부품을 구비한 조명 장치(3), 및 표시 장치(1)의 일례를 도시하는 종단면 모식도이다. 여기서는 전술한 제1 실시 형태에 따른 것과 동일 또는 마찬가지의 부품, 부재에는 동일한 부호를 이용하고 설명을 생략한다.
본 발명의 광학 부품(8)과 액정 패널(2) 사이에, 확산성의 광학 시트(28)를 구비한다. 여기서 확산성의 광학 시트(28)로서는, 일반적으로 상(上)확산 필름으로 불리는 광학 시트나, 확산성 편광 반사 분리 시트(3M사제 : DBEF-D), 렌즈 시트 등을 들 수 있다. 렌즈 시트로서는 예를 들면 마이크로 렌즈 시트나 프리즘 시트, 렌티큘러 렌즈 시트, 그리고 본 발명의 광학 부품(8)을 구비해도 된다.
또한, 광학 부품(8)과 확산판(7) 사이에, 하(下)확산 필름이나 마이크로 렌즈 시트 등을 적절히 선택하여 배치할 수 있다.
제2 실시 형태에서, 광학 부품(8) 상에 광학 시트(28)가 배치되기 때문에, 광학 부품(8)의 제1 주면(13a)측과 광학 시트(28)의 광학 부품(8)측의 면(28b)이 접하게 되기 때문에, 광학 부품(8)에는 광학 시트(28)와의 내찰성이 요구된다.
여기서 본 발명의 광학 부품(8)을 구성하는 마이크로 렌즈(14)가 제1 주면(13a)의 면적에 대하여 차지하는 비율 Mb/Ma는, 3% 이상인 것이 바람직하고, 3% 이상 25% 이하의 범위로 설정되는 것이 더욱 바람직하다. 면적율 Mb/Ma의 상한이 25%로 설정되어 있지만, 25%를 초과하면 일반적인 프리즘 시트(3M사제 : BEF)와 비교하여 5% 이상 휘도가 저하되기 때문에 바람직하지 않다. 도 12는 본 발명의 제2 실시 형태인 표시 장치(1)에서, 본 발명의 광학 부품(8)의 제1 주면(13a)에 형성되는 마이크로 렌즈(14)의 면적율을 변화시킨 경우의 정면 휘도값을 플롯한 것이다. 조명 장치(3)의 구성은, 광원(6)으로서 CCFL(냉음극관)을 이용하고, 확산판(7) 상에 하확산 필름을 배치하고, 그 위에 본 발명의 광학 부품(8)을 배치, 광학 시트(28)로서, 확산성 편광 분리 반사 시트(3M제 : DBEF-D)를 배치하였다. 도 12의 횡축은 마이크로 렌즈(14)의 면적율 Mb/Ma이고, 종축은 휘도비이다. 휘도비 1.0은 마이크로 렌즈(14)의 면적율 Mb/Ma=0일 때의 휘도이고, 제2 볼록부(15)가 꼭지각이 90도인 프리즘 렌즈(15)일 때에는, 프리즘 시트와 동의이다. 마이크로 렌즈(14)가 증가함(Mb/Ma가 커짐)에 따라서, 마이크로 렌즈(14)의 확산성의 효과가 증가하기 때문에, 정면 휘도가 저하된다. 면적율 Mb/Ma가 25%를 초과하면, Mb/Ma가 0%인 경우와 비교하여, 즉 프리즘 시트와 비교하여 5% 이상의 휘도 저하가 생긴다. 본 발명의 광학 부품(8)은 정면 방향으로의 휘도를 향상시키는 것을 목적으로 하고 있기 때문에 바람직하지 않다.
한편 3% 내지 25%의 범위에서 본 발명의 광학 부품(8)은, 광학 부품(8)을 구성하는 제2 볼록부가 프리즘 렌즈(15)인 경우, 특히 집광 성능이 높고, 꼭지각 θ가 90도인 프리즘 렌즈(15)인 경우에는 사이드 로브가 생기는 것을 전술하였지만, 광학 부품(8)과 액정 패널(2) 사이에 확산성의 광학 시트(28)가 배치되어 있기 때문에, 액정 패널(2)을 통하여 관찰자에게 사이드 로브가 시인되는 일은 없다.
이상, 본 발명의 광학 부품(8)의 광학적, 및 물리적 특성에 대하여 설명하였다. 본 발명의 광학 부품(8)은 제1 주면(13a)에 제1 볼록부(14)로서 마이크로 렌즈(14)를 배치하기 때문에, 집광성과 확산성의 양립이 가능하다. 그리고 일반적인 마이크로 렌즈 시트는, 육방의 최밀 배치를 하였을 때라도 약 10%의 평탄면이 생기고, 므와레 무늬 방지를 위해서 마이크로 렌즈를 랜덤화하면, 약 20∼30%의 평탄면이 생긴다. 평탄면은 집광성도 확산성도 발휘하지 않는다. 본 발명의 광학 부품(8)은 마이크로 렌즈(14)를 배치한 간극에 제2 볼록부(15)로서 예를 들면 프리즘 렌즈(15)가 형성되고, 평탄면은 생기지 않는다. 따라서 광학 부품(8)의 제1 주면(13a)을 100% 이용하여, 확산성, 또는 집광성을 부여하는 것이 가능하다.
그리고 프리즘 렌즈(15)의 높이 TL2보다도 마이크로 렌즈(14)의 높이 TM1이 높게 설정됨으로써, 조립 공정에서의 핸들링 성능이나, 다른 광학 필름(28)과의 내찰성이 향상된다. 특히 마이크로 렌즈(14)의 면적율 Mb/Ma가 20% 이상인 경우, 일반적인 렌즈 시트에서는 반드시 필요로 되는 보호 필름이 불필요하게 되기 때문에, 코스트면뿐만 아니라, 조립 공정에서의 보호 필름을 벗겨내는 작업도 생략되고, 또한, 폐기물의 감소 등의, 환경면에서의 메리트도 크다.
실시예
이하, 본 발명의 실시예에 따른 광학 부품(8)에 대하여 상세하게 설명한다. 또한, 본 발명은 이들 실시예에만 한정되는 것이 아닌 것은 물론이다.
(실시예 1)
실시예에서의 광학 부품(8)에서는, 기재(13)를 두께 250㎛의 PET 필름으로 형성하고, 기재(13)의 제1 주면(13a)에 마이크로 렌즈(14)와 꼭지각 90도의 삼각 프리즘으로 이루어지는 프리즘 렌즈(15)를 형성하였다. 마이크로 렌즈(14)의 직경 PM1은 100㎛, 높이 TM1은 48㎛로 하였다.
이 마이크로 렌즈(14)를 기재(13)의 제1 주면(13a)의 면내에 랜덤하게 배치하고, 그 면적율 Mb/Ma가 0%부터 50%까지, 5%씩으로 되는 샘플을 작성하였다. 한편, 꼭지각 90도의 프리즘 렌즈(15)는, 프리즘 피치 PL2를 30㎛, 높이 TL2를 15㎛로 하여 한 방향으로 복수개 평행하게 배열하여 구성하였다. 결과, 프리즘 렌즈(14)와 마이크로 렌즈(15)의 높이의 어스펙트비 TL2/TM1은 31.3%이었다.
(실시예 2)
다른 실시예로서, 광학 부품(8)을 폴리카보네이트를 재료로서 이용하여, 압출 성형에 의해 작성하였다.
제1 주면(13a)에는 마이크로 렌즈(14)와 꼭지각 90도의 삼각 프리즘으로 이루어지는 프리즘 렌즈(15)를 형성하였다. 마이크로 렌즈(14)의 직경 PM1은 100㎛, 높이 TM1은 48㎛로 하였다.
이 마이크로 렌즈(14)를 제1 주면(13a)의 면내에 랜덤하게 배치하고, 그 면적율 Mb/Ma가 0%부터 50%까지, 5%씩으로 되는 샘플을 작성하였다. 한편, 꼭지각 90도의 프리즘 렌즈(15)는, 프리즘 피치 PL2를 30㎛, 높이 TL2를 15㎛로 하여 한 방향으로 복수개 평행하게 배열하여 구성하였다. 결과, 프리즘 렌즈(14)와 마이크로 렌즈(15)의 높이의 어스펙트비 TL2/TM1은 31.3%이었다.
한편, 제2 주면에는 제3 볼록부(18)로서, 직경 PM3이 100㎛, 높이 20㎛의 마이크로 렌즈(18)를 형성하였다. 마이크로 렌즈(18)를 제2 주면(13b)의 면내에 랜덤하게 배치하고, 그 면적율 Mc/Ma는 5%로 하였다.
상기한 대로 제작한 실시예의 광학 부품(8)을, 32인치 액정 텔레비전(1)에 배치하였다. 액정 텔레비전의 백라이트에는, 폴리스티렌제의 확산판(7)과, 실시예의 광학 부품(8)만을 배치하였다.
액정 패널(2)에서는 백화면을 표시하고, 분광 방사 휘도계(탑콘제 : SR-3A)에 의해 액정 패널(2)의 화면 중심의 휘도를 측정하였다. 한편, 사이드 로브 저감률에 대해서는, 액정 패널(2)에 의한 확산이나 광 시야각광의 감쇠 등의 영향을 없애기 위해서, 조명 장치(3)의 상태에서 측정하였다. 측정에는 배광 분포 측정기(ELDIM제 : EZContrast)를 사용하여, 조명 장치 중심의 배광 분포를 측정하고, 사이드 로브 저감률을 산출하였다. 그 결과를 도 13에 도시한다.
실시예 1과 실시예 2에서는 수지의 굴절률이 상이하기(실시예 1에서 사용한 UV경화 수지는 1.53, 실시예 2에서 사용한 폴리카보네이트 수지는 1.58) 때문에, 평가에는 주의가 필요하다. 도 13으로부터, 마이크로 렌즈(14)의 면적율 Mb/Ma에 대한 휘도와 사이드 로브 저감률이 확인되고, 실시예 1에서는, 사이드 로브 저감률이 80%를 초과하는 것은 35% 이상이었다.
한편 실시예 2에서는, 제2 주면(13b)에 제3 볼록부(18)가 형성되어 있기 때문에, 실시예 1보다는 휘도가 낮지만, 면적율 Mb/Ma가 25% 이상에서 사이드 로브 저감률이 80%를 초과하였다. 그리고 실시예 1에서의 면적율 Mb/Ma=35%보다도, 실시예 2에서의 면적율 Mb/Ma=25% 쪽이 고휘도의 표시 장치(1)를 얻을 수 있었다.
다음으로 실시예에 따라 제작한 광학 부품(8)을, 32인치 액정 텔레비전(1)에 배치하였다. 액정 텔레비전의 백라이트에는, 폴리스티렌제의 확산판(7) 상에 하확산 필름을 배치하고, 그 위에 실시예의 광학 부품(8)을 배치하였다. 그리고 광학 부품(8) 상에는 광학 시트(28)로서, 3M사제의 DBEF-D를 배치하고, 전술한 측정과 마찬가지의 측정을 실시하였다. 그 결과를 도 14에 도시한다.
실시예 1의 광학 부품(8)에서도, 실시예 2의 광학 부품(8)에서도, DBEF-D의 확산성에 의해, 마이크로 렌즈(14)의 면적율 Mb/Ma가 0∼35%로 낮은 광학 부품(8)에서도 사이드 로브 저감률은 80%를 초과하여, 사이드 로브의 문제가 없는 표시 장치(1)를 얻을 수 있었다.
따라서, 본 실시예의 광학 부품(8)과 DBEF-D와의 내찰성의 측정을 실시하였다.
평가 장치는 RUBBING TESTER(테스터 산업제)를 이용하였다.
평가 방법으로서는, 스테이지에 본 발명의 광학 부품(8)을 설치하고, 위에 DBEF-D를 재치하여 가중하고, 스테이지를 120㎜/s의 스피드로 10 왕복시켰다. 가중은 150g과 450g에서 실시하였다.
그 결과, 마이크로 렌즈(14)의 면적율 Mb/Ma가 5% 이상의 광학 부품(8)에 관해서는, 가중이 150g일 때도, 450g일 때도 마찰 손상은 생기지 않았다. 한편, 마이크로 렌즈(14)의 면적율 Mb/Ma가 0%의 광학 부품(8)에 대해서는, 가중이 150g의 단계에서 프리즘 렌즈(15)의 선단이 깎였다.
이상, 본 실시예에 의해, 고휘도이며 사이드 로브가 생기지 않고, 위에 광학 시트(8)를 배치해도 마찰 손상이 생기지 않는 광학 부품(8), 그 광학 부품을 배치한 조명 장치(3), 그 조명 장치(3)를 구비한 표시 장치(1)를 얻을 수 있었다.
1 : 표시 장치
2 : 액정 패널
3 : 조명 장치
5 : 반사판
6 : 광원
7 : 확산판
8 : 광학 부품
13 : 기재
13a : 제1 주면
13b : 제2 주면
14 : 제1 볼록부(마이크로 렌즈)
15 : 제2 볼록부(프리즘 렌즈)
18 : 제3 볼록부(마이크로 렌즈)
28 : 광학 시트
100 : 액정 표시 장치
101 : 광원
102 : BEF
103 : 액정 패널
104 : 투명 기재
105 : 단위 프리즘
113 : 마이크로 렌즈
117 : 기재
A, B : 배광 분포
F : 관찰자측 방향
H, K : 광
L : 경사 입사광
p : 사이드 로브광
q : 골짜기
r : 정면광

Claims (12)

  1. 제1 및 제2 주면을 구비하고, 상기 제1 주면에는, 2차원적으로 배치된 복수의 제1 볼록부와,
    상기 제1 볼록부와 비교하여 높이가 보다 낮은 복수의 제2 볼록부가 형성되어 이루어지고,
    상기 제1 볼록부는, 각각이 독립한 반구 형상, 타원 반구 형상, 또는 선단이 라운딩을 띠는 비구면 형상의 마이크로 렌즈이고,
    상기 제1 볼록부의 높이를 TM1로 하고, 그 제1 볼록부의 직경을 PM1로 하였을 때,
    상기 제1 볼록부의 어스펙트비 TM1/PM1이, 40% 이상이며,
    상기 제2 볼록부는, 1차원 방향으로 연장되는 렌즈가, 1방향 또는 2방향으로 배치되어 이루어지고,
    상기 제1 주면에 접하는 상기 제1 볼록부의 폭이, 상기 제2 볼록부의 폭과 비교하여, 1.1배 내지 10배의 범위로 설정되어 이루어지며, 또한 상기 제1 주면의 면적 Ma와 상기 제1 볼록부의 총면적 Mb와의 비인 면적율 Mb/Ma는 50% 이상 88%이하인 것을
    특징으로 하는 광학 부품.
  2. 제1항에 있어서,
    상기 제2 볼록부의 높이가, 상기 제1 볼록부의 높이와 비교하여, 10% 내지 90%의 범위로 설정되어 이루어지는 것을 특징으로 하는 광학 부품.
  3. 제1항 또는 제2항에 있어서,
    상기 제1 볼록부는 상기 제1 주면에 불규칙하게 배치되고, 또한, 그 제1 주면의 단위 면적에 포함되는 그 제1 볼록부의 그 제1 주면에 접하는 면적의 총합은, 그 제1 주면의 장소에 상관없이 대략 일정한 것을 특징으로 하는 광학 부품.
  4. 제1항 또는 제2항 중 어느 한 항에 있어서,
    상기 제1 볼록부의 높이를 TM1로 하고, 그 제1 볼록부의 직경을 PM1로 하였을 때,
    상기 제1 볼록부의 어스펙트비 TM1/PM1이, 40% 이상 90% 이하의 범위에서 설정되어 이루어지는 것을 특징으로 하는 광학 부품.
  5. 제1항 내지 제2항 중 어느 한 항에 기재된 광학 부품과,
    상기 광학 부품을 상기 제2 주면측으로부터 조명하는 광원
    을 구비하는 것을 특징으로 하는 조명 장치.
  6. 화소 단위에서의 투과/차광에 따라 표시 화상을 규정하는 화상 표시 소자와,
    제5항에 기재된 조명 장치
    를 구비하는 것을 특징으로 하는 표시 장치.
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
KR1020117015393A 2008-12-05 2009-12-03 광학 부품, 조명 장치 및 표시 장치 KR101617485B1 (ko)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008311459 2008-12-05
JPJP-P-2008-311459 2008-12-05
JP2009003774 2009-01-09
JPJP-P-2009-003774 2009-01-09
JPJP-P-2009-038380 2009-02-20
JP2009038380 2009-02-20
JPJP-P-2009-167127 2009-07-15
JP2009167127 2009-07-15
JPJP-P-2009-218789 2009-09-24
JP2009218789 2009-09-24

Publications (2)

Publication Number Publication Date
KR20110092343A KR20110092343A (ko) 2011-08-17
KR101617485B1 true KR101617485B1 (ko) 2016-05-02

Family

ID=42233339

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117015393A KR101617485B1 (ko) 2008-12-05 2009-12-03 광학 부품, 조명 장치 및 표시 장치

Country Status (5)

Country Link
US (1) US8134657B2 (ko)
JP (3) JP4793510B2 (ko)
KR (1) KR101617485B1 (ko)
CN (1) CN102308232B (ko)
WO (1) WO2010064692A1 (ko)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495174B (zh) * 2010-12-30 2015-08-01 Au Optronics Corp 有機太陽電池
JP2012221686A (ja) * 2011-04-07 2012-11-12 Canon Inc 表示装置
JP2012242649A (ja) * 2011-05-20 2012-12-10 Toppan Printing Co Ltd 光学シート、バックライトユニットおよびディスプレイ装置
DE102011118134B4 (de) * 2011-11-10 2021-12-16 Kostal Automobil Elektrik Gmbh & Co. Kg Kameraanordnung für ein Kraftfahrzeug
EP2748873A1 (en) * 2011-12-07 2014-07-02 Koninklijke Philips N.V. Beam shaping light emitting module
TWI588549B (zh) * 2012-01-31 2017-06-21 3M新設資產公司 光導膜及其製造方法
US20140335309A1 (en) * 2012-01-31 2014-11-13 3M Innovative Properties Company Light directing films and methods of making same
JP5863215B2 (ja) * 2012-03-28 2016-02-16 シャープ株式会社 光拡散部材およびその製造方法、表示装置
CN103365021B (zh) * 2012-04-03 2015-11-25 元太科技工业股份有限公司 可切换彩色模式与黑白模式的电泳显示装置
GB2509065A (en) * 2012-12-18 2014-06-25 Dupont Teijin Films Us Ltd Partnership Method for reducing angular dependence on OLED light emission
KR101901255B1 (ko) * 2012-12-28 2018-09-21 엘지디스플레이 주식회사 표시 장치
JP6221480B2 (ja) 2013-08-07 2017-11-01 セイコーエプソン株式会社 電気光学装置、電気光学装置の製造方法、および電子機器
GB2523859B (en) 2014-08-01 2016-10-19 Dupont Teijin Films U S Ltd Partnership Polyester film assembly
JP6664193B2 (ja) * 2014-12-12 2020-03-13 三星電子株式会社Samsung Electronics Co.,Ltd. バックライトユニット
EP3282293A4 (en) * 2015-04-08 2018-12-05 Kuraray Co., Ltd. Composite diffusion plate
CN108027131A (zh) * 2015-09-17 2018-05-11 三星Sdi株式会社 光学片及含有其的光学显示器
CN204964802U (zh) * 2015-10-12 2016-01-13 京东方光科技有限公司 导光板、背光模组和显示装置
CN108779982B (zh) * 2016-02-01 2020-10-09 赫普塔冈微光有限公司 照明模块和光电系统
US10386567B2 (en) 2016-05-16 2019-08-20 Keiwa Inc. Optical sheet for liquid crystal display device, backlight unit for liquid crystal display device and production method of optical sheet for liquid crystal display device
EP3746696A4 (en) 2018-01-30 2021-10-13 BrightView Technologies, Inc. MICROSTRUCTURES FOR CONVERTING LIGHT WITH LAMBERTSCHER DISTRIBUTION INTO BAT DISTRIBUTIONS
US11175533B2 (en) * 2018-05-03 2021-11-16 3M Innovative Properties Company Light redirecting film, backlight, and display system
JP2020021039A (ja) * 2018-08-03 2020-02-06 恵和株式会社 光拡散板及びバックライトユニット
US20200049866A1 (en) * 2018-08-13 2020-02-13 Chien-Chin MAI Optical film and backlight module using same
CN109270611A (zh) * 2018-12-11 2019-01-25 宁波激智科技股份有限公司 一种高亮度高遮盖的复合光学膜
US11520182B2 (en) 2019-01-03 2022-12-06 BrightViewTechnologies, Inc. Color conversion film back light unit for backlit displays
CN209821564U (zh) * 2019-07-04 2019-12-20 北京京东方显示技术有限公司 一种光学膜片、背光模组及显示装置
US11822158B2 (en) 2019-09-11 2023-11-21 Brightview Technologies, Inc. Back light unit for backlit displays
WO2021150813A1 (en) 2020-01-24 2021-07-29 Brightview Technologies, Inc. Optical film for back light unit and back light unit including same
US11588081B2 (en) * 2020-03-04 2023-02-21 Advanced Semiconductor Engineering, Inc. Semiconductor device package
CN113640903B (zh) * 2020-04-27 2023-06-20 宁波舜宇车载光学技术有限公司 复眼透镜、背光照明系统及其制造方法
CN117631367A (zh) * 2022-03-21 2024-03-01 海信视像科技股份有限公司 显示设备
CN221079143U (zh) 2023-05-22 2024-06-04 亮视技术公司 背光单元

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034116A (ja) * 2005-07-29 2007-02-08 Seiko Epson Corp 光学シート、光学ユニット、バックライトユニット、電気光学装置及び電子機器、並びに光学シート及び光学ユニットの製造方法
JP2008070456A (ja) * 2006-09-12 2008-03-27 Sony Corp レンズフィルムおよび表示装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3309173B2 (ja) * 1994-07-29 2002-07-29 大日本印刷株式会社 フィルムレンズ、面光源及び透過型表示体
CN1146810A (zh) * 1995-02-17 1997-04-02 鹫兴产株式会社 凸超微粒子的表面结构
DK0770902T3 (da) * 1995-10-25 2004-01-05 Toppan Printing Co Ltd Linseformet ark, bagprojektionsskærm eller fjernsyn, der benytter samme
US5995286A (en) * 1997-03-07 1999-11-30 Minolta Co., Ltd. Diffractive optical element, an optical system having a diffractive optical element, and a method for manufacturing a diffractive optical element
JP3509534B2 (ja) * 1998-03-09 2004-03-22 富士通株式会社 光学装置
JP4673488B2 (ja) * 2001-02-15 2011-04-20 恵和株式会社 光学シート及びこれを用いたバックライトユニット
JP4133420B2 (ja) * 2002-03-26 2008-08-13 シャープ株式会社 バックライト及び液晶表示装置
JP4294306B2 (ja) * 2002-12-11 2009-07-08 恵和株式会社 光学シート及びこれを用いたバックライトユニット
JP2004309557A (ja) * 2003-04-02 2004-11-04 Keiwa Inc 光学シート及びこれを用いたバックライトユニット
KR20070081144A (ko) * 2006-02-10 2007-08-16 삼성전자주식회사 광학시트 및 이를 갖는 표시장치
JP4105736B2 (ja) * 2006-04-28 2008-06-25 日立マクセル株式会社 レンズシート、それを用いたバックライト及び表示装置
KR100837402B1 (ko) * 2006-08-24 2008-06-12 삼성전자주식회사 광각 확산기 및 이를 적용한 액정표시장치
KR101321909B1 (ko) * 2006-12-12 2013-10-25 삼성디스플레이 주식회사 프리즘 시트 및 이의 제조 방법
JP4321614B2 (ja) * 2007-03-22 2009-08-26 ソニー株式会社 光透過フィルムおよびその製造方法ならびに表示装置
JP2009168851A (ja) * 2008-01-10 2009-07-30 Kyocera Mita Corp 画像形成装置
JP4642124B2 (ja) * 2008-07-18 2011-03-02 大日本印刷株式会社 光学シート、面光源装置、および、透過型表示装置
JP5310199B2 (ja) * 2009-04-01 2013-10-09 凸版印刷株式会社 光学シート、バックライトユニット及びディスプレイ装置
JP2011090104A (ja) * 2009-10-21 2011-05-06 Dainippon Printing Co Ltd 光学シート、面光源装置、及び透過型表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034116A (ja) * 2005-07-29 2007-02-08 Seiko Epson Corp 光学シート、光学ユニット、バックライトユニット、電気光学装置及び電子機器、並びに光学シート及び光学ユニットの製造方法
JP2008070456A (ja) * 2006-09-12 2008-03-27 Sony Corp レンズフィルムおよび表示装置

Also Published As

Publication number Publication date
JP5257435B2 (ja) 2013-08-07
CN102308232B (zh) 2014-02-19
US8134657B2 (en) 2012-03-13
KR20110092343A (ko) 2011-08-17
JPWO2010064692A1 (ja) 2012-05-10
CN102308232A (zh) 2012-01-04
JP2011158914A (ja) 2011-08-18
JP4793510B2 (ja) 2011-10-12
JP2011090299A (ja) 2011-05-06
US20110234942A1 (en) 2011-09-29
WO2010064692A1 (ja) 2010-06-10

Similar Documents

Publication Publication Date Title
KR101617485B1 (ko) 광학 부품, 조명 장치 및 표시 장치
JP4380795B1 (ja) レンズシート、光学シート及びそれを用いたバックライトユニット、ディスプレイ装置
WO2009128164A1 (ja) 光デバイス、光均一デバイス、光学シート、バックライトユニットおよびディスプレイ装置
JP5423145B2 (ja) 面光源装置、バックライト・ユニット及びディスプレイ装置
JP2009265616A (ja) 光学シート、バックライト装置及びディスプレイ装置
JP5375618B2 (ja) バックライトユニットおよびディスプレイ装置
JP2009258621A (ja) レンズシート、ディスプレイ用光学シート及びそれを用いたバックライト・ユニット、ディスプレイ装置
JP2011102848A (ja) 光学シート、バックライト・ユニット及びディスプレイ装置
JP5228785B2 (ja) マイクロレンズシート、及びそれを用いたバックライトユニット・ディスプレイ装置
JP2011227341A (ja) 光学シート、照明ユニット、及び表示装置
JP2010204156A (ja) 集光拡散シート、バックライト・ユニット及びディスプレイ装置
JP4321659B1 (ja) 光デバイス、光均一デバイス、光学シート、バックライトユニットおよびディスプレイ装置
JP2010054995A (ja) レンズシート、バックライトユニット及びディスプレイ装置
JP5458754B2 (ja) 光制御シート、バックライトユニット、ディスプレイ装置及び光制御シートの製造方法
JP5245659B2 (ja) 光デバイス、光均一デバイス、バックライトユニットおよびディスプレイ装置
JP2011064745A (ja) 光学シート、バックライトユニット及びディスプレイ装置
JP5796929B2 (ja) ディスプレイ装置
JP5267098B2 (ja) レンズシートおよびディスプレイ装置
JP5321044B2 (ja) 面光源装置、バックライトユニット、およびディスプレイ装置
JP5287176B2 (ja) 面光源装置、バックライトユニット、およびディスプレイ装置
JP2011150078A (ja) 光学シート、バックライトユニットおよびディスプレイ装置
JP2012027083A (ja) 光学シートおよび表示装置
JP2011158763A (ja) レンズシート、バックライト・ユニット、及びディスプレイ装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190328

Year of fee payment: 4