KR101603016B1 - 촉매 조성물 및 이를 포함하는 중합체의 제조방법 - Google Patents

촉매 조성물 및 이를 포함하는 중합체의 제조방법 Download PDF

Info

Publication number
KR101603016B1
KR101603016B1 KR1020140128645A KR20140128645A KR101603016B1 KR 101603016 B1 KR101603016 B1 KR 101603016B1 KR 1020140128645 A KR1020140128645 A KR 1020140128645A KR 20140128645 A KR20140128645 A KR 20140128645A KR 101603016 B1 KR101603016 B1 KR 101603016B1
Authority
KR
South Korea
Prior art keywords
carbon atoms
formula
aryl
alkyl
alkenyl
Prior art date
Application number
KR1020140128645A
Other languages
English (en)
Other versions
KR20150034652A (ko
Inventor
도영실
정승환
조윤희
이윤진
이충훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20150034652A publication Critical patent/KR20150034652A/ko
Application granted granted Critical
Publication of KR101603016B1 publication Critical patent/KR101603016B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/645Component covered by group C08F4/64 with a metal or compound covered by group C08F4/44, not provided for in a single group of groups C08F4/642 - C08F4/643
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Abstract

본 명세서는 촉매 조성물 및 이를 포함하는 중합체의 제조방법에 관한 것이다.

Description

촉매 조성물 및 이를 포함하는 중합체의 제조방법{CATALYSTIC COMPOSITION AND METHODE FOR PREPARING POLYMERS USING THE SAME}
본 명세서는 촉매 조성물 및 이를 포함하는 중합체의 제조방법에 관한 것이다.
다우(Dow) 사가 1990년대 초반 [Me2Si(Me4C5)NtBu]TiCl2 (Constrained-Geometry Catalyst, 이하에서 CGC로 약칭한다)를 발표하였는데(미국 특허 등록 제5,064,802호), 에틸렌과 알파-올레핀의 공중합 반응에서 상기 CGC가 기존까지 알려진 메탈로센 촉매들에 비해 우수한 측면은 크게 다음과 같이 두 가지로 요약할 수 있다: (1) 높은 중합 온도에서도 높은 활성도를 나타내면서 고분자량의 중합체를 생성하며, (2) 1-헥센 및 1-옥텐과 같은 입체적 장애가 큰 알파-올레핀의 공중합성도 매우 뛰어나다는 점이다. 그 외에도 중합 반응 시, CGC의 여러 가지 특성들이 점차 알려지면서 이의 유도체를 합성하여 중합 촉매로 사용하고자 하는 노력이 학계 및 산업계에서 활발히 이루어졌다.
그 중 하나의 접근 방법으로 실리콘 브릿지 대신에 다른 다양한 브릿지 및 질소 치환체가 도입된 금속 화합물의 합성과 이의 중합이 시도되었다. 최근까지 알려진 대표적인 금속 화합물들을 열거하면 하기 화합물 (1) 내지 (4) 와 같다 (Chem. Rev. 2003, 103, 283).
Figure 112014091542101-pat00001
(1)
Figure 112014091542101-pat00002
(2)
Figure 112014091542101-pat00003
(3)
Figure 112014091542101-pat00004
(4)
상기 화합물 (1) 내지 (4)는 CGC 구조의 실리콘 브릿지 대신에 포스포러스(1), 에틸렌 또는 프로필렌(2), 메틸리덴(3), 및 메틸렌(4) 브릿지가 각각 도입되어 있으나, 에틸렌 중합 또는 알파-올레핀과의 공중합 적용시에 CGC 대비하여 활성도 또는 공중합 성능 등의 측면에서 향상된 결과들을 얻지 못했다.
또한, 다른 접근 방법으로는 상기 CGC 의 아미도 리간드 대신에 옥시도 리간드로 구성된 화합물들 많이 합성되었으며, 이를 이용한 중합도 일부 시도되었다. 그 예들을 정리하면 다음과 같다.
Figure 112014091542101-pat00005
(5)
Figure 112014091542101-pat00006
(6)
Figure 112014091542101-pat00007
(7)
Figure 112014091542101-pat00008
(8)
화합물 (5)는 T. J. Marks 등에 의해 보고된 내용으로 Cp(시클로펜타디엔) 유도체와 옥시도 리간드가 오르토-페닐렌기에 의해 가교된 것이 특징이다 (Organometallics 1997, 16, 5958). 동일한 가교를 가지고 있는 화합물 및 이를 이용한 중합이 Mu 등에 의해서도 보고되었다(Organometallics 2004, 23, 540). 또한, 인데닐 리간드와 옥시도 리간드가 동일한 오르토-펜닐렌기에 의해 가교된 것이 Rothwell 등에 의해 발표되었다(Chem. Commun. 2003, 1034). 화합물 (6)은 Whitby 등이 보고한 내용으로 탄소 3개에 의해 시클로펜타니엔닐 리간드와 옥시도 리간드가 교각된 것이 특징인데(Organometallics 1999, 18, 348), 이런 촉매들이 신디오탁틱(syndiotactic) 폴리스티렌 중합에 활성을 보인다고 보고 되었다. 유사한 화합물이 또한 Hessen등에 의해서도 보고되었다(Organometallics 1998, 17, 1652). 화합물(7)은 Rau 등이 보고한 것으로 고온 및 고압(210 ℃, 150MPa)에서 에틸렌 중합 및 에틸렌/1-헥센 공중합에 활성을 보이는 것이 특징이다(J. Organomet. Chem. 2000, 608, 71). 또한, 이후 이와 유사한 구조의 촉매 합성(8) 및 이를 이용한 고온, 고압 중합이 스미토모 (Sumitomo)사에 의하여 특허 출원되었다(미국 특허 등록 제6,548,686호). 그러나, 상기 시도들 중에서 실제로 상업 공장에 적용되고 있는 촉매들은 소수이다. 따라서, 보다 향상된 중합 성능을 보여주는 촉매가 요구되며, 이러한 촉매들을 간단하게 제조하는 방법이 요구된다.
미국 특허 등록 제5,064,802호 미국 특허 등록 제6,548,686호
Chem. Rev. 2003, 103, 283 Organometallics 1997, 16, 5958 Organometallics 2004, 23, 540 Chem. Commun. 2003, 1034 Organometallics 1999, 18, 348 Organometallics 1998, 17, 1652 J. Organomet. Chem. 2000, 608, 71
본 명세서는 촉매 조성물 및 이를 포함하는 중합체의 제조방법을 제공하고자 한다.
본 명세서의 일 실시상태에 따르면, 전이금속 화합물의 시스(cis) 이성질체 및 트랜스(trans) 이성질체를 포함하고, 상기 시스(cis) 이성질체(c)와 트랜스(trans) 이성질체(t)의 중량비(c:t)는 1~99 : 99~1의 범위 내에서 선택되는 촉매 조성물을 제공한다.
본 명세서의 일 실시상태에 따르면, 전술한 실시상태의 촉매 조성물을 이용한 중합체의 제조방법을 제공한다.
본 발명에 따른 촉매 조성물은 페닐렌 브릿지에 연결된 아미도 그룹에 의해 금속 자리 주위가 견고한 5 각링 구조로 매우 안정적으로 유지되고, 이에 따라 구조적으로 단량체들의 접근이 매우 용이하다.
따라서, 상기 전이금속 화합물을 포함하는 촉매 조성물을 사용하여 CGC(Constrained-Geometry Catalyst, 이하에서 CGC로 약칭한다) 대비 MWD(Molecular Weight Distribution, 이하에서 MWD로 약칭한다) 가 좁고 공중합성이 우수하며 저밀도 영역에서도 고분자량을 갖는 중합체의 제조가 가능하다.
본 명세서의 일 실시상태에 따르면, 전이금속 화합물의 시스(cis) 이성질체 및 트랜스(trans) 이성질체를 포함하고, 상기 시스(cis) 이성질체(c)와 트랜스(trans) 이성질체(t)의 중량비(c:t)가 1~99 : 99~1의 범위 내에서 선택되는 촉매 조성물을 제공한다.
본 명세서의 또 하나의 실시상태에 따르면, 전이금속 화합물의 시스(cis) 이성질체 및 트랜스(trans) 이성질체를 포함하고, 상기 시스(cis) 이성질체(c)와 트랜스(trans) 이성질체(t)의 중량비(c:t)는 1~49 : 99~51, 또는 51~99 : 49~1의 범위 내에서 선택되는 촉매 조성물을 제공한다.
본 명세서의 또 하나의 실시상태에 따르면, 전이금속 화합물의 시스(cis) 이성질체 및 트랜스(trans) 이성질체를 포함하고, 상기 시스(cis) 이성질체(c) : 트랜스(trans) 이성질체(t)의 중량비(c:t)는 50:50인 촉매 조성물을 제공한다.
본 발명에 있어서, 상기 전이 금속 화합물의 시스(cis) 및 트랜스(trans)의 함량은 1H-NMR을 이용하여 얻을 수 있다.
본 명세서의 실시상태에 따르면, 전술한 일 실시상태의 전이금속 화합물은 하기 화학식 1로 표시되는 전이금속 화합물일 수 있다:
<화학식 1>
Figure 112014091542101-pat00009
상기 화학식 1에 있어서,
M은 4족 전이금속이고,
Q1 및 Q2는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 6 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이며,
R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로, 수소; 실릴; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이며; 상기 R1과 R2이 서로 연결되거나 R3 내지 R6 중 2 이상이 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며; 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고,
R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이며; R7 내지 R11 중 서로 인접하는 적어도 2개가 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며; 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있다.
상기 R1 내지 R11은 각각 독립적으로 비치환 또는 치환될 수 있으며, 치환된 경우, 치환기는 예를 들어, 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 1 내지 20의 하이드로카르빌, 탄소수 1 내지 20의 알콕시, 또는 탄소수 6 내지 20의 아릴옥시 일 수 있다.
본 명세서에 기재된 상기 화학식 1의 전이금속 화합물은 페닐렌 브릿지에 연결되어 있는 아미도 그룹이 도입된 시클로펜타디에닐 리간드에 의해 금속 자리가 연결되어 있어 구조적으로 Cp-M-N 각도는 좁고, 모노머가 접근하는 Q1-M-Q2 각도는 넓게 유지하는 특징을 가진다. 또한, 실리콘 브릿지에 의해 연결된 CGC 구조와는 달리 상기 화학식 1로 표시되는 화합물 구조에서는 고리 형태의 결합에 의해 벤조티오펜이 융합된 시클로펜타디엔, 페닐렌 브릿지, 질소 및 금속 자리가 순서대로 연결되어 더욱 안정하고 단단한 5 각형의 링 구조를 이룬다.
따라서 이러한 화합물들을 메틸알루미녹산 또는 B(C6F5)3와 같은 조촉매와 반응시켜 활성화한 다음에 올레핀 중합에 적용시, 높은 중합 온도에서도 고활성, 고분자량 및 고공중합성 등의 특징을 갖는 폴리올레핀을 생성하는 것이 가능하다. 특히, 촉매의 구조적인 특징상 밀도 0.910 ~ 0.930 g/cc 수준의 선형 저밀도 폴리에틸렌뿐만 아니라 많은 양의 알파-올레핀이 도입 가능하기 때문에 밀도 0.910 g/cc 미만의 초저밀도 폴리올레핀 공중합체도 제조할 수 있다.
특히, 상기 전이금속 화합물을 포함하는 촉매 조성물을 사용하여 CGC 대비 MWD가 좁고 공중합성이 우수하며 저밀도 영역에서도 고분자량을 갖는 중합체의 제조가 가능하다.
또한, 벤조티오펜이 융합된 시클로펜타디에닐 및 퀴놀린계에 다양한 치환체를 도입할 수 있는데, 이는 궁극적으로 금속 주위의 전자적, 입체적 환경을 쉽게 제어함으로써 생성되는 폴리올레핀의 구조 및 물성 등이 조절 가능하다. 상기 화학식 1의 화합물은 올레핀 단량체의 중합용 촉매를 제조하는 데 사용되는 것이 바람직하나, 이에 한정되지는 않으며 기타 상기 전이금속 화합물이 사용될 수 있는 모든 분야에 적용이 가능하다.
본 명세서의 또 하나의 실시상태에 따르면, R7 내지 R10은 수소이다.
본 명세서의 또 하나의 실시상태에 따르면, R11은 비치환 또는 치환된 탄소수 1 내지 20의 알킬, 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴이다.
이때, 상기 치환기는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 1 내지 20의 하이드로카르빌, 탄소수 1 내지 20의 알콕시, 또는 탄소수 6 내지 20의 아릴옥시이다.
이 경우, 상기 전이금속 화합물은 예를 들어 하기 화학식으로 표시되는 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 화합물인 전이금속 화합물일 수 있다:
Figure 112014091542101-pat00010
Figure 112014091542101-pat00011
본 명세서의 또 하나의 실시상태에 따르면, R11은 R11과 인접하는 R10과 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있다. 또한, 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있다.
이 경우, 상기 전이금속 화합물은 예를 들어 하기 화학식 2로 표시될 수 있다:
<화학식 2>
Figure 112014091542101-pat00012
상기 화학식 2에 있어서,
M, Q1, Q2, R1 내지 R9는 상기 화학식 1에서 정의한 바와 같고,
Cy는 5원 또는 6원 지방족 고리이고,
R, R16 및 R17은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이며;
m은 Cy가 5원 지방족 고리인 경우 0 내지 2의 정수이고, Cy가 6원 지방족 고리인 경우 0 내지 4의 정수이다.
본 명세서의 실시상태에 따르면, 상기 전이금속 화합물은 적어도 하나 이상의 키랄 중심을 포함하는 분자에서, 치환기 간의 입체 구조 관계가 상이한 입체 이성질체를 가질 수 있다. 예를 들어 상기 화학식 1의 화합물에서 R11의 탄소 위치에 키랄 중심(chrial center)을 가짐으로써, 키랄 중심을 포함하는 분자에서 치환기 간의 입체 구조 관계가 상이한 시스 및 트랜스 구조를 가질 수 있다.
본 명세서의 하나의 실시상태에 따르면, 전술한 일 실시상태의 전이금속 화합물에서 시스(cis) 이성질체(c)는 하기 화학식 3으로 표시되고, 트랜스(trans) 이성질체(t)는 하기 화학식 4로 표시될 수 있다.
<화학식 3>
Figure 112014091542101-pat00013
<화학식 4>
Figure 112014091542101-pat00014
상기 화학식 3 및 4에 있어서,
M, Q1, Q2 , R1 내지 R11은 상기 화학식 1에서 정의한 바와 같고,
R16 및 R17은 서로 같거나 상이하고, 각각 독립적으로, 수소, 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 3 내지 20의 시클로알킬; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 2 내지 20의 헤테로아릴이다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 일 실시상태의 전이금속 화합물에서 시스(cis)이성질체(c)는 하기 화학식 5로 표시되고,
트랜스(trans) 이성질체(t)는 하기 화학식 6으로 표시될 수 있다.
<화학식 5>
Figure 112014091542101-pat00015
<화학식 6>
Figure 112014091542101-pat00016
상기 화학식 5 및 6에 있어서,
M, Q1, Q2 , R1 내지 R9는 상기 화학식 1에서 정의한 바와 같고,
n은 0 또는 1 이고,
Ra 내지 Rd는 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이며, Ra 내지 Rd 중 서로 인접하는 적어도 2개가 서로 연결되어 탄소수 5 내지 20의 지방족고리 또는 탄소수 6 내지 20의 방향족고리를 형성할 수 있으며, 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고,
R16은 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 3 내지 20의 시클로알킬; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 2 내지 20의 헤테로아릴이다.
본 명세서의 또 하나의 실시상태에 따르면, 알킬 및 알케닐은 각각 직쇄 또는 분지쇄일 수 있다.
본 명세서의 또 하나의 실시상태에 따르면, 실릴은 탄소수 1 내지 20의 알킬로 치환된 실릴일 수 있으며, 예컨대 트리메틸실릴 또는 트리에틸실릴일 수 있다.
본 명세서에 또 하나의 실시상태에 따르면, 아릴은 단환 또는 다환의 아릴을 포함하며, 구체적으로 페닐, 나프틸, 안트릴, 페난트릴, 크라이세닐, 파이레닐 등이 있다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 1에 있어서, 상기 R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 1에 있어서, 상기 R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 탄소수 1 내지 6의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 1에 있어서, 상기 R1 및 R2는 메틸이다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 1에 있어서, 상기 R3 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 또는 탄소수 2 내지 20의 알케닐이다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 1에 있어서, 상기 R3 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 1에 있어서, 상기 R3 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소이다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 5 및 6에 있어서, 상기 n 이 0일 경우, R7 내지 R9 및 Ra 내지 Rd는 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 또는 탄소수 2 내지 20의 알케닐이다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 5 및 6에 있어서, 상기 n 이 0일 경우, R7 내지 R9 및 Ra 내지 Rd는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 5 및 6에 있어서, 상기 n 이 0일 경우, R7 내지 R9 및 Ra 내지 Rd는 수소이다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 5 및 6에 있어서, 상기 n 이 1일 경우, R7 내지 R9 및 Ra 내지 Rd는 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 또는 탄소수 2 내지 20의 알케닐이다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 5 및 6에 있어서, 상기 n 이 1일 경우, R7 내지 R9 및 Ra 내지 Rd는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 5 및 6에 있어서, 상기 n 이 1일 경우, R7 내지 R9 및 Ra 내지 Rd는 수소이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 5 또는 6에 있어서, R16은 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 5 또는 6에 있어서, R16은 탄소수 1 내지 6의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 5 또는 6에 있어서, R16은 메틸; 또는 n-부틸이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 1에 있어서, 상기 M은 Ti, Hf 또는 Zr이다.
본 명세서에 상기 촉매 조성물은 페닐렌 브릿지에 연결되어 있는 아미도 그룹이 도입된 시클로펜타디에닐 리간드에 의해 금속자리가 연결되어 있어 구조적으로 Cp-M-N 각도는 좁고, 모노머가 접근하는 Q1-M-Q2 각도는 넓게 유지하는 특징을 가진다.
또한, 실리콘 브릿지에 의해 연결된 CGC 구조와는 달리 상기 화학식 1로 표시되는 화합물 구조에서는 고리형태의 결합에 의해 벤조티오펜이 융합된 시클로펜타디엔, 페닐렌브릿지, 질소 및 금속자리가 순서대로 연결되어 더욱 안정하고 단단한 5 각형의 링구조를 이룬다.
더불어 이성질체 혼합물은 입체선택성이 서로 다르기 때문에, 메틸알루미녹산 또는 B(C6F5)3와 같은 조촉매와 반응시켜 활성화한 다음에 올레핀 중합에 적용시, 높은 중합 온도에서도 고활성, 고분자량 및 고공중합성 등의 특징을 갖는 폴리올레핀을 생성하는 것이 가능하다.
특히, 촉매의 구조적인 특징상 밀도 0.910 ~ 0.930 g/cc 수준의 선형 저밀도 폴리에틸렌 뿐만 아니라 많은 양의 알파-올레핀이 도입 가능하기 때문에 밀도 0.91 g/cc 미만의 초저밀도 폴리올레핀 공중합체도 제조할 수 있다.
특히, 상기 이성질체 혼합물을 포함하는 촉매 조성물을 사용하여 CGC 대비 MWD가 좁고 공중합성이 우수하며 저밀도 영역에서도 고분자량을 갖는 중합체의 제조가 가능하다. 또한, 벤조티오펜이 융합된 시클로펜타디에닐 및 퀴놀린계에 다양한 치환체를 도입할 수 있는데, 이는 궁극적으로 금속주위의 전자적, 입체적 환경을 쉽게 제어함으로써 생성되는 폴리올레핀의 구조 및 물성 등을 조절 가능하다.
상기 촉매 조성물은 올레핀 단량체의 중합용 촉매를 제조하는데 사용되는 것이 바람직하나 이에 한정되지는 않으며, 기타 상기 전이금속 화합물이 사용될 수 있는 모든 분야에 적용이 가능하다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1의 촉매 조성물은 하기 a) 내지 d) 단계에 의하여 제조될 수 있다:
a) 하기 화학식 7로 표시되는 아민계 화합물과 알킬리튬을 반응시킨 후, 보호기(-R0, protecting group)를 포함하는 화합물을 첨가하여 하기 화학식 8로 표시되는 화합물을 제조하는 단계;
b) 상기 화학식 8로 표시되는 화합물과 알킬리튬을 반응시킨 후, 하기 화학식 9로 표시되는 케톤계 화합물을 첨가하여 하기 화학식 10으로 표시되는 아민계 화합물을 제조하는 단계;
c) 상기 화학식 10으로 표시되는 화합물과 n-부틸리튬을 반응시켜 하기 화학식 11로 표시되는 디리튬 화합물을 제조하는 단계; 및
d) 상기 화학식 11로 표시되는 화합물에 MCl4(M=4족 전이금속) 및 유기 리튬 화합물을 반응시켜 하기 화학식 1로 표시되는 촉매 조성물을 제조하는 단계
<화학식 7>
Figure 112014091542101-pat00017
<화학식 8>
Figure 112014091542101-pat00018
<화학식 9>
Figure 112014091542101-pat00019
<화학식 10>
Figure 112014091542101-pat00020
<화학식 11>
Figure 112014091542101-pat00021
상기 화학식 7 내지 11에 있어서,
R'는 수소이고,
R0는 보호기(protecting group)이며,
그외 치환기는 화학식 1에서 정의한 바와 같다.
상기 a) 단계에서 보호기(protecting group)를 포함하는 화합물은 트리메틸실릴클로라이드, 벤질클로라이드, t-부톡시카르보닐클로라이드, 벤질옥시카르보닐클로라이드 및 이산화탄소 등에서 선택될 수 있다.
상기 보호기(protecting group)를 포함하는 화합물이 이산화탄소인 경우 상기 화학식 8는 하기 화학식 8a로 표시되는 리튬카바메이트 화합물일 수 있다.
<화학식 8a>
Figure 112014091542101-pat00022
치환기의 설명은 화학식 1에서 정의한 바와 같다.
구체적인 일 실시상태에 따르면 하기 반응식 1에 의하여 화학식 1의 화합물을 제조할 수 있다.
<반응식 1>
Figure 112014091542101-pat00023
반응식 1에 있어서, 치환기 설명은 상기 정의한 바와 같다.
본 명세서는 또한 상기 화학식 1의 화합물을 포함하는 촉매 조성물을 제공한다.
상기 촉매 조성물은 조촉매를 더 포함할 수 있다. 조촉매로는 당 기술분야에 알려져 있는 것을 사용할 수 있다.
예컨대, 상기 촉매 조성물은 조촉매로서 하기 화학식 12 내지 14 중 적어도 하나를 더 포함할 수 있다.
<화학식 12>
-[Al(R18)-O]a-
상기 식에서, R18은 각각 독립적으로 할로겐 라디칼; 탄소수 1 내지 20의 하이드로카르빌라디칼; 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카르빌라디칼이며, a는 2 이상의 정수이고,
<화학식 13>
D(R18)3
상기 식에서, D는 알루미늄 또는 보론이며, R18은 상기 화학식 12와 동일하고,
<화학식 14>
[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
상기 식에서, L이 중성 또는 양이온성 루이스산이며, H가 수소원자 이고, Z가 13족 원소이며, A가 각각 독립적으로 1 이상의 수소 원자가 치환기로 치환될 수 있는 탄소수 6 내지 20의 아릴 또는 탄소수 1 내지 20의 알킬이고, 상기 치환기는 할로겐, 탄소수 1 내지 20의 하이드로카르빌, 탄소수 1 내지 20의 알콕시, 또는 탄소수 6 내지 20의 아릴옥시이다.
본 명세서의 일 실시상태에 따르면, 상기 촉매 조성물을 제조하는 방법으로서, 첫번째로 상기 촉매 조성물과 상기 화학식 12 또는 화학식 13으로 표시되는 화합물을 접촉시켜 혼합물을 얻는 단계; 및 상기 혼합물에 상기 화학식 14로 표시되는 화합물을 첨가하는 단계를 포함하는 제조방법을 제공한다.
그리고, 두번째로 상기 촉매 조성물과 상기 화학식 14로 표시되는 화합물을 접촉시켜 촉매 조성물을 제조하는 방법을 제공한다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 일 실시상태에 따르는 촉매 조성물 제조 방법들 중에서 첫번째 방법의 경우에, 상기 촉매 조성물 대비 상기 화학식 12 또는 화학식 13으로 표시되는 화합물의 몰비는 각각 1:2 내지 1:5,000 이 바람직하고, 더욱 바람직하게는 1:10 내지 1:1,000 이고, 가장 바람직하게는 1:20 내지 1:500 이다.
한편, 상기 촉매 조성물 대비 상기 화학식 14로 표시되는 화합물의 몰비는 1:1 내지 1:25이 바람직하고, 더욱 바람직하게는 1:1 내지 1:10 이고, 가장 바람직하게는 1:1 내지 1:5 이다.
상기 촉매 조성물 대비 상기 화학식 12 또는 화학식 13으로 표시되는 화합물의 몰비가 1:2 미만일 경우에는 알킬화제의 양이 매우 작아 금속화합물의 알킬화가 완전히 진행되지 못하는 문제가 있고, 1:5,000 초과인 경우에는 금속화합물의 알킬화는 이루어지지만, 남아있는 과량의 알킬화제와 상기 화학식 14의 활성화제간의 부반응으로 인하여 알킬화된 금속화합물의 활성화가 완전히 이루어지지 못하는 문제가 있다.
또한 상기 화학식 1의 전이금속 화합물에 대비 상기 화학식 14로 표시되는 화합물의 비가 1:1 미만일 경우에는 활성화제의 양이 상대적으로 적어 금속화합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 떨어지는 문제가 있고 1:25 초과인 경우에는 금속화합물의 활성화가 완전히 이루어지지만, 남아있는 과량의 활성화제로 촉매 조성물의 단가가 경제적으로 못하거나 생성되는 고분자의 순도가 떨어지는 문제가 있다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 일 실시상태에 따르는 촉매 조성물 제조방법들 중에서 두번째 방법의 경우에, 상기 촉매 조성물 대비 화학식 14 표시되는 화합물의 몰비는 1:1 내지 1:500이 바람직하며, 더욱 바람직하게는 1:1 내지 1:50이고, 가장 바람직하게는 1:2 내지 1:25이다. 상기 몰비가 1:1 미만일 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 떨어지는 문제가 있고, 1:500 초과인 경우에는 금속화합물의 활성화가 완전히 이루어지지만, 남아있는 과량의 활성화제로 촉매 조성물의 단가가 경제적으로 바람직하지 못하거나 생성되는 고분자의 순도가 떨어지는 문제가 있다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 촉매 조성물의 제조시에 반응용매로서 펜탄, 헥산, 헵탄 등과 같은 탄화수소계 용매나, 벤젠, 톨루엔 등과 같은 방향족계 용매가 사용될 수 있으나, 반드시 이에 한정되지는 않으며 당해 기술분야에서 사용 가능한 모든 용매가 사용될 수 있다.
또한, 상기 조성물은 첨가제를 더 포함할 수 있다. 예컨대, 헤테로원자를 함유한 화합물을 포함할 수 있으며, 구체적으로, 상기 헤테로원자를 함유한 화합물의 예로는 헤테로 고리 화합물; 또는 헤테로원자를 함유한 알칸이 있다.
상기 헤테로 고리 화합물의 예로는 헤테로원자를 함유한 방향족 고리; 헤테로시클로알칸; 또는 헤테로시클로알켄이 있다.
상기 헤테로원자를 함유한 알칸의 예로는 아민기 또는 에테르기를 포함하는 알칸이 있다.
상기 헤테로 방향족 고리; 헤테로시클로알칸; 또는 헤테로시클로알켄은 5원 또는 6원의 고리를 포함한다.
상기 헤테로원자를 함유한 화합물은 헤테로원자로서 O, S, Se, N, P 또는 Si를 포함할 수 있다.
상기 헤테로원자를 함유한 화합물은 하나의 헤테로원자를 포함할 수 있다.
상기 헤테로원자를 함유한 화합물은 치환될 수 있으며, 상기 헤테로원자를 함유한 화합물이 치환된 경우, 수소, 메틸, 페닐 및 벤질로 이루어진 군으로부터 1 또는 2 이상으로 치환될 수 있다.
상기 헤테로원자를 함유한 화합물의 예로는 피리딘, 3,5-디메틸피리딘, 2,4,6-트리메틸피리딘, 2,6-디메틸피리딘, 2,4-디메틸피리딘, 티오펜, 2-메틸티오펜, 2,3-디메틸티오펜, 피페리딘, 포스피넨, 피롤, 2-메틸피롤, 아닐린, 파라-톨루이딘, 테트라히드로푸란, 2,3-디메틸테트라히드로푸란, 2,5-테트라히드로푸란, 3,4-디히드로-2H-파이렌, 푸란, 2-메틸푸란, 2,3-디메틸푸란, 2,5-디메틸푸란, 디에틸에테르, 메틸 터트부틸 에테르 및 트리에틸아민으로 이루어진 군으로부터 선택된 1 또는 2 이상을 포함할 수 있으나, 이에만 한정되는 것은 아니다.
또한, 상기 촉매 조성물과 조촉매는 담체에 담지된 형태로도 이용할 수 있다. 담체로는 실리카나 알루미나가 사용될 수 있다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 12로 표시되는 화합물은 알킬알루미녹산이라면 특별히 한정되지 않는다. 바람직한 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 특히 바람직한 화합물은 메틸알루미녹산이다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 13으로 표시되는 화합물은 특별히 한정되지 않으나 바람직한 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론등이포함되며, 특히바람직한화합물은트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄중에서선택된다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 화학식 14로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리부틸암모니움테트라펜타플루오로페닐보론, N,N-디에틸아닐리디움테트라페틸보론, N,N-디에틸아닐리디움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플루오로페닐보론, 디에틸암모니움테트라펜타플루오로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플루오로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플루오로페닐알루미늄, 디에틸암모니움테트라펜타텐트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론,트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리부틸암모니움테트라펜타플루오로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플루오로페닐보론, 디에틸암모니움테트라펜타플루오로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리페닐카보니움테트라(p-트리플루오로메틸페닐)보론, 트리페닐카보니움테트라펜타플루오로페닐보론 등이 있다.
본 명세서의 일 실시상태에 따르면, 상기 촉매 조성물; 및 화학식 12 내지 화학식 14로 표시되는 화합물로부터 선택되는 하나 이상의 화합물을 포함하는 촉매 조성물을 하나 이상의 올레핀 단량체와 접촉시켜 폴리올레핀 호모중합체 또는 공중합체를 제조하는 것이 가능하다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 촉매 조성물을 이용한 가장 바람직한 제조공정은 용액 공정이며, 또한 이러한 조성물을 실리카와 같은 무기 담체와 함께 사용하면 슬러리 또는 기상 공정에도 적용 가능하다.
본 명세서의 또 하나의 실시상태에 따르면, 제조공정에서 상기 활성화 촉매 조성물은 올레핀 중합 공정에 적합한 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입 가능하다. 여기에 사용되는 용매는 소량의 알킬알루미늄 처리함으로써 촉매독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.
본 명세서의 또 하나의 실시상태에 따르면, 전술한 금속화합물들과 조촉매를 사용하여 중합가능한 올레핀계 단량체의 예로는 에틸렌, 알파-올레핀, 사이클릭 올레핀 등이 있으며, 이중결합을 2개이상가지고있는디엔올레핀계단량체또는트리엔올레핀계단량체등도중합가능하다. 상기 단량체의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이코센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등이 있으며, 이들 단량체를 2 종이상 혼합하여 공중합할 수도 있다.
특히, 본 발명의 제조방법에서 상기 촉매 조성물은 90 ℃ 이상의 높은 반응온도에서도 에틸렌과 1-옥텐과 같은 입체적장애가 큰 단량체의 공중합 반응에서 높은 분자량을 가지면서도 고분자밀도 0.91 g/cc 이하의 초저밀도 공중합체의 제조가 가능하다는 특징을 가진다.
본 발명의 일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 밀도가 0.91 g/cc 미만이다.
또 하나의 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 밀도가 0.89 g/cc 미만이다.
본 발명의 일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 밀도가 0.885 g/cc 이하이다.
본 발명의 일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 Tc가 75 ℃ 이하이다.
본 발명의 일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 Tm이 95 ℃ 이하이다.
본 발명의 일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 Tm이 91 ℃ 이하이다.
본 발명의 일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 Tm이 87 ℃ 미만이다.
본 발명의 일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 Mw가 40,000 이상이다.
또 하나의 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 Mw가 40,000 내지 1,000,000, 바람직하게는 40,000 내지 300,000, 더욱 바람직하게는 80,000 내지 300,000, 가장 바람직하게는 80,000 내지 100,000이다.
본 발명의 일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 MWD가 3 이하이다.
또 하나의 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 MWD가 1 내지 3이다.
또 하나의 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 MWD가 1.5 내지 2.9 이하이다.
또 하나의 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 MWD가 2 내지 2.85 이하이다.
일 실시상태에 따르면, 본 발명에 따른 중합체는 MWD가 1 내지 3이고, Mw가 40,000 내지 300,000이며, 밀도가 0.91 g/cc 미만이다.
이하, 하기 실시예에 의거하여 본 발명을 보다 구체적으로 설명한다. 이들 실시예는 본 발명의 이해를 돕기 위한 것으로서 본 발명의 범위가 이들에 의해 한정되는 것은 아니다.
리간드 및 전이금속 화합물의 합성
유기 시약 및 용매는 특별한 언급이 없으면 알드리치(Aldrich)사에서 구입하여 표준방법으로 정제하여 사용하였다. 합성의 모든 단계에서 공기와 수분의 접촉을 차단하여 실험의 재현성을 높였다. 화학식 9에서 케톤류 화합물 중 R1 내지 R6가 메틸인 화합물은 문헌 [Organometallics 2002, 21, 2842-2855]에 의해 공지된 방법으로 합성하였다. 또한, 합성한 화합물의 확인을 위해 500MHz 핵자기공명(NMR)을 이용하여 스펙트럼을 얻었다.
실시예 1
<화합물 1의 합성>
8-(1,2-디메틸-1H- 벤조 [b] 시클로펜타 [d]티오펜-3-일)2- 메틸 -1,2,3,4- 테트라히드로퀴놀린 -티타늄디메틸(8-(1,2- dimethyl -1H- benzo [b] cyclopenta [d] thiopen -3-yl)2-methyl-1,2,3,4,-tetrahydroquinolin-titanium dimethyl )화합물
([(1,2,3,4-테트라히드로퀴놀린-8-일)]테트라메틸시클로펜타디에닐-eta5,kappa-N)티타늄 디메틸)컴플렉스 (([(1,2,3,4-Tetrahydroquinolin-8-yl)]tetramethylcyclopentadienyl-eta5,kappa-N)titanium dimethyl)complex) 1g, 3.04mmol을 메틸-t-부틸 에테르(methyl-tertiary-butyl ether) 40mL 용매 하에 녹인 뒤 -20℃에서 1,6-헥산디올(1,6-hexanediol) 180mg, 1.52mmol을 메틸-t-부틸 에테르(methyl-tertiary-butyl ether) 20mL에 녹인 용액을 서서히 적가한다. 오렌지색을 띄는 용액을 서서히 승온시켜 36시간 교반한다. 메틸-t-부틸 에테르(methyl-tertiary-butyl ether) 40mL 용매를 제거한 후 n-헥산(n-hexane) 30mL를 넣고, 여과한 뒤 오렌지색 고체 화합물을 얻었다. (수율 1.0g, >95%)
상기 리간드 0.5g, 1.445mmol에 nBuLi2.1eq.를 서서히 적가하였다. 서서히 승온시킨 뒤, 상기 리간드의 용해도를 높이기 위한 첨가제를 투입한 뒤 TiCl4DME 1.0 eq.를 적가하고 상온 교반 하였다. 용매를 제거한 후, 톨루엔으로 추출하여 이성질체 혼합물 붉은색 고체를 얻었다. (수율 700mg, 52%)
1H NMR (CDCl3) mixture of two isomer: δ ~7.1 (d, 1H, Ar-H), 6.84 (t, 1H, J=7.5Hz, Ar-H), 6.83 (t, 1H, J=7.5Hz, Ar-H), 6.98 (d, 1H, Ar-H), 2.6~2.7(m, 2H, Piperidine-CH2), 2.3~2.4(m, 2H, Piperidine-CH2), 1.63~1.69(m, 2H, Piperidine-CH2), 1.50~1.55(m, 2H, Piperidine-CH2), 1.71~1.80(m, 2H, Piperidine-CH2), 1.56~1.61(m, 2H, Piperidine-CH2), 5.42(m, 1H, Piperidine-CH), 1.15(d, 3H, J=6.5Hz, Piperidine-CH3), 1.13(d, 3H, J=6.5Hz, Piperidine-CH3), 7.84(d, 1H, J=8Hz, Ar-H), 7.83(d, 1H, J=8Hz, Ar-H), ~7.2(t, 1H, Ar-H), 6.96(t, 1H, Ar-H), 7.23(d, 1H, J=8Hz, Ar-H), 7.25(d, 1H, J=8Hz, Ar-H),2.38(s, 3H, Cp-CH3), 2.41(s, 3H, Cp-CH3), 1.72 (s, 3H, Cp-CH3), 1.64(s, 3H, Cp-CH3), 0.68(s, 3H, Ti-CH3), 0.73(s, 3H, Ti-CH3), 0.18(s, 3H, Ti-CH3), 0.05(s, 3H, Ti-CH3)ppm
<중합체의 제조>
2L 오토클레이브 반응기에 헥산 용매(1.0L)와 1-옥텐(0.44 M)을 가한 후, 반응기의 온도를 120℃로 예열하였다. 그와 동시에 반응기의 압력을 에틸렌(35bar)으로 미리 채워 놓았다. 트리이소부틸알루미늄 화합물로 처리된 화합물 1(1.0μmol)과 디메틸아닐리늄테트라키스(펜타플루오로페닐) 보레이트조촉매(10 μmol)를 차례로 고압 아르곤 압력을 가하여 반응기에 넣었다. 이어서, 공중합 반응을 8분간 진행하였다. 다음으로, 남은 에틸렌 가스를 빼내고 고분자 용액을 과량의 에탄올에 가하여 침전을 유도하였다. 침전된 고분자를 에탄올 및 아세톤으로 각각 2 내지 3회 세척한 후, 80℃ 진공 오븐에서 12시간 이상 건조한 후 물성을 측정하였다.
실시예 2
화합물 2의 합성
8-(1,2-디메틸-1H- 벤조 [b] 시클로펜타 [d]티오펜-3-일)-2- 메틸 -1,2,3,4- 테트라히드로퀴놀린 (8-(1,2- dimethyl -1H- benzo [b] cyclopenta [d] thiophen -3- yl )-2- methyl -1,2,3,4-tetrahydroquinoline) 화합물
2-메틸-1,2,3,4-테트라히드로퀴놀린 (2 g, 13.6mmol)을 에테르(Ether) 10 mL에 녹인 용액에 -40 ℃에서 nBuLi(14.9mmol, 1.1 eq)를 서서히 적가하였다. 상온으로 서서히 승온 시킨뒤, 4시간동안 상온 교반하였다. 온도를 다시 -40 ℃로 낮춘 CO2(g)를 주입한 뒤 저온에서 0.5시간 동안 반응을 유지시켰다. 서서히 승온시킨 뒤, 잔여하고 있는 CO2(g)를 버블러를 통해 제거하였다. -20℃에서 THF (17.6 mmol, 1.4ml과 tBuLi (10.4 mmol, 1.3eq)을 주입한 뒤 -20℃에서 2시간 저온 숙성시켰다. 상기 케톤(1.9 g, 8.8 mmol)을 디에틸 에테르(Diethyl ether) 용액에 녹여 서서히 적가 하였다. 12시간 동안 상온 교반 시킨 뒤 물 10mL을 주입한 뒤, 염산 (2N, 60mL)을 넣어 2분간 교반 시킨 뒤 유기용매를 추출한 뒤 NaHCO3 수용액에 중화시켜 유기용매를 추출하여 MgSO4로 수분을 제거하였다. 실리카 겔 컬럼을 통해 (1.83g, 60%수율)로 노란색 오일을 얻었다.
1H NMR (C6D6): δ 1.30 (s, 3H, CH3), 1.35 (s, 3H, CH3), 1.89~1.63 (m, 3H, Cp-H quinoline-CH2), 2.62~2.60 (m, 2H, quinoline-CH2), 2.61~2.59 (m, 2H, quinoline-NCH2), 2.70~2.57 (d, 2H, quinoline-NCH2), 3.15~3.07 (d, 2H, quinoline-NCH2), 3.92 (broad, 1H, N-H), 6.79~6.76 (t, 1H, aromatic), 7.00~6.99 (m, 2H, aromatic), 7.30~7.23 (m, 2H, aromatic), 7.54~7.53 (m, 1H, aromatic), 7.62~7.60 (m, 1H, aromatic) ppm
8-(1,2-디메틸-1H- 벤조 [b] 시클로펜타 [d]티오펜-3-일)-2- 메틸 -1,2,3,4- 테트라히드로퀴놀린 -티타늄디클로라이드(8-(1,2- dimethyl -1H- benzo [b] cyclopenta [d] thiophen -3- yl )-2-methyl-1,2,3,4-tetrahydroquinoline-titanium dichloride ) 화합물
상기 리간드 (1.0 g, 2.89 mmol)에 nBuLi (3.0 mmol, 2.1 eq)를 -20℃에서 서서히 적가하였다. 노란색 슬러리(slurry)가 형성되는 것이 관찰되었으며, 상온으로 서서히 승온시킨 뒤, 12시간 동안 상온 교반 하였다. TiCl4DME (806 mg, 2.89 mmol, 1.0 eq)를 적가한 뒤 12시간 동안 상온 교반 하였다. 용매를 제거한 뒤, 톨루엔으로 추출하여 붉은색 고체를 (700 mg, 52% 수율) 얻었다.
1H NMR (C6D6) mixture of two isomer: δ 1.46~1.467 (t, 2H, quinoline-NCH2), 1.85 (s, 3H, Cp-CH3), 1.79 (s, 3H, Cp-CH3), 2.39 (s, 3H, Cp-CH3), 2.37 (s, 3H, Cp-CH3), 2.10~2.07 (t, 2H, quinoline-NCH2), 5.22~5.20 (m, 1H, N-CH), 5.26~5.24 (m, 1H, N-CH), 6.89~6.87 (m, 2H, aromatic) 6.99~6.95 (m, 1H, aromatic), 7.19~7.08 (m, 2H, aromatic), 7.73~7.68 (m, 1H, aromatic) ppm
<중합체의 제조>
상기 화합물 1 대신 화합물 2를 사용하고, 1-옥텐의 양을 하기 표 1과 같이 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 중합체를 제조하였다.
실시예 3
상기 화합물 1 대신 화합물 2를 사용하고, 1-옥텐의 양을 하기 표 1과 같이 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 중합체를 제조하였다.
비교예 1
상기 화합물 1 대신 하기 화합물 A를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 중합체를 제조하였다.
<화합물 A>
Figure 112014091542101-pat00024

물성 평가(무게, 활성도, 용융 지수, 녹는점, 밀도)
고분자의 용융지수 (Melt Index, I2) 는 ASTM D-1238 (조건 E, 190℃, 2.16Kg 하중)으로 측정하였다. 고분자의 녹는점(Tm)은 TA사에서 제조한 시차주사열량계(DSC: Differential Scanning Calorimeter 2920)를 이용하여 얻었다. 즉, 온도를 200℃까지 증가시킨 후, 5분 동안 그 온도에서 유지하고 그 다음 30℃ 까지 내리고, 다시 온도를 증가시켜 DSC 곡선의 꼭대기를 녹는점으로 측정하였다. 이 때, 온도의 상승과 내림의 속도는 10℃/min이고, 녹는점은 두 번째 온도가 상승하는 동안 얻어졌다. 또한, 고분자의 밀도(Density)는 산화 방지제(1,000 ppm) 로 처리된 샘플을 180℃ 프레스 몰드(Press Mold)로 두께 3mm, 반지름 2cm 의 시트를 제작하고 10℃/min으로 냉각하여 메틀러(Mettler) 저울에서 측정하였다.
상기 실시예 1 내지 3, 및 비교예 1에서 제조한 중합체의 물성을 하기 표 1에 나타내었다.
촉매 1-옥텐
(M)
Activity
(Kg/mmolTi)
I2 밀도
(g/ml)
비교예 1 화합물A 0.44 75 2.56 0.862
실시예 1 화합물1 0.44 76 1.12 0.862
실시예 2 화합물2 1.1 35 0.018 0.875
실시예 3 화합물2 1.47 38 0.085 0.870
중합 조건: 헥산(1.0L), 에틸렌(35bar), 120℃, Cocat AB 10 당량, 시간(8분)
I 2 :용융지수, Tm: 녹는점
상기 표 1에서 알 수 있는 바와 같이, 본 발명의 실시예 1은 동일 수준의 밀도 하에서 촉매 활성이 높았으며, 용융지수가 2배 이상 낮음을 알 수 있다.
또한, 실시예 2와 3의 경우, 비교예 1과 대비하여 활성이 절반 정도 감소하지만 용융지수가 30~100배 이상 낮으며 이는 비교예 1 대비 고분자량의 폴리머를 제조할 수 있음을 의미한다.
실시예 1과 2의 경우 화합물 2를 사용하였을 때 화합물 1 대비 용융지수가 대폭 감소하는 대신 밀도가 증가하며 따라서 공중합성이 저하됨을 알 수 있다. 하지만 실시예 3에서 1-옥텐 투입량을 증가시켜 동일 수준의 활성을 유지하면서 밀도를 0.870 수준까지 확보할 수 있음을 알 수 있다.
결과를 종합해 보면 화합물 1을 사용하면 동등 수준의 밀도에서 용융 지수를 소폭 낮출 수 있으며 화합물 2를 사용하여 밀도를 소폭 높이는 대신 고분자량의 폴리머를 중합할 수 있다. 따라서 화합물 1과 화합물 2를 선택적으로 사용함으로써 서로 다른 폴리머를 중합할 수 있음을 알 수 있다.

Claims (17)

  1. 전이금속 화합물의 하기 화학식 3으로 표시되는 시스(cis) 이성질체(c) 및 하기 화학식 4로 표시되는 트랜스(trans) 이성질체(t)를 포함하고, 상기 시스(cis) 이성질체(c)와 트랜스(trans) 이성질체(t)의 중량비(c:t)는 1~99 : 99~1의 범위 내에서 선택되는 촉매 조성물.
    <화학식 3>
    Figure 112015098246111-pat00030

    <화학식 4>
    Figure 112015098246111-pat00031

    상기 화학식 3 및 4에 있어서,
    M은 4족 전이금속이고,
    Q1 및 Q2는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 6 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이며,
    R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로, 수소; 실릴; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이며; 상기 R1과 R2이 서로 연결되거나 R3 내지 R6 중 2 이상이 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며; 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고,
    R7 내지 R11은 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이며; R7 내지 R11 중 서로 인접하는 적어도 2개가 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며; 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있으며,
    R16 및 R17은 서로 같거나 상이하고, 각각 독립적으로, 수소, 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 3 내지 20의 시클로알킬; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 2 내지 20의 헤테로아릴이다.
  2. 삭제
  3. 삭제
  4. 청구항 1에 있어서,
    상기 시스(cis) 이성질체(c)는 하기 화학식 5로 표시되고,
    트랜스(trans) 이성질체(t)는 하기 화학식 6으로 표시되는 촉매 조성물:
    <화학식 5>
    Figure 112015098246111-pat00028

    <화학식 6>
    Figure 112015098246111-pat00029

    상기 화학식 5 및 6에 있어서,
    M, Q1, Q2 , R1 내지 R9는 상기 화학식 3 및 4에서 정의한 바와 같고,
    n은 0 또는 1 이고,
    Ra 내지 Rd는 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이며, Ra 내지 Rd 중 서로 인접하는 적어도 2개가 서로 연결되어 탄소수 5 내지 20의 지방족고리 또는 탄소수 6 내지 20의 방향족고리를 형성할 수 있으며, 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고,
    R16은 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 3 내지 20의 시클로알킬; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 2 내지 20의 헤테로아릴이다.
  5. 청구항 1에 있어서,
    상기 R1 및 R2는 탄소수 1 내지 20의 알킬인 촉매 조성물.
  6. 청구항 1에 있어서,
    상기 M은 Ti, Hf 또는 Zr인 촉매 조성물.
  7. 청구항 1에 있어서,
    1종 이상의 조촉매를 더 포함하는 촉매 조성물.
  8. 청구항 7에 있어서,
    상기 조촉매는 하기 화학식 12 내지 14 중에서 선택D되는 하나 이상을 포함하는 것인 촉매 조성물:
    <화학식 12>
    -[Al(R18)-O]a-
    상기 식에서, R18은 각각 독립적으로 할로겐라디칼; 탄소수 1 내지 20의 하이드로카르빌라디칼; 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카르빌라디칼이며, a는 2 이상의정수이고,
    <화학식 13>
    D(R18)3
    상기 식에서, D는 알루미늄 또는 보론이며, R18은 상기 화학식 12와 동일하고,
    <화학식 14>
    [L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
    상기 식에서, L이 중성 또는 양이온성 루이스산이며, H가 수소 원자이고, Z가 13족 원소이며, A가 각각 독립적으로 1 이상의 수소 원자가 치환기로 치환될 수 있는 탄소수 6 내지 20의 아릴 또는 탄소수 1 내지 20의 알킬이고, 상기 치환기는 할로겐, 탄소수 1 내지 20의 하이드로카르빌, 탄소수 1 내지 20의 알콕시, 또는 탄소수 6 내지 20의 아릴옥시이다.
  9. 청구항 1에 있어서,
    상기 촉매 조성물은 반응 용매를 더 포함하는 것인 촉매 조성물.
  10. 청구항 1에 있어서,
    상기 촉매 조성물은 첨가제를 더 포함하는 것인 촉매 조성물.
  11. 청구항 1에 따른 촉매 조성물이 담체에 담지된 담지 촉매.
  12. 청구항 1에 따른 촉매 초성물을 이용한 중합체의 제조방법.
  13. 청구항 12에 있어서,
    상기 중합체는 폴리올레핀의 호모중합체 또는 공중합체인 것인 중합체의 제조방법.
  14. 청구항 11에 따른 담지 촉매를 이용한 중합체의 제조방법.
  15. 청구항 14에 있어서,
    상기 중합체는 폴리올레핀의 호모중합체 또는 공중합체인 것인 중합체의 제조방법.
  16. 청구항 1에 따른 촉매 조성물을 이용하여 제조된 중합체.
  17. 청구항 11에 따른 담지 촉매 이용하여 제조된 중합체.
KR1020140128645A 2013-09-26 2014-09-25 촉매 조성물 및 이를 포함하는 중합체의 제조방법 KR101603016B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130114253 2013-09-26
KR20130114253 2013-09-26
KR1020140104007 2014-08-11
KR20140104007 2014-08-11

Publications (2)

Publication Number Publication Date
KR20150034652A KR20150034652A (ko) 2015-04-03
KR101603016B1 true KR101603016B1 (ko) 2016-03-11

Family

ID=52743954

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140128645A KR101603016B1 (ko) 2013-09-26 2014-09-25 촉매 조성물 및 이를 포함하는 중합체의 제조방법

Country Status (5)

Country Link
US (1) US9683061B2 (ko)
EP (1) EP2980104B1 (ko)
KR (1) KR101603016B1 (ko)
CN (1) CN105229039B (ko)
WO (1) WO2015046930A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105229039B (zh) 2013-09-26 2018-04-27 株式会社Lg化学 催化剂组合物和包括其的聚合物制备方法
WO2015046705A1 (ko) 2013-09-26 2015-04-02 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
US9376519B2 (en) 2013-09-26 2016-06-28 Lg Chem, Ltd. Transition metal compound, catalytic composition including the same, and method for preparing polymer using the same
KR101637982B1 (ko) * 2014-11-07 2016-07-11 주식회사 엘지화학 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR101719064B1 (ko) 2014-11-13 2017-03-22 주식회사 엘지화학 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2016076509A1 (ko) * 2014-11-13 2016-05-19 주식회사 엘지화학 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR101731177B1 (ko) * 2014-12-24 2017-04-27 주식회사 엘지화학 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
KR101917911B1 (ko) * 2015-07-02 2018-11-12 주식회사 엘지화학 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR101919435B1 (ko) 2015-10-21 2018-11-16 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 폴리올레핀의 제조 방법
KR101938585B1 (ko) * 2015-12-24 2019-01-16 주식회사 엘지화학 폴리올레핀의 제조방법
EP3783004B1 (en) 2018-12-12 2023-02-01 Lg Chem, Ltd. Transition metal compound, catalyst composition comprising same, and polymer preparation method using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986301B1 (ko) * 2010-04-12 2010-10-07 아주대학교산학협력단 테트라하이드로퀴놀린 유도체로부터 유래한 티오펜-축합고리 싸이클로펜타디에닐 4족 금속 화합물 및 이를 이용한 올레핀 중합

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
WO1995011264A1 (en) 1993-10-21 1995-04-27 Mobil Oil Corporation Polyolefin blends of bimodal molecular weight distribution
EP0918803B1 (en) 1996-08-03 2003-03-12 LG Chemical Limited Process for the preparation of olefinic polymers using supported metallocene catalyst
AR012645A1 (es) 1997-05-01 2000-11-08 Dow Global Technologies Inc Polimeros de alfa-olefinas preparados por polimerizacion en presencia de complejos de metales que contienen grupos indenilo
JP2002516358A (ja) 1998-05-23 2002-06-04 バーゼル、ポリプロピレン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 触媒組成物およびプロピレン重合のためのその使用
SG99905A1 (en) 2000-06-21 2003-11-27 Sumitomo Chemical Co Transition metal compound, catalyst for addition polymerization, and process for producing addition polymer
WO2003048213A1 (en) 2001-11-30 2003-06-12 Exxonmobil Chemical Patents, Inc. Ethylene/alpha-olefin copolymer made with a non-single-site/single-site catalyst combination, its preparation and use
JP2003201308A (ja) 2002-01-07 2003-07-18 Idemitsu Petrochem Co Ltd オレフィン重合用触媒及びポリオレフィンの製造方法
DE10352139A1 (de) 2003-11-04 2005-06-09 Basell Polyolefine Gmbh Organoübergangsmetallverbindung, Biscyclopentadienylligandsystem und Verfahren zur Herstellung von Polyolefinen
CN101296932A (zh) 2005-12-30 2008-10-29 Lg化学株式会社 过渡金属配合物及其制备方法
KR100820542B1 (ko) 2006-03-24 2008-04-08 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
KR101299375B1 (ko) 2006-06-27 2013-08-22 유니베이션 테크놀로지즈, 엘엘씨 에틸렌-알파 올레핀 공중합체 및 이의 중합 제조 방법
KR100968704B1 (ko) 2006-12-01 2010-07-06 주식회사 엘지화학 페닐렌 브릿지를 가지는 전이 금속 촉매 화합물을 이용한올레핀 중합용 담지촉매, 이의 제조방법, 상기 올레핀중합용 담지촉매를 이용한 올레핀계 중합체의 제조방법, 및이에 의해 제조된 올레핀계 중합체
KR100976131B1 (ko) 2007-01-10 2010-08-16 주식회사 엘지화학 전이금속 화합물의 제조 방법, 상기 방법으로 제조된전이금속 화합물 및 상기 전이금속 화합물을 포함하는 촉매조성물
KR100988055B1 (ko) 2007-04-30 2010-10-18 주식회사 엘지화학 헤테로 원자를 포함하는 새로운 4족 전이금속 화합물
KR100964093B1 (ko) 2007-05-02 2010-06-16 주식회사 엘지화학 폴리올레핀 및 이의 제조방법
KR100994252B1 (ko) 2007-05-09 2010-11-12 주식회사 엘지화학 에틸렌 알파-올레핀 공중합체
KR101066969B1 (ko) * 2007-05-18 2011-09-22 주식회사 엘지화학 공중합성이 뛰어난 전이금속 촉매를 이용한 올레핀중합체의 제조 방법
KR101235390B1 (ko) 2009-01-12 2013-02-20 주식회사 엘지화학 전이금속 화합물을 포함하는 올레핀 중합용 촉매 조성물 및 이를 이용한 고내열 올레핀 중합체의 제조방법
US8916662B2 (en) 2010-04-12 2014-12-23 Lotte Chemical Corporation Method for preparing olefin-diene copolymer using transition metal compound containing thiophene-fused cyclopentadienyl ligand
EP2559711B1 (en) 2010-04-12 2017-06-14 Lotte Chemical Corporation Supported catalyst for polymerizing olefin and method for preparing polyolefin using same
CN102834422B (zh) 2010-04-12 2015-03-18 乐天化学株式会社 使用包含噻吩稠合的环戊二烯基配体的过渡金属化合物制备聚丙烯的方法
ES2596717T3 (es) 2010-04-12 2017-01-11 Lotte Chemical Corporation Composición de catalizador para la polimerización de olefina y procedimiento de preparación de poliolefina usando la misma
KR20120024427A (ko) 2010-08-16 2012-03-14 주식회사 엘지화학 개선된 전이금속 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조방법
EP2669304B1 (en) 2011-01-27 2018-03-07 LG Chem, Ltd. Olefin block copolymer
CN105229039B (zh) 2013-09-26 2018-04-27 株式会社Lg化学 催化剂组合物和包括其的聚合物制备方法
WO2015046705A1 (ko) * 2013-09-26 2015-04-02 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986301B1 (ko) * 2010-04-12 2010-10-07 아주대학교산학협력단 테트라하이드로퀴놀린 유도체로부터 유래한 티오펜-축합고리 싸이클로펜타디에닐 4족 금속 화합물 및 이를 이용한 올레핀 중합

Also Published As

Publication number Publication date
CN105229039B (zh) 2018-04-27
EP2980104A4 (en) 2016-05-25
KR20150034652A (ko) 2015-04-03
US20150361196A1 (en) 2015-12-17
CN105229039A (zh) 2016-01-06
WO2015046930A1 (ko) 2015-04-02
EP2980104B1 (en) 2020-11-04
EP2980104A1 (en) 2016-02-03
US9683061B2 (en) 2017-06-20

Similar Documents

Publication Publication Date Title
KR101603016B1 (ko) 촉매 조성물 및 이를 포함하는 중합체의 제조방법
JP5972474B2 (ja) 遷移金属化合物、これを含む触媒組成物およびこれを用いた重合体の製造方法
KR101637982B1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR100820542B1 (ko) 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
EP3219718B1 (en) Ligand compound, transition metal compound, and catalyst composition containing compounds
KR101689063B1 (ko) 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
US9376519B2 (en) Transition metal compound, catalytic composition including the same, and method for preparing polymer using the same
KR102054466B1 (ko) 전이금속 화합물을 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
KR102236921B1 (ko) 전이금속 화합물 및 알킬알루미녹산을 포함하는 촉매 조성물, 이를 이용한 중합체의 제조방법, 및 이를 이용하여 제조된 중합체
KR101731177B1 (ko) 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
KR101153097B1 (ko) 새로운 씨클로펜타다이에논 리간드를 포함하는 4족 전이금속 화합물
CN111094307B (zh) 配体化合物,过渡金属化合物和包含其的催化剂组合物
KR102558310B1 (ko) 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
KR102223719B1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102091779B1 (ko) 헤테로 아로마틱 리간드가 도입된 신규한 전이금속 화합물 및 이를 이용한 중합체의 제조방법
KR20160073823A (ko) 이종의 전이금속 화합물을 포함하는 혼성 촉매 조성물 및 이를 이용한 올레핀계 공중합체의 제조방법
KR20170068330A (ko) 신규한 전이금속 화합물

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 5