KR101538168B1 - 전환 반응 가스의 분리 회수 방법 - Google Patents

전환 반응 가스의 분리 회수 방법 Download PDF

Info

Publication number
KR101538168B1
KR101538168B1 KR1020080118158A KR20080118158A KR101538168B1 KR 101538168 B1 KR101538168 B1 KR 101538168B1 KR 1020080118158 A KR1020080118158 A KR 1020080118158A KR 20080118158 A KR20080118158 A KR 20080118158A KR 101538168 B1 KR101538168 B1 KR 101538168B1
Authority
KR
South Korea
Prior art keywords
distillation
silicon tetrachloride
trichlorosilane
gas
silicon
Prior art date
Application number
KR1020080118158A
Other languages
English (en)
Other versions
KR20090056849A (ko
Inventor
노부히사 마스다
노보루 다치노
Original Assignee
미쓰비시 마테리알 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰비시 마테리알 가부시키가이샤 filed Critical 미쓰비시 마테리알 가부시키가이샤
Publication of KR20090056849A publication Critical patent/KR20090056849A/ko
Application granted granted Critical
Publication of KR101538168B1 publication Critical patent/KR101538168B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0054General arrangements, e.g. flow sheets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Silicon Compounds (AREA)

Abstract

이 전환 반응 가스의 분리 회수 방법은 4염화규소와 수소 가스로부터 3염화실란을 생성하는 전환 반응 프로세스에 있어서, 생성 가스를 냉각시켜 응축액으로 하고, 이 응축액으로부터 3염화실란 및 4염화규소를 증류 분리한 후에 6염화 2규소를 유출 (留出) 회수하는 것을 특징으로 하는 전환 반응 가스의 분리 회수 방법이며, 예를 들어 응축액으로부터 3염화실란을 유출시키는 제 1 증류 공정과, 제 1 증류 공정의 잔액으로부터 4염화규소를 유출시키는 제 2 증류 공정과, 제 2 증류 공정의 잔액으로부터 6염화 2규소를 유출시키는 제 3 증류 공정을 갖는 전환 반응 가스의 분리 회수 방법이다.
Figure R1020080118158
3염화실란, 4염화규소, 다결정 실리콘, 증류탑

Description

전환 반응 가스의 분리 회수 방법{METHOD FOR SEPARATING AND COLLECTING CONVERSION REACTION GAS}
본 발명은, 다결정 실리콘 제조 프로세스로부터 배출되는 4염화규소를 수소와 반응시켜 3염화실란을 생성하는 전환 반응 프로세스에 있어서, 생성 가스로부터 3염화실란 및 4염화규소를 분리 회수한 후에 6염화 2규소 등을 회수하는 전환 반응 가스의 분리 회수 방법에 관한 것이다.
본원은, 2007 년 11 월 30 일에 출원된 일본국 특허 출원 제2007-309859호에 대해 우선권을 주장하고, 그 내용을 여기에 원용한다.
6염화 2규소는 비정질 실리콘 박막의 원료 및 광섬유용 유리의 원료, 혹은 디실란의 원료로서 유용하다. 종래, 이 6염화 2규소의 제조 방법으로서, 실리콘 함유 합금 분말을 염소화하여 폴리클로로실란의 혼합 가스로 하고, 이것을 냉각 응축시키고, 더욱 응축시켜 6염화 2규소를 분리하여 회수하는 방법 (일본 공개특허공보 소59-195519호) 이 알려져 있다. 또한, 교반 혼합식 횡형 반응관을 이용하여 페로실리콘을 염소 가스와 반응시켜 6염화 2규소를 제조하는 방법 (일본 공개특허공보 소60-145908호) 등이 알려져 있다.
종래의 상기 제조 방법은 모두 실리콘 (금속 실리콘 그레이드 : 순도 98wt% 정도) 을 원료로 하고 있고, 원료로부터의 오염을 피할 수 없기 때문에 고순도품을 얻는 것이 어렵다는 문제가 있다. 특히 티탄이나 알루미늄이 혼재하면, 이들의 염화물 (TiCl4, AlCl3) 은 6염화 2규소와 비점이 가깝기 때문에 증류 분리하는 것이 곤란하여 고순도의 6염화 2규소를 얻을 수 없다.
이와 같은 종래의 문제를 가지지 않는 제조 방법으로서, 다결정 실리콘의 제조 프로세스에 있어서 부생 (副生) 된 고분자 염화규소 화합물 (폴리머라고 한다) 을 증류하여 6염화 2규소를 회수함으로써, 티탄 및 알루미늄을 실질적으로 함유하지 않는 고순도의 6염화 2규소를 얻는 제조 방법이 알려져 있다 (국제 공개 WO002/012122호).
다결정 실리콘의 제조 프로세스에 있어서 부생된 폴리머로부터 6염화 2규소를 회수하는 상기 방법에서는, 상기 폴리머의 조성이 다결정 실리콘 제조 프로세스의 제조 조건 (프로세스 온도·3염화실란/수소 가스 투입량) 에 의존하고 있기 때문에, 이 제조 조건이 일정하지 않으면 6염화 2규소를 안정적으로 얻을 수 없다는 문제가 있다.
구체적으로는, 일반적으로 다결정 실리콘 제조 공정은 배치 처리이며, 통상 3 일 내지 6 일간의 반응 시간을 소비하고, 성장 프로세스에 맞춰 제조 조건을 조정하고 있기 때문에, 반응 배기 가스의 조성은 일정하지 않다. 이 때문에, 상기 폴리머에 함유되는 6염화 2규소의 함유량은 불균일하고, 증류 공정이 안정되지 않아 6염화 2규소를 안정적으로 생산하는 것이 곤란하다.
본 발명은, 6염화 2규소의 제조 방법에 있어서의 종래의 상기 과제를 해결한 것으로, 다결정 실리콘 제조 프로세스로부터 배출되는 4염화규소를 수소와 반응시켜 3염화실란을 생성하는 전환 반응 프로세스에 주목하여, 이 전환 반응 프로세스의 생성 가스로부터 6염화 2규소를 안정적으로 회수하고, 또 6염화 2규소를 회수하는 공정의 전 (前) 단계에서 4염화규소 등도 효율적으로 회수하여 재이용할 수 있는 전환 반응 가스의 분리 회수 방법을 제공한다.
본 발명은, 이하의 [1]∼[12] 에 나타내는 구성에 의해 상기 과제를 해결한 클로로실란의 회수 방법에 관한 것이다.
[1] 4염화규소와 수소 가스로부터 3염화실란을 생성하는 전환 반응 프로세스에 있어서, 생성 가스를 냉각시켜 응축액으로 하고, 이 응축액으로부터 3염화실란 및 4염화규소를 증류 분리한 후에 6염화 2규소를 유출 (留出) 회수하는 것을 특징으로 하는 전환 반응 가스의 분리 회수 방법.
[2] 전환 반응 프로세스의 생성 가스를 냉각 응축시켜 수소 가스를 분리하는 응축 공정과, 이 응축액으로부터 3염화실란을 유출시키는 제 1 증류 공정과, 제 1 증류 공정의 잔액으로부터 4염화규소를 유출시키는 제 2 증류 공정과, 제 2 증류 공정의 잔액으로부터 6염화 2규소를 유출시키는 제 3 증류 공정을 갖는 상기 [1] 에 기재된 전환 반응 가스의 분리 회수 방법.
[3] 3염화실란의 증류와 4염화규소의 증류가 하나의 증류탑 중에서 연속하여 실시되는 상기 [1] 에 기재된 전환 반응 가스의 분리 회수 방법.
[4] 6염화 2규소의 증류 공정에 있어서, 초류 (初留) 를 컷한 후, 6염화 2규소를 주성분으로 하는 고온 증류 부분을 회수하는 상기 [1]∼상기 [3] 중 어느 하나에 기재된 전환 반응 가스의 분리 회수 방법.
[5] 6염화 2규소의 증류 공정에 있어서, 초류를 컷한 후, 4염화디실란을 주체로 하는 중간 유분 (留分) 을 회수하고, 추가로 6염화 2규소를 주체로 하는 고온 증류 부분을 회수하는 상기 [1]∼상기 [4] 중 어느 하나에 기재된 전환 반응 가스의 분리 회수 방법.
[6] 3염화실란의 증류 공정, 4염화규소의 증류 공정, 및 6염화 2규소의 증류 공정이 각각의 증류탑에 의해 순서대로 연속하여 실시되는 상기 [1]∼상기 [5] 중 어느 하나에 기재된 전환 반응 가스의 분리 회수 방법.
[7] 3염화실란의 증류 공정과 4염화규소의 증류 공정 사이, 또는 4염화규소의 증류 공정과 6염화 2규소의 증류 공정 사이, 혹은 4염화규소 증류 공정 중, 또는 6염화 2규소의 증류 공정 중에 염소 도입 공정을 형성한 상기 [1]∼상기 [6] 중 어느 하나에 기재된 전환 반응 가스의 분리 회수 방법.
[8] 상기 [7] 의 제조 방법에 있어서, 각각의 증류 공정에 염소를 도입하여 증류를 진행시킨 후, 증류 잔액에 잔류한 염소를 탈기하는 전환 반응 가스의 분리 회수 방법.
[9] 상기 [7] 의 제조 방법에 있어서, 불활성 가스를 증류 잔액에 도입하여 버블링함으로써 염소를 탈기하는 전환 반응 가스의 분리 회수 방법.
[10] 3염화실란의 증류 공정, 4염화규소의 증류 공정, 6염화 2규소의 증류 공정 중 적어도 어느 하나의 증류 공정 후, 증류 잔액에 염소를 도입하여 염소화를 진행시킨 후에 잔류 염소를 탈기하고, 이 잔액을 다음의 증류 공정에 도입하는 상기 [7]∼상기 [9] 중 어느 하나에 기재된 전환 반응 가스의 분리 회수 방법.
[11] 3염화실란의 증류 공정, 4염화규소의 증류 공정, 6염화 2규소의 증류 공정 중 적어도 어느 하나의 증류 공정 후, 증류 잔액에 염소를 도입하여 염소화를 진행시킨 후, 이 염소를 함유하는 증류 잔액을 다음의 증류 공정에 안내하고, 증류와 함께 염소를 탈기하는 상기 [7]∼상기 [9] 중 어느 하나에 기재된 전환 반응 가스의 분리 회수 방법.
[12] 4염화규소와 수소 가스로부터 3염화실란을 생성하는 전환 반응 프로세스에 있어서, 다결정 실리콘 제조 프로세스로부터 부생된 4염화규소를 원료 가스로서 사용하는 상기 [1]∼상기 [11] 중 어느 하나에 기재된 전환 반응 가스의 분리 회수 방법.
본 발명의 분리 회수 방법은, 다결정 실리콘의 제조 프로세스에 있어서 부생된 폴리머로부터 6염화 2규소를 회수하는 것이 아니라, 상기 제조 프로세스의 배기 가스에 함유되는 4염화규소를 원료로 하여 3염화실란을 생성시키는 전환 반응 프로세스의 생성 가스로부터 3염화실란을 분리 회수한 후에 6염화 2규소를 회수하는 방법이다. 본 발명의 분리 회수 방법에 의하면, 다결정 실리콘 제조 프로세스의 배기 가스로부터 6염화 2규소를 회수하는 방법과 비교하여, 6염화 2규소의 회수율이 양호하여 6염화 2규소 등을 안정적으로 증류 분리할 수 있다.
본 발명의 방법에 의해 얻어지는 6염화 2규소는, 다결정 실리콘 제조의 전환 반응 프로세스로부터 분리 회수되므로 고순도이다. 또, 본 발명의 제조 방법에 의하면, 3염화실란을 분리 회수한 후, 6염화 2규소를 분리 회수하므로, 전환 반응 생성 가스 전체의 이용 효율을 높일 수 있다.
이하, 본 발명을 실시형태에 기초하여 구체적으로 설명한다.
본 발명의 분리 회수 방법은, 다결정 실리콘의 제조 프로세스에 접속한 전환 반응 프로세스에서 생성된 가스로부터 6염화 2규소 (6CS 라고 약기) 등을 분리 회 수하는 방법이다. 다결정 실리콘의 제조 프로세스와 전환 반응 프로세스를 도 1 에 나타낸다.
도 1 에 나타내는 제조 프로세스에 있어서, 다결정 실리콘은 3염화실란 [트리클로로실란 SiHCl3:TCS] 및 수소를 원료로 하고, 주로 다음 식 (1) 에 나타내는 수소 환원 반응, 다음 식 (2) 에 나타내는 열분해 반응에 의해 생성되고 있다.
SiHCl3+H2→Si+3HCl …(1)
4SiHCl3→Si+3SiCl4+2H2 …(2)
다결정 실리콘 반응로 (10) 의 내부에는 실리콘봉이 설치되어 있고, 노 내의 적열된 실리콘봉 (약 800℃∼1200℃) 의 표면에 상기 반응 (1) (2) 에 의해 생성된 실리콘이 석출되고, 점점 직경이 굵은 다결정 실리콘봉으로 성장한다.
상기 반응로 (10) 로부터 배출되는 가스에는, 미반응 3염화실란 (TCS) 및 수소와 함께, 부생된 염화수소 (HCl), 및 4염화규소 (STC), 디클로로실란, 헥사클로로디실란 등의 클로로실란류가 함유된다. 이들 클로로실란류를 함유하는 배기 가스는 냉각기 (11) 에 안내되고, -60℃ 부근 (예를 들어 -65℃∼-55℃) 으로 냉각시켜 응축 액화된다. 여기서 액화되지 않고 가스상태로 남은 수소는 분리되고, 정제 공정을 거쳐 원료 가스의 일부로서 다시 반응로 (10) 에 공급되어 재이용된다.
냉각기 (11) 에서 액화된 클로로실란류를 함유하는 응축액은 증류 공정 (12) 에 도입되고, 3염화실란 (TCS) 이 증류 분리되고, 회수된 TCS 는 다결정 실리콘의 제조 프로세스로 되돌려 재이용된다.
이어서, 4염화규소 (STC) 가 증류 분리된다. 이 4염화규소는 수소와 함께 전환로 (轉換爐) (13) 에 도입되고, 다음 식 (3) 에 나타내는 수소 부가 전환 반응에 의해 3염화실란 (TCS) 이 생성된다. 이 TCS 를 함유하는 생성 가스는 냉각 응축 공정에 도입되고, 분리 회수된 TCS 는 다결정 실리콘의 제조 프로세스로 돌아와 다결정 실리콘의 제조 원료로서 재이용된다.
SiCl4+H2→SiHCl3+HCl …(3)
본 발명의 분리 회수 방법은, 상기 전환 반응 프로세스에 있어서 생성된 가스의 응축액으로부터 3염화실란 (TCS) 을 증류 분리한 후, 이 증류 잔액을 이용하여 6염화 2규소 (6CS) 를 유출 회수하는 것을 특징으로 하는 전환 반응 가스의 분리 회수 방법이다.
본 발명의 분리 회수 방법의 구체예를 도 2 에 나타낸다. 도 2 의 처리 시스템에 있어서, 다결정 실리콘 제조 프로세스의 배기 가스로부터 증류 분리된 4염화규소는 수소 가스와 함께 증발기 (25) 를 거쳐 전환로 (20) 에 도입된다. 전환로 (20) 는 약 1000℃∼약 1300℃ 의 노 내 온도로 설정되고, 수소와 4염화규소 (STC) 가 반응하여 클로로실란류가 생성된다.
전환로 (20) 에 있어서 생성된 가스는, 예를 들어 3염화실란 (15∼22wt%), 미반응 4염화규소 (68∼78wt%), 수소 가스 (1.5∼2.5wt%), 염산 가스 (0.5∼1.0wt%), 디클로로실란 (0.5∼1.0wt%), 6염화 2규소를 함유하는 고분자 염소 화합 물 (1.3∼1.8wt%) 의 혼합 가스이다.
전환로 (20) 로부터 빠져 나온 생성 가스 (온도 약 600℃∼약 1100℃) 는 냉각기 (21) 에 안내되고, -70℃ 부근 (예를 들어 -70℃∼-80℃) 으로 냉각된다 [응축 공정]. 여기서 가스상태로 남은 수소는 분리되고, 수소 가스 회수 공정을 거쳐 정제되고, 원료 가스의 일부로서 전환로 (20) 로 되돌려 재이용된다.
응축 공정에 있어서 분리된 응축액에는, 3염화실란, 모노클로로실란, 디클로로실란 등의 클로로실란류, 4염화규소, 그 밖의 염화 규소 화합물로 이루어지는 폴리머가 함유되어 있다. 이것을 제 1 증류 분리 공정 (제 1 증류탑 (22)) 에 안내하고, 탑정 (塔頂) 온도를 3염화실란 (TCS) 의 증류 온도로 설정하고, 유출된 3염화실란을 회수한다. 증류 온도는 3염화실란의 비점 이상으로서 4염화규소의 비점 이하의 온도 범위, 예를 들어 0∼0.1㎫ 의 압력하에서 33℃∼55℃ 로 설정된다.
증류 분리된 3염화실란 (TCS) 은 실리콘 제조 원료의 일부로서 반응로 (10) 에 반송되어 재이용할 수 있다. 또한, 배기 가스에 함유되어 있는 모노클로로실란 (비점 약 -30℃) 이나 디클로로실란 (비점 약 8.2℃) 은 3염화실란 (비점 약 33℃) 보다 비점이 낮고, 3염화실란에 앞서 유출되므로, 이것을 먼저 회수하여 3염화실란과 분리할 수 있다. 이 모노클로로실란이나 디클로로실란은 고순도이므로 반도체용 실리콘이나 비정질 실리콘의 원료로서 사용할 수 있다. 한편, 4염화규소의 비점 (약 58℃) 은 이들 클로로실란류보다 높기 때문에, 제 1 증류 공정에서는 탑저 (塔底) 로부터 배출된다.
상기 제 1 증류 공정 (제 1 증류탑 (22)) 의 증류 잔액을 다음 공정의 제 2 증류 공정 (제 2 증류탑 (23)) 에 안내하고, 탑정 온도를 4염화규소 (STC) 의 증류 온도로 설정하고, 유출된 4염화규소를 회수한다. 증류 온도는 4염화규소의 비점 이상으로서 6염화 2규소의 비점 미만의 온도 범위, 예를 들어 0∼0.1㎫ 의 압력하에서 57∼80℃ 로 설정된다. 이 증류 공정에 있어서, 4염화규소가 유출되는 한편, 고비분 (高沸分) 을 포함하는 폴리머가 액분 (液分) 에 남는다. 회수한 4염화규소는 전환 반응 프로세스에 되돌려, 전환 반응의 원료 가스로서 재이용할 수 있다.
상기 제 2 증류 공정 (제 2 증류탑 (23)) 의 증류 잔액을 제 3 증류 공정 (제 3 증류탑 (24)) 에 안내하고, 탑정 온도를 6염화 2규소 (Si2Cl6:6CS) 의 증류 온도로 설정하고, 유출된 6염화 2규소를 회수한다. 증류 온도는 6염화 2규소의 비점 이상으로서 고비분의 비점 이하의 온도 범위, 예를 들어 0∼0.1㎫ 의 압력하에서 144∼165℃ 로 설정된다.
6염화 2규소의 증류 공정 (제 3 증류 공정) 에 있어서, 증류 온도가 낮은 초기의 유분 (留分) 에는 액에 잔류한 4염화규소가 함유되어 있으므로 초기 유분을 컷한다. 이어서, 점점 증류 온도가 상승하면 4염화디실란 (Si2H2Cl4 : 비점 약 135℃∼약 140℃) 이 유출되므로, 이 중간 유분을 컷하거나, 또는 필요에 따라 이것을 분리하여 회수한다. 또한 증류 온도가 6염화 2규소의 비점 (비점 약 144℃) 에 이르면 순도가 높은 6염화 2규소가 유출되므로 이것을 회수한다.
일례로서, 135℃ 미만의 초류에는 4염화규소가 많이 함유되고, 135℃∼149℃ 의 중간 유분에는 주로 4염화디실란이 함유된다. 이보다 고온의 149℃∼150℃ 의 유분에는 주로 6염화 2규소가 함유된다. 150℃ 를 초과하면 고비 화합물이 유출되므로, 이것이 유출되지 않는 동안 증류를 멈춘다. 증류 잔액에는 8염화 3규소나 10염화 4규소 등이 함유되어 있다.
상기 제조 공정에 있어서, 4염화규소의 증류 분리 공정과 6염화 2규소의 증류 회수 공정 사이에 염소 도입 공정을 형성하고, 4염화규소의 증류 분리 공정으로부터 배출된 잔액에 염소 가스를 추가하여 폴리머 성분의 분해, 염소화, 탈수소화를 진행시키고, 이것을 6염화 2규소의 증류 공정에 안내함으로써 6염화 2규소의 수율을 높일 수 있다. 도입하는 염소 가스량은 4염화규소의 증류 분리 공정으로부터 배출된 액량에 대해 5%∼10% 정도이면 된다.
염소 도입 공정은, 4염화규소의 증류 분리 공정과 6염화 2규소의 증류 회수 공정 사이에 한정되지 않고, 트리클로로실란의 증류 공정과 4염화규소의 증류 공정 사이, 또는 4염화규소의 증류 공정 중, 또는 6염화 2규소의 증류 공정 중에 형성해도 되고, 어느 경우에도 증류 잔액에 염소를 첨가하여 염소화를 진행시킴으로써 6염화 2규소의 수율을 높일 수 있다.
염소 도입 공정을 형성한 경우, 증류탑에 도입한 액에 염소가 잔류되어 있으면, 증류 중에 잔류 염소와 증류 성분이 반응하여 분말이 발생하는 경우가 있다. 이 분말은 증류계 내에 부착되어 스케일을 발생시키고, 액이나 가스의 흐름을 나쁘게 하거나, 유량계의 표시에 오차를 일으켜 증류가 불안정해지는 등의 악영향을 미친다. 또, 이 분말이 유출된 6염화 2규소 중에 혼입되어 회수된 6염화 2규소의 순도를 저하시킨다.
그래서, 증류 후의 잔액에 염소 가스를 도입하는 경우에는, 잔류하는 염소를 탈기하는 공정을 그 후에 형성하는 것이 바람직하다. 염소 가스의 탈기 수단으로는, 염소를 도입한 잔액에 질소나 아르곤 등의 불활성 가스를 도입하여 버블링하는 방법이나, 진공 가열하는 방법 등이 있다. 도입하는 불활성 가스의 양은 먼저 도입한 염소 가스의 약 3 배 정도이면 된다.
염소 도입과 잔류 염소의 탈기는 임의의 증류 공정 사이, 또는 증류 공정에 있어서 실시할 수 있고, 또 단계적으로 실시해도 된다. 또한 잔류 염소의 탈기 공정은 염소의 도입 후에 연속하여 실시해도 되고, 또는 다음의 증류 공정에 있어서 실시해도 된다. 즉, 클로로실란의 증류 공정, 4염화규소의 증류 공정, 6염화 2규소의 증류 공정 중 적어도 어느 하나의 증류 공정 후, 잔액에 염소를 도입하여 염소화를 진행시킨 후에 잔류 염소를 탈기하고, 이 잔액을 다음의 증류 공정에 안내한다. 또는 잔액에 염소를 도입하여 염소화를 진행시킨 후, 이 잔액을 다음의 증류 공정에 안내하여 염소를 탈기한다.
도시하는 제조 공정예에서는, 3염화실란의 제 1 증류 공정, 4염화규소의 제 2 증류 공정, 및 6염화 2규소의 제 3 증류 공정이 개별의 증류탑 (22, 23, 24) 에 의해 순서대로 연속하여 실시되고 있는데, 이와 같은 양태에 한정되지 않고, 증류 온도를 제어함으로써, 예를 들어 제 1 증류탑 (22) 과 제 2 증류탑 (23) 을 동일한 증류탑에서 실시하거나, 또는 제 2 증류탑 (23) 과 제 3 증류탑 (24) 을 동일한 증 류탑에서 실시해도 되고, 또는 상기 각 증류 공정을 임의로 조합하여 실시해도 된다. 또, 제 3 증류탑 (24) 의 6염화 2규소의 증류 회수 공정은 회분 증류에 한정되지 않고 연속 증류이어도 된다.
3염화실란의 증류 (제 1 증류 공정의 증류탑 (22)) 와 4염화규소의 증류 (제 2 증류 공정의 증류탑 (23)) 를 동일한 증류 공정에서 연속하여 실시한 경우에는, 회수한 3염화실란과 4염화규소를 함유하는 증류 가스를 다시 증류탑에 도입하고, 3염화실란과 4염화규소를 증류 분리하고, 3염화실란을 다결정 실리콘의 제조 원료로서 이용하여 4염화규소를 전환 반응의 원료로서 이용할 수 있다.
(실시예)
본 발명의 실시예를 비교예와 함께 이하에 나타낸다. 표 1 및 표 2 의 결과에 나타내는 바와 같이, 비교예보다 실시예의 6염화 2규소의 회수량이 많아 회수율이 큰폭으로 향상되어 있다.
[실시예 1∼4]
4염화규소 (90∼120ℓ/min) 를 증발기 (25) 에서 가스화하고, 수소 가스 (30∼50N㎥/min) 를 혼합하고, 노 내가 1000∼1300℃ 로 가열된 전환로 (20) 에 투입하고, 3염화실란을 생성시켰다. 생성된 가스는 3염화실란 (15∼22wt%), 미반응 4염화규소 (68∼78wt%) 및 수소 가스 (1.5∼2.5wt%), 염산 가스 (0.5∼1.0wt%), 디클로로실란 (0.5∼1.0wt%), 및 6염화 2규소를 함유하는 고분자 염소 화합물 (1.3∼1.8wt%) 의 조성비였다.
이 생성 가스를 응축 공정의 냉각기 (21) 에 도입하고, -75℃ 부근 (-70℃∼ -80℃) 으로 냉각시키고, 여기서 가스상태로 남은 수소를 분리하고, 3염화실란 등의 클로로실란류는 액화되어 응축액으로 하였다. 분리된 수소 가스는 정제 공정에 보내고, 원료 가스의 일부로서 다시 전환로 (20) 에 되돌려 재이용하였다.
응축액을 증류 분리 공정에 안내하고, 제 1 증류탑 (22) 의 탑정 온도를 3염화실란의 증류 온도로 설정하고, 유출된 3염화실란을 회수한다. 증류 온도는 3염화실란의 비점 이상으로서 4염화규소의 비점 미만의 온도 범위 (0∼0.1㎫ 의 압력하에서 33∼55℃) 로 설정하였다. 회수한 3염화실란은 다결정 실리콘 제조용 원료로서 재이용하였다.
제 1 증류탑 (22) 의 증류 잔액을 제 2 증류탑 (23) 에 안내하고, 탑정 온도를 4염화규소의 증류 온도로 설정하고, 유출된 4염화규소를 회수한다. 증류 온도는 4염화규소의 비점 이상으로서, 6염화 2규소의 비점 미만의 온도 범위 (0∼0.1㎫ 의 압력하에서 57℃∼80℃) 로 설정하였다. 이 증류 공정에 있어서, 4염화규소가 유출되는 한편, 고분자 염화규소 화합물이 액분에 남는다. 회수한 4염화규소는, 3염화실란 전환 공정의 원료 또는 다결정 실리콘 제조 프로세스의 원료로서 재이용하였다.
제 2 증류탑 (23) 의 증류 잔액 50㎏ 을 빼내어 제 3 증류탑 (24) 에 안내하고, 탑정 온도를 150℃ 로 설정하여 증류를 실시하였다. 먼저, 증류 온도 31℃∼135℃ 의 초류를 분리하고, 또한 135℃∼150℃ 의 유출분 (중간 유분) 을 분리한 후, 149℃∼150℃ 의 유출 부분을 회수하였다. 150℃ 를 웃도는 증류 성분은 컷하였다.
전환로 (20) 에 도입한 4염화규소와 수소 가스의 유량, 6염화 2규소의 회수량 및 회수율을 표 1 에 나타낸다. 6염화 2규소의 회수량은 149℃∼150℃ 의 유출 부분에 함유되는 양이며, 6염화 2규소의 회수율은 증류 잔액 50㎏ 에 대한 6CS 회수량의 비이다.

3염화실란 전환 공정 6염화 2규소 증류 공정
STC 투입량
(L/min)
H2 투입량
(N㎥/min)
6CS 회수량
(kg)
6CS 회수율
(%)
실시예 1 60 20 8.4 16.8
실시예 2 100 30 8.0 16.0
실시예 3 100 40 9.6 19.2
실시예 4 120 60 10.4 20.8
6CS 회수율의 최대-최소의 차 4.8
다결정 실리콘 제조 프로세스의 반응 배기 가스로부터 6염화 2규소를 회수한 비교예를 이하에 나타낸다.
[비교예 1∼4]
실리콘 심봉 (芯棒) 표면이 1000℃∼1100℃ 로 가열된 다결정 실리콘 반응로 (10) 에 3염화실란 (20∼35ℓ/min) 및 수소 (25∼55㎥/min) 를 도입하여 다결정 실리콘을 성장시켰다. 이 반응 배기 가스를 냉각기 (11) 에 도입하고, 실시예 1 과 동일한 조건하에서, 제 1 증류 공정, 제 2 증류 공정, 제 3 증류 공정을 실시하고, 6염화 2규소를 회수하였다. 증류 분리한 6염화 2규소의 회수량 및 회수율을 표 2 에 나타낸다.

다결정 실리콘 반응 공정 6염화 2규소 증류 공정
TCS 투입량
(L/min)
H2 투입량
(N㎥/min)
6CS 회수량
(kg)
6CS 회수율
(%)
비교예 1 20 29 0.9 1.8
비교예 2 25 34 3.5 7.0
비교예 3 30 54 6.2 12.4
비교예 4 35 54 2.9 9.6
6CS 회수율의 최대-최소의 차 10.6
[실시예 5∼8]
전환로 (20) 로부터 실시예 1∼4 와 동일한 생성 가스를 얻었다. 이 생성 가스를 응축 공정의 냉각기 (21) 에 도입하고, -75℃ 부근 (-70℃∼-80℃) 으로 냉각시키고, 여기서 가스상태로 남은 수소를 분리하고, 3염화실란 등의 클로로실란류는 액화되어 응축액으로 하였다. 분리된 수소 가스는 정제 공정에 보내고, 원료 가스의 일부로서 다시 전환로 (20) 에 되돌려 재이용하였다.
응축액을 증류 분리 공정에 안내하였다. 최초의 증류 공정은 증류 온도를 4염화규소의 비점 이상으로서 6염화 2규소의 비점 이하의 온도 (0∼0.1㎫ 의 압력하에서 57℃∼80℃) 로 설정하고, 3염화실란과 4염화규소를 동일한 증류탑에서 증류 회수하였다.
최초의 상기 증류 공정의 증류 잔액 50㎏ 을 빼내어 다음의 증류탑에 안내하고, 탑정 온도를 150℃ 로 설정하여 증류를 실시하였다. 먼저, 증류 온도 31℃∼135℃ 의 초류를 분리하고, 또한 135℃∼150℃ 의 유출분 (중간 유분) 을 분리한 후, 149℃∼150℃ 의 유출 부분을 회수하였다. 150℃ 를 웃도는 증류 성분은 컷하였다.
전환로 (20) 에 도입한 4염화규소와 수소 가스의 유량, 6염화 2규소의 회수량 및 회수율을 표 3 에 나타낸다. 6염화 2규소의 회수량은 149℃∼150℃ 의 유출 부분에 함유되는 양이며, 6염화 2규소의 회수율은 증류 잔액 50㎏ 에 대한 6CS 회수량의 비이다.

3염화실란 전환 공정 6염화 2규소 증류 공정
STC 투입량
(L/min)
H2 투입량
(N㎥/min)
6CS 회수량
(kg)
6CS 회수율
(%)
실시예 5 60 20 7.8 15.6
실시예 6 100 30 7.9 15.8
실시예 7 100 40 9.4 16.0
실시예 8 120 60 9.6 19.2
6CS 회수율의 최대-최소의 차 3.6
[비교예 5∼8]
노 내 표면이 1000℃∼1100℃ 로 가열된 다결정 실리콘 반응로 (10) 에 3염화실란 (20∼35ℓ/min) 및 수소 (25∼55㎥/min) 를 도입하고, 다결정 실리콘을 성장시켰다. 이 반응 배기 가스를 냉각기 (11) 에 도입하고, 실시예 1 과 동일한 조건하에서, 제 1 증류 공정, 제 2 증류 공정, 제 3 증류 공정을 실시하고, 6염화 2규소를 회수하였다. 증류 분리한 6염화 2규소의 회수량 및 회수율을 표 2 에 나타낸다.

다결정 실리콘 반응 공정 6염화 2규소 증류 공정
TCS 투입량
(L/min)
H2 투입량
(N㎥/min)
6CS 회수량
(kg)
6CS 회수율
(%)
비교예 5 20 29 1.2 2.4
비교예 6 25 34 2.6 5.2
비교예 7 30 54 5.8 11.6
비교예 8 35 54 3.1 6.2
6CS 회수율의 최대-최소의 차 9.2
[실시예 9]
제 2 증류탑 (23) 의 증류 잔액 (주입액) 50㎏ 에 염소 가스 (3.2㎏) 를 도입한 것 이외에는 실시예 1 과 동일하게 하여 증류를 실시하였다. 이 결과, 주입액의 양에 대해 64% 의 6염화 2규소가 회수되었다.
[실시예 10]
제 2 증류탑 (23) 의 증류 잔액 (주입액) 50㎏ 에 염소 가스 (3.2㎏) 를 도입하고, 염소화를 진행시킨 후, 질소 가스를 40NL/min 의 유량으로 200 분간 도입하여 버블링하고 (도입량 10.0㎏), 액 중의 염소를 제거하였다. 이 탈기된 용액을 6염화 2규소의 증류탑에 안내하고, 증발시에 발생된 분말의 개수를 측정하였다. 한편, 비교예로서 염소 가스의 도입 후에 질소 가스의 버블링을 실시하지 않은 것 이외에는 동일하게 하여 주입액을 6염화 2규소의 증류 공정에 안내하고, 증발시에 발생된 분말 개수를 측정하였다. 발생된 분말의 개수를 입경으로 구분하여 표 5 에 나타냈다. 또한, 분말의 개수는 파티클 카운터 (리온 주식회사 제조 KL-11A) 및 파티클 센서 (리온사 제조 KS-65) 를 이용하여 측정하였다. 또, 6염화 2규소의 증류 조건은 실시예 1 과 동일하다. 분말량은 6염화 2규소의 회수량에 함유되는 양이다.
분말의 입경 ㎛ 염소 탈기 처리 있음 염소 탈기 처리 없음
10 이상
5 ~ 10
3 ~ 5
2 ~ 3

검출 한계 이하
3 개/㎤
480 개/㎤
750 개/㎤
1000 개/㎤ 이상
도 1 은 다결정 실리콘의 제조 프로세스와 전환 반응 프로세스를 나타내는 공정도.
도 2 는 본 발명에 관련된 분리 회수 방법의 공정도.
*도면의 주요 부분에 대한 부호의 설명*
10 : 반응로
11 : 냉각기 (응축 공정)
12 : 증류 공정
13 : 전환로
20 : 전환로
21 : 냉각기
22 : 제 1 증류탑
23 : 제 2 증류탑
24 : 제 3 증류탑
25 : 증발기

Claims (12)

  1. 전환 반응 가스의 분리 회수 방법으로서,
    다결정 실리콘 반응로의 내부에서, 3염화실란과 수소를 원료로 하여, 다결정 실리콘을 제조하는 공정과,
    상기 다결정 실리콘 반응로로부터 배출된 배출 가스를 냉각기로 응축 액화하여 얻은 응축액으로부터, 4염화규소를 증류 분리하는 공정과,
    상기 4염화규소와 수소 가스를 전환로 내에서 전환 반응시키고, 3염화실란을 생성하는 공정과,
    상기 전환로에서 생성된 3염화실란, 미반응 4염화규소, 수소 가스, 염산 가스, 디클로로실란, 및 6염화 2규소를 함유하는 혼합 가스를 상기 전환로로부터 배출하는 공정과,
    응축액을 제조하고, 또한 수소 가스를 분리하기 위해서, 상기 혼합 가스를 냉각시키는 공정과,
    상기 혼합 가스를 냉각시켜 얻어진 응축액으로부터 디클로로실란, 3염화실란 및 4염화규소를 증류 분리하는 공정과, 그 후의 6염화 2규소를 유출 회수하는 6염화 2규소의 증류 공정을 갖는 것을 특징으로 하는 전환 반응 가스의 분리 회수 방법.
  2. 제 1 항에 있어서,
    상기 혼합 가스를 냉각시켜 얻어진 응축액으로부터 디클로로실란을 유출시킨 후에 3염화실란을 유출 (留出) 시키는 3염화실란의 증류 공정과, 3염화실란의 증류 공정의 잔액으로부터 4염화규소를 유출시키는 4염화규소의 증류 공정과, 4염화규소의 증류 공정의 잔액으로부터 6염화 2규소를 유출 회수하는 6염화 2규소의 증류 공정을 갖는, 전환 반응 가스의 분리 회수 방법.
  3. 제 1 항에 있어서,
    상기 디클로로실란, 3염화실란 및 4염화규소를 증류 분리하는 공정에 있어서, 3염화실란의 증류와 4염화규소의 증류가 하나의 증류탑 중에서 연속하여 실시되는, 전환 반응 가스의 분리 회수 방법.
  4. 제 1 항 또는 제 2 항에 있어서,
    6염화 2규소의 증류 공정에 있어서, 초류 (初留) 를 컷한 후, 6염화 2규소를 함유하는 고온 증류 부분을 회수하는, 전환 반응 가스의 분리 회수 방법.
  5. 제 1 항 또는 제 2 항에 있어서,
    6염화 2규소의 증류 공정에 있어서, 초류를 컷한 후, 4염화디실란을 함유하는 중간 유분 (留分) 을 회수하고, 추가로 6염화 2규소를 함유하는 고온 증류 부분을 회수하는, 전환 반응 가스의 분리 회수 방법.
  6. 제 2 항에 있어서,
    3염화실란의 증류 공정, 4염화규소의 증류 공정, 및 6염화 2규소의 증류 공정이 각각의 증류탑에 의해 순서대로 연속하여 실시되는, 전환 반응 가스의 분리 회수 방법.
  7. 제 2 항에 있어서,
    3염화실란의 증류 공정과 4염화규소의 증류 공정 사이, 또는 4염화규소의 증류 공정과 6염화 2규소의 증류 공정 사이, 혹은 4염화규소 증류 공정 중, 또는 6염화 2규소의 증류 공정 중에 염소 도입 공정을 형성한, 전환 반응 가스의 분리 회수 방법.
  8. 제 7 항에 있어서,
    각각의 증류 공정에 염소를 도입하여 증류를 진행시킨 후, 증류 잔액에 잔류 한 염소를 탈기하는, 전환 반응 가스의 분리 회수 방법.
  9. 제 7 항에 있어서,
    불활성 가스를 증류 잔액에 도입하여 버블링함으로써 염소를 탈기하는, 전환 반응 가스의 분리 회수 방법.
  10. 제 7 항에 있어서,
    3염화실란의 증류 공정, 4염화규소의 증류 공정 중 적어도 어느 하나의 증류 공정 후, 증류 잔액에 염소를 도입하여 염소화를 진행시킨 후에 잔류 염소를 탈기하고, 이 잔액을 다음의 증류 공정에 도입하는, 전환 반응 가스의 분리 회수 방법.
  11. 제 7 항에 있어서,
    3염화실란의 증류 공정, 4염화규소의 증류 공정 중 적어도 어느 하나의 증류 공정 후, 증류 잔액에 염소를 도입하여 염소화를 진행시킨 후, 이 염소를 함유하는 증류 잔액을 다음의 증류 공정에 안내하고, 증류와 함께 염소를 탈기하는, 전환 반응 가스의 분리 회수 방법.
  12. 삭제
KR1020080118158A 2007-11-30 2008-11-26 전환 반응 가스의 분리 회수 방법 KR101538168B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2007-309859 2007-11-30
JP2007309859 2007-11-30

Publications (2)

Publication Number Publication Date
KR20090056849A KR20090056849A (ko) 2009-06-03
KR101538168B1 true KR101538168B1 (ko) 2015-07-20

Family

ID=40532659

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080118158A KR101538168B1 (ko) 2007-11-30 2008-11-26 전환 반응 가스의 분리 회수 방법

Country Status (5)

Country Link
US (1) US8197783B2 (ko)
EP (1) EP2067745B1 (ko)
JP (1) JP5311014B2 (ko)
KR (1) KR101538168B1 (ko)
CN (1) CN101445240B (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101573933B1 (ko) * 2008-02-29 2015-12-02 미쓰비시 마테리알 가부시키가이샤 트리클로로실란의 제조 방법 및 제조 장치
DE102009043946A1 (de) * 2009-09-04 2011-03-17 G+R Technology Group Ag Anlage und Verfahren zur Steuerung der Anlage für die Herstellung von polykristallinem Silizium
DE102009056438B4 (de) 2009-12-02 2013-05-16 Spawnt Private S.À.R.L. Verfahren zur Herstellung von Hexachlordisilan
TW201130733A (en) * 2009-12-15 2011-09-16 Intelligent Solar Llc Methods and systems for producing silicon, e. g., polysilicon, including recycling byproducts
KR101292545B1 (ko) * 2009-12-28 2013-08-12 주식회사 엘지화학 트리클로로실란의 정제 방법 및 정제 장치
DE102010043646A1 (de) * 2010-11-09 2012-05-10 Evonik Degussa Gmbh Verfahren zur Herstellung von Trichlorsilan
EP2654912B1 (en) * 2010-12-20 2016-04-20 MEMC Electronic Materials, Inc. Production of polycrystalline silicon in substantially closed-loop processes that involve disproportionation operations
CN102009978B (zh) * 2011-01-06 2012-09-12 四川永祥多晶硅有限公司 一种多晶硅生产方法
DE102011003453A1 (de) * 2011-02-01 2012-08-02 Wacker Chemie Ag Verfahren zur destillativen Reinigung von Chlorsilanen
JP5686055B2 (ja) * 2011-06-28 2015-03-18 三菱マテリアル株式会社 トリクロロシラン製造方法
CN103011173B (zh) * 2012-12-18 2014-04-16 江南大学 六氯乙硅烷的合成方法
CN104955770B (zh) * 2013-09-30 2017-04-26 Lg化学株式会社 生产三氯甲硅烷的方法
DE102013111124A1 (de) * 2013-10-08 2015-04-09 Spawnt Private S.À.R.L. Verfahren zur Herstellung von chlorierten Oligosilanen
US9796594B2 (en) * 2013-12-10 2017-10-24 Summit Process Design, Inc. Process for producing trichlorosilane
CN103991874B (zh) * 2014-06-12 2016-05-18 国电内蒙古晶阳能源有限公司 从氯硅烷中提纯三氯氢硅的方法和系统
DE102014018435A1 (de) * 2014-12-10 2016-06-16 Silicon Products Bitterfeld GmbH&CO.KG Verfahren zur Gewinnung von Hexachlordisilan aus in Prozessabgasströmen enthaltenen Gemischen von Chlorsilanen
CN107349742B (zh) * 2016-05-09 2019-10-22 新特能源股份有限公司 多晶硅还原尾气的冷凝方法和冷凝系统
KR20180090522A (ko) * 2017-02-03 2018-08-13 오씨아이 주식회사 폴리실리콘의 제조 방법
CN106966397A (zh) * 2017-04-06 2017-07-21 洛阳中硅高科技有限公司 六氯乙硅烷的回收方法
CN106946261A (zh) * 2017-04-06 2017-07-14 洛阳中硅高科技有限公司 六氯乙硅烷的回收装置
CN113117442B (zh) * 2020-01-10 2023-05-02 新疆新特晶体硅高科技有限公司 多晶硅生产中尾气处理方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169012A (ja) * 2004-12-13 2006-06-29 Sumitomo Titanium Corp ヘキサクロロジシラン及びその製造方法
KR100731558B1 (ko) * 2000-08-02 2007-06-22 미쯔비시 마테리알 폴리실리콘 가부시끼가이샤 육염화이규소의 제조 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933985A (en) * 1971-09-24 1976-01-20 Motorola, Inc. Process for production of polycrystalline silicon
US4217334A (en) * 1972-02-26 1980-08-12 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Process for the production of chlorosilanes
US4321246A (en) * 1980-05-09 1982-03-23 Motorola, Inc. Polycrystalline silicon production
DE3139705C2 (de) * 1981-10-06 1983-11-10 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Verfahren zur Aufarbeitung der bei der Siliciumabscheidung und der Siliciumtetrachlorid-Konvertierung anfallenden Restgase
JPS59195519A (ja) 1983-04-15 1984-11-06 Mitsui Toatsu Chem Inc ヘキサクロロジシランの製造法
JPS60145908A (ja) 1984-01-09 1985-08-01 Toagosei Chem Ind Co Ltd 六塩化硅素の製造方法
JPH01100011A (ja) * 1987-10-12 1989-04-18 Nkk Corp トリクロロシランの工業的製造方法
US7033561B2 (en) * 2001-06-08 2006-04-25 Dow Corning Corporation Process for preparation of polycrystalline silicon
JP4707608B2 (ja) 2006-05-19 2011-06-22 株式会社アドバンテスト 測定回路及び試験装置
CH703422A1 (de) 2010-07-01 2012-01-13 Medmix Systems Ag Kombinierte Misch- und Austragvorrichtung.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731558B1 (ko) * 2000-08-02 2007-06-22 미쯔비시 마테리알 폴리실리콘 가부시끼가이샤 육염화이규소의 제조 방법
JP2006169012A (ja) * 2004-12-13 2006-06-29 Sumitomo Titanium Corp ヘキサクロロジシラン及びその製造方法

Also Published As

Publication number Publication date
JP5311014B2 (ja) 2013-10-09
EP2067745A2 (en) 2009-06-10
CN101445240A (zh) 2009-06-03
CN101445240B (zh) 2014-07-23
EP2067745A3 (en) 2009-08-26
KR20090056849A (ko) 2009-06-03
US8197783B2 (en) 2012-06-12
JP2009149502A (ja) 2009-07-09
EP2067745B1 (en) 2017-07-12
US20090142246A1 (en) 2009-06-04

Similar Documents

Publication Publication Date Title
KR101538168B1 (ko) 전환 반응 가스의 분리 회수 방법
JP4465961B2 (ja) 六塩化二珪素の製造方法
US7632478B2 (en) Process for producing silicon
US10407309B2 (en) Production of polycrystalline silicon in substantially closed-loop processes that involve disproportionation operations
US20020187096A1 (en) Process for preparation of polycrystalline silicon
CN101378990A (zh) 在综合氯硅烷设备中回收高沸点化合物
KR101948332B1 (ko) 실질적인 폐쇄 루프 공정 및 시스템에 의한 다결정질 실리콘의 제조
JP2009062209A (ja) 多結晶シリコンの製造方法
US8404205B2 (en) Apparatus and method for producing polycrystalline silicon having a reduced amount of boron compounds by forming phosphorus-boron compounds
CN107867695A (zh) 三氯硅烷的纯化系统和多晶硅的制造方法
US10294109B2 (en) Primary distillation boron reduction
CN110589837A (zh) 分离卤代硅烷的方法
US20130121908A1 (en) Method for producing trichlorosilane with reduced boron compound impurities
CN108862282A (zh) 乙硅烷的制备方法
US20120082609A1 (en) Method for producing trichlorosilane with reduced boron compound impurities
JP4831285B2 (ja) 多結晶シリコンの製造方法
JPH01226712A (ja) ジクロルシランの製造方法
JP2013067520A (ja) トリクロロシラン製造方法及び製造装置
JP3889409B2 (ja) 高純度四塩化けい素とその製造方法
JP2021100902A (ja) 高純度トリクロロシランの精製方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right