TW201130733A - Methods and systems for producing silicon, e. g., polysilicon, including recycling byproducts - Google Patents

Methods and systems for producing silicon, e. g., polysilicon, including recycling byproducts Download PDF

Info

Publication number
TW201130733A
TW201130733A TW99143825A TW99143825A TW201130733A TW 201130733 A TW201130733 A TW 201130733A TW 99143825 A TW99143825 A TW 99143825A TW 99143825 A TW99143825 A TW 99143825A TW 201130733 A TW201130733 A TW 201130733A
Authority
TW
Taiwan
Prior art keywords
reactor
hydrogen
disproportionation
gas
cvd
Prior art date
Application number
TW99143825A
Other languages
Chinese (zh)
Inventor
Mark W Dassel
Jie Xiao
Original Assignee
Intelligent Solar Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intelligent Solar Llc filed Critical Intelligent Solar Llc
Publication of TW201130733A publication Critical patent/TW201130733A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/029Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • C01B33/10742Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10773Halogenated silanes obtained by disproportionation and molecular rearrangement of halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45593Recirculation of reactive gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Silicon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Systems and processes are provided for efficient, cost-effective production of silicon by chemical vapor deposition. Reaction byproducts are recycled for use within the systems and processes without recovery and external processing of the byproducts. The systems and processes provide savings in both capital and operating costs.

Description

201130733 六、發明說明: 【發明所屬之技術領域】 本發明大體而言係關於用於製造矽(例如,多晶矽)之系 統及製程之領域。特定而言,本發明係關於藉由化學氣相 沈積製造石夕且回收利用反應副產品以改良石夕製造之成本效 益。 【先前技術】 由於矽在各種應用中(特定而言半導體及太陽能(亦即, 光生伏打)工業中)之使用,因此對矽(特別地多晶矽)之需 求係極大的。半導體工業通常需要純度比其他工業所需純 度高之矽,儘管其他工業(例如彼等製造太陽能晶片之工 業)現在亦開始使用較高純度矽。由於對矽之需求,已在 遍佈全球之各地建立製造工廠。設施可係極大,經設計以 每年製造梦量在數千公嘲。 用於製造多晶矽之製程可在不同類型之反應裝置中實 施,包含化學氣相沈積反應器及流化床反應器。化學氣相 沈積(CVD)製程之各種態樣(亦即,西門子(Siemens)或「熱 線」製程)已闡述於(舉例而言)各種美國專利或公開申請案 中(參見,例如美國專利第3,011,877號;第3,〇99,534號; 第 3,147,141 號;第 4,15〇168 號;第 4 179 53〇 號;第 4,311,545 號;及第 5,118,485號)。 甲石夕烧及三氣矽烷兩者皆用作製造多晶矽之進料。甲矽 烧更容易作為高純度原料獲得,此乃因其比三氯石夕烷更容 易純化。製造三氣矽烷引入硼及磷雜質,其等因趨於具有 152888.doc 201130733 接近於三氣矽烷本身之沸點之沸點而難以移除。儘管在西 門子式化學氣相沈積反應器中使用甲矽烷及三氯矽烷兩者 作為原料,但三氣矽烷更常用於此等反應器中。另一方 面,曱矽烷係在流化床反應器中製造多晶矽之更常用原 料。 甲矽烷在用作化學氣相沈積或流化床反應器之原料時具 有缺陷。在西門子式化學氣相沈積反應器中自甲矽烷製造 多晶矽與在此反應器中自三氣矽烷製造多晶矽相比可需要 高達兩倍的電能。此外,資本成本係高的,此乃因西門子 式化學氣相沈積反應器自甲矽烷產生僅約自三氯矽烷所產 生的一半多之多晶矽。因此,在於西門子式化學氣相沈積 反應器中自甲矽烷製造多晶矽中,由甲矽烷之較高純度產 生之任何優點皆由較高資本及操作成本抵消。此已導致三 氯矽烷常用作在此等反應器中製造多晶矽之進料。 甲矽烷作為在流化床反應器中製造多晶矽之原料與在西 門子式化學氣相沈積反應器中製造相比可在電能使用方面 係有利的。然而,存在抵消操作成本優點之缺點。在該流 化床反應器中,該製程本身可導致較低品質多晶矽產物, 儘管該原料之純度係高的《舉例而言,該製程可形成多晶 矽塵埃’其可藉由在該反應器内形成微粒材料而干擾操作 且亦可降低總產率。此外,在流化床反應器中製造之多晶 矽可含有殘餘氫氣,其必須藉由後續處理來移除。另外, 在流化床反應器中製造之多晶石夕因該流化床内之研磨狀況 而亦可包含金屬雜質。因此’儘管可容易獲得高純度曱矽 152888.doc 201130733 烷,但其用作在任一類型之反應器中製造多晶矽之原料皆 受所述缺點限制。 總之,由於對成本及/或所製造多晶矽之品質之考量, 使用曱矽烷作為藉自西門子式化#氣相沈積反應器或流化 床反應器製造多晶矽之原料係受限的。因此,在該工業中 仍需要一種在保留使用甲石夕烷作為原料所固有之高品質之 同時將甲矽烷轉換成多晶矽之有資本及操作成本效益的製 程。 在CVD反應器中發生之反應釋放包含反應副產品之氣態 材料(亦即,在CVD反應器中未進行轉換之過量反應物)及 油性聚合材料,例如聚甲矽烷基化合物。副產品包含各種 氯矽烷(特定而言四氣化矽)以及氣化氫。已建議若干方法 並利用該等方法來改良該等製程之效率、降低操作成本及 應對由於多晶矽製造之副產品之釋放及處置而產生之環境 問題。然而’仍然有待需要對製程效率(包含回收利用副 產品及反應物)以及在工廠建造及操作成本上之節省之進 一步改良。該等改良特定而言包含增加與副產品及過量反 應物之再使用及/或處置相關聯之效率及成本節省。 工廠建造及操作兩者之主要成本係關於建立及操作用以 處理副產品(特定而言四氣化矽)之設施。在藉由Cvd或西 門子製程製造多晶石夕中’即使三氣石夕烧至石夕之轉換係完全 的,對於沈積於CVD反應器中之每一莫耳矽,將產生幾乎 三莫耳的四氣化矽副產品。事實上,在穿過該反應器之單 次通過中,通常20%或更少之三氣矽烷轉換成矽。轉換效 152888.doc -6- 201130733 率相依於各種因素’包含遞送至該反應器之氣體之組合 物,該反應器之設計及操作條件,例如料氣之比率、溫 度及壓力然而,無論轉換效率如何,反應器中之反 應化學計量比仍然決定四氯化石夕必須係由該反應器中之轉 換產生之主要副產品且係自CVD反應器釋放之氣態材料之 主要組分。通常,分離該氣態材料之組分且在某一點將直 等回收利用回至CVD反應器之進料中或者經回收以用於其 他用途或者抛棄。特定而言,自氣態材料中之其他組分分 離四氣化石夕,且將其抛棄或者在單獨設施中再處理以將其 轉換成三氯石作為進料重新引人至cvd反應器。若抛 棄,則其不僅係環境問題而且亦表示損失至cvd反應器之 初始進料中之極大比例之石夕。因此,更通常地,在實體上 且常常地理上為遠處之設施中之熱轉換器中再處理自從 CVD反應器釋放之氣態材料回收之四氣切以形成額外三 氯石夕院。熱轉換器通常在超過1〇〇〇t:之溫度(可藉由使電 通過碳電極來達成之溫度m桑作。藉由使用熱轉換器將 四氣切轉換成三氣料之缺點因此包含極高電能需要, 此表示操作一化學氣相沈積多晶矽製造設施之成本之一較 大比例。此外’在此製程中,熱轉換器在每次通過該反應 器時通常僅將約20〇/〇之四氣化石夕轉換成三氯石夕炫且因此需 要(例如)藉由蒸館之分離及多次通過。據估計建立用於熱 轉換四虱化石夕之工廠之成本表示用於建立整個多晶石夕製造 設施之資本成本之10%至2〇%。據進一步估計用於操作用 於熱轉換四氣化石夕之工廠之成本表示用於操作整個多晶矽 152888.doc 201130733 製ie〇又施之成本之10%至20%。此外,由於使用碳電極, 因而在熱轉換製程中所產生之三氣矽烷可被來源於該製程 中之碳/石墨污染。如此產生之三氣矽烷需要進一步純化 以產生純度適合於製造(例如)供在半導體或越來越多地供 在太陽能工業中使用之高純度矽之材料,藉此增加資本及 操作成本兩者。使用熱轉換器之進一步缺點係該製程產生 大量二氯矽烷副產品。儘管可在CVD反應器中將二氣矽烷 轉換成矽,但如此製造之矽可不在所需規範内,除非該製 程爻到極精心控制。亦可在多晶矽工廠中之上游操作中產 生過量一氣石夕院。由於產生過量二氯石夕院,因而通常可將 其累積於儲存罐中。因此最終必須在(例如)廢物處理設施 中以環境可接受之方式銷毁所累積的大量二氣矽烷,此係 矽工業中廣泛使用之慣例。消除產生過量二氣矽烷之製程 及因此拋棄此材料之需要將在操作多晶矽製造設施方面提 供大量節省。 當前投入使用之諸多多晶矽製造製程不僅產生氣矽烷作 為田!產α〇,而且亦產生氣化氫。如同氣矽烷,氯化氫亦包 含用於製造多晶矽之製程之潛在可用組分,亦即,氯。因 此’與氣矽烷副產品一樣,回收利用氣化氫亦可存在優 :。舉例而言,由於含氣的三氣矽烷係饋送至用以製造多 :曰夕之CVD反應器之主要反應物,因此回收利用任何可向 b製程返回氣之副產品皆可係、有利的。此外,儘管有將經 純化氣化氫用於除多晶石夕製造之外之用途之需[但此等 用途需要對氣化氫進行純化。因此,處理氣化氫副產品以 152888.doc 201130733 適〇於其他用途通常需要建立且操作額外設施或至少額外 系統來純化及儲存氯化氫。Q此出於各種原因使氣化氫循 %回至多晶石夕製造製程之某_態樣令可係有利的。然而, 回收利用氯化氫之適合性相依於製造多晶矽所使用之製 程。 用於製造多晶矽之某些製程易於允許使氣化氫高效地、 有成本效益地循環回至該製程中。然而,由於氣化氫與該 等製程中之各種化合物(例如,矽或甲矽烷)之反應可係高 發熱的,因而回收利用可提出挑戰。舉例而言,回收利用 氯化氫可導致系統内明顯溫度增加,從而需要冷卻機構 及/或對反應條件之精心控制。由於一些常用的多晶石夕製 造製程包含發熱反應,因此經設計用於此等製程之設施包 含用於溫度控制之系統’特定地冷卻系統。此等系統可因 此容易地處理可由因使氯化氫循環回至該等製程中而發生 之反應產生之溫度增加。另一方面,不包含高發熱反應之 多晶矽製造製程不產生熱且因此不需要此等冷卻系統。經 設計以用於此等製程之設施可因此較不適合於回收利用氯 化氫副產品。 在涉及製造多晶矽之各種製程中,製作供應至CVD反應 器之三氯矽烧之方法在重要方面有所不同。舉例而言,在 常見製程中,冶金級矽與氣化氫反應以形成三氣矽烧。在 純化之後’將該三氣矽烷饋送至CVD反應器。在此等製程 中’ CVD反應之某些副產品(例如四氯化石夕)通常可拋棄或 在具有相關聯缺點(包含建造期間之高資本成本及操作期 152888.doc 201130733 間之咼電能成本)之情形下熱轉換成三氣矽烷。可使其他 副產品(例如氫氣及氣化氫)循環回至該製程中之某些點 中。由於在此等多晶矽製造設施中利用氣化氫,因而可將 副產品氯化氫容易地循環回至該製程中。特定而言,由於 氯化氫與此等製程中之冶金級矽之反應係高發熱的,因此 經設汁及建立以根據該等製程製作多晶矽之設施包含適合 處理回收利用的氯化氫副產品之專門冷卻系統。由於冷卻 及能量需要’建立及操作此等設施之成本係高的。 用於製造多晶矽之當前製程之另一者組合冶金級矽四 氣化矽及氫氣以產生用於CVD反應器之三氣矽垸。在此等 製程中’ s玄寻反應係吸熱的。因此,經設計以藉由此等製 程製造多晶矽之設施不具有與經設計以用於使用氣化氫之 製程之彼等裝備及操作需要相同之裝備及操作需要。特定 而言,此等設施不需要專門冷卻系統。因此,使此等製程 之工廠適合於回收利用氯化氫副產品將需要相當大的額外 資本及操作成本且由於在顯著不同流化方法下四氣化石夕與 氣化氫之共反應而引入固有反應器複雜性。因此,用於回 收利用氣化氫之不同方法在非經設計及建立以用於處理利 用氣化氫之反應(尤其係高發熱反應)之多晶矽製造設施或 製程中可係有利的。 【發明内容】 在多晶矽工業中存在對以下各項之需要:(1)更有成本 效益地使用曱矽烷作為CVD反應器之原料;(2)對在基於三 氣矽烷之CVD製程中使用熱轉換器之替代方法;(3)CVD製 152888.doc •10· 201130733 程中之較低資本及操作成本;(4)用於控制饋送至cvd反應 器之三氯矽烷中之二氣矽烷濃度之改良方法;(5)用於回收 利用來自CVD反應器之副產品之有效方法,特定而言四氣 化石夕及氣化氫;及⑹整體上更有成本效益地製造高純度多 晶咬。 用於處理在於化學氣相沈積設施中製造多晶矽期間產生 之四氯化矽及氣化氫之改良製程可提供資本及操作成本節 省兩者。舉例而言,與用於藉由化學氣相沈積製造多晶矽 之典型設施相比較,消除對將四氯化矽熱轉換至三氣矽烷 之需要可提供10¼至20%之成本節省。顯著成本節省亦可 藉由控制整個製程中之氣平衡(例如藉由限制產生氣化氫 且最佳地回收利用氣化氫)來達成。此方法可產生製造多 晶矽成本上之額外10%至2〇%節省。使用本文中所述方法 消除對四氯化石夕與氣化氫之共反應之要求將允許具有較少 因故停工之更佳工廠利用。此外,在採用化學氣相沈積反 應器(例如,西門子式反應器)之此改良的製程中使用較高 純度甲矽烷可提供適合於需要較高純度矽之應用之矽。 一種用於製造矽之方法可總結為包含:藉由一歧化反應 器使I括曱矽烧及四氣化矽之一歧化反應器進料;藉由一 化學氣相沈積反應器對來自該歧化反應器之一混合物執行 一化學氣相沈積以將矽沈積在該化學氣相沈積反應器内之 一基板上;及自該化學氣相沈積反應器回收矽。 _ X方法可進步包含:自包括氫氣及四氣化石夕的該化學 氣相此積之-副產品混合物分離氫氣以產生包括四氣化石夕 152888.doc 201130733 之一組合物;藉由一歧化反應器前甲矽烷/氣矽烷混合器 混合包括四氣化矽之該組合物及包括甲矽烷之一組合物以 產生包括曱矽烷及四氣化矽之該歧化反應器進料;藉由一 歧化反應器前溫度控制器控制包括曱石夕烧及四氣化石夕之該 歧化反應器進料之溫度;及藉由該歧化反應器使包括甲矽 烧及四氣化矽之該歧化反應器進料之組分反應以形成包括 二氣碎院、三氣矽烷及四氣化矽之一歧化反應產物。混合 包括四氣化石夕之該組合物與包括甲碎烧之一組合物可包含 混合包括二氣矽烷之一組合物與包括曱矽烷之一組合物。 混合包括四氣化矽之該組合物與包括曱矽烷之一組合物可 包含混合包括三氣矽烷之一組合物與包括甲矽烷之一組合 物。混合包括四氣化矽之該組合物與包括曱矽烷之一組合 物可包含混合包括氣化氫之一組合物與包括甲矽烷之一組 合物。混合包括四氣化矽之該組合物與包括甲矽烷之一組 CT物可包含混合包括液體或蒸氣曱石夕烧之一組合物與包括 液體或蒸氣四氣化矽之一組合物。混合包括四氣化矽之該 ”且^物與包括甲;g夕院之一組合物可包含在自約10崎/平方 英吋表壓至約500磅/平方英吋表壓之範圍之一壓力下將包 括曱矽烷之該組合物及包括四氯化矽之該組合物提供至該 歧化反應器前甲矽烷/氯矽烷混合器及該歧化反應器中之 者或兩者。混合包括四氯化矽之該組合物與包括曱矽烷 之*、、且。物可包含在自約50磅/平方英吋表壓至約300磅/平 方英寸表壓之範圍之—壓力下將包括甲梦烧之該組合物及 包括四氣切之該組合物提供至該歧化反應器前甲石夕燒/ 152888.doc •12· 201130733 氣石夕烧混合器及該歧化反應器中之一者或兩者。混合包括 四氣化矽之該組合物與包括甲矽烷之一組合物可包含在自 約150磅/平方英吋表壓至約200磅/平方英吋表壓之範圍之 一壓力下將包括甲矽烷之該組合物及包括四氣化矽之該組 合物提供至該歧化反應器前甲矽烷/氣矽烷混合器及該歧 化反應器中之一者或兩者。混合包括四氣化石夕之該組合物 與包括甲矽烷之一組合物可包含在約18〇磅/平方英吋表壓 之一壓力下將包括曱石夕院之該組合物及包括四氣化石夕之該 組合物提供至該歧化反應器前甲矽烷/氣矽烷混合器及該 歧化反應器中之一者或兩者。混合包括四氣化矽之該組合 物與包括曱矽烷之一組合物可包含在自約5〇〇磅/平方英吋 表壓至約2500時/平方英吋表壓之範圍之一壓力下將包括 曱矽烷之該組合物及包括四氣化矽之該組合物提供至該歧 化反應器前曱矽烷/氯矽烷混合器及該歧化反應器中之一 者或兩者。混合包括四氣化石夕之該組合物與包括甲矽院之 一組合物可包含在自約1500磅/平方英吋表壓至約25〇〇磅/ 平方英吋表壓之範圍之一壓力下將包括曱矽烷之該組合物 及包括四氯化矽之該組合物提供至該歧化反應器前甲矽 烧/氣矽烷混合器及該歧化反應器中之一者或兩者。混合 包括四鼠化石夕之該組合物與包括曱石夕炫之一組合物可包含 在自約1 800碎/平方英叫·表壓至約2200碎/平方英吋表壓之 範圍之一壓力下將包括曱矽烷之該組合物及包括四氣化矽 之該組合物提供至該歧化反應器前甲矽烷/氣矽烷混合器 及該歧化反應器中之一者或兩者。混合包括四氣化石夕之該 152883.doc •13· 201130733 組合物與包括曱矽炫:之一組合物可包含在約2000碎/平方 英吋表壓之一壓力下將包括甲矽烷之該組合物及包括四氣 化矽之該組合物提供至該歧化反應器前曱矽烷/氣矽烷混 合器及該歧化反應器中之一者或兩者。 該歧化反應器可包含一觸媒。該觸媒可包含一聚合離子 父換樹脂。該觸媒可包含一金屬。該觸媒可包含銅。該觸 媒可包含注入銅之基本上純矽。 控制包括曱矽烷及四氣化矽之該歧化反應器進料之該溫 度可包含將該歧化反應器進料之該溫度控制在自約55°c至 約500°C之一範圍中。控制包括甲矽烷及四氣化矽之混合 物之該歧化反應器進料之該溫度可包含將該歧化反應器進 料之該溫度控制在自約300°C至約500。(:之一範圍中。控制 包括甲矽烷及四氣化矽之該混合物之該歧化反應器進料之 該溫度可包含將該歧化反應器進料之該溫度控制在自約 3 00°C至約400°C之一範圍中。控制包括甲矽烷及四氯化矽 之該混合物之該歧化反應器進料之該溫度可包含將該歧化 反應器進料之該溫度控制在自約20〇。〇至約300。(:之一範圍 中。控制包括曱矽烷及四氣化矽之該混合物之該歧化反應 器進料之該溫度可包含將該歧化反應器進料之該溫度控制 在自約90°C至約200。(:之一範圍中。控制包括曱矽烷及四 氣化石夕之該混合物之該歧化反應器進料之該溫度可包含將 該歧化反應器進料之該溫度控制在自約3〇cC至約9〇〇c之一 範圍中。控制包括甲矽烷及四氣化矽之該混合物之該歧化 反應器進料之該溫度可包含將該歧化反應器進料之該溫度 152888.doc • 14· 201130733 控制在自約5 5 °C至約7 5 °C之一範圍中。控制包括甲石夕烧及 四氣化梦之έ亥混合物之該歧化反應器進料之該溫度可包含 將該歧化反應器進料之該溫度控制在自約6〇t:至約7〇。〇之 一範圍中。控制包括甲矽烷及四氯化矽之該混合物之該歧 化反應器進料之該溫度可包含將該歧化反應器進料之該溫 • 度控制為約60°C。 混合包括曱矽烷之一組合物與包括四氣化矽之一組合物 可包含混合呈一氣相、一液相及一氣_液混合相的包括甲 矽烷之一組合物與呈一氣相、一液相及一氣液混合相的 包括四氯化矽之一組合物。 該方法可進一步包含控制包括四氣化矽之該組合物之組 合物或將包括四氣化石夕之該組合物供應至該歧化反應器前 甲矽烷/氯矽烷混合器之速率以使得包括甲矽烷及四氣化 矽之該混合物之該歧化反應器進料中氣對矽之比率在約 2:1與約3.9:1之間的範圍。包括甲石夕貌及四氣化石夕之該混 合物之該歧化反應器進料中氣對矽之該比率可在約2 5:1與 約3m的範圍°包括甲魏及四氣切之該混合物之 該歧化^應器進料中氣對石夕之該比率可在約28:1與約3.3:ι 之間的範圍。包括甲石夕炫及四氯化石夕之該混合物之該歧化 反應器進料中氣對石夕之該比率可為約η:卜包括甲石夕烧及 四氣化石夕之該遇合物之該歧化反應器進料中氣對石夕之該比 率可為約3:1〇句莊甲功―η _ 匕括甲矽烷及四氣化矽之該混合物之該歧 化反應器進料中氯對石夕之該比率可為約32:1。包括”院 及四氯化石夕之該混合物之該歧化反應器進料中氣對石夕之該 152888.doc •15- 201130733 比率可為約3.3:1。 該方法可進一步包含在一歧化反應器後四氣化矽分離器 中自該歧化反應之一產物分離四氣化矽以產生一歧化反應 器後富含四氣化矽之流及一歧化反應器後富含三氣矽烷之 流。 該方法可進一步包含使用在該歧化反應器後四氣化矽分 離器中自該歧化反應器之該產物分離之該四氣化矽調整該 歧化反應器進料之四氣化矽含量。 該方法可進一步包含藉由一歧化反應器後二氣矽烷分離 器自該歧化反應器後富含三氣矽烷之流分離二氣矽烷以產 生一歧化反應器後富含二氣矽烷之流。 該方法可進一步包含:判定至該化學氣相沈積反應器之 一進料中之二氣矽烷濃度;及調整至該化學氣相沈積反應 器之該進料中二氣矽烷之該濃度。調整至該化學氣相沈積 反應器之該進料中二氣矽烷之該濃度可包含將該歧化反應 器後富含二氣矽烷之流添加於至該化學氣相沈積反應器之 該進料。調整該化學氣相沈積反應器中二氣矽烷之濃度可 包含將自已自其移除氫氣及氣化氫之一化學氣相沈積反應 器流出物混合物分離之二氣矽烷。 該方法可進一步包含藉由一歧化反應器後二氯矽烷/三 氣矽烷分離器自該歧化反應器後富含三氯矽烷之流中之三 氣矽烷分離二氣矽烷以產生一歧化反應器後富含二氣矽 烷/三氣矽烷耗盡之材料及一歧化反應器後富含三氣矽烷/ 二氣矽烷耗盡之材料。該歧化反應器後富含二氣矽烷/三 152888.doc -16· 201130733 氯矽烷耗盡之材料可係基本上純二氣矽烷。 該方法可進一步包含判定該歧化反應器後富含二氯矽 院/三氣矽烷耗盡之材料中之二氣矽烷濃度。 該方法可進一步包含判定該歧化反應器後富含三氯矽 院/二氯矽烷耗盡之材料中之三氣矽烷濃度。 該方法可進一步包含將該富含二氣矽烷/三氣矽烷耗盡 之材料儲存於二氣矽烷儲存系統中。 該方法可進一步包含將該富含三氣矽烷/二氯矽烷耗盡 之材料儲存於三氣矽烷儲存系統中。 該方法可進一步包含:混合該富含二氯矽烷/三氣矽烷 耗盡之材料與該富含三氣矽烷/二氯矽烷耗盡之材料以產 生一化學氣相沈積反應器進料;及將該進料供應至該化學 氣相沈積反應器》混合該富含二氣矽烷/三氣矽烷耗盡之 材料與該富含三氣矽烷/二氯矽烷耗盡之材料可包含混合 來自該二氣矽烷儲存系統之富含二氣矽烷/三氣矽烷耗盡 之材料。混合該富含二氣石夕烧/三氣梦烧耗盡之材料與該 富含三氣矽烷/二氣矽烷耗盡之材料可包含混合來自該三 氣矽烷儲存系統之富含三氣矽烷/二氣矽烷耗盡之材料。 混合違吾含·一乳石夕烧/二乳·?夕烧耗盡之材料與該富含三氣 石夕院/二氯石夕烧耗盡之材料以產生一化學氣相沈積反應器 進料可包含調整該化學氣相沈積反應器進料中氣對石夕之一 比率。 該方法可進一步包含:在一CVD反應器前氣化器中使該 歧化反應產物氣化以產生一經氣化歧化反應產物;混合氫 152888.doc -17· 201130733 氣與該經氣化歧化反應產物以產生氩氣及歧化反應產物之 一混合物;及藉由該化學氣相沈積反應器對氫氣及歧化反 應產物之該混合物執行化學氣相沈積以將矽沈積在該化學 氣相沈積反應器内之該基板上。混合氫氣與該經氣化歧化 反應產物可包含藉由一 CVD反應器前混合器混合氫氣與該 經氣化歧化反應產物。混合氫氣與該經氣化歧化反應產物 可包含在該化學氣相沈積反應器中混合氫氣與該經氣化歧 化反應產物。 該方法可進一步包含自該化學氣相沈積反應器釋放包括 以下各項之一流出物混合物:氫氣、四氯化石夕以及氣化 氫、二氯矽烷及三氣矽烷中之一者或多者。 該方法可進一步包含藉由一 CVD反應器後第一冷卻器冷 卻來自該化學氣相沈積反應器之該流出物混合物以產生一 氣-液兩相混合物。 該方法可進一步包含自藉由該第一冷卻器冷卻之該流出 物混合物移除包含聚甲矽烷基材料之油性污染物。 該方法可進一步包含藉由一 CVD反應器後傾析器分離來 自該第一冷卻器之該氣-液兩相混合物以產生一氣相及一 液相。 該方法可進一步包含藉由一 CVD反應器後壓縮機將來自 該傾析器之該氣相轉換成一氣-液兩相混合物。 該方法可進一步包含藉由一 CVD反應器後第二冷卻器冷 卻來自該壓縮機之該氣-液兩相混合物或該氣相。 該方法可進一步包含:將來自該化學氣相沈積反應器之 152888.doc -18- 201130733 該流出物混合物供應至一 CVD反應器後原位氣化氫反應 器;及藉由該CVD反應器後原位氣化氫反應器將來自該化 學氣相沈積反應器之該流出物混合物中之氣化氫轉換成氣 矽烷。來自該化學氣相沈積反應器之該流出物混合物在該 CVD反應器後原位氣化氫反應器内之一滯留時間可係小於 約1〇分鐘。該流出物混合物在該CVD反應器後原位氣化氫 反應器内之該滞留時間可係小於約5分鐘。該流出物混合 物在該CVD反應器後原位氯化氫反應器内之該滞留時間可 係小於約1分鐘。該流出物混合物在該CVD反應器後原位 氣化氫反應器内之該滯留時間可係小於約〇5分鐘。該流 出物混合物在該CVD反應器後原位氣化氫反應器内之該滞 留時間可係小於約〇丨分鐘。 該方法可進一步包含在將來自該化學氣相沈積反應器之 該流出物混合物供應至該CVD反應器後原位氣化氫反應器 J藉由原位氣化氫反應器熱交換器加熱來自該化學氣 ,沈積反應器之该流出物混合物。藉由__原位氣化氮反應 器熱交換器加熱來自該化學氣相沈積反應器之該流出物混 。物可包含將來自該化學氣相沈積反應器之該流出物混合 物加熱至自約2〇(TC至約7〇(rc之一範圍中之一溫度。藉由 原位氯化氫反應器熱交換器加熱來自該化學氣相沈積反 ,益之該流出物混合物可包含將來自該化學氣相沈積反應 益之該肌出物混合物加熱至自約3〇〇它至約6〇〇它之一範圍 中之^ 一溫产 〇 二 /皿又。错由一原位氯化氫反應器熱交換器加熱來自 X化子氣相沈積反應器之該流出物混合物可包含將來自該 152888.doc 19 201130733 化學氣相沈積反應器之該流出物混合物加熱至約500°C之 一溫度。該原位氣化氫反應器熱交換器在將來自該化學氣 相沈積反應器之該流出物混合物供應至該CVD反應器後原 位氣化氫反應器之前將熱自來自該CVD反應器後原位氣化 氫反應器之一流出物交換至來自該化學氣相沈積反應器之 該流出物混合物。 該方法可進一步包含在經由該原位氣化氫反應器熱交換 器將來自該化學氣相沈積反應器之該流出物混合物供應至 該CVD反應器後原位氣化氫反應器之前藉由一 CVD反應器 後起動加熱器加熱來自該化學氣相沈積反應器之該流出物 混合物。 該方法可進一步包含:藉由一 CVD反應器後第一冷卻器 冷卻來自該CVD反應器後原位氣化氫反應器之一流出物混 合物以產生一氣-液兩相混合物;藉由一 CVD反應器後傾 析器分離來自該第一冷卻器之該氣-液兩相混合物以產生 一氣相及一液相;藉由一 CVD反應器後壓縮機將來自該傾 析器之該氣相轉換成一氣-液兩相混合物或一氣相;及藉 由一 CVD反應器後第二冷卻器冷卻來自壓縮機系統之該 氣-液兩相混合物。 該方法可進一步包含藉由一 CVD反應器後氫氣分離器自 該化學氣相沈積反應器流出物混合物分離氫氣以產生一 CVD反應器後富含氫氣之流及一CVD反應器後氩氣耗盡之 流。該CVD反應器後富含氫氣之流中四氣化矽之濃度可係 小於15重量百分比。該CVD反應器後富含氫氣之流中四氣 152888.doc -20- 201130733 化矽之該濃度可係小於10重量百分比。該CVD反應器後富 含氫氣之流中四氣化矽之該濃度可係小於5重量百分比。 該CVD反應器後富含氫氣之流中四氣化矽之該濃度可係小 於1重量百分比。該CVD反應器後富含氫氣之流中四氣化 矽之該濃度可係小於0.1重量百分比。 該方法可進一步包含藉由一 CVD反應器前混合器混合該 CVD反應器後富含氫氣之流與來自一歧化反應器後四氯化 矽分離器之一歧化反應器後富含三氣矽烷之流。 該方法可進一步包含藉由一歧化反應器前氣矽烷混合器 混合該CVD反應器後氫氣耗盡之流與來自該歧化反應器後 四氣化矽分離器之一歧化反應器後富含四氣化矽之流。 該方法可進一步包含在混合該CVD反應器後氫氣耗盡之 流與該歧化反應器後富含四氣化矽之流之前,判定該CVD 反應器後氫氣耗盡之流與該歧化反應器後富含四氣化矽之 流中元素石夕及元素氣之量。 該方法可進一步包含:藉由該歧化反應器前氣矽烷混合 器混合一定量之該CVD反應器後氫氣耗盡之流;該歧化反 應器後富含四氣化矽之流;及視需要,經純化四氣化矽、 三氣矽烷、二氣矽烷或經純化四氯化矽、三氣矽烷或二氣 矽烷中之一者或多者之一混合物之一進料;及控制自每一 源供應之元素氣及元素矽之該等量以維持該歧化反應器進 料中氯對矽之一選定比率。201130733 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to the field of systems and processes for making tantalum (e.g., polysilicon). In particular, the present invention relates to the manufacture of Shixia by chemical vapor deposition and the recycling of reaction by-products to improve the cost-effectiveness of the manufacture of Shixi. [Prior Art] Due to the use of germanium in various applications, particularly in the semiconductor and solar (i.e., photovoltaic) industries, the demand for germanium (particularly polycrystalline germanium) is extremely large. The semiconductor industry typically requires higher purity than is required by other industries, although other industries, such as those that manufacture solar wafers, are now using higher purity germanium. Due to the demand for sputum, manufacturing plants have been established all over the world. Facilities can be extremely large, designed to create dreams every year in thousands of public ridicule. The process for making polycrystalline germanium can be carried out in various types of reactors, including chemical vapor deposition reactors and fluidized bed reactors. Various aspects of the chemical vapor deposition (CVD) process (i.e., Siemens or "hotline" processes) are described, for example, in various U.S. patents or published applications (see, for example, U.S. Patent No. 3,011 , No. 877; No. 3, No. 99,534; No. 3,147,141; No. 4,15〇168; No. 4 179 53〇; No. 4,311,545; and No. 5,118,485). Both the ceramsite and the trioxane are used as feedstock for the production of polycrystalline germanium. It is easier to obtain as a high-purity raw material because it is easier to purify than sulphite. The production of trioxane introduces boron and phosphorus impurities, which tend to have a boiling point close to the boiling point of trioxane itself, which is difficult to remove. Although both methane and trichloromethane are used as starting materials in a Siemens chemical vapor deposition reactor, trioxane is more commonly used in such reactors. On the other hand, decane is a more commonly used raw material for the production of polycrystalline germanium in a fluidized bed reactor. Formane is deficient when used as a feedstock for chemical vapor deposition or fluidized bed reactors. The production of polycrystalline germanium from formane in a Siemens-type chemical vapor deposition reactor can require up to twice the electrical energy compared to the production of polycrystalline germanium from trioxane in this reactor. In addition, the cost of capital is high because the Siemens-type chemical vapor deposition reactor produces more than half of the polycrystalline germanium produced from trioxane only from trichloromethane. Therefore, in the manufacture of polycrystalline germanium from formane in a Siemens-type chemical vapor deposition reactor, any advantage arising from the higher purity of formane is offset by higher capital and operating costs. This has led to the use of trichloromethane as a feed for the production of polycrystalline germanium in such reactors. The use of formrolane as a raw material for the production of polycrystalline germanium in a fluidized bed reactor is advantageous in terms of electrical energy use as compared to manufacturing in a Siemens chemical vapor deposition reactor. However, there are disadvantages that offset the advantages of operating costs. In the fluidized bed reactor, the process itself can result in a lower quality polycrystalline ruthenium product, although the purity of the feedstock is high, for example, the process can form polycrystalline ruthenium dust, which can be formed in the reactor. The particulate material interferes with handling and can also reduce overall yield. In addition, polycrystalline germanium produced in a fluidized bed reactor may contain residual hydrogen which must be removed by subsequent processing. Further, the polycrystalline stone produced in the fluidized bed reactor may contain metal impurities due to the grinding condition in the fluidized bed. Therefore, although high purity 曱矽 152 152888.doc 201130733 alkane can be easily obtained, its use as a raw material for producing polycrystalline germanium in any type of reactor is limited by the disadvantages. In summary, the use of decane as a starting material for the production of polycrystalline germanium from a Siemens-type vapor deposition reactor or a fluidized bed reactor is limited due to cost and/or quality of the polycrystalline silicon produced. Therefore, there is still a need in the industry for a capital and operational cost-effective process for converting metaxane to polycrystalline oxime while retaining the high quality inherent in the use of formazan as a feedstock. The reaction occurring in the CVD reactor releases a gaseous material containing reaction by-products (i.e., excess reactants which are not converted in the CVD reactor) and an oily polymeric material such as a polyformamidine compound. By-products include various chloroxane (specifically, four gasified hydrazine) and hydrogenated hydrogen. Several methods have been proposed and utilized to improve the efficiency of such processes, reduce operating costs, and address environmental issues arising from the release and disposal of by-products from the manufacture of polysilicon. However, there is still a need for further improvements in process efficiency (including recycling by-products and reactants) as well as savings in plant construction and operating costs. Such improvements include, in particular, increased efficiency and cost savings associated with the reuse and/or disposal of by-products and excess reactants. The main cost of both plant construction and operation is the establishment and operation of facilities for the treatment of by-products (specifically, four gasification helium). In the production of polycrystalline spine by Cvd or Siemens process, even if the conversion system of the three gas stone to the stone eve is complete, almost every three moles will be produced for each moir deposited in the CVD reactor. A subsidiary of four gasification hydrazine. In fact, typically 20% or less of the trioxane is converted to helium in a single pass through the reactor. Conversion efficiency 152888.doc -6- 201130733 rate depends on various factors 'contains the composition of the gas delivered to the reactor, the reactor design and operating conditions, such as the ratio of the gas, temperature and pressure, however, regardless of conversion efficiency How, the stoichiometric ratio of the reaction in the reactor still determines that the tetrachloride should be the major by-product from the conversion in the reactor and is the major component of the gaseous material released from the CVD reactor. Typically, the components of the gaseous material are separated and recycled at a point back to the feed to the CVD reactor or recovered for other uses or discarded. In particular, the other components from the gaseous material are separated from the four gas fossils and discarded or reprocessed in a separate facility to convert them to triclosan as a feed back to the cvd reactor. If discarded, it is not only an environmental problem but also a significant proportion of the initial feed to the cvd reactor. Thus, more typically, four gas cuts from the recovery of gaseous materials released from the CVD reactor are reprocessed in a thermal converter in a physical and often geographically remote facility to form additional tripotaris. The heat exchanger usually has a temperature of more than 1 〇〇〇t: (the temperature can be achieved by passing electricity through the carbon electrode. The disadvantage of converting the four gas cut into three gas by using a heat exchanger therefore includes Extremely high electrical energy requirements, which represents a large proportion of the cost of operating a chemical vapor deposition polysilicon manufacturing facility. Furthermore, in this process, the heat exchanger typically only has about 20 〇/〇 per pass through the reactor. The fourth gasification fossil is converted into a triclosan and therefore needs to be separated, for example, by the steaming hall and passed multiple times. It is estimated that the cost of establishing a plant for thermal conversion of the four fossils is used to establish the entire The capital cost of the Jingshixi manufacturing facility is 10% to 2%. It is further estimated that the cost of operating the plant for thermal conversion of the four gas fossils is used to operate the entire polysilicon 152888.doc 201130733 The cost is 10% to 20%. In addition, due to the use of carbon electrodes, the trioxane produced in the heat conversion process can be contaminated by carbon/graphite in the process. The trioxane thus produced needs to be further pure. To produce materials of high purity suitable for manufacturing, for example, in semiconductors or increasingly for use in the solar industry, thereby increasing both capital and operating costs. Further disadvantages of using heat exchangers are The process produces a large amount of chloroformane by-product. Although dioxane can be converted to ruthenium in a CVD reactor, the ruthenium thus produced may not be in the required specification unless the process is extremely carefully controlled. It may also be in a polysilicon plant. In the upstream operation, an excess of a gas stone court is produced. Due to the excessive amount of dichlorite, it can usually be accumulated in the storage tank. Therefore, it must eventually be destroyed in an environmentally acceptable manner in, for example, a waste treatment facility. The large amount of dioxane accumulated, a practice widely used in the industry. Eliminating the process of producing excess dioxane and the need to discard this material will provide significant savings in operating polysilicon manufacturing facilities. The process not only produces gas decane as a field, but also produces gasification hydrogen. Hydrogen chloride also contains potentially useful components of the process for making polycrystalline germanium, that is, chlorine. Therefore, as with gaseous paraffin by-products, there is an advantage in recycling hydrogenated hydrogen. For example, due to gas-containing three gas The decane system is fed to the main reactants used to make the CVD reactor, so it is advantageous to recycle any by-products that can return gas to the b process. In addition, although there is a purified hydrogenation gas. Use in addition to polycrystalline spine manufacturing [However, such use requires purification of vaporized hydrogen. Therefore, the treatment of gaseous hydrogen by-products at 152888.doc 201130733 is suitable for other uses and usually requires the establishment and operation of additional facilities. Or at least an additional system to purify and store hydrogen chloride. Q For a variety of reasons, it may be advantageous to have the vaporized hydrogen return to a certain state of the polycrystalline process. However, the suitability for recycling hydrogen chloride depends on the process used to make the polysilicon. Certain processes for making polysilicon are susceptible to allowing gasification hydrogen to be efficiently and cost effectively recycled back into the process. However, since the reaction of vaporized hydrogen with various compounds in such processes (e.g., hydrazine or decane) can be highly pyrophoric, recycling can present challenges. For example, the recycling of hydrogen chloride can result in significant temperature increases within the system, requiring a cooling mechanism and/or careful control of the reaction conditions. Since some commonly used polycrystalline process processes involve exothermic reactions, facilities designed for such processes include systems for temperature control' specific cooling systems. Such systems can thus easily handle the increase in temperature that can result from the reaction that occurs as a result of recycling hydrogen chloride back to the processes. On the other hand, the polycrystalline germanium manufacturing process which does not contain a high exothermic reaction does not generate heat and thus does not require such a cooling system. Facilities designed for use in such processes may therefore be less suitable for recycling hydrogen chloride by-products. In various processes involving the manufacture of polysilicon, the method of making triclosan supplied to a CVD reactor differs in important respects. For example, in a common process, metallurgical grades of hydrazine react with hydrogenated hydrogen to form a three gas smoldering. This trioxane was fed to the CVD reactor after purification. Certain by-products of the CVD reaction (such as tetrachloride) in these processes are generally disposable or have associated disadvantages (including high capital costs during construction and energy costs between operating periods 152888.doc 201130733) In the case of heat conversion to trioxane. Other by-products such as hydrogen and hydrogenated hydrogen can be recycled back to some point in the process. By utilizing vaporized hydrogen in such polysilicon manufacturing facilities, by-product hydrogen chloride can be easily recycled back to the process. In particular, since the reaction of hydrogen chloride with metallurgical grades in such processes is highly heat-generating, the facility for making and forming polycrystalline germanium in accordance with such processes comprises a dedicated cooling system suitable for the treatment of recycled by-products of hydrogen chloride. The cost of establishing and operating such facilities is high due to cooling and energy requirements. The other of the current processes for making polycrystalline germanium combines metallurgical grades of helium gas and helium to produce three gas helium for the CVD reactor. In these processes, the 's Xuanxu reaction is endothermic. Accordingly, facilities designed to manufacture polycrystalline silicon by such processes do not have the same equipment and operational needs as are required for their equipment and operation designed for use with hydrogenated hydrogen. In particular, these facilities do not require a dedicated cooling system. Therefore, adapting the plants of these processes to the recycling of hydrogen chloride by-products will require considerable additional capital and operating costs and the introduction of intrinsic reactors due to the co-reaction of four gasification fossils with gasification hydrogen under significantly different fluidization methods. Sex. Therefore, different methods for recovering the use of hydrogenated hydrogen may be advantageous in a polysilicon manufacturing facility or process that is not designed and built for the treatment of the use of hydrogenated hydrogen, especially high heat generating reactions. SUMMARY OF THE INVENTION There is a need in the polysilicon industry for: (1) more cost-effective use of decane as a feedstock for CVD reactors; (2) use of thermal conversion in a dimethyl-based CVD-based CVD process Alternative method; (3) CVD system 152888.doc •10·201130733 lower capital and operating costs; (4) improved method for controlling the concentration of dioxane in trichloromethane fed to the cvd reactor; (5) An efficient method for recycling by-products from a CVD reactor, specifically four gasification fossils and hydrogenated hydrogen; and (6) more cost-effectively producing high purity polycrystalline bites. An improved process for treating ruthenium tetrachloride and gasification produced during the manufacture of polycrystalline germanium in a chemical vapor deposition facility can provide both capital and operating cost savings. For example, eliminating the need to thermally convert helium tetrachloride to trioxane provides a cost savings of 101⁄4 to 20% compared to typical facilities for the production of polycrystalline germanium by chemical vapor deposition. Significant cost savings can also be achieved by controlling the gas balance throughout the process (e.g., by limiting the generation of hydrogenated hydrogen and optimally recycling hydrogenated hydrogen). This method can result in an additional 10% to 2% savings in the cost of making polysilicon. Eliminating the requirement for co-reaction with tetrachloride and hydrogenation using the methods described herein will allow for better plant utilization with less due to downtime. In addition, the use of higher purity formrolane in this improved process employing a chemical vapor deposition reactor (e.g., a Siemens reactor) provides a suitable solution for applications requiring higher purity rhodium. A method for producing a crucible can be summarized as comprising: feeding a disproportionation reactor of one of a calcined and a gasified crucible by a disproportionation reactor; from the disproportionation by a chemical vapor deposition reactor One of the reactors performs a chemical vapor deposition to deposit ruthenium on one of the substrates in the chemical vapor deposition reactor; and recovers ruthenium from the chemical vapor deposition reactor. The X method can be improved comprising: separating the hydrogen from the chemical vapor phase-by-product mixture comprising hydrogen and four gas fossils to produce a composition comprising four gas fossils 152888.doc 201130733; by a disproportionation reactor a pre-methane/gas hexane mixer mixing the composition comprising four gasified ruthenium and a composition comprising one of the decane to produce the disproportionation reactor feed comprising decane and ruthenium hydride; by a disproportionation reactor The front temperature controller controls the temperature of the disproportionation reactor feed including the calcite and the four gasification fossils; and the disproportionation reactor including the formazan and the four gasification crucible is fed by the disproportionation reactor The components react to form a disproportionation reaction product including dioxane, trioxane, and tetragas. Mixing The composition comprising four gas fossils and one of the compositions comprising a smash may comprise mixing a composition comprising one of dioxane with one of the compositions comprising decane. Mixing the composition comprising four gasified ruthenium with one of the compositions comprising decane may comprise mixing a composition comprising one of trioxane with one of the compositions comprising decane. Mixing the composition comprising tetragassing ruthenium with one of the compositions comprising decane may comprise mixing a composition comprising one of vaporized hydrogen with one of the compositions comprising decane. Mixing the composition comprising four gasified hydrazines with a group of CT materials comprising metformin may comprise mixing a composition comprising one of liquid or vapor gangue with a composition comprising one of liquid or vapor four gasified hydrazine. Mixing the composition including the four gasification enthalpy and one of the materials; the composition of one of the g-yards may comprise one of the ranges from about 10 s/m2 to about 500 psig. The composition comprising decane and the composition comprising ruthenium tetrachloride are supplied to the disproportionation reactor pre-methane/chloromethane mixer and the disproportionation reactor or both. The composition of the pupate and the inclusion of decane, and may be included in a range from about 50 psig to about 300 psig. The composition and the composition comprising the four gas cuts are provided to the disproportionation reactor before one or both of the calculus/152888.doc •12·201130733 gas stone simmering mixer and the disproportionation reactor Mixing the composition comprising four gasified hydrazines with a composition comprising one of the decanes may comprise at a pressure ranging from about 150 psig to about 200 psig. The composition of formoxane and the composition comprising four gasified hydrazine are supplied to the disproportionation reactor One or both of a methotane/gas decane mixer and the disproportionation reactor. The composition comprising four gasification fossils and one of the compositions comprising metformane may be included in a table of about 18 psig. Providing the composition comprising a waste stone and a composition comprising four gas fossils to one or both of the disproportionation reactor pre-methane/gas decane mixer and the disproportionation reactor at a pressure of one pressure Mixing the composition comprising four gasified ruthenium with one of the compositions comprising decane may comprise a pressure in the range from about 5 psig to about 2500 hr/square gauge. The composition comprising decane and the composition comprising tetragassed hydrazine are provided to one or both of the disproportionation reactor pre-decane/chloromethane mixer and the disproportionation reactor. The mixing includes four gases. The composition of the fossil eve and the composition comprising a kiln may comprise decane including a pressure from about 1500 psig to about 25 psig. The composition and the composition comprising ruthenium tetrachloride are provided One or both of the disproportionation reactor front formazan/gas decane mixer and the disproportionation reactor. The composition comprising the four mouse fossils and the composition comprising the smectite may be included in the self. The composition comprising decane and the composition comprising decane gas are supplied to the disproportionation reaction at a pressure of about 1 800 cc/square gram. gauge to a range of about 2200 cc/square inch gauge pressure. One or both of the pre-methane/gas hexane mixer and the disproportionation reactor. The mixture includes four gasification fossils 152883.doc •13· 201130733 The composition and the 曱矽 :: one composition can be The composition comprising metformane and the composition comprising tetragas hydride are provided to the disproportionation reactor pre-decane/gas decane mixer and the disproportionation at a pressure of about 2000 psig. One or both of the reactors. The disproportionation reactor can comprise a catalyst. The catalyst may comprise a polymeric ion parent exchange resin. The catalyst can comprise a metal. The catalyst can comprise copper. The catalyst can comprise substantially pure germanium implanted with copper. Controlling the temperature of the disproportionation reactor feed comprising decane and tetragassing ruthenium can comprise controlling the temperature of the disproportionation reactor feed to be in a range from about 55 ° C to about 500 ° C. Controlling the temperature of the disproportionation reactor feed comprising a mixture of formane and tetragas hydride may comprise controlling the temperature at which the disproportionation reactor is fed from from about 300 °C to about 500. (in one of the ranges. controlling the temperature of the disproportionation reactor feed comprising the mixture of formane and tetragas hydride may comprise controlling the temperature of the feed to the disproportionation reactor from about 300 ° C to In the range of about 400 ° C. controlling the temperature of the disproportionation reactor feed comprising the mixture of formane and ruthenium tetrachloride may comprise controlling the temperature of the feed to the disproportionation reactor to be about 20 Torr. 〇 to about 300. (in one of the ranges. controlling the temperature of the disproportionation reactor feed comprising the mixture of decane and tetra-vaporized ruthenium may comprise controlling the temperature of the feed to the disproportionation reactor to be self-contained From 90 ° C to about 200. (in one of the ranges. controlling the temperature of the disproportionation reactor feed comprising the mixture of decane and four gas fossils may comprise controlling the temperature of the disproportionation reactor feed to In a range from about 3 〇 cC to about 9 〇〇 c. controlling the temperature of the disproportionation reactor feed comprising the mixture of methotrexate and tetragas hydride may comprise the temperature at which the disproportionation reactor is fed 152888.doc • 14· 201130733 Control at about 5 5 °C In the range of about 75 ° C. controlling the temperature of the disproportionation reactor feed comprising the mixture of the stone and the gasification of the gas, the temperature of the feed to the disproportionation reactor may be controlled at In a range from about 6 〇t: to about 7 〇. controlling the temperature of the disproportionation reactor feed comprising the mixture of formane and ruthenium tetrachloride may comprise the temperature at which the disproportionation reactor is fed • Degree control is about 60° C. Mixing a composition comprising one of decane and one of the compositions comprising four vaporized hydrazine may comprise a combination comprising one of gas phase, one liquid phase and one gas-liquid mixed phase comprising methotane And a composition comprising a gas phase, a liquid phase and a gas-liquid mixed phase comprising ruthenium tetrachloride. The method may further comprise controlling the composition comprising the composition of the four gasified ruthenium or comprising four gas fossils The rate at which the composition is supplied to the disproportionation reactor pre-methane/chloromethane mixer is such that the ratio of gas to enthalpy in the disproportionation reactor feed comprising the mixture of formane and tetra-glycine is about 2: a range between 1 and about 3.9:1, including stone The ratio of the gas to the enthalpy in the disproportionation reactor feed of the mixture of the four gasification fossils may be in the range of about 2:5 and about 3 m. The disproportionation of the mixture including the meson and the four gas cuts ^ The ratio of the gas to the stone in the feed of the reactor may be in the range of about 28:1 to about 3.3: ι. The gasification of the disproportionation reactor of the mixture including the stone stalk and the tetrachloride sulphate The ratio to Shi Xi may be about η: the ratio of the gas in the disproportionation reactor of the disproportionation reactor including the meteorite and the four gas fossils may be about 3:1 〇句庄甲功The ratio of chlorine to diarrhea in the disproportionation reactor feed of the mixture of η η 矽 矽 矽 及 及 及 及 及 及 及 及 及 及 及 及 及 可 可 可 可 可 可 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The ratio of the gas in the disproportionation reactor feed to Shi Xizhi is 152888.doc •15- 201130733 The ratio can be about 3.3:1. The method may further comprise separating the gasification enthalpy of the gas from the product of the disproportionation reaction in a post-disproportionation reactor to produce a disproportionation reactor, and enriching the gas stream and the disproportionation reactor. It is then rich in a stream of three gas decane. The method may further comprise adjusting the strontium pentoxide content of the disproportionation reactor feed using the four gas enthalpy separated from the product of the disproportionation reactor in the post-disproportionation reactor. The process may further comprise separating the dioxane from the dioxane-rich stream after the disproportionation reactor and the dioxane separator to produce a dioxane-rich stream after the disproportionation reactor. The method can further include: determining a concentration of dioxane in a feed to the chemical vapor deposition reactor; and adjusting the concentration of dioxane in the feed to the chemical vapor deposition reactor. Adjusting the concentration of dioxane in the feed to the chemical vapor deposition reactor can comprise adding a stream of dioxane-rich stream after the disproportionation reactor to the feed to the chemical vapor deposition reactor. Adjusting the concentration of dioxane in the chemical vapor deposition reactor may comprise dioxane separating the chemical vapor deposition reactor effluent mixture from which hydrogen and vaporized hydrogen have been removed. The method may further comprise separating the dioxane from the trioxane in the trichloromethane-rich stream after the disproportionation reactor and the dichlorosilane/trioxane separator to produce a disproportionation reactor. A material rich in dioxane/trioxane depleted and a disproportionation reactor rich in trioxane/dioxane depleted material. The disproportionation reactor is enriched with dioxane/three 152888.doc -16·201130733 The chlorodecane depleted material can be substantially pure dioxane. The method can further comprise determining a concentration of dioxane in the material depleted of the dichlorinated/trioxane depleted material after the disproportionation reactor. The method can further comprise determining a concentration of trioxane in the material rich in triclosan/dioxane depleted after the disproportionation reactor. The method can further comprise storing the dioxane/trioxane depleted material in a dioxane storage system. The method can further comprise storing the trioxane/dichlorodecane depleted material in a trioxane storage system. The method may further comprise: mixing the dichlorodecane/trioxane-depleted material with the trioxane/dichlorodecane-depleted material to produce a chemical vapor deposition reactor feed; Supplying the feed to the chemical vapor deposition reactor" mixing the dioxane/trioxane depleted material with the trioxane/dichlorodecane depleted material may comprise mixing from the second gas A material rich in dioxane/trioxane depleted in a decane storage system. Mixing the material rich in dichao/three gas depleted and the trioxane/dioxane depleted material may comprise mixing trioxane/rich gas from the trioxane storage system. Dioxane depleted material. Mixing the material of the smear, squirting, squeezing, squeezing, squeezing, squeezing, squeezing, squeezing, squeezing The material may comprise adjusting a ratio of gas to stone in the feed of the chemical vapor deposition reactor. The method may further comprise: gasifying the disproportionation reaction product in a CVD reactor pre-gasifier to produce a gasification disproportionation reaction product; mixing hydrogen 152888.doc -17· 201130733 gas with the gasification disproportionation reaction product Generating a mixture of argon gas and disproportionation reaction product; and performing chemical vapor deposition on the mixture of hydrogen gas and disproportionation reaction product by the chemical vapor deposition reactor to deposit ruthenium in the chemical vapor deposition reactor On the substrate. The mixed hydrogen and the vaporized disproportionation reaction product may comprise a mixture of hydrogen and the gasified disproportionation reaction product by a CVD reactor premixer. The mixed hydrogen and the gasified disproportionation reaction product may comprise a mixture of hydrogen and the vaporized disproportionation reaction product in the chemical vapor deposition reactor. The method can further comprise releasing one or more of the effluent mixture comprising: hydrogen, tetrachloride, and gasification hydrogen, dichlorodecane, and trioxane from the chemical vapor deposition reactor. The method can further comprise cooling the effluent mixture from the chemical vapor deposition reactor by a first chiller after a CVD reactor to produce a gas-liquid two phase mixture. The method can further include removing the oily contaminant comprising the polymethylmethane alkyl material from the effluent mixture cooled by the first cooler. The method can further comprise separating the gas-liquid two phase mixture from the first cooler by a CVD reactor post-decant to produce a gas phase and a liquid phase. The method can further comprise converting the gas phase from the decanter into a gas-liquid two phase mixture by a CVD reactor post compressor. The method can further comprise cooling the gas-liquid two phase mixture or the gas phase from the compressor by a second chiller after a CVD reactor. The method may further comprise: supplying the effluent mixture from the chemical vapor deposition reactor 152888.doc -18-201130733 to a CVD reactor followed by an in-situ gasification hydrogen reactor; and by the CVD reactor An in situ gasification hydrogen reactor converts the vaporized hydrogen from the effluent mixture from the chemical vapor deposition reactor to gas decane. The residence time of the effluent mixture from the chemical vapor deposition reactor in the in situ gasification hydrogen reactor after the CVD reactor may be less than about 1 minute. The residence time of the effluent mixture in the in situ gasification hydrogen reactor after the CVD reactor can be less than about 5 minutes. The residence time of the effluent mixture in the in situ hydrogen chloride reactor after the CVD reactor can be less than about 1 minute. The residence time of the effluent mixture in the in situ gasification hydrogen reactor after the CVD reactor can be less than about 5 minutes. The residence time of the effluent mixture in the in situ gasification hydrogen reactor after the CVD reactor can be less than about one minute. The method may further comprise, after supplying the effluent mixture from the chemical vapor deposition reactor to the CVD reactor, the in situ gasification hydrogen reactor J is heated by the in situ gasification hydrogen reactor heat exchanger. Chemical gas, the effluent mixture of the deposition reactor. The effluent from the chemical vapor deposition reactor is heated by a __ in situ gasification nitrogen reactor heat exchanger. The effluent mixture from the chemical vapor deposition reactor may be heated to a temperature ranging from about 2 Torr (TC to about 7 Torr (in one of the ranges of rc. Heated by an in situ hydrogen chloride reactor heat exchanger) From the chemical vapor deposition reaction, the effluent mixture may comprise heating the muscle exudate mixture from the chemical vapor deposition reaction to a range from about 3 Torr to about 6 Torr. ^ a temperature-producing bismuth / dish again. The effluent mixture from the X-form vapor deposition reactor heated by an in-situ hydrogen chloride reactor heat exchanger may comprise chemical vapor deposition from the 152888.doc 19 201130733 The effluent mixture of the reactor is heated to a temperature of about 500° C. The in-situ gasification hydrogen reactor heat exchanger supplies the effluent mixture from the chemical vapor deposition reactor to the CVD reactor The in-situ gasification hydrogen reactor previously exchanges heat from one of the in-situ gasification hydrogen reactor effluent from the CVD reactor to the effluent mixture from the chemical vapor deposition reactor. The method can be further included in through The in-situ gasification hydrogen reactor heat exchanger supplies the effluent mixture from the chemical vapor deposition reactor to the CVD reactor and then activates the heater after a CVD reactor before in-situ gasification of the hydrogen reactor Heating the effluent mixture from the chemical vapor deposition reactor. The method may further comprise: cooling a effluent from the in-situ gasification hydrogen reactor from the CVD reactor by a first chiller after a CVD reactor Mixing to produce a gas-liquid two-phase mixture; separating the gas-liquid two-phase mixture from the first cooler by a CVD reactor post-decanter to produce a gas phase and a liquid phase; by a CVD reactor a post-compressor converting the gas phase from the decanter into a gas-liquid two-phase mixture or a gas phase; and cooling the gas-liquid two-phase mixture from the compressor system by a CVD reactor followed by a second cooler The method may further comprise separating hydrogen from the chemical vapor deposition reactor effluent mixture by a hydrogenation reactor after a CVD reactor to produce a CVD reactor followed by a hydrogen-rich stream and a CVD reaction. After the argon gas is exhausted, the concentration of the four gasified ruthenium in the hydrogen-rich stream after the CVD reactor may be less than 15 weight percent. The CVD reactor is rich in hydrogen gas in the middle of the gas 152888.doc - 20- 201130733 The concentration of the plutonium may be less than 10% by weight. The concentration of the four gasified ruthenium in the hydrogen-rich stream after the CVD reactor may be less than 5% by weight. The CVD reactor is rich in hydrogen flow. The concentration of the middle gasification enthalpy may be less than 1 weight percent. The concentration of the four gasified ruthenium in the hydrogen-rich stream after the CVD reactor may be less than 0.1 weight percent. The method may further comprise a CVD reaction The pre-mixer mixes the hydrogen-rich stream after the CVD reactor is enriched with a stream of trioxane, which is a disproportionation reactor from a helium tetrachloride separator after a disproportionation reactor. The method may further comprise a hydrogen gas depletion stream after mixing the CVD reactor by a disproportionation reactor front gas decane mixer and a disproportionation reactor after the disproportionation reactor from the disproportionation reactor The flow of phlegm. The method may further comprise determining the hydrogen depleted stream after the CVD reactor and the disproportionation reactor after mixing the hydrogen depleted stream after the CVD reactor and the stream of the four gasification enthalpy after the disproportionation reactor It is rich in the amount of elemental stone and elemental gas in the stream of four gasification enthalpies. The method may further comprise: mixing a certain amount of the hydrogen depleted stream after the CVD reactor by the disproportionation reactor pre-gas decane mixer; the disproportionation reactor is enriched with a stream of four gasification hydrazine; and, if desired, Purifying one of a mixture of one or more of purified gasified ruthenium, trioxane, dioxane or purified antimony tetrachloride, trioxane or dioxane; and controlled from each source The amount of elemental gas and elemental enthalpy supplied is maintained to maintain a selected ratio of chlorine to enthalpy in the feed to the disproportionation reactor.

該方法可進一步包含藉由一 CVD反應器後氯化氫分離器 自該CVD反應器後氫氣耗盡之流分離氣化氫以產生一 CVD 152888.doc -21- 201130733 反應器後氫氣耗盡、富含氣化氫之流及一 CVD反應器後氫 氣耗盡、氣化氫耗盡之流。 該方法可進一步包含將該CVD反應器後氫氣耗盡、富含 氣化氫之流自該CVD反應器後氯化氫分離器輸送至一個氣 化氫儲存系統。 該方法可進一步包含將該CVD反應器後氫氣耗盡、氣化 氫耗盡之流自該CVD反應器後氯化氫分離器輸送至一歧化 反應器前氣矽烷混合器。 該方法可進一步包含藉由一 CVD反應器後氣矽烷分離器 自該氫氣耗盡、氣化氫耗盡之流中之二氯矽烷及三氯矽烷 分離四氣化矽以產生一 CVD反應器後富含四氯化矽之流及 一 CVD反應器後富含二氣矽烷、富含三氣矽烷之流。 該方法可進一步包含藉由二氣矽烷/三氣矽烷分離器自 該CVD反應器後富含二氣矽烷、富含三氯矽烷之流中之該 三氣矽烷分離該二氣矽烷以產生一 CVD反應器後富含二氣 矽烷之流及一 CVD反應器後富含三氣矽烷之流。 該方法可進一步包含混合該CVD反應器後富含三氯矽烷 之流與一歧化反應器後富含三氯矽烷之流。 該方法可進一步包含藉由一 CVD反應器後氯矽烷混合器 混合該CVD反應器後富含四氣化矽之流與該CVD反應器後 富含二氣矽烷之流。藉由一 CVD反應器後氣矽烷混合器混 合該富含四氯化矽之流與該富含二氯矽烷之流包含選擇一 定量之二氣矽院且將該量之二氣矽院添加至該CVD反應器 後氣矽烷混合器,藉此控制至該歧化反應器及該化學氣相 152S88.doc -22- 201130733 沈積反應器之該進料中二氣矽烷之濃度。控制至該化學氣 相沈積反應器之該進料中二氣矽烷之該濃度可包含控制至 該歧化反應ι§之該進料中氣對矽之該比率。控制至該歧化 反應器之該進料中氯對#之該比率可包含控制添加於至該 歧化反應器之該進料之補給四氣化矽、三氣矽烷及二氣矽 烷中之一者或多者。 該方法可進一步包含將來自該二氣矽烷/三氣矽烷分離 器之二氯矽烷供應至該化學氣相沈積反應器。將來自該二 氣矽烷/二氣矽烷分離器之二氣矽烷供應至該化學氣相沈 積反應器彳包含至該化學氣相沈積反應器之該進料中 二氣矽烷之該濃度。 該方法可進一步包含將該二氯矽烷之全部或一部分儲存 於二氣矽烷儲存系統中或藉由二氯矽烷處置系統處置該二 氣石夕烧。 該方法可進—步包含:藉由一 CVD反應器後氫氣/氣化 氫分離器自該化學氣相沈積反應器流出物混合物分離氫氣 及氯化氫以產生一富含氫氣/氣化氫之流及一氫氣/氣化氫 耗盡之流;藉由一CVD反應器前氫氣/氣化氫分離器自該 富含氫氣/氣化氫之流中之該氣化氫分離該氫氣;及將來 自該CVD反應器前氫氣/氣化氫分離器之該氣化氫輸送至 一個氯化氫儲存系統。 該方法可進一步包含藉由一 Cvd反應器前混合器混合來 自該CVD反應器前氫氣/氣化氫分離器之該氫氣與來自該 歧化反應器後四氣化矽分離器之一歧化反應器後富含三氣 152888.doc -23- 201130733 矽烷之流。 該方法可進一步包含:將來自該CVD反應器後氣化氫分 離器之》亥氣氣耗盡、富含氣化氫之流及甲矽烷饋送至一歧 化反應器前甲矽烷/氣化氫反應器;及藉由該歧化反應器 則曱矽烷/氣化氫反應器使該曱矽烷與該氣化氫反應以產 生包含二氣矽烷及四氣化矽之氣矽烷。該歧化反應器前甲 矽烷/氯化氫反應器内之一溫度可係在約5〇它與7〇〇。匸之間 的範圍。該歧化反應器前甲矽烷/氣化氫反應器内之該溫 度可係在約loot與約600。(:之間氣範圍。該歧化反應器前 甲石夕烧/氣化氫反應器内之該溫度可係在約3〇〇〇c與約5〇〇它 之間氣範圍β該歧化反應器前甲矽烷/氣化氫反應器内之 該溫度可為約500。〇 ^至該歧化反應器前曱矽烷/氣化氫反 應器之該進料中甲矽烷對氣化氫之一莫耳比可係在自約 0:1至約2:1之範圍。甲矽烷對氣化氫之該莫耳比可係在自 約0:1至約1.5:1之範圍。曱矽烷對氣化氫之該莫耳比可係 在自約0:1至約1:1之範圍。曱矽烷對氣化氫之該莫耳比可 為約0.33:1。藉由一歧化反應器前曱矽烧/氣化氫反應器使 該甲矽烷與該氣化氫反應可包含在存在一含有金屬之觸媒 之情形下使該甲石夕烧與該氯化氮反應。該含有金屬之觸媒 可包含銅。該含有金屬之觸媒可包含注入銅之基本上純 石夕。 該方法可進一步包含:藉由該歧化反應器前氣石夕烧混合 器混合一定量之該CVD反應器後氫氣耗盡、氣化氫耗盡之 流;來自該歧化反應器前曱矽烷/氯化氫反應器之該等氣 152888.doc -24- 201130733 矽烧,來自一歧化反應器後四氯化矽分離器之一富含四氣 化矽之流;及視需要’經純化四氯化矽、經純化三氣石夕 烷、經純化二氣矽院或經純化四氣化矽、經純化三氣石夕垸 或經純化一氣石夕炫•中之一者或多者之一混合物之一進料·, 及控制自每一源供應之元素氣及元素矽之該等量以維持至 該歧化反應器之該進料中氯對石夕之一選定比率。 該方法可進一步包含藉由一CVD反應器後甲矽烷/氣化 氫反應器使來自該CVD反應器後氣化氫分離器之該氫氣耗 盡、富含氣化氫之流與曱矽烷及該化學氣相沈積反應器流 出物混合物反應。 該方法可進一步包含在於該CVD反應器後甲矽烷/氣化 風反應器中混合§亥虱氣耗盡、富含氯化氫之流與該甲石夕烧 及該化學氣相沈積反應器流出物混合物之前,將該Cvd反 應器後曱矽烧/氯化氫反應器中該化學氣相沈積反應器流 出物混合物之溫度調解至約200。〇與約600。(3之間。調整該 CVD反應器後曱矽烷/氯化氫反應器中該化學氣相沈積反 應器流出物之該溫度可包含藉由一 CVD反應器後熱交換器 調整該溫度。在混合該氣化氫與該甲矽烷及該化學氣相沈 積反應器流出物混合物之前調整該CVD反應器後甲矽烷/ 氯化氫反應器中該化學氣相沈積反應器流出物混合物之該 溫度可包含將該溫度調整至約400°C與約500。(:之間。至該 CVD反應器後甲石夕炫/氯化氫反應器之該進料中甲石夕院對 氯化氫之一莫耳比可係在自約0:1至約2:1之範圍。至該 CVD反應器後曱矽烷/氯化氫反應器之該進料中甲矽烷對 152888.doc •25· 201130733 氣化氫之一莫耳比可係在自約0:1至約i · 5: i之範圍。至該 C VD反應器後f梦烧/氣化氫反應器之該進料中甲石夕烧對 氯化氫之一莫耳比可係在自約〇:丨至約1:〗之範圍。至該 C VD反應器後甲石夕院/氣化氫反應器之該進料中甲石夕燒對 氯化氫之一莫耳比可為約0.33:1。 該方法可進一步包含調整在該CVD反應器後甲矽烷/氣 化氫反應器中之流速以使得該氣化氫-甲矽烷_CVD流出物 混合物在該CVD反應器後甲矽烷/氣化氫反應器内之一滯 留時間足以允許該氣化氫與該甲矽烧之完全反應。該Cvd 反應器後曱石夕炫> /氣化氫反應器可包含充分總體積之一個 或多個反應室以提供適於允許該氣化氫與該甲矽烷之完全 反應之一滯留時間。該流出物混合物在該CVD反應器後甲 矽烷/氣化氫反應器内之該滯留時間可係小於約丨〇分鐘。 該流出物混合物在該CVD反應器後甲矽烷/氣化氫反應器 内之該滯留時間可係小於約5分鐘。該流出物混合物在該 CVD反應器後甲矽烷/氣化氫反應器内之該滯留時間可係 小於約1分鐘。該流出物混合物在該CVD反應器後甲矽烷/ 氣化氫反應器内之該滯留時間可係小於約0.5分鐘。該流 出物混合物在該CVD反應器後曱石夕烷/氣化氫反應器内之 該滯留時間可係小於約〇. 1分鐘。 該方法可進一步包含在藉由該歧化反應器使該歧化反應 器進料反應之前,藉由一歧化反應器前氣矽烷混合器混合 單氣矽烷、二氣矽烷及三氣矽烷中之一者或多者與該歧化 反應器進料》單氣矽烷、二氣矽烷及三氣矽烷中之該一者 152888.doc -26- 201130733 或多者對四氯化矽之一莫耳比可係在自約〇至約3:1之範 圍。單氣矽烷、二氯矽烷及三氣矽烷中之該一者或多者對 四氯化矽之該莫耳比可係在自約〇至約2 5 : i之範圍。單氣 矽烷、二氣矽烷及三氣矽烷中之該一者或多者對四氣化矽 之該莫耳比可係在自約0.1:1至約1: i之範圍。單氣石夕燒、 二氣矽烷及三氣矽烷中之該一者或多者對四氣化矽之一莫 耳比可為約0.5:1。 該方法可進一步包含藉由該歧化反應器將低沸點磷污染 物轉換成中間及尚沸點礙污染物。低沸點破污染物可包含 PH3及PH2C1。中間沸點磷污染物包含pHC12。高沸點磷污 染物包含PC13。 該方法可進一步包含藉由一歧化反應器後四氯化矽分離 器自一歧化反應流出物中之低沸點磷污染物分離四氣化矽 以及中間及高沸點磷污染物。 該方法可進一步包含在一高沸點磷分離器中自該四氣化 矽及該中間沸點磷污染物分離該等高沸點磷污染物。 該方法可進一步包含拋棄該等高沸點磷污染物。 該方法可進-步包含:使該等中間沸點磷污染物循環至 該歧化反應益,及藉由該歧化反應器將中間沸點磷污染物 轉換成高沸點磷污染物。 -種製造石夕之方法可總結為包含:藉由一化學氣相沈積 反應器對包括三氣钱之-混合物執行一化學氣相沈積; 自該化學氣相沈積反應器回收妙;自該化學氣相沈積反應 器釋放-流出物混合物,該流出物混合物包括氫氣、四氣 152888.doc •27· 201130733 化矽以及氣化氫、二氯矽烷及三氣矽烷中之一者或多者; 及藉由一 CVD反應器後原位氣化氫反應器將來自該化學氣 相沈積反應器之該流出物混合物中之氣化氫轉換成氣矽 烷。 該方法可進一步包含在將來自該化學氣相沈積反應器之 該流出物混合物供應至該CVD反應器後原位氣化氫反應器 之前藉由一 CVD反應器後熱交換器控制來自該化學氣相沈 積反應器之該流出物混合物之溫度。藉由一 CVD反應器後 熱交換器控制來自該化學氣相沈積反應器之該流出物混合 物之該溫度可包含將來自該化學氣相沈積反應器之該流出 物混合物之該溫度控制為自約200。(:至約700。(:之一範圍中 之一溫度。藉由一 CVD反應器後熱交換器控制來自該化學 氣相沈積反應器之該流出物混合物之該溫度可包含將來自 該化學氣相沈積反應器之該流出物混合物之該溫度控制為 自約300°C至約600。〇之一範圍中之一溫度。藉由一 cvD反 應器後熱交換器控制來自該化學氣相沈積反應器之該流出 物混合物之該溫度可包含將來自該化學氣相沈積反應器之 該流出物混合物之該溫度控制為約5〇〇〇c之一溫度。該 CVD反應器後熱交換器可在將來自該化學氣相沈積反應器 之該流出物混合物供應至該CVD反應器後原位氣化氫反應 器之前將熱自來自該CVD反應器後原位氣化氫反應器之一 流出物交換至來自該化學氣相沈積反應器之該流出物混合 物。來自該化學氣相沈積反應器之該流出物混合物在該 CVD反應器後原位氣化氫反應器内之一滯留時間可係小於 152888.doc -28 - 201130733 約10分鐘。該流出物混合物在該CVD反應器後原位氣化氫 反應器内之該滯留時間可係小於約5分鐘。該流出物混合 物在該CVD反應器後原位氯化氫反應器内之該滯留時間可 係小於約1分鐘。該流出物混合物在該CVD反應器後原位 氣化氫反應器内之該滯留時間可係小於約0.5分鐘。該流 出物混合物在該CVD反應器後原位氯化氫反應器内之該滞 留時間可係小於約0.1分鐘。 該方法可進一步包含藉由一第一冷卻系統冷卻來自該 CVD反應器後原位氣化氫反應器之一流出物混合物。 該方法可進一步包含藉由一壓縮機系統將來自該CVD反 應器後原位氣化氫反應器之該流出物混合物轉換成一氣_ 液兩相混合物。 該方法可進一步包含藉由一第二冷卻系統冷卻來自該壓 縮機系統之該氣-液兩相混合物。該第二冷卻系統可包含 一第二CVD反應器後熱交換器。 該方法可進一步包含藉由一 CVD反應器後四氯化矽吸收 器/氫氣分離器自來自該CVD反應器後原位氣化氫反應器 之該流出物混合物分離氫氣。 該方法可進一步包含使藉由該CVD反應器後四氣化矽吸 收器/氫氣分離器分離之該氫氣中之三氣矽烷達到飽和。 該方法可進一步包含混合來自該CVD反應器後四氣化矽 吸收器/氫氣分離器之該氫氣與至該化學氣相沈積反應器 之一進料。 該方法可進一步包含藉由一 CVD反應器後四氯化矽/三 152S88.doc -29· 201130733 氯矽烷分離器自來自該CVD反應器後四氣化矽吸收器/氫 氣分離器之s亥流出物混合物中之四氣化矽分離器三氣矽 烧。 該方法可進一步包含:將來自該四氣化石夕/三氣石夕院分 離器之三氯矽烧饋送至該四氣化矽吸收器/氫氣分離器; 及使該三氣矽烷與該四氣化矽吸收器/氫氣分離器中之四 氯化發反應。 該方法可進一步包含在將該三氣矽烷饋送至該四氣化矽 吸收器/氫氣分離器之前調整該三氣碎院之溫度。調整該 溫度可包含將該溫度調整至約35 °C。 該方法可進一步包含混合來自該四氯化矽/三氯矽烷分 離器之該三氣矽烷與至該化學氣相沈積反應器之一進料。 該方法可進一步包含:冷卻該三氣矽烷;及自該三氯矽 烷放出氣相較低沸點材料。 該方法可進一步包含藉由一高沸點磷分離器自該四氯化 矽分離包含PC13之高沸點磷污染物。 該方法可進一步包含混合該三氯矽烷與至該化學氣相沈 積反應器之一進料。 一種製造矽之方法,其可總結為包含:藉由一化學氣相 沈積反應器對包括三氯矽烷之一混合物執行一化學氣相沈 積;自該化學氣相沈積反應器回收石夕;自該化學氣相沈積 反應器釋放一流出物混合物,該流出物混合物包括氫氣、 四氣化矽及氣化氫、二氣矽烷以及三氣矽烷中之一者或多 者;及藉由一第一冷卻系統冷卻來自該化學氣相沈積反應 152888.doc -30- 201130733 器之該流出物混合物。 該方法可進一步包含藉由一 CVD反應器後氫氣分離器自 來自該化學氣相沈積反應器之該經冷卻流出物混合物分離 氫氣;及藉由一 CVD反應器後氣化氫分離器自來自該化學 氣相沈積反應器的已藉由該CVD反應器後氫氣分離器自其 移除氫氣之該流出物混合物分離氯化氫。 該方法可進一步包含:將來自該CVD反應器後氯化氫分 離器之該氯化氫及曱矽烧饋送至一個氣化氫-甲矽烷反應 器;及藉由該氣化氫-甲矽烷反應器使該曱矽烷與該氣化 氫反應以產生包含三氣矽烷之氯矽烷。 該方法可進一步包含藉由一CVD反應器後甲矽烷/氣化 氫反應器使來自該CVD反應器後氣化氫分離器之該氣化氫 與曱矽烷及該化學氣相沈積反應器流出物混合物反應。 一種製造矽之方法可總結為包含:藉由一歧化反應器使 包括三氣矽烷及甲矽烷之一歧化反應器進料反應以形成包 括二氯矽烧、三氣矽烷及四氣化矽之一歧化反應器產物; 藉由一化學氣相沈積反應器對來自該歧化反應器之一混合 物執行一化學氣相沈積以將矽沈積在該化學氣相沈積反應 器内之一基板上;及自該化學氣相沈積反應器回收石夕。使 一歧化反應器進料反應以形成包括二氣矽烷、三氣矽烷及 四氯化石夕之一歧化反應產物可包含最佳化該歧化反應器之 操作條件以最大化二氣矽烷之產生。 該方法可進一步包含控制包括三氣矽烷及甲矽烷之該歧 化反應器進料之一組合物以使得該歧化反應器進料中氣對 152888.doc •31 · 201130733 矽之比率可係在約1:1與約3:1之間的範圍。 該方法可進一步包含控制包括三氯矽烷及甲矽烷之該歧 化反應器進料之一組合物以使得該歧化反應器進料中氣對 矽之該比率可係在約1:1與約2.5:〗之間的範圍。 該方法可進一步包含控制包括三氣矽烷及甲矽烷之該歧 化反應器進料之一組合物以使得該歧化反應器進料中氣對 矽之該比率可係在約1:1與約2:1之間的範圍》 該方法可進一步包含控制包括三氣矽烷及甲矽烷之該歧 化反應器進料之一組合物以使得該歧化反應器進料中氯對 矽之該比率可係在約1.25:1與約1.75:1之間的範圍。 該方法可進一步包含控制包括三氣矽烷及f矽烷之該歧 化反應器進料之一組合物以使得該歧化反應器進料中氯對 矽之該比率可係在約1.75:1與約2·25:1之間的範圍。 該方法可進一步包含控制包括三氣矽烷及甲矽烷之該歧 化反應器進料之一組合物以使得該歧化反應器進料中氣對 矽之該比率可為約1.5:1。 該方法可進一步包含控制包括三氣矽烷及甲矽烷之該歧 化反應器進料之一組合物以使得該歧化反應器進料中氯對 矽之該比率可為約2:1。 該方法可進一步包含在一歧化反應器後四氣化矽分離器 中自該歧化反應器之一產物分離四氯化矽以產生一歧化反 應器後四氣化矽耗盡之流及一歧化反應器後富含四氣化_ 之流。該方法可進一步包含藉由一歧化反應器後二氯石夕 烷/三氯矽烷分離器自該歧化反應器後四氣化矽耗盡之流 152888.doc -32· 201130733 中之三氯矽烷分離二氣矽烷以產生一歧化反應器後富含二 氣矽烷之材料及一歧化反應器後富含三氯矽烷之材料。該 歧化反應器後S含一亂碎烧之材料可係基本上純二氣碎 烷。 該方法可進一步包含判定該歧化反應器後富含二氣石夕烷 • 之材料中之二氣矽烷濃度。 該方法可進一步包含判定該歧化反應器後富含三氯矽烷 之材料中之三氣矽烷濃度。 該方法可進一步包含將該歧化反應器後富含二氣矽烷之 材料儲存於二氣矽烷儲存系統中。 該方法可進一步包含將該歧化反應器後富含三氯矽烷之 材料儲存於三氣矽烷儲存系統中。 該方法可進一步包含:混合該富含二氣矽烷之材料與該 田3 —氯矽烷之材料以產生一化學氣相沈積反應器進料; 及將該進料供應至該化學氣相沈積反應器。混合該富含二 氣矽烷之材料與該富含三氣矽烷之材料可包含混合來自該 氣夕烷儲存系統之虽含二氯矽烷之材料。混合該富含二 氣石夕烧之材料與該富含三氣石夕烧之材料可包含混合來自該 ^氣石夕㈣存系統之富含三氣我之材料。混合該富含二 a矽烷之材料與該富含三氣矽烷之材料以產生一化學氣相 沈積反應器進料可包含調整該化學氣相沈積反應器進料中 氣對碎之一比率。 Μ二古#可進步包含將該歧化反應器後富含二氣石夕烧之 直接供應至該化學氣相沈積反應器。 152888.doc •33· 201130733 該方法可進一步包含將該歧化反應器後富含三氯矽烷之 材料直接供應至該化學氣相沈積反應器。 該方法可進一步包含:混合該歧化反應器後富含二氣矽 烧之材料與該歧化反應器後富含三氯石夕炫之材料;及將歧 化反應器後富含二氣矽烷之材料與歧化反應器後富含三氯 石夕烧之材料之該混合物供應至該CVD反應器。 該方法可進一步包含:混合該歧化反應器後富含三氣矽 烷之材料與甲矽烷;及將歧化反應器後富含三氣矽烷之材 料與曱石夕院之該混合物供應至該歧化反應器。 種方法可總結為包含:製造及供應甲石夕院;及根據本 文中所主張之方法處理該曱矽烷。 【實施方式】 在圖式中,相同參考編 - ,•·乃,丁从〜,「 等圖式中元件之尺寸及相對位置未必按比例繪出。舉例 ° 各種元件之形狀及角度未按比例繪出,且該等元件 之一些元件係任意擴大及放置以改良圖式之易辨性。 外,所繪元件之特;^形狀並非意欲表達任何關於該等特 :件之實際形狀之資訊,且僅為易於在圖式 擇。 為提供對所揭示各種實施例之透徹理解, 句令:S; # θ 1 ^ 具體細節。然而,熟悉此項技術者將 ' =等具體細節中之一者或多者或藉助其他方法 细與用2踐實施例。在其他實例中,未聞述顯示S 、製備矽之系統相關聯之眾所周知結構(包含, 152888.doc -34- 201130733 不限於混合器、分離器、氣化器及重結合反應器之内部結 構)以避免不必要地模糊對該等實施例之說明。 除非上下文另有要求,否則在下文說明書及申請專利範 圍通篇中,應將措辭「包括(c〇mprjse)」及其變化形式(例 如,包括(comPrises)」及「包括(comprising)」)解釋為開 放、涵蓋性意義’亦即「包含但不限於」。 在此說明書通篇中,對「一個實施例」、或「一實施 例」、或「另一貫施例」、或「一些實施例」、或「某些實 施例」之提及意指結合該實施例所述之一特定指代特徵、 結構或特性包含於至少一個實施例中。因此,在此說明書 通篇中不同位置出現片語「在一個實施例中」、或「在一 實施例中」、或「在另一實施例中」、或「在一些實施例 中」、或「在某些實施例中」,未必皆指代相同實施例。此 外,特定特徵、結構或特性可以任一適合方式組合於一個 或多個實施例中。 應注意,除非内容另外明確指出,否則此說明書及隨附 申請專利範圍中所用之單數形式「一(a&an)」及「該」皆 包含複數個指示物。因此,舉例而言,對氣矽烷之提及包 含單個氯矽烷物質,但亦可包含多種氣矽烷物質。亦應注 意,除非内容另外明確指出,否則通常將術語「或」採用 為包含「及/或」在内的意義。 如本文中所用,術語「甲矽烷(silane)」係指siH4。如本 文中所用,術語「曱矽烷(silanes)」一般用於指代曱矽烷 及/或其任何衍生物。如本文中所用,術語「氣矽烷 152888.doc -35- 201130733 (chlorosilane)」係指甲矽烷衍生物,其中一個或多個氫已 由氯取代。術語「氣矽烷(chlorosilanes)」係指一種或多種 氣妙烧物質。氣硬烧由以下各項例不:單氣秒院(S iH3 c 1或 MCS);二氣矽烷(SiH2Cl2或DCS);三氯矽烷(siHCl3或 TCS),或四氣梦院’亦稱為四氯化妙(Sici4或STC)。甲石夕 院之溶點及沸點隨著分子中氣數目之增加而增加。因此, 舉例而言,曱矽烷在標準溫度及壓力下係一氣體,而四氣 化矽係一液體。 如本文中所用’除非另有規定’否則術語「氣」係指原 子氣,亦即’具有式C1之氯,而非分子氣,亦即,具有式 Ch之氯。如本文中所用,術語「矽」係指原子矽,亦即 具有式S i之石夕。 如本文中所用’術語「化學氣相沈積反應器」或「Cvd 反應器」係一指西門子式或「熱線」反應器。術語「化學 氣相沈積反應器」與「CVD反應器」可互換使用。 除非另有規定,否則術語「石夕」及「多晶石夕」可在指代 本文中所揭示方法及系統之石夕產物時在本文中互換使用。 除非另有規定,否則應將本文中表達為百分比之濃度理 解為意指以莫耳%計之濃度。 本文中所提供之標題僅為便利所需且並不解釋各種實施 例之範圍或意義。 圖1A顯示用於藉由化學氣相沈積製備矽之一系統之一組 態之一實例性實施例,其中連續不斷地回收利用反應副產 品且將其等用作該系統内之反應物。圖1B至1L顯示用於藉 152888.doc -36· 201130733 由化學氣相沈積製備秒之一系統之各部分之實例性實施 例,其中該等實施例係關於用於回收利用及/或移除化學 氣相沈積反應器中所產生之各種副產品之可選製程。 各圖中相同之系統組件藉由相同編號標籤識別。可具有 類似功能但在不同圖令係不相同之系統組件藉由不同編號 標籤識別。該等圖中所顯示的提供給系統之任一特定組件 之一形狀或形式並不意欲解釋或限制該特定組件。 圖1A顯示包含回收利用及使用某些反應副產品之用於製 備矽之一系統100之一示意圖。儘管本文中對圖1A之說明 可一般而言係指某些呈液相之反應物及副產品,但應瞭 解,該等反應物及副產品可以蒸氣相或氣相或液相與蒸氣 相或氣相之一組合存在於系統100之部分或全部中 _ 依於操作條件或需要絲依於任何特定反應物或副產品: 特性。熟習此項技術者將易於瞭解在操作中,系統ι〇〇ρ 特定位置處之某些反應物及/或副產品將必須以蒸氣相另 氣相存在。類似地,將瞭解’在操作中,系統1〇〇内特另 位置處之某些反應物及/或副產品將必須以液相存在。^ 例中,有利地,可控制條件以使得將所有氣態相 枓保持在溶液中以產生一統—液相。舉例而言 内之壓力維持在W高以將所有氡態材料保持在溶液中之 位準處。在其他條件中,有利地, ώ ~ J尺叹條件以使得可 自-液釋放某些氣態材料。舉例而言’氣態材料 低系統之某一部分之壓力而自該系統之曰 釋放。 刀η之一液相 152888.doc -37- 201130733 在系統100(例如圖1A中所例示及本文所述之彼系統)之 實施例中,在一歧化反應器前曱矽烷/氣矽烷混合器106中 組合甲矽烷與四氣化矽以產生至一歧化反應器U4之一進 料混合物。在其中歧化反應器i 14中之反應混合物在反應 器114之操作溫度下意欲為一液體時之某些實施例中,將 曱石夕烷及四氣化矽之進料壓力各自控制為充分高以將所得 混合物維持為一液體。在此等實施例中,將甲矽烷及四氣 化石夕供應至混合器106且在足夠高以在歧化反應器之所需 操作溫度下將供應至歧化反應器之混合物維持為一液體之 壓力下將該等反應物之混合物供應至反應器114。在某些 此等實施例中,可將施加至個別反應物及供應至反應器 114之混合物之壓力維持在高於該等反應物或該混合物之 /包點約5 0碎/平方英叫·表壓之一壓力下。舉例而言,當歧 化反應器114意欲在約60°C之一溫度下操作時,可將施加 在反應物之混合物上之壓力維持在約1 5〇磅/平方英吋表壓 至約400磅/平方英吋表壓之一範圍中。 在某些實施例中’可對作為一液體供應之甲矽烷預先氣 化且然後作為一蒸氣添加至四氯化矽,其可被吸收至液體 四氣化石夕中。在此等實施例中,一靜態混合器或某一其他 混合裝置可混合甲矽烷蒸氣與液體四氣化矽。在此等實施 例中’當歧化反應器在材料呈液相之情形下操作時,必須 將甲石夕院蒸氣完全吸收至液相中以使得在該反應器中僅存 在一單個相。 如必要’可加熱或冷卻四氣化矽進料以將正饋送至反應 152888.doc -38- 201130733 器之混合物之溫度維持在所需位準下,例如60。〇。 如在圖1A之特定實施例中所圖解說明,管道1〇1將曱石夕 烷供應至一可選幫浦102»在某些實施例中,管道1〇1可在 冷溫度(例如,-30°C )下供應作為一液體之曱矽烷。舉例而 言,可在用以在管道1〇1將甲矽烷供應至幫浦1〇2之條件下 維持曱石夕烧呈液體形式之充分壓力下供應曱石夕烧。在一個 此實施例中,藉由幫浦1 〇2施加之壓力可係如此以在操作 該系統之條件下液化甲矽烷流及/或將甲矽烷維持在一液 體狀態。舉例而言,在一個實施例中,壓力可係如此以在 介於約40°c與約90。(:之間的一溫度下將曱矽烷維持在一液 體狀態中。在另一實施例中’壓力可係如此以在介於約 45 C與約80°C之間的一溫度下將甲矽烷維持在一液體狀態 中。在又另一實施例中,壓力可係如此以在介於約50°C與 約70°C之間的一溫度下將曱矽烷維持在一液體狀態中。在 一進一步實施例中,壓力可係如此以在介於約5 5。〇與約 65°C之間的一溫度下將曱矽烷維持在一液體狀態中。在一 特定此實施例中,壓力可係如此以在約60°C之一溫度下將 曱矽烷維持在一液體狀態中。在一個此實施例中,幫浦 102可施加在約1〇磅/平方英吋表壓至約5〇〇磅/平方英吋表 壓之範圍内之壓力。在另一此實施例中,幫浦102可施加 在約5〇磅/平方英吋表壓至約3〇〇磅/平方英吋表壓之範圍内 之壓力。在又另一此實施例中,幫浦102可施加在約100 方/平方英吋表壓至約2〇〇碎/平方英吋表壓之範圍内之壓 力。在一進一步此實施例中,幫浦102可施加在約18〇磅/ 152888.doc -39- 201130733 平方英吋表壓處之壓力。 在某些實施例中,系統100可不包含幫浦102。在此等實 施例中,一曱矽烷球形或圓柱形儲槽可將曱矽烷液體或蒸 氣直接供應至系統10〇。在沒有幫浦102之情形下操作之系 統100之其他實施例中,一甲矽烷儲存容器可將液體曱矽 烧供應至一熱交換器以使該曱矽烷氣化。可在一升高壓力 下(例如’ 300磅/平方英吋表壓)供應來自一甲矽烷儲存容 器之蒸氣空間或來自一熱交換器之甲矽烷蒸氣。甲矽烷蒸 氣易於與液體氣矽烷混合β 在某些實施例内’如上文及本文中別處所論述,系統 1〇〇可在該等反應物之一些或全部呈氣相之情形下操作。 在某些此等實施例中,系統1〇〇之一些部分可在反應物呈 氣相之情形下操作,而該系統之其他部分可在反應物呈液 相之情形下操作。 在存在幫浦102時,其可表示任何類型之適合於遞送呈 一氣相或液相之材料或流體之抽送系統或設備。在某些實 施例中,幫浦1〇2必須係適合於給甲矽烷充分地加壓以使 得在將甲㈣供應至系統⑽及系統⑽操作之條件下甲石夕 烷仍呈-液體形式之-類型。在其他實施例中,幫浦1〇2 可將甲矽烷蒸氣供應至系統1〇〇。舉例而言,幫浦ι〇2可係 -活塞式幫浦’在該活塞式幫浦令一活塞操作以以一受控 速率將流體驅動或供應至系統⑽中,其中該流體可係一 液體或-蒸氣。作為一進一步實例,幫浦1〇2可係一加壓 計量式幫浦’其中壓力驅動流體且一計量機構控制流速。 152888.doc •40- 201130733 幫浦102經由管道ι〇4將曱矽烷抽送至歧化反應器前甲石夕 烷/氣矽烷混合器106。另外,管道163將四氣化矽遞送至 歧化反應器前甲矽烷/氯矽烷混合器丨〇6。經由管道163遞 送之四氯化矽可包含在系統100之操作之某些態樣期間作 為一副產品產生之四氯化矽,如下文進一步所論述。此四 氣化矽可稱為回收利用的四氯化矽。經由管道163供應之 四氯化矽可包含在系統1〇〇之操作期間產生之其他反應副 產品,舉例而言,單氯矽烷、二氣矽烷、三氣矽烷及氯化 氫。該等物質可稱為回收利用的單氣矽烷、回收利用的二 氣矽烷、回收利用的三氯矽烷及回收利用的氣化氫。經由 管道163提供之四氣化矽可進一步包含已經添加用於調整 歧化反應器剛曱石夕烧/氣碎烧混合器丨〇6内反應物之混合物 中氣對矽之莫耳比之額外四氯化矽,如本文中別處進一步 所論述。此經添加以調整經由管道163遞送之四氣化矽之 數量且因此歧化反應器前甲矽烷/氣矽烷混合器106中之反 應物中氣對矽之莫耳比之四氯化矽可稱為「補給」四氣化 矽。在某些實施例中,亦可添加三氣矽烷以幫助調整該等 反應物中氣對矽之莫耳比。此三氣矽烷可稱為「補給」三 氣石夕烧。在其他實施例中,純氯化氣可與甲石夕烧反應以幫 助調整該等反應物巾氯时之莫耳比。此純氣化氫可稱為 補給」氣化氫。在某些實施例中,氣對矽之目標莫耳比 可在4 2.1與約3.9:1之間的範圍中。在其他實施例令,該 目標莫耳比可在約2.5:1與約3.5:1之間的範圍中。在又其他 實施例中,該目標莫耳比可在約2.8:1與約33:1之間的範圍 152888.doc -41 · 201130733 中。在又其他實施例中,該 目軚莫耳比可在約3:1與約 3.2 ’ 1之間的範圍中。在一個杳& y , 固實施例中’該目標莫耳比可為 約2.8:1。在另一實施例中, 你日彳示冥耳比可為約3 :1。在 又一實施例中,該目標莫耳比可為約32:1。在又一實施例 中。玄目;^莫耳比可為約3 ·3: i。γ乍為補給四氣化石夕供應之 四氣化料常經高度純化。作為補給三氯㈣供應之三氣 矽烷通常亦經高度純化。 在某些實施例中,歧化反應器前甲矽烷/氣矽烷混合器 1〇6可係各種適合於混合液體流體之混合器中之任一種之 一者。在其他實施例中’歧化反應器前甲矽烷/氣矽烷混 合器106可選自各種適合於混合呈一蒸氣或氣態狀態之流 體之混合器中之任一種。在某些實施例中,此等混合器可 係靜態混合器。在其他實施例中,此等混合器可係動態混 合器。The method may further comprise separating the gasification hydrogen from the hydrogen depleted stream after the CVD reactor by a CVD reactor to produce a CVD 152888. Doc -21- 201130733 After the reactor is depleted of hydrogen, rich in hydrogenated hydrogen and a hydrogen depleted gas stream after a CVD reactor. The method can further comprise transporting the hydrogen depleted, hydrogen rich hydrogen-rich stream from the CVD reactor to the hydrogen sulfide storage system after the CVD reactor. The method may further comprise transporting the hydrogen depleted, vaporized hydrogen depleted stream from the CVD reactor to the hydrogenation separator after the CVD reactor to a procarbation reactor pre-gas decane mixer. The method may further comprise separating the four gasified ruthenium from the hydrogen depleted, vaporized hydrogen depleted stream of dichlorosilane and trichlorosilane by a CVD reactor post-gas stream separator to produce a CVD reactor. The ruthenium tetrachloride-rich stream and a CVD reactor are rich in dioxane and a gas rich in trioxane. The method may further comprise separating the dioxane to produce a CVD from the trioxane in the dioxane-rich, trichlorodecane-rich stream after the CVD reactor by a dioxane/trioxane separator. The reactor is enriched in a stream of dioxane and a stream rich in trioxane after a CVD reactor. The method may further comprise mixing the stream of trichloromethane-rich stream after the CVD reactor with a stream of trichloromethane-rich stream after a disproportionation reactor. The method may further comprise mixing the stream of four vaporized helium with the stream of dioxane rich after the CVD reactor by mixing the CVD reactor with a post-chlorocycler mixer in a CVD reactor. Mixing the ruthenium tetrachloride-rich stream with the chloranil-rich stream by a CVD reactor post-gas decane mixer comprises selecting a quantity of dioxin broth and adding the amount of dioxin to the broth The CVD reactor is followed by a gas decane mixer, thereby controlling the disproportionation reactor and the chemical vapor phase 152S88. Doc -22- 201130733 The concentration of dioxane in this feed to the deposition reactor. The concentration of dioxane in the feed to the chemical vapor deposition reactor can include controlling the ratio of gas to helium in the feed to the disproportionation reaction. Controlling the ratio of chlorine to # in the feed to the disproportionation reactor can include controlling one of the replenishment of the gasification cesium, trioxane, and dioxane added to the feed to the disproportionation reactor or More. The method can further comprise supplying dichloromethane from the dioxane/trioxane separator to the chemical vapor deposition reactor. Dioxane from the dioxane/dioxane separator is supplied to the chemical vapor deposition reactor and the concentration of dioxane in the feed to the chemical vapor deposition reactor. The method can further comprise storing all or a portion of the dichlorosilane in a dioxane storage system or disposing the dioxite by a dichlorosilane treatment system. The method may further comprise: separating hydrogen and hydrogen chloride from the chemical vapor deposition reactor effluent mixture by a hydrogenation/hydrogenation hydrogenation reactor to produce a hydrogen/hydrogen-rich hydrogen stream and a hydrogen/vaporized hydrogen depleted stream; separating the hydrogen from the hydrogenated hydrogen/hydrogenated hydrogen stream by a CVD reactor prehydrogen/gasification hydrogen separator; and The vaporized hydrogen of the hydrogen/gasification hydrogen separator in front of the CVD reactor is sent to a hydrogen chloride storage system. The method may further comprise mixing the hydrogen from the hydrogen/gasification hydrogen separator before the CVD reactor and the disproportionation reactor from the gasification ruthenium separator after the disproportionation reactor by a Cvd reactor premixer Rich in three gas 152888. Doc -23- 201130733 The flow of decane. The method may further comprise: feeding the gas-depleted, gas-rich hydrogen-rich stream and the gastrope from the gasification hydrogen separator of the CVD reactor to a procarbation reactor before the metformin/hydrogenation reaction And the decane/hydrogenation reactor is reacted with the vaporized hydrogen by the disproportionation reactor to produce a gas decane comprising dioxane and tetragas hydride. The temperature of one of the pre-methane/hydrogen chloride reactors in the disproportionation reactor can be about 5 Torr and 7 Torr. The range between 匸. The temperature in the pre-methane/hydrogenation reactor of the disproportionation reactor can be between about loot and about 600. (: between the gas range. The temperature in the front of the gasification reactor of the disproportionation reactor can be between about 3 〇〇〇c and about 5 气 between the gas range β. The disproportionation reactor The temperature in the pre-methane/hydrogenation reactor may be about 500. 至^ to the disproportionation reactor before the decane/hydrogenation reactor of the feed, the molar ratio of methotane to vaporized hydrogen It may be in the range of from about 0:1 to about 2: 1. The molar ratio of methotane to hydrogenated hydrogen may be from about 0:1 to about 1. The range of 5:1. The molar ratio of decane to hydrogenated hydrogen may range from about 0:1 to about 1:1. The molar ratio of decane to hydrogenated hydrogen may be about 0. 33:1. Reacting the metformane with the hydrogenated gas by a disproportionation reactor pre-sintering/gasification hydrogen reactor may comprise causing the cerium to be burned with the chlorinated nitrogen in the presence of a metal-containing catalyst reaction. The metal-containing catalyst may comprise copper. The metal-containing catalyst may comprise substantially pure stone infused copper. The method may further comprise: a hydrogen depleted, vaporized hydrogen depleted stream after mixing a certain amount of the CVD reactor by the disproportionation reactor front gas calciner; decane/hydrogen chloride from the disproportionation reactor The gas of the reactor 152888. Doc -24- 201130733 After calcination, one of the antimony tetrachloride separators from a disproportionation reactor is enriched in a stream of four gasification helium; and as needed, 'purified antimony tetrachloride, purified tris One of the mixture of purified two gas broth or purified four gasified hydrazine, purified three gas stone 垸 垸 or purified one gas stone 炫 • • one or more of one mixture, and controlled from each The amount of elemental gas and elemental helium supplied by the source is maintained to maintain a selected ratio of chlorine to one of the stones in the feed to the disproportionation reactor. The method may further comprise depleting the hydrogen-depleted, hydrogen-rich hydrogen stream and decane from the gasification hydrogen separator of the CVD reactor by a CVD reactor post-methane/hydrogenation reactor and The chemical vapor deposition reactor effluent mixture reacts. The method may further comprise mixing the oxime gas depleted, hydrogen chloride-rich stream with the catalysis and the effluent mixture of the chemical vapor deposition reactor in the decane/gasification wind reactor after the CVD reactor Previously, the temperature of the chemical vapor deposition reactor effluent mixture in the post-cluster/hydrogen chloride reactor of the Cvd reactor was adjusted to about 200. 〇 with about 600. Between (3) adjusting the temperature of the chemical vapor deposition reactor effluent in the decane/hydrogen chloride reactor after adjusting the CVD reactor may comprise adjusting the temperature by a CVD reactor post heat exchanger. Adjusting the temperature of the chemical vapor deposition reactor effluent mixture in the methine/hydrogen chloride reactor after adjusting the hydrogenation with the methazine and the chemical vapor deposition reactor effluent mixture may include adjusting the temperature To about 400 ° C and about 500. (: between. After the CVD reactor, in the feed of the Asahi Hyun/hydrogen chloride reactor, the molar ratio of one of the hydrogen chloride to the hydrogen chloride reactor can be from about 0. a range of from 1 to about 2: 1. To the feed of the decane/hydrogen chloride reactor after the CVD reactor, the form of decane is 152888. Doc •25· 201130733 One of the hydrogenated hydrogens can be in the range from about 0:1 to about i · 5: i. To the feed to the C VD reactor, the Mobi ratio of one of the hydrogen chloride to the hydrogen chloride in the feed can be in the range from about 〇:丨 to about 1:. To the feed of the C VD reactor, the molar ratio of the sulphur to the hydrogen chloride in the feed of the calculus/gasification hydrogen reactor may be about 0. 33:1. The method can further comprise adjusting a flow rate in the decane/hydrogenation reactor after the CVD reactor such that the vaporized hydrogen-methano azine CVD effluent mixture is after the decane/hydrogenation reaction of the CVD reactor One of the residence times in the vessel is sufficient to allow complete reaction of the vaporized hydrogen with the formazan. The Cvd reactor after the ruthenium > / gasification hydrogen reactor may comprise a sufficient total volume of one or more reaction chambers to provide a residence time suitable to allow a complete reaction of the vaporized hydrogen with the methine. The residence time of the effluent mixture in the decane/hydrogenation reactor after the CVD reactor can be less than about one minute. The residence time of the effluent mixture in the decane/hydrogenation reactor after the CVD reactor can be less than about 5 minutes. The residence time of the effluent mixture in the decane/hydrogenation reactor after the CVD reactor can be less than about 1 minute. The residence time of the effluent mixture in the decane/hydrogenation reactor after the CVD reactor may be less than about 0. 5 minutes. The residence time of the effluent mixture in the ruthenium oxide/hydrogenation reactor after the CVD reactor may be less than about 〇.  1 minute. The method may further comprise mixing one of monooxane, dioxane and trioxane by a disproportionation reactor pre-gas streamer mixer prior to reacting the disproportionation reactor feed by the disproportionation reactor or Many of them are fed with the disproportionation reactor "one of monooxane, dioxane and trioxane" 152888. Doc -26- 201130733 or more of the molar ratio of ruthenium tetrachloride can range from about 〇 to about 3:1. The molar ratio of the one or more of monooxane, dichlorodecane and trioxane to antimony tetrachloride may range from about 〇 to about 25: i. The one or more of the single gas decane, the two gas decane and the three gas decane may be at about 0. 1:1 to about 1: range of i. The one or more of the single gas sulphur, the dioxane and the trioxane may have a molar ratio of about one of the four gasification enthalpy. 5:1. The method can further comprise converting the low boiling point phosphorus contaminant to an intermediate and boiling point contaminant by the disproportionation reactor. Low boiling point pollutants can include PH3 and PH2C1. The intermediate boiling phosphorus contaminant contains pHC12. High boiling point phosphorus contaminants contain PC13. The method may further comprise separating the four gasified ruthenium and the intermediate and high boiling phosphorus contaminants from the low boiling point phosphorus contaminants in the disproportionation reaction effluent by a helium tetrachloride separator after a disproportionation reactor. The method can further comprise separating the high boiling phosphorus contaminants from the four vaporized helium and the intermediate boiling point phosphorus contaminants in a high boiling point phosphorus separator. The method can further comprise discarding the high boiling phosphorus contaminants. The method can further comprise: recycling the intermediate boiling point phosphorus contaminants to the disproportionation reaction benefit, and converting the intermediate boiling point phosphorus contaminants to high boiling point phosphorus contaminants by the disproportionation reactor. - a method for manufacturing Shi Xi can be summarized as comprising: performing a chemical vapor deposition on a mixture comprising three gas by a chemical vapor deposition reactor; recovering from the chemical vapor deposition reactor; from the chemical Vapor deposition reactor release-effluent mixture, the effluent mixture comprising hydrogen, four gas 152888. Doc •27· 201130733 矽 and one or more of hydrogenation, dichloromethane and trioxane; and the in-situ gasification hydrogen reactor after a CVD reactor will be derived from the chemical vapor deposition reaction The vaporized hydrogen in the effluent mixture is converted to gas decane. The method may further comprise controlling the chemical gas from the CVD reactor after the effluent mixture from the chemical vapor deposition reactor is supplied to the CVD reactor before the gasification reactor is in situ. The temperature of the effluent mixture of the phase deposition reactor. Controlling the temperature of the effluent mixture from the chemical vapor deposition reactor by a CVD reactor post heat exchanger can include controlling the temperature of the effluent mixture from the chemical vapor deposition reactor to be self-contained 200. (: to about 700. (: one of the temperatures in one of the ranges. The temperature of the effluent mixture from the chemical vapor deposition reactor can be controlled by a CVD reactor after the heat exchanger can contain the chemical gas from The temperature of the effluent mixture of the phase deposition reactor is controlled to be one of a range from about 300 ° C to about 600. The temperature is controlled by a cvD reactor followed by a heat exchanger to control the chemical vapor deposition reaction. The temperature of the effluent mixture of the apparatus may comprise controlling the temperature of the effluent mixture from the chemical vapor deposition reactor to a temperature of about 5 〇〇〇c. The CVD reactor post heat exchanger may be The effluent mixture from the chemical vapor deposition reactor is supplied to the CVD reactor and the effluent exchange of one of the in-situ gasification hydrogen reactors from the CVD reactor is performed before the in-situ gasification of the hydrogen reactor To the effluent mixture from the chemical vapor deposition reactor. The effluent mixture from the chemical vapor deposition reactor may have a residence time in the in-situ gasification hydrogen reactor after the CVD reactor. At 152888. Doc -28 - 201130733 About 10 minutes. The residence time of the effluent mixture in the in situ gasification hydrogen reactor after the CVD reactor can be less than about 5 minutes. The residence time of the effluent mixture in the in situ hydrogen chloride reactor after the CVD reactor can be less than about 1 minute. The residence time of the effluent mixture in the in situ gasification hydrogen reactor after the CVD reactor may be less than about 0. 5 minutes. The residence time of the effluent mixture in the in situ hydrogen chloride reactor after the CVD reactor may be less than about 0. 1 minute. The method can further comprise cooling an effluent mixture from the in situ gasification hydrogen reactor from the CVD reactor by a first cooling system. The method can further comprise converting the effluent mixture from the in situ gasification hydrogen reactor from the CVD reactor to a gas-liquid two phase mixture by a compressor system. The method can further include cooling the gas-liquid two phase mixture from the compressor system by a second cooling system. The second cooling system can include a second CVD reactor post heat exchanger. The method can further comprise separating hydrogen from the effluent mixture from the in situ gasification hydrogen reactor from the CVD reactor by a CVD reactor followed by a helium tetrachloride absorber/hydrogen separator. The method can further comprise saturating the trioxane in the hydrogen separated by the four vaporized helium absorber/hydrogen separator after the CVD reactor. The method can further comprise mixing the hydrogen from the four vaporized helium absorber/hydrogen separators of the CVD reactor with one of the feeds to the chemical vapor deposition reactor. The method may further comprise ruthenium tetrachloride/three 152S88 after being passed through a CVD reactor. Doc -29· 201130733 The chlorosilane separator was triturated from a four-gas enthalpy separator in a mixture of four liquefied helium absorbers/hydrogen separators from the CVD reactor. The method may further comprise: feeding the trichlorohydrazine from the four gasification stone/three gas stone shed separator to the four gas enthalpy absorber/hydrogen separator; and making the three gas decane and the four gas The tetrachlorination reaction in the hydrazine absorber/hydrogen separator. The method can further include adjusting the temperature of the three gas eliminator prior to feeding the trioxane to the four gas enthalpy absorber/hydrogen separator. Adjusting the temperature can include adjusting the temperature to about 35 °C. The method can further comprise mixing the trioxane from the ruthenium tetrachloride/trichlorodecane separator with one of the feeds to the chemical vapor deposition reactor. The method can further comprise: cooling the trioxane; and withdrawing a lower gas phase material from the gas phase from the trichlorosilane. The method may further comprise separating the high boiling phosphorus contaminant comprising PC13 from the antimony tetrachloride by a high boiling point phosphorus separator. The method can further comprise mixing the trichlorodecane with one of the feeds to the chemical vapor deposition reactor. A method for producing a crucible, which can be summarized as comprising: performing a chemical vapor deposition on a mixture comprising one of trichloromethane by a chemical vapor deposition reactor; recovering Shixia from the chemical vapor deposition reactor; The chemical vapor deposition reactor releases a first-rate product mixture comprising one or more of hydrogen, four gasified ruthenium and gasification hydrogen, dioxane, and trioxane; and by a first cooling System cooling comes from the chemical vapor deposition reaction 152888. Doc -30- 201130733 This effluent mixture. The method may further comprise separating hydrogen from the cooled effluent mixture from the chemical vapor deposition reactor by a CVD reactor followed by a hydrogen separator; and a gasification hydrogen separator from the CVD reactor The effluent mixture of the chemical vapor deposition reactor from which the hydrogen separator is removed by the hydrogen separator after the CVD reactor separates hydrogen chloride. The method may further comprise: feeding the hydrogen chloride and helium from the hydrogen chloride separator of the CVD reactor to a gasification hydrogen-methane reactor; and using the gasification hydrogen-methane reactor to make the crucible The decane reacts with the vaporized hydrogen to produce a chlorodecane comprising trioxane. The method may further comprise passing the vaporized hydrogen and decane from the gasification hydrogen separator of the CVD reactor and the chemical vapor deposition reactor effluent by a CVD reactor post-methane/hydrogenation reactor. The mixture reacted. A method for producing a crucible can be summarized as comprising: reacting a disproportionation reactor comprising one of trioxane and formoxane by a disproportionation reactor to form one of dichloroanthracene, trioxane, and tetragas hydride. Disproportionation reactor product; performing a chemical vapor deposition on a mixture from the disproportionation reactor by a chemical vapor deposition reactor to deposit ruthenium on one of the substrates in the chemical vapor deposition reactor; The chemical vapor deposition reactor recovers Shi Xi. Feeding the disproportionation reactor to form a disproportionation reaction product comprising dioxane, trioxane, and tetrachloride may include optimizing the operating conditions of the disproportionation reactor to maximize the production of dioxane. The method can further comprise controlling a composition of the disproportionation reactor feed comprising trioxane and formoxane such that the disproportionation reactor feeds a gas pair 152888. Doc •31 · 201130733 The ratio of 矽 can be in the range between about 1:1 and about 3:1. The method can further comprise controlling the composition of the disproportionation reactor feed comprising trichlorodecane and formoxane such that the ratio of gas to enthalpy in the disproportionation reactor feed can be between about 1:1 and about 2. 5: 〗 between the range. The method can further comprise controlling the composition of the disproportionation reactor feed comprising trioxane and formoxane such that the ratio of gas to helium in the disproportionation reactor feed can be between about 1:1 and about 2: The range between 1 the method may further comprise controlling the composition of the disproportionation reactor feed comprising trioxane and formoxane such that the ratio of chlorine to rhodium in the disproportionation reactor feed may be about 1 . 25:1 and about 1. The range between 75:1. The method can further comprise controlling the composition of the disproportionation reactor feed comprising trioxane and f decane such that the ratio of chlorine to rhodium in the disproportionation reactor feed can be about 1. The range between 75:1 and about 2.25:1. The method can further comprise controlling the composition of the disproportionation reactor feed comprising trioxane and formoxane such that the ratio of gas to enthalpy in the disproportionation reactor feed can be about 1. 5:1. The method can further comprise controlling the composition of the disproportionation reactor feed comprising trioxane and formoxane such that the ratio of chlorine to rhodium in the disproportionation reactor feed can be about 2:1. The method may further comprise separating the ruthenium tetrachloride from the product of the disproportionation reactor in a post-disproportionation reactor to generate a disproportionation reactor, and then dissolving the depleted gas and disproportionation reaction. After the device is rich in four gasification _ stream. The method may further comprise a stream of four gasified deuterium depleted from the disproportionation reactor by a disproportionation reactor followed by a diclofenane/trichloromethane separator 152888. Doc -32·201130733 The trichloromethane is separated from dioxane to produce a dioxane-rich material after a disproportionation reactor and a trichloromethane-rich material after a disproportionation reactor. The S-containing material after the disproportionation reactor can be substantially pure di-halogen. The method can further comprise determining a concentration of dioxane in the material enriched in dioxetane after the disproportionation reactor. The method can further comprise determining a concentration of trioxane in the trichloromethane-rich material of the disproportionation reactor. The method can further comprise storing the dioxane-rich material after the disproportionation reactor in a dioxane storage system. The method can further comprise storing the trichloromethane-rich material after the disproportionation reactor in a trioxane storage system. The method may further comprise: mixing the dioxane-rich material with the field 3-chlorodecane material to produce a chemical vapor deposition reactor feed; and supplying the feed to the chemical vapor deposition reactor . Mixing the dioxane-rich material with the trioxane-rich material may comprise mixing the methylene chloride-containing material from the gas storage system. Mixing the material rich in the two-stone stone and the material rich in the three-stone stone may include mixing the material rich in three gases from the gas stone system. Mixing the dioxane-rich material with the trioxane-rich material to produce a chemical vapor deposition reactor feed can include adjusting a ratio of gas to fragmentation in the chemical vapor deposition reactor feed. Μ二古# can be improved by directly supplying the disproportionation reactor to the chemical vapor deposition reactor. 152888. Doc • 33· 201130733 The method may further comprise supplying the chloroform-rich material after the disproportionation reactor directly to the chemical vapor deposition reactor. The method may further comprise: mixing the material of the gas-enriched gas after the disproportionation reactor with the material of the trichlorosilane-rich material after the disproportionation reactor; and the material rich in dioxane after the disproportionation reactor This mixture of material rich in smectite after the disproportionation reactor is supplied to the CVD reactor. The method may further comprise: mixing the trioxane-rich material and the methotane after the disproportionation reactor; and supplying the mixture of the trioxane-rich material and the waste stone chamber to the disproportionation reactor after the disproportionation reactor . The method can be summarized as comprising: manufacturing and supplying a stone garden; and treating the decane according to the methods claimed herein. [Embodiment] In the drawings, the same reference numerals are used, and the dimensions and relative positions of the components in the drawings are not necessarily drawn to scale. For example, the shapes and angles of various components are not proportionate. Drawing, and some of the elements of the elements are arbitrarily expanded and placed to improve the legibility of the drawings. In addition, the features of the elements are not intended to express any information about the actual shape of the elements. It is only for ease of illustration. To provide a thorough understanding of the various embodiments disclosed, the order: S; # θ 1 ^ specific details. However, those skilled in the art will '=etc. Or more or by other means, the embodiment is practiced in detail. In other examples, the well-known structure associated with the system for preparing S and preparing sputum is not described (inclusive, 152888. Doc-34-201130733 is not limited to the internal structure of the mixer, separator, gasifier and recombination reactor) to avoid unnecessarily obscuring the description of the embodiments. Unless the context requires otherwise, the wording "including (c〇mprjse)" and its variants (eg, including (comPrises)" and "comprising") should be interpreted throughout the following description and claims. It is open and covers the meaning of 'including but not limited to'. References throughout the specification to "one embodiment" or "an embodiment" or "an embodiment" or "an embodiment" or "an embodiment" means One of the specific reference features, structures, or characteristics described in the embodiments is included in at least one embodiment. Thus, the phrase "in one embodiment", or "in an embodiment", or "in another embodiment" or "in some embodiments", or "In some embodiments," the same does not necessarily refer to the same embodiment. In addition, the particular features, structures, or characteristics may be combined in one or more embodiments in any suitable manner. It should be noted that the singular forms "a", "a", "the" and "the" are used throughout the specification and the appended claims. Thus, for example, reference to gas decane includes a single chlorodecane species, but may also include a plurality of gas decane species. It should also be noted that the term "or" is often used to mean the meaning of "and/or" unless the context clearly dictates otherwise. As used herein, the term "silane" refers to siH4. As used herein, the term "silanes" is generally used to refer to decane and/or any derivative thereof. As used herein, the term "gas hexane 152888. Doc-35-201130733 (chlorosilane) is a nail tropane derivative in which one or more hydrogens have been replaced by chlorine. The term "chlorosilanes" means one or more gas-burning substances. The gas burn is not caused by the following examples: single gas second (S iH3 c 1 or MCS); dioxane (SiH2Cl2 or DCS); trichloromethane (siHCl3 or TCS), or four gas dreams' also known as Tetrachlorinated (Sici4 or STC). The melting point and boiling point of the stone hospital increase with the increase in the number of molecules in the molecule. Thus, for example, decane is a gas at standard temperature and pressure, while a liquefied gas is a liquid. As used herein, unless otherwise specified, the term "qi" refers to an atomic gas, i.e., a chlorine having the formula C1, rather than a molecular gas, that is, a chlorine having the formula Ch. As used herein, the term "矽" refers to an atomic 矽, i.e., has the formula S i. As used herein, the term "chemical vapor deposition reactor" or "Cvd reactor" refers to a Siemens or "hot line" reactor. The terms "chemical vapor deposition reactor" and "CVD reactor" are used interchangeably. Unless otherwise specified, the terms "石夕" and "polycrystalline stone" may be used interchangeably herein to refer to the methods and systems disclosed herein. Unless stated otherwise, the concentration expressed herein as a percentage should be understood to mean the concentration in % by mole. The headings provided herein are for convenience only and do not explain the scope or meaning of the various embodiments. Figure 1A shows an exemplary embodiment of one of the configurations for one of the processes for preparing ruthenium by chemical vapor deposition, in which the by-products of the reaction are continuously recovered and used as reactants in the system. Figures 1B to 1L are shown for borrowing 152888. Doc -36· 201130733 An exemplary embodiment of a portion of a system for preparing a second by chemical vapor deposition, wherein the embodiments are related to use in recycling and/or removing a chemical vapor deposition reactor Optional process for various by-products. The same system components in each figure are identified by the same numbered label. System components that can have similar functions but differ in different graphics are identified by different numbered tags. The shape or form of any one of the specific components provided to the system as shown in the figures is not intended to explain or limit the particular component. Figure 1A shows a schematic of one of the systems 100 for preparing crucibles for recycling and using certain reaction by-products. Although the description of FIG. 1A herein generally refers to certain reactants and by-products in the liquid phase, it should be understood that such reactants and by-products may be in a vapor phase or a gas phase or a liquid phase with a vapor phase or a gas phase. One combination exists in part or all of system 100 depending on the operating conditions or needs to be dependent on any particular reactant or by-product: characteristics. Those skilled in the art will readily appreciate that during operation, certain reactants and/or by-products at specific locations of the system will have to be vapor-phased. Similarly, it will be appreciated that in operation, certain reactants and/or by-products at other locations within the system will have to be present in the liquid phase. In an example, advantageously, the conditions can be controlled such that all gaseous phase enthalpy is maintained in solution to produce a unified liquid phase. For example, the pressure inside is maintained at W high to maintain all of the cerium material at the level of the solution. In other conditions, advantageously, the conditions are such that some gaseous material can be released from the liquid. For example, a gaseous material releases the pressure of a portion of the system from the helium of the system. One of the liquid phase of the knife 152888. Doc -37- 201130733 In an embodiment of system 100 (eg, as illustrated in Figure 1A and described herein), a combination of methotane and tetragasification in a decane/gas decane mixer 106 prior to a disproportionation reactor The hydrazine is produced to produce a feed mixture to one of the disproportionation reactors U4. In certain embodiments where the reaction mixture in the disproportionation reactor i 14 is intended to be a liquid at the operating temperature of the reactor 114, the feed pressures of the sulphur and the sulphur gas are each controlled to be sufficiently high. The resulting mixture was maintained as a liquid. In such embodiments, the methotoxane and the four gas fossils are supplied to the mixer 106 and maintained at a pressure sufficient to maintain the mixture supplied to the disproportionation reactor at a desired operating temperature of the disproportionation reactor. A mixture of such reactants is supplied to reactor 114. In some such embodiments, the pressure applied to the individual reactants and the mixture supplied to the reactor 114 can be maintained at a rate of about 50 rpm/square of the reactants or the mixture. The gauge pressure is under one pressure. For example, when the disproportionation reactor 114 is intended to operate at a temperature of about 60 ° C, the pressure applied to the mixture of reactants can be maintained at about 15 psig to about 400 lbs. / square inch gauge pressure in one of the ranges. In some embodiments, the methotane supplied as a liquid may be pre-gasified and then added as a vapor to the ruthenium tetrachloride, which may be absorbed into the liquid four gas fossils. In such embodiments, a static mixer or some other mixing device may mix the methane vapor with the liquid tetragas. In such embodiments, when the disproportionation reactor is operated with the material in the liquid phase, the sapphire vapor must be completely absorbed into the liquid phase such that there is only a single phase in the reactor. If necessary, the four gasification enthalpy feed can be heated or cooled to feed positively to the reaction 152888. Doc -38- 201130733 The temperature of the mixture is maintained at the required level, for example 60. Hey. As illustrated in the particular embodiment of FIG. 1A, the conduit 1〇1 supplies the strontium oxide to an optional pump 102» In certain embodiments, the conduit 1〇1 can be at a cold temperature (eg, - Supply as a liquid decane at 30 ° C). For example, the gangue can be supplied at a sufficient pressure to maintain the sputum in a liquid form under the condition that the pipe 〇1 supplies the dimethyl hydrazine to the pump 1 〇2. In one such embodiment, the pressure applied by the pump 1 〇 2 can be such that the methanane stream is liquefied and/or the formane is maintained in a liquid state under operating conditions of the system. For example, in one embodiment, the pressure can be between about 40 ° C and about 90. (: maintaining the decane in a liquid state at a temperature between. In another embodiment, the pressure may be such that the decane is at a temperature between about 45 C and about 80 ° C. Maintained in a liquid state. In yet another embodiment, the pressure may be such that the decane is maintained in a liquid state at a temperature between about 50 ° C and about 70 ° C. In a further embodiment, the pressure may be such that the decane is maintained in a liquid state at a temperature between about 55 Torr and about 65 ° C. In a particular embodiment, the pressure may be The decane is maintained in a liquid state at a temperature of about 60 ° C. In one such embodiment, the pump 102 can be applied at a pressure of about 1 〇 psig to about 5 〇〇 lbs. In the other embodiment, the pump 102 can be applied to a range of about 5 psig to about 3 psig. In another such embodiment, the pump 102 can be applied at a pressure of about 100 square feet per square inch to about 2 broken squares per square inch. The range of the pressure of the pressure. In this embodiment a further embodiment, pump 102 may be applied about 18〇 lbs / 152,888. Doc -39- 201130733 The pressure of the square inch gauge pressure. In some embodiments, system 100 may not include pump 102. In such embodiments, a monooxane spherical or cylindrical storage tank can supply decane liquid or vapor directly to system 10〇. In other embodiments of the system 100 that operate without the pump 102, a monodecane storage vessel can supply liquid helium to a heat exchanger to vaporize the decane. The vapor space from the monomethine storage vessel or the methanol vapor from a heat exchanger can be supplied at an elevated pressure (e.g., < 300 psig). The decane vapor is readily miscible with the liquid gas decane. In certain embodiments, as discussed above and elsewhere herein, the system can be operated with some or all of the reactants in the vapor phase. In some such embodiments, portions of system 1 may be operated with the reactants in a gaseous phase, while other portions of the system may be operated with the reactants in a liquid phase. In the presence of the pump 102, it can represent any type of pumping system or apparatus suitable for delivering materials or fluids in a gas phase or liquid phase. In certain embodiments, the pump 1〇2 must be adapted to sufficiently pressurize the methotrex such that the formazan is still in a liquid form under the conditions in which the feed of the system (10) and the system (10) is supplied. -Types of. In other embodiments, the pump 1〇2 can supply the methane vapor to the system 1〇〇. For example, a pump 〇 2 can be a piston-type pump in which the piston is operated to drive or supply fluid to the system (10) at a controlled rate, wherein the fluid can be a liquid Or - steam. As a further example, the pump 1〇2 can be a pressurized metering pump where the pressure drives the fluid and a metering mechanism controls the flow rate. 152888. Doc • 40- 201130733 Pump 102 pumps decane to the disproportionation reactor pre-methodane/gas decane mixer 106 via line ι〇4. In addition, line 163 delivers the four gasified hydrazine to the disproportionation reactor pre-methane/chloromethane mixer 丨〇6. The ruthenium tetrachloride delivered via line 163 may comprise ruthenium tetrachloride produced as a by-product during certain aspects of the operation of system 100, as discussed further below. This four-gas enthalpy can be referred to as recycled ruthenium tetrachloride. The ruthenium tetrachloride supplied via line 163 may contain other reaction by-products produced during the operation of system 1, for example, monochlorodecane, dioxane, trioxane, and hydrogen chloride. These substances may be referred to as recycled mono-halogenane, recycled dioxane, recycled trichlorodecane, and recycled hydrogenated hydrogen. The four vaporized helium provided via line 163 may further comprise an additional four of the molar ratio of gas to helium that has been added to adjust the mixture of reactants in the disproportionation reactor Ganggang Xi/Crusher Mixer 6 Barium chloride, as further discussed elsewhere herein. This is added to adjust the amount of the four vaporized helium delivered via line 163 and thus the molybdenum tetrachloride of the gas to the molar ratio of the reactants in the pre-reactor pre-methane/gas hexane mixer 106 can be referred to as "Supply" is four gasifications. In certain embodiments, trioxane may also be added to help adjust the molar ratio of gas to enthalpy in the reactants. This trioxane can be called "supply" three gas stone. In other embodiments, the pure chlorinated gas can be reacted with the calculus to help adjust the molar ratio of the reactants to the chlorine. This pure gasification hydrogen can be called replenishing "hydrogenated hydrogen." In some embodiments, the target molar ratio of gas to enthalpy is at 4 2. 1 with about 3. In the range between 9:1. In other embodiments, the target molar ratio can be about 2. 5:1 and about 3. In the range between 5:1. In still other embodiments, the target molar ratio can be about 2. The range between 8:1 and about 33:1 is 152888. Doc -41 · 201130733. In still other embodiments, the target molar ratio can be between about 3:1 and about 3. 2 in the range between 1 and 1. In a 杳& y, the embodiment may have a target molar ratio of about 2. 8:1. In another embodiment, your daylight indication can be about 3:1. In yet another embodiment, the target molar ratio can be about 32:1. In yet another embodiment. Xuanmu; ^ Mo Erbi can be about 3 · 3: i.乍 乍 is a replenishment of four gas fossils. The four gas materials are often highly purified. Trioxane, which is supplied as a supply of trichloro(tetra), is also generally highly purified. In certain embodiments, the disproportionation reactor pre-methane/gas hexane mixer 1 〇 6 can be any of a variety of mixers suitable for mixing liquid fluids. In other embodiments, the disproportionation reactor pre-methane/gas decane mixer 106 can be selected from any of a variety of mixers suitable for mixing fluids in a vapor or gaseous state. In some embodiments, such mixers can be static mixers. In other embodiments, such mixers may be dynamic mixers.

在歧化反應器前甲矽烷/氣矽烷混合器1〇6混合經由管道 104提供之甲矽烷與經由管道163提供之四氣化矽之後,管 道10 8將所得混合物自歧化反應器前甲石夕烧/氣石夕烧混合器 106供應至歧化反應器前溫度控制器11〇。歧化反應器前溫 度控制器110將經由管道108供應之包括曱石夕烧及四氣化石夕 之混合物加熱至自約40t至約9〇t之範圍之一溫度。在某 些此等實施例中’歧化反應器前溫度控制器i 10將經由管 道108供應之混合物加熱至自約45°C至約801之範圍之一 溫度。在其他此等實施例中,歧化反應器前溫度控制器 110將經由管道108供應之混合物加熱至自約5〇。(:至約70°C I52888.doc -42· 201130733 之範圍之-溫度。在又其他此等實施例中,歧化反應器前 溫度控制器110將經由管道108供應之混合物加熱至自約 55 C至約65°C之範圍之-溫度。在特定此等實施例中,經 由管道108供應之混合物所加熱至之溫度可係約6〇。〇。管 道112將包括甲矽烷及四氣化矽之經加熱混合物自加熱器 110供應至歧化反應器114。包括回收利用的四氯化矽之混 合物亦可能與該四氣化矽一起包含某些其他回收利用的氣 矽烷,包含二氣矽烷。包括回收利用的四氣化矽之混合物 亦可包含回收利用的氣化氫。歧化反應器114包含一觸 媒,該觸媒適合於催&甲矽烷與某些氣矽 使分子進行重排從而產生(特定而言)三氣錢。已使狀 觸媒包含活化木炭、各種聚合離子交換樹脂及某些金屬, 例如銅。催化離子交換樹脂包含具有三級胺或四級敍基團 之彼等樹脂。 在某些實施例中,在歧化反應器中使用聚合離子交換樹 脂作為觸媒可需要將經由管道112遞送之經加熱混合物維 持在約55。(:與約8〇t之間的溫度下。在其他實施例中, 可將經由管道112遞送之經加熱混合物之溫度維持在約 ㈣與約7代之間。在又其他實施例中,可將經由管道 112遞送之經加熱混合物之溫度維持在約6〇t>c。 另一選擇為,在某些實施例中,在歧化反應器中使用其 他類型觸媒(例如,金屬觸媒)可允許歧化反應器 至少約為300t高。 度 歧化反應器之經由管道116遞送之輸出包含三氯矽烷, 152888.doc -43- 201130733 以及四氣化石夕及二氣石夕烧。然而,其僅包含極低量之甲石夕 烧’此乃因曱石夕院在歧化反應器114内被轉換成各種氣石夕 烷’例如二氣矽烷及三氣矽烷《舉例而言,在其中將氯對 矽之比率維持在3.2:1且將歧化反應器内之溫度維持在6(rc 下之一個實施例中,在該歧化反應器產物中甲矽烷與單氣 矽烷之量可分別為2x1 0·5及7x1 0·4莫耳分數。如上文所述 及本文中別處所論述,將四氯化石夕添加至供應至歧化反應 器114之反應混合物以將反應混合物内梦對氣之一莫耳比 維持為適合驅動反應器内之歧化反應,從而最佳地產生三 氣碎烧。此等反應混合物因此通常包含過量四氣化梦且因 此經由管道116自歧化反應器114遞送之反應產物之混合物 可保留過量四氣化矽。在如本文中所述系統1〇〇之操作之 某些實施例中’來自歧化反應器114之反應產物中之各種 氣石夕烧之相對量可係如下:約10%二氣矽烷;約8〇%三氯 石夕院·’約10%四氣化矽。調整氣對矽之莫耳比可對反應產 物中二氯矽烷之量產生大的影響。舉例而言,在某些實施 例中’將莫耳比自3 : i增加至3·丨:丨可將二氣矽烷之量自總 氣石夕院之約10%降低至約6%。將莫耳比增加至3 2:丨可進一 步將二氣矽烷之量降低至總氣矽烷之約3.8%。將莫耳比增 加至3.3:1可仍進一步將二氣矽烷之量降低至總氣矽烷之約 2.0。/〇。因此,令人驚訝地,歧化反應產物中二氣矽烷之量 對該等反應物中氣對矽之莫耳比極其敏感。 歧化反應器中之壓力可由一背壓控制閥控制。當經啟動 以調整反應器内之壓力時,該閥可方便地將材料釋放至一 152888.doc -44 - 201130733 製程中儲存罐。視需要’亦可將來自此罐之材料供應回至 該系統中以在該反應器内進行處理。 管道116將反應產物之混合物自歧化反應器U4遞送至— 歧化反應器後四氣化矽分離器118 ’其自反應混合物分離 並移除過量四氣化矽。管道120自歧化反應器後四氣化石夕 分離器118輸送過量四氯化矽以用於回收利用,如下文進 一步所論述。當回收利用時,如本文中別處所論述,經由 管道120自歧化反應器後四氣化矽分離器ι18提供之四氣化 矽可與補給四氯化矽及來自系統100内之其他源之四氣化 矽混合。歧化反應器後四氯化矽分離器11 8可採用各種用 於曱矽烷及/或氣矽烷之分離器形式中之任一種,舉例而 言,適合於蒸餾之一設備。 在歧化反應器後四氯化矽分離器11 8移除過量四氯化石夕 之後’管道122將歧化反應器114中之反應之剩餘產物之混 合物自歧化反應器後四氯化矽分離器118輸送至一 CVD反 應器前氣化器128。經由管道122輸送之材料通常主要包含 三氣矽烷,其中具有較少量之二氣矽烷及僅低量之曱石夕烧 及四氯化矽。在CVD反應器前氣化器128内將熱施加至藉 由管道122供應之混合物以將該混合物轉換成一蒸氣。在 某些實施例中,產物可自歧化反應器後四氣化矽分離器 118作為一蒸氣直接移除’因而避免對CVD反應器前氣化 器128之需要。 管道130將經氣化混合物輸送至CVD反應器前混合器 132。與經由管道122至CVD反應器前氣化器128之進料一 152888.doc -45- 201130733 樣’經由管道130自氣化器128輸送至混合器132之經氣化 混合物通常主要包含三氯矽烷,其中具有較少量之二氣矽 炫及低量之甲矽烷及四氣化矽。可將藉由管道13〇輸送之 混合物中之二氣矽烷控制在預先判定對多晶矽之製造係最 佳之一量處。管道130中二氣矽烷之量可藉由調整管道1〇8 中之材料中氣對矽之比率來控制。對該比率之控制可藉由 調整藉由管道163運送之材料之内容及管道163及104之内 容供應至混合器106之相對速率來方便地達成。 亦將氫氣供應至CVD反應器前混合器132。經由管道152 供應之氫氣可係自該製程内之其他位置回收之氫氣。舉例 而言,可在化學氣相沈積反應器内之反應之後回收並回收 利用該氫氣,如下文所述。如必要’亦可自一外部源(未 顯示)將氫氣提供至CVD反應器前混合器132。 管道134將蒸氣混合物(主要包括三氣矽烷蒸氣及氫氣) 自CVD反應器前混合器132輸送至CVD反應器136。CVD反 應器136包含可在其上沈積二氧化矽之一基板。作為在三 氯矽烷、氫氣與各種其他反應物或CVD設備内出現之中間 產物之間發生各種反應之結果,CVD反應器136製造石夕。 在CVD反應器内發生之反應可包含(但不限於)以下反應中 之一者或多者:After the disproportionation reactor pre-methane/gas hexane mixer 1〇6 is mixed with the methanized gas supplied via the line 104 and the four gasified ruthenium supplied via the line 163, the pipe 10 8 is subjected to the self-disproportionation reactor before the stone is burned. / gas stone night burner 106 is supplied to the front of the disproportionation reactor temperature controller 11A. The disproportionation reactor pre-warm controller 110 heats the mixture comprising the gangue and the four gas fossils supplied via line 108 to a temperature ranging from about 40 t to about 9 〇t. In some of these embodiments, the disproportionation reactor front temperature controller i 10 heats the mixture supplied via the conduit 108 to a temperature ranging from about 45 ° C to about 801. In other such embodiments, the disproportionation reactor front temperature controller 110 heats the mixture supplied via line 108 to about 5 Torr. (: to a temperature of about 70 ° C I52888.doc -42 · 201130733 - In still other such embodiments, the disproportionation reactor front temperature controller 110 heats the mixture supplied via line 108 to approximately 55 C To a temperature in the range of about 65 ° C. In certain such embodiments, the temperature to which the mixture supplied via line 108 is heated may be about 6 Torr. The line 112 will include methotrexate and tetragas hydride. The heated mixture is supplied from the heater 110 to the disproportionation reactor 114. The mixture comprising recycled ruthenium tetrachloride may also contain some other recycled gas decane, including dioxane, including the recycle. The mixture of four gasified ruthenium used may also contain recycled hydrogenation gas. The disproportionation reactor 114 contains a catalyst suitable for catalyzing the rearrangement of molecules with certain gas oximes to produce ( In particular, three gas. The catalyst has been activated to contain activated charcoal, various polymeric ion exchange resins and certain metals, such as copper. The catalytic ion exchange resin comprises a resin having a tertiary amine or a quaternary group. In certain embodiments, the use of a polymeric ion exchange resin as a catalyst in a disproportionation reactor may require maintaining the heated mixture delivered via conduit 112 at a temperature of between about 55 (: and about 8 Torr). In other embodiments, the temperature of the heated mixture delivered via conduit 112 can be maintained between about (four) and about 7 generations. In still other embodiments, the temperature of the heated mixture delivered via conduit 112 can be maintained at Approximately 6 〇 t > c. Alternatively, in certain embodiments, the use of other types of catalyst (e.g., metal catalyst) in the disproportionation reactor may allow the disproportionation reactor to be at least about 300 t high. The output delivered via line 116 contains trichlorodecane, 152888.doc -43-201130733 and four gas fossils and two gas stone smoldering. However, it only contains very low amounts of 甲石夕烧' this is because Shi Xiyuan is converted into various gas sulphones such as dioxane and trioxane in the disproportionation reactor 114. For example, in which the ratio of chlorine to rhodium is maintained at 3.2:1 and the disproportionation reactor is The temperature is maintained at 6 (In one embodiment of rc, the amount of methotrexate and monoxane in the disproportionation reactor product can be 2x10.5 and 7x10.4 mole fractions, respectively, as described above and elsewhere herein. Adding tetrachloride to the reaction mixture supplied to the disproportionation reactor 114 to maintain a molar ratio of one of the reaction mixture in the reaction mixture to drive the disproportionation reaction in the reactor, thereby optimally producing trigaster These reaction mixtures thus typically contain an excess of four gasification dreams and thus the mixture of reaction products delivered from the disproportionation reactor 114 via line 116 may retain an excess of four gasified hydrazine. Operation of the system as described herein. In some embodiments, the relative amounts of the various gas smolderings in the reaction product from the disproportionation reactor 114 can be as follows: about 10% dioxane; about 8% triclosan. 'about 10% four. Gasification. Adjusting the molar ratio of the gas to the oxime can have a large effect on the amount of dichlorosilane in the reaction product. For example, in some embodiments, the molar ratio is increased from 3: i to 3: 丨: 丨 can reduce the amount of dioxane from about 10% of the total gas stone court to about 6%. Increasing the molar ratio to 3 2: 丨 further reduces the amount of dioxane to about 3.8% of the total gas decane. Increasing the molar ratio to 3.3:1 still further reduces the amount of dioxane to about 2.0 of the total gas decane. /〇. Thus, surprisingly, the amount of dioxane in the disproportionation reaction product is extremely sensitive to the molar ratio of gas to rhodium in the reactants. The pressure in the disproportionation reactor can be controlled by a back pressure control valve. When activated to adjust the pressure in the reactor, the valve conveniently releases the material to a storage tank in the process of 152888.doc -44 - 201130733. Material from this tank can also be supplied back to the system for processing in the reactor as needed. The line 116 delivers a mixture of reaction products from the disproportionation reactor U4 to the - disproportionation reactor and then the four gasification ruthenium separator 118' separates from the reaction mixture and removes excess four gasified ruthenium. The conduit 120 is self-distributing the reactor after the four gasification fossil separators 118 deliver excess helium tetrachloride for recycling, as discussed further below. When recycled, as discussed elsewhere herein, the four vaporized helium provided by the four gasification helium separators ι 18 after the self-disproportionation reactor via line 120 can be replenished with helium tetrachloride and other sources from within the system 100. Gasification and mixing. The disproportionation reactor post-cyllium tetrachloride separator 11 can employ any of a variety of separator forms for decane and/or gas decane, for example, one suitable for distillation. After the disproportionation reactor, the antimony tetrachloride separator 11 removes excess tetrachloride, the conduit 122 transports the mixture of the remaining products of the reaction in the disproportionation reactor 114 from the disproportionation reactor after the helium tetrachloride separator 118. To a CVD reactor front gasifier 128. The material conveyed via line 122 typically contains primarily trioxane, with a relatively small amount of dioxane and only a low amount of vermiculite and hafnium tetrachloride. Heat is applied to the mixture supplied by conduit 122 in the CVD reactor pre-gasifier 128 to convert the mixture to a vapor. In certain embodiments, the product can be directly removed from the gasification helium separator 118 as a vapor from the disproportionation reactor' thus avoiding the need for a CVD reactor pre-gasifier 128. The conduit 130 delivers the vaporized mixture to the CVD reactor premixer 132. The gasification mixture delivered from the gasifier 128 to the mixer 132 via line 130 to the CVD reactor pre-gasifier 128 via line 152888.doc -45 - 201130733 typically contains primarily trichloromethane. Among them, there are a relatively small amount of dioxane and a low amount of methotane and four gasified hydrazine. The dioxane in the mixture conveyed by the pipe 13 控制 can be controlled at a predetermined amount which is the optimum for the production of the polycrystalline silicon. The amount of dioxane in the conduit 130 can be controlled by adjusting the ratio of gas to helium in the material in the conduit 1〇8. Control of the ratio can be conveniently accomplished by adjusting the content of the material transported by conduit 163 and the relative rates at which the contents of conduits 163 and 104 are supplied to mixer 106. Hydrogen gas is also supplied to the CVD reactor front mixer 132. Hydrogen supplied via line 152 may be hydrogen recovered from other locations within the process. For example, the hydrogen can be recovered and recycled after the reaction in the chemical vapor deposition reactor, as described below. Hydrogen may also be supplied to the CVD reactor premixer 132 from an external source (not shown) if necessary. The conduit 134 delivers the vapor mixture (mainly comprising trioxane vapor and hydrogen) from the CVD reactor premixer 132 to the CVD reactor 136. The CVD reactor 136 includes a substrate on which cerium oxide can be deposited. The CVD reactor 136 is manufactured as a result of various reactions occurring between trichloromethane, hydrogen, and various other reactants or intermediate products occurring in the CVD apparatus. The reaction occurring within the CVD reactor may include, but is not limited to, one or more of the following reactions:

SiHCl3+H2-^Si+3HCl 4 SiHCl3㈠3SiCl4+2H2+Si SiHCl3+HCl ㈠ SiCl4+H2 SiHCl3 ㈠ SiCl2+HCl 152888.doc • 46- 201130733SiHCl3+H2-^Si+3HCl 4 SiHCl3(1)3SiCl4+2H2+Si SiHCl3+HCl (I) SiCl4+H2 SiHCl3 (I) SiCl2+HCl 152888.doc • 46- 201130733

SiH2Cl2 —Si + 2HC1 SiH2Cl2+SiCl4^2SiHCl3 SiH4 —Si+2H2 在CVD反應器13 6中將石夕沈積在基板上之製程稱為西門子 或「熱線」製程。此製造石夕之製程通常發生在超過6〇〇。〇 之溫度下。西門子過程因此需要高能量輸入,其中之大部 分作為熱消散。由於與CVD反應器之操作之高能量需要相 關聯之成本’因而在用於根據本文中所述新穎製程製造石夕 之系統中別處所達成之能3E節省提供經濟上優點,其等有 助於補償與CVD反應器之操作相關聯之成本。 自CVD反應136移除^夕產物138。在沈積反應之後cvd 反應器136中剩餘之反應物及反應副產品自cvd反應器136 作為氣態材料之一混合物釋放且經由管道14〇輸送。經由 管道140移除之氣態材料之混合物可包含(但不限於)以下各 項中之一者或多者:氫氣、氣化氫、單氣矽烷、二氯矽 烷、三氯矽烷、四氯化矽及油性污染物,包含聚曱矽烷基 化合物。氣態混合物中之該等油性污染物可以(舉例而言) 一蒸氣或一氣溶膠之一形式存在。 較佳地,自該氣態混合物移除該等油性污染物。在一個 實施例中,隨著離開CVD反應器之氣態材料之溫度降低, 該等油性污染物冷凝,藉此自該氣態混合物移除該等污染 物。因此可將此等經冷凝污染物作為流體油性冷凝物自該 系統定期移除。在另-實施例中’過量的反應物及氣矽烷 副產品可藉由蒸餾自較高沸點材料(例如該等油性污染物) 152888.doc • 47· 201130733 移除。在某些實施例中,蒸餾可係使用一蒸餾塔執行。在 其他實施例中,可在具有氣體蒸餾薄膜之情形下實施蒸 顧。 在圖1Α中所圖解說明之實施例中,管道14〇將氣態混合 物輸送至一 CVD反應器後第一冷卻器142。管道143將經冷 卻材料輸送至CVD後傾析器169。CVD後傾析器169自較高 沸點材料(例如四氣化矽、三氯矽烷及二氣矽烷)分離較低 彿點材料(例如’氫氣、氯化氫及較低沸點曱矽烷)。CVD 後傾析器169可係適合於供在將較高沸點及較低沸點材料 彼此分離中使用之任何設計。舉例而言,在一個實施例 中’ CVD後傾析器169可包含一蒸餾設備。在另一實施例 中,CVD後傾析器169可包含一分離塔床,其中較低沸點 材料上升以自頂部流出且較高沸點材料自底部流出。管道 145輸送較高沸點甲矽烷以用於稍後在該製程中與類似材 料進行處理,如下文所述。管道171將較低沸點材料輸送 至CVD反應器後壓縮機144。CVD反應器後壓縮機144給藉 由管道171供應之氣態混合物加壓以將氣態混合物轉換成 液體氯矽烷與氫氣及氯化氫氣體以及氣矽烷蒸氣之一混合 物。官道147將此兩相氣-液混合物輸送至一 CVD反應器後 第二冷卻器146。CVD反應器後第二冷卻器146進一步自兩 相混合物中之氣相液化較高沸點材料以最佳化後續自混合 物移除較高沸點甲矽烷。管道148將此混合物輸送至一 CVD反應器後氫氣分離器15〇。CVD反應器後氫氣分離器 150可係適合於供在自氣矽烷之兩相氣體/液體混合物移除 152888.doc •48- 201130733 氫氣中使用之任何設計,在該混合物中,氫氣係懸浮或溶 解的。在一個實施例中,舉例而言,可允許氫氣自經由管 道148遞送之兩相氣體/液體混合物中釋出,且選擇性地擴 散通過一氫氣專用分離膜,舉例而言,一聚合物膜、一金 屬膜或經設計且用於彼目的之一碳膜。另一選擇為,在另 一實施例中’氫氣可藉由蒸餾移除。如此移除之氫氣可進 一步藉由使其通過含有各種吸收劑(例如,活化碳)之一吸 收床來純化。將在CVD反應器後氫氣分離器15〇中自經由 管道148遞送之液體混合物移除之氫氣經由管道ι52作為回 收利用的風氣輸送至CVD反應器前混合器132。如上文所 述,CVD反應器前混合器132混合回收利用的氫氣與氣矽 烧(主要為三氯矽院)以饋送至CVD反應器136以進一步製造 矽。在某些實施例中,如必要,可經由管道i 53將系統1 〇〇 内之過量氫氣自CVD反應器後氫氣分離器15〇移除至一氫 氣儲存系統。 系統1 00之某些實施例可具有多個系列的分離器、冷凝 器及冷卻設備以最佳化自來自CVD反應器之副產品分離較 低及較高沸點材料之效率。系統1 〇〇之其他實施例可僅將 分離器、冷凝器及冷卻設備元件中之某些添加至該系統或 自該系統移除。又其他實施例可將分離器、冷凝器或冷卻 設備中之一者或多者有利地定位在該系統中之別處以用於 最佳地處理由該系統產生之較高及較低沸點副產品。 在圖1A中所圖解說明之某些實施例中,管道160將來自 CVD反應器136之副產品之一液體混合物輸送至歧化反應 152888.doc -49· 201130733 器前氣矽烷混合器162,已在CVD反應器後氫氣分離器150 中自該液體混合物移除氫氣。在一些實施例中,自CVD反 應器後第一冷卻器142之管道145可將較高沸點氣矽烷輸送 至管道160以與來自CVD反應器後氫氣分離器150之此等材 料組合並與其等一起輸送至歧化反應器前氣矽烷混合器 162。氣化氫有利地可仍在經由管道16〇供應至歧化反應器 前氣矽烷混合器162之氯矽烷之液體混合物中。 在某些實施例中,替代地管道1 60可將已自該液體混合 物移除氫氣的來自CVD反應器136之副產品之液體混合物 直接輸送至歧化反應器後四氣化矽分離器118。在此等實 施例中’管道120可將四氣化矽輸送至歧化反應器前氣矽 烧混合器162以用於回收利用’如上文所論述。管道122可 將四氣化矽耗盡之混合物最終輸送回至CVD反應器13 6。 在某些實施例中,管道160之内容主要包含氣矽烷與氣 化氫之一混合物。在一些實施例中,如上文及本文中別處 所述,藉由管道160輸送之液體混合物可基本上不含有氫 氣。在其他實施例中’管道160之内容可含有原來存在於 管道148之内容中之氫氣之至少一部分。在又其他實施例 中,管道160之内容可含有原來存在於管道148之内容中之 氯化氫之大部分或至少一部分。在又其他實施例中,藉由 管道160輸送之液體混合物可基本上不含有氣化氫。在本 文中別處闡述用於處置氫氣及氣化氫之替代方案。除了芦 由管道160輸送至歧化反應器前氯矽烷混合器162之氣矽烷 之外,如上文所述管道12〇亦將來自歧化反應器後四氣化 152888.doc •50- 201130733 石夕分離器m之回收利用的四氣切提供至歧化反應器前 氣矽烷混合器162。 可分析已將材料自管道160及管道12〇供應至其之歧化反 應器前氯矽烷混合器162之内容之組合物,以判定歧化反 應器前氯矽烷混合器162之内容内氣矽烷之量。特定而 言,歧化反應器前氣矽烷混合器162之内容内氯及矽之量 (包含源於氣化氫之氯)有利地可藉由分析來判定。如下文 及本文中別處it-步所論述,用於最佳地回收制在系統 100中之化學氣相沈積反應期間作為副產品產生之所有或 至少大部分四氯化矽以及氣化氫之新穎方法需要精心控制 遞送至歧化反應器n4之反應物中氣對矽之比率。此對氣 對矽之比率之精心控制有效地控制(特定地)歧化反應器ιΐ4 中產生之二氯矽烷與二氯矽烷之相對量。因此,基於所判 定歧化反應器前氯矽烷混合物i 62之内容中氣與矽之量, 可計算欲添加至歧化反應器前氯矽烷混合器162之内容之 另外四氯化矽之量及因此在將包括四氯化矽之混合物自歧 化反應器前氣矽烷混合器162遞送至歧化反應器前曱矽烷/ 氯矽烷混合器106之後欲添加至該混合物之甲矽烷之量。 基於此等計算’管道164可將經計量量之純四氣化矽作為 補給四氣化石夕供應至歧化反應器前氯矽烷混合器1 62之内 谷乂最佳化歧化反應器前氯石夕烧混合器162之内容中氯及 矽之量且最終在歧化反應器前甲矽烷/氣矽烷混合器1〇6中 製備且自其供應之進料中氣對石夕之比率。在經由管道1 63 將歧化反應器前氯矽烷混合器162之内容輸送至歧化反應 152888.doc -51 · 201130733 器前甲石夕烧/氣石夕烧混合器106且經由管道1 〇4將甲石夕院添 加至歧化反應器前曱矽烷/氣矽烷混合器106以起始製備矽 之製程之後,如上文所論述’歧化反應器前氣矽烷混合器 162内混合物之目標氯含量係如此以使得氯對矽之莫耳比 表示對於最大化歧化反應器114中三氣石夕烧之產生及最小 化或控制較低沸點氣矽烷(特定地二氣矽烷)之產生係最佳 之一反應物混合物。在一些實施例中,對應於歧化反應器 前甲矽烷/氣矽烷混合器106中之反應物混合物之氣對石夕之 莫耳比在自約2:1至約3.8:1之範圍。在某些此等實施例 中’該氯對矽之莫耳比在自約3.1..1至約3.5:1之範圍。在一 些此等實施例中,該氣對石夕之莫耳比在自約3.2:1至約3.3:1 之範圍。在其他此等實施例中,該氣對矽之莫耳比係約 3.2:1。在又其他此等實施例中,該氣對矽之莫耳比係約 3.3 :1❶在某些實施例中,有利地可將其他氣矽烷(例如二 氯石夕烧或三氣石夕烧)添加至歧化反應器前氣石夕烧混合器162 及/或歧化反應器前甲矽烷/氣矽烷混合器106之内容以輔助 精確地調整至歧化反應器114之進料之氣對石夕之比率。 在某些實施例中’作為將補給四氣化矽添加至歧化反應 器前氣矽烷混合器162之内容之一替代方案或除此之外, 可藉由將純三氯石夕烧添加至CVD反應器前混合器132來達 成相同效應。在此等實施例中,將純三氣石夕院添加至CVD 反應器前混合器132增加化學氣相沈積反應器136中四氯化 梦之產生。此額外四氣化石夕最終流至歧化反應器前氣梦烧 混合器162(如上文所論述),因而具有與將純補給四氯化矽 152888.doc -52- 201130733 直接添加至歧化反應器前氣矽烷混合器162類似之一效 應。 在某些實施例令,當判定自歧化反應器前甲矽烷/氣矽 烷混合器106作為進料遞送至歧化反應器丨14之混合物内反 應物之濃度時’-進-步考量事項係、關於以可更高效地驅 使達成一靶向反應之平衡之量提供反應物。舉例而言,在 歧化反應器H4中四氣化矽與甲矽烷之反應中,提供超出 所計算化學計量之量之過量四氯化石夕彳更有效地驅使達成 二氣矽烷之形成。為此,可將增加量之四氣化矽添加至歧 化反應器前氣矽烷混合器162。因此,增加量之四氣化矽 可更有效地朝向相對於其他氣矽烷更高量之三氣矽烷驅使 反應器114内之反應。關於操縱反應平衡以最佳化產物產 率之此等考量事項亦可適用於系統i 〇〇内之別處。 在某些實施例中,可將單氯錢、二氣㈣及/或三氣 矽烷添加至四氣化矽(例如藉由將該等氣矽烷中之一者或 多者添加至歧化反應器前氯矽烷混合器162)以充當歧化反 應器U4中之反應起始劑。在某些此等實施例中,該等氯 矽烷中之一者或多者對四氯化矽之莫耳比可在自約〇:1至 約2 · 5.1之範圍。在又其他此等實施例中,莫耳比可在自約 〇. 1:1至約1:1之範圍。在又其他此等實施例中莫耳比可 為約1:2。在此等實施例中,當混合單氣矽烷、二氣矽烷 及/或三氯矽烷與四氯化矽時,製備該等混合物以在將甲 矽烷添加至四氣化矽、其他氯矽烷及氯化氫之混合物之後 維持歧化反應器進料中氣對矽之最佳比率。 152888.doc -53· 201130733 如本文中所述及圖1A中示意性顯示用於製造矽之系統 100尤其適於處理供應至歧化反應器之增加量之四氣化 石夕’如上文所述’此乃因在歧化反應器後四氯化矽分離器 118中將在歧化反應器Π4内反應之後留下之四氣化矽自反 應產物分離且藉由經由管道i 2〇輸送至歧化反應器前氣矽 烧混合器162來回收利用以供在系統内進一步使用。更一 般而言’系統100經特定設計以高效地使用在製造矽期間 發生之反應之副產品。特定而言,系統100之操作不需要 隔離、移除及/或再處理至少大部分自所發生之各種反應 產生之副產品’此乃因該等副產品在該系統内被高效地回 收利用且使用。儘管可期望在系統内之各種位置處將某些 過量反應物及/或反應副產品彼此分離’但此處理可在該 系統之操作期間容易地且高效地實施且提供比現有系統内 所採取之方法(其等需要隔離、移除及/或再處理材料(特定 地反應副產品))更有成本效益之方法。如本文中所述回收 利用副產品進一步導致反應物及副產品之特別高效轉換以 最大化矽之產率。亦即,含矽副產品(特定而言四氯化矽 及二氣石夕院)繼續循環通過該系統且因此該等副產品内所 含有之矽最終可作為可用矽(所需產物)而回收。此外,如 本文中所述用於製造矽之系統之操作不僅相對於現有製造 系統及製程改良該製裎之效率及成本效益,而且其亦克服 與某些副產品之處置相關之環境問題,例如四氣化矽、氣 化氫及二氣矽烷。 可將作為CVD反應器136中反應之一副產品產生之氯化 152888.doc -54· 201130733 虱循環回來通過該系統且與其他反應物(包含歧化反應器 月甲矽烷/氣矽烷混合器i06中之曱矽烷及整個製程中之氯 矽烷)混合。來自CVD反應器136之氣化氫副產品可因此參 與維持系統内之氣平衡。氯化氫在其自CVD反應器後氫氣 刀離器1 50流動通過該系統時必須保持溶解於液體氣矽烷 混合物中。氣化氫與經由管道104添加至混合器1〇6中之甲 矽烷之反應可(例如)藉由以下反應產生三氯矽烷:SiH2Cl2 - Si + 2HC1 SiH2Cl2 + SiCl4 ^ 2SiHCl3 SiH4 - Si + 2H2 The process of depositing Shi Xi on the substrate in a CVD reactor 13 6 is called a Siemens or "hot line" process. This manufacturing process of Shi Xi usually takes place over 6 miles. 〇 Under the temperature. The Siemens process therefore requires high energy input, most of which is dissipated as heat. The cost associated with the high energy requirements of the operation of the CVD reactor' is thus economically advantageous in terms of energy 3E savings achieved elsewhere in systems based on the novel process described herein. Compensate for the costs associated with the operation of the CVD reactor. The product 138 is removed from the CVD reaction 136. The reactants and reaction by-products remaining in the cvd reactor 136 after the deposition reaction are released from the cvd reactor 136 as a mixture of one of the gaseous materials and transported via line 14 . The mixture of gaseous materials removed via conduit 140 may include, but is not limited to, one or more of the following: hydrogen, hydrogenated gas, mono-halogenated decane, dichlorodecane, trichlorodecane, antimony tetrachloride And oily contaminants, including polyalkylene compounds. The oily contaminants in the gaseous mixture may be present, for example, in the form of one vapor or one aerosol. Preferably, the oily contaminants are removed from the gaseous mixture. In one embodiment, as the temperature of the gaseous material exiting the CVD reactor decreases, the oily contaminants condense, thereby removing the contaminants from the gaseous mixture. These condensed contaminants can therefore be periodically removed from the system as fluid oil condensate. In another embodiment, the excess reactant and gas oxime by-product may be removed by distillation from a higher boiling point material (e.g., such oily contaminants) 152888.doc • 47· 201130733. In certain embodiments, the distillation can be performed using a distillation column. In other embodiments, evaporation can be carried out with a gas distillation film. In the embodiment illustrated in Figure 1A, the conduit 14 输送 delivers the gaseous mixture to a first chiller 142 after a CVD reactor. The conduit 143 delivers the cooled material to the post-CVD decanter 169. The post-CVD decanter 169 separates lower point material (e.g., 'hydrogen, hydrogen chloride, and lower boiling decane) from higher boiling materials such as ruthenium pentoxide, trichloromethane, and dioxane. The post-CVD decanter 169 can be adapted for use in any design for separating higher boiling and lower boiling materials from one another. For example, in one embodiment, the post-CVD decanter 169 can comprise a distillation apparatus. In another embodiment, the post-CVD decanter 169 can comprise a separate column bed wherein the lower boiling material rises to flow from the top and the higher boiling material exits the bottom. Pipeline 145 delivers a higher boiling point of decane for later processing in the process with similar materials, as described below. Pipe 171 delivers the lower boiling point material to CVD reactor post compressor 144. The CVD reactor post compressor 144 pressurizes the gaseous mixture supplied by line 171 to convert the gaseous mixture into a mixture of liquid chlorodecane and hydrogen and hydrogen chloride gas and gas decane vapor. The official passage 147 delivers the two-phase gas-liquid mixture to a second chiller 146 after a CVD reactor. The second cooler 146 after the CVD reactor further liquefies the higher boiling material from the gas phase in the two phase mixture to optimize subsequent removal of the higher boiling formmethane from the mixture. Line 148 delivers this mixture to a CVD reactor followed by a hydrogen separator 15〇. The CVD reactor post-hydrogen separator 150 may be suitable for any design used in the removal of two-phase gas/liquid mixtures from gas decane, 152888.doc • 48-201130733, in which hydrogen is suspended or dissolved. of. In one embodiment, for example, hydrogen may be allowed to be released from the two-phase gas/liquid mixture delivered via conduit 148 and selectively diffused through a hydrogen-specific separation membrane, for example, a polymer membrane, A metal film or a carbon film designed and used for one purpose. Alternatively, in another embodiment, hydrogen can be removed by distillation. The hydrogen thus removed can be further purified by passing it through a bed containing one of various absorbents (e.g., activated carbon). The hydrogen removed from the liquid mixture delivered via line 148 in the hydrogen separator 15A after the CVD reactor is sent to the CVD reactor premixer 132 via conduit ι52 as a recovery utilized olefin. As described above, the CVD reactor front mixer 132 mixes the recovered hydrogen and gas smoldering (mainly trichloromethane) to feed to the CVD reactor 136 to further manufacture the ruthenium. In some embodiments, excess hydrogen in system 1 可 can be removed from CVD reactor post hydrogen separator 15 to a hydrogen storage system via line i 53 if necessary. Certain embodiments of system 100 can have multiple series of separators, condensers, and cooling devices to optimize the efficiency of separating lower and higher boiling materials from by-products from the CVD reactor. Other embodiments of system 1 may only add or remove some of the separator, condenser, and cooling device components to or from the system. Still other embodiments may advantageously locate one or more of the separator, condenser or cooling device elsewhere in the system for optimal processing of the higher and lower boiling by-products produced by the system. In certain embodiments illustrated in Figure 1A, conduit 160 delivers a liquid mixture from one of the byproducts of CVD reactor 136 to a disproportionation reaction 152888.doc - 49 · 201130733 pre-gas hydride mixer 162, already in CVD Hydrogen is removed from the liquid mixture in the hydrogen separator 150 after the reactor. In some embodiments, the conduit 145 of the first cooler 142 after the CVD reactor can deliver the higher boiling gas decane to the conduit 160 for combination with and from such materials from the CVD reactor hydrogen separator 150. It is sent to the disproportionation reactor pre-gas streamer 162. The vaporized hydrogen may advantageously still be supplied via a conduit 16 to a liquid mixture of chlorodecane of the disproportionation reactor pre-gas streamer 162. In some embodiments, instead of conduit 160, the liquid mixture from the byproduct of CVD reactor 136 that has been purged of hydrogen from the liquid mixture can be passed directly to the post-disproportionation reactor four gasification helium separator 118. In these embodiments, the conduit 120 can deliver the four gasification helium to the disproportionation reactor pre-gas burner mixer 162 for recycling utilization' as discussed above. The conduit 122 can ultimately transport the four vaporized deuterated mixture back to the CVD reactor 13 6 . In certain embodiments, the contents of conduit 160 comprise primarily a mixture of gas decane and hydrogenation gas. In some embodiments, as described above and elsewhere herein, the liquid mixture conveyed by conduit 160 may be substantially free of hydrogen. In other embodiments, the contents of the conduit 160 may contain at least a portion of the hydrogen originally present in the contents of the conduit 148. In still other embodiments, the contents of the conduit 160 may contain a majority or at least a portion of the hydrogen chloride originally present in the contents of the conduit 148. In still other embodiments, the liquid mixture conveyed by conduit 160 may be substantially free of vaporized hydrogen. Alternatives for the disposal of hydrogen and hydrogenation of hydrogen are set forth elsewhere herein. In addition to the gas sent from the pipe 160 to the chloroformer mixer 162 of the disproportionation reactor, the pipe 12 will also be vaporized from the disproportionation reactor as described above. 152888.doc • 50- 201130733 Shi Xi Separator The recovered four gas cuts are supplied to the disproportionation reactor pre-gas decane mixer 162. The composition of the contents of the disproportionation reactor pre-chloromethane mixer 162 from which the material has been supplied from the conduit 160 and the conduit 12 can be analyzed to determine the amount of gas decane in the content of the prochlorobenzene mixture 162 prior to the disproportionation reactor. In particular, the amount of chlorine and ruthenium (including chlorine derived from hydrogenated hydrogen) in the contents of the pro-disproportionator pre-gas hydride mixer 162 can advantageously be determined by analysis. A novel method for optimally recovering all or at least a majority of ruthenium tetrachloride and gasification produced as a by-product during a chemical vapor deposition reaction in system 100, as discussed below and elsewhere herein. The ratio of gas to enthalpy in the reactants delivered to the disproportionation reactor n4 needs to be carefully controlled. This careful control of the ratio of gas to hydrazine effectively controls (specifically) the relative amount of dichlorodecane and dichloromethane produced in the disproportionation reactor ι4. Therefore, based on the amount of gas and hydrazine in the content of the pre-disproportionation reactor prechlorosilane mixture i 62, the amount of additional ruthenium tetrachloride to be added to the content of the pre-disproportionation reactor chlorodecane mixer 162 can be calculated and thus The amount of methotane to be added to the mixture after the mixture comprising ruthenium tetrachloride is delivered from the disproportionation reactor pre-gas oxime mixer 162 to the disproportionation reactor pre-decane/chloromethane mixer 106. Based on these calculations, the pipe 164 can supply a metered amount of pure gasified ruthenium as a replenishment gas to the gasification reactor before the chlorination of the pre-chlorination mixer 1 62. The amount of chlorine and ruthenium in the contents of the mixer 162 is burned and finally the ratio of gas to stone in the feed of the feed to the methane/gas hydride mixer 1 〇6 in the disproportionation reactor. The contents of the disproportionation reactor pre-chloromethane mixer 162 are conveyed via line 1 63 to the disproportionation reaction 152888.doc -51 · 201130733 pre-arms zeshi kiln/gas shovel mixer 106 and will be via line 1 〇4 After Shi Xiyuan is added to the disproportionation reactor pre-decane/gas hexane mixer 106 to initiate the process of preparing the ruthenium, as discussed above, the target chlorine content of the mixture in the pre-disproportion reactor pre-gas hexane mixer 162 is such that The molar ratio of chlorine to hydrazine represents one of the best reactant mixtures for maximizing the production of trigeminal gas in the disproportionation reactor 114 and minimizing or controlling the production of lower boiling gas decane (specifically dioxane). . In some embodiments, the gas to rhyme molar ratio corresponding to the reactant mixture in the promethine/gas decane mixer 106 of the disproportionation reactor ranges from about 2:1 to about 3.8:1. In some such embodiments, the molar ratio of chlorine to rhodium is in the range from about 3.1..1 to about 3.5:1. In some such embodiments, the molar ratio of the gas to the stone is in the range of from about 3.2:1 to about 3.3:1. In other such embodiments, the gas to enthalpy molar ratio is about 3.2:1. In still other such embodiments, the molar ratio of the gas to the enthalpy is about 3.3:1. In certain embodiments, other gaseous decanes (e.g., dichlorite or trigeminal) may be advantageously employed. The contents added to the disproportionation reactor pre-gas sinter mixer 162 and/or the disproportionation reactor pre-methane/gas hexane mixer 106 to assist in accurately adjusting the feed gas to the disproportionation reactor 114 to the rate of Shi Xi . In some embodiments, 'either as an alternative to or in addition to the addition of the four gasification hydrazine to the disproportionation reactor pre-gas hydride mixer 162, may be added to the CVD by adding pure smectite Pre-reactor mixer 132 is used to achieve the same effect. In such embodiments, the addition of a pure three gas stone court to the CVD reactor premixer 132 increases the production of tetrachlorine in the chemical vapor deposition reactor 136. This additional four gas fossils eventually flows to the disproportionation reactor pre-combustion mixer 162 (as discussed above) and thus has the direct addition of ruthenium tetrachloride 152888.doc -52- 201130733 to the disproportionation reactor. The gas decane mixer 162 is similar to one effect. In certain embodiments, when determining the concentration of reactants in the mixture of the pre-protonation reactor pre-methane/gas hexane mixer 106 as feed to the disproportionation reactor 丨 14, the step-by-step considerations are The reactants are provided in an amount that more efficiently drives the balance of a targeted reaction. For example, in the reaction of tetragassing ruthenium with decane in the disproportionation reactor H4, an excess of tetrachloride, which provides an amount exceeding the stoichiometric amount, is more effective in driving the formation of dioxane. To this end, an increased amount of four vaporized ruthenium may be added to the disproportionation reactor pre-gas hydride mixer 162. Thus, an increased amount of liquefied ruthenium can more efficiently drive the reaction in reactor 114 toward a higher amount of trioxane relative to other oxanes. These considerations for manipulating the reaction balance to optimize product yield can also be applied elsewhere in the system i. In certain embodiments, monochlorohydrin, digas (tetra), and/or trioxane may be added to the four gasified ruthenium (eg, by adding one or more of the gas oxiranes to the disproportionation reactor). The chlorosilane mixer 162) serves as a reaction initiator in the disproportionation reactor U4. In some such embodiments, the molar ratio of one or more of the chlorosilanes to ruthenium tetrachloride may range from about 1:1 to about 2.5.1. In still other such embodiments, the molar ratio may range from about 1:1 to about 1:1. In still other such embodiments, the molar ratio can be about 1:2. In such embodiments, when mono-monodecane, dioxane, and/or trichloromethane and ruthenium tetrachloride are mixed, the mixtures are prepared to add methotoxane to the four gasified ruthenium, other chlorodecane, and hydrogen chloride. The mixture is maintained to maintain an optimum ratio of gas to enthalpy in the disproportionation reactor feed. 152888.doc -53· 201130733 As described herein and schematically illustrated in FIG. 1A, the system 100 for manufacturing crucibles is particularly suitable for treating an increased amount of four gas fossils supplied to a disproportionation reactor as described above. The fourth gasification enthalpy remaining after the reaction in the disproportionation reactor Π4 is separated from the reaction product in the helium tetrachloride separator 118 after the disproportionation reactor and is transported to the disproportionation reactor by the pipe i 2 〇. The simmer mixer 162 is recycled for further use within the system. More generally, the system 100 is specifically designed to efficiently use by-products of the reactions that occur during the manufacture of the crucible. In particular, the operation of system 100 does not require isolation, removal, and/or reprocessing of at least a majority of by-products from the various reactions that occur. This is because such by-products are efficiently recycled and utilized within the system. While it may be desirable to separate certain excess reactants and/or reaction byproducts from one another at various locations within the system, this process can be readily and efficiently implemented during operation of the system and provides a method than is employed in prior systems. (They need to isolate, remove and/or reprocess materials (specifically by-product by-products)) a more cost effective method. Recycling by-products as described herein further results in particularly efficient conversion of reactants and by-products to maximize the yield of hydrazine. That is, the by-products containing niobium (specifically, niobium tetrachloride and dichae) continue to circulate through the system and thus the niobium contained in the by-products can eventually be recovered as usable niobium (required product). Moreover, the operation of the system for manufacturing crucibles as described herein not only improves the efficiency and cost effectiveness of the crucible relative to existing manufacturing systems and processes, but it also overcomes environmental issues associated with the disposal of certain by-products, such as four. Gasification of hydrazine, hydrogenation of hydrogen and dioxane. The chlorination 152888.doc -54· 201130733 产生 produced as a by-product of the reaction in the CVD reactor 136 can be recycled back through the system and with other reactants (including the disproportionation reactor methylmethine/gas decane mixer i06) Mixing decane and chlorodecane throughout the process. The vaporized hydrogen by-product from CVD reactor 136 can thus participate in maintaining gas balance within the system. Hydrogen chloride must remain dissolved in the liquid gas decane mixture as it flows from the CVD reactor after the hydrogen knife separator 150 flows through the system. The reaction of vaporized hydrogen with the methane added to the mixer 1〇6 via line 104 can produce trichloromethane, for example, by the following reaction:

SiH4+3HCl —SiHCl3 + 3H2 在本文中別處顯示氣化氫與氯矽烷之實例性反應。甲矽 烷以及各種甲矽烷衍生物與氯化氫之反應可係極發熱的。 然而,相比於通過系統之流之體積,流體中氯化氫副產品 之相對量且因此藉由與甲矽烷及任何其他反應物之反應所 產生之熱之量有利地可係如此以使得該系統可藉由在歧化 反應器則甲矽燒/氣石夕炫混合器丨〇6内混合液體且使該液體 流動通過歧化反應器前甲矽烷/氣矽烷混合器106來容易地 消散熱。或者,該設備視情況可在歧化反應器前甲矽烷/ 氣矽烷混合器106及歧化反應器114内之一或多個位置及/ 或在歧化反應器前甲矽烷/氯矽烷混合器1〇6與歧化反應器 114之間包含冷卻系統(例如:熱交換器此可允許逐步或 在該製程之此部分中之一單個位置處冷卻該系統。如本文 中別處所論述,在歧化反應器丨丨4中所使用之樹脂在升高 至溫度下變得不穩定。因此,製程控制器必須將至歧化反 應器114之進料溫度維持在小於8〇t:下,較佳地不高於 7〇°C,更佳地在約6(rc與約7〇t之間。在冷卻期間自流體 流吸取之熱可用在該製程之需要熱之其他態樣中。 152888.doc •55· 201130733 除了氯化氫與甲矽烷之反應所產生之熱之外,該反應亦 產生氫氣作為一副產品。實質上反應物必須作為一單個相 供應至歧化反應器114。因此,經設計以藉由將氣化氫保 持在製程流程中來回收利用氯化氫之一設施可需要向至少 歧化反應器前曱矽烷/氣矽烷混合器1〇6與歧化反應器U4 之出口之間的流體施加足以保持大多數或實質上全部氫氣 溶解於該流體中之壓力。舉例而言,可將該系統之此部分 内之壓力设定在2500磅/平方英吋表壓或低於25〇〇碎/平方 英吋表壓,特定而言在約1500磅/平方英吋表壓與約25〇〇 碎/平方英吋表壓之間,更特定而言在約18〇〇碎/平方英吋 表壓與約2200磅/平方英吋表壓之間。最佳地應將該壓力 設定在將歧化反應器114内之製程流體維持為一單個相所 必須之最低位準。如果需要,在該設施内之其他位置處, 壓力之降低可允許釋放保持溶解於流體中之任何氫氣。 圖1B顯示圖1A之系統1 〇〇之與自液體氣矽烷混合物移除 氣化氫相關之一可選態樣,氣化氫懸浮或溶解於該液體氣 矽烷混合物中。圖1B之與圖1A中所示元件相同或類似之 兀件係藉由相同編號識別。儘管有利地氣化氫可保持在經 由管道160供應至歧化反應器前氣矽烷混合器162之液體氯 石夕烧混合物中(如上文關於圖1A所論述),在其他情形下可 期望移除該氣化氫。在如圖1B中所圖解說明之一個實施例 中,管道154將含有氣化氫及氣矽烷之液體SiH4 + 3 HCl - SiHCl3 + 3H2 An exemplary reaction of hydrogenated hydrogen with chlorodecane is shown elsewhere herein. The reaction of methotrexate and various formoil derivatives with hydrogen chloride can be extremely hot. However, the relative amount of hydrogen chloride by-product in the fluid, and thus the amount of heat generated by the reaction with formoxane and any other reactants, may advantageously be such that the system can be borrowed, as compared to the volume of the stream through the system. The liquid is easily dissipated by mixing the liquid in the disproportionation reactor, and flowing the liquid through the disproportionation reactor pre-methane/gas hexane mixer 106. Alternatively, the apparatus may optionally be in one or more locations in the promethan/gas decane mixer 106 and the disproportionation reactor 114 prior to the disproportionation reactor and/or in the pre-disproportionation reactor meson/chlorosilane mixer 1〇6 A cooling system is included with the disproportionation reactor 114 (e.g., a heat exchanger that may allow the system to be cooled step by step or at a single location in this portion of the process. As discussed elsewhere herein, in a disproportionation reactor The resin used in 4 becomes unstable at elevated temperatures. Therefore, the process controller must maintain the feed temperature to the disproportionation reactor 114 at less than 8 〇t:, preferably no higher than 7 〇. °C, more preferably between about 6 (rc and about 7 〇t. The heat drawn from the fluid stream during cooling can be used in other aspects of the process requiring heat. 152888.doc •55· 201130733 In addition to hydrogen chloride In addition to the heat generated by the reaction with formoxane, the reaction also produces hydrogen as a by-product. Substantially the reactants must be supplied as a single phase to the disproportionation reactor 114. Therefore, it is designed to maintain hydrogenation by Process flow The facility utilizing one of the hydrogen chlorides may require application of a fluid between at least the disproportionation reactor pre-decane/gas decane mixer 1〇6 and the outlet of the disproportionation reactor U4 sufficient to maintain most or substantially all of the hydrogen dissolved in the fluid. Pressure. For example, the pressure in this portion of the system can be set at 2500 psig or below 25 〇〇/square inch gauge, specifically at about 1500 lbs/ The square inch gauge pressure is between about 25 mash/square inch gauge pressure, more specifically between about 18 mash/square inch gauge pressure and about 2200 psig. Preferably, the pressure should be set at the lowest level necessary to maintain the process fluid in the disproportionation reactor 114 at a single phase. If desired, at other locations within the facility, the pressure drop allows for release to remain dissolved. Any hydrogen in the fluid. Figure 1B shows an alternative aspect of the system 1 of Figure 1A associated with the removal of hydrogenated gas from a liquid gas decane mixture in which the vaporized hydrogen is suspended or dissolved. Figure 1B and the component shown in Figure 1A Or similar elements are identified by the same number. Although advantageously vaporized hydrogen can be maintained in the liquid chlorite mixture supplied to the gas streamer 162 before the disproportionation reactor via line 160 (as described above with respect to Figure 1A) It is contemplated that the vaporized hydrogen may be removed in other situations. In one embodiment as illustrated in Figure IB, the conduit 154 will contain a liquid of vaporized hydrogen and gas decane.

混合物自CVD 反應器後氫氣分離器150輸送至CVD反應器後氣化氫分離 器156。CVD反應器後氣化氫分離器156可係適合自氯矽烷 去除氣化氫之任何設計。舉例而言,CVD反應器後氯化氫 152888.doc • 56 · 201130733 刀離器156可允許氣化氫氣體自經由管道154遞送至CVD反 應器後氣化氫分離器156之液體混合物釋出。在一個實施 例中,然後氣化氫氣體可選擇性地移動穿過一氣體可滲透 膜。在另一實施例令,氯化氫氣體可移動通過一個氯化氫 專用獏。在又另一實施例中,可將氣化氫氣體作為一低沸 點產物自一蒸餾塔分離。在通過此膜或此蒸餾塔或自其回 收之後’管道158可將氣化氫氣體輸送至一 &氣分配及/或 儲存系統(未顯示)。此一分配系統可將以此方式回收之氯 化氫循環回至本文中所揭示製程中以用於進一步處理。本 文中所揭示石夕製造製程提供回收利用該等製程期間所產生 之氯化氫之特疋令人驚訝之機會,如本文中別處所論述。 另一選擇為’可將所儲存氯化氫氣體輸送至且用於三氯矽 院製造設施中。在又其他替代方案中,所儲存氣化氣氣體 可進一步經純化(特定而言,用於移除殘餘氯矽烷)且銷售 用於需要高純度氣化氫氣體之各種用途。舉例而言,來自 e道158之氣化氫氣體可流動通過一碳吸收床以移除殘餘 氣石夕烷。另-選擇為,氯化氫氣體可在含有液體氮之一執 交換器上流動以藉由冷凝㈣氯錢。在任一此製程中, 可回收氣石夕烧且將其等循環回至用於製作多晶石夕之—系統 中例如本文中所述之彼系統。在至少一個實施例中,若 必要,可將所分離氣化氫適當地拋棄或進行處置而非回收 利用或回收並純化。 隹糸統ΙϋΟ之某 —-,〜π T,汉應器後氣化氫分 器!56可自管道154之内容僅部分地移除氣化氫。在其他 施例中,CVD後系统_甚至可不包含CVD反應器後氣 152888.doc -57- 201130733 氫分離器156’如本文中別處所述β 作為上文所述藉由CVD反應器後氣化氫分離器ι56移除 氣化氫之一替代方案,CVD反應器後氫氣分離器15〇可經 設計及操作以自遞送至CVD反應器後氫氣分離器15〇之副 產品混合物分離氫氣及一些或全部氣化氫兩者。在一個此 實靶例中,可使氫氣及氣化氫之氣態混合物通過一碳(例 如活化碳)床以自氫氣移除氯化氫。在另一實施例中,含 有一冷卻劑(例如液體氮)之一熱交換器可藉由將該氣態混 σ物冷卻至氣化氫之露點來自該混合物冷凝氣化氫。在另 一實施例中,吸收性蒸餾及汽提之一組合可自該混合物中 之氫氣移除氣化氫。 儘管氣化氫可以各種方式移除,但如本文中別處進一步 所_述,將氣化氫保留在氣矽烷混合物中消除了對用以單 獨處理氣化氫之裝備之需要亦可幫助維持適於多晶石夕製 造系統之最佳操作之氣平衡。 在某些實施射,來自CVD反應器136之氣化氮副產品 可僅部分地保留在製程流程中且因此僅以此方式部分地被 回收利用。在某些此等實_中,⑽反應器後氣化氣分 離器156可移除該氣化氫之一部分以用於其他用途,將剩 餘氣化氫留在該製程流中。舉例而言,製程控制器可將欲 回收利用之氣化氫之量設;^在適於維持正饋送至歧化反應 器114之各種反應物内之一最佳氯對矽之比率之位準處。 可將未如此回收利用之氣化氫自所示製程移除。因此,在 某些實施例中,CVD反應器後氣化氫分離器156可僅部分 152888.doc -58- 201130733 地移除氣化氫。在其他實施例中,CVD反應器後氣化氫分 離器156可移除一點(若有的話)氣化氫。在本文中別處進一 步闡述系統10 0之各種實施例内之氫氣及氯化氫之處置。 圖1C顯示圖1A之系統1 〇〇之與用於回收利用自cvd反應 器136釋放之氣石夕烧反應副產品之進一步製程之一可選態 樣。圖1C之與圖1A中所示元件相同或類似之元件係藉由 相同編號識別。在一個實施例中,如圖1C中所示,管道 172將氣化氫(若未以其他方式移除)及氣矽烷副產品(包含 四氯化矽、三氣矽烷及二氣矽烷)自CVD反應器後氣化氫 分離器156輸送至CVD反應器後氣矽烷分離器! 74 ^在另一 實施例中,該系統可不包含CVD反應器後氣化氫分離器 156。在此實施例中,氣化氫及氣石夕晚副產品係自cvd反 應器後氫氣分離器150直接輸送至CVD反應器後氣矽烷分 離器174。 CVD反應器後氣石夕院分離器174有利地可自四氯化石夕分 離二氯矽烷及三氯矽烷》在CVD反應器後氣矽烷分離器 174中之分離之後’管道180將二氯矽烷及三氯矽烧輸送至 二氯矽烷/三氣矽烷分離器182。二氣矽烷/三氣矽烷分離器 182有利地可自三氣矽烷分離二氣矽烷《管道186將三氣矽 烷自二氣矽烷/三氯矽烷分離器182輸送至CVD反應器前氣 化器128,因而經回收利用用於在CVD反應器136中沈積多 晶矽。管道1 84將二氣矽烷自二氣矽烷/三氣矽烷分離器 182輸送至CVD反應器後氯矽烷混合器178。CVD反應器後 氣矽烷混合器178混合二氣矽烷與管道176之含有四氣化矽 132888.doc -59· 201130733 之内容。管道160自CVD反應器後氣矽烷混合器178輸送包 括二氣矽烷及四氣化矽之混合物以回收利用於系統100 中,如上文所述及圖1A中所示。在某些實施例中,視需 要,經由管道184將二氣矽烷遞送至CVD反應器後氣矽烷 混合器178以與管道176之含有四氣化矽之内容組合可受控 制以產生在與甲矽烷混合時將提供對於歧化反應器114中 之反應係最佳之氣矽烷之混合物之二氣矽烷之量及/或氣 對梦之比率。如上文所述,在藉由管道160輸送之氯>e夕烧 混合物與曱矽烷組合之前,可將額外四氣化矽添加至該混 合物以調整混合物中反應物之量及氣對矽之莫耳比以產生 最佳量之三氣矽烷並將其自圖1A中之歧化反應器114遞送 至CVD反應器136。 在某些實施例中,系統1 〇〇可不包含管道184及CVD反應 器後氣石夕院混合器17 8。在系統1 〇 0之此等實施例中,可將 藉由一氣石夕烧/三氣石夕烧分離器182分離之二氣石夕院轉移至 二氣碎烧儲存系統。可將如此儲存之二氯矽烷添加至供應 至歧化反應器114及/或直接供應至化學氣相沈積反應器 13 6之氣石夕烧混合物以輔助控制系統操作期間反應物之 量’特定而言氣對矽之比率’如本文ψ別處所論述。另一 選擇為,可提供或銷售所儲存二氣矽烷用於其他用途或對 其進行適當處置》 圖1D顯示圖1A之系統1〇〇之與用於回收利用氫氣及自 C V D反應器13 6中之反應之氣態副產品移除氣化氫之一替 代製程。圖1D之與圖1A中所示元件相同或類似之元件係 152888.doc -60- 201130733 藉由相同編號識別。如圖1A中所示,管道140將反應副產 品及過量反應物自CVD反應器136輸送至CVD反應器後第 一冷卻器142。管道143將經冷卻材料輸送至CVD後傾析器 169。管道145輸送較高沸點甲矽烷以用於稍後在該製程中 與此等材料一起處理’如本文中別處所述。管道17 i將較 低沸點副產品及反應物自CVD後傾析器169輸送至CVD反 應器後壓縮機144。管道147將CVD反應器後壓縮機144所 產生之兩相氣-液混合物輸送至CVD反應器後第二冷卻器 146 °管道148將副產品及反應物之氣-液混合物自CVD反 應器後第二冷卻器146輸送至CVD反應器後氫氣/氣化氫分 離器188。CVD反應器後氫氣/氯化氫分離器188自氣矽烷 副產品及過量反應物移除氫氣及氯化氫,管道191將氫氣 及氣化氫之混合物輸送至CVD反應器前氫氣/氣化氫分離 器192’其中將氫氣自氣化氫分離。管道196將氫氣自CVD 反應器前氫氣/氣化氫分離器192輸送至CVD反應器前混合 器132 ’該混合器混合氫氣與氯矽烷(主要為三氯矽烷)以經 由管道134遞送至CVD反應器136,如上文所揭示及論述。 因此’氩氣循環回至系統1 〇〇中以用於在CVD反應器中製 造石夕。管道194將氯化氫自CVD反應器前氫氣/氣化氫分離 器192輸送至一個氣化氫儲存系統。如本文中別處所論 述,可將氣化氫轉移至三氯矽烷製造設施,可使其轉向且 單獨與甲矽烷或二氣矽烷反應,可銷售或可拋棄。 圖1E顯示圖1A之系統1 〇〇之與單獨組合CVD反應器136 中作為一副產品產生之氣化氫與甲矽烷以產生氯矽烷之一 152888.doc 61 · 201130733 可選態樣。圖1E之對應於圖1A中所示元件之元件係藉由 相同編號識別。如本文中別如所述及圖1Α中所示,管道 154將已自其移除氫氣之CVD反應器副產品輸送至CVD反 應器後氯化氫分離器156。CVD反應器後氯化氫分離器156 自CVD反應器副產品分離氯化氫。在圖ιέ中,管道157將 氣化氫自CVD反應器後氣化氫分離器i56輸送至一歧化反 應器前甲矽烷/氣化氫反應器159。歧化反應器前曱矽烷/氯 化氫反應器159經由管道155接收曱矽烷。視需要,供應至 歧化反應器前甲矽烷/氣化氫反應器159之氣化氫亦可來自 各種其他源,包含在多晶矽製造設施内及別處兩者之源。 歧化反應器前曱矽烷/氣化氫反應器159使氣化氫與甲矽烷 反應以產生氣矽烷《在某些實施例中,歧化反應器前甲矽 烧/氣化氫反應器159有利地可主要產生三氣矽烷及二氣矽 院。在其他實施例中’歧化反應器前甲矽烷/氣化氫反應 器159可主要產生四氣化矽。管道ι61將該等氣矽烷自歧化 反應器前甲矽烷/氣化氫反應器159輸送至歧化反應器前氣 石夕燒混合器162。另一選擇為,可將來自歧化反應器前159 之氣矽烷直接輸送至圖1A中所示之歧化反應器後四氣化矽 分離器118»由於自歧化反應器前甲矽烷/氣化氫反應器 159供應至歧化反應器前氣矽烷混合器162之氣矽烷包括元 素妙及氣’因此所供應氣矽烷可有利於以該等元素之最佳 比率來操作本文中所述製程。經由管道161自歧化反應器 前曱石夕烧/氯化氫反應器159提供至歧化反應器前氣矽烷混 合器162之各種氣矽烷與自系統内之其他源提供之回收利 152888.doc •62- 201130733 用的氯石夕烧-起之量可限制以最佳氣對石夕之比率進行操作 所需要之補給四氣化石夕之量,如上文關於_之系統⑽ 所論述。 歧化反應器前曱矽烷/氣化氫反應器159之輸出可通過一 冷卻系統(例如一個或多個熱交換器)以降低該輸出之溫 . ϋ等熱交換器可將自歧化反應器前甲石夕燒/氣化氣反 應器159之輸出反應混合物移除之熱供應回至歧化反應器 月J甲石夕烧/氣化氫反應器159或設施内需要熱之其他位置。 舉例而σ可將熱供應至各種分離器,特定而言蒸德器。 在某些實施例中,一個或多個熱交換器可位於歧化反應 器前甲矽烷/氯化氫反應器159内。在其他實施例中,歧化 反應器前甲矽烷/氯化氫反應器159可由與熱交換器或其他 專門冷卻元件串聯的多個反應器組成,該等熱交換器或其 他專門冷卻元件定位於該等多個反應器中之每一者之間。 在此等實施例中,反應器與冷卻元件可分別串聯地交替定 位。 CVD反應器後氣化氫分離器156可將實質上純的氣化氫 供應至歧化反應器前甲矽烷/氣化氫反應器丨59(儘管少量四 氣化矽及/或三氯矽烷係可接受的)。在某些實施例中,提 ,供至歧化反應器前曱矽烷/氣化氫反應器159之甲矽烷可表 不將以其他方式饋送至圖1Α中所示及上文所述系統100之 歧化反應器前甲矽烷/氣矽烷混合器1〇6之曱矽烷之一部 分,例如5%至15%。 在選定操作條件下’歧化反應器前曱矽烷/氯化氫反應 1528E8.doc -63 - 201130733 器159在充分咼以完全轉換氣化氫之溫度下操作。在某些 實施例中,歧化反應器前甲矽烷/氣化氩反應器159可在大 於100°C之一溫度下操作。在某些其他實施例中,歧化反 應器前甲石夕炫> /氣化氣反應器159可在大於200 °C之一溫度下 操作。在又其他實施例中,歧化反應器前甲矽烷/氯化氫 反應器159可在自約300°C至約60〇°C之範圍之一溫度下操 作。高於600°C之溫度可負面影響歧化反應器前甲矽烷/氣 化氫反應器159之内部’舉例而言,致使腐蝕或材料強度 之損失。 歧化反應器前甲矽烷/氣化氫反應器159可在存在或不存 在一觸媒之情形下操作。若使用,觸媒可呈一銅線或一注 入銅之基板之形式。該基板可係超純矽,藉此不向反應器 之產物中引入污染物。 管道161可將歧化反應器前甲矽烷/氣化氫反應器159中 反應之產物作為蒸氣輸送至歧化反應器前氣矽烷混合器 162。若作為蒸氣添加,則該蒸氣所添加至之液體(例如在 歧化反應器前氣石夕烧混合器162中)之溫度可經調解以使得 藉由管道161供應之蒸氣冷凝且與該液體組合。如本文中 別處關於圖1A中之系統1〇〇所述,供應至混合器162之液體 主要為氣矽烷。在一個實施例中,代替管道16丨將歧化反 應器前甲矽烷/氣化氫反應器159之產物作為蒸氣供應至歧 化反應器前氣矽烷混合器162,可替代地在供應至歧化反 應器則氣石夕烧混合器162之前(例如)藉由曝露於由適合該任 務之任何冷卻媒體冷卻之一熱交換器將歧化反應器前甲矽 I52888.doc • 64 · 201130733 烧/氯化氫反應器159中之反應之產物冷凝。另一選擇為, 可將來自歧化反應器前甲矽烷/氣化氫反應器159之液體或 蒸氣直接供應至歧化反應器前曱矽烷/氯矽烷混合器1〇6。 在歧化反應器前甲矽烷/氣化氫反應器159之操作期間, 該反應產生氫氣作為一副產品’如本文中別處所論述。在 某些實施例’歧化反應器前甲矽烷/氣化氫反應器159及/或 管道16 1可在足以將氫氣保持在溶液中之壓力下操作。在 其他實施例中,可將來自歧化反應器前甲矽烷/氣化氫反 應器159之反應產物引導回至CVD反應器後氫氣分離器15〇 以移除氫氣。 在某些實施例中’歧化反應器前曱矽烷/氯化氫反應器 1 59有利地可在氣化氫之化學計量莫耳相對於氯矽烷為過 量之情形下操作。在該等條件之各種實施例下,歧化反應 器前甲矽烷/氣化氫反應器159較佳地可將甲矽烷所提供之 石夕之至少60% ’較佳地至少70%,更佳地至少8〇%,再更 佳地至少90% ’且最佳地1〇0%轉換成氯矽烷。在某些實施 例中’歧化反應器前曱矽烷/氣化氫反應器159將至少大部 分甲石夕垸轉換成二氣矽烷、三氯矽烷及四氣化矽。在其他 實施例中’歧化反應器前曱矽烷/氣化氫反應器159將至少 大部分甲矽烷轉換成三氯矽烷及四氯化矽。在大部分實施 例中,若有的話,存在一點甲矽烷或單氣矽烷。由於在歧 化反應器前甲矽烷/氯化氫反應器159中相對於甲矽烷存在 莫耳上過量之氣化氫,因此歧化反應器前曱矽烷/氣化氫 反應器1 59之輸出亦含有未反應之氣化氫。額外地,歧化 152888.doc -65- 201130733 反應器前甲矽烷/氣化氫反應器159中之反應產生氫氣。 在某些實施例中’歧化反應器前甲矽烷/氣化氫反應器 1 59可在相對於氣化氫甲矽烷在化學計量上過量之情形下 操作將來自氣化氫之氣定量地納入氣石夕院中。在某些此等 實施例中,歧化反應器前甲矽烷/氣化氫反應器159中所產 生之氣矽烷可主要包含二氣矽烷及三氣矽烷。在其他實施 例中,在歧化反應器前甲矽烷/氣化氫反應器159中所產生 之氯矽烷可包含單氣矽烧。在一些實施例中,歧化反應器 前曱矽烷/氯化氫反應器159至管道161之輸出可包含未反 應之甲矽烷。 在某些實施例中’歧化反應器前甲矽烷/氣化氫反應器 159可在供應至歧化反應器前曱矽烷/氯化氫反應器159之 氣化氫及甲石夕烧在使得任一者皆不相對於另一者在化學計 量上過量之量之情形下操作。亦即,在此等條件下,在甲 矽烷中所供應之基本上全部矽及在氯化氫中所供應之基本 上全部氣在歧化反應器前甲矽烧/氣化氫反應器159内反應 以形成氣矽烷。在此等實施例中,歧化反應器前甲矽烷/ 氣化氩反應器159之輸出可基本上不包含甲石夕烧且基本上 不包含氣化氫。在某些此等實施例中,歧化反應器前曱矽 烧/氣化氫反應器159可將石夕及氣轉換成二氣石夕烧、三氣石夕 烷及四氣化矽。在某些實施例中,歧化反應器前曱矽烷/ 氯化氫反應器159可將矽及氣主要轉換成二氣矽烷及三氣 矽烷。在某些此等實施例中,歧化反應器前甲矽烷/氣化 氫反應器159可將矽及氯主要轉換成三氣矽烷。在其他此 152888.doc • 66 - 201130733 等實施例中’歧化反應器前曱石夕烧/氣化氫反應器1 5 9可將 矽及氣主要轉換成二氯矽烷。在某些實施例中歧化反應 器前曱矽烷/氯化氫反應器159可僅產生低量之單氣矽烷。 舉例而言,歧化反應器前曱矽烷/氣化氫反應器159可僅產 生1莫耳%至2莫耳%之單氣矽烷,其餘產物為具有較高的 氯對矽之比率之氣矽烷。 圖1F顯示圖1A之系統100之與單獨組合補給氯化氫與補 給甲石夕燒以產生氣矽烷之一可選態樣。特定而言,圖丨F顯 示系統10 0之圖1E中所示態樣之一替代方案。圖1 ρ之對應 於圖1A及1E中所示元件之元件係藉由相同編號識別。如 本文中別處所述及圖1A中所示,管道16〇將來自CVD反應 器136之一副產品混合物輸送至歧化反應器前氣矽烷混合 器162 ’已在CVD反應器後150中自該副產品混合物移除氫 氣。在圖1E中,管道183將補給氣化氫輸送至歧化反應器 前甲矽烷/氯化氩反應器159 »管道155將補給甲矽烷輸送 至歧化反應器刖曱碎烧/亂化氫反應器159。補給氯化氫及 補給曱矽烷在歧化反應器前曱矽烷/氯化氫反應器159中反 應以產生氣矽烷。在某些實施例中,歧化反應器前甲矽 烷/氣化氫反應器159有利地可主要產生三氣矽烷及二氣矽 烷。在其他實施例中,歧化反應器前曱矽烷/氣化氫反應 器159可主要產生四氯化矽。管道161將氣矽烷自歧化反應 器前甲矽烷/氣化氫反應器159輸送至歧化反應器前氯矽烷 混合器162。另一選擇為,可將來自歧化反應器前曱矽烷/ 氣化氫反應器159之氯矽烷直接輸送至如圖ία中所示之歧 152888.doc •67· 201130733 化反應器後四氣化矽分離器i! 8。如本文中別處所論述, 由於自歧化反應器前甲矽烷/氣化氫反應器159供應至歧化 反應器前氯矽烷混合器162之氣矽烷包括元素矽及氣,因 而所供應氣矽烷可因此有利於以該等元素之最佳比率來操 作本文中所述製程。圖1F中所示態樣可提供如本文中別處 所述經由管道164將補給四氣化矽供應至歧化反應器前氣 矽烷混合器162之一替代方案。 圖1G顯示圖1A之系統1〇〇之與來自化學氣相沈積反應器 1 36之氣化氫副產品與氣矽烷副產品之原位反應相關之一 可選態樣。在一個此實施例中,系統1〇〇之設計係如此以 允許該原位反應有利地發生在自CVD反應器之出口附近。 圖1G之對應於圖1A中所示元件之元件係藉由相同編號識 別。如圖1G中所示及本文中別處所述,管道ι4〇輸送來自 CVD反應器136之副產品。如本文中別處所述,來自 反應器之副產品包含氫氣、氣化氫及各種氣矽烷。 自一 CVD反應136離開之副產品之溫度可在自約8〇〇 至約1000°C之範圍。在用於在CVD反應器中製造多晶矽之 某些製程中,來自CVD反應器之釋出副產品可迅速地冷卻 至小於150°C之一溫度。然而,藉由來自CVD反應器之氣 化氫副產品與氣石夕炫副產品之原位反應來回收利用氣化氫 得益於將來自CVD反應器之輸出之溫度維持在一升高之位 準處。在某些此等製程中’可將釋出副產品冷卻至自約 300°C至約400°C之範圍之一溫度。在其他此等製程中,可 將釋出副產品冷卻至自約400°C至約700。〇之範圍之一溫 152888.doc • 68 · 201130733 度。在某些一些此等製程中’可將釋出副產品冷卻至自約 400°C至約500°C之範圍之一溫度。適當溫度控制可藉由來 自系統100内之各種反應器之流出物與去往該等反應器之 輸入之間的熱交換來達成。 在某些實施例中’如圖1G中所示,管道140將副產品自 CVD反應器136輸送至一原位氣化氫反應器熱交換器I]〗。 原位氯化氫反應器熱交換器135可將熱轉移至管道ι4〇之内 谷以將來自CVD反應器13 6之氣態副產品之溫度提升至對 於氣化氫與氣石夕院之原位反應係充分之一溫度,例如至約 500°C。管道133(管道140或下文所論述管道126之一延續 部分)將氣態副產品混合物自原位氣化氫反應器熱交換器 135輸送至CVD反應器後原位氣化氫反應器137。在該原位 反應器内之反應係稍微發熱的,且因此溫度可在反應期間 上升,例如上升約20°C至約25°C或上升約40T:至約50°C。 官道139將反應混合物輸送至原位氣化氫反應器熱交換器 13 5。在圖1G中所示之實施例中,原位氣化氫反應器熱交 換器135將來自經由管道139離開反應器137之反應混合物 之熱輸送至經由管道133進入反應器137之反應混合物。管 道141(管道139之延續部分)通過原位氣化氳反應器熱交換 器135將來自CVD反應器後原位氯化氫反應器137之反應混 合物輸送至CVD反應器後第一冷卻器142。 在一些實施例中’可有必要提升管道i4〇中來自CVD反 應器13 6之排氣流之溫度以起始氯化氩與氯矽烷之原位反 應。在此等實施例中,管道丨4〇可將排氣流輸送至一可選 152888.doc •69· 201130733 起動加熱器131。當使用可選起動加熱器^時,管道ι26 將經加熱流輸送至CVD反應器後原位氯化氫反應器系統。 在一些實施例中,管道14〇中來自CVD反應器136之排氣 流之溫度可大於500°C ^在此等實施例中,可將一廢熱鍋 爐置於管道140中以移除熱且將溫度降低至500〇c同時產生 供在系統100内之別處使用或自系統1 〇〇排出之流。 在一些實施例中’有利地一管道i 85可將純曱矽烷及/或 純氣化氫遞送至自CVD反應器136供應至CVD後原位氣化 氫反應器13 7之混合物。在此等實施例中,供應曱石夕烧及/ 或氣化氫可最小化如本文中別處所述對在製程之其他階段 添加純四氣化石夕之需要。在某些實施例中,可將少量甲石夕 烧遞送至該製程之其他階段之混合物(例如至管道141之内 容)以將微量殘餘氯化氫轉換成氣石夕烧。 在系統100之圖1G中所示之該態樣之一個實施例中,經 由管道140自CVD反應器136輸送之副產品混合物可冷卻至 約3 0 0 C。在此等實施例中,作為可選起動加熱器13 1之一 替代方案’原位氣化氫反應器熱交換器135可將充分熱轉 移至管道140之内容以將副產品混合物之溫度自約3〇〇〇c提 升至約500°C。在一特定此實施例中,CVD反應器後原位 氣化氫反應器137内之反應可將反應混合物之溫度自約 500°C提升至約522°C。此外’在此實施例中,原位氯化氫 反應器熱交換器135可將來自經由管道139自反應器137輸 送之反應混合物之熱轉移至經由管道140自CVD反應器136 輸送之副產品混合物。所轉移熱可足夠將經由管道141離 152888.doc -70· 201130733 開原位氣化氫反應器熱交換器13 5之反應混合物之溫度降 低至約322°C且將藉由管道133離開原位氣化氫反應器熱交 換器135之副產品混合物之溫度增加至約500。(:。 CVD反應器後原位氣化氫反應器137内氣化氫與氣矽烷 副產品之反應相依於CVD反應器後原位氯化氫反應器13 7 内反應混合物之滯留時間及溫度。滞留時間必須足以允許 CVD反應器後原位氯化氫反應器137内氣化氫之反應完 成。反應器13 7因此經設計以將來自CVD反應器1 3 6之副產 品混合物通過CVD反應器後原位氣化氫反應器1 3 7之流速 及溫度考量在内且允許反應混合物在反應器137内之充足 滯留時間。來自CVD反應器之副產品混合物之流速通常隨 系統而變化且因此不容易控制。因此,在原位氯化氫反應 器中之滯留時間最容易藉由設定原位反應器之體積來控 制。此可最容易藉由增加必要原位反應器(並聯或串聯地 起作用)之數目以提供適於副產品混合物内之反應條件及 其流速之一滯留時間來達成。 在當使用多個反應器之一些實施例中,在不同反應器中 反應溫度可係不同的。舉例而言,一系列中之一初始反應 器中之溫度可係高於一後續反應器中之溫度。具有較高溫 度之初始反應器可允許發生大部分反應(較快動力學)而具 有一較低溫度之一後續反應器可更適合於使反應達到平 衡。 在某些實施例中,CVD反應器後原位氣化氫反應器137 内之反應可需要高達兩分鐘或更長。在一些實施例中,該 152888.doc 201130733 等反應可需要高達1分鐘。在其他實施例中,該等反應可 需要在30秒鐘與1分鐘之間。在又其他實施例中,該等反 應可需要在10秒鐘與30秒鐘之間。在又其他實施例中,該 等反應可需要在1秒鐘與1 〇秒鐘之間。在某些實施例中, 該等反應可需要小於1秒鐘。在某些實施例中,一製造工 廠可包含一個、兩個、三個或四個CVD反應器後原位氣化 氫反應器。 圖1H顯示圖1A之系統1〇〇之與使氣化氫與曱矽烷在自化 學氣相沈積反應器13 6之出口附近反應相關之一可選態 樣。圖1H之對應於圖1A中所示元件之元件係藉由相同編 號識別。如圖1H中所示及本文中別處所述,管道14〇輸送 來自CVD反應|§ 13 6之副產品。在圖1 η中所示之實施例 中,管道140將該等副產品輸送至一 CVD反應器後甲矽烷/ 氯化氫反應器149。亦如圖1Η中所示及本文中別處所述, CVD反應器後氯化氫分離器156自CVD反應器136之副產品 分離氣化氫。管道165將氣化氫自CVD反應器後氣化氫分 離器156輸送至CVD反應器後甲矽烷/氣化氫反應器149。 0VD反應器後曱矽烷/氣化氫反應器149之内容包含藉由管 道140遞送之CVD反應器136之副產品。管道167將曱矽烷 輸送至CVD反應器後曱矽烷/氣化氫反應器149。經由管道 165供應之氯化氫及經由管道167供應之曱矽烷與自CVD反 應器136經由管道140離開之副產品組合。在某些實施例 中,經由管道167遞送至CVD反應器後曱石夕烧/氣化氫反應 器149之甲矽烷之量與反應器149中氣化氫之量(包含經由 152888.doc • 72- 201130733 管道165添加之氯化氫)相比在化學計量上係有限的。亦 即’在將氯化氫及甲矽烷添加至CVD反應器後曱矽烷/氯 化氫反應器149之後,在反應器149内存在相對於甲矽烷過 量之氣化氫。 在某些實施例中,CVD後甲矽烷/氯化氫反應器中之製 程可以各種方式分階段以最佳化結果。一般而言,大部分 氣化氫在一第一階段中進行原位反應,從而達成8〇%至 100°/。之轉換。視需要,然後可添加少量甲矽烷以將任何 殘餘氣化氫進一步轉換成氯矽烷。此給在釋出流中將氣化 氫轉換成氯石夕院之製程分階段及精心控制甲矽烧添加可允 許基本上氣化氫副產品之完全反應^此分階段及控制可因 此避免對藉由CVD後氣化氫分離器156移除氣化氫且經由 管道165使其循環回至CVD後甲矽烷/氣化氫反應器149之 需要。 迅速冷卻化學氣相沈積反應器釋出副產品幫助限制產生 四氣化矽,其在不存在本文中所述回收利用製程時通常需 要進行處置。然而,曱矽烷與氣化氫之反應僅在此等降低 的溫度下緩慢進行。因此,藉由在CVD反應器後甲矽烷/ 氣化氫反應器149中與曱矽烷之反應回收利用氣化氫可得 益於將來自CVD反應器136之輸出之溫度維持在一升高之 位準下。為CVD反應器後曱矽烷/氣化氫反應器149之内容 選擇一最佳溫度必須將發生之各種反應考量在内。特定而 吕’該溫度經選擇以最大化自該等反應產生較佳產物。最 佳地’對於本文中所述多晶石夕製造製程可期望判定條件 152SB8.doc -73- 201130733 以使得自CVD反應器後甲矽烷/氣化氫反應器149進入製造 系統之輸出主要含有三氣矽烷及四氣化矽,其中具有僅有 限量之二氣矽烷,及最少量之單氣矽烷、甲矽烷或氣化 氫。在能夠使來自釋出副產品之全部氣化氫反應之一系統 中,CVD反應器後氣化氫分離器156係非必要的。基於使 用平衡反應之計算,在涉及氯化氫及甲矽烷之反應期間, 約300°C至600°C之一溫度對於CVD反應器後甲矽烷/氣化 氫反應器149之内容係最佳的(見本文中實例丨),其中僅添 加曱矽烷用於移除任何殘餘氣化氫,。對於此等條件,自 CVD反應器136之輸出可自約8〇〇。〇至1〇〇〇。〇冷卻至使得在 添加曱矽烷及氣化氫之後,CVD反應器後曱矽烷/氯化氫 反應器149之内容之溫度小於約6〇〇。(:,更一般地在約 400°C與約500°C之間的一溫度。在此等實施例中,CVD反 應器後第一冷卻器142或一類似冷卻系統有利地可定位在 CVD反應器136與CVD反應器後曱矽烷/氣化氫反應器149 之間。另一選擇為或額外地,CVD反應器後曱矽烷/氣化 氫反應器149之進口流及出口流有利地可通過一熱交換 器。舉例而言,如圖1H中所示,管道14〇經由一可選CVD 後曱矽烷/氣化氫反應器熱交換器177及管道i 79將來自 CVD反應器136之釋出副產品混合物輸送至cvd後甲矽烷/ 氣化氫反應器149。管道181經由熱交換器π?及管道151輸 送來自CVD後甲矽烷/氯化氫反應器149之反應產物。若使 用,熱交換器177可在CVD後曱矽烷/氯化氫反應器149之 進口與出口之間交換熱或可視需要在來自系統1〇〇内之各 152888.doc -74· 201130733 種反應器與去往該等反應器之輸入之間交換熱。舉例而 呂,有利地可藉由與進入化學氣相沈積反應器之蒸氣反應 物之熱交換或藉由產生供在系統100内使用或自系統1〇〇排 出之流之一廢熱鍋爐來將溫度降低至所需位準。對反應條 件之控制可係基於對管道1 8丨之内容中殘餘氣化氫之分 析。 所述系統可不需要額外甲矽烷及/或氣化氫,此乃因在 釋出副產品中可存在充分氯矽烷以與該釋出氣體中之氣化 氫幾乎完全反應’例如至少99%或甚至至少99.6%之氣化 氫。在圖1Η中所示之實施例中,管道i51wcvD反應器後 甲矽烷/氣化氫反應器149之產物輸送至CVD反應器後第一 冷卻器142。在其他實施例中,可將CVD反應器後曱矽烷/ 氣化氫反應器149之產物直接輸送至CVD反應器後壓縮機 144。熟悉此項技術者將易於瞭解,冷卻系統、壓縮機系 統及CVD反應器後甲矽烷/氯化氫反應器149相對於彼此之 位置可相依於來自CVD反應器136之副產品之最佳反應之 溫度要求而變化。 由於相比於氣化氫,甲矽烷係以化學計量上有限之量遞 送至CVD反應器後甲矽烷/氣化氫反應器149,因此所遞送 甲矽烷在CVD反應器後甲矽烷/氣化氫反應器149内與氣化 氫基本上完全反應以形成氣矽烷。在圖1H中所示之實施例 中,曱矽烷在CVD反應器後曱矽烷/氣化氫反應器149中與 其反應之氯化氫包含直接來自化學氣相沈積反應器136及 經由管道165來自CVD反應器後氣化氫分離器156之氣化 152888.doc -75- 201130733 氫。在某些實施例中,該系統可包含小的反應器,極少量 之甲石夕烧可添加至其中以允許轉換少量殘餘氣化氫。此一 反應器可稱為一「氣化氫修整反應器」。在此等實施例 中’可不將甲矽统添加至起始反應器,僅添加至後續反應 器。 可控制通過CVD反應器後曱矽烷/氣化氫反應器149之反 應物之輸送以最佳化經由管道167供應之曱石夕烧與CVD反 應器後甲矽烷/氣化氫反應器149之内容中之氣化氫之反 應。在某些實施例中’在CVD反應器後甲矽烷/氣化氫反 應器149内之流動可藉由反應器149内反應器元件之數目及 大小來控制以允許反應器149之内容内之最佳反應。舉例 而言’通過CVD反應器後甲矽烷/氣化氫反應器149之流動 可藉由該等反應器元件之特性來控制以使得在反應器1 49 内之持續時間對於完成所需反應係最佳的。在某些實施例 中,該荨反應可需要南達2分鐘或更長。在一些實施例 中’該等反應可需要高達1分鐘。在其他實施例中,該等 反應可需要在3 0秒鐘與1分鐘之間。在又其他實施例中, 該等反應可需要在1 〇秒鐘與3 〇秒鐘之間。在又其他實施例 中’該等反應可需要在1秒鐘與10秒鐘之間。在某些實施 例中’該等反應可需要小於丨秒鐘。藉由CVD反應器後甲 矽院/氣矽院反應器149中氣化氩與甲矽烷之反應所產生之 氣矽烷最終可與化學氣相沈積反應器136中所產生之其他 氣矽烷一起循環回至歧化反應器114。CVD反應器後甲矽 院/氣矽烧反應器149内未轉換成氣矽烷之氯化氫可保留在 152888.doc -76· 201130733 系統100之内容内或自其等分離,例如圖丨八至1]£中所示。 如上文及本文中別處所述,以此一方式操作系統100以 最佳地利用氣化氫有利於有效地維持系統内之氣平衡。亦 可藉由在適當時供應三氣矽烷代替四氣矽烷作為一補給氣 矽烷來在系統内有效地控制氯平衡。舉例而言,可將三氯 矽烷添加至歧化反應器前氯矽烷混合器162 '添加至歧化 反應器前甲矽烷/氯矽烷混合器106或直接添加至CVD反應 器136以控制氣平衡或供應至化學氣相沈積反應器136之進 料之氯對矽之比率。另一選擇為或額外地,補給氣化氫及 甲矽烷可在原位氯化氫反應器中反應以形成氣化矽烷。 如本文中所述操作系統10 0以最佳地利用氣化氩亦消除 或至少限制分離氣化氫以便回收利用之需要且消除或至少 限制與建立及操作用以處理並儲存氣化氫以用於出售或在 其他設施處使用之設施相關聯之成本。 本文中所述用於回收利用氣化氫副產品之製程(例如圖 1E至1H中所不)並不限於在本文中所述多晶矽製造製程之 實施例中使用。此等用於回收利用氣化氫之製程可適合於 在任何多晶矽製造設施、系統或製程中使用,特別係彼等 通常經設計而不包含氣化氫作為一反應物之設施、系統或 製程。舉例而t ’有利地可在以下設施或製程中使用本文 令所述用於回收利用氣化氫之製程:其中組合四氣化矽、 冶金級矽及氫氣以產生用於製造多晶矽之三氯矽烷。如本 文中所述氯化氫至氣矽烷之過程中轉換允許在不訴諸於在 系統内回收利用氯化氫或將其轉移至一單獨冶金矽反應器 152888.doc •77- 201130733 中並使其在其中反應之條件下來維持一製造設施内之氣平 衡。 圖11顯不圖1A之系統100之與在系統操作期間控制二氣 矽烷之量相關之一可選態樣。如本文中別處所論述,系統 100之最佳操作(特定而言多晶矽之製造)可得益於對經由管 道134供應至CVD反應器136之進料中二氣矽烷之量之精確 控制。通常藉由化學氣相沈積製造多晶梦之一設施可具有 二氣碎貌失衡。二氯矽烷源於此一操作内之各種源且最終 被鎖送至化學氣相沈積反應器。舉例而言,四氣化石夕熱轉 換器及多晶矽製造操作之前端兩者皆產生二氯矽烷。然 而’對可在化學氣相沈積反應器内利用之二氣矽烷之量存 在一限制。因此過量的二氣矽烷可存在於自化學氣相沈積 反應器之下游。在圖11中所示意性圖解說明之製程之實施 例中’可更有效地且高效地使用二氣矽烷,且所示系統 100之各態樣之操作可消除或明顯降低對處置二氣矽烷之 需要。圖II之對應於圖1A中所示元件之元件係藉由相同編 號識別。在某些實施例中,如圖1 j中所示,管道〗丨6將反 應產物混合物自歧化反應器1丨4遞送至歧化反應器後四氣 化矽分離器118。在本文中別處闡述了藉由分離器118自反 應產物混合物移除四氣化矽。管道121將已自其移除四氣 化石夕之反應產物混合物遞送至歧化反應器後二氯矽烷分離 器117°歧化反應器後二氯矽烧分離器117自反應產物混合 物分離並移除二氣石夕院。在用於製造多晶碎之製程内各個 點處二氣石夕烧之量可藉由使用已自歧化反應器U4之反應 152888.doc •78- 201130733 產物分離之二氣矽烷來調整。另一選擇為,管道123有利 地可將二氯石夕烧自歧化反應器後二氣矽烧分離器117提供 至CVD反應器前氣化器128或視情況直接提供至CVD反應 器前混合器132,以精確地調整經由管道134至CVD反應器 136之進料中二氣矽烷之量。在另一實施例中,管道113可 將二氯石夕烧自歧化反應器後二氯石夕烧分離器117供應至歧 化反應器前氣矽烷混合器162。混合器162有利地可混合二 氯矽烷與四氣化矽、其他氯矽烷及氯化氫(若存在)以最佳 地控制至歧化反應器114之進料中氯對矽之比率以及二氣 矽烷之量。在某些實施例中,若必要,管道丨i 5可按需要 自歧化反應器後二氣矽烷分離器117轉移二氣矽烷以用於 儲存及後續使用。本文中所述用於使二氯石夕烧循環回至用 於製造多晶矽之製程中之系統高效地利用藉由系統内之反 應所產生之二氣石夕烧。在某些實施例中,如必要,可處置 經由管道11 5自歧化反應器後二氯矽烷分離器1丨7移除之任 何少量過量二氣矽烷。 多晶石夕製造設施可包含多個CVD反應器。對至CVD反應 器之進料中二氣矽烷之量之最佳要求對於此一製造操作内 之每一特定反應器可係唯一的。因此可唯一地預先程式化 自歧化反應器後二氣矽烷分離器117將二氯矽烷供應至每 一 CVD反應器之進料。二氯矽烷可以一程式化方式供應至 每一反應器’因而允許準確控制至任何特定反應器之進料 中一氣石夕烧之1之靈活性且因而允許最佳操作。一給定 CVD反應器内之反應速率及能量耗盡可至少部分地藉由以 152888.doc •79- 201130733 此方式控制饋送至該反應器之二氣矽烷之量來控制。在某 些•實施例中’將二氣矽烷添加於至CVD反應器之進料可並 非必要的。 在某些實施例中,系統1〇〇之圖U中所示該態樣之操作 可以一不依賴時間之方式進行。在此等實施例中,歧化反 應器114可操作以將歧化反應器1丨4之產物中二氣石夕烧之量 維持在一恆定預定量。二氣矽烷在歧化反應器U4之產物 中之濃度可經控制以(例如)在自約2%(按重量計)至約 80/〇(按重量計)(兩者皆係基於無四氣化矽之情形)之範圍。 在此等實施例中,至所有CVD反應器之三氣矽烷進料中之 二氣石夕烧之量可係相同。在某些此等實施例中,可將至化 學氣相沈積反應器之三氣矽烷進料中二氣矽烷之量選擇為 不對所製造多晶矽之品質產生負面影響之最高可能量。在 某些此等實施例中,可首先控制該歧化反應器以在一段時 間週期内產生含有低量二氣矽烷之產物。可將此產物遞送 至第一儲存罐並儲存於其中。在此等實施例中,然後可控 制歧化反應器以在一段時間週期内產生含有高量二氣矽烷 之產物。可將此產物遞送至第二儲存罐並儲存於其中。在 此等實施例中,然後,可藉由摻合來自第一罐之產物與來 自第二罐之產物產生至任何特定化學氣相沈積反應器之進 料。在此等實施例中,供應至任何給定化學氣相沈積反應 器之進料之二氣矽烷之量可與供應至任何其他化學氣相沈 積反應器之二氣矽烷之量不同地摻合。在此等實施例中, 供應至任何特定化學氣相沈積反應器之二氣矽烷進料中之 152888.doc -80· 201130733 二氣矽烷之量可不隨時間而變化,然而可仍不同於供應至 任何其他化學氣相沈積反應器之二氯矽烷之量。 以上方法允許受控及有效地使用歧化反應器中所產生之 二氣矽烷。因此,若存在,可存在需要處置之一點過量二 氯矽烷。此外,可精確控制對二氣矽烷之使用以使得可在 不對所得產物之品質產生負面影響之情形下將其轉換成多 晶石夕。 系統100之上文闡述為在反應物及/或產物呈液相之情形 下操作之部分可替代地(在適當時)在使得反應物及/或產物 在S亥系統内之適當位置處呈一氣相之條件下操作。在圖丄A 之系統100之某些實施例中,如圖丨J中所示,曱石夕烧及氣 石夕烧可以氣相供應至歧化反應器前甲石夕烧/氣石夕烧混合器 106。管道104將甲矽烷作為蒸氣供應至歧化反應器前曱矽 烷/氣矽烷混合器106。實務中,自該操作内別處之一熱交 換器供應之熱可使甲矽烷氣化,如本文別處進一步所論 述。在所圖解說明之某些實施例中,管道120及160將氣矽 烧(包含特定而言四氣化矽)供應至歧化反應器前氣矽烷混 合器162。管道164將額外四氣化矽遞送至歧化反應器前氣 矽烧混合器162(如上文所述)以調整歧化反應器前氣矽烷混 合器162中且因此供應至歧化反應器前甲矽烷/氯矽烷混合 器106之混合物中氣對矽之莫耳比。如本文中別處所闡 述’有利地亦可添加其他氯矽烷以調整混合器162中之氣 對矽之莫耳比。管道166將歧化反應器前氯矽烷混合器162 中氯矽烷之混合物輸送至歧化反應器前氣化器168。歧化 152888.doc -81- 201130733 反應器前氣化器168使來自歧化反應器前氣矽烷混合器162 之氯矽烷之混合物氣化。管道17〇將經氣化氯矽烷之混合 物自歧化反應器前氣化器168供應至歧化反應器前,矽烷/ 氯矽烷混合器1〇6。如圖u中所示,混合器1〇6混合藉由管 道1 供應之甲矽烷蒸氣與經由管道丨7〇供應之經氣化氯矽 烷。混合器106之内容亦可包含系統1〇〇中之反應之其他副 產品,例如可能尚未自系統1〇〇内別處之製程流移除之氫 氣及/或氣化氫。管道1 〇8將混合物自歧化反應器前曱矽烷/ 氣矽烷混合器106饋送至系統100中以進行處理,如圖1A* 所不及本文中別處所述。在此等實施例下,必須在使得該 等材料之所有組分在歧化反應器丨丨4操作之溫度範圍内呈 氣相之壓力下實施對該等材料之氣化及對該系統之此部分 之操作。亦即,該系統在使得所有反應物在除該系統内需 要分離及移除某些組分之位置處外保持呈一單個相之條件 下操作。管道108將甲矽烷及氣矽烷之經氣化混合物供應 至歧化反應器前溫度控制器11 〇。歧化反應器前溫度控制 器110在一受控壓力下將經氣化反應混合物加熱至如上文 所述用於當反應物呈液相時操作該系統之範圍内之一選定 溫度。管道112將經加熱蒸氣輸送至歧化反應器114。管道 116將氣相反應產物自歧化反應器114輸送至歧化反應器後 四氣化石夕分離器118。歧化反應器後四氣化石夕分離器丨丨8自 該等反應產物及其他過量反應物分離四氣化矽以用於經由 至歧化反應器前氣矽烷混合器162之管道120回收利用回至 該系統中’如上文所述。自歧化反應器後四氯化矽分離器 152888.doc •82· 201130733 118 ’管道198將移除四氣化矽之後之反應產物之蒸氣混合 物輸送至CVD反應器前混合器132。另外,管道152將氫氣 遞送至CVD反應器前混合器132,如上文所述。CVD反應 器前混合器132混合經由管道198遞送之反應產物之蒸氣混 合物與經由管道152遞送之氫氣。管道134將反應產物及氫 氣之蒸氣或氣態混合物自CVD反應器前混合器132遞送至 CVD反應盗136’如上文所述。另一選擇為,可將回收利 用的氫氣單獨饋送至化學氣相沈積反應器丨36且與反應器 13 6内之三氣矽烷混合。 圖1K顯示圖1A之系統1 〇〇之與自系統1 〇〇内之反應物移 除麟或其他南彿點雜質相關之一可選態樣。雄污染物可自 各種源引入該等反應物’舉例而言,自系統中之金屬提取 或包含在諸如曱矽烷、補給四氣化矽及/或補給三氣矽垸 等反應物内。此等污染物甚至在極低量時亦可對藉由此— 系統製造之多晶矽之品質產生負面影響。系統1 〇〇之反應 物及/或產物内之磷污染物可包含低沸點磷污染物(例如 PH3及PH2CI)及/或rlj沸點碟污染物(例如PHC12& PC13)。圖 1K之對應於圖1A中所示元件之元件係藉由相同編號識 別。歧化反應器114可將低沸點碟污染物轉換成高沸點嶙 污染物。管道116將歧化反應器114之反應產物(包含高沸 點磷污染物PHCh及PCh)輸送至歧化反應器後四氯化矽分 離器118。如上文關於圖1A所闡述,歧化反應器後四氣化 矽分離器118主要自三氯矽烷分離四氣化矽。然而,在選 疋操作條件下’歧化反應器後四氯化石夕分離器1 1 8亦可自 152888.doc -83- 201130733 三氣矽烧分離高沸點填污染物。在此等條件下,管道i 25 將四氣化石夕及高沸點鱗污染物輸送至高沸點麟分離器 119。在選定操作條件下之某些實施例中,高沸點鱗分離 器119可自PCh分離四氣化矽及PHCh。在其他操作條件下 之其他實施例中’高沸點磷分離器119可自pci3或自PHCl2 及PC13分離四氣化矽。PC13或PHC12&PC13可累積以自高彿 點磷分離器119收集。管道127可移除並輸送所收集高沸點 磷污染物至廢物處以進行處置《對於每一次通過,高沸點 磷分離器119可自四氣化矽僅部分地移除高沸點碟污染 物。管道129將四氣化矽及尚未移除之任何高沸點磷污染 物或其他高沸點雜質輸送至歧化反應器前氣矽烷混合器 162。歧化反應器前氣矽烷混合器162中之高沸點磷污染物 再次通過歧化反應器114、歧化反應器後四氣化矽分離器 118及高沸點鱗分離器Π9 ^歧化反應器114可進一步將 PHC12轉換成高沸點PCI”反覆的此等循環可最終轉換來 自系統100之反應物及產物之全部碟污染物並將其等作為 PCI3清除。該系統可以此方式移除萬億分率低之磷之量。 若需要自至CVD反應器之進料移除磷污染物,則操作系統 100僅包含此可選態樣。 在某些實施例中,高沸點磷分離器丨丨9可係相對中等大 小之一蒸餾設備,例如具有約5〇個塔盤^在某些實施例 中,歧化反應器後四氣化矽分離器118可在關於四氯化矽 之相對嚴格規範下操作。舉例而言,歧化反應器後四氣化 矽分離器118可經由管道122將0.5重量百分比或更少量之 152888.doc •84- 201130733 四氣化石夕傳遞至CVD反應器。在某些此等實施例中,經由 管道122傳遞之四氣化矽之量可為〇·005重量百分比或更 少。在歧化反應器後四氯化石夕分離器11 8内,嚴重限制四 氣化矽經由管道122朝向化學氣相沈積反應器136傳遞之嚴 格規範有益於經由管道125將PHC12傳遞至高沸點磷分離器 119。此等嚴格規範可導致經由管道125自歧化反應器後四 氣化移分離器118傳遞之材料中增加量之三氯石夕烧。然 而,以此方式移動三氣石夕烧並非一問題,此乃因三氣石夕烧 最終將通過歧化反應器114循環回來。在某些實施例中, 可更寬鬆地設定歧化反應器後四氣化石夕分離器118之關於 四氣化矽之規範,以使得經由管道1 22輸送之四氣化石夕之 量可在約0.5重量百分比與5重量百分比之間的範圍。 在某些實施例中’可設定用於設計及操作高沸點磷分離 器119之規範以在單次通過中移除大半pCi3。在某些其他 實施例中’可更寬鬆地設定用於移除PC13之規範以使得高 沸點磷分離器119在單次通過中移除少於一半之pcl3。即 使係寬鬆設定,但高沸點磷分離器119在後續通過中亦將 移除PC13。 圖1L顯示圖1A之系統10 0之與在系統操作期間分離及利 用二氣矽烧相關之一可選態樣。如本文中別處所論述,系 統100之最佳操作(特定而言多晶矽之製造)可得益於精確控 制經由管道134供應至CVD反應器136之進料中二氣石夕院之 量。在用於藉由化學氣相沈積製造多晶石夕之一設施之操作 期間’二氣碎院可源自各種源。舉例而言,自歧化反應器 152888.doc -85- 201130733 π 4輸送之氣矽烷包含二氣矽烷。在圖1A中所示系統100 中’如上文所述,自歧化反應器u 4輸送之二氣矽烷最終 被饋送至CVD反應器136。圖1L中所示意性圖解說明之用 於製造多晶石夕之製程之實施例可允許在製造製程期間移除 並更有效地、高效地且最佳地利用二氯矽烷。圖1L之對應 於圖1A中所示元件之元件係藉由相同編號識別。 在某些實施例中,如圖1L中所示,管道116將反應產物 之混合物自歧化反應器丨14輸送至歧化反應器後四氯化矽 分離器118。在本文中別處闡述藉由分離器118自反應產物 混合物移除四氯化矽。管道1121將已自其移除四氯化矽之 反應產物混合物輸送至歧化反應器後三氣矽烷/二氣矽烷 分離器1101。分離器11〇1產生二氯矽烷或富含二氣矽烷之 混合物及三氯石夕烷或富含三氣矽烷之混合物。管道丨丨〇3將 二氣石夕院或富含二氣矽烷之混合物自分離器11〇1輸送至二 氣石夕烧儲存系統11 〇7 ^在某些實施例中,管道丨丨丨丨可將二 氣石夕院輸送至CVD反應器前二氣矽烷/三氣矽烷混合器 1117。可經由管道丨丨〇9供應二氣矽烷以用於系統内或別處 之其他用途或可將其出售。在某些實施例中,二氣矽烷或 富含二氣矽烷之混合物可係純二氣矽烷。 在某些實施例中,管道11〇5將三氣矽烷或富含三氣矽烷 之混合物自歧化反應器後三氣矽烷/二氯矽烷分離器1101 輸送至二氣石夕烷儲存系統1113。在某些實施例中,管道 1115可將三氣矽烷輸送至CVD反應器前二氣矽烷/三氣矽 烧混合器1117。在某些實施例中,可自三氯矽烷儲存系統 152888.doc •86· 201130733 1113供應三氣矽烷以用於系統内或別處之其他用途或可將 其出售。在某些實施例中,三氯矽烷或富含三氣矽烷之混 合物可係純三氣矽烷。視最佳化在CVD反應器1 36内製造 多晶矽之需要,管道1119可將混合的二氯矽烷及三氣矽炫 自二氯矽烷/三氯矽烷混合器1117供應至CVD反應器前氣 化器128。 圖2顯示用於製備多晶矽之一系統之與控制該系統内氣 矽烷之量及使來自一化學氣相沈積反應器之氯化氫及氣矽 烧副產品原位反應相關之一部分之一組態之一實例性實施 例。圖2之對應於圖1A及1G中所示元件之元件係藉由以 「2」而非「1」開頭但其他部分相同之編號來識別。儘管 以此方式編號之元件係類似,但熟悉此項技術者將易於認 識到圖2中所示的一系統之該部分可對自任何源饋送至一 化學氣相沈積反應器而未必與本文中別處所述及圖1A至 1K中所例示之用於製造矽之系統相關之適當材料發揮作 用。特定而言,管道203可自適當反應物之任何源饋送 CVD反應器236。 來自CVD反應器236之副產品可包含氫氣、氯化氫及各 種氣石夕烧。如上文所述,自一 CVD反應器離開之副產品之 溫度可在自約800°C至約1〇〇〇。〇之範圍。在某些用於在 CVD反應器中製造多晶矽之製程中,可將來自cvd反應器 之釋出產物冷卻至自約3〇(rc至約4〇〇°c或自約400°c至約 700°C或自約40〇。(:至約500°c之範圍之一溫度。適當溫度控 制可藉由將熱互換至各種源或自各種源互換熱來達成。 152888.doc -87- 201130733 在某些實施例中,如圖2中所例示,管道240將副產品自 CVD反應器236輸送至一原位氣化氫反應器熱交換器235。 原位氣化氫反應器熱交換器235可將熱轉移至管道240之内 容以將來自CVD反應器236之氣態副產品之溫度提升至對 於氣化氫與氣碎烧之原位反應係充分之一溫度,例如約 500°C。管道233(管道240或如下文所論述管道226之一延 續部分)將氣態副產品混合物自原位氣化氫熱交換器23 5輸 送至CVD反應器後原位氣化氫反應器237。管道239將反應 混合物自CVD後原位氣化氫反應器237輸送至原位氣化氫 反應器熱交換器235。 原位氯化氫反應器237内之反應係稍微發熱的。原位氣 化氫反應器熱交換器235在經由管道239自反應器237離開 之混合物與經由管道233供應至反應器237之混合物之間轉 移熱,如上文關於圖1G中所示實施例所述。 管道241 (管道239之延續部分)將反應混合物自CVD反應 器後原位氣化氫反應器237輸送至CVD反應器後第一冷卻 器242。管道243將經冷卻材料輸送至CVD後第一傾析器 269。CVD後第一傾析器269自較高沸點材料(例如,四氯 化矽、三氣矽烷及二氯矽烷)分離較低沸點材料,例如氫 氣、氣化氫及較低沸點曱矽烷。CVD後第一傾析器269可 係適合於在將較高沸點與較低沸點材料彼此分離中使用之 任何設計。舉例而言,在一個實施例中,CVD後傾析器 269可包含一蒸餾設備。在另一實施例中,CVD後傾析器 269可包含一分離塔床,其中較低沸點材料上升以自頂部 152888.doc -88- 201130733 流出且較高沸點材料自底部流出。管道245輸送較高沸點 甲矽烷以在多晶矽製造製程中之其他點處與類似材料一起 處理。管道271將較低沸點材料輸送至CVD反應器後壓縮 機244。CVD反應器後壓縮機244給藉由管道271供應之氣 態混合物加壓以將該氣態混合物轉換成液體氯矽烷與氫氣 及氯化氫氣體及氣矽烷蒸氣之一混合物。管道247將此兩 相氣-液混合物輸送至CVD反應器後第二冷卻器246。CVD 反應器後第二冷卻器246自該兩相混合物之氣相進一步液 化較高沸點材料以最佳化後續自該混合物移除較高沸點甲 矽烷。管道248將經冷卻材料輸送至CVD後第二傾析器 273。CVD後第二傾析器273自較高沸點材料分離較低沸點 材料。管道275將較低沸點材料輸送至CVD後四氯化矽吸 收器/氫氣分離器224。CVD後四氯化矽吸收器/氫氣分離器 224含有一惰性材料(例如,鋼填料)且用於允許材料(特定 而言三氯矽烷)向下流動以降低自CVD後四氣化矽吸收器/ 氫氣分離器224離開之四氣化矽之含量。管道252將一氣相 混合物自CVD後四氯化矽吸收器/氫氣分離器224輸送至 CVD反應器236。管道293將一液相混合物輸送至四氣化 矽/三氯矽烷分離器295。管道299將富含三氣矽烷之材料 自四氣化矽/三氣矽烷分離器295輸送至CVD反應器23 6。 管道299包含一流轉向器/控制器287。管道290視該系統之 最佳操作之需要將富含三氯矽烷之材料自四氣化矽/三氣 矽烷分離器295輸送至CVD後四氣化矽吸收器/氫氣分離器 224。流轉向器/控制器287控制經由管道290及299之富含 152888.doc •89- 201130733 二氯碎烧之材料之相對流動。 圖2中所示控制三氣矽烷 况在系統内之流動可允許藉由 CVD反應器236局效地、有成太分兴仏在丨 男战本效益地製造多晶矽。舉例 而言’所產生之四氣切(特定而言經由管道⑸輸送回至 CVD反應器236中之四氣化石夕)之量可藉由在一受控溫度及 速率下將三氯矽烷饋送至cvn;^阳备 芏CVD後四氣化矽吸收器/氫氣分 離器224來控制。在對滿谇B 4 度及k動之適當控制下,藉由管 道252輸送至CVD反應器236之人榀叮a a ^ 0<芯合物可包含三氣矽烷飽和 之氫氣’其中僅具有最少量之四氯化矽。在一個實施例 中’舉例而言,藉由管道29〇供應至CVD後四氯化石夕吸收 器。/氫氣分離器2 2 4之富含三氣石夕院之材料之溫度可係約 35C圖2中所示系統之操作允許在不需要使用通常用於 在多晶矽製造製程期間移除此副產品之極冷溫度之情形下 最佳地管理四氣化矽之量。 在些貫施例中,可有必要提升管道240中來自CVD反 應器236之排氣流之溫度以起始氣化氫與氣矽烷之原位反 應。在此等實施例中,管道24〇可將排氣流輸送至一可選 起動加熱器23 1。在此等實施例中,管道226將經加熱流自 可選起動加熱器231輸送至CVD反應器後原位氣化氫反應 器系統。 在一些實施例中,管道240中來自CVD反應器236之排氣 流之溫度可大於500 C。在此等實施例中,可將一廢熱鋼 爐置於管道240中以移除熱且將該溫度降低至5〇〇。〇,同時 產生用於在其内圖2之元件操作之一系統内使用或自該系 152888.doc -90· 201130733 統排出之流。 在一些實施例中’ 一管道285有利地可將純曱矽烷及/或 純氣化氫遞送至自CVD反應器236供應至CVD後原位氯化 氫反應器237之混合物。在此等實施例中’供應曱石夕院及/ 或氣化氫可最小化對在(例如)本文中別處所述之系統丨〇〇中 之一製程之其他階段添加純四氣化矽之需要。在某些實施 例中’可僅將少量甲矽烷遞送至該製程之其他階段之混合 物(例如遞送至管道241之内容)以將微量殘餘量氣化氫轉換 成氣矽烷。 儘管圖2顯示四氯化矽/三氯矽烷分離器295作為所繪示 單元之一元件,熟悉此項技術者亦將瞭解此一元件可(舉 例而言)以自任何適當源供應至其以進行處理之材料單獨 操作。 圖3顯示用於製備多晶矽之一系統之一部分之一組態之 一實例性實施例’其中該系統之實施歧化反應之部分經最 佳化以產生及處理二氣矽烷。圖3之對應於圖丨八及1L中所 不元件之元件係藉由以r 3」而非「1」開頭但其他部分相 同之編號識別。儘管以此方式編號之元件類似於本文中別 處所述元件’但熟悉此項技術者將易於認識到圖3中所示 的一系統之該部分可對自任何源饋送至一 CVD反應器而未 必與本文中別處所述及圖1A至1L中所例示用於製造矽之 系統相關之適當材料發揮作用。特定而言,可自所述系統 内或其外部之任何適當源供應三氣矽烷、二氯矽烷及曱矽 烧。 152888.doc -91 - 201130733 在某些實施例中’如圖3中所例示’管道304供應曱矽烷 且管道3133供應三氣矽烷至一歧化反應器前甲矽烷/氣矽 烷混合器306。管道3135亦可將三氣矽烷供應至歧化反應 器前甲矽烷/氣矽烷混合器306。歧化反應器前曱矽烷/氣矽 烷混合器306可係本文中別處所述用於混合曱矽烷及三氣 矽烷以遞送至一歧化反應器之各種混合器中之任一種之一 者。 在某些實施例中,判定曱矽烷及三氣矽烷之混合物以最 大化歧化反應器314中二氣矽烷之產生。在一些實施例 中,二氣矽烷及曱矽烷可以欲達成在約丨:〖與約3 :丨之間的 一範圍中之氯對矽之一莫耳比之數量混合。在一些此等實 施例中,目標莫耳比可係在約丨:〗與約2 5: i之間的範圍 中。在其他此等實施例中,目標莫耳比可係在約1:1與約 2:1之間的範圍中。在又其他此等實施例中,目標莫耳比 可係在約1.25:丨與約K75:1之間的範圍中。在又其他此等實 施例中,目標莫耳比可係在約丨75:1與約2 25:1之間的範圍 中。在某些實施例中,目標莫耳比可為約15:1。在某些其 他實施例中,目標莫耳比可為約2:1。 在歧化反應器前甲矽烷/三氣矽烷混合器3〇6混合經由管 道304提供之甲矽烷與經由管道3133及/或管道3135提供之 三氣矽烷之後,管道308將所得混合物自歧化反應器前曱 矽烷/三氣矽烷混合器306供應至歧化反應器前溫度控制器 310。歧化反應器前溫度控制器31〇將經由管道3〇8供應之 包括甲矽烷及二氯矽烷之混合物加熱至適於在歧化反應器 152888.doc -92· 201130733 314内反應之一溫度’如本文中別處所述。 管道3 12將包括曱矽烷及三氯矽烷之經加熱混合物自溫 度控制器3 10運送至歧化反應器3 14 ^管道3 16將反應混合 物自歧化反應器314輸送至歧化反應器後四氣化矽分離器 3 1 8 »該反應混合物可包含二氯矽烷、三氣矽烷及四氣化 矽。四氯化矽分離器3 18自該反應混合物移除四氯化矽以 產生一富含二氣矽烷之流。管道3121將富含二氯矽烷之流 輸送至歧化反應器後二氣矽烷/三氣矽烷分離器3101。分 離器3101產生二氣矽烷或一富含二氣矽烷之混合物及三氣 矽烷或一富含三氣矽烷之混合物。管道3103將二氣矽烷或 富含二氣矽烷之混合物輸送至二氣矽烷儲存系統3 107。在 某些實施例中,藉由管道3103自歧化反應器後二氣矽烧/ 三氣矽烷分離器3103輸送之二氯矽烷或富含二氯矽烷之混 合物可係純二氣矽烷。在某些實施例中,管道3 127可將二 氣矽烷或富含二氣矽烷之混合物直接輸送至CVD反應器 336。在其他實施例中,管道3111可將二氣矽烷輸送至 CVD反應器前二氣矽烷/三氣矽烷混合器3117。可出售二 氣矽烷或經由管道3109供應二氯矽烷以用於其他用途。 .在某些實施例中,管道3105將三氣矽烷或富含三氣矽烷 之混合物自歧化反應器後二氯矽烷/三氯矽烷分離器3 j 0 i 輸送至三氣矽烷儲存系統3 113。在某些實施例中,三氣矽 烷或富含三氯矽烷之混合物可係純三氣矽烷。在某些實施 例中’管道3 13 1可將三氣矽烷或富含三氣矽烷之混合物直 接輸送至CVD反應器336。在其他實施例中,管道3115可 152888.doc •93- 201130733 將三氯石夕烧輸送至CVD反應器前二氣矽烷/三氯矽烷混合 器3117。在又其他實施例中,管道3135可將三氣矽烷輸送 至歧化反應器前曱矽烷/三氣矽烷混合器3〇6,如上文所 述。在某些實施例中’可經由管道3125自三氣矽烷儲存系 統3113供應三氣矽烷以用於其他目的。視反應器丨36内矽 之最佳製造之需要’管道3129可將混合的二氣矽烷及三氣 石夕烧自二氣石夕烧/三氣矽烷混合器3117供應至CVD反應器 336 ° 本文中所揭示及論述之用於製造矽之系統及製程相對於 當前所採用之系統及製程具有明顯的優點。 該等系統及製程適合於製造半導體級或太陽能級矽。在 該製造製程中使用甲矽烷作為起始材料允許更容易製造高 純度矽。曱矽烷更容易純化。由於曱矽烷之低沸點,其可 容易純化且在純化期間不具有如在製備及純化作為起始材 料之三氣矽烷中可發生之攜帶污染物之傾向。此外,用於 製造二氣矽烷之某些製程利用碳或石墨,其可攜帶至產物 中或與氯矽烷反應以形成含碳之化合物。 本文中所揭示用於製造矽之系統及製程提供與建立及操 作製造設施兩者相關之較大成本節省。特定而言,由於在 該等製程内回收利用四氣化矽,而非移除以經由使用熱轉 換反應器在外部再處理為三氣矽烷,因而存在與建立及操 作此等設施相關聯之極高成本之節省。特定而言,資本及 操作之節省可皆大約為20%至40%。 如本文所述通常需要自料、歸除之唯—㈣係石夕產物 I52888.doc •94- 201130733 本身。若期望用於一特定目的,則可在該系統之操作期間 移除氣化氫氣體及/或氣矽烷(特定而言二氣矽烷及/或四氣 化矽)以進行處置或其他使用。然而,不需要其等之移 除’且其專之移除甚至未必係較佳的。 包含發明摘要中所述内容之對所圖解說明實施例之上述 說明並非意欲窮舉或將各實施例限定為所揭示之具體形 式。儘官上文出於說明目的闡述了具體實施例及實例伸 彼等熟習此項技術者應認識到,可在不背離本揭示内容之 精神及範圍之條件下作出各種等效修改。上文各種實施例 所提供之教示不僅可應用於上文所概述之實例性系統、方 法及裝置且亦可應用於用於製造矽之其他系統、方法及/ 或製程。 舉例而言,上文之詳細說明經由使用方塊圖、示意圖、 流程圖及實例闡述了系統、製程、方法及/或裝置之各種 實施例。儘官此等方塊圖、示意圖、流程圖及實例含有一 個或多個功能及/或操作,但彼等熟習此項技術者將瞭 解,此等方塊圖、示意圖、流程圖或實例内之每一功能 及/或操作可藉由廣泛m组件、硬體、軟體、勤體此 或實際上其等之任一組合個別及/或共同實施。 在某些實施例中,所用系統或所製得之裝置可包含較上 述特定實施例中為少之結構或組件。在其他實施例中所 用系統或所製得之裝置除本文中所述彼等結構或組件外亦 可包含其他結構或組件。在其他實施例中,所用系統或所 製得之裝置可包含與本文中所述之彼等結構或组件具有不 152888.doc -95· 201130733 同配置之結構或組件。舉例而古 ^ ^ 。在一些實施例中,在系 統中可具有額外加熱器及/或混合 、 ^ 器及/或分離器以提供斜 〉皿度、壓力或流速之有效控制。另外,在實施本文中所述 之程序或方法時,可具有較少操作、額外操作或者可以 與本文中所述之彼等W之次序實施料操作。熟習 此項技術者根據本揭示内容將習知移除、添加或重新配置 系統或裝置組件、或製程或方法之操作態樣。 本文中所述用於製作多晶珍之方法及系統之操作可在自 動控制系統之控制下。此等自動控制系統可包含以下各項 中之-者或多纟:適當感測器(例如,流速感測器、壓力 感測器、溫度感測器)、致動器(例如,馬達、閥、螺線 管、阻尼器)、化學分析器及基於處理器之系統,該等系 統執行儲存於處理器可讀儲存媒體中之指令以至少部分地 基於來自該等感測器、分析器及/或使用者輸入之資料或 資afl自動控制各種組件及/或材料之流速、壓力及/或溫 度。 關於用於製作多晶矽之系統及製程之控制及操作、或該 等系統及裝置之設計,在某些實施例中,本文之標的物可 經由專用積體電路(ASIC)來實施。然而,彼等熟習此項技 術者將認識到,本文中所揭示之實施例(全部或部分)可在 標準積體電路中等效實施為在一個或多個電腦上運行之一 個或多個電腦程式(例如,在一個或多個電腦系統上運行 之一個或多個程式)、在一個或多個控制器(例如,微控制 器)上運行之一個或多個程式、在一個或多個處理器(例 152888.doc •96· 201130733 如,微處理益)上運行之—個或多個程式、韌體、或實際 上其等之任一組合。因此,熟習此項技術者根據本揭示内 谷應習知設計電路及/或為軟體及/或韌體寫入程式碼。 本揭不内容可進一步藉由參考以下實例來圖解說明。提 供此貫例僅為圖解說明而非限制。 實例 實例1 化學氣相沈積反應器釋出氣體 莫耳流速對溫度 圖4中顯示對照已向其添加甲矽烷及氣化氫之化學氣相 沈積反應器釋出氣冑中反應物卩副產品之莫耳流速繪製之 所計算吉布斯(Gibbs)溫度。所繪製結果假設所有反應已達 到平衡。在該計算中所使用之條件包含相對於所添加甲石夕 烷氯化氫在莫耳上過量。結果沒有顯示氫氣,其係數量上 比彼等所顯示物大得多之產物。在計算中包含氫氣將改變 曲線之形狀。然而,認為所計算之平衡結果反應cvd反應 器之釋出氣體内之動態狀況。 該等結果表明在400。〇與500t之間,該釋出氣體之主要 含矽及/或含氣之組分係三氣矽烷及四氣,化矽。相比於三 氯矽烷及四氯化矽,二氯矽烷之量係低。基本上沒有甲矽 烧、單氯石夕院及氣化氫。舉例而t,所計#的結果顯示在 500C及400C下,分別99.9%及99.99%之氯化氫已反應。 本文中上述各種實施例可經組合以提供其他實施例。若 需要,可修改實施例之態樣以採用各種專利、申請案及公 152888.doc -97· 201130733 開案之概念來提供又其他實施例。 根據上述詳細說明可對該等實施例作出該等及其他改 變。一般而言,在以下申請專利範圍中,所用術語不應理 解為將申請專利範圍限於說明書及申請專利範圍中所揭示 之具體實施例,而應理解為包含所有可能實施例以及此申 請專利範圍所賦予之等效物之全部範圍。因此,申請專利 範圍並不限於本揭示内容。 【圖式簡單說明】 圖1A係根據一個所圖解說明實施例包含回收利用反應副 產品之用於製備石夕之一系統之一示意圖; 圖1B係根據一個所圖解說明實施例圖1 a之用於製備石夕 之系統的進一步包含移除氣化氫副產品之一替代方案之一 部分之一示意圖; 圖1C係根據一個所圖解說明實施例圖1 a之用於製備石夕 之系統之進一步包含分離及回收利用氣矽烧副產品之一部 分之一示意圖; 圖1D係根據一個所圖解說明實施例圖1 a之用於製備石夕 之系統之進一步包含移除氯化氫副產品之一替代方案之一 部分之一示意圖; 圖1E係進一步圖ία之用於製備矽之系統之包含使氣化 氫與曱矽烷在單獨反應器中反應之一部分之一示意圖; 圖1F係圖1A之用於製備矽之系統之進一步包含使補給 氣化氫與補給甲矽烷在單獨反應器中反應之一部分之一示 意圖; 152888.doc -98- 201130733 圖1G係圖1A之用於製借々备 * 裂備矽之系統之進一步包含使氣化 虱在自化學氣相沈積反鹿器之考少塔& ^态之出口處之原位反應器中反應 之一部分之一示意圖; 圖1Η係圖1Α之用於制供>么μ ^ 心用於I備矽之系統之進—步包 氫與甲錢在自化學氣相沈積反應器之出〇中反應之一部 分之一示意圖; 圖⑽圖1Α之用於製備妙之純之進—步包含分離及處 置二氣矽烷之一部分之一示意圖; 圖1J係根據-個實施例圖1Α之用於製備碎之系統之一部 分之一示意圖,其中該系統經設計以以蒸氣相操作; 圖1Κ係圖1Α之用於製備矽之系統之 處置氣化卿料之—部分之—示意圖;步^刀離及 圖1L係圖1A之用於製備矽之系統之進一步包含分離及 使用二氯石夕烷之一部分之—示意圖; 圖2係用於製備矽之一系統之包含使來自一化學氣相沈 積反應器之流出物中之氯化氫在—原位反應器中反應之一 部分之一示意圖; 圖3係包含製備、分離及使用二氣錢之用於製備石夕之 一系統之一示意圖;及 圖4係顯示一CVD反應器後原位氣化氫反應器中在反應 平衡時田彳產品之莫耳流速隨釋出氣體溫度變化之一圖表。 【主要元件符號說明】 100 製備矽之系統 101 管道 152888.doc •99- 201130733 102 幫浦 104 管道 106 歧化反應器前甲矽烷/氣矽烷混合器 108 管道 110 歧化反應器前溫度控制器 112 管道 113 管道 114 歧化反應器 115 管道 116 管道 117 歧化反應器後二氣矽烷分離器 118 歧化反應器後四氣化矽分離器 119 高沸點磷分離器 120 管道 121 管道 122 管道 123 管道 125 管道 126 管道 127 管道 128 化學氣相沈積反應器前氣化器 129 管道 130 管道 131 起動加熱器 152888.doc -100- 201130733 132 化學氣相沈積反應器前混合器 133 管道 134 管道 135 原位氣化氫反應器熱交換器 136 化學氣相沈積反應器 137 化學氣相沈積反應器後原位氣化氫反應器 138 碎產物 139 管道 140 管道 141 管道 142 化學氣相沈積反應器後第一冷卻器 143 管道 144 化學氣相沈積反應器後壓縮機 145 管道 146 化學氣相沈積反應器後第二冷卻器 147 管道 148 管道 149 化學氣相沈積後曱矽烷/氣化氫反應器 150 化學氣相沈積反應器後氫氣分離器 151 管道 152 管道 153 管道 154 管道 155 管道 156 化學氣相沈積反應器後氯化氫分離器 152888.doc -101 - 201130733 157 管道 158 管道 159 歧化反應器前甲矽烷/氯化氫反應器 160 管道 161 管道 162 歧化反應器前氣矽烷混合器 163 164 165 166 167 168 169 170 171 172 174 176 管道 管道 管道 管道 管道 歧化反應器前氣化器 化學氣相沈積後傾析器 管道 管道 管道 化學氣相沈積反應器後氯矽烷分離器 管道 177 化學氣相沈積後甲矽烷/氣化氫反應器熱交換器 178 化學氣相沈積反應器後氯矽烷混合器 179 管道 180 管道 181 管道 182 氣矽烷/三氣矽烷分離器 152888.doc -102- 201130733 183 管道 184 管道 185 管道 186 管道 188 化學氣相沈積反應 191 管道 192 化學氣相沈積反應 194 管道 196 管道 198 管道 203 管道 224 化學氣相沈積後四 226 管道 231 起動加熱器 233 管道 235 原位氣化氫反應器 236 化學氣相沈積反應 237 化學氣相沈積後原 239 管道 240 管道 241 管道 242 化學氣相沈積反應 243 管道 244 化學氣相沈積反應 器後氫氣/氯化氫分離器 器前氫氣/氣化氫分離器 氯化矽吸收器/氫氣分離器 熱交換器 器 位氣化氫反應器 器後第一冷卻器 器後壓縮機 152888.doc •103- 201130733 245 管道 246 化學氣相沈積反應器後第二冷卻; 247 管道 248 管道 252 管道 269 化學氣相沈積後第一傾析器 271 管道 273 化學氣相沈積後第二傾析器 275 管道 285 管道 287 流轉向器/控制器 290 管道 293 管道 295 四氣化矽/三氣矽烷分離器 299 管道 304 管道 306 歧化反應器前甲矽烷/氯矽烷混合 308 管道 310 歧化反應器前溫度控制器 312 管道 314 歧化反應器 316 管道 318 歧化反應器後四氣化矽分離器 320 管道 152888.doc -104- 201130733 336 化學氣相沈積反應器 1101 歧化反應器後三氣矽烷/二氣矽烷分離器 1103 管道 1105 管道 1107 二氯矽烷儲存系統 1109 管道 1111 管道 1113 三氣矽烷儲存系統 1115 管道 1 117 化學氣相沈積反應器前二氣矽烷/三氣矽烷混合器 1119 管道 1121 管道 ’ 3101 歧化反應器後二氣矽烷/三氯矽烷分離器 3103 管道 3105 管道 ' 3107 二氯矽烷儲存系統 3109 管道 3111 管道 3113 三氣矽烷儲存系統 3115 管道 3117 CVD反應器前二氣矽烷/三氯矽烷混合器 3121 管道 3125 管道 3127 管道 152888.doc 105- 201130733 3129 3131 3133 3135 管道 管道 管道 管道 152888.docThe mixture is sent from the CVD reactor to the hydrogenation separator 150 after the hydrogen separator 150 is sent to the CVD reactor. The post-CVD reactor gasification hydrogen separator 156 can be any design suitable for removing hydrogenation from chlorodecane. For example, hydrogen chloride after CVD reactor 152888. Doc • 56 · 201130733 The knife remover 156 may allow vaporized hydrogen gas to be released from the liquid mixture of the gasification hydrogen separator 156 after being delivered to the CVD reactor via line 154. In one embodiment, the vaporized hydrogen gas is then selectively moved through a gas permeable membrane. In another embodiment, the hydrogen chloride gas is moved through a dedicated helium chloride. In yet another embodiment, the vaporized hydrogen gas can be separated from a distillation column as a low boiling point product. The conduit 158 can deliver the vaporized hydrogen gas to a & gas distribution and/or storage system (not shown) after passing through or recovering from the membrane or the distillation column. This dispensing system can recycle the hydrogen chloride recovered in this manner back to the process disclosed herein for further processing. The Shixi manufacturing process disclosed herein provides an amazing opportunity to recycle the characteristics of hydrogen chloride produced during such processes, as discussed elsewhere herein. Another option is to deliver the stored hydrogen chloride gas to and used in the trichloromethane manufacturing facility. In still other alternatives, the stored gasification gas may be further purified (specifically for removal of residual chlorodecane) and sold for various applications requiring high purity gasification hydrogen gas. For example, the vaporized hydrogen gas from channel e 158 can flow through a carbon absorption bed to remove residual gas. Alternatively - the hydrogen chloride gas may be flowed on one of the exchangers containing liquid nitrogen to condense (iv) chlorine money. In either of these processes, the gas can be recovered and recycled back to the system for making a polycrystalline stone, such as the system described herein. In at least one embodiment, the separated gasified hydrogen can be suitably disposed of or disposed of, if necessary, rather than recycled or recovered and purified.隹糸 ΙϋΟ — some ---, ~ π T, after the Han Ying device gasification hydrogen distributor! 56 may only partially remove the vaporized hydrogen from the contents of the conduit 154. In other embodiments, the post-CVD system may not even contain CVD reactor gas 152888. Doc -57- 201130733 Hydrogen separator 156' as described elsewhere herein as an alternative to the removal of vaporized hydrogen by a CVD reactor post-gasification hydrogen separator ι56 as described above, hydrogen separation after CVD reactor The reactor 15 can be designed and operated to separate hydrogen and some or all of the vaporized hydrogen from the by-product mixture of the hydrogen separator 15 after self-delivery to the CVD reactor. In one such embodiment, a gaseous mixture of hydrogen and hydrogenated hydrogen can be passed through a bed of carbon (e.g., activated carbon) to remove hydrogen chloride from the hydrogen. In another embodiment, a heat exchanger comprising a coolant (e.g., liquid nitrogen) can condense hydrogenated from the mixture by cooling the gaseous mixture to a dew point of the vaporized hydrogen. In another embodiment, a combination of absorbent distillation and stripping can remove hydrogenated hydrogen from the hydrogen in the mixture. Although vaporized hydrogen can be removed in a variety of ways, as further described elsewhere herein, retaining the vaporized hydrogen in the gas decane mixture eliminates the need for equipment to treat the hydrogenated gas separately and can also help to maintain suitability. The optimal operating gas balance of the polycrystalline stone manufacturing system. In some implementations, the vaporized nitrogen by-product from CVD reactor 136 may only be partially retained in the process flow and thus only partially recycled in this manner. In some such, the post-reactor gasification gas separator 156 may remove a portion of the vaporized hydrogen for other uses, leaving residual hydrogenation in the process stream. For example, the process controller can set the amount of vaporized hydrogen to be recycled; at a level suitable for maintaining a ratio of one of the various reactants in the various reactants being fed to the disproportionation reactor 114. . The vaporized hydrogen that is not so recycled can be removed from the process shown. Thus, in some embodiments, the post-CVD reactor vaporization hydrogen separator 156 may only be partially 152888. Doc -58- 201130733 Remove gasification hydrogen. In other embodiments, the CVD reactor post-gasification hydrogen separator 156 can remove a point, if any, of vaporized hydrogen. The disposal of hydrogen and hydrogen chloride in various embodiments of system 100 is further described elsewhere herein. Figure 1C shows an alternative to the further process of system 1 of Figure 1A and a by-product for recycling the gas-fired reaction of the gas stream released from cvd reactor 136. Elements of Figure 1C that are identical or similar to elements shown in Figure 1A are identified by the same number. In one embodiment, as shown in FIG. 1C, the conduit 172 will vaporize hydrogen (if not otherwise removed) and gaseous decane by-products (including hafnium tetrachloride, trioxane, and dioxane) from the CVD reaction. After the gasification hydrogen separator 156 is sent to the CVD reactor, the gas decane separator! 74 ^ In another embodiment, the system may not include a CVD reactor post gasification hydrogen separator 156. In this embodiment, the vaporized hydrogen and gas stone by-product by-product is sent directly from the cvd reactor to the gas decane separator 174 after the hydrogen separator 150. After the CVD reactor, the gas slab separator 174 is advantageously separable from the separation of the dichloromethane and trichloromethane from the chlorination of the chlorination reactor after the separation in the gas decane separator 174 of the CVD reactor. The trichlorosulfonium is sent to a dichloromethane/trioxane separator 182. The dioxane/trioxane separator 182 advantageously separates the dioxane from the trioxane. The conduit 186 transports the trioxane from the dioxane/trichlorosilane separator 182 to the CVD reactor pre-gasifier 128. It is thus recycled for depositing polycrystalline germanium in the CVD reactor 136. Pipeline 184 delivers the dioxane from the dioxane/trioxane separator 182 to the chlororeactor mixer 178. After the CVD reactor, the gas decane mixer 178 is mixed with dioxane and the pipe 176 contains four gasification cesium 132888. Doc -59· 201130733. The conduit 160 is conveyed from the CVD reactor post-gas alkane mixer 178 to a mixture comprising dioxane and tetragas hydride for recycling to the system 100, as described above and illustrated in Figure 1A. In certain embodiments, if desired, the dioxane is delivered to the CVD reactor via line 184 and the gas decane mixer 178 is combined with the contents of the conduit 176 containing the liquefied ruthenium to be controlled to produce in the decane. The amount of dioxane and/or gas to dream ratio of the mixture of gaseous decane which is the best for the reaction in the disproportionation reactor 114 will be provided upon mixing. As described above, additional liquefied ruthenium may be added to the mixture prior to combining the chlorine > e-sinter mixture delivered by the conduit 160 with the decane to adjust the amount of reactants in the mixture and the enthalpy of the gas. The ear ratio produces an optimum amount of trioxane and delivers it from the disproportionation reactor 114 in Figure 1A to the CVD reactor 136. In certain embodiments, system 1 may not include a conduit 184 and a CVD reactor post-gasstone mixer 17 8 . In the embodiments of system 1 〇 0, the second gas stone garden separated by a gas stone kiln/three gas stone separator 182 can be transferred to a two gas smash storage system. The thus stored dichloromethane can be added to the gas sulphur mixture supplied to the disproportionation reactor 114 and/or directly to the chemical vapor deposition reactor 136 to assist in controlling the amount of reactants during operation of the system. The ratio of gas to sputum is discussed in the context of this article. Alternatively, the stored dioxane may be supplied or sold for other uses or disposed of properly. Figure 1D shows the system of Figure 1A and used for recycling hydrogen and from a CVD reactor. The gaseous by-product of the reaction removes one of the vaporized hydrogen replacement processes. Figure 1D is the same or similar component as the one shown in Figure 1A. Doc -60- 201130733 is identified by the same number. As shown in Figure 1A, conduit 140 delivers the reaction by-products and excess reactants from CVD reactor 136 to the first cooler 142 after the CVD reactor. The conduit 143 delivers the cooled material to the post-CVD decanter 169. Pipeline 145 delivers a higher boiling point of metostere for later processing with such materials in the process' as described elsewhere herein. The conduit 17 i delivers the lower boiling by-products and reactants from the post-CVD decanter 169 to the post-CVD reactor 144. The conduit 147 delivers the two-phase gas-liquid mixture produced by the CVD reactor post compressor 144 to the CVD reactor, the second cooler 146 ° conduit 148, and the gas-liquid mixture of by-products and reactants from the CVD reactor. The cooler 146 is sent to the hydrogen/hydrogenation hydrogen splitter 188 after the CVD reactor. After the CVD reactor, the hydrogen/hydrogen chloride separator 188 removes hydrogen and hydrogen chloride from the gaseous decane by-product and excess reactants, and the conduit 191 delivers a mixture of hydrogen and hydrogenated hydrogen to the hydrogen/hydrogenation hydrogen separator 192' of the CVD reactor. The hydrogen is separated from the vaporized hydrogen. Stream 196 delivers hydrogen from the CVD reactor pre-hydrogen/hydrogenation hydrogen separator 192 to the CVD reactor premixer 132' which mixes hydrogen with chlorodecane (primarily trichloromethane) for delivery to the CVD reaction via line 134. The 136 is as disclosed and discussed above. Therefore, the argon gas is recycled back to the system 1 for use in the manufacture of the CVD reactor. Line 194 delivers hydrogen chloride from the CVD reactor front hydrogen/hydrogenation hydrogen separator 192 to a gasification hydrogen storage system. As discussed elsewhere herein, the vaporized hydrogen can be transferred to a trichloromethane manufacturing facility where it can be diverted and reacted separately with formane or dioxane, either sold or discarded. Figure 1E shows the system 1 of Figure 1A and the gasification hydrogen and formoxane produced as a by-product in the CVD reactor 136 alone to produce one of the chlorodecanes. Doc 61 · 201130733 Optional aspect. Elements of Figure 1E corresponding to the elements shown in Figure 1A are identified by the same number. As described herein and as shown in Figure 1A, the conduit 154 delivers the CVD reactor by-product from which hydrogen has been removed to the CVD reactor post-hydrogen chloride separator 156. The CVD reactor post-hydrogen chloride separator 156 separates hydrogen chloride from the CVD reactor by-product. In Figure ι, line 157 delivers vaporized hydrogen from the CVD reactor post-gasification hydrogen separator i56 to a disproportionation reactor pre-methane/hydrogenation reactor 159. The disproportionation reactor pre-decane/hydrogen chloride reactor 159 receives the decane via line 155. The hydrogenation of hydrogen to the procarbazine/hydrogenation reactor 159 prior to the disproportionation reactor may also come from a variety of other sources, including sources within the polysilicon manufacturing facility and elsewhere. The disproportionation reactor pre-decane/hydrogenation reactor 159 reacts the vaporized hydrogen with the methanthanol to produce the gas decane. In certain embodiments, the disproportionation reactor front formazan/hydrogenation reactor 159 is advantageously It mainly produces three gas decane and two gas brothels. In other embodiments, the "disproportionation reactor pre-methane/hydrogenation reactor 159 can produce primarily liquefied ruthenium. The pipe ι 61 conveys the gas decane self-disproportionation reactor pre-methane/hydrogenation reactor 159 to the disproportionation reactor pre-gas sinter mixer 162. Alternatively, the gas decane from the first 159 of the disproportionation reactor can be directly sent to the disproportionation reactor shown in Figure 1A after the four gasification ruthenium separator 118» due to the pre-methane/hydrogenation reaction of the self-disproportionation reactor The gas decane supplied to the disproportionation reactor pre-gas hydride mixer 162 includes the elemental gas and thus the gas decane supplied may facilitate the operation of the processes described herein at the optimum ratio of the elements. The self-disproportionation reactor via line 161 provides the recovery of the various gas decane supplied to the gas streamer 162 of the disproportionation reactor and other sources from the system, 152888. Doc •62- 201130733 The amount of chlorite-fired can be used to limit the amount of replenishment of the four gas fossils required for the operation of the best gas to the ratio of Shi Xi, as discussed above with respect to the system (10). The output of the disproportionation reactor pre-decane/hydrogenation reactor 159 can be passed through a cooling system (e.g., one or more heat exchangers) to reduce the temperature of the output.  The heat exchanger such as helium can supply the heat of the output reaction mixture removed from the pre-disproportionation reactor before the calcining gas/gasification gas reactor 159 back to the disproportionation reactor, the monthly calcination/hydrogenation reactor 159. Or other locations in the facility that require heat. For example, σ can supply heat to various separators, in particular steamers. In certain embodiments, one or more heat exchangers may be located in the pre-disproportionation reactor pre-methane/hydrogen chloride reactor 159. In other embodiments, the disproportionation reactor pre-methane/hydrogen chloride reactor 159 may be comprised of a plurality of reactors in series with a heat exchanger or other specialized cooling element positioned at the plurality of such heat exchangers or other specialized cooling elements. Between each of the reactors. In such embodiments, the reactor and the cooling element can be alternately positioned in series, respectively. The CVD reactor post-gasification hydrogen separator 156 can supply substantially pure gasification hydrogen to the disproportionation reactor pre-methane/hydrogenation reactor 丨59 (although a small amount of tetra-gasification ruthenium and/or trichloro decane can be used. Accepted). In certain embodiments, the metformane supplied to the disproportionation reactor pre-decane/hydrogenation reactor 159 may be otherwise otherwise fed to the disproportionation of the system 100 illustrated in Figure 1 and described above. One part of the decane of the reactor of the former methan/gas mixture of the reactor, for example 5% to 15%. Under the selected operating conditions, the disproportionation reactor pre-decane/hydrogen chloride reaction 1528E8. Doc -63 - 201130733 159 operates at a temperature sufficient to fully convert the hydrogenation gas. In certain embodiments, the disproportionation reactor pre-methane/evaporation argon reactor 159 can be operated at a temperature greater than one of 100 °C. In certain other embodiments, the disproportionation reactor front shale > / gasification gas reactor 159 can be operated at a temperature greater than 200 °C. In still other embodiments, the disproportionation reactor procarbazine/hydrogen chloride reactor 159 can be operated at a temperature ranging from about 300 °C to about 60 °C. Temperatures above 600 °C can negatively affect the interior of the procarbation reactor pre-methane/hydrogenation reactor 159', for example, causing corrosion or loss of material strength. The disproportionation reactor pre-methane/hydrogenation reactor 159 can be operated with or without a catalyst. If used, the catalyst can be in the form of a copper wire or a substrate that is implanted into copper. The substrate can be ultrapure, whereby no contaminants are introduced into the product of the reactor. The conduit 161 can deliver the product of the reaction in the pre-disproportionation reactor methanine/hydrogenation reactor 159 as a vapor to the disproportionation reactor pre-gas decane mixer 162. If added as a vapor, the temperature to which the vapor is added (e.g., in the gasification mixer 162 before the disproportionation reactor) can be adjusted such that the vapor supplied by the conduit 161 condenses and combines with the liquid. As described elsewhere herein with respect to system 1A of Figure 1A, the liquid supplied to mixer 162 is primarily gas decane. In one embodiment, the product of the disproportionation reactor pre-methane/hydrogenation reactor 159 is supplied as a vapor to the disproportionation reactor pre-gas decane mixer 162 instead of the conduit 16 ,, alternatively to the disproportionation reactor. Before the gas smelting mixer 162, for example, by disclosing a heat exchanger cooled by any cooling medium suitable for the task, the disproportionation reactor front armor I52888. Doc • 64 · 201130733 The product of the reaction in the calcination/hydrogen chloride reactor 159 is condensed. Alternatively, the liquid or vapor from the disproportionation reactor pre-methane/hydrogenation reactor 159 can be supplied directly to the disproportionation reactor pre-decane/chloromethane mixer 1〇6. During operation of the procarbazine/gas hydride reactor 159 prior to the disproportionation reactor, the reaction produces hydrogen as a by-product as discussed elsewhere herein. The methane/hydrogenation reactor 159 and/or conduit 16 1 may be operated at a pressure sufficient to maintain hydrogen in the solution prior to certain embodiments' disproportionation reactor. In other embodiments, the reaction product from the disproportionation reactor pre-methane/hydrogenation reactor 159 can be directed back to the CVD reactor followed by a hydrogen separator 15 to remove hydrogen. In certain embodiments, the 'disproportionation reactor pre-decane/hydrogen chloride reactor 159 advantageously operates with an excess of the stoichiometric mole of vaporized hydrogen relative to chlorodecane. Under various embodiments of the conditions, the disproportionation reactor pre-methane/hydrogenation reactor 159 preferably provides at least 60% of the diatoms provided by the decane, preferably at least 70%, more preferably At least 8%, more preferably at least 90% 'and optimally 1% to 0% converted to chlorodecane. In certain embodiments, the "disproportionation reactor pre-decane/hydrogenation reactor 159 converts at least a majority of the meteorites to dioxane, trichlorodecane, and tetragas hydride. In other embodiments, the "disproportionation reactor pre-decane/hydrogenation reactor 159 converts at least a majority of the methanthanol to trichlorodecane and hafnium tetrachloride. In most embodiments, there is a little bit of methotane or mono-decane, if any. Since the excess hydrogenation of hydrogen on the moles is present in the methane/hydrogen chloride reactor 159 prior to the disproportionation reactor, the output of the pre-reactor pre-decane/hydrogenation reactor 1 59 also contains unreacted Hydrogenated hydrogen. Additionally, disproportionation 152888. Doc -65- 201130733 The reaction in the reactor pre-methane/hydrogenation reactor 159 produces hydrogen. In certain embodiments, the 'disproportionation reactor pre-methane/hydrogenation reactor 159 can be operated in a stoichiometric excess relative to the vaporized hydroformane to quantitatively incorporate gas from the hydrogenation gas into the gas. Shi Xiyuan. In some such embodiments, the gas oxane produced in the procarbation reactor pre-methane/hydrogenation reactor 159 may comprise primarily dioxane and trioxane. In other embodiments, the chlorodecane produced in the metaxane/hydrogenation reactor 159 prior to the disproportionation reactor may comprise a single gas helium. In some embodiments, the output of the disproportionation reactor pre-decane/hydrogen chloride reactor 159 to line 161 may comprise unreacted formane. In certain embodiments, the 'disproportionation reactor pre-methane/hydrogenation reactor 159 can be supplied to the gasification hydrogen before the disproportionation reactor decane/hydrogen chloride reactor 159 and the sulphur gas is burned at any one of It is not operated in the case of a stoichiometric excess relative to the other. That is, under these conditions, substantially all of the ruthenium supplied in the formane and substantially all of the gas supplied in the hydrogen chloride are reacted in the formazan/gas hydride reactor 159 before the disproportionation reactor to form Gas decane. In such embodiments, the output of the disproportionation reactor pre-methane/vaporized argon reactor 159 may be substantially free of formazan and substantially free of vaporized hydrogen. In some of these embodiments, the disproportionation reactor pre-combustion/gasification hydrogen reactor 159 converts the gas and gas into two gas stone, three gas, and four gas. In certain embodiments, the disproportionation reactor pre-decane/hydrogen chloride reactor 159 converts the helium and the gas primarily to dioxane and trioxane. In some such embodiments, the disproportionation reactor pre-methane/hydrogenation reactor 159 converts rhodium and chlorine primarily to trioxane. In other this 152888. Doc • 66 - 201130733 In the examples, etc., the disproportionation reactor pre-stone calcination/hydrogenation reactor 1 5 9 can convert helium and gas into dichlorodecane. In certain embodiments, the disproportionation reactor pre-decane/hydrogen chloride reactor 159 can produce only a low amount of monogas decane. For example, the disproportionation reactor pre-decane/hydrogenation reactor 159 can produce only 1 mole% to 2 mole% of monogas decane, with the remainder being gas decane having a higher ratio of chlorine to ruthenium. Figure 1F shows an alternative aspect of the system 100 of Figure 1A in combination with replenishing hydrogen chloride and replenishing the meteorite to produce gas decane. In particular, Figure F shows an alternative to the aspect shown in Figure 1E of system 100. Figure 1 Corresponding to the elements of the elements shown in Figures 1A and 1E are identified by the same number. As described elsewhere herein and shown in FIG. 1A, conduit 16A delivers a by-product mixture from CVD reactor 136 to a disproportionation reactor pre-gas streamer 162' that has been in the post-CVD reactor 150 from the by-product mixture Remove hydrogen. In FIG. 1E, conduit 183 delivers replenished gaseous hydrogen to the disproportionation reactor pre-methane/argon chloride reactor 159 » conduit 155 delivers the makeup to the disproportionation reactor mash-burn/disproportionate hydrogen reactor 159 . The replenishing hydrogen chloride and the supplemental decane are reacted in a decane/hydrogen chloride reactor 159 before the disproportionation reactor to produce gas decane. In certain embodiments, the disproportionation reactor pre-methane/hydrogenation reactor 159 advantageously produces primarily trioxane and dioxane. In other embodiments, the disproportionation reactor pre-decane/hydrogenation reactor 159 can produce primarily ruthenium tetrachloride. The conduit 161 delivers the gas decane self-disproportionation reactor pre-methane/hydrogenation reactor 159 to the disproportionation reactor pre-chlorosilane mixer 162. Alternatively, the chlorodecane from the disproportionation reactor pre-decane/hydrogenation reactor 159 can be delivered directly to the differential 152888 shown in Figure ία. Doc •67· 201130733 After the reactor, the four gasification enthalpy separator i! As discussed elsewhere herein, the gas decane supplied may be advantageous as the gas decane supplied to the disproportionation reactor pre-chlorosilane mixer 162 by the auto-disproportionation reactor pre-methane/hydrogenation reactor 159 includes elemental helium and gas. The processes described herein are operated at the optimum ratio of the elements. The aspect shown in FIG. 1F may provide an alternative to supplying replenishment of gasified ruthenium to a disproportionation reactor pre-gas decane mixer 162 via line 164 as described elsewhere herein. Figure 1G shows an alternative aspect of the in-situ reaction of the system of Figure 1A with the vaporized hydrogen by-product from the chemical vapor deposition reactor 136 and the gas decane by-product. In one such embodiment, the system is designed to allow the in situ reaction to advantageously occur near the exit from the CVD reactor. The components of Fig. 1G corresponding to the elements shown in Fig. 1A are identified by the same reference numerals. As shown in Figure 1G and elsewhere herein, the conduit 〇4〇 delivers by-products from the CVD reactor 136. As described elsewhere herein, by-products from the reactor contain hydrogen, hydrogenated hydrogen, and various gas decanes. The temperature of the by-product leaving the CVD reaction 136 may range from about 8 Torr to about 1000 °C. In some processes for making polycrystalline germanium in a CVD reactor, the by-products from the CVD reactor can be rapidly cooled to a temperature of less than 150 °C. However, recycling the gasification hydrogen by in-situ reaction of the vaporized hydrogen by-product from the CVD reactor with the gas-stone by-products benefits from maintaining the temperature of the output from the CVD reactor at an elevated level. . In some such processes, the by-product can be cooled to a temperature in the range of from about 300 °C to about 400 °C. In other such processes, the by-products can be cooled to from about 400 ° C to about 700. One of the ranges of 〇 152888. Doc • 68 · 201130733 degrees. In some of these processes, the by-products can be cooled to a temperature ranging from about 400 ° C to about 500 ° C. Appropriate temperature control can be achieved by heat exchange between the effluent from various reactors within system 100 and the input to the reactors. In certain embodiments, as shown in Figure 1G, conduit 140 delivers by-products from CVD reactor 136 to an in-situ gasification reactor heat exchanger I]. The in situ hydrogen chloride reactor heat exchanger 135 can transfer heat to the inner valley of the pipe to increase the temperature of the gaseous by-product from the CVD reactor 13 to an in situ reaction system for the gasification of hydrogen and gas stone. One of the temperatures, for example, to about 500 °C. The conduit 133 (the conduit 140 or a continuation of one of the conduits 126 discussed below) delivers the gaseous by-product mixture from the in-situ gasification hydrogen reactor heat exchanger 135 to the CVD reactor followed by the in-situ gasification hydrogen reactor 137. The reaction in the in-situ reactor is slightly hot, and thus the temperature may rise during the reaction, e.g., by about 20 ° C to about 25 ° C or by about 40 T: to about 50 ° C. The official passage 139 delivers the reaction mixture to the in situ gasification hydrogen reactor heat exchanger 135. In the embodiment shown in Figure 1G, the in-situ gasification hydrogen reactor heat exchanger 135 delivers heat from the reaction mixture exiting reactor 137 via line 139 to the reaction mixture entering reactor 137 via line 133. The pipe 141 (continuation of the pipe 139) delivers the reaction mixture from the CVD reactor after the in-situ hydrogen chloride reactor 137 to the post-reflux first cooler 142 via the in-situ gasification helium reactor heat exchanger 135. In some embodiments, it may be necessary to raise the temperature of the exhaust stream from the CVD reactor 13 in the conduit i4 to initiate an in situ reaction of the argon chloride with the chlorodecane. In these embodiments, the conduit 丨4〇 delivers the exhaust stream to an optional 152888. Doc •69· 201130733 Start the heater 131. When an optional starter heater ^ is used, line ι26 will be passed through a heated stream to the in-situ hydrogen chloride reactor system after the CVD reactor. In some embodiments, the temperature of the exhaust stream from CVD reactor 136 in conduit 14A can be greater than 500 ° C. In such embodiments, a waste heat boiler can be placed in conduit 140 to remove heat and The temperature is reduced to 500 〇c while producing a stream for use elsewhere in the system 100 or discharged from the system 1 。. In some embodiments, advantageously a conduit i 85 can deliver pure decane and/or pure gasification hydrogen to the mixture supplied from the CVD reactor 136 to the in situ gasification hydrogen reactor 13 7 after CVD. In such embodiments, the supply of gangue and/or vaporized hydrogen may minimize the need to add pure four gas fossils at other stages of the process as described elsewhere herein. In certain embodiments, a small amount of slate can be delivered to a mixture of other stages of the process (e.g., to the contents of line 141) to convert traces of residual hydrogen chloride to gas smoldering. In one embodiment of this aspect of system 100 shown in Figure 1G, the by-product mixture delivered from CVD reactor 136 via line 140 can be cooled to about 30,000 C. In such embodiments, as an alternative to the optional starter heater 13 1 'the in situ gasification hydrogen reactor heat exchanger 135 can transfer sufficient heat to the contents of the conduit 140 to bring the byproduct mixture to a temperature of about 3 〇〇〇c is raised to about 500 °C. In a particular embodiment, the reaction in the in situ gasification hydrogen reactor 137 after the CVD reactor can raise the temperature of the reaction mixture from about 500 ° C to about 522 ° C. Further, in this embodiment, the in-situ hydrogen chloride reactor heat exchanger 135 can transfer heat from the reaction mixture delivered from the reactor 137 via line 139 to the by-product mixture conveyed from the CVD reactor 136 via line 140. The transferred heat may be sufficient to exit 152888 via conduit 141. Doc -70· 201130733 The temperature of the reaction mixture of the in-situ gasification hydrogen reactor heat exchanger 13 5 is lowered to about 322 ° C and the by-product mixture leaving the in-situ gasification hydrogen reactor heat exchanger 135 by the pipe 133 The temperature is increased to about 500. (: The reaction between the vaporized hydrogen and the gas oxime by-product in the in-situ gasification hydrogen reactor 137 after the CVD reactor depends on the residence time and temperature of the reaction mixture in the in-situ hydrogen chloride reactor 13 7 after the CVD reactor. The residence time must be Sufficient to allow the reaction of gasification of hydrogen in the in-situ hydrogen chloride reactor 137 after the CVD reactor. The reactor 13 is thus designed to pass the by-product hydrogenation reaction after passing the by-product mixture from the CVD reactor 136 through the CVD reactor. The flow rate and temperature considerations of 137 are internal and allow sufficient residence time of the reaction mixture in reactor 137. The flow rate of the by-product mixture from the CVD reactor typically varies from system to system and is therefore not easily controllable. The residence time in the hydrogen chloride reactor is most easily controlled by setting the volume of the in-situ reactor. This can be most easily provided by adding the number of necessary in-situ reactors (in parallel or in series) to provide a suitable by-product mixture. The reaction conditions and the flow rate of one of the flow rates are achieved. In some embodiments where multiple reactors are used, the reactions are carried out in different reactors. The temperature can be different. For example, the temperature in one of the series of initial reactors can be higher than the temperature in a subsequent reactor. The initial reactor with higher temperature allows most of the reaction to occur (faster) Kinetics) with one of the lower temperatures, the subsequent reactor may be more suitable to bring the reaction to equilibrium. In certain embodiments, the reaction in the in situ gasification hydrogen reactor 137 after the CVD reactor may take up to two minutes. Or longer. In some embodiments, the 152888. Doc 201130733 and other reactions can take up to 1 minute. In other embodiments, the reactions may need to be between 30 seconds and 1 minute. In still other embodiments, the responses may need to be between 10 seconds and 30 seconds. In still other embodiments, the reactions may need to be between 1 second and 1 second. In certain embodiments, the reactions may take less than one second. In some embodiments, a manufacturing plant may include one, two, three or four CVD reactors followed by an in-situ gasification hydrogen reactor. Figure 1H shows an alternative to the system of Figure 1A and the reaction of vaporized hydrogen with decane in the vicinity of the outlet of the autochemical vapor deposition reactor 136. Elements of Figure 1H corresponding to the elements shown in Figure 1A are identified by the same number. As shown in Figure 1H and elsewhere herein, the conduit 14 is transported from a by-product of the CVD reaction | § 13 6 . In the embodiment shown in Figure 1 η, conduit 140 delivers the by-products to a decane/hydrogen chloride reactor 149 after a CVD reactor. As also shown in FIG. 1A and elsewhere herein, the CVD reactor post-hydrogen chloride separator 156 separates the vaporized hydrogen from a by-product of the CVD reactor 136. The conduit 165 delivers the vaporized hydrogen from the CVD reactor post-gasification hydrogen separator 156 to the decane/hydrogenation reactor 149 after the CVD reactor. The contents of the decane/hydrogenation reactor 149 after the 0 VD reactor contain the by-product of the CVD reactor 136 delivered by the conduit 140. Line 167 delivers the decane to the decane/hydrogenation reactor 149 after the CVD reactor. Hydrogen chloride supplied via line 165 and decane supplied via line 167 are combined with by-products exiting CVD reactor 136 via line 140. In certain embodiments, the amount of formoxane in the gangue/hydrogenation reactor 149 after delivery to the CVD reactor via line 167 is the same as the amount of hydrogenation in reactor 149 (including via 152888. Doc • 72- 201130733 Pipeline 165 added hydrogen chloride) is limited in stoichiometry. That is, after the hydrogen chloride and dimethyl hydride are added to the decane/hydrogen chloride reactor 149 after the CVD reactor, there is a vaporized hydrogen gas in excess of the dimethyl hydride in the reactor 149. In certain embodiments, the process in the decane/hydrogen chloride reactor after CVD can be staged in various ways to optimize the results. In general, most of the vaporized hydrogen is reacted in situ in a first stage to achieve 8〇% to 100°/. Conversion. A small amount of formane can then be added as needed to further convert any residual hydrogenation to chlorodecane. This process for the conversion of gasification to chlorite in the release stream and careful control of the addition of formazan can allow complete reaction of the substantially vaporized hydrogen by-products. This phased and controlled can thus avoid borrowing The vaporized hydrogen is removed by the post-CVD gasification hydrogen separator 156 and recycled back to the CVD post-methane/hydrogenation reactor 149 via line 165. The rapid cooling of the chemical vapor deposition reactor releases the by-products to help limit the production of tetragassing ruthenium, which typically requires disposal in the absence of the recycling process described herein. However, the reaction of decane with hydrogenated hydrogen proceeds only slowly at these reduced temperatures. Thus, recovery of the use of vaporized hydrogen by reaction with decane in the decane/hydrogenation reactor 149 after the CVD reactor can benefit from maintaining the temperature of the output from the CVD reactor 136 at an elevated level. Be sure. The content of the decane/hydrogenation reactor 149 after the CVD reactor. The selection of an optimum temperature must take into account the various reactions that occur. The temperature is selected to maximize the production of preferred products from such reactions. Preferably, the determination condition 152SB8 can be expected for the polycrystalline process described herein. Doc -73- 201130733 such that the output of the decane/hydrogenation reactor 149 from the CVD reactor into the manufacturing system contains mainly trioxane and tetragas ruthenium, with only a limited amount of dioxane, and a minimum amount Single gas decane, formane or hydrogenated gas. The CVD reactor post-hydrogenation hydrogen separator 156 is not necessary in a system capable of reacting all of the vaporized hydrogen from the by-product. Based on the calculation using the equilibrium reaction, during the reaction involving hydrogen chloride and formoxane, a temperature of about 300 ° C to 600 ° C is optimal for the content of the decane/hydrogenation reactor 149 after the CVD reactor (see Example 丨) herein, wherein only decane is added for removal of any residual hydrogenation. For these conditions, the output from CVD reactor 136 can be from about 8 Torr. 〇 to 1〇〇〇. The ruthenium is cooled such that the temperature of the contents of the decane/hydrogen chloride reactor 149 after the CVD reactor is less than about 6 Torr after the addition of decane and hydrogenation. (:, more generally at a temperature between about 400 ° C and about 500 ° C. In such embodiments, the first cooler 142 or a similar cooling system after the CVD reactor is advantageously positionable in the CVD reaction 136 is between the CVD reactor and the decane/hydrogenation reactor 149. Alternatively or additionally, the inlet and outlet streams of the decane/hydrogenation reactor 149 after the CVD reactor are advantageously passed A heat exchanger. For example, as shown in Figure 1H, the conduit 14 is discharged from the CVD reactor 136 via an optional CVD post-decane/hydrogenation reactor heat exchanger 177 and conduit i79. The by-product mixture is sent to the cvd post-methane/hydrogenation reactor 149. The line 181 delivers the reaction product from the CVD post-methane/hydrogen chloride reactor 149 via a heat exchanger π? and a line 151. If used, the heat exchanger 177 can The exchange of heat between the inlet and outlet of the decane/hydrogen chloride reactor 149 after CVD is required to be in each of the 152888 from the system. Doc -74· 201130733 Exchanges heat between the reactors and the inputs to the reactors. By way of example, it may be advantageous to pass the heat exchange with the vapor reactant entering the chemical vapor deposition reactor or by generating a waste heat boiler for use in the system 100 or a stream discharged from the system 1〇〇. Reduce to the desired level. The control of the reaction conditions can be based on the analysis of residual hydrogenated hydrogen in the contents of the pipe. The system may not require additional formane and/or vaporized hydrogen because sufficient chlorodecane may be present in the liberated by-product to react almost completely with the vaporized hydrogen in the liberated gas 'eg, at least 99% or even at least 99. 6% of gasification hydrogen. In the embodiment shown in Figure 1A, the product of the pipe i51wcvD post reactor and the gas stream/hydrogenation reactor 149 is sent to the first cooler 142 after the CVD reactor. In other embodiments, the product of the CVD reactor post-decane/hydrogenation reactor 149 can be delivered directly to the CVD reactor post compressor 144. Those skilled in the art will readily appreciate that the position of the decane/hydrogen chloride reactor 149 relative to each other after the cooling system, compressor system, and CVD reactor may depend on the temperature requirements of the optimum reaction from the byproduct of the CVD reactor 136. Variety. Since the decane is delivered to the decane gas/hydrogenation reactor 149 in a stoichiometrically limited amount compared to the vaporized hydrogen, the metformane is delivered after the CVD reactor by the decane/hydrogenated hydrogen. The reactor 149 is substantially completely reacted with the vaporized hydrogen to form a gas decane. In the embodiment shown in FIG. 1H, the hydrogen chloride with which decane is reacted in the decane/hydrogenation reactor 149 after the CVD reactor comprises directly from the chemical vapor deposition reactor 136 and from the CVD reactor via line 165. Gasification of the post-gasification hydrogen separator 156 152888. Doc -75- 201130733 Hydrogen. In certain embodiments, the system can include a small reactor to which a very small amount of slate can be added to allow for the conversion of a small amount of residual hydrogenated hydrogen. This reactor can be referred to as a "gasification hydrogen reforming reactor". In these examples, the formazan may not be added to the initial reactor and only to the subsequent reactor. The transport of the reactants of the decane/hydrogenation reactor 149 after passing through the CVD reactor can be controlled to optimize the contents of the methotane/hydrogenation reactor 149 after the supply of the ruthenium and the CVD reactor via the conduit 167. The reaction of hydrogenated hydrogen in the middle. In some embodiments 'the flow in the decane/hydrogenation reactor 149 after the CVD reactor can be controlled by the number and size of the reactor elements in the reactor 149 to allow for the most within the contents of the reactor 149. Good reaction. For example, the flow of the methane/hydrogenation reactor 149 after passing through the CVD reactor can be controlled by the characteristics of the reactor elements such that the duration within the reactor 1 49 is the most complete for the desired reaction system. Good. In certain embodiments, the hydrazine reaction may require up to 2 minutes or more. In some embodiments, such reactions can take up to 1 minute. In other embodiments, the reactions may need to be between 30 seconds and 1 minute. In still other embodiments, the reactions may need to be between 1 〇 and 3 〇 seconds. In still other embodiments, the reactions may require between 1 second and 10 seconds. In some embodiments, such reactions may require less than 丨 seconds. The gas decane produced by the reaction of the gasified argon with the methane in the kiln reactor/kiln reactor 149 can be recycled back together with the other gas decane produced in the chemical vapor deposition reactor 136. To the disproportionation reactor 114. After the CVD reactor, the hydrogen chloride which is not converted to gas decane in the kiln/gas sinter reactor 149 can be retained at 152888. Doc -76· 201130733 The content of system 100 is separated from or separated from it, as shown in Figure VIII to 1]. As described above and elsewhere herein, operating system 100 in this manner to optimally utilize vaporized hydrogen facilitates efficient maintenance of gas balance within the system. It is also possible to effectively control the chlorine balance in the system by supplying trioxane instead of tetraxane as a make-up gas decane when appropriate. For example, trichloromethane can be added to the disproportionation reactor pre-chlorosilane mixer 162 'added to the disproportionation reactor pre-methane/chloromethane mixer 106 or directly to the CVD reactor 136 to control gas balance or supply to The ratio of chlorine to hydrazine of the feed to the chemical vapor deposition reactor 136. Alternatively or additionally, the replenishing of the hydrogenated gas and the methanol may be reacted in an in situ hydrogen chloride reactor to form a vaporized decane. The operating system 100 as described herein also utilizes vaporized argon to eliminate or at least limit the need to separate the vaporized hydrogen for recycling and eliminate or at least limit and establish and operate to process and store the vaporized hydrogen for use. The costs associated with the facilities sold or used at other facilities. The process for recycling hydrogenated by-products described herein (e.g., as shown in Figures 1E through 1H) is not limited to use in the embodiments of the polysilicon manufacturing process described herein. Such processes for recycling hydrogenation gas may be suitable for use in any polysilicon manufacturing facility, system or process, particularly those facilities, systems or processes that are typically designed to contain no hydrogenated hydrogen as a reactant. For example, t 'favorably, the process for recycling hydrogenated hydrogen can be used in the following facilities or processes: wherein four gasification ruthenium, metallurgical grade ruthenium and hydrogen are combined to produce trichloro decane for producing polycrystalline ruthenium . The conversion of hydrogen chloride to gas decane as described herein allows for the recovery of hydrogen chloride from the system or its transfer to a separate metallurgical helium reactor without resorting to 152888. Doc •77- 201130733 and maintain the gas balance in a manufacturing facility under the conditions of the reaction. Figure 11 shows an alternative to the system 100 of Figure 1A in relation to controlling the amount of dioxane during system operation. As discussed elsewhere herein, the optimal operation of system 100 (specifically, the fabrication of polysilicon) may benefit from precise control of the amount of dioxane in the feed to CVD reactor 136 via line 134. A facility that typically produces polycrystalline dreams by chemical vapor deposition can have a two-gas fragmentation imbalance. The dichlorodecane is sourced from various sources within this operation and is ultimately locked to the chemical vapor deposition reactor. For example, both the gasification fossil heat exchanger and the front end of the polysilicon production operation produce dichloromethane. However, there is a limit to the amount of dioxane that can be utilized in a chemical vapor deposition reactor. Thus excess dioxane may be present downstream of the chemical vapor deposition reactor. In the embodiment of the process illustrated schematically in Figure 11, 'dioxane can be used more efficiently and efficiently, and the various aspects of the illustrated system 100 can eliminate or significantly reduce the handling of dioxane. need. The elements of Fig. II corresponding to the elements shown in Fig. 1A are identified by the same reference numerals. In certain embodiments, as shown in Figure 1 j, the conduit 丨6 delivers the reaction product mixture from the disproportionation reactor 1丨4 to the post-disproportionation reactor four gasification ruthenium separator 118. Removal of the four gasified ruthenium from the reaction product mixture by separator 118 is set forth elsewhere herein. The conduit 121 delivers the reaction product mixture from which the four gasifications have been removed to the disproportionation reactor, after the dichlorosilane separator 117° disproportionation reactor, the dichlorohydrazine burner 117 separates from the reaction product mixture and removes the two gases. Shi Xiyuan. The amount of dichasite burned at various points in the process for making the polycrystalline crumb can be achieved by using the reaction of the self-disproportionation reactor U4 152888. Doc •78- 201130733 The product is separated by dioxane to adjust. Alternatively, the conduit 123 may advantageously be provided to the CVD reactor pre-gasifier 128 or to the CVD reactor pre-mixer, either after the dioxon gas auto-disproportionation reactor is supplied to the CVD reactor pre-gasifier 128. 132 to precisely adjust the amount of dioxane in the feed to the CVD reactor 136 via line 134. In another embodiment, the conduit 113 may supply the chlorite oxime auto-disproportionation reactor post-chlorine sinter separator 117 to the disproportionation reactor pre-gas decane mixer 162. Mixer 162 is advantageously miscible with dichlorodecane and tetragas hydride, other chlorodecane and hydrogen chloride (if present) to optimally control the ratio of chlorine to hydrazine in the feed to disproportionation reactor 114 and the amount of dioxane . In certain embodiments, if desired, the conduit 5i 5 can be diverted from the disproportionation reactor post-dioxane separator 117 as needed for storage and subsequent use. The system for recycling the chlorite to the process for making the polycrystalline crucible described herein efficiently utilizes the two-mass igniting produced by the reaction in the system. In certain embodiments, any small excess of dioxane removed from the dichloromethane separator 1丨7 via the conduit 11 5 from the disproportionation reactor may be disposed, if necessary. The polycrystalline fabrication facility can include multiple CVD reactors. The optimum requirements for the amount of dioxane in the feed to the CVD reactor can be unique for each particular reactor within the manufacturing operation. Thus, the self-disproportionation reactor can be uniquely pre-programmed with a dioxane separator 117 to supply dichloromethane to the feed to each CVD reactor. Dichloromethane can be supplied to each reactor in a stylized manner' thus allowing for precise control of the flexibility of a single gas in the feed to any particular reactor and thus allows for optimum operation. The rate of reaction and energy depletion in a given CVD reactor can be at least partially achieved by 152,888. Doc •79- 201130733 This mode controls the amount of dioxane fed to the reactor. In some embodiments, the addition of dioxane to the feed to the CVD reactor may not be necessary. In some embodiments, the operation of the aspect shown in Figure U of the system 1 can be performed in a time-independent manner. In such embodiments, the disproportionation reactor 114 is operable to maintain the amount of the second gas in the product of the disproportionation reactor 1丨4 at a constant predetermined amount. The concentration of dioxane in the product of the disproportionation reactor U4 can be controlled, for example, from about 2% by weight to about 80/Torr (by weight) (both based on no four gasification) The scope of the situation). In such embodiments, the amount of the second gas smoldering in the trioxane feed to all of the CVD reactors may be the same. In some such embodiments, the amount of dioxane in the trioxane feed to the chemical vapor deposition reactor can be selected to be the highest possible amount that does not adversely affect the quality of the polycrystalline crucible being produced. In some of these embodiments, the disproportionation reactor can be first controlled to produce a product containing a low amount of dioxane over a period of time. This product can be delivered to a first storage tank and stored therein. In such embodiments, the disproportionation reactor can then be controlled to produce a product containing a high amount of dioxane over a period of time. This product can be delivered to a second storage tank and stored therein. In such embodiments, the feed to any particular chemical vapor deposition reactor can then be produced by blending the product from the first tank with the product from the second tank. In such embodiments, the amount of dioxane supplied to the feed to any given chemical vapor deposition reactor may be blended differently than the amount of dioxane supplied to any other chemical vapor deposition reactor. In these embodiments, 152888 is supplied to the dioxane feed of any particular chemical vapor deposition reactor. Doc -80· 201130733 The amount of dioxane may not vary over time, but may still differ from the amount of dichlorodecane supplied to any other chemical vapor deposition reactor. The above method allows controlled and efficient use of the dioxane produced in the disproportionation reactor. Therefore, if present, there may be an excess of dichloromethane at a point where disposal is required. In addition, the use of dioxane can be precisely controlled so that it can be converted to polycrystalline spine without adversely affecting the quality of the resulting product. The portion of system 100 described above that operates in the presence of a reactant and/or product in the liquid phase may alternatively (where appropriate) be such that the reactants and/or products are in place at the appropriate location within the S-system. Under the conditions of the operation. In some embodiments of the system 100 of Fig. A, as shown in Fig. J, the 曱石夕烧 and the gas stone kiln can be supplied in the gas phase to the disproportionation reactor before the shale/steam smoldering 106. Pipeline 104 supplies the methanol as a vapor to the disproportionation reactor pre-cane/gas hexane mixer 106. In practice, the heat supplied by one of the heat exchangers elsewhere in the operation vaporizes the methanol, as further discussed elsewhere herein. In certain of the illustrated embodiments, conduits 120 and 160 supply gas smoldering (including, in particular, four gas enthalpies) to a disproportionation reactor pre-gas decane mixer 162. The conduit 164 delivers additional four gasified helium to the disproportionation reactor pre-gassing mixer 162 (as described above) to adjust the disproportionation reactor pre-gas mixture 162 and thus to the disproportionation reactor pre-methane/chlorine The molar ratio of gas to enthalpy in the mixture of decane mixers 106. As explained elsewhere herein, it is advantageous to add other chlorodecane to adjust the molar ratio of gas to enthalpy in the mixer 162. The conduit 166 delivers a mixture of chlorodecane in the prochlorosilane mixture 162 of the disproportionation reactor to the disproportionation reactor pre-gasifier 168. Disproportionation 152888. Doc -81- 201130733 Pre-reactor gasifier 168 vaporizes the mixture of chlorodecane from the disproportionation reactor pre-gas streamer 162. The line 17 is supplied with a mixture of vaporized chlorodecane from the disproportionation reactor pre-gasifier 168 to the front of the disproportionation reactor, decane/chloromethane mixer 1〇6. As shown in Fig. u, the mixer 1〇6 mixes the metformane vapor supplied through the pipe 1 with the vaporized chlorodecane supplied via the pipe 丨7〇. The contents of the mixer 106 may also include other by-products of the reaction in the system, such as hydrogen and/or vaporized hydrogen that may not have been removed from the process stream elsewhere in the system. Pipe 1 〇 8 feeds the mixture from the disproportionation reactor pre-decane/gas decane mixer 106 to system 100 for processing as shown elsewhere in Figure 1A*. Under these embodiments, the gasification of the materials and the portion of the system must be carried out at a pressure in the gas phase at a temperature within the temperature range in which all of the materials are operated within the process of the disproportionation reactor 丨丨4. Operation. That is, the system operates under conditions such that all of the reactants remain in a single phase except at locations where it is desirable to separate and remove certain components within the system. Line 108 supplies the vaporized mixture of methotane and gas decane to the front of the disproportionation reactor temperature controller 11 〇. The disproportionation reactor front temperature controller 110 heats the gasification reaction mixture under a controlled pressure to a selected temperature within the range of operating the system as described above when the reactants are in the liquid phase. The conduit 112 delivers the heated vapor to the disproportionation reactor 114. The conduit 116 delivers the gas phase reaction product from the disproportionation reactor 114 to the post-disproportionation reactor four gas fossil separators 118. After the disproportionation reactor, the four gasification waste separators 8 separate the four gasified ruthenium from the reaction products and other excess reactants for recycling through the pipeline 120 to the disproportionation reactor pre-gas hydride mixer 162. 'In the system' as described above. Self-disproportionation reactor after helium tetrachloride separator 152888. Doc • 82· 201130733 118 'The pipe 198 delivers the vapor mixture of the reaction product after removal of the four gasified helium to the CVD reactor premixer 132. Additionally, conduit 152 delivers hydrogen to CVD reactor premixer 132 as described above. The CVD reactor premixer 132 mixes the vapor mixture of the reaction product delivered via line 198 with the hydrogen gas delivered via line 152. Stream 134 delivers the vaporization or gaseous mixture of the reaction product and hydrogen from CVD reactor premixer 132 to CVD reactor 136' as described above. Alternatively, the recovered hydrogen can be fed separately to the chemical vapor deposition reactor 丨36 and mixed with the trioxane in the reactor 136. Figure 1K shows an alternative aspect of the system 1 of Figure 1A associated with the removal of reactants from the system 1 麟 or other Nanfo point impurities. Male contaminants can be introduced into the reactants from a variety of sources', for example, extracted from metals in the system or contained in reactants such as decane, replenished bismuth hydride, and/or replenished trigas. These contaminants can also have a negative impact on the quality of the polycrystalline germanium produced by this system even at very low levels. Phosphorus contaminants in system 1 and/or products may contain low boiling point phosphorus contaminants (e.g., PH3 and PH2CI) and/or rlj boiling point dish contaminants (e.g., PHC12 & PC13). The components of Fig. 1K corresponding to the elements shown in Fig. 1A are identified by the same reference numerals. Disproportionation reactor 114 converts low boiling point dish contaminants into high boiling point cesium contaminants. The conduit 116 delivers the reaction product of the disproportionation reactor 114 (containing the high boiling phosphorus contaminants PHCh and PCh) to the helium tetrachloride separator 118 after the disproportionation reactor. As explained above with respect to Figure 1A, the post-disproportionation reactor four gasification helium separator 118 separates the four gasified helium from trichlorosilane. However, after the disproportionation reactor under the selective operating conditions, the tetrachloride cherries 1 1 8 may also be from 152888. Doc -83- 201130733 Three gas smoldering to separate high boiling point contaminants. Under these conditions, the pipe i 25 transports the four gasification fossils and the high boiling point scale contaminants to the high boiling point separator 119. In certain embodiments under selected operating conditions, the high boiling point separator 119 can separate the four gasified hydrazine and PHCh from PCh. In other embodiments under other operating conditions, the high boiling point phosphorus separator 119 can separate the four gasified ruthenium from pci3 or from PHCl2 and PC13. PC13 or PHC12 & PC13 can be accumulated for collection from the High Phosphorus Phosphorus Separator 119. The conduit 127 can remove and deliver the collected high-boiling phosphorus contaminants to the waste for disposal. For each pass, the high-boiling phosphorus separator 119 can only partially remove high-boiling disc contaminants from the four-gassing crucible. The conduit 129 delivers the four gasified helium and any high boiling phosphorus contaminants or other high boiling impurities that have not been removed to the disproportionation reactor pre-gas streamer 162. The high-boiling phosphorus contaminant in the disproportionation reactor pre-gas hydride mixer 162 is again passed through the disproportionation reactor 114, the disproportionation reactor, the post-four gasification ruthenium separator 118, and the high-boiling scale separator Π9^disproportionation reactor 114 to further further the PHC12. These cycles, which are converted to high boiling PCI", can ultimately convert all of the dish contaminants from the reactants and products of system 100 and remove them as PCI3. The system can remove the low trillions of phosphorus in this way. If the phosphorus contaminant needs to be removed from the feed to the CVD reactor, the operating system 100 only includes this optional aspect. In certain embodiments, the high boiling point phosphorus separator 丨丨9 can be relatively medium sized. One of the distillation apparatus, for example, has about 5 trays. In some embodiments, the disproportionation reactor rear four gasification rhodium separator 118 can be operated under relatively stringent specifications regarding antimony tetrachloride. For example, After the disproportionation reactor, the four gasification helium separator 118 can be passed through the conduit 122. 5 weight percent or less 152888. Doc •84- 201130733 Four gas fossils are transferred to the CVD reactor. In some such embodiments, the amount of strontium carbide vaporized via conduit 122 may be 005 005 weight percent or less. Within the quartz tetrachloride separator 11 8 after the disproportionation reactor, the stringent specification that severely limits the transfer of the four gasification helium to the chemical vapor deposition reactor 136 via line 122 is beneficial for transferring the PHC 12 to the high boiling point phosphorus separator 119 via line 125. . Such stringent specifications may result in an increased amount of triclosan in the material delivered by the four gas shift separators 118 after the disproportionation reactor via line 125. However, moving the three gas stone in this way is not a problem, because the three gas stone will eventually circulate back through the disproportionation reactor 114. In some embodiments, the specification of the four gasification enthalpy of the disproportionation reactor after the disproportionation reactor can be more loosely set so that the amount of the four gas fossils transported through the conduit 1 22 can be about 0. . A range between 5 weight percent and 5 weight percent. In some embodiments, the specification for designing and operating the high boiling point phosphorus separator 119 can be set to remove the majority of the pCi3 in a single pass. In some other embodiments, the specification for removing PC 13 can be set more loosely such that the high boiling point phosphorus separator 119 removes less than half of the pcl3 in a single pass. Even if the system is loosely set, the high boiling point phosphorus separator 119 will also remove the PC 13 in subsequent passes. Figure 1L shows an alternative aspect of the system 10 of Figure 1A associated with separation and utilization of two gas smoldering during system operation. As discussed elsewhere herein, the optimal operation of system 100 (specifically, the fabrication of polysilicon) can benefit from the precise control of the amount of the second gas furnace supplied to the CVD reactor 136 via line 134. During the operation of one of the facilities for the manufacture of polycrystalline stone by chemical vapor deposition, the second gas fragment can be derived from various sources. For example, a self-disproportionation reactor 152888. Doc -85- 201130733 π 4 transported gas decane contains dioxane. In the system 100 shown in Figure 1A, as described above, the dioxane delivered from the disproportionation reactor u 4 is ultimately fed to the CVD reactor 136. The embodiment illustrated in Figure 1L, which is illustrative of the process for making polyliths, allows for the removal and more efficient, efficient, and optimal use of the dichloromethane during the manufacturing process. Elements of Figure 1L corresponding to the elements shown in Figure 1A are identified by the same number. In certain embodiments, as shown in Figure 1L, the conduit 116 delivers a mixture of reaction products from the disproportionation reactor crucible 14 to the helium tetrachloride separator 118 after the disproportionation reactor. Removal of ruthenium tetrachloride from the reaction product mixture by separator 118 is set forth elsewhere herein. The pipe 1121 conveys the reaction product mixture from which the ruthenium tetrachloride has been removed to the trioxane/dioxane separator 1101 after the disproportionation reactor. The separator 11〇1 produces a mixture of dichlorodecane or a mixture rich in dioxane and a mixture of triclosan or trioxane. The pipe 丨丨〇3 transports the two gas stone courtyard or the mixture rich in dioxane from the separator 11〇1 to the second gas storage system 11 〇7 ^ In some embodiments, the pipe 丨丨丨丨The second gas stone court can be transported to the first dioxane/trioxane mixer 1117 of the CVD reactor. Dioxane may be supplied via conduit 9 for other uses within the system or elsewhere or may be sold. In certain embodiments, the dioxane or the mixture rich in dioxane may be pure dioxane. In certain embodiments, the conduit 11〇5 delivers a mixture of trioxane or tri-decane-rich from the disproportionation reactor post-trioxane/dichlorodecane separator 1101 to the second gas storage system 1113. In certain embodiments, the conduit 1115 can deliver trioxane to the CVD reactor pre-dioxane/three gas sinter mixer 1117. In certain embodiments, it can be from a chlorobenzene storage system 152888. Doc •86· 201130733 1113 Trioxane is supplied for other uses in the system or elsewhere or it can be sold. In certain embodiments, the mixture of trichloromethane or trioxane-rich may be pure trioxane. Depending on the need to optimize the production of polysilicon in the CVD reactor 136, the conduit 1119 can supply mixed dichloromethane and tri-gas hydrazine from the chloroformane/trichloromethane mixer 1117 to the CVD reactor pre-gasifier. 128. Figure 2 shows an example of one of the configurations associated with one of the systems for preparing polycrystalline germanium and for controlling the amount of gas decane in the system and for in situ reaction of hydrogen chloride and gas by-products from a chemical vapor deposition reactor. Sexual embodiment. The components of Fig. 2 corresponding to the elements shown in Figs. 1A and 1G are identified by numbers starting with "2" instead of "1" but having the same parts. Although elements numbered in this manner are similar, those skilled in the art will readily recognize that this portion of a system shown in Figure 2 can be fed from any source to a chemical vapor deposition reactor, not necessarily in this context. Suitable materials associated with the systems for making crucibles illustrated elsewhere in Figures 1A through 1K function. In particular, conduit 203 can be fed to CVD reactor 236 from any source of suitable reactants. By-products from CVD reactor 236 may contain hydrogen, hydrogen chloride, and various gas smelting. As noted above, the temperature of by-products exiting a CVD reactor can range from about 800 ° C to about 1 Torr. The scope of 〇. In some processes for producing polycrystalline germanium in a CVD reactor, the product from the cvd reactor can be cooled to from about 3 Torr (rc to about 4 ° C or from about 400 ° C to about 700). °C or from about 40 〇. (: to a temperature in the range of about 500 ° C. Appropriate temperature control can be achieved by exchanging heat to various sources or exchanging heat from various sources. 152888. Doc-87- 201130733 In certain embodiments, as illustrated in Figure 2, conduit 240 delivers by-products from CVD reactor 236 to an in-situ gasification reactor heat exchanger 235. The in-situ gasification hydrogen reactor heat exchanger 235 can transfer heat to the contents of the conduit 240 to raise the temperature of the gaseous by-product from the CVD reactor 236 to one of the in-situ reaction systems for gasification and gas combustion. The temperature is, for example, about 500 °C. The conduit 233 (the conduit 240 or a continuation of the conduit 226 as discussed below) delivers the gaseous by-product mixture from the in-situ gasification hydrogen heat exchanger 23 5 to the CVD reactor followed by the in-situ gasification hydrogen reactor 237. Line 239 delivers the reaction mixture from the in-situ gasification hydrogen reactor 237 after CVD to the in situ gasification hydrogen reactor heat exchanger 235. The reaction in the in situ hydrogen chloride reactor 237 is slightly hot. The in situ gasification hydrogen reactor heat exchanger 235 transfers heat between the mixture exiting the reactor 237 via line 239 and the mixture supplied to the reactor 237 via line 233, as described above with respect to the embodiment illustrated in Figure 1G. . The conduit 241 (continuation of conduit 239) delivers the reaction mixture from the CVD reactor after the in-situ gasification hydrogen reactor 237 to the first chiller 242 after the CVD reactor. The conduit 243 delivers the cooled material to the first decanter 269 after CVD. The first decanter 269 after CVD separates lower boiling materials such as hydrogen, vaporized hydrogen and lower boiling decane from higher boiling materials such as ruthenium tetrachloride, trioxane and methylene chloride. The first decanter 269 after CVD can be any design suitable for use in separating higher boiling and lower boiling materials from one another. For example, in one embodiment, post-CVD decanter 269 can include a distillation apparatus. In another embodiment, the post-CVD decanter 269 can comprise a separate column bed wherein the lower boiling material rises from the top 152888. Doc -88- 201130733 The effluent and higher boiling material flows out from the bottom. Pipeline 245 delivers a higher boiling point of metostere to be treated with similar materials at other points in the polysilicon manufacturing process. The conduit 271 delivers the lower boiling material to the CVD reactor post compressor 244. The CVD reactor post compressor 244 pressurizes the gaseous mixture supplied through line 271 to convert the gaseous mixture into a mixture of liquid chlorodecane and hydrogen and one of hydrogen chloride gas and gas decane vapor. Line 247 delivers the two phase gas-liquid mixture to the second cooler 246 after the CVD reactor. The second cooler 246 after the CVD reactor further liquefies the higher boiling material from the gas phase of the two phase mixture to optimize subsequent removal of the higher boiling methyl decane from the mixture. The conduit 248 delivers the cooled material to the second decanter 273 after CVD. The second decanter 273 separates the lower boiling material from the higher boiling material after CVD. Line 275 delivers the lower boiling point material to the post-CVD helium tetrachloride absorber/hydrogen separator 224. After CVD, the ruthenium tetrachloride absorber/hydrogen separator 224 contains an inert material (for example, a steel filler) and is used to allow the material (specifically, trichloromethane) to flow downward to reduce the four gasification enthalpy absorber after CVD. / The content of the gasification enthalpy of the hydrogen separator 224 leaving. Line 252 delivers a gas phase mixture from CVD post-cyllium tetrachloride absorber/hydrogen separator 224 to CVD reactor 236. Line 293 delivers a liquid phase mixture to a four gas enthalpy/trichloromethane separator 295. The conduit 299 delivers the trioxane-rich material from the four gasification rhodium/trioxane separator 295 to the CVD reactor 23 6 . Pipe 299 includes a first class steering gear/controller 287. The conduit 290 delivers the trichloromethane-rich material from the four gasification rhodium/three gas decane separator 295 to the post-CVD four gasification helium absorber/hydrogen separator 224 as needed for optimal operation of the system. The flow diverter/controller 287 controls the enrichment via conduits 290 and 299 152888. Doc •89- 201130733 The relative flow of dichlorinated materials. The flow of the trioxane control in the system as shown in Figure 2 allows for the efficient production of polycrystalline germanium by the CVD reactor 236 in an effortless manner. For example, the amount of the resulting four gas cuts (specifically, transported back to the four gas fossils in the CVD reactor 236 via conduit (5)) can be fed to the trichloromethane at a controlled temperature and rate. Cvn; ^ Yang 芏 CVD after the four gasification 矽 absorber / hydrogen separator 224 to control. The person transported to the CVD reactor 236 by the conduit 252 under appropriate control of the full B 4 degree and k motion 榀叮a a ^ 0 <The core compound may comprise tricyclohexane saturated hydrogen' wherein it has only a minimum amount of ruthenium tetrachloride. In one embodiment, for example, it is supplied via a conduit 29 to a post-CVD silicon tetrachloride absorber. / Hydrogen separator 2 2 4 The temperature of the material rich in the three gas stone garden can be about 35C. The operation of the system shown in Figure 2 allows the use of the product that is usually used to remove this by-product during the polysilicon manufacturing process. The amount of four gasification enthalpy is optimally managed in the case of cold temperature. In some embodiments, it may be necessary to raise the temperature of the exhaust stream from the CVD reactor 236 in the conduit 240 to initiate an in situ reaction of the vaporized hydrogen with the gas decane. In such embodiments, the conduit 24 can deliver the exhaust stream to an optional starter heater 23 1 . In such embodiments, conduit 226 delivers the heated stream from optional starter heater 231 to the CVD reactor and to the in situ gasification hydrogen reactor system. In some embodiments, the temperature of the exhaust stream from CVD reactor 236 in conduit 240 can be greater than 500 C. In such embodiments, a waste hot steel furnace can be placed in line 240 to remove heat and reduce the temperature to 5 Torr. 〇, at the same time, generate a stream for use within one of the component operations of Figure 2 or from the system 152888.doc -90· 201130733. In some embodiments, a conduit 285 advantageously delivers pure decane and/or pure hydrogenated hydrogen to a mixture of CVD reactor 236 supplied to the in situ hydrogen chloride reactor 237 after CVD. In these embodiments, 'supplying a stone garden and/or gasification hydrogen may minimize the addition of pure four gasification to other stages of the process of, for example, the system described elsewhere herein. need. In certain embodiments, only a small amount of metformin may be delivered to a mixture of other stages of the process (e.g., delivered to conduit 241) to convert a small residual amount of vaporized hydrogen to gaseous decane. Although FIG. 2 shows the ruthenium tetrachloride/trichloromethane separator 295 as an element of the illustrated unit, those skilled in the art will appreciate that such an element may, for example, be supplied to it from any suitable source. The material to be processed is operated separately. Figure 3 shows an exemplary embodiment of one of the configurations of one of the systems for preparing polycrystalline silicon. The portion of the system in which the disproportionation reaction is carried out is optimized to produce and treat dioxane. The components of Fig. 3 corresponding to the elements in Figs. 8 and 1L are identified by the same number starting with r 3" instead of "1" but other parts. Although elements numbered in this manner are similar to those described elsewhere herein, those skilled in the art will readily appreciate that this portion of a system shown in Figure 3 can be fed from any source to a CVD reactor without necessarily Suitable materials associated with the systems described herein and illustrated in Figures 1A through 1L for the manufacture of crucibles function. In particular, trioxane, methylene chloride, and arsenic may be supplied from any suitable source within or external to the system. 152888.doc -91 - 201130733 In certain embodiments ' as illustrated in Figure 3, conduit 304 supplies decane and conduit 3133 supplies trioxane to a disproportionation reactor pre-methane/gas argon mixer 306. The conduit 3135 can also supply trioxane to the procarbation reactor pre-methane/gas decane mixer 306. The disproportionation reactor pre-decane/gas argon mixer 306 can be any of the various mixers described herein elsewhere for mixing decane and trioxane to be delivered to a disproportionation reactor. In certain embodiments, a mixture of decane and trioxane is determined to maximize the production of dioxane in the disproportionation reactor 314. In some embodiments, dioxane and decane may be mixed in an amount of one molar ratio of chlorine to rhodium in a range between about 丨: about 3: 丨. In some such embodiments, the target molar ratio can be in the range between approximately 〗: 约 and approximately 2 5: i. In other such embodiments, the target molar ratio can be in the range between about 1:1 and about 2:1. In still other such embodiments, the target molar ratio can be in the range between about 1.25: 丨 and about K75:1. In still other such embodiments, the target molar ratio can be in the range between about 75:1 and about 2:25:1. In certain embodiments, the target molar ratio can be about 15:1. In some other embodiments, the target molar ratio can be about 2:1. After the disproportionation reactor pre-methane/trioxane mixer 3〇6 mixes the methotane supplied via line 304 with the tri-gas decane provided via line 3133 and/or line 3135, line 308 pre-distributes the resulting mixture to the reactor. A decane/trioxane mixer 306 is supplied to the disproportionation reactor front temperature controller 310. The disproportionation reactor front temperature controller 31 加热 heats a mixture comprising methane and methylene chloride supplied via a pipe 3〇8 to a temperature suitable for reaction in the disproportionation reactor 152888.doc-92·201130733 314' as herein Said elsewhere. The pipe 3 12 transports the heated mixture including decane and trichloromethane from the temperature controller 3 10 to the disproportionation reactor 3 14 . The pipe 3 16 transports the reaction mixture from the disproportionation reactor 314 to the disproportionation reactor. Separator 3 1 8 » The reaction mixture may comprise dichlorodecane, trioxane and tetragas hydride. The hafnium tetrachloride separator 3 18 removes antimony tetrachloride from the reaction mixture to produce a stream rich in dioxane. The conduit 3121 delivers the dichloromethane-rich stream to the disproportionation reactor post-dioxane/trioxane separator 3101. Separator 3101 produces a mixture of dioxane or a mixture rich in dioxane and a mixture of trioxane or trioxane. The conduit 3103 delivers a mixture of dioxane or dioxane rich to the dioxane storage system 3 107. In certain embodiments, the dichlorosilane or the mixture of dichlorodecane delivered by the second gas calcination/trioxane separator 3103 via the conduit 3103 from the disproportionation reactor may be pure dioxane. In certain embodiments, the conduit 3 127 can deliver the dioxane or dioxane-rich mixture directly to the CVD reactor 336. In other embodiments, conduit 3111 can deliver dioxane to the CVD reactor pre-dioxane/trioxane mixer 3117. Dioxane may be sold or dichlorodecane may be supplied via line 3109 for other uses. In certain embodiments, the conduit 3105 delivers a mixture of trioxane or tri-decane-rich from the disproportionation reactor post-chlorination/trichlorosilane separator 3j0i to the trioxane storage system 3113. In certain embodiments, the trioxane or trichlorodecane-rich mixture can be pure trioxane. In some embodiments, the conduit 3 13 1 can deliver the trioxane or trioxane-rich mixture directly to the CVD reactor 336. In other embodiments, the conduit 3115 can be sent to the CVD reactor pre-dioxane/trichlorodecane mixer 3117 at 152888.doc •93-201130733. In still other embodiments, conduit 3135 can deliver trioxane to the disproportionation reactor pre-decane/trioxane mixer 3〇6, as described above. In some embodiments, trioxane can be supplied from trioxane storage system 3113 via line 3125 for other purposes. Depending on the optimum manufacturing needs of the reactor 丨36, the pipeline 3129 can supply the mixed dioxane and the three gas smelting gas from the two gas sulphur/three gas decane mixer 3117 to the CVD reactor 336 ° The systems and processes used to manufacture crucibles disclosed and discussed herein have significant advantages over currently employed systems and processes. These systems and processes are suitable for the fabrication of semiconductor grade or solar grade germanium. The use of methotrex as a starting material in this manufacturing process allows for easier production of high purity germanium. Decane is easier to purify. Due to the low boiling point of decane, it can be easily purified and does not have a tendency to carry contaminants as may occur in the preparation and purification of trioxane as a starting material during purification. In addition, certain processes for making dioxane utilize carbon or graphite that can be carried into the product or reacted with chlorodecane to form a carbon-containing compound. The systems and processes disclosed herein for manufacturing crucibles provide significant cost savings associated with both the establishment and operation of manufacturing facilities. In particular, since the four gasification helium is recycled in the processes, rather than being removed for external reprocessing into trioxane via the use of a thermal shift reactor, there is a pole associated with establishing and operating such facilities. High cost savings. In particular, capital and operational savings can be approximately 20% to 40%. As described in this article, it is usually necessary to self-contain and to be removed. (4) The stone product I52888.doc •94- 201130733 itself. If desired for a particular purpose, the vaporized hydrogen gas and/or gas decane (specifically dioxane and/or tetragas hydride) may be removed for disposal or other use during operation of the system. However, it is not necessary to remove it and its exclusive removal may not even be preferred. The above description of the illustrated embodiments, which are included in the summary of the invention, are not intended to be exhaustive or to limit the embodiments. It is to be understood that the various modifications of the invention may be made without departing from the spirit and scope of the disclosure. The teachings provided by the various embodiments above are applicable not only to the example systems, methods, and apparatus outlined above, but also to other systems, methods, and/or processes for making defects. For example, the above detailed description illustrates various embodiments of the systems, processes, methods, and/or devices. Each of the block diagrams, schematic diagrams, flowcharts, and examples may have one or more functions and/or operations, and those skilled in the art will understand that each of these blocks, diagrams, flowcharts or examples The functions and/or operations may be performed individually and/or collectively by any of a wide variety of components, hardware, software, or physical, or virtually any combination thereof. In some embodiments, the system used or the device made may comprise fewer structures or components than in the particular embodiment described above. The systems or devices made in other embodiments may include other structures or components in addition to those described herein. In other embodiments, the system or device used may comprise structures or components having configurations identical to those of the structures or components described herein that are not 152888.doc-95·201130733. For example, the ancient ^ ^. In some embodiments, additional heaters and/or mixers, and/or separators may be provided in the system to provide effective control of the slope, pressure or flow rate. In addition, in practicing the procedures or methods described herein, there may be fewer operations, additional operations, or operations performed in the order described herein. Those skilled in the art will be able to remove, add or reconfigure a system or device component, or an operational aspect of a process or method, in accordance with the present disclosure. The methods and systems described herein for making a polycrystalline crystal can be operated under the control of an automated control system. Such automatic control systems may include one or more of the following: appropriate sensors (eg, flow rate sensors, pressure sensors, temperature sensors), actuators (eg, motors, valves) , a solenoid, a damper, a chemical analyzer, and a processor-based system executing instructions stored in the processor readable storage medium based at least in part on the sensors, analyzers, and/or Or the data entered by the user or the afl automatically controls the flow rate, pressure and/or temperature of various components and/or materials. Regarding the control and operation of the systems and processes for fabricating polysilicon, or the design of such systems and devices, in some embodiments, the subject matter herein can be implemented via a dedicated integrated circuit (ASIC). However, those skilled in the art will recognize that the embodiments (in whole or in part) disclosed herein may be equivalently implemented in a standard integrated circuit as one or more computer programs running on one or more computers. (eg, one or more programs running on one or more computer systems), one or more programs running on one or more controllers (eg, microcontrollers), in one or more processors (Example 152888.doc • 96· 201130733 eg, Microprocessing Benefits) Any combination of one or more programs, firmware, or virtually any of them. Accordingly, those skilled in the art will be able to design circuits and/or write code for software and/or firmware in accordance with the teachings of the present disclosure. This disclosure may be further illustrated by reference to the following examples. This example is provided by way of illustration and not limitation. EXAMPLES Example 1 Chemical Vapor Deposition Reactor Release Gas Mole Flow Rate vs. Temperature Figure 4 shows the chemical vapor deposition reactor to which the control has been added with methane and vaporized hydrogen to release the reactants in the gas. The Gibbs temperature is calculated from the flow rate plotted. The results plotted assume that all reactions have reached equilibrium. The conditions used in this calculation included an excess of moles of molybdenum chloride relative to the added. As a result, no hydrogen gas was shown, and the amount of the coefficient was much larger than that of the products shown. The inclusion of hydrogen in the calculation will change the shape of the curve. However, it is believed that the calculated equilibrium results reflect the dynamics within the released gas of the cvd reactor. These results are indicated at 400. Between 〇 and 500t, the main gas and/or gas-containing components of the evolved gas are trioxane and tetragas, which are deuterated. The amount of dichlorodecane is lower than that of trichlorodecane and antimony tetrachloride. Basically, there is no hyperthyroidism, monochlorite and gasification. For example, t, the result of the count # shows that at 500C and 400C, 99.9% and 99.99% of hydrogen chloride have reacted. The various embodiments described above can be combined to provide other embodiments. If desired, the embodiment can be modified to provide yet other embodiments using the various patents, applications, and concepts of the 152888.doc-97.201130733. These and other changes can be made to the embodiments in light of the above detailed description. In general, the terms used in the following claims are not to be construed as limiting the scope of the invention to the specific embodiments disclosed in the specification and the claims. The full range of equivalents given. Therefore, the scope of patent application is not limited to the disclosure. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a schematic diagram of one of the systems for preparing a stone-making system according to one illustrated embodiment, including a recycling reaction by-product; FIG. 1B is used in accordance with one illustrated embodiment of FIG. A schematic diagram of one of the alternatives for the preparation of the Shixi system further comprising one of the alternatives for the removal of the gasification by-product; FIG. 1C is a further inclusion of the system for preparing the Shixi system according to one illustrated embodiment of FIG. Schematic diagram of one of the parts of the recycled gas by-product by-product; FIG. 1D is a schematic diagram of one of the alternatives for further removing the hydrogen chloride by-product according to one illustrated embodiment of FIG. 1a for preparing the system; Figure 1E is a schematic diagram of a portion of the system for preparing ruthenium for reacting hydrogenation gas with decane in a separate reactor; Figure 1F is a further embodiment of the system for preparing ruthenium of Figure 1A. Schematic diagram of one of the parts of the reaction of replenishing hydrogenated hydrogen with propanol in a separate reactor; 152888.doc -98- 201130733 Figure 1G The system of Figure 1A for use in the preparation of a * 裂 裂 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 进一步 系统 系统 系统 系统 系统 系统 系统 系统 系统 系统 系统 系统 系统 系统 系统One part of the schematic diagram; Figure 1 is the one used in the system of the chemical vapor deposition reactor for the reaction of the hydrogen and the money in the system for the preparation of the system. Schematic diagram of one of the parts; Figure (10) Figure 1 is a schematic diagram of one of the steps for preparing and dissolving the dioxane; Figure 1J is used to prepare the crumb according to an embodiment. A schematic diagram of one of the parts of the system, wherein the system is designed to operate in a vapor phase; Figure 1 is a schematic diagram of a portion of the system for preparing a crucible for the preparation of a crucible, and a portion of the system; Figure 1A is a schematic diagram of the system for preparing ruthenium further comprising a portion of the separation and use of chlorhexidine; and Figure 2 is a schematic diagram of a system for preparing ruthenium containing an effluent from a chemical vapor deposition reactor. Hydrogen chloride in the in-situ reactor A schematic diagram of one of the parts; Figure 3 is a schematic diagram of one of the systems for preparing, separating and using two gas for the preparation of Shishi; and Figure 4 shows the in-situ gasification hydrogen reactor after a CVD reactor. A graph showing the change in the molar flow rate of the field product as a function of the temperature of the released gas during the equilibrium of the reaction. [Main component symbol description] 100 Preparation of the system 101 Pipeline 152888.doc • 99- 201130733 102 Pump 104 Pipe 106 Disproportionation reactor Pre-methane/gas hexane mixer 108 Pipe 110 Disproportionation reactor front temperature controller 112 Pipe 113 Pipe 114 Disproportionation reactor 115 Pipe 116 Pipe 117 Disproportionation reactor post-dioxane separator 118 Disproportionation reactor post-gasification helium separator 119 High-boiling phosphorus separator 120 Pipe 121 Pipe 122 Pipe 123 Pipe 125 Pipe 126 Pipe 127 Pipe 128 chemical vapor deposition reactor pre-gasifier 129 pipe 130 pipe 131 starter heater 152888.doc -100- 201130733 132 chemical vapor deposition reactor front mixer 133 pipe 134 pipe 135 in-situ gasification hydrogen reactor heat exchange 136 chemical vapor deposition reactor 137 chemical vapor deposition reactor after in-situ gasification hydrogen reactor 138 shredded product 139 pipe 140 pipe 141 pipe 142 chemical vapor deposition reactor after the first cooler 143 pipe 144 chemical gas phase Deposition reactor post compressor 145 pipe 146 chemical vapor After the reactor, the second cooler 147, the pipe 148, the pipe 149, the chemical vapor deposition, the decane/hydrogenation reactor 150, the chemical vapor deposition reactor, the hydrogen separator 151, the pipe 152, the pipe 153, the pipe 154, the pipe 155, the pipe 156, the chemical gas Phase deposition reactor after hydrogen chloride separator 152888.doc -101 - 201130733 157 Pipe 158 Pipe 159 Disproportionation reactor Pre-methine/hydrogen chloride reactor 160 Pipe 161 Pipe 162 Disproportionation reactor pre-gas hexane mixer 163 164 165 166 167 168 169 170 171 172 174 176 Pipeline Pipeline Pipeline Pipeline Disproportionation Reactor Pre-gasifier Chemical Vapor Deposition Decanter Pipeline Pipeline Chemical Vapor Deposition Reactor Post-Chlorocyclohexane Separator Pipeline 177 Methane/Gas after Chemical Vapor Deposition Hydrogenation reactor heat exchanger 178 Chemical vapor deposition reactor post-chloromethane mixer 179 Pipe 180 Pipe 181 Pipe 182 Gas decane / three gas decane separator 152888.doc -102- 201130733 183 Pipe 184 Pipe 185 Pipe 186 Pipe 188 Chemical vapor deposition reaction 191 Pipeline 192 Chemical vapor deposition reaction 194 Lane 196 Pipe 198 Pipe 203 Pipe 224 Chemical Vapor Deposition Four 226 Pipe 231 Starter Heater 233 Pipe 235 In-situ Gasification Hydrogen Reactor 236 Chemical Vapor Deposition Reaction 237 Chemical Vapor Deposition After 239 Pipe 240 Pipe 241 Pipe 242 Chemical vapor deposition reaction 243 Pipeline 244 Chemical vapor deposition reactor after hydrogen/hydrogen chloride separator front hydrogen/gasification hydrogen separator cesium chloride absorber/hydrogen separator heat exchanger position after gasification hydrogen reactor First cooler after compressor 152888.doc •103- 201130733 245 Pipe 246 chemical vapor deposition reactor after second cooling; 247 pipe 248 pipe 252 pipe 269 chemical vapor deposition after the first decanter 271 pipe 273 chemistry After vapor deposition, second decanter 275 pipe 285 pipe 287 flow diverter / controller 290 pipe 293 pipe 295 four gasification helium / three gas decane separator 299 pipe 304 pipe 306 disproportionation reactor pre-methane / chlorodecane mixture 308 Pipeline 310 Disproportionation reactor front temperature controller 312 Pipeline 314 Disproportionation reactor 316 Pipeline 31 8 Disproportionation reactor after four gasification helium separator 320 Pipeline 152888.doc -104- 201130733 336 Chemical vapor deposition reactor 1101 Disproportionation reactor post-trioxane/dioxane separator 1103 Pipeline 1105 Pipeline 1107 Dichloromethane storage System 1109 Pipe 1111 Pipe 1113 Trioxane Storage System 1115 Pipe 1 117 Chemical Vapor Deposition Reactor Pre-dioxane/Tri-Gasane Mixer 1119 Pipe 1121 Pipeline '3101 Disproportionation Reactor Dioxane/Trichloromethane Separator 3103 Pipe 3105 Pipeline ' 3107 Chlorochlorane Storage System 3109 Pipe 3111 Pipe 3113 Trioxane Storage System 3115 Pipe 3117 CVD Reactor Front Dioxane / Trichloromethane Mixer 3121 Pipe 3125 Pipe 3127 Pipe 152888.doc 105- 201130733 3129 3131 3133 3135 Pipeline Pipeline Pipeline 152888.doc

Claims (1)

201130733 七、申請專利範圍: 1. 一種製造矽之方法,該方法包括: 藉由一歧化反應器使包括甲矽烷及四氯化矽之一歧化 反應器進料反應; 藉由一化學氣相沈積反應器對來自該歧化反應器之一 混合物執行一化學氣相沈積以將矽沈積在該化學氣相沈 積反應器内之一基板上;及 自該化學氣相沈積反應器回收矽。 2. 如請求項1之方法,其進一步包括: 自包括氫氣及四氣化矽的該化學氣相沈積之一副產品 混合物分離氫氣,以產生包括四氯化矽之一組合物; 藉由一歧化反應器前曱矽烷/氣矽烷混合器混合包括四 氣化石夕之該組合物及包括曱石夕烧之一組合物,以產生包 括曱矽烷及四氯化矽之該歧化反應器進料; 藉由一歧化反應器前溫度控制器控制包括曱石夕炫及四 氯化矽之該歧化反應器進料之溫度;及 藉由該歧化反應器使包括甲矽烷及四氯化矽之該歧化 反應器進料之組分反應’以形成包括二氣矽烷、三氣矽 烧及四氣化矽之一歧化反應產物。 3. 如請求項2之方法,其中混合包括四氣化矽之該組合物 與包括甲矽烷之一組合物包含:混合包括二氯矽烷之一 組合物與包括甲石夕烧之一組合物。 4. 如請求項2之方法,其中混合包括四氣化矽之該組合物 與包括曱石夕烧之一組合物包含:混合包括三氣石夕烧之一 152888.doc 201130733 組合物與包括甲石夕院之一組合物。 5 ·如請求項2之方法,其中混合包括四氣化矽之該組合物 與包括甲矽烷之一組合物包含:混合包括氣化氫之一組 合物與包括曱矽烷之一組合物。 6.如請求項2之方法,其中混合包括四氣化矽之該組合物 與包括甲矽烷之一組合物包含:混合包括液體或蒸氣曱 矽烷之一組合物與包括液體或蒸氣四氯化矽之一組合 物。 7. 如請求項2之方法,其中混合包括四氣化矽之該組合物 與包括曱矽烷之一組合物包含:在自約丨〇磅/平方英吋表 壓至約500磅/平方英吋表壓之範圍之一壓力下,將包括 甲矽烷之該組合物及包括四氣化矽之該組合物提供至該 歧化反應器前甲矽烷/氣矽烷混合器及該歧化反應器中之 一者或兩者。 8. 如請求項2之方法,#中混合包括四氯切之該組合物 與包括甲㈣之-組合物包含:在自約辦/平方英时表 壓至約300磅/平方英吋表壓之範圍之一壓力下,將包括 f石夕院之該組合物及包括四氣切之該組合物提供至該 歧化反應器前甲錢/氯石夕烧混合器及該歧化反應器中之 一者或兩者。 如月长項2之方法’其辛混合包括四氯化矽之該組合物 與包括甲残之-組合物包含·在自約Η·平方英时 表屡至約2〇0碎/平方英兮表麼之範圍之-磨力下’將包 括f錢之該組合物及包括四氣切之該組合物提供至 152888.doc 201130733 該歧化反應器前甲矽烷/氣矽烷混合器及該歧化反應器中 之一者或兩者。 10. 如請求項2之方法,其中混合包括四氣化矽之該組合物 與包括曱矽烷之一組合物包含:在約1 8〇磅/平方英吋表 壓之壓力下,將包括甲碎烧之該組合物及包括四氣化 石夕之s亥組合物提供至該歧化反應器前曱矽烷/氣矽烷混合 器及該歧化反應器中之一者或兩者。 11. 如請求項2之方法,其中混合包括四氣化矽之該組合物 與包括曱矽烷之一組合物包含:在自約5〇〇碎/平方英吋 表壓至約25 00碎/平方英吋表壓之範圍之一壓力下,將包 括曱矽烷之該組合物及包括四氣化矽之該組合物提供至 該歧化反應器前曱矽烷/氯矽烷混合器及該歧化反應器中 之一者或兩者。 12_如請求項2之方法,其中混合包括四氣化矽之該組合物 與包括甲矽烷之一組合物包含:在自約15〇〇磅/平方英吋 表壓至約2500磅/平方英吋表壓之範圍之一壓力下,將包 括甲矽烷之該組合物及包括四氯化矽之該組合物提供至 該歧化反應器前曱矽烷/氯矽烷混合器及該歧化反應器中 之一者或兩者。 13 _如响求項2之方法,其中混合包括四氣化矽之該組合物 與包括曱石夕院之-組合物包含:在自約18〇〇碎/平方英口寸 表壓至約2200磅/平方英对表塵之範圍之一壓力下,將包 括甲石夕院之該組合物及包括四氣切之該組合物提供至 該歧化反應器前甲石夕院/氯石夕烧混合器及該歧化反應器中 152888.doc 201130733 之一者或兩者。 14_如請求項2之方法’其中混合包括四氣化矽之該組合物 與包括甲矽烷之一組合物包含:在約2〇〇〇磅/平方英吋表 壓之一壓力下,將包括甲矽烷之該組合物及包括四氣化 石夕之該組合物提供至該歧化反應器前甲矽烷/氯矽烷混合 器及該歧化反應器中之一者或兩者。 15. 如請求項2之方法,其中該歧化反應器包括一觸媒。 16. 如請求項15之方法,其中該觸媒包括一聚合離子交換樹 脂。 17. 如請求項15之方法,其中該觸媒包括一金屬。 18. 如請求項15之方法,其中該觸媒包括銅。 19. 如請求項15之方法,其中該觸媒包括注入銅之基本上純 石夕。 20. 如凊求項2之方法,其中控制包括甲矽烷及四氣化矽之 該歧化反應器進料之該溫度包含:將該歧化反應器進料 之該溫度控制在自約3(rc至約5〇〇它之一範圍中。 21. 如凊求項2之方法,其中控制包括甲矽烷及四氣化矽之 混合物之該歧化反應器進料之該溫度包含:將該歧化反 應器進料之該溫度控制在自約300°C至約500°C之一範圍 中〇 22. 如請求項2之方法’其中控制包括曱矽烷及四氣化矽之 該混^物之該歧化反應器進料之該溫度包含:將該歧化 反應盗進料之該溫度控制在自約3001至約400。(:之一範 圍中。 152888.doc 201130733 23. 如吻求項2之方法,其中控制包括甲矽烷及四氣化矽之 »亥混σ物之该歧化反應器進料之該溫度包含:將該歧化 反應器進料之該溫度控制在自約200。(:至約300°C之一範 圍中。 24. 如請求項2之方法,其中控制包括曱石夕烧及四氣化石夕之 _ 該混0物之該歧化反應器進料之該溫度包含:將該歧化 反應器進料之該溫度控制在自約90°C至約200°C之一範圍 中〇 5 士》月长項2之方法,其中控制包括甲矽烷及四氣化矽之 該混合物之該歧化反應器進料之該溫度包含:將該歧化 反應器進料之該溫度控制在自約30°C至約90eC之一範圍 中。 26. 如明求項2之方法,其中控制包括曱矽烷及四氣化矽之 °亥混α物之該歧化反應器進料之該溫度包含:將該歧化 反應器進料之該溫度控制在自約55°C至約75°C之一範圍 中。 27. 如响求項2之方法,其中控制包括甲矽烷及四氣化矽之 5亥混合物之該歧化反應器進料之該溫度包含:將該歧化 反應器進料之該溫度控制在自約6〇。〇至約7〇。〇之一範圍 . 中。 28. 如凊求項2之方法,其中控制包括甲矽烷及四氣化矽之 該混σ物之該歧化反應器進料之該溫度包含:將該歧化 反應盗進料之該溫度控制為約60°C。 29. 如請求項2之方法,其進一步包括: 152888.doc 201130733 控制包括四氣化石夕之該組合物之組合物或將包括四氣 化石夕之該組合物供應至該歧化反應器前甲柳氣石夕院混 合器之速率,以使得包括甲石々# s ^ 匕祜甲矽烷及四氣化矽之該混合物 之該歧化反應器進料中氣董+功 虱對矽之比率在約2:1與約3.9:1 之間的範圍。 30. 如請求項29之方法,其中白扛 丹甲包括甲矽烷及四氣化矽之該混 合物之該歧化反應器進料中窗科访 千氣對矽之該比率在約2 5:1與 約3.5:1之間的範圍。 31. 如請求項29之方法,其中白扛 、甲包括甲矽烷及四氣化矽之該混 合物之該歧化反應器進料中窗斜 π T風對石夕之s亥比率在約2 8: j與 約3.3:1之間的範圍。 ' 32. 如請求項29之方法,其中句扛 甲匕括甲矽烷及四氣化矽之該混 合物之該歧化反應器進料中氣對石夕之該比率為約2.8:1。 33. 如請求項29之方法,其中句乜 六r a括甲矽烷及四氣化矽之該混 合物之該歧化反應器進料中氣對矽之該比率為約Η。 34. 如凊求項29之方法,其中包括甲石夕烧及四氣化石夕之該混 合物之該歧化反應器進料中氯對矽之該比率為約3 2:1。 35. 如請求項29之方法’其中包括甲矽烷及四氣化矽之該混 合物之該歧化反應器進料中氯對矽之該比率為約3 3:ι。 36. 如請求項2之方法,其進一步包括: 在一歧化反應器後四氣化矽分離器中自該歧化反應之 -產物分離四氯化矽’以產生一歧化反應器後富含四氣 化矽之流及一歧化反應器後富含三氣矽烷之流。 37·如凊求項36之方法,其進一步包括: 152888.doc • 6 · 201130733 使用在該歧化反應器後四氣化矽分離器中自該歧化反 應器之該產物分離之該四氣化矽來調整該歧化反應器進 料之四氯化矽含量。 38.如凊求項2之方法,其進一步包括: 在一 CVD反應器前氣化器中使包括該歧化反應產物之 一混合物氣化,以產生一經氣化歧化反應產物; 藉由一 CVD反應器前混合器混合氫氣與該經氣化歧化 反應產物,以產生氫氣及歧化反應產物之一混合物;及 藉由該化學氣相沈積反應器對氫氣及歧化反應產物之 該混合物執行化學氣相沈積以將矽沈積在該化學氣相沈 積反應器内之該基板上。 3 9.如請求項38之方法,其中混合氫氣與該經氣化歧化反應 產物包含藉由一 CVD反應器前混合器混合氫氣與該經氣 化歧化反應產物。 40·如請求項38之方法,其中混合氫氣與該經氣化歧化反應 產物包含在該化學氣相沈積反應器中混合氫氣與該經氣 化歧化反應產物。 41·如請求項2之方法,其進一步包括: 自該化學氣相沈積反應器釋放包括以下各項之一流出 物混合物:氩氣、四氯化矽以及氣化氫、二氯矽烷及三 氣矽烷中之一者或多者。 42.如請求項41之方法,其進一步包括: 藉由一 CVD反應器後第一冷卻器冷卻來自該化學氣相 沈積反應器之該流出物混合物,以產生一氣-液兩相混合 152888.doc 201130733 物。 43. 如請求項42之方法,其進一步包括: 自藉由該第一冷卻器冷卻之該流出物混合物移除包含 聚曱石夕貌基材料之油性污染物。 44. 如請求項42之方法,其進一步包括: 藉由一 CVD反應器後傾析器分離來自該第一冷卻器之 該氣-液兩相混合物,以產生一氣相及一液相。 45. 如請求項44之方法,其進一步包括: 藉由一 CVD反應器後壓縮機將來自該傾析器之該氣相 轉換成一氣-液兩相混合物或一氣相。 46. 如請求項45之方法,其進一步包括: 藉由一 CVD反應器後第二冷卻器冷卻來自該壓縮機之 該氣-液兩相混合物或該氣相。 47. 如請求項41之方法,其進一步包括: 將來自該化學氣相沈積反應器之該流出物混合物供應 至一 CVD反應器後原位氣化氫反應器;及 藉由該CVD反應器後原位氣化氫反應器將來自該化學 氣相沈積反應器之該流出物混合物中之氣化氫轉換成氣 矽烷。 48. 如請求項47之方法,其進一步包括: 在將來自該化學氣相沈積反應器之該流出物混合物供 應至該CVD反應器後原位氣化氫反應器之前,藉由一原 位氣化氩反應器熱交換器加熱來自該化學氣相沈積反應 器之該流出物混合物。 I52888.doc 201130733 49. 如請求項48之方法,其中藉由一原位氯化氫反應器熱交 換器加熱來自該化學氣相沈積反應器之該流出物混合物 包含:將來自該化學氣相沈積反應器之該流出物混合物 加熱至自約200°C至約700°C之一範圍中之一溫度。 50. 如請求項48之方法’其中藉由一原位氣化氫反應器熱交 換器加熱來自該化學氣相沈積反應器之該流出物混合物 包含:將來自該化學氣相沈積反應器之該流出物混合物 加熱至自約300°C至約60(TC之一範圍中之一溫度。 51·如請求項48之方法,其中藉由一原位氯化氫反應器熱交 換器加熱來自該化學氣相沈積反應器之該流出物混合物 包含:將來自該化學氣相沈積反應器之該流出物混合物 加熱至約500。(3之一溫度。 52. 如請求項48之方法,其中該原位氯化氫反應器熱交換器 在將來自該化學氣相沈積反應器之該流出物混合物供應 至s玄CVD反應器後原位氣化氫反應器之前,將熱自來自 該CVD反應器後原位氯化氫反應器之一流出物交換至來 自該化學氣相沈積反應器之該流出物混合物。 53. 如請求項48之方法,其進一步包括: 在經由該原位氣化氫反應器熱交換器將來自該化學氣 相沈積反應器之該流出物混合物供應至該CVD反應器後 原位氣化氫反應器之前,藉由一 CVD反應器後起動加熱 器加熱來自該化學氣相沈積反應器之該流出物混合物。 54. 如請求項47之方法,其中來自該化學氣相沈積反應器之 該流出物混合物在該CVD反應器後原位氣化氫反應器内 152888.doc 201130733 之一滯留時間小於約10分鐘。 55. 如請求項47之方法’其中該流出物現合物在該⑽反應 器後原位氣化氛反應器内之-滯留時間小於約5分鐘。 56. 如請求項47之方法,其中該流出物混合物在該㈣反應 器後原位氣化氫反應器内之一滯留時間小於約i分鐘。 57. 如請求項47之方法,其中該流出物混合物在該cvd反應 器後原位氣化虱反應器内之一滯留時間小於約〇 5分鐘。 58·如請求項47之方法,其中該流出物混合物在該cvd反應 器後原位氣化氫反應器内之一滯留時間小於約〇〗分鐘。 59·如請求項47之方法,其進一步包括: 藉由一CVD反應器後第一冷卻器冷卻來自該cVD反應 器後原位氣化氫反應器之一流出物混合物,以產生一氣_ 液兩相混合物; 藉由一 CVD反應器後傾析器分離來自該第一冷卻器之 該氣-液兩相混合物’以產生一氣相及一液相; 藉由一CVD反應器後壓縮機將來自該傾析器之該氣相 轉換成一氣·液兩相混合物或一氣相;及 藉由一 CVD反應器後第二冷卻器冷卻來自該壓縮機之 該氣-液兩相混合物或該氣相。 60. 如請求項41之方法,其進一步包括: 藉由一CVD反應器後氫氣分離器自該化學氣相沈積反 應器流出物混合物分離氫氣,以產生一 CVD反應器後富 含氫氣之流及一 CVD反應器後氫氣耗盡之流。 61. 如請求項60之方法,其中該CVD反應器後富含氫氣之流 152888.doc • 10· 201130733 中四氣化石夕之濃度小於1 5重量百分比。 62. 如請求項60之方法,其中該CVD反應器後富含氫氣之流 中四氯化矽之該濃度小於1 0重量百分比。 63. 如請求項60之方法,其中該CVD反應器後富含氫氣之流 中四氯化矽之該濃度小於5重量百分比。 64. 如請求項60之方法,其中該CVD反應器後富含氫氣之流 中四氣化矽之該濃度小於1重量百分比。 65. 如請求項60之方法,其中該CVD反應器後富含氫氣之流 中四氯化矽之該濃度小於0· 1重量百分比。 66·如請求項60之方法,其進一步包括: 藉由一 CVD反應器前混合器混合該CVD反應器後富含 氫氣之流與來自一歧化反應器後四氣化矽分離器之一歧 化反應器後富含三氣矽烷之流。 67. 如請求項60之方法,其進一步包括: 藉由一歧化反應器前氯矽烷混合器混合該CVD反應器 後氫氣耗盡之流與來自該歧化反應器後四氣化矽分離器 之一歧化反應器後富含四氯化矽之流。 68. 如請求項67之方法,其進一步包括: 在混合該CVD反應器後氫氣耗盡之流與該歧化反應器 後富含四氯化矽之流之前,判定該CVD反應器後氫氣耗 盡之流與該歧化反應器後富含四氣化矽之流中元素矽及 元素氯之量。 69. 如請求項67之方法,其進一步包括: 藉由該歧化反應器前氣矽烷混合器混合一定量之該 152888.doc 201130733 CVD反應器後氫氣耗盡之流;該歧化反應器後富含四氯 化矽之流;及視需要,經純化四氣化矽、三氯矽烷、二 氯矽烷或經純化四氯化矽、三氯矽烷或二氣矽烷中之一 者或多者之一混合物之一進料;及 控制自每一源供應之元素氣及元素矽之該等量以維持 該歧化反應器進料中氣對矽之一選定比率。 70. 如請求項60之方法,其進一步包括: 藉由一 CVD反應器後氣化氫分離器自該CVD反應器後 氫氣耗盡之流分離氯化氫,以產生一 CVD反應器後氫氣 耗盡、富含氣化氫之流及一CVD反應器後氫氣耗盡、氣 化氫耗盡之流。 71. 如請求項70之方法,其進一步包括: 將該CVD反應器後氫氣耗盡、富含氣化氫之流自該 CVD反應器後氯化氫分離器輸送至一個氣化氫儲存系 統。 72. 如請求項70之方法,其進一步包括: 將該CVD反應器後氩氣耗盡、氯化氫耗盡之流自該 CVD反應器後氣化氫分離器輸送至一歧化反應器前氯矽 烧混合器。 73. 如請求項70之方法,其進一步包括: 藉由一 CVD反應器後氣矽烷分離器自該氫氣耗盡、氯 化氫耗盡之流中之二氯矽烷及三氣矽烷分離四氣化矽, 以產生一 CVD反應器後富含四氯化矽之流及一 CVD反應 器後富含二氣矽烷、富含三氣矽烷之流。 152888.doc -12· 201130733 74. 如請求項73之方法,其進一步包括: 藉由二氣矽烷/三氯矽烷分離器自該CVD反應器後富含 二氣矽烷、富含三氯矽烷之流中之該三氯矽烷分離該二 氯矽烷,以產生一 CVD反應器後富含二氯矽烷之流及一 CVD反應器後富含三氣矽烷之流。 75. 如請求項74之方法,其進一步包括: 混合該CVD反應器後富含三氣矽烷之流與一歧化反應 器後富含三氣矽烷之流。 76. 如請求項74之方法,其進一步包括: 藉由一 CVD反應器後氯矽烷混合器混合該CVD反應器 後富含四氯化矽之流與該CVD反應器後富含二氣矽烷之 流。 77. 如請求項76之方法,其中藉由一 CVD反應器後氣矽烷混 合器混合該富含四氣化矽之流與該富含二氣矽烷之流包 含:選擇一定量之二氣矽烷且將該量之二氯矽烷添加至 該CVD反應器後氣矽烷混合器,藉此控制至該歧化反應 器及該化學氣相沈積反應器之該進料中二氯矽烷之濃 度。 78. 如請求項77之方法,其中控制至該化學氣相沈積反應器 之該進料中二氣矽烷之該濃度包含:控制至該歧化反應 器之該進料中氯對矽之該比率。 79. 如請求項78之方法,其中控制至該歧化反應器之該進料 中氣對矽之該比率包含:控制添加於至該歧化反應器之 該進料之補給四氣化矽、三氯矽烷及二氯矽烷中之一者 152888.doc -13· 201130733 或多者。 80. 如請求項74之方法,其進一步包括: 將來自該二氣矽烷/三氣矽烷分離器之二氯矽烷供應至 該化學氣相沈積反應器。 81. 如請求項80之方法,其中將來自該二氣矽烷/三氣矽烷分 離器之二氣矽烷供應至該化學氣相沈積反應器包含:調 整至该化學氣相沈積反應器之該進料中二氣矽烷之該濃 度。 82. 如請求項74之方法,其進一步包括: 將該二氯矽烷之全部或一部分儲存於二氣矽烷儲存系 統中或藉由二氣矽烷處置系統處置該二氣矽烷。 83 _如請求項41之方法,其進—步包括: 藉由一CVD反應器後氫氣/氣化氫分離器自該化學氣相 沈積反應器流出物混合物分離氫氣及氣化氫,以產生一 虽含氫氣/氣化氫之流及一氫氣/氣化氫耗盡之流; 藉由一 CVD反應器前氫氣/氣化氫分離器自該富含氫 氣/氣化氫之流中之該氣化氫分離該氫氣;及 將來自该CVD反應器前氫氣/氣化氫分離器之該氣化氫輸 送至一個氣化氫儲存系統。 84.如請求項83之方法,其進—步包括: 藉由-CVD反應器前混合器混合來自該CVD反應器前 氫乱/氣化氫分離|§之該氫氣與來自該歧化反應器後四氣 化矽分離器之-歧化反應器後富含三氯矽烷之流。 85·如請求項70之方法,其進—步包括: 152888.doc • 14· 201130733 將來自該CVD反應器後氣化氫分離器之該氫氣耗盡、 富含氣化氫之流及甲矽烷饋送至一歧化反應器前甲矽烷/ 氣化氫反應器;及 藉由該歧化反應器前曱矽烷/氣化氫反應器使該曱矽烷 與該氣化氫反應,以產生包含三氣矽烧及四氣化矽之氣 矽烷。 86. 如請求項85之方法,其中該歧化反應器前甲矽烷/氣化氫 反應器内之一溫度在約5〇。〇與700。(:之間的範圍。 87. 如請求項85之方法’其中該歧化反應器前曱矽烷/氣化氫 反應器内之一溫度在約l〇〇〇c與約6〇〇t之間的範圍。 88. 如請求項85之方法,其中該歧化反應器前曱矽烷/氣化氫 反應器内之一溫度在約300。〇與約500°C之間的範圍。 89. 如請求項85之方法’其中該歧化反應器前甲矽烷/氣化氫 反應器内之一溫度為約500°C。 90. 如s青求項85之方法,其中至該歧化反應器前甲矽烷/氣化 氮反應器之該進料中甲矽烷對氯化氫之一莫耳比在自約 〇:1至約2:1之範圍。 91. 如明求項85之方法,其中曱矽烷對氯化氫之一莫耳比在 自約0:1至約1.5:1之範圍。 92’如求項85之方法其中甲⑦烧對氣化氫之〜莫耳比在 自約〇:1至約1:1之範圍。 9 3.如請求項 8 5 、 &lt;方法’其中甲矽烷對氯化氫之一莫耳比為 約 0.33:1 。 94.如請求項85之古、+ ^ 万法’其中藉由一歧化反應器前甲矽烷/氣 152888.doc 15 201130733 化氫反應MW錢與該氣化氫反應包含··在存在- 含有金屬之觸媒之情形下使該⑼垸與該氯化氫反應。 95.如請求項94之方法,其中該含有金屬之觸媒包括銅》 月长項95之方法,其中該含有金屬之觸媒包括注入銅 之基本上純碎。 97.如請求項85之方法,其進一步包括: 藉由該歧化反應器前氣矽烷混合器混合一定量之該 CVD反應器後氫氣耗盡、氣化氫耗盡之流;來自該歧化 反應器前甲石夕统/氣化氫反應器之該等氣砂院;來自一歧 化反應器後四氣化矽分離器之-富含四氣化矽之流;及 視需要,經純化四氣化矽、經純化三氣矽烷、經純化二 氣石夕炫或經純化四氣化石夕、經純化三氣石夕院或經純化二 氣石夕院中之-者或多者之一混合物之一進料;及 控制自每-源供應之元素氣及元素石夕之該等量以維持 至。亥歧化反應器之該進料中氣對矽之一選定比率。 98·如請求項70之方法,其進一步包括: 藉由一CVD反應器後甲矽烷/氣化氫反應器使來自該 CVD反應器後氣化氫分離器之該氩氣耗盡、富含氣化氮 之流與甲矽烷及該化學氣相沈積反應器流出物混合物反 應。 99.如請求項98之方法,其進一步包括: 在於該CVD反應器後甲矽烷/氣化氫反應器中混合該氫 氣耗盡、富含氣化氫之流與該曱矽烷及該化學氣相沈積 反應器流出物混合物之前,將該CVD反應器後甲矽烷/氯 152888.doc -16- 201130733 化氫反應器中該化學氣相沈積反應器流出物混合物之溫 度調整至約200°C與約600。〇之間。 100. 如請求項99之方法,其中調整該CVD反應器後曱矽烷/氣 化氫反應器中該化學氣相沈積反應器流出物之該溫度包 含:藉由一 CVD反應器後熱交換器調整該溫度。 101. 如請求項99之方法,其中在混合該氣化氫與該曱矽烷及 該化學氣相沈積反應器流出物混合物之前調整該CVD反 應器後曱矽烧/氣化氫反應器中該化學氣相沈積反應器流 出物混合物之該溫度包含:將該溫度調整至約4〇0°c與約 500°C之間。 102. 如請求項98之方法,其中至該cvD反應器後曱矽烷/氣化 氫反應器之該進料中甲矽烷對氣化氫之一莫耳比在自約 0:1至約2:1之範圍。 103. 如請求項1〇2之方法’其中至該cvd反應器後曱矽烷/氣 化氫反應器之該進料中甲矽烷對氣化氫之一莫耳比在自 約0:1至約1 · 5:1之範圍。 104. 如請求項1〇3之方法,其中至該cvd反應器後甲矽烷/氣 化氩反應器之該進料中甲矽烷對氯化氫之一莫耳比在自 約0:1至約1:1之範圍。 105·如請求項1〇4之方法’其中至該cvd反應器後甲矽烷/氣 化氫反應器之該進料中甲矽烷對氯化氫之一莫耳比為約 0.33:1 。 106·如清求項98之方法,其進^一步包括: 調整在該CVD反應器後甲矽烷/氯化氫反應器中之流速 152888.doc •17· 201130733 以使得該氣化氫·甲矽烷-CVD流出物混合物在該CVD反 應器後甲矽烷/氣化氫反應器内之一滯留時間足以允許該 氣化氩與該曱矽烷之完全反應。 107. 如請求項106之方法,其中該CVD反應器後甲矽烷/氯化 氫反應器包含充分總體積之一個或多個反應室以提供適 於允許該氣化氫與該曱矽烷之完全反應之一滯留時間。 108. 如請求項107之方法,其中該流出物混合物在該CVD反 應器後曱矽烷/氣化氫反應器内之該滞留時間小於約10分 鐘。 109. 如請求項107之方法,其中該流出物混合物在該cvd反 應器後T石夕燒/氣化氫反應器内之該滯留時間小於約5分 鐘。 110. 如請求項107之方法,其中該流出物混合物在該CVD反 應器後甲矽烷/氣化氫反應器内之該滞留時間小於約i分 鐘。 111. 如請求項107之方法,其中該流出物混合物在該cvD反 應器後甲矽烷/氣化氫反應器内之該滞留時間小於約〇5 分鐘。 112. 如請求項107之方法’其中該流出物混合物在該cvD反 應器後甲矽烷/氣化氫反應器内之該滯留時間小於約〇1 分鐘。 113. 如請求項36之方法,其進一步包括: 藉由一歧化反應器後二氣石夕烧分離器自該歧化反應器 後富含三氯梦烷之流分離二氯矽烷’以產生_歧化反應 152888.doc -18· 201130733 器後富含二氣矽烷之流。 114. 如請求項113之方法,其進一步包括: 判定至該化學氣相沈積反應器之一進料中之二氣矽烷 濃度;及 調整至該化學氣相沈積反應器之該進料中二氯石夕烧之 該濃度。 115. 如請求項114之方法,其中調整至該化學氣相沈積反應 器之該進料中二氣矽烷之該濃度包含:將該歧化反應器 後虽含二氣石夕烧之流添加於至該化學氣相沈積反應器之 該進料。 116. 如凊求項114之方法’其中調整該化學氣相沈積反應器 中二氣矽烷之該濃度包含:添加自已自其移除氫氣及氯 化氫之一化學氣相沈積反應器流出物混合物分離之二氯 矽烷。 117. 如請求項2之方法,其中混合包括甲矽烷之一組合物及 包括四氯化矽之一組合物包含:混合呈一氣相、一液相 或一氣-液混合相的包括甲矽烷之一組合物與呈一氣相、 一液相或一氣-液混合相的包括四氯化矽之一組合物。 118. 如請求項2之方法,其進一步包括: 在藉由該歧化反應器使該歧化反應器進料反應之前, 藉由一歧化反應器前氯矽烷混合器混合單氯矽烷、二氣 石夕院及三氯矽烷中之一者或多者與該歧化反應器進料。 119. 如請求項118之方法,其中單氯矽烷、二氯矽烷及三氯 矽烷中之該一者或多者對四氣化矽之一莫耳比在自約〇 152888.doc •19· 201130733 至約3:1之範圍。 120. 如請求項118之方法,其中 宁皁氣矽烷、二氣矽烷及三氣 矽烷中之該一者或多者對四 乳 至約⑴之_。 氣切之該莫耳比在自約0 121. 如請求項118之方法,其 旱氣夕烷、二氣矽烷及三氣 矽烷中之該一者或多者對 氣化矽之該莫耳比在自約 0.1:1至約1:1之範圍。 122. 如請求項118之方法,其 开τ早氣妙烷、二氯矽烷及三氣 矽烷中之該一者哎吝 飞夕者對四氣化矽之一莫耳比為約 0.5..1。 123.如請求項2之方法,其進_步包括: 藉由該歧化反應器將低沸點填污染物轉換成中間及高 沸點磷污染物。 其中低沸點磷污染物包含ΡΗ3及 124.如請求項123之方法 ΡΗ2α。 125·如請求項123之方法’其中中間沸點磷污染物包含 PHC12。 126. 如4求項123之方法,其中高鴻點碟污染物包含卩⑶。 127. 如請求項123之方法,其進一步包括 藉由歧化反應器後四氣化碎分離器自—歧化反應流 出物中之低彿點碟污染物分離四氣化石夕以及中間及高沸 點磷污染物。 128. 如請求項m之方法,其進一步包括: 在间/弗點碟分離器令自該四氯化石夕及該中間沸點鱗 152888.doc •20· 201130733 污染物分離該等高沸點磷污染物。 129. 如請求項128之方法,其進一步包括: 拋棄該等高沸點磷污染物。 130. 如請求項128之方法,其進一步包括: 使該等中間沸點磷污染物循環至該歧化反應器;及 藉由該歧化反應器將中間沸點磷污染物轉換成高沸點 磷污染物。 131. 如請求項36之方法,其進一步包括: 藉由一歧化反應器後二氣矽烷/三氣矽烷分離器自該歧 化反應器後富含三氣矽烷之流中之三氣矽烷分離二氣矽 烷’以產生一歧化反應器後富含二氣矽烷/三氣矽烷耗盡 之材料及一歧化反應器後富含三氣矽烷/二氣矽烷耗盡之 材料。 132. 如請求項ι31之方法,其進一步包括: 判定該歧化反應器後富含二氣矽烷/三氣矽烷耗盡之材 料中之二氣矽烷濃度。 133. 如凊求項131之方法,其進一步包括: 判定該歧化反應器後富含三氣矽烷/二氣矽烷耗盡之材 料中之三氣矽烷濃度。 134. 如請求項131之方法,其令該歧化反應器後富含二氣矽 燒/二氯石夕燒耗盡之材料係基本上純二氣石夕燒。 135. 如s青求項131之方法,其進—步包括: 將該富含二氯矽烷/三氯矽烷耗盡之材料儲存於二氣矽 院健存系統中。 ' 152888.doc •21 · 201130733 136. 如請求項131之方法,其進一步包括: 將該富含三氣矽烷/二氣矽烷耗盡之材料儲存於三氣矽 烷儲存系統中。 一 137, 如請求項131之方法,其進一步包括: 混合該富含二氣石夕烧/三氣石夕烧耗盡之材料與該富含三 氣石夕烧/二氣錢耗盡之材料,以產生—化學氣相沈積反 應器進料;及 將該進料供應至該化學氣相沈積反應器。 138·如請求項137之方法’纟中混合該富含二氣矽烷,三氣矽 烷耗盡之材料與該富含三氣矽烷/二氣矽烷耗盡之材料包 含:混合來自該二氣矽烷儲存系統之富含二氣矽烷/三氯 矽烷耗盡之材料。 139.如請求項137之方法,其中混合該富含二氣矽烷/三氣矽 烷耗盡之材料與該富含三氯矽烷/二氣矽烷耗盡之材料包 含.混合來自該三氣矽烷儲存系統之富含三氣矽烷/二氣 石夕烧耗盡之材料。 140·如請求項137之方法,其中混合該富含二氯矽烷/三氣矽 烷耗盡之材料與該富含三氣矽烷/二氣矽烷耗盡之材料以 產生一化學氣相沈積反應器進料包含:調整該化學氣相 沈積反應器進料中氯對石夕之一比率。 Ml.—種製造矽之方法,該方法包括: 藉由一化學氣相沈積反應器對包括三氣矽烷之一混合 物執行一化學氣相沈積; 自該化學氣相沈積反應器回收矽; 152888.doc -22- 201130733 自該化學氣相沈積反應器釋放一流出物混合物,該流 出物混合物包括氫氣、四氣化矽以及氣化氫、二氣矽烷 及三氯矽烷中之一者或多者;及 藉由一 CVD反應器後原位氣化氫反應器將來自該化學 氣相沈積反應器之該流出物混合物中之氣化氫轉換成氯 矽烷。 142. 如請求項14 1之方法,其進一步包括: 在將來自該化學氣相沈積反應器之該流出物混合物供 應至該CVD反應器後原位氯化氫反應器之前,藉由一第 一 CVD反應器後熱交換器控制來自該化學氣相沈積反應 器之該流出物混合物之溫度。 143. 如請求項142之方法’其中藉由一第一CVD反應器後熱 交換器控制來自該化學氣相沈積反應器之該流出物混合 物之該溫度包含:將來自該化學氣相沈積反應器之該流 出物混合物之該溫度控制為自約2〇〇。〇至約700。(:之一範 圍中之一溫度。 144. 如請求項142之方法,其中藉由一第一 cvd反應器後熱 交換器控制來自該化學氣相沈積反應器之該流出物混合 物之該溫度包含:將來自該化學氣相沈積反應器之該流 出物混合物之該溫度控制為自約3〇〇。〇至約6〇〇。〇之一範 圍中之一溫度。 145•如請求項ι42之方法,其中藉由一第一cvd反應器後熱 交換器控制來自該化學氣相沈積反應器之該流出物混合 物之該溫度包含:將來自該化學氣相沈積反應器之該流 152888.doc -23- 201130733 出物混合物之該溫度控制為約500。〇之一溫度。 146.如請求項142之方法,其中該第一CVD反應器後熱交換 器在將來自該化學氣相沈積反應器之該流出物混合物供 應至該CVD反應器後原位氣化氫反應器之前,將熱自來 自該C VD反應後原位氣化氫反應器之一流出物交換至 來自該化學氣相沈積反應器之該流出物混合物。 147·如請求項141之方法,其中來自該化學氣相沈積反應器 之該流出物混合物在該CVD反應器後原位氣化氫反應器 内之一滯留時間小於約1〇分鐘。 148·如請求項141之方法,其中該流出物混合物在該CVD反 應器後原位氣化氫反應器内之一滯留時間小於約5分 鐘。 149. 如凊求項141之方法,其中該流出物混合物在該CVD反 應器後原位氣化氫反應器内之一滯留時間小於約i分 鐘。 150. 如請求項141之方法,其中該流出物混合物在該CVD反 應器後原位氯化氫反應器内之一滞留時間小於約〇 5分 鐘。 15L如請求項141之方法,其中該流出物混合物在該cvd反 應器後原位氣化氫反應H内之—滞留時間小於約〇1分 鐘。 152.如請求項141之方法,其進一步包括: 藉&amp;卜冷部系統冷卻來自該Cvd反應器後原位氣 化氫反應器之一流出物混合物。 I52888.doc •24- 201130733 153. 如請求項152之方法,其進一步包括: 藉由一壓縮機系統將來自該CVD反應器後原位氯化氣 反應器之該流出物混合物轉換成一氣_液兩相混合物。 154. 如請求項153之方法,其進一步包括: 藉由一第二冷卻系統冷卻來自該壓縮機系統之該氣_液 兩相混合物。 155. 如請求項154之方法,其中該第二冷卻系統包括一第二 CVD反應器後熱交換器。 156. 如請求項154之方法,其進一步包括: 藉由一 CVD反應器後四氣化矽吸收器/氫氣分離器自來 自該CVD反應器後原位氣化氫反應器之該流出物混合物 分離氫氣。 157·如清求項156之方法,其進一步包括: 使藉由該CVD反應器後四氣化石夕吸收器/氫氣分離器分 離之該氫氣中之三氣矽烷達到飽和。 158·如請求項156之方法,其進一步包括: 混合來自該CVD反應器後四氯化矽吸收器/氫氣分離器 之該氫氣與至該化學氣相沈積反應器之一進料。 159. 如請求項156之方法,其進一步包括: 藉由一 CVD反應器後四氯化矽/三氣矽烷分離器自來自 該CVD反應器後四氣化矽吸收器/氫氣分離器之該流出物 混合物中之四氣化矽分離三氣石夕院。 160. 如請求項15 9之方法,其進一步包括: 將來自該四氯化矽/三氯矽烷分離器之三氣矽烷饋送至 152888.doc •25- 201130733 該四氣化矽吸收器/氫氣分離器;及 使該三氯石夕统與該四氯化矽吸收器/氫氣分離器中之四 氯化矽反應。 161·如請求項160之方法,其進一步包括: 在將該二氣矽烷饋送至該四氣化矽吸收器/氫氣分離器 之前調整該三氣石夕烧之溫度。 162.如請求項161之方法,其中調整該溫度包含將該三氯矽 烧之該溫度調整至約3 5。〇。 163·如請求項159之方法,其進一步包括: 混合來自該四氣化矽/三氣矽烷分離器之該三氯矽烷與 至該化學氣相沈積反應器之一進料。 164. 如請求項159之方法,其進一步包括: 冷卻該三氣矽烷;及 自該三氯矽烷放出氣相較低沸點材料。 165. 如請求項159之方法,其進一步包括: 藉由一高沸點磷分離器自該四氯化矽分離包含P(:l32 高沸點磷污染物。 166. 如請求項159之方法,其進一步包括: 混合該二氣石夕烧與至該化學氣相沈積反應器之一進 料。 167. —種製造矽之方法,該方法包括: 藉由一化學氣相沈積反應器_包括三氯石夕燒之一混合 物執行一化學氣相沈積, 自該化學氣相沈積反應器回收矽; 152888.doc -26- 201130733 自該化學氣相沈積反應器釋放一流出物混合物,該流 出物混合物包括氫氣、四氯化矽以及氣化氫、二氣矽烷 及二氟石夕烧中之一者或多者;及 藉由一第一冷卻系統冷卻來自該化學氣相沈積反應器 之該流出物混合物。 168. 如請求項167之方法,其進一步包括: 藉由一 CVD反應器後氫氣分離器自來自該化學氣相沈 積反應器之該經冷卻流出物混合物分離氫氣;及 藉由一 CVD反應器後氯化氫分離器自來自該化學氣相 沈積反應器的已藉由該CVD反應器後氫氣分離器自其移 除氫氣之該流出物混合物分離氣化氫。 169. 如請求項168之方法,其進一步包括: 將來自該CVD反應器後氯化氫分離器之該氣化氫及曱 石夕烧饋送至一個氣化氫-甲矽烷反應器;及 藉由該氯化氫-曱矽烷反應器使該甲矽烷與該氣化氫反 應’以產生包含三氣矽烷之氣矽烷。 170. 如請求項169之方法,其進一步包括: 藉由一 CVD反應器後曱矽烷/氣化氫反應器使來自該 CVD反應器後氣化氫分離器之該氣化氫與甲矽烷及該化 學氣相沈積反應器流出物混合物反應。 171. —種製造矽之方法,該方法包括: 藉由一歧化反應器使包括三氣矽烷及曱矽烷之一歧化 反應器進料反應’以形成包括二氣矽烷、三氯矽烷及四 氣化矽之一歧化反應器產物; 152888.doc -27- 201130733 藉由一化學氣相沈積反應器對來自該歧化反應器之一 混合物執行一化學氣相沈積以將矽沈積在該化學氣相沈 積反應器内之一基板上;及. 自該化學氣相沈積反應器回收矽。 172. 如請求項171之方法,其進一步包括: 控制包括三氣矽烷及甲矽烷之該歧化反應器進料之一 組合物以使得該歧化反應器進料中氣對矽之比率在約1:1 與約3 :1之間的範圍。 173. 如請求項171之方法,其進一步包括: 控制包括三氣矽烷及甲矽烷之該歧化反應器進料之一 組合物以使得該歧化反應器進料中氣對石夕之該比率在約 1:1與約2.5:1之間的範圍。 174. 如請求項171之方法,其進一步包括: 控制包括三氣矽烷及甲矽烷之該歧化反應器進料之一 組合物以使得該歧化反應器進料中氣對矽之該比率在約 1:1與約2:1之間的範圍。 175. 如請求項171之方法,其進一步包括: 控制包括三氣矽烷及甲矽烷之該歧化反應器進料之一 組合物以使得該歧化反應器進料中氣對矽之該比率在約 1.25:1與約1.75:1之間的範圍。 176. 如請求項171之方法,其進一步包括: 控制包括三氣矽烷及曱矽烷之該歧化反應器進料之一 組合物以使得該歧化反應器進料中氣對矽之該比率在約 1.75:1與約2.25:1之間的範圍。 152888.doc -28- 201130733 177. 如請求項171之方法,其進一步包括: 控制包括三氣矽烷及曱矽烷之該歧化反應器進料之一 組合物以使得該歧化反應器進料中氣對矽之該比率為約 1.5:1 。 178. 如請求項171之方法,其進一步包括: 控制包括三氣矽烷及曱矽烷之該歧化反應器進料之一 組合物以使得該歧化反應器進料中氣對矽之該比率為約 179. 如請求項17 1之方法,其中使一歧化反應器進料反應以 形成包括二氣矽烷、三氯矽烷及四氣化矽之一歧化反應 產物包含:最佳化該歧化反應器之操作條件以最大化二 氣矽烷之產生。 180. 如請求項179之方法,其進一步包括: 在一歧化反應器後四氣化矽分離器中自該歧化反應器 之一產物分離四氣化矽,以產生一 一歧化反應器後四氯化201130733 VII. Patent application scope: 1. A method for manufacturing ruthenium, the method comprising: reacting a disproportionation reactor comprising methotoxane and ruthenium tetrachloride by a disproportionation reactor; by chemical vapor deposition The reactor performs a chemical vapor deposition on a mixture from the disproportionation reactor to deposit ruthenium on one of the substrates in the chemical vapor deposition reactor; and recovers ruthenium from the chemical vapor deposition reactor. 2. The method of claim 1, further comprising: separating hydrogen from a by-product mixture of the chemical vapor deposition comprising hydrogen and tetragas hydride to produce a composition comprising ruthenium tetrachloride; The pre-reactor decane/gas hexane mixer mixes the composition comprising four gasification fossils and a composition comprising gangue kiln to produce the disproportionation reactor feed comprising decane and ruthenium tetrachloride; Controlling, by a disproportionation reactor front temperature controller, a temperature of the disproportionation reactor feed comprising gangue Xixuan and ruthenium tetrachloride; and disproportionation reaction comprising methotoxane and ruthenium tetrachloride by the disproportionation reactor The components of the feed are reacted to form a disproportionation reaction product comprising dioxane, trigassing and tetragassing. 3. The method of claim 2, wherein mixing the composition comprising tetragassing ruthenium with one of the compositions comprising methotoxan comprises: mixing a composition comprising one of dichloromethane and a composition comprising one of the cerium oxides. 4. The method of claim 2, wherein mixing the composition comprising four gasified hydrazines with one of the compositions comprising gangue smelting comprises: mixing comprising one of three gas stone kiln 152888.doc 201130733 composition and including a One of the compositions of Shi Xiyuan. 5. The method of claim 2, wherein mixing the composition comprising tetragassing ruthenium with one of the compositions comprising methotoxan comprises: mixing a composition comprising one of vaporized hydrogen and a composition comprising one of decane. 6. The method of claim 2, wherein mixing the composition comprising tetragassing ruthenium with one of the compositions comprising methotoxan comprises: mixing a composition comprising one of liquid or vapor decane and comprising liquid or vapor ruthenium tetrachloride One of the compositions. 7. The method of claim 2, wherein mixing the composition comprising four gasified hydrazines with a composition comprising decane comprises: pressing from about 丨〇 pounds per square inch to about 500 pounds per square inch The composition comprising metformane and the composition comprising tetragas hydride are supplied to one of the disproportionation reactor pre-methane/gas hexane mixer and one of the disproportionation reactors under pressure of one of the ranges of gauge pressure Or both. 8. The method of claim 2, wherein the composition comprising tetraclic and the composition comprising the group (IV) comprises: a gauge pressure of from about 300 psig to about 300 psig. One of the ranges of the composition, including the composition of the fushi Xiyuan and the composition including the four gas cuts, to the disproportionation reactor before the one of the money/chlorite sinter mixer and the disproportionation reactor Or both. For example, the method of the term 2 of the month 'the mixture of the mixture comprising the antimony tetrachloride and the composition comprising the m-containing residue comprises: in the range from about Η·············· The scope of the composition - under the friction 'will include the composition of the money and the composition including the four gas cut to 152888.doc 201130733 the disproportionation reactor pre-methane / gas decane mixer and the disproportionation reactor One or both. 10. The method of claim 2, wherein mixing the composition comprising four gasified hydrazines with one of the compositions comprising decane comprises: at a pressure of about 18 psig. The composition and the composition comprising the four gasification fossils are supplied to one or both of the disproportionation reactor preoxane/gas decane mixer and the disproportionation reactor. 11. The method of claim 2, wherein mixing the composition comprising four gasified hydrazines with one of the compositions comprising decane comprises: pressing from about 5 mash/square inch to about 255 s/square The composition comprising decane and the composition comprising ruthenium hydride are supplied to the disproportionation reactor pre-decane/chloromethane mixer and the disproportionation reactor at a pressure within one of the ranges of the osmium pressure gauge One or both. The method of claim 2, wherein the composition comprising the four gasified hydrazine and the composition comprising one of the decane comprises: at a pressure of from about 15 psi to about 2,500 psi. The composition comprising formoxane and the composition comprising ruthenium tetrachloride are supplied to the disproportionation reactor pre-decane/chloromethane mixer and one of the disproportionation reactors under pressure of one of the ranges of 吋 gauge pressure Or both. 13 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The composition comprising the stone body and the composition comprising the four gas cuts are supplied to the front of the disproportionation reactor. And one or both of the 152888.doc 201130733 in the disproportionation reactor. 14_ The method of claim 2, wherein the composition comprising the four gasified hydrazine and the composition comprising one of the decane comprises: at a pressure of about 2 psi/gauge, including The composition of formoxane and the composition comprising four gas fossils are provided to one or both of the disproportionation reactor pre-methane/chloromethane mixer and the disproportionation reactor. 15. The method of claim 2, wherein the disproportionation reactor comprises a catalyst. 16. The method of claim 15 wherein the catalyst comprises a polymeric ion exchange resin. 17. The method of claim 15, wherein the catalyst comprises a metal. 18. The method of claim 15, wherein the catalyst comprises copper. 19. The method of claim 15 wherein the catalyst comprises substantially pure copper infused with copper. 20. The method of claim 2, wherein controlling the temperature of the disproportionation reactor feed comprising methane and tetragas hydride comprises: controlling the temperature of the disproportionation reactor feed from about 3 (rc to 21. The method of claim 2, wherein the method of claim 2, wherein controlling the temperature of the disproportionation reactor feed comprising a mixture of formoxane and tetragas hydride comprises: dissolving the disproportionation reactor The temperature is controlled in a range from about 300 ° C to about 500 ° C. 22. The method of claim 2, wherein the disproportionation reactor of the mixture comprising decane and tetragassing ruthenium is controlled The temperature of the feed comprises: controlling the temperature of the disproportionation reaction to be in a range from about 3001 to about 400. (: 152888.doc 201130733 23. The method of claim 2, wherein the control comprises The temperature of the disproportionation reactor feed of the decane and the condensate of the quaternary condensate comprises: controlling the temperature of the disproportionation reactor feed to be from about 200. (: to one of about 300 ° C 24. In the scope of claim 2, the control includes the 曱石夕烧和四The temperature of the disproportionation reactor feed of the mixture comprises: controlling the temperature of the disproportionation reactor feed to be in a range from about 90 ° C to about 200 ° C. The method of month 2, wherein controlling the temperature of the disproportionation reactor feed comprising the mixture of methotrexate and tetragas hydride comprises: controlling the temperature of the disproportionation reactor feed from about 30 ° C to 26. The method of claim 2, wherein the method of controlling the temperature of the disproportionation reactor comprising decane and tetragassing ruthenium comprises: the disproportionation reactor The temperature of the feed is controlled in a range from about 55 ° C to about 75 ° C. 27. The method of claim 2, wherein the disproportionation reaction comprising a mixture of metformin and tetragas ruthenium is controlled. The temperature of the feed to the feed comprises: controlling the temperature of the feed to the disproportionation reactor from about 6 Torr to about 7 Torr. One of the ranges. 28. The method of claim 2, wherein the control The temperature component of the disproportionation reactor feed of the mixed sigma including metformin and tetragas hydride The temperature of the disproportionation reaction is controlled to be about 60° C. 29. The method of claim 2, further comprising: 152888.doc 201130733 controlling a composition comprising the composition of four gas fossils or The rate of supplying the composition of the four gasification fossils to the front of the disproportionation reactor, such that the mixture comprising the sarcophagus 匕祜 匕祜 及 及 and the 气 气 四The ratio of the gas to the enthalpy in the disproportionation reactor feed is in the range of between about 2:1 and about 3.9:1. 30. The method of claim 29, wherein the chalk is a form of methotrex and tetragas. The ratio of the window to the gas-to-gas ratio in the disproportionation reactor feed of the mixture of the plutonium is in the range between about 2:5 and about 3.5:1. 31. The method of claim 29, wherein the mixture of chalk, A, and methanthanol and the mixture of the four gasified ruthenium in the disproportionation reactor feeds a window π T wind to a ratio of shi hai to about 28: The range between j and about 3.3:1. 32. The method of claim 29, wherein the ratio of the gas to the diarrhea in the disproportionation reactor feed of the mixture of the methacrylate and the gasification enthalpy is about 2.8:1. 33. The method of claim 29, wherein the ratio of the gas to enthalpy in the disproportionation reactor feed of the mixture of the mixture of decane and tetragas hydride is about Η. 34. The method of claim 29, wherein the ratio of chlorine to ruthenium in the disproportionation reactor feed of the mixture of the calculus and the four gasification fossils is about 3:1. 35. The ratio of chlorine to rhodium in the disproportionation reactor feed of the method of claim 29, wherein the mixture comprising metformin and tetragas hydride is about 3 3:ι. 36. The method of claim 2, further comprising: separating ruthenium tetrachloride from the product of the disproportionation reaction in a post-disproportionation reactor to produce a disproportionation reactor The stream of hydrazine and a disproportionation reactor are enriched in a stream of three gas decane. 37. The method of claim 36, further comprising: 152888.doc • 6 · 201130733 using the four gasified helium separated from the product of the disproportionation reactor in a four gasification helium separator after the disproportionation reactor To adjust the ruthenium tetrachloride content of the disproportionation reactor feed. 38. The method of claim 2, further comprising: gasifying a mixture comprising the disproportionation reaction product in a CVD reactor pre-gasifier to produce a vaporized disproportionation reaction product; by a CVD reaction The pre-mixer mixes hydrogen with the vaporized disproportionation reaction product to produce a mixture of hydrogen and disproportionation reaction products; and performs chemical vapor deposition on the mixture of hydrogen and disproportionation reaction products by the chemical vapor deposition reactor A crucible is deposited on the substrate in the chemical vapor deposition reactor. The method of claim 38, wherein the mixing of the hydrogen and the vaporized disproportionation reaction product comprises mixing hydrogen with the vaporized disproportionation reaction product by a CVD reactor premixer. 40. The method of claim 38, wherein mixing the hydrogen with the gasified disproportionation reaction product comprises mixing hydrogen with the vaporized disproportionation reaction product in the chemical vapor deposition reactor. 41. The method of claim 2, further comprising: releasing an effluent mixture comprising one of: argon, ruthenium tetrachloride, and hydrogen sulfide, dichlorodecane, and trigas from the chemical vapor deposition reactor. One or more of decane. 42. The method of claim 41, further comprising: cooling the effluent mixture from the chemical vapor deposition reactor by a first chiller after a CVD reactor to produce a gas-liquid two phase mixture 152888.doc 201130733. 43. The method of claim 42, further comprising: removing the oily contaminant comprising the polymetasite base material from the effluent mixture cooled by the first cooler. 44. The method of claim 42, further comprising: separating the gas-liquid two-phase mixture from the first cooler by a CVD reactor post-decant to produce a gas phase and a liquid phase. 45. The method of claim 44, further comprising: converting the gas phase from the decanter to a gas-liquid two phase mixture or a gas phase by a CVD reactor post compressor. 46. The method of claim 45, further comprising: cooling the gas-liquid two-phase mixture or the gas phase from the compressor by a second chiller after a CVD reactor. 47. The method of claim 41, further comprising: supplying the effluent mixture from the chemical vapor deposition reactor to a CVD reactor followed by an in-situ gasification hydrogen reactor; and by using the CVD reactor An in situ gasification hydrogen reactor converts the vaporized hydrogen from the effluent mixture from the chemical vapor deposition reactor to gas decane. 48. The method of claim 47, further comprising: using an in situ gas prior to supplying the effluent mixture from the chemical vapor deposition reactor to the CVD reactor after in situ gasification of the hydrogen reactor An argon reactor heat exchanger heats the effluent mixture from the chemical vapor deposition reactor. The method of claim 48, wherein the effluent mixture from the chemical vapor deposition reactor is heated by an in situ hydrogen chloride reactor heat exchanger comprising: from the chemical vapor deposition reactor The effluent mixture is heated to a temperature in the range of from about 200 °C to about 700 °C. 50. The method of claim 48, wherein the effluent mixture from the chemical vapor deposition reactor is heated by an in situ gasification hydrogen reactor heat exchanger comprising: from the chemical vapor deposition reactor The effluent mixture is heated to a temperature from about 300 ° C to about 60 (one of the range of TC. 51. The method of claim 48, wherein the chemical vapor phase is heated by an in situ hydrogen chloride reactor heat exchanger The effluent mixture of the deposition reactor comprises: heating the effluent mixture from the chemical vapor deposition reactor to about 500. (3) One temperature. 52. The method of claim 48, wherein the in situ hydrogen chloride reaction The heat exchanger will heat the in-situ hydrogen chloride reactor from the CVD reactor before the effluent mixture from the chemical vapor deposition reactor is supplied to the sth CVD reactor and the hydrogenation reactor is in-situ. One of the effluent is exchanged to the effluent mixture from the chemical vapor deposition reactor.. 53. The method of claim 48, further comprising: passing through the in situ gasification hydrogen reactor heat exchanger After the effluent mixture from the chemical vapor deposition reactor is supplied to the CVD reactor and before the in-situ gasification hydrogen reactor, the heater from the chemical vapor deposition reactor is heated by a CVD reactor after starting the heater. The method of claim 47, wherein the effluent mixture from the chemical vapor deposition reactor is in the in situ gasification hydrogen reactor after the CVD reactor 152888.doc 201130733 one of the residence time is less than Approximately 10 minutes. 55. The method of claim 47, wherein the effluent present in the in-situ gasification reactor after the (10) reactor has a residence time of less than about 5 minutes. 56. The method wherein the effluent mixture has a residence time of less than about i minutes in the in situ gasification hydrogen reactor after the (iv) reactor. 57. The method of claim 47, wherein the effluent mixture is after the cvd reactor One of the residence time in the in-situ gasification rhodium reactor is less than about 分钟5 minutes. 58. The method of claim 47, wherein the effluent mixture is in situ in the hydrogenation reactor after the cvd reactor The method of claim 47, further comprising: cooling the effluent mixture of one of the in-situ gasification hydrogen reactors from the cVD reactor by a first chiller after a CVD reactor To produce a gas-liquid two-phase mixture; separating the gas-liquid two-phase mixture from the first cooler by a CVD reactor post-decanter to produce a gas phase and a liquid phase; by a CVD reaction The post-compressor converts the gas phase from the decanter into a gas-liquid two-phase mixture or a gas phase; and the second cooler cools the gas-liquid two phase from the compressor by a CVD reactor Mixture or the gas phase. 60. The method of claim 41, further comprising: separating hydrogen from the chemical vapor deposition reactor effluent mixture by a CVD reactor followed by a hydrogen separator to produce a hydrogen-rich stream after the CVD reactor A stream of hydrogen depleted after a CVD reactor. 61. The method of claim 60, wherein the CVD reactor is enriched in a hydrogen stream 152888.doc • 10· 201130733 wherein the concentration of the four gas fossils is less than 15 weight percent. 62. The method of claim 60, wherein the concentration of ruthenium tetrachloride in the hydrogen-rich stream after the CVD reactor is less than 10 weight percent. 63. The method of claim 60, wherein the concentration of ruthenium tetrachloride in the hydrogen-rich stream after the CVD reactor is less than 5 weight percent. 64. The method of claim 60, wherein the concentration of the four gasified ruthenium in the hydrogen-rich stream after the CVD reactor is less than 1 weight percent. 65. The method of claim 60, wherein the concentration of ruthenium tetrachloride in the hydrogen-rich stream after the CVD reactor is less than 0.1% by weight. 66. The method of claim 60, further comprising: disproportionation of a hydrogen-rich stream and a gasification helium separator from a disproportionation reactor after mixing the CVD reactor by a CVD reactor premixer It is enriched with a stream of three gas decane. 67. The method of claim 60, further comprising: a hydrogen depleted stream after mixing the CVD reactor with a protonation reactor pre-chlorosilane mixer and one of the four gasification rhodium separators from the disproportionation reactor The disproportionation reactor is enriched in a stream of hafnium tetrachloride. 68. The method of claim 67, further comprising: determining that the hydrogen is depleted after the CVD reactor after mixing the hydrogen depleted stream after the CVD reactor with the helium tetrachloride-rich stream after the disproportionation reactor The amount of elemental bismuth and elemental chlorine in the stream enriched in four gasification enthalpy after the disproportionation reactor. 69. The method of claim 67, further comprising: mixing a quantity of the 152888.doc 201130733 CVD reactor with a hydrogen depleted stream by the disproportionation reactor pre-gas decane mixer; the disproportionation reactor is enriched a stream of ruthenium tetrachloride; and, if necessary, a mixture of one or more of purified gasified ruthenium, trichloromethane, dichloromethane or purified ruthenium tetrachloride, trichloromethane or dioxane One of the feeds; and controlling the amount of elemental gas and element enthalpy supplied from each source to maintain a selected ratio of gas to enthalpy in the disproportionation reactor feed. 70. The method of claim 60, further comprising: separating hydrogen chloride from the hydrogen depleted stream after the CVD reactor by a CVD reactor to produce a CVD reactor after hydrogen depletion, A stream rich in hydrogen sulfide and a hydrogen depleted stream after gasification of a CVD reactor. 71. The method of claim 70, further comprising: transporting the hydrogen depleted, hydrogen rich stream from the CVD reactor to the hydrogen chloride storage system after the CVD reactor. 72. The method of claim 70, further comprising: after the argon reactor is depleted, the hydrogen chloride depleted stream is sent from the CVD reactor to the gasification hydrogen separator to a disproportionation reactor. mixer. 73. The method of claim 70, further comprising: separating the four gasified ruthenium from the hydrogen depleted, hydrogen chloride depleted stream of dichloromethane and trioxane by a CVD reactor post gas decane separator. In order to produce a CVD reactor rich in ruthenium tetrachloride and a CVD reactor, the dioxane-rich stream is rich in tri-decane. 152888.doc -12. 201130733 74. The method of claim 73, further comprising: a stream of dioxane-rich, trichlorodecane-rich stream from the CVD reactor by a dioxane/trichloromethane separator The trichlorosilane is separated from the trichloromethane to produce a stream of chloroformane-rich stream after a CVD reactor and a trioxane-rich stream after a CVD reactor. 75. The method of claim 74, further comprising: mixing the trioxane-rich stream after the CVD reactor with a trioxane-rich stream after a disproportionation reactor. 76. The method of claim 74, further comprising: mixing the ruthenium tetrachloride-rich stream with the CVD reactor by a CVD reactor followed by a chlorosilane mixer and enriching the dioxane with the CVD reactor flow. 77. The method of claim 76, wherein mixing the stream of four gas-enriched ruthenium with the stream of dioxane-rich stream by a CVD reactor post-gas hexane mixer comprises: selecting a quantity of dioxane and This amount of dichloromethane is added to the decane gas mixer after the CVD reactor, thereby controlling the concentration of dichloromethane in the feed to the disproportionation reactor and the chemical vapor deposition reactor. 78. The method of claim 77, wherein controlling the concentration of dioxane in the feed to the chemical vapor deposition reactor comprises controlling the ratio of chlorine to rhodium in the feed to the disproportionation reactor. 79. The method of claim 78, wherein controlling the ratio of gas to enthalpy in the feed to the disproportionation reactor comprises: controlling the replenishment of the feed gas to the feed to the disproportionation reactor, trichlorosilane One of decane and dichlorodecane 152888.doc -13· 201130733 or more. 80. The method of claim 74, further comprising: supplying the dichlorosilane from the dioxane/trioxane separator to the chemical vapor deposition reactor. 81. The method of claim 80, wherein supplying dioxane from the dioxane/trioxane separator to the chemical vapor deposition reactor comprises: adjusting the feed to the chemical vapor deposition reactor This concentration of dioxin. 82. The method of claim 74, further comprising: storing all or a portion of the dichloromethane in a dioxane storage system or disposing the dioxane by a dioxane treatment system. 83. The method of claim 41, further comprising: separating hydrogen and gasification hydrogen from the chemical vapor deposition reactor effluent mixture by a CVD reactor followed by a hydrogen/gasification hydrogen separator to produce a a hydrogen/vaporized hydrogen stream and a hydrogen/vaporized hydrogen depleted stream; the hydrogen/gasification hydrogen separator is used in the hydrogen/gasification hydrogen rich stream by a CVD reactor Hydrogen is separated from the hydrogen; and the vaporized hydrogen from the hydrogen/hydrogenation hydrogen separator before the CVD reactor is sent to a gasification hydrogen storage system. 84. The method of claim 83, further comprising: mixing the hydrogen from the CVD reactor by a -CVD reactor premixer and the hydrogen from the disproportionation reactor The disproportionation reactor of the four gasification helium separator is rich in trichloromethane. 85. The method of claim 70, the further comprising: 152888.doc • 14· 201130733 the hydrogen depleted, hydrogen rich hydrogen-rich stream and formane from the gasification hydrogen separator of the CVD reactor Feeding to a disproportionation reactor pre-methane/hydrogenation reactor; and reacting the decane with the gasification hydrogen by the disproportionation reactor pre-decane/hydrogenation reactor to produce a gas containing three gas And four gasified oxime gas decane. 86. The method of claim 85, wherein one of the temperature in the pre-methane/hydrogenation reactor of the disproportionation reactor is about 5 Torr. 〇 with 700. (A range between: 87. The method of claim 85, wherein a temperature in the pre-reactor pre- decane/hydrogenation reactor is between about 1 〇〇〇c and about 6 〇〇t 88. The method of claim 85, wherein the temperature in the pre-reactor pre- decane/hydrogenation reactor is between about 300 Torr and about 500 ° C. 89. The method 'wherein the temperature of one of the procarbazine/hydrogenated hydrogen reactor in the disproportionation reactor is about 500 ° C. 90. The method of claim </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> The molar ratio of methotane to hydrogen chloride in the feed of the nitrogen reactor ranges from about 1:1 to about 2:1. 91. The method of claim 85, wherein the decane is one of hydrogen chloride The ratio is in the range of from about 0:1 to about 1.5:1. 92' The method of claim 85, wherein the molar ratio of the gas to the gas to hydrogen is from about 1:1 to about 1:1. 9 3. As requested in item 8 5 &lt;Method&apos; wherein the molar ratio of methotane to hydrogen chloride is about 0.33:1. 94. According to the claim 85, + ^ Wanfa' wherein by a disproportionation reactor pre-methane/gas 152888.doc 15 201130733 hydrogenation reaction MW money reacts with the gasification hydrogen in the presence of - containing metal In the case of a catalyst, the (9) hydrazine is reacted with the hydrogen chloride. The method of claim 94, wherein the metal-containing catalyst comprises a copper moon length 95, wherein the metal-containing catalyst comprises substantially purely ground copper. 97. The method of claim 85, further comprising: a hydrogen depleted, vaporized hydrogen depleted stream after mixing a quantity of the CVD reactor by the disproportionation reactor pre-gas decane mixer; from the disproportionation reactor The gas sands of the former Jiashixi system/gasification hydrogen reactor; the four gasification ruthenium separators from a disproportionation reactor - rich in gas stream of four gasification; and, if necessary, purified gasification One of the mixture of one or more of hydrazine, purified tri-gas decane, purified digas sulphate or purified four-gas fossil sulphate, purified three gas stone sacred garden or purified two gas stone ceremonial courtyard Feeding; and controlling the amount of elemental gas and elemental stone supplied from each source to maintain. A ratio of gas to enthalpy in the feed of the Hai disproportionation reactor. 98. The method of claim 70, further comprising: depleting the argon gas from the gasification hydrogen separator after the CVD reactor by a CVD reactor post-methane/hydrogenation reactor The nitrogen stream is reacted with the methanol and the chemical vapor deposition reactor effluent mixture. 99. The method of claim 98, further comprising: mixing the hydrogen depleted, hydrogen rich hydrogen-rich stream with the decane and the chemical vapor phase in a decane/hydrogenation reactor after the CVD reactor The temperature of the chemical vapor deposition reactor effluent mixture in the decane/chlorine 152888.doc -16-201130733 hydrogenation reactor is adjusted to about 200 ° C and about before the deposition of the reactor effluent mixture. 600. Between 〇. 100. The method of claim 99, wherein adjusting the temperature of the chemical vapor deposition reactor effluent in the decane/hydrogenation reactor after the CVD reactor comprises: adjusting the heat exchanger by a CVD reactor The temperature. 101. The method of claim 99, wherein the chemistry in the calcining/gasification hydrogen reactor after adjusting the CVD reactor prior to mixing the vaporized hydrogen with the decane and the chemical vapor deposition reactor effluent mixture The temperature of the vapor deposition reactor effluent mixture comprises adjusting the temperature to between about 4 ° C and about 500 ° C. 102. The method of claim 98, wherein the molar ratio of methotane to vaporized hydrogen in the feed to the cvD reactor after the decane/hydrogenation reactor is from about 0:1 to about 2: The scope of 1. 103. The method of claim 1, wherein the one molar ratio of methotane to hydrogenation in the feed to the cvd reactor after the decane/hydrogenation reactor is from about 0:1 to about 1 · 5:1 range. 104. The method of claim 1, wherein the molar ratio of methotane to hydrogen chloride in the feed to the methane/evaporized argon reactor after the cvd reactor is from about 0:1 to about 1: The scope of 1. 105. The method of claim 1 wherein the one molar ratio of methotane to hydrogen chloride in the feed to the methane/hydrogenation reactor after the cvd reactor is about 0.33:1. 106. The method of claim 98, wherein the step of: adjusting the flow rate in the decane/hydrogen chloride reactor after the CVD reactor is 152888.doc • 17·201130733 to make the gas hydrogenation/methanine-CVD One of the residence time of the effluent mixture in the decane/hydrogenation reactor after the CVD reactor is sufficient to allow complete reaction of the vaporized argon with the decane. 107. The method of claim 106, wherein the CVD reactor post-methane/hydrogen chloride reactor comprises a sufficient total volume of one or more reaction chambers to provide one of a complete reaction suitable for allowing the vaporized hydrogen to react with the decane Residence time. 108. The method of claim 107, wherein the residence time of the effluent mixture in the decane/hydrogenation reactor after the CVD reactor is less than about 10 minutes. 109. The method of claim 107, wherein the residence time of the effluent mixture in the T-steam/hydrogenation reactor after the cvd reactor is less than about 5 minutes. 110. The method of claim 107, wherein the residence time of the effluent mixture in the decane/hydrogenation reactor after the CVD reactor is less than about i minutes. 111. The method of claim 107, wherein the residence time of the effluent mixture in the methan/hydrogenation reactor after the cvD reactor is less than about 〇5 minutes. 112. The method of claim 107, wherein the residence time of the effluent mixture in the methan/hydrogenation reactor after the cvD reactor is less than about 1 minute. 113. The method of claim 36, further comprising: separating the dichloromethane from the trichloromethane-rich stream after the disproportionation reactor and the second gas furnace to generate disproportionation Reaction 152888.doc -18· 201130733 is rich in dioxane stream. 114. The method of claim 113, further comprising: determining a concentration of dioxane in the feed to one of the chemical vapor deposition reactors; and adjusting the dichloride to the feed to the chemical vapor deposition reactor The concentration of Shi Xi burning. 115. The method of claim 114, wherein the concentration of dioxane in the feed to the chemical vapor deposition reactor comprises: adding the flow of the second gas after the disproportionation reactor to The feed to the chemical vapor deposition reactor. 116. The method of claim 114, wherein the adjusting the concentration of dioxane in the chemical vapor deposition reactor comprises: adding a chemical vapor deposition reactor effluent mixture from which hydrogen and hydrogen chloride have been removed. Dichlorodecane. 117. The method of claim 2, wherein mixing the composition comprising one of the decane and the composition comprising the ruthenium tetrachloride comprises: mixing one of the gas phase, the liquid phase, or the gas-liquid mixed phase The composition comprises a composition comprising one of hafnium tetrachloride in a gas phase, a liquid phase or a gas-liquid mixed phase. 118. The method of claim 2, further comprising: mixing the monochlorodecane, the second gas kiln by a disproportionation reactor pre-chlorosilane mixer prior to feeding the disproportionation reactor by the disproportionation reactor One or more of the institute and trichloromethane are fed with the disproportionation reactor. 119. The method of claim 118, wherein the one or more of monochlorodecane, dichlorodecane, and trichloromethane are one of four gasification enthalpy ratios at 〇 〇 152888.doc • 19· 201130733 To a range of about 3:1. 120. The method of claim 118, wherein the one or more of Ningsole, Dioxane, and Trioxane are in the form of a milk to about (1). The molar ratio of the gas cut is from about 0 121. The method of claim 118, wherein the one or more of the dry gas, the dioxane, and the trioxane are the molar ratio of the vaporized gas. In the range of from about 0.1:1 to about 1:1. 122. The method of claim 118, wherein the one of the nitrous oxide, the dichloro decane, and the trioxane is one of the four gasification enthalpy ratios of about 0.5..1 . 123. The method of claim 2, wherein the step of: converting the low boiling point contaminant into intermediate and high boiling phosphorus contaminants by the disproportionation reactor. Wherein the low boiling phosphorus contaminant comprises ΡΗ3 and 124. The method of claim 123 ΡΗ2α. 125. The method of claim 123 wherein the intermediate boiling point phosphorus contaminant comprises PHC12. 126. The method of claim 123, wherein the Gaohong dot dish contaminant comprises bismuth (3). 127. The method of claim 123, further comprising separating the four gas fossils and the intermediate and high boiling phosphorus contamination from the low-dot-disc pollutants in the self-disproportionation reaction effluent by the disproportionation reactor after the four gasification splitters. Things. 128. The method of claim m, further comprising: separating the high-boiling phosphorus contaminants from the tetrachloride and the intermediate boiling point 152888.doc •20·201130733 contaminants at the inter-disc separator . 129. The method of claim 128, further comprising: discarding the high boiling phosphorus contaminants. 130. The method of claim 128, further comprising: recycling the intermediate boiling point phosphorus contaminants to the disproportionation reactor; and converting the intermediate boiling point phosphorus contaminants to high boiling point phosphorus contaminants by the disproportionation reactor. 131. The method of claim 36, further comprising: separating the two gases from the trioxane in the trioxane-rich stream after the disproportionation reactor by a dioxane/trioxane separator The decane' is a material rich in dioxane/trioxane depleted after producing a disproportionation reactor and a material rich in trioxane/dioxane depleted after a disproportionation reactor. 132. The method of claim 1-3, further comprising: determining a dioxane concentration in the dioxane/trioxane depleted material after the disproportionation reactor. 133. The method of claim 131, further comprising: determining a trioxane concentration in the trioxane/dioxane depleted material after the disproportionation reactor. 134. The method of claim 131, wherein the material rich in dioxane/dichlorite after the disproportionation reactor is substantially pure dicha. 135. The method of claim 131, further comprising: storing the dichlorodecane/trichlorodecane-depleted material in a second gas sputum storage system. 136. The method of claim 131, further comprising: storing the trioxane/dioxane depleted material in a trioxane storage system. 137. The method of claim 131, further comprising: mixing the material rich in the two-gas stone/three gas stone exhausted with the material rich in three gas stone burning/two gas depleting materials And generating a chemical vapor deposition reactor feed; and supplying the feed to the chemical vapor deposition reactor. 138. The method of claim 137, wherein the dioxane-rich material and the trioxane/dioxane-depleted material are mixed: the mixture is stored from the dioxane. A system rich in dioxane/trichlorodecane depleted material. 139. The method of claim 137, wherein mixing the dioxane/trioxane depleted material with the trichlorodecane/dioxane depleted material comprises mixing from the trioxane storage system It is rich in trioxane/two gas stone exhausted materials. 140. The method of claim 137, wherein the dichlorodecane/trioxane depleted material is mixed with the trioxane/dioxane depleted material to produce a chemical vapor deposition reactor. The material comprises: adjusting a ratio of chlorine to stone eve in the chemical vapor deposition reactor feed. Ml. - A method of making a crucible, the method comprising: performing a chemical vapor deposition on a mixture comprising one of trioxane by a chemical vapor deposition reactor; recovering rhodium from the chemical vapor deposition reactor; 152888. Doc -22- 201130733 releasing a first-rate product mixture from the chemical vapor deposition reactor, the effluent mixture comprising hydrogen, four gasified ruthenium, and one or more of hydrogenation gas, dioxane, and trichloromethane; And converting the vaporized hydrogen in the effluent mixture from the chemical vapor deposition reactor to chlorodecane by a CVD reactor followed by an in-situ gasification hydrogen reactor. 142. The method of claim 14, wherein the method further comprises: performing a first CVD reaction prior to supplying the effluent mixture from the chemical vapor deposition reactor to the in situ hydrogen chloride reactor after the CVD reactor is supplied to the CVD reactor The post-heat exchanger controls the temperature of the effluent mixture from the chemical vapor deposition reactor. 143. The method of claim 142, wherein the temperature of the effluent mixture from the chemical vapor deposition reactor is controlled by a first CVD reactor post heat exchanger comprising: from the chemical vapor deposition reactor The temperature of the effluent mixture is controlled to be about 2 Torr. 〇 to about 700. 144. The method of claim 142, wherein the temperature of the effluent mixture from the chemical vapor deposition reactor is controlled by a first cvd reactor post heat exchanger comprising: : controlling the temperature of the effluent mixture from the chemical vapor deposition reactor to a temperature ranging from about 3 Torr to about 6 Torr. 145 • Method of claim ι 42 Wherein the temperature of the effluent mixture from the chemical vapor deposition reactor is controlled by a first cvd reactor post heat exchanger comprising: the stream from the chemical vapor deposition reactor 152888.doc -23 - 201130733 The temperature of the mixture of the mixture is controlled to be about 500. The method of claim 142, wherein the first CVD reactor after the heat exchanger is to be from the chemical vapor deposition reactor After the effluent mixture is supplied to the CVD reactor and before the in-situ gasification of the hydrogen reactor, heat is exchanged from an effluent from the in-situ gasification hydrogen reactor after the C VD reaction to the chemical vapor deposition reactor. The method of claim 141, wherein the effluent mixture from the chemical vapor deposition reactor has a residence time of less than about 1 minute in the in-situ gasification hydrogen reactor after the CVD reactor. 148. The method of claim 141, wherein the effluent mixture has a residence time of less than about 5 minutes in the in situ gasification hydrogen reactor after the CVD reactor. 149. The method of claim 141, wherein The residence time of the effluent mixture in the in-situ gasification hydrogen reactor after the CVD reactor is less than about 1 minute. 150. The method of claim 141, wherein the effluent mixture is hydrolyzed in situ after the CVD reactor One of the residence times in the apparatus is less than about 分钟5 minutes. 15L. The method of claim 141, wherein the effluent mixture is internally vaporized in the hydrogen reaction H after the cvd reactor - the residence time is less than about 1 minute. The method of claim 141, further comprising: borrowing & cooling the system to cool an effluent mixture from the in-situ gasification hydrogen reactor from the Cvd reactor. I52888.doc • 24-20 153. The method of claim 152, further comprising: converting the effluent mixture from the in-situ chlorination reactor after the CVD reactor to a gas-liquid two-phase mixture by a compressor system. The method of claim 153, further comprising: cooling the gas-liquid two-phase mixture from the compressor system by a second cooling system. 155. The method of claim 154, wherein the second cooling system comprises a The second CVD reactor post heat exchanger. 156. The method of claim 154, further comprising: using a CVD reactor followed by a four gasification helium absorber/hydrogen separator from the CVD reactor after in situ gas The effluent mixture of the hydrogenation reactor separates hydrogen. 157. The method of claim 156, further comprising: saturating the trioxane in the hydrogen separated by the four gasification waste absorber/hydrogen separator after the CVD reactor. 158. The method of claim 156, further comprising: mixing the hydrogen from the ruthenium tetrachloride absorber/hydrogen separator from the CVD reactor with one of the feed to the chemical vapor deposition reactor. 159. The method of claim 156, further comprising: passing the ruthenium tetrachloride/trioxane separator after a CVD reactor from the effluent/hydrogen separator from the CVD reactor The four gasification enthalpies in the mixture of materials separate the three gas stone courts. 160. The method of claim 15 further comprising: feeding trioxane from the ruthenium tetrachloride/trichloromethane separator to 152888.doc • 25-201130733 the four gas enthalpy absorber/hydrogen separation And reacting the triclosan with the ruthenium tetrachloride in the ruthenium tetrachloride absorber/hydrogen separator. 161. The method of claim 160, further comprising: adjusting a temperature of the three gas smelting furnace prior to feeding the dioxane to the four gas enthalpy absorber/hydrogen separator. 162. The method of claim 161, wherein adjusting the temperature comprises adjusting the temperature of the triclosan to about 35. Hey. 163. The method of claim 159, further comprising: mixing the trichloromethane from the four gasification rhodium/trioxane separator with one of the chemical vapor deposition reactors. 164. The method of claim 159, further comprising: cooling the trioxane; and withdrawing a lower gas phase material from the gas phase from the trichloromethane. 165. The method of claim 159, further comprising: separating P(:l32 high boiling point phosphorus contaminants from the antimony tetrachloride by a high boiling point phosphorus separator. 166. The method of claim 159 further The method comprises: mixing the two gas and burning to one of the chemical vapor deposition reactors. 167. A method for manufacturing a crucible, the method comprising: using a chemical vapor deposition reactor, including triclosan One of the mixture is subjected to a chemical vapor deposition, and the hydrazine is recovered from the chemical vapor deposition reactor; 152888.doc -26- 201130733 The primary vapor mixture is released from the chemical vapor deposition reactor, and the effluent mixture includes hydrogen And one or more of ruthenium tetrachloride and vaporized hydrogen, dioxane and difluorocarbon; and the effluent mixture from the chemical vapor deposition reactor is cooled by a first cooling system. 168. The method of claim 167, further comprising: separating hydrogen from the cooled effluent mixture from the chemical vapor deposition reactor by a CVD reactor followed by a hydrogen separator; A CVD reactor post-hydrogen chloride separator separates the gasification hydrogen from the effluent mixture from the chemical vapor deposition reactor from which hydrogen has been removed by the hydrogen separator after the CVD reactor. 169. The method further comprising: feeding the vaporized hydrogen and the gangue from the hydrogen chloride separator of the CVD reactor to a gasification hydrogen-methane reactor; and using the hydrogen chloride-decane reactor The methooxane reacts with the hydrogenated gas to produce a gas decane comprising trioxane. 170. The method of claim 169, further comprising: passing the decane/hydrogenation reactor after a CVD reactor The vaporized hydrogen of the gasification hydrogen separator of the CVD reactor is reacted with the methanol and the chemical vapor deposition reactor effluent mixture. 171. A method for producing a crucible, the method comprising: using a disproportionation reactor Reversing the reaction of a disproportionation reactor comprising trioxane and decane to form a disproportionation reactor product comprising dioxane, trichlorodecane and tetragas hydride; 152888.doc -27- 201130733 a chemical vapor deposition reactor performing a chemical vapor deposition on a mixture from the disproportionation reactor to deposit germanium on one of the substrates in the chemical vapor deposition reactor; and from the chemical vapor deposition reactor 172. The method of claim 171, further comprising: controlling a composition of the disproportionation reactor feed comprising trioxane and formoxane such that a ratio of gas to enthalpy in the disproportionation reactor feed is at The range between about 1:1 and about 3: 1. 173. The method of claim 171, further comprising: controlling a composition of the disproportionation reactor feed comprising trioxane and formane to cause the disproportionation The ratio of gas to stone in the reactor feed is in the range between about 1:1 and about 2.5:1. 174. The method of claim 171, further comprising: controlling a composition of the disproportionation reactor feed comprising trioxane and formoxane such that the ratio of gas to enthalpy in the disproportionation reactor feed is about 1 : Range between 1 and about 2:1. 175. The method of claim 171, further comprising: controlling a composition of the disproportionation reactor feed comprising trioxane and formoxane such that the ratio of gas to enthalpy in the disproportionation reactor feed is about 1.25 : Range between 1 and about 1.75:1. 176. The method of claim 171, further comprising: controlling a composition of the disproportionation reactor feed comprising trioxane and decane such that the ratio of gas to enthalpy in the disproportionation reactor feed is about 1.75 : Range between 1 and about 2.25:1. 172. The method of claim 171, further comprising: controlling a composition of the disproportionation reactor feed comprising trioxane and decane to cause a gas pair in the disproportionation reactor feed The ratio is about 1.5:1. 178. The method of claim 171, further comprising: controlling a composition of the disproportionation reactor feed comprising trioxane and decane such that the ratio of gas to enthalpy in the disproportionation reactor feed is about 179 The method of claim 17, wherein the disproportioning reaction of the disproportionation reactor to form a disproportionation reaction product comprising dioxane, trichloromethane, and tetragas hydride comprises: optimizing operating conditions of the disproportionation reactor To maximize the production of dioxane. 180. The method of claim 179, further comprising: separating four gasification hydrazines from a product of the disproportionation reactor in a post-disproportionation reactor in a four gasification helium separator to produce a disproportionation reactor followed by tetrachloro Chemical 181.如請求項180之方法,其進—步包括:181. The method of claim 180, the further comprising: 化反應器後富含三氣石夕院之材料。 182·如請求項18 1之方法,装後_After the reactor, it is rich in materials from Sanshishi Xiyuan. 182. The method of claim 18, after loading _ 燒漢度。 152888.doc -29- 201130733 183. 如請求項1 8 1之方法,其進一步包括: 判定該歧化反應器後富含三氣矽烷之材料中之三氯矽 烧濃度。 184. 如請求項181之方法,其中該歧化反應器後富含二氣矽 烧之材料係基本上純二氣妙烧。 185. 如請求項181之方法,其進一步包括: 將該歧化反應器後富含二氯矽烷之材料儲存於二氯矽 烧儲存系統中。 186. 如凊求項1 8 1之方法,其進一步包括: 將該歧化反應器後富含三氣石夕烧之材料儲存於三氯石夕 烷儲存系統中。 187. 如請求項181之方法,其進一步包括: 混合該富含二氣矽烷之材料與該富含三氯矽烷之材 料,以產生一化學氣相沈積反應器進料;及 將該進料供應至該化學氣相沈積反應器。 188. 如請求項187之古、土 法,其中混合該富含二氣矽烷之材料 夺氣矽烷之材料包含混合來自該二氣矽烷儲存 系統之昌含二氣矽烷之材料。 189. 如請求項187之方 與該富含三氣奸之好 氣石夕烧之材料 系統之富:一 含混合來自該三氣,存 广合該富含二氣㈣之材料 進料包含產生—化學氣㈣積反應器 s 化學氣相沈積反應器進料中氣對矽之 152888.doc 201130733 一比率。 191. 如請求項181之方法,其進一步包括: 將該歧化反應器後富合-$ » &amp;田3 —虱矽燒之材料直接供應至§亥 化學氣相沈積反應器。 192. 如請求項181之方法,其進—步包括: 將該歧化反應器後富含三氯石夕烧之材料直接供應至該 化學氣相沈積反應器。 193. 如請求項181之方法,其進—步包括· 混合該歧化反應器後富含二氣矽烷之材料與該歧化反 應器後富含三氯矽烷之材料;及 將歧化反應器後富含二氣矽烷之材料與歧化反應器後 富含三氯矽烷之材料之該混合物供應至該CVD反應器。 194·如請求項181之方法,其進—步包括: 混合該歧化反應器後富含三氣矽烷之材料與曱矽 烷;及 將歧化反應器後富含三氣矽烷之材料與甲矽烷之該混 合物供應至該歧化反應器。 195. —種製造矽之方法,其包括: 製造及供應甲矽烷;及 根據本文中所主張之方法處理該曱石夕院。 152888.doc -31 -Burning Handu. 183888.doc -29-201130733 183. The method of claim 18, further comprising: determining a triclosan concentration in the trioxane-rich material after the disproportionation reactor. 184. The method of claim 181, wherein the material enriched in the gas after the disproportionation reactor is substantially pure two gas. 185. The method of claim 181, further comprising: storing the dichloromethane-rich material in the disproportionation reactor in a chlorinated storage system. 186. The method of claim 1, wherein the method further comprises: storing the material rich in the triphosite after the disproportionation reactor in the clathra storage system. 187. The method of claim 181, further comprising: mixing the dioxane-rich material with the trichloromethane-rich material to produce a chemical vapor deposition reactor feed; and supplying the feed To the chemical vapor deposition reactor. 188. The method of claim 187, wherein the material enriched in the gas-enriched decane comprises a material comprising a dioxane-containing material from the dioxane storage system. 189. If the claimant 187 is enriched with the material system of the three-gas traits: the mixture containing the three gases, the rich and the second gas (four) material feed contains Chemical gas (four) product reactor s chemical vapor deposition reactor feed gas in the 152888.doc 201130733 a ratio. 191. The method of claim 181, further comprising: supplying the disproportionation reactor post-rich -$ » &amp; field 3 - calcined material directly to the § hai chemical vapor deposition reactor. 192. The method of claim 181, the advancing step comprising: supplying the material after the disproportionation reactor with the celite-rich material directly to the chemical vapor deposition reactor. 193. The method of claim 181, further comprising: mixing the dioxane-rich material after the disproportionation reactor with the trichloromethane-rich material after the disproportionation reactor; and enriching the disproportionation reactor The mixture of the material of dioxane and the material of the trichloromethane-rich material after the disproportionation reactor is supplied to the CVD reactor. 194. The method of claim 181, further comprising: mixing the trioxane-rich material and the decane after the disproportionation reactor; and dissolving the trioxane-rich material and the methotane after the disproportionation reactor The mixture is supplied to the disproportionation reactor. 195. A method of making a crucible comprising: manufacturing and supplying methotane; and treating the rock garden according to the methods claimed herein. 152888.doc -31 -
TW99143825A 2009-12-15 2010-12-14 Methods and systems for producing silicon, e. g., polysilicon, including recycling byproducts TW201130733A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US28669809P 2009-12-15 2009-12-15
US34639510P 2010-05-19 2010-05-19
US36173910P 2010-07-06 2010-07-06
US38913910P 2010-10-01 2010-10-01
US38967410P 2010-10-04 2010-10-04

Publications (1)

Publication Number Publication Date
TW201130733A true TW201130733A (en) 2011-09-16

Family

ID=44306028

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99143825A TW201130733A (en) 2009-12-15 2010-12-14 Methods and systems for producing silicon, e. g., polysilicon, including recycling byproducts

Country Status (2)

Country Link
TW (1) TW201130733A (en)
WO (1) WO2011084427A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106477582A (en) * 2015-08-24 2017-03-08 赫姆洛克半导体公司 The dichlorosilane Compensation Strategies of the polycrystalline silicon growth for improving
CN109607545A (en) * 2019-01-02 2019-04-12 河南硅烷科技发展股份有限公司 A kind of high purity silane CVD method continuously prepares the industrial method of nano silica fume

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676967A (en) * 1978-08-23 1987-06-30 Union Carbide Corporation High purity silane and silicon production
US4491604A (en) * 1982-12-27 1985-01-01 Lesk Israel A Silicon deposition process
CA2432213C (en) * 2001-10-19 2009-04-07 Tokuyama Corporation Silicon production process
KR101538168B1 (en) * 2007-11-30 2015-07-20 미쓰비시 마테리알 가부시키가이샤 Method for separating and collecting conversion reaction gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106477582A (en) * 2015-08-24 2017-03-08 赫姆洛克半导体公司 The dichlorosilane Compensation Strategies of the polycrystalline silicon growth for improving
CN106477582B (en) * 2015-08-24 2021-08-20 赫姆洛克半导体运营有限责任公司 Dichlorosilane compensation control strategy for improved polysilicon growth
CN109607545A (en) * 2019-01-02 2019-04-12 河南硅烷科技发展股份有限公司 A kind of high purity silane CVD method continuously prepares the industrial method of nano silica fume

Also Published As

Publication number Publication date
WO2011084427A2 (en) 2011-07-14
WO2011084427A3 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
CN107021492B (en) The system and method for producing trichlorosilane
TWI602780B (en) Process for workup of chlorosilanes or chlorosilane mixtures contaminated with carbon compounds
CN100593513C (en) Method for producing silicon
TWI474976B (en) Production of polycrystalline silicon in substantially closed-loop processes that involve disproportionation operations
JP5876589B2 (en) Hydrosilane production system and method
CN102862987A (en) Process for producing polysilicon
JP6037047B2 (en) 卜 Lichlorosilane production method
JP2010501459A (en) US Patent No. 60 / 838,479, filed Aug. 18, 2006, filed Aug. 18, 2006, which is hereby incorporated by reference in its entirety. Claim priority.
WO2013163614A1 (en) Advanced off-gas recovery process and system
TW201130733A (en) Methods and systems for producing silicon, e. g., polysilicon, including recycling byproducts
CN107555438A (en) Polysilicon is prepared in the method and system of basic closed loop
US8404205B2 (en) Apparatus and method for producing polycrystalline silicon having a reduced amount of boron compounds by forming phosphorus-boron compounds
CN104080735B (en) The purifying of trichlorosilane
WO2014100705A1 (en) Conserved off gas recovery systems and processes
CN105980305B (en) Process for preparing trichlorosilane
JP5573852B2 (en) Polycrystalline silicon manufacturing apparatus and manufacturing method with reduced boron compound content by a bending system using an inert gas
JP6486049B2 (en) Method for producing pentachlorodisilane and pentachlorodisilane produced by the method
TW201210940A (en) Process for separating monosilane from chlorosilanes-rich mixture
CN111263732B (en) Method and apparatus for removing impurities from chlorosilanes
CN104159848B (en) For purifying the method and system of silane
JP2015113250A (en) Method for purifying tetrachlorosilane
JP2016064951A (en) Manufacturing method of octachlorotrisilane and octachlorotrisilane manufactured by the same
CN101563290B (en) Method and apparatus for improving the efficiency of purification and deposition of polycrystalline silicon
RU2554150C1 (en) Method and apparatus for carbothermal production of high-purity silicon