JPWO2016171194A1 - ポリカーボネート樹脂フィルム - Google Patents

ポリカーボネート樹脂フィルム Download PDF

Info

Publication number
JPWO2016171194A1
JPWO2016171194A1 JP2017514173A JP2017514173A JPWO2016171194A1 JP WO2016171194 A1 JPWO2016171194 A1 JP WO2016171194A1 JP 2017514173 A JP2017514173 A JP 2017514173A JP 2017514173 A JP2017514173 A JP 2017514173A JP WO2016171194 A1 JPWO2016171194 A1 JP WO2016171194A1
Authority
JP
Japan
Prior art keywords
polycarbonate resin
weight
film
less
dihydroxy compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017514173A
Other languages
English (en)
Other versions
JP6773030B2 (ja
Inventor
正志 横木
正志 横木
聡 小菅
聡 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JPWO2016171194A1 publication Critical patent/JPWO2016171194A1/ja
Application granted granted Critical
Publication of JP6773030B2 publication Critical patent/JP6773030B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/132Phenols containing keto groups, e.g. benzophenones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3437Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/353Five-membered rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本発明の課題は、特定のポリカーボネート樹脂と、特定の紫外線吸収剤を含有するポリカーボネート樹脂により、ロール汚れやブリードアウトの無い特定の紫外線を吸収するフィルムを提供することにある。本発明は、下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂100重量部と、ポリカーボネート樹脂100重量部に対して、融点が135℃以上300℃未満かつ5%重量減少温度が240℃より高い紫外線吸収剤を、0.45重量部を超え7重量部以下含有するポリカーボネート樹脂組成物からなるポリカーボネート樹脂フィルムであって、波長380nmの光線透過率が0.001%以上15%以下であり、かつ厚みが5μm〜120μmであるポリカーボネート樹脂フィルムに関する。【化1】

Description

本発明は、ポリカーボネート樹脂組成物からなるポリカーボネート樹脂フィルム、これを用いた偏光子保護フィルム、及びポリカーボネート樹脂組成物に関する。
従来、ポリカーボネート樹脂を得る方法としては、バイオマス資源から得られるジヒドロキシ化合物であるイソソルビド(以下、ISBと略記することがある)をモノマー成分とし、炭酸ジエステルとのエステル交換により、副生するモノヒドロキシ化合物を減圧下で留去しながら、ポリカーボネート樹脂を得る方法が提案されている(例えば、特許文献1〜4参照)。また、ISBから得られるポリカーボネート樹脂は、耐熱性を活かした成形材料としての利用の他にも、優れた光学特性を活かし、光学フィルムへの利用も検討されている(例えば、特許文献5参照)。
一般的な偏光子保護フィルムは偏光子を紫外線から守るため、紫外線吸収剤が添加されている。しかしながら、紫外線吸収剤の量が多く必要であり、ブリードアウト等の問題があった。それらを解消すべく、樹脂との相溶性が高い紫外線吸収剤や紫外線吸収機能を持つポリマーを添加させる方法が知られている(例えば、特許文献6参照)。
但し、一般的に偏光子保護フィルムに用いられるセルロースエステルフィルムは吸水性が高く、大型テレビ等に用いた場合に耐久性が不足するという問題がある。また、アクリル系樹脂を用いた偏光子保護フィルムも提案されているが(例えば、特許文献7参照)、脆さがあるため取扱い時に破断したりすることがあり、薄膜化が困難であった。
また、一般的な偏光板を用いたディスプレイの場合、偏光板越しの光は直線偏光のため、偏光サングラス越しにディスプレイを見ると角度によりブラックアウトすることがある。これを解消するために、偏光子保護フィルムの表層を位相差フィルムにする場合がある(例えば、特許文献8参照)。これらの位相差フィルムにおいても、偏光子を紫外線から守るために、紫外線吸収剤を含有する。
例えば、シクロオレフィンポリマー(以下、COPと略記することがある)を用いた場合、ブリードアウトやロール汚れを防止するために、2種3層にし、コア層のみに紫外線吸収剤を含有する技術がある(例えば、特許文献9参照)。
国際公開第2004/111106号 日本国特開2006−232897号公報 日本国特開2006−28441号公報 日本国特開2008−24919号公報 日本国特開2011−021171号公報 日本国特開2002−047357号公報 日本国特開2013−83956号公報 日本国特開2011−137954号公報 日本国特開2015−31753号公報
しかし、ISBから得られるポリカーボネート樹脂は、紫外線吸収がほとんどないため、偏光子保護フィルムに用いるには大量の紫外線吸収剤の含有が必要である。その一方で、ポリカーボネート樹脂が大量の紫外線吸収剤を含有すると、フィルムの耐熱性の低下、ブリードアウトした物質によるフィルムの濁り、ロール汚れ等に起因するフィルムの異物、ギアマークなどのフィルムの外観不良、フィルム厚みの均一性の低下等の問題がある。また、特定の化合物によりロール汚染等が発生する場合がある。
そこで本発明の目的は、これらの課題を解消し、特定のポリカーボネート樹脂を用い、特定の紫外線吸収剤を含有させることにより、フィルムの耐熱性の低下、ブリードアウトした物質によるフィルムの濁り、ロール汚れに起因するフィルムの異物、ギアマークなどのフィルムの外観不良等の問題が無く、均一なフィルム厚みを有しながら、しかも特定の紫外線を吸収するポリカーボネート樹脂フィルムを提供することにある。
本発明者らは、上記課題を解決するべく、鋭意検討を重ねた結果、下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂を用い、特定の紫外線吸収剤を添加することにより、フィルムの耐熱性の低下、ブリードアウトした物質によるフィルムの濁り、ロール汚れに起因するフィルムの異物、ギアマークなどのフィルムの外観不良等の問題の無い特定の紫外線を吸収する高品質のフィルムを提供することを見出し、本発明に到達した。即ち、本発明の要旨は、下記[1]〜[6]に存する。
[1]下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂100重量部と、ポリカーボネート樹脂100重量部に対して、融点が135℃以上300℃未満かつ5%重量減少温度が240℃より高い紫外線吸収剤を、0.45重量部を超え7重量部以下含有する、ポリカーボネート樹脂組成物からなるポリカーボネート樹脂フィルムであって、波長380nmの光線透過率が0.001%以上15%以下であり、かつ厚みが5μm〜120μmであるポリカーボネート樹脂フィルム。
Figure 2016171194
[2]前記ポリカーボネート樹脂中の下記式(3)で表される化合物の含有量が10重量ppm以上1200重量ppm以下である、[1]に記載のポリカーボネート樹脂フィルム。
Figure 2016171194
[3]前記紫外線吸収剤が、トリアジン系、ベンゾトリアゾール系、キノリノン系、ベンゾオキサゾール系またはインドール系である、[1]又は[2]に記載のポリカーボネート樹脂フィルム。
[4]548nmにおける面内位相差が100nm以上200nm以下である、[1]〜[3]のいずれか1つに記載のポリカーボネート樹脂フィルム。
[5][1]〜[4]のいずれか1つに記載のポリカーボネート樹脂フィルムを用いてなる、偏光子保護フィルム。
[6]下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂100重量部と、ポリカーボネート樹脂100重量部に対して、融点が135℃以上300℃未満かつ5%重量減少温度が240℃より高い紫外線吸収剤を、0.45重量部を超え7重量部以下含有し、前記ポリカーボネート樹脂中の下記式(3)で表される化合物の含有量が10重量ppm以上1200重量ppm以下であるポリカーボネート樹脂組成物。
Figure 2016171194
Figure 2016171194
本発明によれば、大量の紫外線吸収剤を含有しながらも、フィルムを製膜する際にフィルムの耐熱性の低下、ブリードアウトした物質によるフィルムの濁り、ロール汚れに起因するフィルムの異物、ギアマークなどのフィルムの外観不良等の問題が発生することがなく、偏光子保護フィルムとして高い性能を示す光学フィルムを提供することが出来る。さらに、ロール汚れを発生させることが無いため、成形においての外観不良品を大幅に削減できることから生産性や作業性、ならびに製品の品質を向上させることが可能になる。
以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。
本発明のポリカーボネート樹脂フィルムは、ポリカーボネート樹脂と、紫外線吸収剤とを含有するポリカーボネート樹脂組成物からなる。
[ポリカーボネート樹脂]
本発明におけるポリカーボネート樹脂組成物は、下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂を含む。
Figure 2016171194
(ポリカーボネート樹脂の末端基構造)
ポリカーボネート樹脂は、ジヒドロキシ化合物と炭酸ジエステルと触媒とを溶融下に重縮合させることにより製造できる。炭酸ジエステルとしては、後述するものを使用することができる。中でも、ジフェニルカーボネートを使用することが好ましい。
この場合、製造されるポリカーボネート樹脂の、下記構造式(2)で表される末端基(以下、「フェニル基末端」と記すことがある。)の存在数(A)の全末端数(B)に対する割合(A/B)が、75%以上98%未満の範囲であることが好ましい。
Figure 2016171194
また、ポリカーボネート樹脂のフェニル基末端の存在数(A)の全末端数(B)に対する割合(A/B)は、76%以上の範囲であることがより好ましく、77%以上の範囲であることが特に好ましい。また、96%以下の範囲であることがより好ましく、95%以下の範囲であることが特に好ましい。
フェニル基末端の存在数(A)の全末端数(B)に対する割合(A/B)が、75%より少ないと、射出成形の際に成形品にシルバーと呼ばれる外観不良、押出成形での気泡が発生しやすくなる。また、フェニル基末端の存在数(A)の全末端数(B)に対する割合(A/B)が98%より多いと、射出成形や押出成形での外観不良は減る傾向にある。また、(A/B)が98%より多いポリカーボネート樹脂を得ようとすると、重合条件を過酷にしたり、長時間の反応が必要となったり結果的に、ポリカーボネート樹脂の劣化に繋がり、色調が悪いものしか得られない可能性が非常に高い。
ポリカーボネート樹脂のフェニル基末端の存在数(A)の全末端数(B)に対する割合(A/B)を上述した範囲に調整する方法は特に限定されない。例えば、反応に用いる全ジヒドロキシ化合物に対する炭酸ジエステル量比を、所望の高分子量体が得られる範囲で調整したり、重合反応後段で脱気により残存モノマーを反応系外に除去したり、重合反応後段での反応機の撹拌効率を上げるなどして反応速度を上げたりすることにより、フェニル基末端の存在数(A)の全末端数(B)に対する割合(A/B)を上述した範囲に調整することができる。
ポリカーボネート樹脂中のフェニル基末端の割合は、NMR分光計にて、測定溶媒としてTMS(テトラメチルシラン)を添加した重クロロホルムを使用し、H−NMRスペクトルの測定により算出することができる。
尚、構造式(1)の結合構造を有するジヒドロキシ化合物と、脂環式ジヒドロキシ化合物と、必要に応じて用いられるその他のジヒドロキシ化合物との使用割合は、本発明で使用するポリカーボネート樹脂を構成する各ジヒドロキシ化合物に由来する構成単位の割合に応じ、適宜調整する。
(式(3)で表される化合物の含有量と含有量制御方法)
本発明におけるポリカーボネート樹脂は、下記式(3)で表される特殊なオリゴマー成分を特定量含有するものがより好ましい。
Figure 2016171194
上記化合物は、その量が少なすぎる場合は、ポリカーボネート樹脂の製造段階において、過剰な熱がかかったり、反応滞留時間が長くなったりする場合があり、ポリマーの色調悪化を引き起こす可能性がある。また、多すぎると成形時において装置の汚染の問題が生じたり、成形品の外観不良を発生させたりする問題がある。そのため、本発明におけるポリカーボネート樹脂中の式(3)で表される化合物の含有量は、好ましくは10重量ppm以上1200重量ppm以下である。
また、本発明のポリカーボネート樹脂中の式(3)で表される化合物の含有量は、より好ましくは15重量ppm以上、特に好ましくは20重量ppm以上である。また、より好ましくは650重量ppm以下、特に好ましくは400重量ppm以下である。ポリカーボネート樹脂中の式(3)で表される化合物の含有量が上記の範囲であれば、成形時の汚れや臭気がなく、成形外観が良好であるので、好ましい。
式(3)で表される化合物の含有量を調整するためには、ポリカーボネート樹脂製造中に、フェニル基末端の存在数(A)の全末端数(B)に対する割合(A/B)を98%以下にすることが好ましい。
さらに、最終重合槽での圧力を1kPa以下にしたり、220℃より高い温度での重合時間を2時間未満にしたりすることで、式(3)で表される化合物の発生を抑制できる。特に、最終重合槽を横型反応槽にすることにより、脱揮効率を飛躍的に向上させることが可能である。また、押出機で真空ベントより脱揮を行ったり、脱揮の際に注水を実施したりすることで、式(3)で表される化合物を特定量に制御することが可能となる。
本発明におけるポリカーボネート樹脂は、通常、後述するとおり、ジヒドロキシ化合物と炭酸ジエステルと触媒とを溶融下に重縮合させて得られる。この重縮合反応において、炭酸ジエステルから脱離成分としてモノヒドロキシ化合物が生成する。
例えば、炭酸ジエステルとしてジフェニルカーボネートを用いる場合は、生成するモノヒドロキシ化合物はフェノールである。このとき、得られたポリカーボネート樹脂中のモノヒドロキシ化合物の含有量が多いと、成形時の装置の汚染や臭気の問題を生じることがある。
本発明におけるポリカーボネート樹脂中のモノヒドロキシ化合物の含有量の上限値としては、特に制限されないが、通常1200重量ppm以下であり、650重量ppm以下であることが好ましく、特には500重量ppm以下であることが好ましい。ポリカーボネート樹脂の製造時に、後述するような触媒失活剤となる特定のリン系化合物を適量用い、さらに十分に脱揮処理を行うことで、ポリカーボネート樹脂中のモノヒドロキシ化合物の含有量を低減し、かつ加熱下での発生を抑制することができる。ポリカーボネート樹脂中のモノヒドロキシ化合物量の測定方法の詳細は実施例の項で記載する。
また、下限値としては、特に制限されないが、通常0.1重量ppm以上であり、さらに1重量ppm以上であることが好ましく、特には10重量ppm以上であることが好ましい。これらは、少なすぎると精製段階において、過剰な熱をかけたり、反応滞留時間を長くしたりする必要があり、ポリマーの色調悪化を引き起こす可能性があり、上述の範囲が好ましい。
[ポリカーボネート樹脂の製造方法]
以下、本発明におけるポリカーボネート樹脂を製造する方法について詳述する。
<原料>
(ジヒドロキシ化合物)
本発明におけるポリカーボネート樹脂は、下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂である。
Figure 2016171194
本発明において、ポリカーボネート樹脂は、上記式(1)で表されるジヒドロキシ化合物に由来する構造単位に加え、必要に応じて、下記式(4)で表されるジヒドロキシ化合物、下記式(5)で表されるジヒドロキシ化合物、下記式(6)で表されるジヒドロキシ化合物、下記式(7)で表されるジヒドロキシ化合物および下記式(8)で表されるジヒドロキシ化合物よりなる群から選ばれる一種以上のジヒドロキシ化合物に由来する構造単位を含むことが、好ましい。
Figure 2016171194
HO−R−OH (5)
(上記式(5)中、Rは炭素数4〜20の置換若しくは無置換のシクロアルキレン基を示す。)
HO−CH−R−CH−OH (6)
(上記式(6)中、Rは炭素数4〜20の置換若しくは無置換のシクロアルキレン基を示す。)
H−(O−R−OH (7)
(上記式(7)中、Rは炭素数2〜10の置換若しくは無置換のアルキレン基を示し、pは2〜100の整数である。)
HO−R−OH (8)
(上記式(8)中、Rは炭素数2〜20の置換若しくは無置換のアルキレン基を示す。)
なお、以下において、各種の基の炭素数は、当該基が置換基を有する場合、その置換基の炭素数も含めた合計の炭素数を意味する。
(式(1)で表されるジヒドロキシ化合物)
本発明におけるポリカーボネート樹脂は、上記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含むものである。
上記式(1)で表されるジヒドロキシ化合物としては、例えば、立体異性体の関係にあるイソソルビド、イソマンニド、イソイデット等の無水糖アルコールが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのジヒドロキシ化合物のうち、資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られるイソソルビドが、入手及び製造のし易さ、光学特性、成形性の面から最も好ましい。
ポリカーボネート樹脂が、上記式(1)で表されるジヒドロキシ化合物に由来する構造単位以外の構造単位を同時に含む場合、その比率は特に限定されず、ポリカーボネート樹脂の要求性能に応じて、適宜設定すればよい。
(式(4)〜(8)で表されるジヒドロキシ化合物)
本発明において、ポリカーボネート樹脂は、必要に応じて、上記式(4)で表されるジヒドロキシ化合物、上記式(5)で表されるジヒドロキシ化合物、上記式(6)で表されるジヒドロキシ化合物、上記式(7)で表されるジヒドロキシ化合物および上記式(8)で表されるジヒドロキシ化合物よりなる群から選ばれる一種以上のジヒドロキシ化合物に由来する構造単位を含むことができる。
〔式(4)で表されるジヒドロキシ化合物〕
上記式(4)で表されるジヒドロキシ化合物は、分子内に環状エーテル構造を有するものであって、スピログリコールと呼ばれる化合物である。
〔式(5)で表されるジヒドロキシ化合物〕
上記式(5)で表されるジヒドロキシ化合物は、Rに炭素数4〜20、好ましくは炭素数4〜18の置換若しくは無置換のシクロアルキレン基を有する脂環式ジヒドロキシ化合物である。ここで、Rが置換基を有する場合、当該置換基としては、炭素数1〜12の置換若しくは無置換のアルキル基が挙げられる。該アルキル基が置換基を有する場合、当該置換基としては、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、フェニル基、ナフチル基等のアリール基等が挙げられる。
このジヒドロキシ化合物は、環構造を有することにより、得られるポリカーボネート樹脂を成形したときの成形品の靭性を高めることが可能となり、なかでもフィルムに成形したときの靭性を高めることができる。
のシクロアルキレン基としては、環構造を有する炭化水素基であれば特に制限は無く、橋頭炭素原子を有するような橋かけ構造であっても構わない。ジヒドロキシ化合物の製造が容易で不純物量を少なくすることができるという観点から、上記式(5)で表されるジヒドロキシ化合物は、5員環構造又は6員環構造を含む化合物、即ち、Rが置換若しくは無置換のシクロペンチレン基又は置換若しくは無置換のシクロへキシレン基であるジヒドロキシ化合物が好ましい。このようなジヒドロキシ化合物であれば、5員環構造又は6員環構造を含むことにより、得られるポリカーボネート樹脂の耐熱性を高くすることができる。該6員環構造は共有結合によって椅子形もしくは舟形に固定されていてもよい。
なかでも、上記式(5)で表されるジヒドロキシ化合物は、Rが下記式(9)で示される種々の異性体であることが好ましい。ここで、式(9)中、R11は水素原子、又は、炭素数1〜12の置換若しくは無置換のアルキル基を示す。R11が置換基を有する炭素数1〜12のアルキル基である場合、当該置換基としては、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、フェニル基、ナフチル基等のアリール基等が挙げられる。
Figure 2016171194
上記式(5)で表されるジヒドロキシ化合物として、より具体的には、テトラメチルシクロブタンジオール、2,2,4,4−テトラメチル−1,3−シクロブタンジオール、1,2−シクロペンタンジオール、1,3−シクロペンタンジオール、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、2−メチル−1,4−シクロヘキサンジオール、トリシクロデカンジオール類、ペンタシクロジオール類等が挙げられるが、何らこれらに限定されるものではない。
これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
〔式(6)で表されるジヒドロキシ化合物〕
上記式(6)で表されるジヒドロキシ化合物は、Rに炭素数4〜20、好ましくは炭素数3〜18の置換若しくは無置換のシクロアルキレン基を有する脂環式ジヒドロキシ化合物である。ここで、Rが置換基を有する場合、当該置換基としては、炭素数1〜12の置換若しくは無置換のアルキル基が挙げられる。該アルキル基が置換基を有する場合、当該置換基としては、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、フェニル基、ナフチル基等のアリール基等が挙げられる。
このジヒドロキシ化合物は、環構造を有することにより、得られるポリカーボネート樹脂を成形したときの成形品の靭性を高めることが可能となり、なかでもフィルムに成形したときの靭性を高めることができる。
のシクロアルキレン基としては、環構造を有する炭化水素基であれば特に制限は無く、橋頭炭素原子を有するような橋かけ構造であっても構わない。ジヒドロキシ化合物の製造が容易で不純物量を少なくすることができるという観点から、上記式(6)で表されるジヒドロキシ化合物は、5員環構造又は6員環構造を含む化合物、即ち、Rが置換若しくは無置換のシクロペンチレン基又は置換若しくは無置換のシクロへキシレン基であるジヒドロキシ化合物が好ましい。
このようなジヒドロキシ化合物であれば、5員環構造又は6員環構造を含むことにより、得られるポリカーボネート樹脂の耐熱性を高くすることができる。該6員環構造は共有結合によって椅子形もしくは舟形に固定されていてもよい。上記式(6)で表されるジヒドロキシ化合物は、なかでも、Rが上記式(9)で示される種々の異性体であることが好ましい。
上記式(6)で表されるジヒドロキシ化合物として、より具体的には、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、3,8−ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン、3,9−ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン、4,8−ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン、4,9−ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン等が挙げられるが、何らこれらに限定されるものではない。
これらは1種を単独で用いてもよく、2種以上を併用してもよい。即ち、これらのジヒドロキシ化合物は、製造上の理由から異性体の混合物として得られる場合があるが、その際にはそのまま異性体混合物として使用することもできる。
例えば、3,8−ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン、3,9−ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン、4,8−ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン、及び4,9−ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン等の混合物を使用することができる。
上記式(6)で表されるジヒドロキシ化合物の具体例のうち、特に、シクロヘキサンジメタノール類が好ましく、入手のしやすさ、取り扱いのしやすさという観点から、1,4−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,2−シクロヘキサンジメタノールが好ましい。
〔式(7)で表されるジヒドロキシ化合物〕
上記式(7)で表されるジヒドロキシ化合物は、Rに炭素数2〜10、好ましくは炭素数2〜5の置換若しくは無置換のアルキレン基を有する化合物である。pは2〜100の整数、好ましくは6〜50の整数、より好ましくは12〜40の整数である。
上記式(7)で表されるジヒドロキシ化合物としては、具体的にはジエチレングリコール、トリエチレングリコール、ポリエチレングリコール(分子量150〜4000)などが挙げられるが、何らこれらに限定されるものではない。上記式(7)で表されるジヒドロキシ化合物としては、分子量300〜2000のポリエチレングリコールが好ましく、中でも分子数600〜1500のポリエチレングリコールが好ましい。
これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
〔式(8)で表されるジヒドロキシ化合物〕
上記式(8)で表されるジヒドロキシ化合物は、Rに炭素数2〜20、好ましくは炭素数2〜10の置換若しくは無置換のアルキレン基である。Rのアルキレン基が置換基を有する場合、当該置換基としては炭素数1〜5のアルキル基が挙げられる。
上記式(8)で表されるジヒドロキシ化合物のうち、Rが炭素数2〜20の置換若しくは無置換のアルキレン基であるジヒドロキシ化合物としては、具体的にはエチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオールなどが挙げられるが何らこれらに限定されるものではない。
これらのジヒドロキシ化合物のなかでも、入手のし易さ、取扱いの容易さ、重合時の反応性の高さ、得られるポリカーボネート樹脂の色相の観点からは、1,3−プロパンジオール、1,6−ヘキサンジオールが好ましい。また耐熱性の観点からは、アセタール環を有するスピログリコールが好ましい。これらは得られるポリカーボネート樹脂の要求性能に応じて、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
なお、本発明において、ポリカーボネート樹脂は、上記式(4)で表されるジヒドロキシ化合物に由来する構造単位、上記式(5)で表されるジヒドロキシ化合物に由来する構造単位、上記式(6)で表されるジヒドロキシ化合物に由来する構造単位、上記式(7)で表されるジヒドロキシ化合物に由来する構造単位及び上記式(8)で表されるジヒドロキシ化合物に由来する構造単位の中でも、上記式(6)で表されるジヒドロキシ化合物に由来する構造単位及び/又は上記式(7)で表されるジヒドロキシ化合物に由来する構造単位を含んでいることが好ましい。また、反応性や耐熱性、さらに熱滞留における分解が少ないことから、上記式(6)で表されるジヒドロキシ化合物に由来する構造単位を含んでいることがより好ましい。
(その他のジヒドロキシ化合物)
本発明において、ポリカーボネート樹脂は、上記式(4)〜(8)で表されるジヒドロキシ化合物に由来する構造単位を必要に応じて、その他のジヒドロキシ化合物に由来する構造単位に置き変えてもよい。
その他のジヒドロキシ化合物としては、例えば、ビスフェノール類やビスフェノール類のエチレンオキサイド(EO)付加類、フルオレン化合物等が挙げられる。
<ビスフェノール類>
ビスフェノール類としては、例えば、2,2−ビス(4−ヒドロキシフェニル)プロパン(=ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジエチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−(3,5−ジフェニル)フェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、2,4’−ジヒドロキシ−ジフェニルメタン、ビス(4−ヒドロキシフェニル)メタン、ビス(4−ヒドロキシ−5−ニトロフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)スルホン、2,4’−ジヒドロキシジフェニルスルホン、ビス(4−ヒドロキシフェニル)スルフィド、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジクロロジフェニルエーテル、4,4’−ジヒドロキシ−2,5−ジエトキシジフェニルエーテル等が挙げられる。
<ビスフェノール類のエチレンオキサイド(EO)付加類>
ビスフェノール類のエチレンオキサイド(EO)付加類としては、例えば、前述のビスフェノール類の化合物にエチレンオキサイド(EO)付加したものが挙げられる。
<フルオレン化合物>
フルオレン化合物としては、例えば、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−エチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−n−プロピルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−イソプロピルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−n−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−sec−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−tert−プロピルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−シクロヘキシルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−メチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−イソプロピルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−イソブチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−tert−ブチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−シクロヘキシルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−フェニルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3,5−ジメチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−tert−ブチル−6−メチルフェニル)フルオレン、9,9−ビス(4−(3−ヒドロキシ−2,2−ジメチルプロポキシ)フェニル)フルオレン等が挙げられる。
これらは、1種を単独で用いてもよく、2種以上を併用してもよい。ただし、上記式(1)で表されるもの以外の、構造内に芳香族環を有するジヒドロキシ化合物は光学特性に悪影響を及ぼす虞があるため、このようなジヒドロキシ化合物に由来する構造単位は、ポリカーボネート樹脂中のジヒドロキシ化合物に由来する構造単位の合計に対して50モル%以下で用いることが好ましく、より好ましくは20モル%以下であって、更には5モル%以下で用いることが好ましい。特にポリカーボネート樹脂は、上記式(1)で表されるもの以外の、構造内に芳香族環を有するジヒドロキシ化合物に由来する構造単位を含まないことが好ましい。
[ジヒドロキシ化合物に由来する構造単位の含有割合]
本発明において、ポリカーボネート樹脂に含まれる上記式(1)で表されるジヒドロキシ化合物に由来する構造単位の含有割合は、ジヒドロキシ化合物に由来する構造単位の合計に対して、好ましくは20重量%以上、より好ましくは25重量%以上、更に好ましくは30重量%以上である。また、通常95重量%以下、好ましくは90重量%以下である。
該構造単位の含有割合が過度に少ないと、耐熱性が小さく、表面硬度が劣る可能性がある。また、該構造単位の含有割合が過度に多いと、ポリカーボネート樹脂のガラス転移温度が過度に高くなって成形が困難になったり、吸水率が悪化する場合がある。
また、ポリカーボネート樹脂が、上記式(4)で表されるジヒドロキシ化合物、上記式(5)で表されるジヒドロキシ化合物、上記式(6)で表されるジヒドロキシ化合物、上記式(7)で表されるジヒドロキシ化合物及び上記式(8)で表されるジヒドロキシ化合物からなる群より選ばれる一種以上のジヒドロキシ化合物に由来する構造単位を含有する場合、その含有割合は、ポリカーボネート樹脂に含まれるジヒドロキシ化合物に由来する構造単位の合計に対して、好ましくは0.1重量%以上20重量%未満、より好ましくは0.1重量%以上18重量%以下、さらに好ましくは0.2重量%以上15重量%以下が適当である。
上記式(4)から(8)で表されるジヒドロキシ化合物に由来する構造単位を、ポリカーボネート樹脂中に上記下限値以上含むことにより、該ポリカーボネート樹脂を溶融し成形する際に、熱による異物や気泡の発生を防止したり、ポリカーボネート樹脂の着色を防止したりすることができる。ただし、該構造単位が過度に多いと、成形品にした際に耐光性が低下する傾向がある。
本発明におけるポリカーボネート樹脂の製造に使用される全てのジヒドロキシ化合物は、還元剤、抗酸化剤、脱酸素剤、光安定剤、制酸剤、pH安定剤または熱安定剤等の安定剤を含んでいてもよい。特に酸性下で本発明における特定ジヒドロキシ化合物は変質しやすいことから、塩基性安定剤を含むことが好ましい。
塩基性安定剤としては、例えば、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005)における1族または2族の金属の水酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硼酸塩および脂肪酸塩、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等の塩基性アンモニウム化合物、ジエチルアミン、ジブチルアミン、トリエチルアミン、モルホリン、N−メチルモルホリン、ピロリジン、ピペリジン、3−アミノ−1−プロパノール、エチレンジアミン、N−メチルジエタノールアミン、ジエチルエタノールアミン、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾールおよびアミノキノリン等のアミン系化合物、並びにジ−(tert−ブチル)アミンおよび2,2,6,6−テトラメチルピペリジン等のヒンダードアミン系化合物が挙げられる。これらの安定剤の中でも安定化の効果からはテトラメチルアンモニウムヒドロキシド、イミダゾールまたはヒンダードアミン系化合物が好ましい。
これら塩基性安定剤の、本発明で用いる全てのジヒドロキシ化合物中における含有量に特に制限はないが、本発明で用いる前記の特定ジヒドロキシ化合物は酸性状態では不安定であるので、上記の安定剤を含む特定ジヒドロキシ化合物の水溶液のpHが7付近となるように安定剤を添加することが好ましい。
塩基性安定剤の量が少なすぎると特定ジヒドロキシ化合物の変質を防止する効果が得られない可能性があり、多すぎると特定ジヒドロキシ化合物の変性を招く場合がある。このため、本発明で用いるそれぞれのジヒドロキシ化合物に対して、塩基性安定剤は0.0001重量%〜1重量%であることが好ましく、より好ましくは0.001重量%〜0.1重量%である。
これら塩基性安定剤を、本発明で用いるジヒドロキシ化合物に含めたままポリカーボネート樹脂の製造原料として用いると、塩基性安定剤自体が重合触媒となり、重合速度または品質の制御が困難になるだけでなく、樹脂色相の悪化を招いてしまう。
このため、特定のジヒドロキシ化合物または前記その他のジヒドロキシ化合物のうち塩基性安定剤を含有するものについては、ポリカーボネート樹脂の製造原料として使用する前に塩基性安定剤をイオン交換樹脂または蒸留等で除去することが好ましい。
また、本発明で用いられる特定のジヒドロキシ化合物は、酸素によって徐々に酸化されやすいので、保管または製造時の取り扱いの際には、酸素による分解を防ぐため、水分が混入しないようにし、また、脱酸素剤を用いたり、窒素雰囲気下にしたりすることが好ましい。
(炭酸ジエステル)
本発明におけるポリカーボネート樹脂は、上述した特定のジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとを原料として、エステル交換反応により重縮合させて得ることができる。用いられる炭酸ジエステルとしては、通常、下記式(10)で表されるものが挙げられる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
Figure 2016171194
上記式(10)において、AおよびAは、それぞれ置換もしくは無置換の炭素数1〜18の脂肪族炭化水素基、または置換もしくは無置換の芳香族炭化水素基であり、AとAとは同一であっても異なっていてもよい。AおよびAの好ましいものは、置換もしくは無置換の芳香族炭化水素基であり、より好ましいのは無置換の芳香族炭化水素基である。
上記式(10)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート(DPC)およびジトリルカーボネート等の置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート並びにジ−t−ブチルカーボネート等が挙げられる。中でも好ましくはジフェニルカーボネートまたは置換ジフェニルカーボネートであり、特に好ましくはジフェニルカーボネートである。
なお、炭酸ジエステルは、塩化物イオンなどの不純物を含む場合があり、不純物が重合反応を阻害したり、得られるポリカーボネート樹脂の色相を悪化させたりする場合があるため、必要に応じて、蒸留などにより精製したものを使用することが好ましい。
<エステル交換反応触媒>
本発明におけるポリカーボネート樹脂は、上述したジヒドロキシ化合物と炭酸ジエステルをエステル交換反応させて製造される。より詳細には、エステル交換させ、副生するモノヒドロキシ化合物等を系外に除去することによって得られる。
前記エステル交換反応の際には、エステル交換反応触媒存在下で重縮合を行うが、本発明におけるポリカーボネート樹脂の製造時に使用し得るエステル交換反応触媒(以下、単に触媒、重合触媒と言うことがある)は、反応速度または重縮合して得られるポリカーボネート樹脂の品質に非常に大きな影響を与え得る。
用いられる触媒としては、製造されたポリカーボネート樹脂の透明性、色相、耐熱性、耐候性、及び機械的強度を満足させ得るものであれば限定されない。例えば、長周期型周期表における1族または2族(以下、単に「1族」、「2族」と表記する。)の金属化合物、並びに塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物およびアミン系化合物等の塩基性化合物が挙げられる。好ましくは1族金属化合物及び/又は2族金属化合物が使用される。
前記の1族金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩および2セシウム塩等が挙げられる。中でも重合活性と得られるポリカーボネート樹脂の色相の観点から、リチウム化合物が好ましい。
前記の2族金属化合物としては、例えば、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウムおよびステアリン酸ストロンチウム等が挙げられる。
中でもマグネシウム化合物、カルシウム化合物またはバリウム化合物が好ましく、重合活性と得られるポリカーボネート樹脂の色相の観点から、マグネシウム化合物及び/又はカルシウム化合物が更に好ましく、最も好ましくはカルシウム化合物である。
なお、前記の1族金属化合物及び/又は2族金属化合物と共に補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、1族金属化合物及び/又は2族金属化合物のみを使用することが特に好ましい。
前記の塩基性ホウ素化合物としては、例えば、テトラメチルホウ素、テトラエチルホウ素、テトラプロピルホウ素、テトラブチルホウ素、トリメチルエチルホウ素、トリメチルベンジルホウ素、トリメチルフェニルホウ素、トリエチルメチルホウ素、トリエチルベンジルホウ素、トリエチルフェニルホウ素、トリブチルベンジルホウ素、トリブチルフェニルホウ素、テトラフェニルホウ素、ベンジルトリフェニルホウ素、メチルトリフェニルホウ素、ブチルトリフェニルホウ素等のナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、バリウム塩、マグネシウム塩、あるいはストロンチウム塩等が挙げられる。
前記の塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ−n−プロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィンおよび四級ホスホニウム塩等が挙げられる。
前記の塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
前記のアミン系化合物としては、例えば、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリンおよびグアニジン等が挙げられる。
上記重合触媒の使用量は、重合に使用した全ジヒドロキシ化合物1mol当たり0.1μmol〜300μmolが好ましく、より好ましくは0.5μmol〜100μmolであり、特に1μmol〜50μmolが好ましい。
中でも長周期型周期表における2族からなる群及びリチウムより選ばれる少なくとも1種の金属を含む化合物を用いる場合、特にマグネシウム化合物及び/またはカルシウム化合物を用いる場合は、金属量として、前記全ジヒドロキシ化合物1mol当たり、0.1μmol以上が好ましく、より好ましくは0.3μmol以上、特に好ましくは0.5μmol以上とする。また上限としては、20μmol以下が好ましく、より好ましくは10μmol以下であり、さらに好ましくは5μmol以下であり、特に好ましくは3μmol以下である。
触媒量が少なすぎると、重合速度が遅くなるため、所望の分子量のポリカーボネート樹脂を得ようとするにはその分だけ重合温度を高くせざるを得なくなる。そのために、得られたポリカーボネート樹脂の色相が悪化する可能性が高くなり、また、未反応の原料が重合途中で揮発してジヒドロキシ化合物と炭酸ジエステルのモル比率が崩れ、所望の分子量に到達しない可能性がある。一方、重合触媒の使用量が多すぎると、好ましくない副反応を併発し、得られるポリカーボネート樹脂の色相の悪化または成形加工時の樹脂の着色を招く可能性がある。
ただし、1族金属の中でもナトリウム、カリウムまたはセシウムは、ポリカーボネート樹脂中に多く含まれると色相に悪影響を及ぼす可能性がある。そして、これらの金属は使用する触媒からのみではなく、原料または反応装置から混入する場合がある。出所にかかわらず、ポリカーボネート樹脂中のこれらの金属の化合物の合計量は、金属量として、1重量ppm以下であることが好ましく、さらには0.5重量ppm以下であることが好ましい。
<ポリカーボネート樹脂の製造方法>
本発明におけるポリカーボネート樹脂は、特定ジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとをエステル交換反応により重縮合させることによって得られる。
原料であるジヒドロキシ化合物と炭酸ジエステルは、エステル交換反応前に均一に混合することが好ましい。混合の温度は通常80℃以上、好ましくは90℃以上である。また、その上限は、通常250℃以下、好ましくは200℃以下、更に好ましくは150℃以下である。中でも100℃以上120℃以下が好適である。
混合の温度が低すぎると溶解速度が遅かったり、溶解度が不足したりする可能性があり、しばしば固化等の不具合を招き、混合の温度が高すぎるとジヒドロキシ化合物の熱劣化を招く場合があり、結果的に得られるポリカーボネート樹脂の色相や熱安定性に悪影響を及ぼす可能性がある。
本発明におけるポリカーボネート樹脂の原料である特定のジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルと混合する操作は、好ましくは酸素濃度10vol%以下であり、より好ましくは0.0001vol%〜10vol%、さらに好ましくは0.0001vol%〜5vol%、特に好ましくは0.0001vol%〜1vol%の雰囲気下で行うことである。上記範囲であることによって、色相の悪化を防止することが可能となる。
本発明におけるポリカーボネート樹脂を得るためには、反応に用いる特定ジヒドロキシ化合物を含む全ジヒドロキシ化合物に対して、炭酸ジエステルを0.94〜1.04のモル比率で用いることが好ましく、より好ましくは0.98〜1.02、さらに好ましくは1.00〜1.01のモル比率である。このモル比率が小さくなると、製造されたポリカーボネート樹脂の末端フェニル基が減少して、成形の際の外観不良が発生しやすくなる。
また、このモル比率が大きくなると、エステル交換反応の速度が低下したり、所望とする分子量のポリカーボネート樹脂の製造が困難となったりする場合がある。エステル交換反応速度の低下は、重合反応時の熱履歴を増大させ、結果的に得られたポリカーボネート樹脂の色相や耐候性を悪化させる可能性がある。
さらには、特定ジヒドロキシ化合物を含む全ジヒドロキシ化合物に対して、炭酸ジエステルのモル比率が増大すると、得られるポリカーボネート樹脂中の残存炭酸ジエステル量や上記式(3)で表される化合物が増加し、成形時の汚れや臭気、外観不良の問題を招く場合がある。
本発明において、ジヒドロキシ化合物と炭酸ジエステルとを重縮合させる方法は、上述の触媒存在下、通常、複数の反応器を用いて多段階で実施される。反応の形式は、バッチ式、連続式、あるいはバッチ式と連続式の組み合わせのいずれの方法でもよいが、より少ない熱履歴でポリカーボネート樹脂が得られ、生産性にも優れている連続式が好ましい。
重合初期においては、相対的に低温、低真空でプレポリマーを得て、重合後期においては相対的に高温、高真空で所定の値まで分子量を上昇させることが好ましい。また、各分子量段階でのジャケット温度と内温、反応系内の圧力を適切に選択することが重合速度の制御や、得られるポリカーボネート樹脂の品質の観点から重要である。
例えば、重合反応が所定の値に到達する前に温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが留出し、ジヒドロキシ化合物と炭酸ジエステルのモル比率を狂わせ、重合速度の低下を招いたり、所定の分子量や末端基を持つポリマーが得られなかったりして、結果的に本発明の目的を達成することができない可能性がある。
更には、留出するモノマーの量を抑制するために、重合反応器に還流冷却器を用いることが有効であり、特に未反応モノマー成分が多い重合初期の反応器でその効果は大きい。還流冷却器に導入される冷媒の温度は使用するモノマーに応じて適宜選択することができるが、通常、還流冷却器に導入される冷媒の温度は該還流冷却器の入口において45〜180℃であり、好ましくは80〜150℃、特に好ましくは100〜130℃である。
冷媒の温度が高すぎると、還流量が減り、その効果が低下する。逆に冷媒の温度が低すぎると、本来留去すべきモノヒドロキシ化合物の留去効率が低下する傾向にある。冷媒としては、温水、蒸気、熱媒オイル等が用いられ、蒸気、熱媒オイルが好ましい。
重合速度を適切に維持し、モノマーの留出を抑制しながら、最終的なポリカーボネート樹脂の色相を損なわないようにするためには、前述の触媒の種類と量の選定が重要である。本発明におけるポリカーボネート樹脂は、触媒を用いて、複数の反応器を用いて多段階で重合させて製造することが好ましい。
重合を複数の反応器で実施する理由は、重合反応初期においては、反応液中に含まれるモノマーが多いために、必要な重合速度を維持しつつ、モノマーの揮散を抑制することが重要であり、重合反応後期においては、平衡を重合側にシフトさせるために、副生するモノヒドロキシ化合物を十分留去させることが重要になるためである。このように、異なった重合反応条件を設定するには、直列に配置された複数の重合反応器を用いることが、生産効率の観点から好ましい。
本発明におけるポリカーボネート樹脂の製造に使用される反応器は、上述の通り、少なくとも2つ以上であればよい。生産効率などの観点からは、好ましくは3つ以上、より好ましくは3〜5つ、特に好ましくは4つである。本発明において、反応器が2つ以上であれば、その反応器中で、更に条件の異なる反応段階を複数持たせる、連続的に温度・圧力を変えていく等してもよい。
本発明において、重合触媒は原料調製槽、原料貯槽に添加することもできるし、重合槽に直接添加することもできる。供給の安定性、重合の制御の観点からは、重合槽に供給される前の原料ラインの途中に触媒供給ラインを設置し、好ましくは水溶液で供給する。
重合反応の温度は、低すぎると生産性の低下や製品への熱履歴の増大を招き、高すぎるとモノマーの揮散を招くだけでなく、ポリカーボネート樹脂の分解や着色を助長する可能性がある。具体的には、第1段目の反応は、重合反応器の内温の温度としては、130〜210℃、好ましくは150〜205℃、更に好ましくは170〜200℃である。
また、反応系の圧力(絶対圧力)としては、1〜110kPa、好ましくは5〜70kPa、さらに好ましくは7〜30kPa(絶対圧力)の圧力下、反応時間を0.1〜10時間、好ましくは0.5〜3時間、発生するモノヒドロキシ化合物を反応系外へ留去しながら実施される。
第2段目以降は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除く。とくに上記式(3)で表される化合物の量を制御するためには、第2段目以降は15kPa以下にし、最終的には反応系の圧力(絶対圧力)を600Pa以下にして、内温の最高温度190〜240℃、好ましくは195〜235℃で、通常0.1〜5時間、好ましくは0.1〜4時間、特に好ましくは0.5〜3時間行う。
所定の分子量のポリカーボネート樹脂を得るために、重合温度を高く、重合時間を長くし過ぎると色調が悪化する傾向にある。特にポリカーボネート樹脂の着色や熱劣化を抑制し、色相の良好で上記式(3)で表される化合物の含有量が少ないポリカーボネート樹脂を得るには、全反応段階における内温の最高温度が240℃未満、特に210〜235℃であることが好ましい。
また、全反応段階における内温が210℃以上240℃未満である時の反応時間が3時間未満であることが、ポリカーボネート樹脂の着色や熱劣化を抑制でき色相の良好なポリカーボネート樹脂を得、更に上記式(3)で表される化合物の発生量を制御することができるため好ましく、2.5時間以内であることが特に好ましい。
また、重合反応後半の重合速度の低下を抑止し、熱履歴による劣化を最小限に抑えるためには、重合の最終段階でプラグフロー性と界面更新性に優れ、上記式(3)で表される化合物の制御に優れた横型反応器を使用することが好ましい。
副生したモノヒドロキシ化合物は、資源有効活用の観点から、必要に応じ精製を行った後、炭酸ジフェニルやビスフェノールA等の原料として再利用することが好ましい。
本発明におけるポリカーボネート樹脂は、上述の通り重縮合後、通常、冷却固化させ、回転式カッター等でペレット化される。ペレット化の方法は限定されるものではないが、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させてペレット化させる方法、最終重合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法、又は、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させて一旦ペレット化させた後に、再度一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法等が挙げられる。
押出機を使用した場合、押出機において、残存モノマーの減圧脱揮や、通常知られている熱安定剤、中和剤、紫外線吸収剤、光安定剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤、難燃剤等を添加、混練を行うこともできる。
押出機中の溶融混練温度は、ポリカーボネート樹脂のガラス転移温度や分子量に依存するが、通常200〜300℃、好ましくは210〜280℃、更に好ましくは220〜270℃である。溶融混練温度が200℃より低いと、ポリカーボネート樹脂の溶融粘度が高く、押出機への負荷が大きくなり、生産性が低下する。溶融混練温度が300℃より高いと、ポリカーボネート樹脂の熱劣化が激しくなり、分子量の低下による機械的強度の低下や着色、フィルム成形時のガスの発生による気泡の発生を招く。
このようにして得られた本発明におけるポリカーボネート樹脂の分子量は、還元粘度で表すことができる。還元粘度は、通常0.30dL/g以上であり、0.35dL/g以上が好ましい。また、還元粘度の上限は、通常1.20dL/g以下であり、1.00dL/g以下が好ましく、0.80dL/g以下が更に好ましい。
ポリカーボネート樹脂の還元粘度が低すぎると成形品の機械的強度が小さい可能性がある。また、還元粘度が大きすぎると、成形する際の流動性が低下し、生産性や成形性を低下させる傾向がある。なお、ポリカーボネート樹脂の還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート樹脂濃度を0.6g/dLに精密に調整し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度の測定方法の詳細は実施例の項で記載する。
[ポリカーボネート樹脂の添加剤]
<リン系化合物>
本発明におけるポリカーボネート樹脂には、重合触媒を失活させ、さらに高温下でのポリカーボネート樹脂の着色を抑制するために添加された、リン系化合物を含有することが好ましい。
このリン系化合物としては、リン酸、亜リン酸、次亜リン酸、ポリリン酸、ホスホン酸、ホスホン酸エステル、酸性リン酸エステル、及び脂肪族環状亜リン酸エステルからなる群より選ばれる少なくとも1種を用いることが好ましい。上記の中でも触媒失活と着色抑制の効果がさらに優れているのは、亜リン酸、ホスホン酸、ホスホン酸エステルであり、特にホスホン酸エステルが好ましい。
ホスホン酸としては、ホスホン酸(亜リン酸)、メチルホスホン酸、エチルホスホン酸、ビニルホスホン酸、デシルホスホン酸、フェニルホスホン酸、ベンジルホスホン酸、アミノメチルホスホン酸、メチレンジホスホン酸、1−ヒドロキシエタン−1,1−ジホスホン酸、4−メトキシフェニルホスホン酸、ニトリロトリス(メチレンホスホン酸)、プロピルホスホン酸無水物などが挙げられる。
ホスホン酸エステルとしては、ホスホン酸ジメチル、ホスホン酸ジエチル、ホスホン酸ビス(2−エチルヘキシル)、ホスホン酸ジラウリル、ホスホン酸ジオレイル、ホスホン酸ジフェニル、ホスホン酸ジベンジル、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、エチルホスホン酸ジエチル、ベンジルホスホン酸ジエチル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジプロピル、(メトキシメチル)ホスホン酸ジエチル、ビニルホスホン酸ジエチル、ヒドロキシメチルホスホン酸ジエチル、(2−ヒドロキシエチル)ホスホン酸ジメチル、p−メチルベンジルホスホン酸ジエチル、ジエチルホスホノ酢酸、ジエチルホスホノ酢酸エチル、ジエチルホスホノ酢酸tert−ブチル、(4−クロロベンジル)ホスホン酸ジエチル、シアノホスホン酸ジエチル、シアノメチルホスホン酸ジエチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジエチル、ジエチルホスホノアセトアルデヒドジエチルアセタール、(メチルチオメチル)ホスホン酸ジエチルなどが挙げられる。
酸性リン酸エステルとしては、リン酸ジメチル、リン酸ジエチル、リン酸ジビニル、リン酸ジプロピル、リン酸ジブチル、リン酸ビス(ブトキシエチル)、リン酸ビス(2−エチルヘキシル)、リン酸ジイソトリデシル、リン酸ジオレイル、リン酸ジステアリル、リン酸ジフェニル、リン酸ジベンジルなどのリン酸ジエステル、またはジエステルとモノエステルの混合物、クロロリン酸ジエチル、リン酸ステアリル亜鉛塩などが挙げられる。
脂肪族環状亜リン酸エステルは、リン原子を含む環状構造中に芳香族基を含まない亜リン酸エステル化合物と定義する。例えば、ビス(デシル)ペンタエリスリトールジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,6−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、水添ビスフェノールA・ペンタエリスリトールホスファイトポリマーなどジヒドロキシ化合物とペンタエリスリトールジホスファイトからなるポリマー型の化合物などが挙げられる。
これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
前記リン系化合物の含有量が少なすぎると、触媒失活や着色抑制の効果が不十分である。また、前記リン系化合物の含有量が多すぎるとかえってポリカーボネート樹脂が着色したり、湿熱条件での着色が発生したりする。したがって、リン系化合物の含有量は、特に限定されないが、ポリカーボネート樹脂中のリン原子の含有量として0.02重量ppm以上、0.7重量ppm以下とすることが好ましく、0.05重量ppm以上、0.65重量ppm以下がより好ましく、0.07重量ppm以上、0.60重量ppm以下が特に好ましい。
前記リン系化合物は通常、三塩化リンを出発原料に用いられるため、未反応物や脱離した塩酸由来の含塩素成分が残存する場合があるが、前記リン系化合物に含有される塩素原子の量は5重量%以下であることが好ましい。塩素原子の残存量が多いと、前記リン系化合物を添加する製造設備の金属部を腐食させたり、ポリカーボネート樹脂の熱安定性を低下させ、着色や熱劣化による分子量低下を促進させたりする懸念がある。
前記リン系化合物は前述のとおり、押出機を用いてポリカーボネート樹脂に添加、混練されることが好ましい。特に、ポリカーボネート樹脂を重合後に溶融状態のまま押出機に供給し、ただちに前記リン系化合物を樹脂に添加することが最も効果的である。さらに、触媒を失活させた状態で、押出機で真空ベントにより脱揮処理を行うと、効率的に低分子成分を脱揮除去することができる。
<ヒンダードフェノール化合物>
本発明におけるポリカーボネート樹脂には、前記リン系化合物に加えて、ヒンダードフェノール化合物も含有することで、ポリカーボネート樹脂のさらなる色調向上が期待できる。
ヒンダードフェノール系化合物としては、具体的には、2,6−ジ−tert−ブチルフェノール、2,4−ジ−tert−ブチルフェノール、2−tert−ブチル−4−メトキシフェノール、2−tert−ブチル−4,6−ジメチルフェノール、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、2,5−ジ−tert−ブチルヒドロキノン、n−オクタデシル−3−(3',5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,2’−メチレン−ビス−(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレン−ビス−(6−シクロヘキシル−4−メチルフェノール)、2,2’−エチリデン−ビス−(2,4−ジ−tert−ブチルフェノール)、テトラキス−[メチレン−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート]−メタン、n−オクタデシル−3−(3',5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]などが挙げられる。
これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
本発明におけるポリカーボネート樹脂の上記のヒンダードフェノール化合物の含有量は、ポリカーボネート樹脂を100重量部とした場合、0.001重量部〜1重量部が好ましく、0.005重量部〜0.5重量部がより好ましく、0.01重量部〜0.3重量部がさらに好ましい。
なお、ヒンダードフェノール化合物や以下の酸化防止剤についても、リン系化合物と同様に、押出機を用いてポリカーボネート樹脂に添加、混練されることが好ましい。
<酸化防止剤>
本発明におけるポリカーボネート樹脂には、酸化防止の目的で、通常知られている酸化防止剤を添加することもできる。
酸化防止剤としては、具体的には、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、グリセロール−3−ステアリルチオプロピオネート、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカンなどが挙げられる。
これらの酸化防止剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
これらの酸化防止剤の配合量は、ポリカーボネート樹脂を100重量部とした場合、0.0001重量部〜0.1重量部が好ましく、0.0005重量部〜0.08重量部がより好ましく、0.001重量部〜0.05重量部がさらに好ましい。
<ブルーイング剤>
本発明におけるポリカーボネート樹脂においては、ブルーイング剤を含有することもできる。
本発明で用いるブルーイング剤は、通常ポリカーボネート樹脂組成物に使用されるブルーイング剤等から適宜選択し、その配合量を調整して使用すればよく、複数種のブルーイング剤を使用してもよい。
ポリカーボネート樹脂におけるブルーイング剤の含有量は、通常、ポリカーボネート樹脂(A)を100重量部とした場合、好ましくは0.1×10−4〜10.0×10−4重量部、より好ましくは0.3×10−4〜5.0×10−4重量部、特に好ましくは0.3×10−4〜2.0×10−4重量部である。
ブルーイング剤の含有量が0.1×10−4重量部以上であれば、本発明におけるポリカーボネート樹脂プレートの促進耐光性試験前後のYI値を特定の範囲とすることや、b値を3以下にすることが容易となるため好ましい。一方で、ブルーイング剤の含有量が10.0×10−4重量部以下であれば明度が低下することがないため、L値を90以上とすることが容易となるため好ましい。
本発明で用いるブルーイング剤としては、ポリカーボネート樹脂組成物に使用されるものを好適に使用することができるが、吸収波長の観点からは、極大吸収波長が好ましくは520〜600nm、より好ましくは540〜580nmの染料が用いられる。
本発明に用いるのに好ましいアンスラキノン系ブルーイング剤の具体例としては、例えば、一般名Solvent Violet13[CA.No(カラーインデックスNo)60725;商標名 ランクセス社製「マクロレックスバイオレットB」、三菱化学(株)製「ダイアレジンブルーG」、住友化学工業(株)製「スミプラストバイオレットB」]、Solvent Violet14、一般名Solvent Violet31[CA.No68210;商標名 三菱化学(株)製「ダイアレジンバイオレットD」]、Solvent Violet33[CA.No60725;商標名 三菱化学(株)製「ダイアレジンブルーJ」]、Solvent Violet36[CA.No68210;商標名 ランクセス社製「マクロレックスバイオレット3R」]、Solvent Blue45[CA.No61110;商標名 サンド社製「テトラゾールブルーRLS」]、一般名Solvent Blue94[CA.No61500;商標名 三菱化学(株)製「ダイアレジンブルーN」]、一般名Solvent Blue97[ランクセス社製「マクロレックスブルーRR」]、一般名Solvent Blue45、一般名Solvent Blue87および一般名Disperse Violet28が挙げられる。
これらの中でも、一般名Solvent Violet13[ランクセス社製「マクロレックスバイオレットB」]、一般名Solvent Violet36[ランクセス社製「マクロレックスバイオレット3R」]、一般名Solvent Blue97[ランクセス社製「マクロレックスブルーRR」]が好ましく、一般名Solvent Violet13[ランクセス社製「マクロレックスバイオレットB」]がより好ましい。
中でも特に、下記式(11)で表される構造の染料、すなわち一般名Solvent Violet13[CA.No(カラーインデックスNo)60725;商標名 ランクセス社製「マクロレックスバイオレットB」および三菱化学(株)製「ダイアレジンブルーG」、住友化学工業(株)製「スミプラストバイオレットB」]が好ましい。
Figure 2016171194
本発明においてはまた、ブルーイング剤として、極大吸収波長が好ましくは520〜600nm、より好ましくは540〜580nmの顔料を用いることもでき、上記の染料と顔料を併用することもできる。
本発明において、ブルーイング剤は、1種を単独で用いてもよく、2種以上を併用してもよいが、ブルーイング剤の使用量は少ない方が好ましく、使用するブルーイング剤の種類も少ない方が好ましい。
本発明において、ポリカーボネート樹脂(A)に配合する上記のブルーイング剤の配合時期、配合方法は特に限定されない。配合時期としては、例えば、重合反応前に原料とともに添加しそのまま重合を行う方法、重合反応終了時に配管や押出機で配合する方法、ポリカーボネート樹脂と他の配合剤と溶融混練する際に配合する方法等が挙げられる。重合反応終了後に溶融混練して配合することが、ブルーイング剤の分散を良くし、b値とL値の調節の両立を図りやすいため好ましい。特に重縮合反応終了後に溶融状態のまま押出機に導入し、ブルーイング剤を配合して溶融混練する方法が、熱履歴や酸素混入の影響を最小限に抑えられるため好ましい。
<紫外線吸収剤>
本発明に用いる紫外線吸収剤は、本発明の特定する物性を有し、紫外線波長領域の光を吸収するものであれば、限定されるものではない。
本発明に用いる紫外線吸収剤の融点は、135℃以上である。また、140℃以上がより好ましく、145℃以上がさらに好ましい。
また、本発明に用いる紫外線吸収剤の融点は、300℃未満である。また、290℃以下がより好ましく、280℃以下がさらに好ましい。
融点がこの範囲内であることにより、押出製膜の際にロール汚染や、Tダイへの付着物を低減させることができ、フィルムの外観が良好になる。同時に、紫外線吸収剤を押出機混練で混練させた際に、紫外線吸収剤の粒子が完全に溶融し、均一分散するために紫外線吸収剤の粒子に由来するフィルム外観不良を防止することができる。
本発明に用いる紫外線吸収剤の5%重量減少温度は、240℃より高い。また、245℃より高いことが好ましく、250℃より高いことがより好ましい。この範囲内であることにより、溶融混練の際に、紫外線吸収剤が分解することを防ぐことができる。これにより、紫外線吸収剤の能力を十分発揮することが出来るだけでなく、分解物が押出のベントに蓄積して連続運転を妨げたり、Tダイ、ロール等に分解物が蓄積してフィルムの外観を損なったりすることを防止できる。
本発明において、紫外線吸収剤は、ポリカーボネート樹脂100重量部に対して、0.45重量部を超えて含有する。また、0.47重量部を超えて含有することが好ましく、0.5重量部を超えて含有することがさらに好ましい。
この範囲内であることにより、紫外線領域で目的の透過率を維持でき、所望の効果を得ることができる。
また、紫外線吸収剤は、ポリカーボネート樹脂100重量部に対して、7重量部以下含有する。また、5重量部以下含有することがより好ましく、3重量部以下含有することがさらに好ましい。この範囲内であることにより、ロール汚染によるフィルムの外観不良を防げるだけでなく、紫外線吸収剤の凝集による異物増加を防ぐことができる。
ロールに紫外線吸収剤が付着すると、その付着物を起点にフィルムへ凹凸が転写され、フィルム膜厚の均一性を保てなくなり、結果的に得られるフィルムの厚みムラや位相差ムラを引き起こす。フィルムの厚み精度としては、好ましい幅方向の厚み精度は用途ごとの要求物性によって異なるが、通常±10%以内、好ましくは±5%以内、特に好ましくは±3%以内である。
また、紫外線吸収剤の融点が上記範囲内や、添加量が上記範囲内である場合は、ポリカーボネート樹脂組成物のガラス転移温度が紫外線吸収剤の添加後に大きく下がることが無く、耐熱性を維持出来る。組成物のガラス転移温度が、紫外線吸収剤が添加されていないポリカーボネート樹脂のガラス転移温度に対して、温度差が7℃以内、好ましくは5℃以内、更に好ましくは3℃以内である。
好ましい紫外線吸収剤としては、トリアジン系、ベンゾフェノン系、ベンゾトリアゾール系、キノリノン系、ベンゾエート系、シアノアクリレート系、ベンゾオキサゾール系などが挙げられる。
(トリアジン系紫外線吸収剤)
トリアジン系紫外線吸収剤としては、例えば、2,4−ジフェニル−6−(2−ヒドロキシ−4−メトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−エトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−プロポキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,6−ジフェニル−4−(2−ヒドロキシ−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ベンジルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−プロポキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ベンジルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−エトキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ブトキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−プロポキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−メトキシカルボニルプロピルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−エトキシカルボニルエチルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−(1−(2−エトキシヘキシルオキシ)−1−オキソプロパン−2−イルオキシ)フェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−エトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−プロポキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ブトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ブトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ベンジルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−エトキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ブトキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−プロポキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−メトキシカルボニルプロピルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−エトキシカルボニルエチルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−(1−(2−エトキシヘキシルオキシ)−1−オキソプロパン−2−イルオキシ)フェニル)−1,3,5−トリアジン、2,4−ビス(2,4−ジメチルフェニル)−6−(2−ヒドロキシ−4−N−オクチルオキシフェニル)−1,3,5−トリアジン、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−(2−(2−エチルヘキサノイロキシ)エトキシ)フェノールなどが挙げられる。
その中でも、市販品としては2,4−ビス(2,4−ジメチルフェニル)−6−(2−ヒドロキシ−4−N−オクチルオキシフェニル)−1,3,5−トリアジン(ケミプロ化成(株)製「Kemisorb102」)、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ヘキシルオキシフェニル)−1,3,5−トリアジン((株)ADEKA製「アデカスタブLA−F70」)、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−(2−(2−エチルヘキサノイロキシ)エトキシ)フェノール((株)ADEKA製「アデカスタブLA−46」)、2,4−ジフェニル−6−(2−ヒドロキシ−4−ヘキシルオキシフェニル)−1,3,5−トリアジン(BASFジャパン(株)「チヌビン1577」)が挙げられる。
(ベンゾフェノン系紫外線吸収剤)
ベンゾフェノン系紫外線吸収剤としては、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシトリハイドライドレイトベンゾフェノン、2−ヒドロキシ−4−ドデシロキシ−ベンゾフェノン、2−ヒドロキシ−4−オクタデシロキシ−ベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンソフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン等が挙げられる。
その中でも、市販品としては、2,2’,4,4’−テトラヒドロキシベンゾフェノン(シプロ化成(株)製「シーソーブ106」、BASFジャパン(株)「Uvinul3050」)、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン(シプロ化成(株)製「シーソーブ107」、BASFジャパン(株)製「Uvinul3049」)が挙げられる。
(ベンゾトリアゾール系紫外線吸収剤)
ベンゾトリアゾール系紫外線吸収剤としては、例えば、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−[2’−ヒドロキシ−3’,2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、5’−ビス(α,α−ジメチルベンジル)フェニル]−ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチル−フェニル)−ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチル−フェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−アミル)−ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−アミルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’−(3”,4”,5”,6”−テトラヒドロフタルイミドメチル)−5’−メチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ―3,5−ジ―tert−ペンチルフェニル)、2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]等が挙げられる。
その中でも、市販品としては2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]((株)ADEKA製「アデカスタブLA−31」、ケミプロ化成(株)製「Kemisorb279」)、2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール(シプロ化成(株)製「シーソーブ709」)が挙げられる。
(インドール系紫外線吸収剤)
インドール系紫外線吸収剤としては、下記式(12)で表される化合物を用いることができ、例えば、2−[(1−メチル−2−フェニル−1H−インドール−3−イル)メチレン]プロパンジニトリル(オリヱント化学工業(株)製「BONASORB UA−3901」)などが挙げられる。
Figure 2016171194
上記式(12)中、R〜Rは任意の置換基を示す。但し、R及びRは1か所または複数か所を置換していてもよく、複数か所を置換する場合、それぞれの置換基は同一または異なっていてもよい。
(キノリノン系紫外線吸収剤)
キノリノン系紫外線吸収剤としては、下記式(13)で表されるような化合物を用いることができ、例えば、4−ヒドロキシ−3−[(フェニルイミノ)メチル]−2(1H)−キノリノン(オリヱント化学工業(株)製「BONASORB UA−3701」)などが挙げられる。
Figure 2016171194
上記式(13)中、R〜Rは任意の置換基を示す。但し、R及びRは1か所または複数か所を置換していてもよく、複数か所を置換する場合、それぞれの置換基は同一または異なっていてもよい。
(ベンゾエート系紫外線吸収剤)
ベンゾエート系紫外線吸収剤としては、例えば、2,4−ジ−t−ブチルフェニル−3’,5’−ジ−t−ブチル−4’−ヒドロキシベンゾエート、2,6−ジ−t−ブチルフェニル−3’,5’−ジ−t−ブチル−4’−ヒドロキシベンゾエート、n−ヘキサデシル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、n−オクタデシル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエートなどが挙げられる。これらベンゾエート系紫外線吸収剤は、紫外線吸収剤として用いることができる。
(シアノアクリレート系紫外線吸収剤)
シアノアクリレート系紫外線吸収剤としては、例えば、2’−エチルヘキシル−2−シアノ−3,3−ジフェニルアクリレート、エチル−2−シアノ−3−(3’,4’−メチレンジオキシフェニル)−アクリレート等が挙げられる。これらシアノアクリレート系紫外線吸収剤は紫外線吸収剤として用いることができる。
本発明では、紫外線吸収剤を単独で用いてもよいし、2種以上を併用してもよい。
この中でも、熱安定性や樹脂への着色が少ない点から、トリアジン系、ベンゾトリアゾール系、キノリノン系、インドール系が好ましい。
(その他紫外線吸収剤)
上記の紫外線吸収剤以外に、その他紫外線吸収剤としては蛍光増白剤を用いることもできる。例えば、7−(ジメチルアミノ)−4−メチルクマリンやベンゾオキサゾール系である2,5−ビス(5−tert−ブチル−2−ベンゾオキサゾリル)チオフェン(BASFジャパン(株)「TINOPAL OB」)、4,4’−ビス(2−ベンゾオキサゾリル)スチルベンなどが挙げられる。なかでも、ベンゾオキサゾール系が好ましい。
[ポリカーボネート樹脂組成物]
本発明におけるポリカーボネート樹脂組成物は、例えば、芳香族ポリカーボネート樹脂、芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル、アモルファスポリオレフィン、ABS、ASなどの合成樹脂、ポリ乳酸、ポリブチレンスクシネートなどの生分解性樹脂、ゴムなどの1種又は2種以上と混練して、ポリマーアロイとしても用いることもできる。
更に、本発明で用いるポリカーボネート樹脂は、これらのその他の樹脂成分と共に樹脂組成物に通常用いられる核剤、難燃剤、難燃助剤、無機充填剤、衝撃改良剤、加水分解抑制剤、発泡剤、染顔料等を添加してポリカーボネート樹脂組成物とすることができる。
[ポリカーボネート樹脂押出成形品の製造方法]
<製造方法>
本発明のポリカーボネート樹脂フィルムは、本発明に用いるポリカーボネート樹脂と、紫外線吸収剤と、必要に応じてその他の添加剤を含有する樹脂組成物を、常法に従って成形して得られるフィルムである。該ポリカーボネート樹脂フィルムの製造法は、好ましくはTダイ成形法やインフレーション成形法等の溶融押出成形法であり、特に好ましくはTダイ成形法である。
本発明のポリカーボネート樹脂フィルムは、画像表示装置の前面または背面にある場合に、表示される画像が欠陥や歪み等で損なわれて視認されてはいけない。このため溶融押出成形法によってフィルム化するにあたり、ゲル、気泡、焼け等の樹脂由来の異物欠点が極めて少なく、また幅方向に均一な厚さであって局所的な位相差等の光学歪が無いことが求められる。
溶融押出成形する際の樹脂温度は、通常150〜265℃、好ましくは200℃〜260℃、特に好ましくは210℃〜250℃の範囲である。前記温度より低い場合、溶融粘度が高すぎて押出負荷が高くなる傾向がある。一方前記温度より高い場合、樹脂組成物中の少なくともポリカーボネート樹脂が熱分解し始め、着色や粘度低下などの劣化現象が生じる。
成形に適切な溶融粘度になるよう樹脂温度を制御したうえで、原料フィーダーの吐出量、押出機のスクリュー回転数、ギアポンプの送液量等を相互にフィードバック制御させて樹脂押出を整流化させることで、フィルムの厚み精度を高めることができる。好ましい幅方向の厚み精度は用途ごとの要求物性によって異なるが、通常±10%以内、好ましくは±5%以内、特に好ましくは±3%以内である。
幅方向の厚さ測定は、連続製膜するライン中にトラバース型の連続厚さ測定機がある場合は、測定各点で評価する。カットフィルムでのオフライン測定をする場合は、幅方向50mm間隔にダイヤルゲージ厚み計等で測定した点で評価する。ここで、押し出されたフィルムの両端はネックイン等で厚くなっているので、スリットして廃棄される部分は除いた幅方向範囲での評価である。
冷却ロール温度は、ポリカーボネート樹脂組成物のガラス転移温度(Tg)に対して、Tg−100℃〜Tg+50℃とするのが好ましく、より好ましくはTg−80℃〜Tg+40℃、特に好ましくはTg−60℃〜Tg+30℃である。より具体的には、冷却ロール温度は20〜170℃が好ましく、より好ましくは40〜160℃、特に好ましくは60〜150℃である。
冷却ロール温度が前記温度より低い場合、フィルム表面にギアマークが生じたり、局所的な光学歪ムラが著しくなったりする。一方前記温度より高い場合、押し出されたフィルムが冷却ロールから剥離しにくくなり、剥離マークが生じたり、ロールが汚染されたりする傾向がある。
また、本発明におけるポリカーボネート樹脂フィルムは、延伸フィルムであってもよく、少なくとも一方向に延伸することにより位相差フィルムとすることができる。
その延伸の方法は、自由端延伸、固定端延伸、自由端収縮、固定端収縮等、様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。また、延伸方向に関しても、水平方向・垂直方向・厚さ方向、対角方向等、様々な方向や次元に行なうことが可能であり、特に限定されない。好ましくは、横一軸延伸方法、縦横同時二軸延伸方法、縦横逐次二軸延伸方法等が挙げられる。
延伸する手段としては、テンター延伸機、二軸延伸機等、任意の適切な延伸機を用いることができる。
延伸温度は、目的に応じて、適宜、適切な値が選択され得る。好ましくは、延伸は、原反フィルム(即ち、原反フィルムの製膜材料である本発明におけるポリカーボネート又はその樹脂組成物)のガラス転移温度(Tg)に対し、Tg−20℃〜Tg+30℃、好ましくはTg−10℃〜Tg+20℃、より好ましくはTg−5℃〜Tg+10℃の範囲で行なう。このような条件を選択することによって、位相差値が均一になり易く、かつ、フィルムが白濁しにくくなる。具体的には、上記延伸温度は90℃〜210℃であり、さらに好ましくは100℃〜200℃であり、特に好ましくは100℃〜180℃である。
延伸倍率は、目的に応じて適宜選択され、未延伸の場合を1倍として、好ましくは1.1倍以上6倍以下、より好ましくは1.5倍以上4倍以下、更に好ましくは1.8倍以上3倍以下であり、特に好ましくは2倍以上2.5倍以下である。
延伸倍率が過度に大きいと延伸時の破断を招く可能性があるだけでなく、高温条件下での長期使用による光学的特性の変動抑制効果が小さくなる可能性があり、過度に低いと所望の厚みにおいて意図した光学的特性が付与できなくなる可能性がある。
延伸速度も目的に応じて適宜選択されるが、下記式で表される歪み速度で通常50%〜2000%、好ましくは100%〜1500%、より好ましくは200%〜1000%、特に好ましくは250%〜500%である。延伸速度が過度に大きいと延伸時の破断を招いたり、高温条件下での長期使用による光学的特性の変動が大きくなったりする可能性がある。また、延伸速度が過度に小さいと生産性が低下するだけでなく、所望の位相差を得るのに延伸倍率を過度に大きくしなければならない場合がある。
歪み速度(%/分)={延伸速度(mm/分)/原反フィルムの長さ(mm)}×100
また、延伸後加熱炉で熱固定処理を行ってもよいし、テンターの幅を制御したり、ロール周速を調整したりして、緩和工程を行ってもよい。
この処理を行うことで、高温条件下での長期使用による光学的特性の変動を抑制することができる。
本発明のフィルムは、このような延伸工程における処理条件を適宜選択・調整することによって作製することができる。
本発明のフィルムの厚みの上限は、120μm以下である。50μm以下であることがより好ましく、30μm以下であることがさらに好ましい。フィルムの厚みの上限がこの範囲内であることにより、同じ面積のフィルムを製造するのにより少ない製膜材料でできるため効率的である。さらには、当該フィルムを使用する製品の厚みを薄く維持できると共に、均一性の制御が可能となり、精密性・薄型・均質性を求められる機器に有用である。
一方、本発明のフィルムの厚みの下限は、5μm以上である。好ましくは10μm以上である。フィルムの厚みが過度に薄いとフィルムの取り扱いが極めて困難になり、製造中にしわが発生したり、保護フィルムなどの他のフィルムやシートなどと貼合わせることが困難になったりすることがある。本発明のフィルムの厚みの下限がこの範囲内であることにより、そのような問題を解決できる。
本発明のフィルムは偏光子保護フィルムとして用いることができ、ハードコート層や反射防止処理、スティッキング防止や、拡散ないしアンチグレアを目的とした処理を施したものであってもよく、接着する前に表面処理としてコロナ放電処理、紫外線照射処理などを施したものであってもよい。
本発明のフィルムは波長380nmの光線透過率の下限は0.001%以上である。0.005%以上が好ましく、0.008%以上がより好ましく、0.01%以上がさらに好ましい。透過率が低すぎると必然的に紫外線吸収剤の含有量が多くなり、フィルムの外観不良等が発生する可能性がある。
また、本発明のフィルムは波長380nmの光線透過率の上限は15%以下である。8%以下が好ましく、1%以下がより好ましく、0.1%以下がさらに好ましい。透過率が高すぎると、偏光子保護フィルムに用いた場合に、偏光子が紫外線によって劣化する恐れがある。
本発明のフィルムを位相差フィルムとして利用する場合は、548nmにおける面内位相差が、100nm以上が好ましく、110nm以上がより好ましく、120nm以上がさらに好ましい。
また、200nm以下が好ましく、180nm以下であることがより好ましく、160nm以下がさらに好ましい。面内位相差がこの範囲内であることにより、本発明を用いて得られる偏光板や画像表示装置の画像の品質が極めて鮮映で良好になる。具体的には、偏光サングラス越しに本発明を用いて得られる偏光板や画像表示装置を観察すると、目視角度の変化により生じる虹模様等が発生しにくい。
<フィルムの異物>
フィルムの異物の発生はフィルムの品質を損ねるだけでなく、フィルムの生産性の観点からも好ましくない。フィルムの異物を低減するには、既述の通り、樹脂組成物中の特定の化合物の含有量を低減させること、溶融混練時の未融解物の発生やフィルム製膜時のブリードアウトに起因する製膜ロール汚れの発生を防ぐことが特に効果的である。
フィルム中の異物については、後述の方法で評価するが、15個/m以下が好ましく、10個/m以下がより好ましく、5個/m2以下がさらに好ましく、3個/m以下が特に好ましい。この数値を超える異物がある場合、フィルムの外観を損ねるだけでなく、フィルムの光学物性に著しく影響する。
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。
[評価方法]
以下において、ポリカーボネート樹脂の物性ないし特性の評価は次の方法により行った。
(1)還元粘度の測定
ポリカーボネート樹脂のサンプルを塩化メチレンに溶解させ、0.6g/dLの濃度のポリカーボネート樹脂溶液を調製した。森友理化工業社製ウベローデ型粘度管を用いて、温度20.0℃±0.1℃で測定を行い、溶媒の通過時間tと溶液の通過時間tから次式(i)より相対粘度ηrelを求め、相対粘度ηrelから次式(ii)より比粘度ηspを求めた。
ηrel=t/t ・・・(i)
ηsp=(η−η)/η=ηrel−1 ・・・(ii)
比粘度ηspを濃度c(g/dL)で割って、還元粘度ηsp/cを求めた。この値が高いほど分子量が大きい。還元粘度の値が大きいほど、機械的強度に優れたフィルムを得ることができる。
(2)380nmの紫外線透過率
波長380nmにおける光線透過率は、JISK0115(2004年)(吸光光度分析通則)に準拠して、紫外可視分光光度計(日立ハイテクノロジーズ社製U2900)を用いて測定した。
(3)5%重量減少温度
TG−DTA6300(セイコー製)にて窒素下(流量200ml/min)にて、試料約10mgを室温から500℃まで10℃/minにて昇温しながら測定を行い、5%重量減少温度を求めた。
(4)融点
示差走査熱量計(エスアイアイ・ナノテクノロジー社製DSC6220)を用いて測定した。試料約10mgを同社製アルミパンに入れて密封し、50mL/分の窒素気流下、昇温速度10℃/分で室温から400℃まで昇温し、融解ピークの頂点の温度を求め融点とした。
(5)ポリカーボネート樹脂のガラス転移温度(Tg)
ポリカーボネート樹脂のガラス転移温度は、示差走査熱量計(エスアイアイ・ナノテクノロジー社製DSC6220)を用いて測定した。ポリカーボネート樹脂サンプル約10mgを同社製アルミパンに入れて密封し、50mL/分の窒素気流下、昇温速度20℃/分で室温から250℃まで昇温した。3分間温度を保持した後、0℃まで20℃/分の速度で冷却した。0℃で3分保持し、再び200℃まで20℃/分の速度で昇温した。2回目の昇温で得られたDSCデータより、補外ガラス転移開始温度を採用した。
(6)フェノールと式(3)で表される化合物の含有量の測定
ポリカーボネート樹脂試料約1gを精秤し、塩化メチレン5mLに溶解して溶液とした後、総量が25mLになるようにアセトンを添加して再沈殿処理を行った。次いで、該処理液を0.2μmディスクフィルターで濾過して、液体クロマトグラフィーにて定量を行った。
Figure 2016171194
(7)フィルム成形とロール汚れ評価
2kg/HrにてOCS社製ゲルカウンターFSAフィルム検査ライン(バレル設定温度:240℃、Tダイ(幅150mm、設定温度:240℃)、チルロール(設定温度:105℃))にてそれぞれの厚みでフィルムを成形し、以下の基準に従いロール汚れの発生有無の判定を行った。
0分以上15分未満でロール汚れを目視にて確認できたもの:××
15分以上30分未満でロール汚れを目視にて確認できたもの:×
30分以上60分未満でロール汚れ目視にて確認できたもの:△
60分以上90分未満でロール汚れを目視にて確認できたもの:△
90分以上120分未満でロール汚れを目視にて確認できたもの:○
120分以上150分未満でロール汚れを目視にて確認できたもの:○
150分以上180分未満でロール汚れを目視にて確認できたもの:◎
(8)フィルムの厚みおよび厚み精度
フィルム所得開始から約10m部分にて、フィルムの中心から両幅方向30mmの範囲をTD方向10mm間隔で接触厚み計((株)小野測器製 製品名「ディジタルリニアゲージ DG−933」)を用いてフィルムの厚みを測定した。ここで、本発明でいう「フィルムの厚み」とは、前記の測定値の総平均を算出したものである。また、下記式より得られる数値を本発明でいう「厚み精度」とした。
厚み精度(%)={(フィルムの厚みからの最大の偏差)/(フィルムの厚み)}×100
(ただし、式中「フィルムの厚みからの最大の偏差」とは上述の各測定値と平均値(フィルムの厚み)との差のうち、最大の値のことをいう。)
厚み精度の数値が小さいほど、より均一な厚みを有するフィルムであることを示す。
(9)フィルム異物
得られたフィルムから幅50mm、長さ200mmに切り出したサンプルについて、目視にて該サンプル中の直径(楕円状の場合は長径)150μm以上の異物の存在数をカウントした。異物の存在数が少ないほど、例えば光学フィルムに使用した場合に優れたフィルムである。
[使用原料]
以下の実施例及び比較例で用いた化合物の略号、および製造元は次の通りである。
<ジヒドロキシ化合物>
・ISB:イソソルビド[ロケットフルーレ社製]
・ CHDM:1,4−シクロヘキサンジメタノール[SKChemical社製]
・TCDDM:トリシクロデカンジメタノール[OXEA社製]
<炭酸ジエステル>
・DPC:ジフェニルカーボネート[三菱化学(株)製]
<ヒンダードフェノール化合物>
・Irganox1010:ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート][BASFジャパン(株)製]
<リン系化合物>
・亜リン酸[太平化学産業(株)製](分子量82.0)
・AS2112:トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト[(株)ADEKA製](分子量646.9)
<紫外線吸収剤>
・UVA−1:LA−31[(株)ADEKA製]
・UVA−2:LA−36[(株)ADEKA製]
・UVA−3:LA−F70[(株)ADEKA製]
・UVA−4:BONASORB UA−3701[オリヱント化学工業(株)製]
・UVA−5:Uvinul3049[BASFジャパン(株)製]
・UVA−6:Uvinul3050[BASFジャパン(株)製]
・UVA−7:Seesorb709[シプロ化成(株)製]
・UVA−8:Tinuvin234[BASFジャパン(株)製]
・UVA−9:TINOPAL OB[BASFジャパン(株)製]
・UVA−10:Cyasorb UV−5411[日本サイテック インダストリーズ(株)製]
紫外線吸収剤の有する物性を下記表1にまとめて表記する。
Figure 2016171194
ポリカーボネート樹脂の製造方法
[製造例1]
竪型攪拌反応器3器と横型攪拌反応器1器、並びに二軸押出機からなる連続重合設備を用いて、ポリカーボネート樹脂の重合を行った。ISBとCHDMとDPCをそれぞれタンクで溶融させ、モル比ISB/CHDM/DPC=0.700/0.300/1.010で第1竪型攪拌反応器に連続的に供給した。同時に、触媒として酢酸カルシウム1水和物の水溶液を全ジヒドロキシ化合物1molに対して1.5μmolとなるように第1竪型攪拌反応器に供給した。第1竪型攪拌反応器での平均滞留時間が90分となるように、反応器底部の移送配管に設けられたバルブの開度を制御しつつ、液面レベルを一定に保った。反応器底部より排出された反応液は、引き続き第2竪型攪拌反応器、第3竪型攪拌反応器、第4横型攪拌反応器[(株)日立プラントテクノロジー社製2軸メガネ翼]に逐次連続供給した。第1竪型攪拌反応器と第2竪型攪拌反応器は還流冷却器を具備しており、還流比を調節することで、未反応のジヒドロキシ化合物とDPCの留出を抑制した。
各反応器の反応温度、内圧、滞留時間はそれぞれ、第1竪型攪拌反応器:190℃、25kPa、90分、第2竪型攪拌反応器:195℃、10kPa、45分、第3竪型攪拌反応器:210℃、3kPa、45分、第4横型攪拌反応器:230℃、0.5kPa、90分とした。得られるポリカーボネート樹脂の還元粘度が0.61dL/gから0.64dL/gとなるように、第4横型攪拌反応器の内圧を微調整しながら運転を行った。
第4横型攪拌反応器より連続的にポリカーボネート樹脂を抜き出し、続いて樹脂を溶融状態のまま二軸押出機[(株)日本製鋼所製TEX30α]に供給した。押出機は3つの真空ベント口を有しており、樹脂中の残存低分子成分を脱揮除去した。第1ベント口の手前から亜リン酸をまぶしたマスターペレットを供給し、ポリカーボネート樹脂に対して亜リン酸を0.65ppm(リン原子の量として0.2ppm)添加し、第2ベントの手前で水を樹脂に対して2000重量ppm加えて、注水脱揮を行い、第3ベンチ手前からAS2112を500ppm、Irganox1010を1000ppm供給した。押出機(全10バレル)はシリンダー温度を220℃、スクリュー回転数を230rpmに設定した。押出機出口での樹脂温度は262℃であった。
押出機を通過したポリカーボネート樹脂は、引き続き溶融状態のままフィルターを通して異物を濾過した後、ダイからストランド状に排出させ、水冷、固化させた後、回転式カッターでペレット化した。ペレットのガラス転移温度は122℃であった。得られたポリカーボネート樹脂をPC1とする。
[製造例2]
モル比ISB/CHDM/DPC=0.700/0.300/1.012で第1竪型攪拌反応器に連続的に供給した以外は実施例1と同様にしてポリカーボネート樹脂を得た。ペレットのガラス転移温度は122℃であった。得られたポリカーボネート樹脂をPC2とする。
[製造例3]
モル比ISB/CHDM/DPC=0.700/0.300/1.000で、触媒として酢酸カルシウム1水和物の水溶液を全ジヒドロキシ化合物1molに対して1.25μmolとなるように、第1竪型攪拌反応器に連続的に供給し、各反応器の反応温度、内圧、滞留時間はそれぞれ、第1竪型攪拌反応器:188℃、24.2kPa、90分、第2竪型攪拌反応器:194℃、19.9kPa、60分、第3竪型攪拌反応器:214℃、9.9kPa、60分、第4横型攪拌反応器:225℃、0.1kPa、120分とし、押出機はシリンダー温度を前半4つのバレルは240℃、後半6つのバレルは195℃、スクリュー回転数を225rpmに設定した以外は実施例1と同様に行った。ペレットのガラス転移温度は122℃であった。得られたポリカーボネート樹脂をPC3とする。
[製造例4]
竪型攪拌反応器並びに二軸押出機からなる回分式重合設備を用いて、ポリカーボネート樹脂の重合を行った。ISBとCHDMとDPCをそれぞれタンクで溶融させ、ISBをモル比ISB/CHDM/DPC=0.700/0.300/1.000で第1竪型攪拌反応器に供給した。同時に、触媒として炭酸セシウムの水溶液を全ジヒドロキシ化合物1molに対して炭酸セシウムが1.25μmolとなるように第1竪型攪拌反応器に供給した。反応の第1段目の工程として、加熱槽温度を150℃に加熱し、撹拌しながら、原料を15分間溶解させ、圧力を常圧から13.3kPaに40分間で減圧し、加熱槽温度を190℃まで40分で上昇させながら、発生するフェノールを反応容器外へ抜き出した。反応容器全体を190℃で15分間保持した後、第2段目の工程として、加熱槽温度を240℃まで、30分間で上昇させた。昇温に入ってから10分後に、反応容器内の圧力を30分間で0.200kPa以下とし、発生するフェノールを溜出させた。120分後、所定の撹拌トルクに到達後、反応を停止し、反応器より連続的にポリカーボネート樹脂を抜き出し、続いて樹脂を溶融状態のまま二軸押出機[(株)日本製鋼所製TEX30α]に供給した。押出機は3つの真空ベント口を有しており、樹脂中の残存低分子成分を脱揮除去した。第1ベント口の手前から亜リン酸をまぶしたマスターペレットを供給し、ポリカーボネート樹脂に対して亜リン酸を0.65ppm(リン原子の量として0.2ppm)添加し、第2ベントの手前で水を樹脂に対して2000重量ppm加えて、注水脱揮を行い、第3ベンチ手前からAS2112を500ppm、Irganox1010を1000ppm供給した。押出機(全10バレル)はシリンダー温度を220℃、スクリュー回転数を230rpmに設定した。押出機出口での樹脂温度は261℃であった。
押出機を通過したポリカーボネート樹脂は、引き続き溶融状態のままフィルターを通して異物を濾過した後、ダイからストランド状に排出させ、水冷、固化させた後、回転式カッターでペレット化した。ペレットのガラス転移温度は122℃であった。得られたポリカーボネート樹脂をPC4とする。
ポリカーボネート樹脂の含有するフェノール及び式(3)で表される化合物の量を、下記表2にまとめて表記する。
Figure 2016171194
[実施例1]
製造例1に記載のポリカーボネート樹脂(PC1)100重量部及びUVA−1の1.5重量部を、定量フィーダーを用いてベント付きニ軸押出機((株)日本製鋼所製TEX30α、シリンダー設定温度:240℃)に供給し、フィルターを通して異物を濾過した後、ダイからストランド状に排出させ、水冷、固化させた後、回転式カッターでペレット化した。
その後、該ポリカーボネート樹脂組成物を2kg/HrにてOCS社製ゲルカウンターFSAフィルム検査ライン(バレル設定温度:240℃、Tダイ(幅150mm、設定温度:240℃)、チルロール(設定温度:105℃))にて、厚み40μmのフィルムを押出成形した。結果を下記表3に示す。
[実施例2〜13、比較例1〜5]
下記表3に示すように、フィルムの厚み、紫外線吸収剤の種類及び紫外線吸収剤の量を変更した以外は、実施例1と同様に実施した。
実施例1〜13のフィルムは、いずれも特に厚み精度の数値が小さく、均一な厚みを有するフィルムであると同時に、単位面積当たりのフィルム異物の量も少なく、特に優れたフィルムであった。
一方比較例1〜5では、使用した紫外線吸収剤の種類及び量が、樹脂組成物の耐熱性の低下や、ブリードアウトに起因するロール汚れによって引き起こされたと考えられる、フィルムの厚み精度の悪化や、異物量の増加がみられた。
なお、比較例4及び比較例5ではフィルム全体に紫外線吸収剤が未溶融によって凝集したと考えられる、150μm以上の異物ではないが、微細な異物が多数確認された。
Figure 2016171194
[実施例14〜16]
下記表4に示すように、使用したポリカーボネート樹脂をPC1からPC2、PC3及びPC4のいずれかに変更した以外は、実施例4と同様に実施した。
実施例14〜16のフィルムは、いずれも特に厚み精度の数値が小さく、均一な厚みを有するフィルムであると同時に、単位面積当たりのフィルム異物の量も少なく、特に優れたフィルムであった。
Figure 2016171194
[実施例17〜19]
下記表5に示すように、使用したポリカーボネート樹脂をPC1からPC2、PC3及びPC4のいずれかに変更した以外は、実施例6と同様に実施した。
実施例17〜19のフィルムは、いずれも特に厚み精度の数値が小さく、均一な厚みを有するフィルムであると同時に、単位面積当たりのフィルム異物の量も少なく、特に優れたフィルムであった。
Figure 2016171194
[実施例20]
製造例1に記載のポリカーボネート樹脂(PC1)100重量部及びUVA−3の1.2重量部を、定量フィーダーを用いてベント付きニ軸押出機((株)日本製鋼所 製 TEX30α、シリンダー設定温度:240℃)に供給し、フィルターを通して異物を濾過した後、ダイからストランド状に排出させ、水冷、固化させた後、回転式カッターでペレット化した。
その後、該ポリカーボネート樹脂組成物を2kg/HrにてOCS社製ゲルカウンターFSAフィルム検査ライン(バレル設定温度:240℃、Tダイ(幅150mm、設定温度:240℃)、チルロール(設定温度:105℃))にて、厚み50μmのフィルムを押出成形した。このフィルムから長さ125mm、幅50mmの未延伸フィルムを切り出し、バッチ式二軸延伸装置(アイランド工業社製]で、ひずみ速度5mm/minで、延伸温度134℃、延伸倍率1.8倍の固定端一軸延伸を行った。延伸された透明フィルムを幅4cm、長さ4cmに切り出したサンプルについて、位相差測定装置(王子計測機器社製 製品名「KOBRA WRXY2020」を用いて、23℃の室内で、波長548nmの面内位相差R548を測定すると139nmであった。結果を下記表6にまとめて表記する。
Figure 2016171194
実施例20で製造したポリカーボネート樹脂フィルムを、直線偏光の画像を表示するディスプレイの画面表層に位相差フィルムとして貼付け、偏光サングラス越しにディスプレイを見たところ、黒表示されることなく、且つ虹模様の発生も確認されず、良好な結果であった。
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2015年4月21日付で出願された日本特許出願(特願2015−086969)に基づいており、その全体が引用により援用される。
本発明によれば、フィルムの耐熱性の低下、ブリードアウトした物質によるフィルムの濁り、ロール汚れに起因するフィルムの異物、ギアマークなどのフィルムの外観不良等の問題等が無く、外観品質に優れ、しかもフィルム厚みの均一性にも優れたポリカーボネート樹脂フィルムを提供することができる。
よってこれを用いた偏光板の製造工程ロスの削減、画像表示装置の構造薄型化等に資する。

Claims (6)

  1. 下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂100重量部と、ポリカーボネート樹脂100重量部に対して、融点が135℃以上300℃未満かつ5%重量減少温度が240℃より高い紫外線吸収剤を、0.45重量部を超え7重量部以下含有する、ポリカーボネート樹脂組成物からなるポリカーボネート樹脂フィルムであって、波長380nmの光線透過率が0.001%以上15%以下であり、かつ厚みが5μm〜120μmであるポリカーボネート樹脂フィルム。
    Figure 2016171194
  2. 前記ポリカーボネート樹脂中の下記式(3)で表される化合物の含有量が10重量ppm以上1200重量ppm以下である、請求項1に記載のポリカーボネート樹脂フィルム。
    Figure 2016171194
  3. 前記紫外線吸収剤が、トリアジン系、ベンゾトリアゾール系、キノリノン系、ベンゾオキサゾール系またはインドール系である、請求項1又は2に記載のポリカーボネート樹脂フィルム。
  4. 548nmにおける面内位相差が100nm以上200nm以下である、請求項1〜3のいずれか1項に記載のポリカーボネート樹脂フィルム。
  5. 請求項1〜4のいずれか1項に記載のポリカーボネート樹脂フィルムを用いてなる、偏光子保護フィルム。
  6. 下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂100重量部と、ポリカーボネート樹脂100重量部に対して、融点が135℃以上300℃未満かつ5%重量減少温度が240℃より高い紫外線吸収剤を、0.45重量部を超え7重量部以下含有し、前記ポリカーボネート樹脂中の下記式(3)で表される化合物の含有量が10重量ppm以上1200重量ppm以下であるポリカーボネート樹脂組成物。
    Figure 2016171194
    Figure 2016171194
JP2017514173A 2015-04-21 2016-04-20 ポリカーボネート樹脂フィルム Active JP6773030B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015086969 2015-04-21
JP2015086969 2015-04-21
PCT/JP2016/062572 WO2016171194A1 (ja) 2015-04-21 2016-04-20 ポリカーボネート樹脂フィルム

Publications (2)

Publication Number Publication Date
JPWO2016171194A1 true JPWO2016171194A1 (ja) 2018-02-15
JP6773030B2 JP6773030B2 (ja) 2020-10-21

Family

ID=57144600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017514173A Active JP6773030B2 (ja) 2015-04-21 2016-04-20 ポリカーボネート樹脂フィルム

Country Status (5)

Country Link
JP (1) JP6773030B2 (ja)
KR (2) KR20230135168A (ja)
CN (2) CN107531920A (ja)
TW (2) TWI708800B (ja)
WO (1) WO2016171194A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107531920A (zh) * 2015-04-21 2018-01-02 三菱化学株式会社 聚碳酸酯树脂薄膜
KR102179473B1 (ko) * 2017-09-29 2020-11-16 주식회사 엘지화학 폴리카보네이트 수지 조성물 및 이로 이루어진 광학 성형품
WO2019066493A1 (ko) * 2017-09-29 2019-04-04 주식회사 엘지화학 폴리카보네이트 수지 조성물 및 이로 이루어진 광학 성형품
JP2020089981A (ja) * 2018-12-03 2020-06-11 帝人株式会社 ポリカーボネート樹脂フィルムおよびその製造方法
JP6731568B1 (ja) * 2018-12-04 2020-07-29 デンカ株式会社 毛状体を有する樹脂シート及びその成形品
CN113631972A (zh) * 2019-03-27 2021-11-09 日东电工株式会社 带相位差层的偏光板
JP6658942B1 (ja) * 2019-03-29 2020-03-04 住友ベークライト株式会社 樹脂組成物、成形体、光学性層、カバー部材および移動体
KR102625057B1 (ko) * 2019-08-19 2024-01-12 주식회사 엘지화학 디올 화합물, 폴리카보네이트 및 이의 제조방법
TW202335830A (zh) * 2021-11-02 2023-09-16 日商惠和股份有限公司 光擴散片、背光單元、液晶顯示裝置、資訊機器以及光擴散片的製造方法
JP2023068607A (ja) * 2021-11-02 2023-05-17 恵和株式会社 光拡散シート、バックライトユニット、液晶表示装置、情報機器、及び光拡散シートの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061927A1 (ja) * 2008-11-28 2010-06-03 三菱化学株式会社 ポリカーボネート樹脂、ポリカーボネート樹脂組成物、光学フィルム及びポリカーボネート樹脂成形品
JP2011126955A (ja) * 2009-12-16 2011-06-30 Konica Minolta Opto Inc 光学フィルム
JP2011237511A (ja) * 2010-05-07 2011-11-24 Konica Minolta Opto Inc 偏光板保護フィルム及びそれを用いた偏光板
JP2012030574A (ja) * 2010-05-19 2012-02-16 Mitsubishi Chemicals Corp カード用シート及びカード
JP2013076059A (ja) * 2011-09-14 2013-04-25 Mitsubishi Chemicals Corp 位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置
JP2014043570A (ja) * 2012-08-01 2014-03-13 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物及び透明フィルム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047357A (ja) 2000-05-26 2002-02-12 Konica Corp セルロースエステルフィルム、光学フィルム、偏光板、光学補償フィルム及び液晶表示装置
US7057037B2 (en) * 2001-11-20 2006-06-06 Takemoto Yushi Kabushiki Kaisha Ultraviolet radiation absorbents for thermoplastic polymers and methods of producing same
JP4351675B2 (ja) 2003-06-16 2009-10-28 帝人株式会社 ポリカーボネートおよびその製造方法
JP2006028441A (ja) 2004-07-21 2006-02-02 Teijin Ltd 脂肪族ポリカーボネートからなる光学用フィルム
JP4626847B2 (ja) 2005-02-22 2011-02-09 三菱瓦斯化学株式会社 コポリカーボネート樹脂
JP5532531B2 (ja) 2006-06-19 2014-06-25 三菱化学株式会社 ポリカーボネート共重合体及びその製造方法
JP4999095B2 (ja) * 2006-12-27 2012-08-15 日東電工株式会社 偏光子保護フィルム、偏光板、および画像表示装置
JPWO2009139478A1 (ja) * 2008-05-13 2011-09-22 帝人化成株式会社 偏光眼鏡レンズ
CN103351463B (zh) * 2008-11-28 2016-01-06 三菱化学株式会社 聚碳酸酯树脂、聚碳酸酯树脂组合物、光学膜和聚碳酸酯树脂成型品
JPWO2010143732A1 (ja) * 2009-06-12 2012-11-29 帝人化成株式会社 ポリカーボネート樹脂組成物およびそれからなる成形品
JP5583947B2 (ja) * 2009-10-09 2014-09-03 帝人株式会社 帯電防止性ポリカーボネート樹脂組成物およびその成形品
WO2011071166A1 (ja) * 2009-12-10 2011-06-16 三菱化学株式会社 ポリカーボネート樹脂組成物及び成形品
JP2011137954A (ja) 2009-12-28 2011-07-14 Nippon Zeon Co Ltd 積層フィルム、円偏光板、積層フィルムの製造方法、円偏光板の製造方法、および液晶表示装置
JP2013083956A (ja) 2011-09-30 2013-05-09 Nippon Shokubai Co Ltd 位相差フィルム、偏光板、および画像表示装置
JP2015031753A (ja) 2013-07-31 2015-02-16 日本ゼオン株式会社 光学積層体及び液晶表示装置
JP2016090921A (ja) * 2014-11-10 2016-05-23 三菱樹脂株式会社 フィルム及び偏光板
CN107531920A (zh) * 2015-04-21 2018-01-02 三菱化学株式会社 聚碳酸酯树脂薄膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061927A1 (ja) * 2008-11-28 2010-06-03 三菱化学株式会社 ポリカーボネート樹脂、ポリカーボネート樹脂組成物、光学フィルム及びポリカーボネート樹脂成形品
JP2011126955A (ja) * 2009-12-16 2011-06-30 Konica Minolta Opto Inc 光学フィルム
JP2011237511A (ja) * 2010-05-07 2011-11-24 Konica Minolta Opto Inc 偏光板保護フィルム及びそれを用いた偏光板
JP2012030574A (ja) * 2010-05-19 2012-02-16 Mitsubishi Chemicals Corp カード用シート及びカード
JP2013076059A (ja) * 2011-09-14 2013-04-25 Mitsubishi Chemicals Corp 位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置
JP2014043570A (ja) * 2012-08-01 2014-03-13 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物及び透明フィルム

Also Published As

Publication number Publication date
CN107531920A (zh) 2018-01-02
TW202118821A (zh) 2021-05-16
JP6773030B2 (ja) 2020-10-21
CN113527857A (zh) 2021-10-22
TWI708800B (zh) 2020-11-01
TW201704303A (zh) 2017-02-01
WO2016171194A1 (ja) 2016-10-27
KR20230135168A (ko) 2023-09-22
TWI774072B (zh) 2022-08-11
KR20170139029A (ko) 2017-12-18

Similar Documents

Publication Publication Date Title
JP6773030B2 (ja) ポリカーボネート樹脂フィルム
JP5870515B2 (ja) ポリカーボネート樹脂組成物および成形品
JP6812985B2 (ja) 熱可塑性樹脂組成物およびその成形体
TWI761484B (zh) 聚碳酸酯樹脂組成物及使用其之光學透鏡
JP6015022B2 (ja) ポリカーボネート樹脂組成物及び成形品
TW201323481A (zh) 相位差薄膜、使用其之圓偏光板及影像顯示裝置
WO2016068152A1 (ja) ポリカーボネート樹脂、成形品及び光学フィルム
TW201602229A (zh) 聚碳酸酯樹脂組成物及利用此組成物之光學材料與光學透鏡
JP6597157B2 (ja) 熱可塑性樹脂、及びそれよりなる光学成形体
TWI769142B (zh) 樹脂組成物的製造方法
JP6597158B2 (ja) 熱可塑性樹脂、及びそれよりなる光学成形体
JP4088762B2 (ja) 芳香族―脂肪族共重合ポリカーボネート樹脂組成物の製造方法
JP2016156031A (ja) ポリカーボネート樹脂組成物及び成形品
JP6349849B2 (ja) ポリカーボネート樹脂
JP6507495B2 (ja) ポリカーボネート樹脂組成物
JP6186796B2 (ja) ポリカーボネート樹脂プレートの製造方法
JP2015048421A (ja) ポリカーボネート樹脂
JP6913438B2 (ja) ポリカーボネート樹脂フィルムの製造方法
JP2015187204A (ja) ポリカーボネート樹脂からなる押出成形品
JP2015129212A (ja) 導光板
JP2004175947A (ja) 芳香族―脂肪族共重合ポリカーボネート樹脂組成物の製造方法
JP2015183086A (ja) ポリカーボネート樹脂の製造方法
JP2017165892A (ja) 透明樹脂フィルム
JP6715571B2 (ja) ポリカーボネート樹脂組成物からなるフィルム
JP2014080601A (ja) ポリカーボネート樹脂

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R151 Written notification of patent or utility model registration

Ref document number: 6773030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151