WO2016068152A1 - ポリカーボネート樹脂、成形品及び光学フィルム - Google Patents

ポリカーボネート樹脂、成形品及び光学フィルム Download PDF

Info

Publication number
WO2016068152A1
WO2016068152A1 PCT/JP2015/080293 JP2015080293W WO2016068152A1 WO 2016068152 A1 WO2016068152 A1 WO 2016068152A1 JP 2015080293 W JP2015080293 W JP 2015080293W WO 2016068152 A1 WO2016068152 A1 WO 2016068152A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
group
carbon atoms
polycarbonate resin
structural unit
Prior art date
Application number
PCT/JP2015/080293
Other languages
English (en)
French (fr)
Inventor
慎悟 並木
優一 平見
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020227007804A priority Critical patent/KR102441108B1/ko
Priority to EP15854324.9A priority patent/EP3214109A4/en
Priority to KR1020177008806A priority patent/KR102403837B1/ko
Priority to CN201580053464.1A priority patent/CN107075099B/zh
Publication of WO2016068152A1 publication Critical patent/WO2016068152A1/ja
Priority to US15/476,227 priority patent/US10081707B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the 1st aspect and 2nd aspect of this invention are related with the polycarbonate resin excellent in various characteristics, such as heat resistance, heat-and-moisture resistance, an optical characteristic, and a weather resistance, and a molded article obtained using the same.
  • the third aspect of the present invention relates to a polycarbonate resin excellent in optical properties, heat resistance and melt processability, and an optical film.
  • Polycarbonate resins generally use bisphenols as monomer components, taking advantage of transparency, heat resistance, mechanical strength, etc., in the optical field such as electrical / electronic parts, automotive parts, optical recording media, lenses, etc. Widely used as so-called engineering plastics.
  • ISB isosorbide
  • Polycarbonate resin using ISB is excellent in various properties such as heat resistance and optical properties, and its use in optical applications such as retardation films and glass substitute applications is being studied (for example, see Patent Documents 1 and 2).
  • ISB is a dihydroxy compound obtained from biomass resources, and is also interested in being a carbon-neutral material that does not contribute to an increase in carbon dioxide emissions even when incinerated.
  • ISB is a highly water-absorbing component
  • a polycarbonate resin using ISB as a monomer component may cause problems such as deformation of a molded product under conditions of high temperature and high humidity.
  • improvement of heat-and-moisture resistance is examined by the method of copolymerizing the monomer which can provide heat resistance and low water absorption (for example, refer patent document 3).
  • a polycarbonate resin having a structural unit derived from 6,6′-dihydroxy-3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane (hereinafter sometimes abbreviated as SBI) is It is known to exhibit characteristics of high heat resistance and low birefringence, and studies on optical applications such as retardation films and lenses have been made by utilizing the characteristics (see, for example, Patent Documents 4, 5, and 6). ).
  • a quarter wavelength plate for preventing reflection of external light is used.
  • the retardation film used for the quarter-wave plate suppresses coloring and enables a clear black display, so that it is possible to obtain ideal retardation characteristics at each wavelength in the visible region. Is required.
  • a retardation film is disclosed which comprises a polycarbonate copolymer containing a bisphenol structure having a fluorene ring in the side chain, and exhibits reverse wavelength dispersion with a smaller retardation at shorter wavelengths (for example, see Patent Documents 7 and 8).
  • Japanese Unexamined Patent Publication No. 2008-274203 Japanese Unexamined Patent Publication No. 2012-214666 International Publication No. 2013/100163 Japanese Unexamined Patent Publication No. 2006-131789 Japanese Laid-Open Patent Publication No. 2006-71782 Japanese Unexamined Patent Publication No. 11-71316 International Publication No. 2000/026705 International Publication No. 2008/156186
  • cycloolefin polymer (hereinafter sometimes abbreviated as COP) resin, which is widely used as a retardation film for liquid crystal displays, has a flat wavelength dispersion characteristic in which the retardation does not substantially change depending on the wavelength.
  • COP cycloolefin polymer
  • a retardation film made of a material exhibiting positive wavelength dispersion is inferior in display characteristics such as hue and reflectance of the display.
  • the polycarbonate resin is used as a molded product or an optical film. Further, the required characteristics differ depending on the application. For example, in recent years, the properties required for molded products typified by the front plates of smartphones and navigation systems for automobiles are required to simultaneously have surface hardness, weather resistance, and heat and humidity resistance, as well as optical properties such as transparency and low retardation.
  • optical film applications such as retardation films
  • optical properties and dimensions should not change in processes involving heating during the manufacturing process of polarizing plates and displays, and in high-temperature and high-humidity environments.
  • heat resistance of materials There is a demand for improved heat resistance of materials.
  • materials having both high heat resistance and optical properties such as transparency, wavelength dispersion of retardation, and photoelastic coefficient, and mechanical properties such as toughness and melt processability.
  • optical film properties such as retardation films have changed in optical properties and dimensions of the film in processes involving heating during polarizing plate and display assembly processes and in high-temperature and high-humidity environments.
  • heat resistance of the material There is a need to improve the heat resistance of the material.
  • material design is devised so that other characteristics are not impaired.
  • it improves the heat resistance by improving the glass transition temperature and lowering the water absorption rate, optical properties such as retardation wavelength dispersion, photoelastic coefficient, mechanical properties such as film toughness, and melt processing. Development of materials that optimize the balance of physical properties such as properties is required.
  • cycloolefin polymer which is widely used as a retardation film for liquid crystal displays, has a flat wavelength dispersion characteristic in which the retardation does not substantially change depending on the wavelength, and is a material having COP and reverse wavelength dispersion.
  • a retardation film made of a material having a positive wavelength dispersion is inferior in display characteristics such as hue and reflectance of the display.
  • the resin containing the SBI structural unit no study has been made with a view to controlling the wavelength dispersion of the retardation from such a viewpoint.
  • An object of the present invention is to solve the above-mentioned various problems and provide a polycarbonate resin excellent in various properties such as heat resistance, moist heat resistance, optical properties, weather resistance, and a molded product obtained using the same. It is in.
  • Another object of the present invention is to provide a polycarbonate resin and an optical film that solve the various problems described above and are excellent in optical properties, heat resistance, and melt processability.
  • a polycarbonate resin containing a specific amount of SBI structural units and a specific copolymerization component has physical properties such as heat and moisture resistance, optical properties, and weather resistance.
  • the present invention was found to be superior to the present invention.
  • the inventors of the present invention contain an SBI structural unit and control the ratio with various copolymer components, so that heat resistance, optical properties, melt processing are controlled.
  • the present inventors have found that a polycarbonate resin having excellent physical properties such as properties can be obtained, and have reached the present invention. That is, the gist of the present invention is as follows.
  • R 1 to R 6 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom.
  • R 1 to R 6 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom.
  • R 7 to R 10 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 6 to 20 carbon atoms, or Represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms
  • X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 6 to 20 carbon atoms, or (It represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and each X may be the same or different.
  • M and n are each independently an integer of 0 to 5.
  • R 11 to R 13 are each independently a direct bond or an alkylene group having 1 to 4 carbon atoms which may have a substituent
  • R 14 to R 19 Each independently has a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted aryl group having 4 to 10 carbon atoms, or a substituent.
  • R 14 ⁇ R 19 are identical to one another, different and have good, may form a ring adjacent the at least two groups are bonded to each other among the R 14 ⁇ R 19.
  • the polycarbonate resin according to any one of [1] to [3], wherein the glass transition temperature is 120 ° C. or higher and 200 ° C. or lower.
  • R 1 to R 6 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom.
  • the structural unit represented by the formula (1) is 1% by weight or more and 30% by weight.
  • the structural unit represented by the following formula (2) is 1% by weight or more and 70% by weight.
  • At least one structural unit selected from the following formulas (3) to (5) is 1 weight. % To 70% by weight of the polycarbonate resin according to any one of [5] to [7].
  • R 7 to R 10 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 6 to 20 carbon atoms, or Represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms
  • X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 6 to 20 carbon atoms, or (It represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and each X may be the same or different.
  • M and n are each independently an integer of 0 to 5.
  • R 11 to R 13 are each independently a direct bond or an alkylene group having 1 to 4 carbon atoms which may have a substituent
  • R 14 to R 19 Each independently has a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted aryl group having 4 to 10 carbon atoms, or a substituent.
  • R 14 ⁇ R 19 are identical to one another, different and have good, may form a ring adjacent the at least two groups are bonded to each other among the R 14 ⁇ R 19.
  • the polycarbonate resin according to 1.
  • the content of the carbonic acid diester in the polycarbonate resin is 1 to 300 ppm by weight, and the content of the monohydroxy compound derived from the carbonic acid diester is 1 to 1000 ppm by weight, and
  • R 1 to R 6 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom.
  • a polycarbonate resin molded article comprising the polycarbonate resin according to any one of [1] to [12].
  • a retardation film comprising the film according to [14].
  • the polycarbonate resin of the first aspect and the second aspect of the present invention has heat resistance, durability under high temperature and high humidity (wet heat resistance), optical characteristics, durability against UV light irradiation (weather resistance), etc. It can be used as a material used for a molded product obtained by injection molding or extrusion molding. In particular, it is suitably used for a transparent molded product application requiring wet heat resistance and weather resistance, a retardation film used for optical compensation of a liquid crystal display, an organic EL display and the like.
  • the polycarbonate resin of the third aspect of the present invention is excellent in optical properties, heat resistance, and melt processability, and can be used as a material used for optical films.
  • it is suitably used for a retardation film used for optical compensation such as a liquid crystal display and an organic EL display.
  • the “structural unit” means a partial structure sandwiched between adjacent linking groups in a polymer, a polymerization reactive group present at the terminal portion of the polymer, and a polymerization reactive group adjacent to the polymerization reactive group. A partial structure sandwiched between matching linking groups.
  • the polycarbonate resin includes a polyester carbonate resin.
  • the polyester carbonate resin refers to a polymer including a portion in which the structural unit constituting the polymer is linked not only by a carbonate bond but also by an ester bond.
  • the polycarbonate resin of the present invention is as follows. ⁇ First aspect> A polycarbonate resin comprising at least a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2): When the total weight of all structural units and linking groups constituting the polycarbonate resin is 100% by weight, The content of the structural unit represented by the following formula (1) is 1% by weight or more and 70% by weight or less, The content of the structural unit represented by the following formula (2) is 1% by weight or more and 70% by weight or less, A structural unit derived from at least one compound selected from an aliphatic dihydroxy compound, an alicyclic dihydroxy compound, a dihydroxy compound containing an acetal ring, an oxyalkylene glycol, a dihydroxy compound containing an aromatic component, and a diester compound is 0.1 A polycarbonate resin containing from 50% to 50% by weight.
  • R 1 to R 6 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom.
  • a polycarbonate resin comprising at least a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2):
  • the content of the structural unit represented by the following formula (1) is 1% by weight or more and 70% by weight or less
  • the content of the structural unit represented by the following formula (2) is 1% by weight or more and 70% by weight or less
  • R 1 to R 6 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom.
  • the resin includes at least a structural unit represented by the following formula (1), the glass transition temperature of the resin is 120 ° C. or higher and 180 ° C. or lower, a phase difference (R450) at a wavelength of 450 nm, and a phase difference (R550) at a wavelength of 550 nm
  • the value of the chromatic dispersion (R450 / R550) that is the ratio of the above is 0.50 or more and 1.03 or less.
  • R 1 to R 6 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom.
  • the polycarbonate resin of the first aspect and the second aspect of the present invention contains a structural unit represented by the following formula (1) in an amount of 1 wt% to 70 wt%. Moreover, the polycarbonate resin of the 3rd aspect of this invention contains the structural unit represented by following formula (1).
  • the content of the structural unit represented by the formula (1) is 1% by weight or more and 70% by weight or less.
  • the content of the structural unit represented by the formula (1) is preferably 5% by weight or more and 50% by weight or less, more preferably 8% by weight or more and 40% by weight or less, and more preferably 10% by weight or more and 30% by weight or less. Is more preferable.
  • the content of the structural unit represented by the formula (2) is 1% by weight or more and 70% by weight or less.
  • the content of the structural unit represented by the formula (2) is preferably 10% by weight to 65% by weight, and more preferably 20% by weight to 60% by weight.
  • An aromatic dihydroxy compound and an aliphatic dihydroxy compound have different proper temperature ranges for the polymerization reaction. Therefore, when the content of the structural unit represented by the formula (1) is larger than the above range, ISB or other aliphatic dihydroxy compounds. When copolymerizing with a compound, the reactivity at the end of the polymerization reaction may be insufficient, and the molecular weight may not be increased. Further, the polymerization reaction is delayed, so that the polymer is thermally deteriorated and the color tone may be remarkably deteriorated. On the other hand, when the content of the structural unit represented by the formula (1) is smaller than the above range, the effect of improving the heat and moisture resistance, which is a feature of the present invention, cannot be obtained sufficiently.
  • the heat resistance becomes excessively high, and the mechanical properties and melt processability deteriorate. Further, since the structural unit represented by the formula (2) has a highly hygroscopic structure, when the content is excessively large, the water absorption rate of the resin becomes high, and the molded product is deformed in a high humidity environment. There is a concern that cracks and the like may occur. On the other hand, when the content of the structural unit represented by the formula (2) is smaller than the above range, the heat resistance becomes insufficient, the high transmittance and the low photoelastic coefficient, which are the features of the polycarbonate resin of the present invention, and the like. There is a concern that the optical characteristics of the lens cannot be obtained.
  • the structural unit represented by the formula (1) is an aromatic structure, but the resin is less colored under UV light irradiation. . Therefore, a polycarbonate resin excellent in heat resistance, moist heat resistance and weather resistance can be obtained even if it is contained in a larger amount than a compound having a normal aromatic structure.
  • the structural unit represented by the formula (1) and the structural unit represented by the formula (2) are determined by a specific amount based on the study of the present inventors. It has been found that a polycarbonate resin excellent in heat resistance, moist heat resistance and weather resistance can be obtained.
  • the structural unit represented by the formula (1) is preferably 1% by weight or more and 30% by weight or less. It is more preferably 3% by weight or more and 25% by weight or less, and particularly preferably 5% by weight or more and 20% by weight or less.
  • the heat resistance may be excessively increased or the obtained resin may be brittle. Therefore, in order to advance the polymerization reaction to a sufficient molecular weight, it is necessary to increase the reaction temperature or lengthen the reaction time, so that the polymer may be thermally deteriorated and the color tone may be remarkably deteriorated.
  • the content of the structural unit represented by the formula (1) is smaller than the above range, the effect of improving heat resistance, which is a feature, cannot be sufficiently obtained.
  • the structural unit represented by the formula (1) is an aromatic structure, but the resin is less colored under UV light irradiation. . Therefore, even if the content is larger than that of a compound having a normal aromatic structure, it is possible to obtain a polycarbonate resin in which the polymer is hardly deteriorated by heat and the color tone is not easily deteriorated.
  • an aromatic structure tends to have a higher photoelastic coefficient than an aliphatic structure, but in the structural unit represented by the formula (1), two benzene rings are oriented at an angle close to orthogonal. Therefore, by canceling out each other's birefringence, it has a relatively low photoelastic coefficient, low birefringence, and flat wavelength dispersion characteristics despite aromaticity.
  • the structural unit represented by the formula (1) By appropriately combining the structural unit represented by the formula (1) and other structural units, it becomes possible to obtain a resin having high heat resistance and excellent optical properties.
  • dihydroxy compound A In order to introduce the structural unit represented by the formula (1), a dihydroxy compound represented by the following formula (6) (hereinafter sometimes referred to as “dihydroxy compound A”) is used as a monomer for polymerization. .
  • R 1 to R 6 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom.
  • R 1 to R 6 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom.
  • R 22 and R 23 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom.
  • the carbon number of R 1 to R 6 is usually 1 to 12, and 1 to 6 is preferable for obtaining the effects of the present invention.
  • examples of the alkyl group having 1 to 12 carbon atoms of R 1 to R 6 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec- Butyl, tert-butyl, n-pentyl, sec-pentyl, n-hexyl, cyclohexyl, o-methylcyclohexyl, m-methylcyclohexyl, p-methylcyclohexyl, n-octyl, cyclo Examples thereof include an octyl group and an n-dodecyl group.
  • R 1 to R 6 are methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group.
  • an alkyl group having 1 to 6 carbon atoms such as an n-pentyl group, a sec-pentyl group and an n-hexyl group is preferable, a methyl group, an ethyl group and an n-propyl group are more preferable, and a methyl group is more preferable.
  • Specific examples of the compound represented by the formula (6) include 6,6′-dihydroxy-3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane, 7,7 '-Dimethyl-6,6'-dihydroxy-3,3,3', 3'-tetramethyl-1,1'-spirobiindane, 7,7'-tert-butyl-6,6'-dihydroxy-3,3 , 3 ′, 3′-tetramethyl-1,1′-spirobiindane, 7,7′-diphenyl-6,6′-dihydroxy-3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane Etc.
  • 6,6′-dihydroxy-3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane, 7,7′- because of availability and balance of physical properties of the obtained polycarbonate resin.
  • Dimethyl-6,6′-dihydroxy-3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane is preferred, and 6,6′-dihydroxy-3,3,3 ′, 3′-tetramethyl -1,1'-spirobiindane is more preferred.
  • the polycarbonate resin of the first embodiment and the second embodiment of the present invention contains 1% by weight or more and 70% by weight or less of a structural unit represented by the following formula (2).
  • the polycarbonate resin of the third aspect of the present invention preferably contains a structural unit represented by the following formula (2).
  • the content of the structural unit represented by the formula (2) is the third content of the present invention when the total amount of all the structural units constituting the polycarbonate resin and the weight of the linking group is 100% by weight. In this embodiment, it is preferably 1% by weight or more and 70% by weight or less. In all the embodiments of the present invention, 10% by weight or more and 65% by weight or less is more preferable, and 20% by weight or more and 60% by weight or less is particularly preferable.
  • dihydroxy compound into which the structural unit represented by the formula (2) can be introduced examples include isosorbide (ISB), isomannide and isoidet which are in a stereoisomeric relationship (hereinafter referred to as “dihydroxy compound B”). Sometimes called). These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, it is most preferable to use ISB from the viewpoint of availability and polymerization reactivity.
  • the dihydroxy compound B may contain a stabilizer such as a basic stabilizer, a reducing agent, an antioxidant, an oxygen scavenger, a light stabilizer, an antacid, a pH stabilizer, or a heat stabilizer.
  • a stabilizer such as a basic stabilizer, a reducing agent, an antioxidant, an oxygen scavenger, a light stabilizer, an antacid, a pH stabilizer, or a heat stabilizer.
  • a basic stabilizer such as a basic stabilizer, a reducing agent, an antioxidant, an oxygen scavenger, a light stabilizer, an antacid, a pH stabilizer, or a heat stabilizer.
  • Examples of the basic stabilizer include hydroxides, carbonates, phosphates, phosphites, and hypophosphites of group 1 or group 2 metals in the long-period periodic table (Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005).
  • Acid salts, borates and fatty acid salts tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylphenylammonium hydroxide, Triethylmethylammonium hydroxide, triethylbenzylammonium hydroxide, triethylphenylan Basic ammonium compounds such as nium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium hydroxide, tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltriphenylammonium hydroxide and butyltriphenylammonium hydroxide; diethylamine , Dibutylamine,
  • the content of these basic stabilizers in the dihydroxy compound B is not particularly limited. However, since the dihydroxy compound B is unstable in an acidic state, the pH of the aqueous solution of the dihydroxy compound B containing the stabilizer is about 7. It is preferable to add a basic stabilizer.
  • the amount of the basic stabilizer is preferably 0.0001% by weight to 0.1% by weight and more preferably 0.001% by weight to 0.05% by weight with respect to the dihydroxy compound B. .
  • the dihydroxy compound B is easy to absorb moisture and is gradually oxidized by oxygen, it should not be mixed with moisture during storage or handling during manufacture, and a deoxygenating agent or a nitrogen atmosphere Or the like.
  • the polycarbonate resin of the first aspect of the present invention is selected from an aliphatic dihydroxy compound, an alicyclic dihydroxy compound, a dihydroxy compound containing an acetal ring, an oxyalkylene glycol, a dihydroxy compound containing an aromatic component, and a diester compound. It is characterized by containing 0.1 wt% or more and 50 wt% or less of a structural unit derived from at least one compound.
  • Examples of the monomer containing the structural unit include an aliphatic dihydroxy compound, an alicyclic dihydroxy compound, a dihydroxy compound containing an acetal ring, an oxyalkylene glycol, a dihydroxy compound containing an aromatic component, a diester compound, and the like. It is done.
  • aliphatic dihydroxy compounds, alicyclic dihydroxy compounds, dihydroxy compounds containing acetal rings, oxyalkylene glycols, and dihydroxy compounds containing aromatic components are preferred.
  • Compounds, alicyclic dihydroxy compounds, dihydroxy compounds containing an acetal ring, oxyalkylene glycols are more preferred, aliphatic dihydroxy compounds, alicyclic dihydroxy compounds, dihydroxy compounds containing an acetal ring are more preferred, aliphatic dihydroxy compounds Particularly preferred are alicyclic dihydroxy compounds.
  • aliphatic dihydroxy compound for example, the following dihydroxy compounds can be used.
  • Dihydroxy compounds of linear aliphatic hydrocarbons such as diol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol; dihydroxy compounds of branched aliphatic hydrocarbons such as neopentyl glycol and hexylene glycol Compound.
  • alicyclic dihydroxy compound for example, the following dihydroxy compounds can be used. 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, pentacyclopentadecane dimethanol, 2,6-decalin dimethanol, 1,5-decalindi Examples include dihydroxy compounds derived from terpene compounds such as methanol, 2,3-decalin dimethanol, 2,3-norbornane dimethanol, 2,5-norbornane dimethanol, 1,3-adamantane dimethanol and limonene.
  • Dihydroxy compounds which are primary alcohols of alicyclic hydrocarbons; 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,3-adamantanediol, hydrogenated bisphenol A, 2,2,4,4- Tetramethyl-1,3-cyclobutane Illustrated in ol, dihydroxy compound is a secondary alcohol and tertiary alcohol alicyclic hydrocarbon.
  • dihydroxy compound containing an acetal ring examples include spiro glycol represented by the following structural formula (10) and dioxane glycol represented by the following structural formula (11).
  • oxyalkylene glycols for example, the following dihydroxy compounds can be used. Diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, polypropylene glycol.
  • dihydroxy compound containing an aromatic component for example, the following dihydroxy compounds can be used.
  • the diester compound for example, the following dicarboxylic acids can be used. Terephthalic acid, phthalic acid, isophthalic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-benzophenone dicarboxylic acid, 4,4'-diphenoxyethanedicarboxylic acid, 4,4 Aromatic dicarboxylic acids such as' -diphenylsulfone dicarboxylic acid and 2,6-naphthalenedicarboxylic acid; 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, decalin-2,6 Alicyclic dicarboxylic acids such as dicarboxylic acids; aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, sub
  • dicarboxylic acid components can be used as raw materials for polyester carbonate as the dicarboxylic acid itself, but depending on the production method, dicarboxylic acid esters such as methyl ester and phenyl ester, and dicarboxylic acids such as dicarboxylic acid halides. Derivatives can also be used as raw materials.
  • an aromatic component in the main chain or side chain of the polymer in order to balance the heat resistance and mechanical properties while ensuring optical properties.
  • the aromatic component can be introduced into the polymer by the other structural unit containing an aromatic structure, but the content of these structural units in the polycarbonate resin constitutes the polycarbonate resin.
  • the total amount of all the structural units and couplers is 100% by weight, 5% by weight or less is preferable, and 3% by weight or less is more preferable.
  • the amount of other structural units containing an aromatic structure is increased, there is a concern that the weather resistance and the photoelastic coefficient are deteriorated.
  • aliphatic dihydroxy compounds As at least one compound selected from the above-mentioned aliphatic dihydroxy compounds, alicyclic dihydroxy compounds, dihydroxy compounds containing an acetal ring, oxyalkylene glycols, dihydroxy compounds containing an aromatic component, and diester compounds, 1,6- Hexanediol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, spiroglycol, 1,4-cyclohexanedicarboxylic acid, decalin-2, It is particularly preferred to use 6-dicarboxylic acid (and its derivatives).
  • Polycarbonate resins containing structural units derived from these monomers have an excellent balance of optical properties, heat resistance, mechanical properties, and the like.
  • the polymerization reactivity of the diester compound is relatively low, it is more preferable not to use a diester compound other than the diester compound having an oligofluorene structural unit from the viewpoint of increasing the reaction efficiency.
  • dihydroxy compounds and diester compounds may be used singly or in combination of two or more depending on the required performance of the obtained resin.
  • the content is 0.1% by weight or more and 50% by weight or less when the total amount of all structural units constituting the polycarbonate resin and the weight of the coupler is 100% by weight, 1% by weight or more, It is more preferably 45% by weight or less, and particularly preferably 3% by weight or more and 40% by weight or less.
  • the other structural units mainly play a role in adjusting the heat resistance of the resin and imparting flexibility and toughness. If the content is too small, the mechanical properties and melt processability of the resin will deteriorate, and the content will be high. If it is too high, heat resistance and optical properties may be deteriorated.
  • the polycarbonate resin according to the second aspect of the present invention is characterized in that it contains 1 wt% or more and 70 wt% or less of a structural unit derived from a compound having negative intrinsic birefringence.
  • the polycarbonate resin of the third aspect of the present invention can adjust the wavelength dispersion (R450 / R550) to a preferred value by including a structural unit derived from a compound having negative intrinsic birefringence.
  • the compound having negative intrinsic birefringence is a compound having physical properties such that when a film made of a homopolymer of the compound is stretched, the slow axis is in a direction perpendicular to the stretching direction.
  • a structural unit selected from structural units represented by the following formulas (3) to (5) may be contained.
  • the bifunctional monomer containing structural units represented by the following formulas (3) to (5) may be referred to as “fluorene monomer”.
  • the structural units represented by the following formulas (4) and (5) may be referred to as “oligofluorene structural units”.
  • R 7 to R 10 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 6 to 20 carbon atoms, or Represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms
  • X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 6 to 20 carbon atoms, or (It represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and each X may be the same or different.
  • M and n are each independently an integer of 0 to 5.
  • R 11 to R 13 are each independently a direct bond or an alkylene group having 1 to 4 carbon atoms which may have a substituent
  • R 14 to R 19 Each independently has a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted aryl group having 4 to 10 carbon atoms, or a substituent.
  • R 14 ⁇ R 19 are identical to one another, different and have good, may form a ring adjacent the at least two groups are bonded to each other among the R 14 ⁇ R 19. )
  • the flat wavelength dispersion can be adjusted to the reverse wavelength dispersion depending on the content of the structural unit derived from the compound having negative intrinsic birefringence.
  • the content of the structural unit derived from the compound having negative intrinsic birefringence is different in the expression of reverse wavelength dispersion depending on the structure, but in order to obtain optimum wavelength dispersion characteristics as a retardation film, a polycarbonate resin is formed.
  • a polycarbonate resin is formed in the third aspect of the present invention.
  • the content is more preferably 3% by weight or more and 65% by weight or less, and particularly preferably 5% by weight or more and 60% by weight or less.
  • the structural unit derived from the compound having negative intrinsic birefringence weakens the birefringence in the stretching direction, when the content in the resin is larger than the above range, the birefringence becomes too small, and the desired unit There is a possibility that a phase difference cannot be obtained. Moreover, since the ratio of other copolymerization components decreases, it becomes difficult to adjust the balance of other properties such as heat resistance and mechanical properties.
  • dihydroxy compound used for introducing the structural unit represented by the formula (3) include 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene, 9,9 -Bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis (4- (2-hydroxypropoxy) phenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-methylphenyl) fluorene, 9,9-bis (4- (2-hydroxypropoxy) -3-methylphenyl) fluorene, 9,9-bis (4- (2- Hydroxyethoxy) -3-isopropylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-isobutylphenyl) fluor 9,9-bis (4- (2-hydroxyethoxy) -3-tert-butylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy)
  • R 7 and R in the formula (3) 8 is preferably a hydrogen atom or a methyl group
  • R 9 and R 10 are preferably a hydrogen atom.
  • m and n are preferably 0 or 1
  • two Xs are preferably the same, and an ethylene group is preferred.
  • 9,9-bis (4- (2-hydroxyethoxy) phenyl) is excellent in terms of various properties such as heat resistance, optical physical properties, mechanical properties, and availability. Fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene are particularly preferred.
  • examples of the “optionally substituted alkylene group having 1 to 4 carbon atoms” include the following alkylene groups. It can. Linear alkylene group such as methylene group, ethylene group, n-propylene group, n-butylene group; methylmethylene group, dimethylmethylene group, ethylmethylene group, propylmethylene group, (1-methylethyl) methylene group, 1 -Methylethylene group, 2-methylethylene group, 1-ethylethylene group, 2-ethylethylene group, 1-methylpropylene group, 2-methylpropylene group, 1,1-dimethylethylene group, 2,2-dimethylpropylene group , A branched alkylene group such as a 3-methylpropylene group.
  • the position of the branched chain in R 11 and R 12 is indicated by a number assigned so that the carbon on the fluorene ring side is in the first position.
  • R 11 and R 12 has a particularly important influence on the development of reverse wavelength dispersion.
  • the fluorene ring in the fluorene-based monomer structure is oriented perpendicular to the main chain direction (stretching direction)
  • the strongest reverse wavelength dispersion is exhibited.
  • the number of carbon atoms is 1, surprisingly, reverse wavelength dispersion may not be exhibited.
  • the reason why the reverse wavelength dispersion is not exhibited is that the orientation of the fluorene ring is perpendicular to the main chain direction due to the steric hindrance of the carbonate group or ester group which is the linking group of the oligofluorene structural unit. It may be fixed in a direction that is not.
  • the reverse wavelength dispersibility may be weakened due to weak fixation of the orientation of the fluorene ring.
  • the heat resistance of the resin tends to decrease.
  • R 11 and R 12 are either an oxygen atom in which one end of an alkylene group is bonded to a fluorene ring and the other end is contained in a linking group or a carbonyl carbon. Are connected. From the viewpoints of thermal stability, heat resistance, and reverse wavelength dispersion, it is preferable that the other end of the alkylene group is bonded to the carbonyl carbon.
  • a diol or diester structure hereinafter, the diester also includes a dicarboxylic acid
  • polymerization is preferably performed using the diester as a raw material. Further, from the viewpoint of facilitating production, it is preferable to employ the same alkylene group for R 11 and R 12 .
  • alkylene group having 1 to 4 carbon atoms for example, the following alkylene groups can be employed.
  • Linear alkylene group such as methylene group, ethylene group, n-propylene group, n-butylene group; methylmethylene group, dimethylmethylene group, ethylmethylene group, propylmethylene group, (1-methylethyl) methylene group, 1 -Methylethylene group, 2-methylethylene group, 1-ethylethylene group, 2-ethylethylene group, 1-methylpropylene group, 2-methylpropylene group, 1,1-dimethylethylene group, 2,2-dimethylpropylene group , An alkylene group having a branched chain such as a 3-methylpropylene group.
  • R 13 preferably has 1 to 2 carbon atoms on the main chain of the alkylene group, and particularly preferably 1 carbon atom.
  • R 13 having too many carbons on the main chain is employed, the fixation of the fluorene ring is weakened similarly to R 11 and R 12 , the reverse wavelength dispersion is decreased, the photoelastic coefficient is increased, and the heat resistance is decreased. Etc. may be caused.
  • the smaller the number of carbons on the main chain the better the optical properties and heat resistance, but the thermal stability deteriorates when the 9-positions of the two fluorene rings are connected by a direct bond.
  • the fluorene ring contained in the oligofluorene structural unit has a configuration in which all of R 14 to R 19 are hydrogen atoms, or R 14 and / or R 19 are a halogen atom, an acyl group, a nitro group, a cyano group, and a sulfo group. It is preferably any one selected from the group consisting of a group, and any structure in which R 15 to R 18 are hydrogen atoms.
  • the compound containing the oligofluorene structural unit can be derived from fluorene which is industrially inexpensive. Further, in the case of having the latter configuration, the reactivity at the 9th position of fluorene is improved, so that various induction reactions tend to be adaptable in the process of synthesizing the compound containing the oligofluorene structural unit.
  • the fluorene ring is selected from a group in which all of R 14 to R 19 are hydrogen atoms, or R 14 and / or R 19 are selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, and a nitro group. It is more preferable that R 15 to R 18 are hydrogen atoms, and a configuration in which all of R 14 to R 19 are hydrogen atoms is particularly preferable.
  • the fluorene ratio can be increased, steric hindrance between fluorene rings hardly occurs, and desired optical characteristics derived from the fluorene ring tend to be obtained.
  • Examples of the monomer having an oligofluorene structural unit include a specific dihydroxy compound represented by the following formula (7) and a specific diester represented by the following formula (8).
  • R 11 to R 13 are each independently a direct bond or an alkylene group having 1 to 4 carbon atoms which may have a substituent
  • R 14 to R 19 Each independently has a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted aryl group having 4 to 10 carbon atoms, or a substituent.
  • R 14 ⁇ R 19 are identical to one another, different and have good, may form a ring adjacent the at least two groups are bonded to each other among the R 14 ⁇ R 19.
  • a 1 and A 2 are each a hydrogen atom, an aliphatic hydrocarbon group having 1 to 18 carbon atoms which may have a substituent, or an aromatic hydrocarbon group which may have a substituent, A 1 and A 2 may be the same or different.
  • the monomer having the divalent oligofluorene structural unit it is preferable to use a specific diester represented by the formula (8).
  • the specific diester is relatively better in thermal stability than the specific dihydroxy compound represented by the formula (7), and the fluorene ring in the polymer is oriented in a preferred direction, resulting in stronger reverse wavelength dispersion. There is a tendency to show sex.
  • the polycarbonate resin contains a diester structural unit, the resin is referred to as a polyester carbonate resin.
  • a 1 and A 2 in the formula (8) are a hydrogen atom or an aliphatic hydrocarbon group such as a methyl group or an ethyl group, the polymerization reaction may hardly occur under the polymerization conditions of a polycarbonate that is usually used. is there. Therefore, A 1 and A 2 in the formula (8) are preferably aromatic hydrocarbon groups.
  • the polycarbonate resin of the second aspect and the third aspect of the present invention may contain structural units other than the structural units described above (hereinafter may be referred to as “other structural units”).
  • the monomer containing the structural unit include, for example, the aliphatic dihydroxy compound, the alicyclic dihydroxy compound, the dihydroxy compound containing an acetal ring, the oxyalkylene glycols, and the aromatic component described in the first embodiment of the present invention. Dihydroxy compounds, diester compounds and the like.
  • aliphatic dihydroxy compounds, alicyclic dihydroxy compounds, dihydroxy compounds containing acetal rings, oxyalkylene glycols, and dihydroxy compounds containing aromatic components are preferred.
  • Compounds, alicyclic dihydroxy compounds, dihydroxy compounds containing an acetal ring, oxyalkylene glycols are more preferred, aliphatic dihydroxy compounds, alicyclic dihydroxy compounds, dihydroxy compounds containing an acetal ring are more preferred, aliphatic dihydroxy compounds Particularly preferred are alicyclic dihydroxy compounds.
  • aliphatic dihydroxy compounds aliphatic dihydroxy compounds, alicyclic dihydroxy compounds, dihydroxy compounds containing acetal rings, oxyalkylene glycols, dihydroxy compounds containing aromatic components and diester compounds are the compounds described above in the first aspect of the present invention. Can be used.
  • the other structural units listed above that do not contain an aromatic component, but in order to balance the heat resistance and mechanical properties while ensuring the optical properties.
  • the aromatic component can be introduced into the polymer by the other structural unit containing an aromatic structure.
  • the content of these structural units in the resin of the present invention is a polycarbonate resin. Is preferably 5% by weight or less, assuming that the total amount of all the structural units constituting and the linking group is 100% by weight.
  • Monomers having other structural units listed above include 1,6-hexanediol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1,4-cyclohexanedimethanol, tricyclodeoxy It is particularly preferable to use candimethanol, spiroglycol, 1,4-cyclohexanedicarboxylic acid, decalin-2,6-dicarboxylic acid (and its derivatives). Resins containing structural units derived from these monomers have an excellent balance of optical properties, heat resistance, mechanical properties, and the like.
  • the polymerization reactivity of the diester compound is relatively low, it is more preferable not to use a diester compound other than the diester compound having an oligofluorene structural unit from the viewpoint of increasing the reaction efficiency.
  • ⁇ Dihydroxy compounds and diester compounds for introducing other structural units may be used alone or in combination of two or more according to the required performance of the obtained resin.
  • the content of other structural units in the resin is 0.1% by weight or more and 50% by weight or less when the total amount of all the structural units constituting the polycarbonate resin and the weight of the linking group is 100% by weight. 1 wt% or more and 45 wt% or less is more preferable, and 3 wt% or more and 40 wt% or less is particularly preferable.
  • the other structural units mainly play a role in adjusting the heat resistance of the resin and imparting flexibility and toughness. If the content is too small, the mechanical properties and melt processability of the resin will deteriorate, and the content will be high. If it is too high, heat resistance and optical properties may be deteriorated.
  • Carbonated diester The linking group of the structural unit contained in the polycarbonate resin of the present invention is introduced by polymerizing a carbonic acid diester represented by the following formula (12).
  • a 3 and A 4 are each an aliphatic hydrocarbon group having 1 to 18 carbon atoms which may have a substituent, or an aromatic hydrocarbon which may have a substituent. And A 3 and A 4 may be the same or different.
  • a 3 and A 4 are preferably a substituted or unsubstituted aromatic hydrocarbon group, and more preferably an unsubstituted aromatic hydrocarbon group.
  • substituent of the aliphatic hydrocarbon group include an ester group, an ether group, a carboxylic acid, an amide group, and a halogen.
  • substituent of the aromatic hydrocarbon group include an alkyl group such as a methyl group and an ethyl group. Is mentioned.
  • Examples of the carbonic acid diester represented by the formula (12) include diphenyl carbonate (hereinafter sometimes abbreviated as DPC), substituted diphenyl carbonate such as ditolyl carbonate, dimethyl carbonate, diethyl carbonate, and di-tert- Dialkyl carbonates such as butyl carbonate are exemplified, but preferred are diphenyl carbonate and substituted diphenyl carbonate, and particularly preferred is diphenyl carbonate.
  • DPC diphenyl carbonate
  • substituted diphenyl carbonate such as ditolyl carbonate, dimethyl carbonate, diethyl carbonate
  • di-tert- Dialkyl carbonates such as butyl carbonate
  • diphenyl carbonate and substituted diphenyl carbonate are exemplified, but preferred are diphenyl carbonate and substituted diphenyl carbonate, and particularly preferred is diphenyl carbonate.
  • Carbonic acid diesters may contain impurities such as chloride ions, which may hinder the polymerization reaction or deteriorate the hue of the resulting resin. It is preferable to use it.
  • a 1 to A 4 are particularly preferably phenyl groups.
  • the component that is eliminated during the polymerization reaction is phenol.
  • the polycarbonate resin of the present invention can be produced by a generally used polymerization method.
  • it can be produced using a solution polymerization method or an interfacial polymerization method using phosgene or a carboxylic acid halide, or a melt polymerization method in which a reaction is performed without using a solvent.
  • a melt polymerization method it is preferable to produce by a melt polymerization method that can reduce environmental burden because it does not use a solvent or a highly toxic compound, and is excellent in productivity.
  • the solvent may remain in the resin, and the glass transition temperature of the resin is lowered due to its plasticizing effect, which causes quality fluctuations in processing steps such as molding and stretching described later. obtain.
  • a halogen-based organic solvent such as methylene chloride is often used as the solvent.
  • the metal part is formed when a molded body using the resin is incorporated into an electronic device or the like. It can also cause corrosion. Since the resin obtained by the melt polymerization method does not contain a solvent, it is advantageous for stabilization of processing steps and product quality.
  • the monomer having the above-mentioned structural unit, a carbonic acid diester, and a polymerization catalyst are mixed and subjected to an ester exchange reaction (also referred to as a polycondensation reaction) under melting.
  • the reaction rate is increased while removing the desorbed components out of the system.
  • the reaction proceeds to the target molecular weight under conditions of high temperature and high vacuum.
  • the reaction is completed, the molten resin is extracted from the reactor, and the polycarbonate resin of the present invention is obtained.
  • the reaction rate and the molecular weight of the resulting resin can be controlled by strictly adjusting the molar ratio of all dihydroxy compounds and all diester compounds used in the reaction.
  • the molar ratio of the carbonic acid diester to the total dihydroxy compound is preferably adjusted to 0.90 to 1.10, more preferably 0.96 to 1.05, and 0.98 to 1 It is particularly preferable to adjust to 0.03.
  • the molar ratio of the total amount of the carbonic acid diester and the total diester compound to the total dihydroxy compound is preferably adjusted to 0.90 to 1.10, and adjusted to 0.96 to 1.05. It is more preferable to adjust to 0.98 to 1.03.
  • the molar ratio deviates greatly in the vertical direction, a resin having a desired molecular weight cannot be produced. Moreover, when the said molar ratio becomes small too much, the hydroxyl-group terminal of manufactured resin will increase and the thermal stability of resin may deteriorate. In addition, a large amount of unreacted dihydroxy compound remains in the resin, which may cause dirt on the molding machine and poor appearance of the molded product in the subsequent molding process. On the other hand, if the molar ratio becomes too large, the rate of transesterification reaction decreases under the same conditions, or the residual amount of carbonic acid diester or diester compound in the produced resin increases. Similarly, there may be a problem in the molding process.
  • the melt polymerization method is usually carried out in a multistage process of two or more stages.
  • the polycondensation reaction may be carried out in two or more steps by changing the conditions sequentially using one polymerization reactor, or two or more steps by changing the respective conditions using two or more reactors. However, from the viewpoint of production efficiency, it is carried out using two or more, preferably three or more reactors.
  • the polycondensation reaction may be any of a batch system, a continuous system, or a combination of a batch system and a continuous system, but a continuous system is preferred from the viewpoint of production efficiency and quality stability.
  • the polymerization rate of the polycondensation reaction is controlled by the balance between the hydroxy group end and the ester group end or carbonate group end. Therefore, particularly in the case of performing polymerization in a continuous manner, if the balance of the end groups varies due to the distillation of unreacted monomers, it is difficult to control the polymerization rate to be constant, and the variation in the molecular weight of the resulting resin may increase. There is. Since the molecular weight of the resin correlates with the melt viscosity, when the obtained resin is molded, the melt viscosity fluctuates, and there is a possibility that a molded product having a uniform dimension cannot be obtained.
  • the wavelength dispersion of the retardation is controlled by the ratio of the fluorene-based monomer in the resin and other copolymerization components, so if the ratio collapses during polymerization, the optical characteristics as designed May not be obtained.
  • the process of the melt polycondensation reaction will be described by dividing it into a stage where a monomer is consumed to produce an oligomer and a stage where polymerization is advanced to a desired molecular weight to produce a polymer.
  • the internal temperature of the polymerization reactor is usually 130 ° C. or higher, preferably 150 ° C. or higher, more preferably 170 ° C. or higher, and usually 250 ° C. or lower, preferably 240 ° C. or lower, more preferably 230 ° C. or lower.
  • the pressure in the polymerization reactor is usually 70 kPa or less (hereinafter, pressure represents an absolute pressure), preferably 50 kPa or less, more preferably 30 kPa or less, and usually 1 kPa or more, preferably 3 kPa or more, more preferably. Set in the range of 5 kPa or more.
  • the reaction time is usually set in the range of 0.1 hour or longer, preferably 0.5 hour or longer, and usually 10 hours or shorter, preferably 5 hours or shorter, more preferably 3 hours or shorter.
  • the first stage reaction is carried out while distilling out the generated monohydroxy compound derived from the diester compound out of the reaction system.
  • the monohydroxy compound distilled out of the reaction system in the first stage reaction is phenol.
  • the lower the reaction pressure the more the polymerization reaction can be promoted.
  • the unreacted monomer is distilled off more.
  • it is effective to use a reactor equipped with a reflux condenser In order to achieve both suppression of distillation of unreacted monomer and promotion of reaction by reduced pressure, it is effective to use a reactor equipped with a reflux condenser. In particular, it is preferable to use a reflux condenser at the beginning of the reaction with a large amount of unreacted monomers.
  • the pressure of the reaction system is gradually decreased from the pressure of the first stage, and the monohydroxy compound generated subsequently is removed from the reaction system.
  • it is 3 kPa or less, more preferably 1 kPa or less.
  • the internal temperature is usually set in the range of 210 ° C. or higher, preferably 220 ° C. or higher, and usually 270 ° C. or lower, preferably 260 ° C. or lower.
  • the reaction time is usually 0.1 hours or longer, preferably 0.5 hours or longer, more preferably 1 hour or longer, and usually 10 hours or shorter, preferably 5 hours or shorter, more preferably 3 hours or shorter.
  • the maximum internal temperature in all reaction stages is 270 ° C. or lower, preferably 265 ° C. or lower, more preferably 260 ° C. or lower. Good.
  • a transesterification catalyst that can be used at the time of polymerization (hereinafter sometimes simply referred to as a catalyst or a polymerization catalyst) can have a great influence on the reaction rate and the color tone and thermal stability of a resin obtained by polycondensation. .
  • the catalyst used is not limited as long as it can satisfy the transparency, hue, heat resistance, thermal stability, and mechanical strength of the produced resin, but it is not limited to Group 1 or Group 2 in the long-period periodic table.
  • Group 1 and “Group 2”) include basic compounds such as metal compounds, basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds.
  • at least one metal compound selected from the group consisting of a long-period periodic table group 2 metal and lithium is used.
  • group 1 metal compound for example, the following compounds can be employed, but other group 1 metal compounds can also be employed.
  • the group 2 metal compound for example, the following compounds can be employed, but other group 2 metal compounds can also be employed.
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, and an amine compound can be used in combination with the aforementioned Group 1 metal compound and / or Group 2 metal compound.
  • a metal compound selected from the group consisting of metals of Group 2 of the long-period periodic table and lithium can be used in combination with the aforementioned Group 1 metal compound and / or Group 2 metal compound.
  • the amount of the polymerization catalyst used is usually 0.1 ⁇ mol to 300 ⁇ mol, preferably 0.5 ⁇ mol to 100 ⁇ mol, per 1 mol of all dihydroxy compounds used in the polymerization.
  • the polymerization catalyst when using at least one metal compound selected from the group consisting of a metal of Group 2 of the long-period periodic table and lithium, particularly when using a magnesium compound and / or a calcium compound, the amount of metal is The polymerization catalyst is usually used in an amount of 0.1 ⁇ mol or more, preferably 0.3 ⁇ mol or more, particularly preferably 0.5 ⁇ mol or more, per 1 mol of the total dihydroxy compound.
  • the amount of the polymerization catalyst used is preferably 30 ⁇ mol or less, preferably 20 ⁇ mol or less, particularly preferably 10 ⁇ mol or less.
  • a polyester carbonate resin is produced using a diester compound as a monomer, a titanium compound, a tin compound, a germanium compound, an antimony compound, a zirconium compound, lead, with or without the use of the basic compound.
  • a transesterification catalyst such as a compound, an osmium compound, a zinc compound, or a manganese compound can also be used.
  • the amount of these transesterification catalysts used is usually in the range of 1 ⁇ mol to 1 mmol, preferably in the range of 5 ⁇ mol to 800 ⁇ mol, particularly preferably in terms of the amount of metal with respect to 1 mol of all dihydroxy compounds used in the reaction. 10 ⁇ mol to 500 ⁇ mol.
  • the amount of the catalyst is too small, the polymerization rate is slowed down. Therefore, in order to obtain a resin having a desired molecular weight, the polymerization temperature must be increased accordingly. For this reason, there is a high possibility that the hue of the resulting resin will deteriorate, and the unreacted raw material may volatilize during the polymerization, causing the molar ratio of the dihydroxy compound and the diester compound to collapse and not reaching the desired molecular weight. There is. On the other hand, if the amount of the polymerization catalyst used is too large, undesirable side reactions may occur, which may lead to deterioration of the hue of the resulting resin and coloring or decomposition of the resin during molding.
  • the total amount of these metal compounds in the resin is preferably 2 ⁇ mol or less, preferably 1 ⁇ mol or less, more preferably 0.5 ⁇ mol or less, per 1 mol of the total dihydroxy compound as the metal amount.
  • the polycarbonate resin of the present invention can be polymerized as described above and then usually cooled and solidified, and pelletized with a rotary cutter or the like.
  • the method of pelletization is not limited, but it is extracted from the final stage polymerization reactor in a molten state, cooled and solidified in the form of a strand and pelletized, uniaxially or in a molten state from the final stage polymerization reactor.
  • the resin is supplied to a twin-screw extruder, melt-extruded, cooled and solidified into pellets, or extracted from the polymerization reactor in the final stage in a molten state, cooled and solidified in the form of strands, and pelletized once. Examples thereof include a method in which the resin is supplied again to the single-screw or twin-screw extruder, melt-extruded, and then cooled, solidified, and pelletized.
  • the molecular weights of the polycarbonate resins of the first and second embodiments thus obtained can be represented by reduced viscosity. If the reduced viscosity of the resin is too low, the mechanical strength of the molded product may be reduced. Therefore, the reduced viscosity is usually 0.20 dL / g or more, and preferably 0.25 dL / g or more. On the other hand, if the reduced viscosity of the resin is too large, the fluidity during molding decreases, and the productivity and moldability tend to decrease. Therefore, the reduced viscosity is usually 1.00 dL / g or less, preferably 0.80 dL / g or less, and more preferably 0.70 dL / g or less.
  • the molecular weight of the polycarbonate resin of the third aspect of the present invention can be expressed by reduced viscosity. If the reduced viscosity of the resin is too low, the mechanical strength of the molded product may be reduced. Therefore, the reduced viscosity is usually 0.20 dL / g or more, and preferably 0.25 dL / g or more. On the other hand, if the reduced viscosity of the resin is too large, the fluidity during molding decreases, and the productivity and moldability tend to decrease. Therefore, the reduced viscosity is usually 0.80 dL / g or less, preferably 0.70 dL / g or less, and more preferably 0.60 dL / g or less.
  • the reduced viscosity is measured using a Ubbelohde viscometer at a temperature of 20.0 ° C. ⁇ 0.1 ° C. with a sample concentration precisely adjusted to 0.6 g / dL using methylene chloride as a solvent.
  • the reduced viscosity has a correlation with the melt viscosity of the resin
  • the stirring power of the polymerization reactor, the discharge pressure of the gear pump for transferring the molten resin, and the like can be used as indicators for operation management. That is, when the indicated value of the operating device reaches the target value, the polymerization reaction is stopped by returning the pressure of the reactor to normal pressure or by extracting the resin from the reactor.
  • the melt viscosity of the polycarbonate resin of the present invention is preferably 800 Pa ⁇ s or more and 7000 Pa ⁇ s or less under measurement conditions of a temperature of 240 ° C. and a shear rate of 91.2 sec ⁇ 1 .
  • the lower limit of the melt viscosity is 900 Pa. s or more, 1000 Pa. s or more, 1100 Pa. s or more, 1200 Pa. It is more preferable in the order of s or more, more preferably 1500 Pa ⁇ s or more, and particularly preferably 2000 Pa ⁇ s or more.
  • the upper limit of the melt viscosity is more preferably 6500 Pa ⁇ s or less, further preferably 6000 Pa ⁇ s or less, particularly preferably 5500 Pa ⁇ s or less, and 5000 Pa ⁇ s. Most preferred is s or less.
  • the melt viscosity is measured using a capillary rheometer (manufactured by Toyo Seiki Seisakusho). When the melt viscosity is within the above range, melt processing is possible in a temperature range that has sufficient mechanical properties and can suppress thermal degradation of the resin.
  • the glass transition temperature of the polycarbonate resin of the first and second aspects of the present invention is preferably 120 ° C. or higher and 200 ° C. or lower.
  • the lower limit is more preferably 125 ° C or higher, 130 ° C or higher, and 135 ° C or higher, more preferably 140 ° C or higher, and particularly preferably 150 ° C or higher.
  • the upper limit is more preferably 190 ° C. or lower, further preferably 190 ° C. or lower, particularly preferably 180 ° C. or lower, and particularly preferably 170 ° C. or lower.
  • the glass transition temperature of the polycarbonate resin of the third aspect of the present invention is 120 ° C. or higher and 180 ° C. or lower.
  • the lower limit is more preferably 125 ° C or higher, 130 ° C or higher, and 140 ° C or higher, more preferably 150 ° C or higher, and particularly preferably 155 ° C or higher.
  • the upper limit is more preferably 175 ° C. or less, and particularly preferably 170 ° C. or less.
  • the glass transition temperature can be adjusted by the copolymerization ratio of the structural units used in the present invention and other structural units. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, and the reliability of various physical properties (optical properties, mechanical properties, dimensions, etc.) of the molded article in the use environment may be deteriorated. On the other hand, if the glass transition temperature is excessively high, the melt processability is deteriorated, the dimensional accuracy of the molded product is deteriorated, and the transparency may be impaired.
  • DPC diphenyl carbonate
  • the monohydroxy compound derived from carbonic acid diester contained in the resin is preferably 1000 ppm by weight or less. It is preferably 700 ppm by weight or less, and particularly preferably 500 ppm by weight or less.
  • the monohydroxy compound is preferably as low as possible, but it is difficult to make the monohydroxy compound remaining in the resin zero by the melt polymerization method. Requires excessive effort.
  • the above-mentioned problem can be sufficiently suppressed by reducing the content of the monohydroxy compound to 1 ppm by weight.
  • the resin is devolatilized with an extruder, and the pressure at the end of polymerization is 3 kPa or less, preferably 2 kPa. In the following, it is more effective to set the pressure to 1 kPa or less.
  • the end group balance can be adjusted by the molar ratio of the total dihydroxy compound and the total diester compound.
  • unreacted monomer components may become residual low molecular components in the resin.
  • diester carbonate and a dihydroxy compound containing the SBI structural unit represented by the formula (6) are likely to remain. Similar to the residual monohydroxy compound, these components can be reduced to a specific amount or less by controlling the end group balance and the reaction pressure at the end of the polymerization, or by devolatilizing the resin with an extruder.
  • the content of carbonic acid diester is preferably 300 ppm by weight or less, more preferably 200 ppm by weight or less, and particularly preferably 150 ppm by weight or less.
  • 1000 weight ppm or less is preferable, as for content of the dihydroxy compound represented by said Formula (6), 700 weight ppm or less is more preferable, and 500 weight ppm or less is especially preferable.
  • the carbonic acid diester and the dihydroxy compound represented by the formula (6) are preferably as low as possible.
  • the carbonic acid diester remaining in the resin is zero. This is difficult, and excessive effort is required for removal.
  • the above problem can be sufficiently suppressed by reducing the content of carbonic acid diester to 1 ppm by weight.
  • the pencil hardness of the polycarbonate resin of the first aspect and the second aspect of the present invention is preferably HB or more, and more preferably F or more. Since the structural unit represented by the formula (1) or (2) used in the present invention is a component having a relatively high pencil hardness, the above pencil hardness is achieved by increasing the copolymerization ratio thereof. It becomes possible to do.
  • the polycarbonate resin of the first aspect and the second aspect of the present invention has a difference ( ⁇ YI) before and after ultraviolet irradiation of YI (yellowness index) of a 3 mm-thick plate molded body under the conditions of a weather resistance test described later. It is preferable that it is 1.0 or less. Furthermore, it is preferable that it is 0.8 or less, and it is preferable that it is 0.5 or less.
  • the above-mentioned ⁇ YI can be reduced by adding an ultraviolet absorber described later to the polycarbonate resin.
  • the ultraviolet absorber is necessary. Since the amount increases, the ultraviolet absorbent bleeds out during the molding process, which easily causes problems such as dirt on the molding machine and poor appearance of the molded product.
  • the polycarbonate resin of the first aspect and the second aspect of the present invention preferably does not cause a change in shape of the plate molded body, whitening or cracking in a boiling water immersion test described later. By having such characteristics, it can be suitably used for applications that require reliability under conditions of high temperature and high humidity.
  • the moisture and heat resistance as described above can be achieved by increasing the glass transition temperature of the polycarbonate resin and decreasing the water absorption rate. These physical properties can be adjusted by the copolymerization ratios of various structural units used in the present invention.
  • the photoelastic coefficient of the polycarbonate resin of the present invention is preferably 30 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 25 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and 20 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less. More preferably, it is particularly preferably 17 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
  • the photoelastic coefficient is excessively large, when the retardation film is bonded to a polarizing plate, there is a possibility that the image quality is deteriorated so that the periphery of the screen is blurred in white. This problem is particularly noticeable when used in large display devices and flexible displays.
  • the polycarbonate resin of the present invention is composed of the structural unit represented by the above formula (1) and an aliphatic structural unit, and by using no other aromatic structure, the photoelastic coefficient can be kept low. .
  • the polycarbonate resin of the present invention preferably has a birefringence ( ⁇ n) of 0.0005 or more, more preferably 0.001 or more, which is expressed under the stretching conditions described later. If the developed birefringence is smaller than the above range, it is necessary to increase the film thickness in order to obtain a desired phase difference, which increases the thickness of the display, and is disadvantageous from the viewpoint of material cost. is there.
  • a heat stabilizer In the polycarbonate resin of the present invention, a heat stabilizer, an antioxidant, a catalyst deactivator, an ultraviolet absorber, a light stabilizer, a release agent, a dye, and an impact improvement which are usually used within the range not impairing the object of the present invention.
  • An agent, an antistatic agent, a lubricant, a lubricant, a plasticizer, a compatibilizing agent, a nucleating agent, a flame retardant, an inorganic filler, a foaming agent and the like may be included.
  • the polycarbonate resin of the present invention can be blended with a heat stabilizer in order to prevent a decrease in molecular weight and a deterioration in hue during melt processing.
  • heat stabilizers include generally known hindered phenol heat stabilizers and / or phosphorus heat stabilizers.
  • hindered phenol compound for example, the following compounds can be employed. 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol, 2-tert-butyl-4-methoxyphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di- tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,5-di-tert-butylhydroquinone, n-octadecyl-3- (3 ′, 5′-di- tert-butyl-4′-hydroxyphenyl) propionate, 2-tert-butyl-6- (3′-tert-butyl-5′-methyl-2′-hydroxybenzyl) -4-methylphenyl acrylate, 2,2 ′ -Methylene-bis- (4-methyl-6-tert-butylphenol), 2,2'-methylene-bis- (6-cyclohex
  • phosphorus compound for example, the following phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, and esters thereof can be adopted, but phosphorus compounds other than these compounds can also be adopted. Is possible. Triphenyl phosphite, tris (nonylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite , Dioctyl monophenyl phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, bis (2,6
  • Such a thermal stabilizer may be added to the reaction solution during melt polymerization, or may be added to the resin using an extruder and kneaded.
  • the heat stabilizer or the like may be added to the extruder to form a film, or the extruder may be used in advance to add the heat stabilizer or the like into the resin.
  • a pellet or the like may be used.
  • the amount of these heat stabilizers is preferably 0.0001 parts by weight or more, more preferably 0.0005 parts by weight or more, even more preferably 0.001 parts by weight or more, when the resin is 100 parts by weight. 1 part by weight or less is preferable, 0.5 part by weight or less is more preferable, and 0.2 part by weight or less is more preferable.
  • Catalyst deactivator By adding an acidic compound to the polycarbonate resin of the present invention to neutralize and deactivate the catalyst used in the polymerization reaction, the color tone and thermal stability can be improved.
  • an acidic compound used as a catalyst deactivator a compound having a carboxylic acid group, a phosphoric acid group or a sulfonic acid group, or an ester thereof can be used.
  • the following formula (13) or (14) It is preferable to use a phosphorus compound containing a partial structure represented by
  • Examples of the phosphorus compound represented by the formula (13) or (14) include phosphoric acid, phosphorous acid, phosphonic acid, hypophosphorous acid, polyphosphoric acid, phosphonic acid ester, and acidic phosphoric acid ester. It is done. Among them, phosphorous acid, phosphonic acid, and phosphonic acid ester are more excellent in catalyst deactivation and coloring suppression effects, and phosphorous acid is particularly preferable.
  • Examples of phosphonic acid include phosphonic acid (phosphorous acid), methylphosphonic acid, ethylphosphonic acid, vinylphosphonic acid, decylphosphonic acid, phenylphosphonic acid, benzylphosphonic acid, aminomethylphosphonic acid, methylenediphosphonic acid, 1-hydroxyethane- Examples include 1,1-diphosphonic acid, 4-methoxyphenylphosphonic acid, nitrilotris (methylenephosphonic acid), and propylphosphonic anhydride.
  • Phosphonic acid esters include dimethyl phosphonate, diethyl phosphonate, bis (2-ethylhexyl) phosphonate, dilauryl phosphonate, dioleyl phosphonate, diphenyl phosphonate, dibenzyl phosphonate, dimethyl methylphosphonate, diphenyl methylphosphonate, ethylphosphonic acid Diethyl, diethyl benzylphosphonate, dimethyl phenylphosphonate, diethyl phenylphosphonate, dipropyl phenylphosphonate, diethyl (methoxymethyl) phosphonate, diethyl vinylphosphonate, diethyl hydroxymethylphosphonate, dimethyl (2-hydroxyethyl) phosphonate, diethyl p-methylbenzylphosphonate, diethylphosphonoacetic acid, ethyl diethylphosphonoacetate, tert-butyl die
  • Acid phosphate esters include dimethyl phosphate, diethyl phosphate, divinyl phosphate, dipropyl phosphate, dibutyl phosphate, bis (butoxyethyl) phosphate, bis (2-ethylhexyl) phosphate, diisotridecyl phosphate, phosphate
  • Examples include phosphoric acid diesters such as dioleyl, distearyl phosphate, diphenyl phosphate and dibenzyl phosphate, mixtures of diesters and monoesters, diethyl chlorophosphate, and zinc stearyl phosphate.
  • the phosphorus compound is added in an amount corresponding to the amount of catalyst used in the polymerization reaction.
  • the phosphorus compound is preferably 0.5 times mol or more and 5 times mol or less, and more preferably 0.7 times mol or more and 4 times mol or less with respect to 1 mol of the metal of the catalyst used in the polymerization reaction. Particularly preferred is 0.8 times mol or more and 3 times mol or less.
  • the polycarbonate resin of the first embodiment and the second embodiment of the present invention can be blended with an ultraviolet absorber or a light stabilizer for the purpose of preventing discoloration and haze generation due to ultraviolet rays.
  • Examples of the ultraviolet absorber include 2- (2′-hydroxy-5′-tert-octylphenyl) benzotriazole, 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzo Triazole, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2,2′- And methylenebis (4-cumyl-6-benzotriazolephenyl), 2,2′-p-phenylenebis (1,3-benzoxazin-4-one), and the like.
  • Examples of the light stabilizer include hindered amine compounds having a radical scavenging action.
  • Conventional aromatic polycarbonate resins are known to be unstable even at room temperature with respect to basic components such as alkalis, and are also known to undergo hydrolysis by amine compounds. In, the degradation effect such as hydrolysis can be suppressed to be small, and the stability to light such as ultraviolet rays can be remarkably improved.
  • the piperidine structure defined here may be any structure as long as it is a saturated 6-membered cyclic amine structure, and includes a structure in which a part of the piperidine structure is substituted with a substituent.
  • Examples of the substituent that the piperidine structure may have include an alkyl group having 4 or less carbon atoms, and a methyl group is particularly preferable.
  • a compound having a plurality of piperidine structures is preferable.
  • a compound in which these piperidine structures are linked by an ester structure is preferable.
  • a compound represented by the following formula (15) is preferable, and in particular, a compound in which R 20 and R 21 in the following formula (15) are a hydrogen atom or a methyl group, and n is 8 is easily available or polycarbonate. It is preferable from the viewpoint of compatibility with the resin.
  • R 20 and R 21 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 6 to 20 carbon atoms.
  • N is an integer from 1 to 20.
  • ultraviolet absorbers and light stabilizers may be used alone or in combination of two or more.
  • a synergistic effect can be expected by using an ultraviolet absorber and a light stabilizer in combination.
  • the blending amount of the ultraviolet absorber and the light stabilizer is preferably 0.001 part by weight or more, more preferably 0.005 part by weight or more, and preferably 1 part by weight or less with respect to 100 parts by weight of the polycarbonate resin. More preferably, it is 0.5 parts by weight or less. If the blending amount is too large, the polycarbonate resin composition tends to be colored, and it may bleed out at the time of molding, which may cause dirt on the molding machine or poor appearance of the molded product. On the other hand, if the amount is too small, a sufficient improvement effect on the weather resistance test may not be obtained.
  • the polycarbonate resin of the first aspect and the second aspect of the present invention may contain a release agent in order to further improve the releasability from the mold during melt molding.
  • Release agents include higher fatty acids, higher fatty acid esters of mono- or polyhydric alcohols, natural animal waxes such as beeswax, natural plant waxes such as carnauba wax, natural petroleum waxes such as paraffin wax, and montan wax. Natural coal wax, olefin wax, silicone oil, organopolysiloxane and the like can be mentioned, and higher fatty acid and higher fatty acid ester of monohydric or polyhydric alcohol are particularly preferable.
  • the higher fatty acid ester is preferably a partial ester or a total ester of a substituted or unsubstituted monovalent or polyhydric alcohol having 1 to 20 carbon atoms and a substituted or unsubstituted saturated fatty acid having 10 to 30 carbon atoms.
  • stearic acid monoglyceride stearic acid diglyceride, stearic acid triglyceride, stearic acid monosorbate, stearyl stearate, behenic acid monoglyceride, behenyl behenate, pentaerythritol monostearate, pentaerythritol tetrastearate, penta Erythritol tetrapelargonate, propylene glycol monostearate, stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate, isopropyl palmitate, biphenyl biphenate, sorbitan monostearate, 2-ethylhexyl stearate, ethylene
  • examples include glycol distearate.
  • stearic acid monoglyceride stearic acid triglyceride, pentaerythritol tetrastearate, behenyl behenate, and ethylene glycol distearate are preferably used.
  • the higher fatty acid is preferably a substituted or unsubstituted saturated fatty acid having 10 to 30 carbon atoms.
  • saturated fatty acids include myristic acid, lauric acid, palmitic acid, stearic acid, behenic acid and the like.
  • release agents may be used alone or in combination of two or more.
  • the blending amount of the release agent is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, particularly preferably 0.1 parts by weight or more, on the other hand, preferably 1 part by weight with respect to 100 parts by weight of the polycarbonate resin. Parts or less, more preferably 0.7 parts by weight or less, particularly preferably 0.5 parts by weight or less.
  • a bluing agent can be blended in order to counteract the yellowish color based on the polymer, the ultraviolet absorber and the like.
  • Anthraquinone type dye is preferable.
  • Solvent Violet 13 [CA. No. (Color Index No) 60725], Solvent Violet 31 (CA. No. 68210), Solvent Violet 33 (CA. No. 60725), Solvent Blue 94 (CA. No. 61500), Solvent Violet 36 (CA. No. 68210), Solvent Blue 97 (Solvent Blue 97).
  • the blending amount of the bluing agent is usually 1 ⁇ 10 ⁇ 5 parts by weight or more, preferably 5 ⁇ 10 ⁇ 5 parts by weight or more with respect to 100 parts by weight of the polycarbonate resin, and usually 1 ⁇ 10 ⁇ 3 parts.
  • the amount is not more than parts by weight, more preferably not more than 5 ⁇ 10 ⁇ 4 parts by weight.
  • the polycarbonate resin of the present invention is an aromatic polycarbonate, aromatic polyester, aliphatic polyester, polyamide, polystyrene, polyolefin, acrylic, amorphous polyolefin, ABS, AS, for the purpose of modifying properties such as mechanical properties and solvent resistance. It is good also as a polymer alloy formed by kneading
  • the additives and modifiers may be added to the resin used in the present invention simultaneously or in any order by a mixer such as a tumbler, V-type blender, nauter mixer, Banbury mixer, kneading roll, or extruder. Although it can manufacture by mixing, it is preferable to knead
  • a mixer such as a tumbler, V-type blender, nauter mixer, Banbury mixer, kneading roll, or extruder.
  • the polycarbonate resin of the first and second aspects of the present invention obtained as described above is excellent in heat resistance, moist heat resistance, and weather resistance, has low birefringence and a photoelastic coefficient, and has high transparency. Therefore, it can be used for transparent glass substitute applications, optical films, optical disks, optical prisms, pickup lenses, and the like.
  • the polycarbonate resin of the present invention is excellent in melt processability, it can be formed into a molded product by a generally known method such as an injection molding method, an extrusion molding method, or a compression molding method. Next, details of a method for producing a retardation film that can be particularly suitably used will be described.
  • the third aspect of the present invention is particularly intended for use in a retardation film.
  • Method for producing retardation film As a method of forming an unstretched film using the polycarbonate resin of the present invention, the resin is dissolved in a solvent and cast, and then the casting method for removing the solvent or the resin is melted without using the solvent.
  • a melt film-forming method for forming a film can be employed. Specific examples of the melt film forming method include a melt extrusion method using a T die, a calender molding method, a heat press method, a coextrusion method, a comelting method, a multilayer extrusion method, and an inflation molding method.
  • the method for forming an unstretched film is not particularly limited. However, the casting method may cause a problem due to the residual solvent. Therefore, a T-die is preferably used because of the melt film-forming method, particularly ease of subsequent stretching treatment. The melt extrusion method used is preferred.
  • the forming temperature is preferably 280 ° C. or less, more preferably 270 ° C. or less, and particularly preferably 265 ° C. or less.
  • the molding temperature is too high, defects due to generation of foreign matters and bubbles in the obtained film may increase or the film may be colored.
  • the molding temperature of the unstretched film is a temperature at the time of molding in the melt film-forming method, and is usually a value obtained by measuring the resin temperature at the die outlet for extruding the molten resin.
  • a defect such as light leakage when used as a polarizing plate.
  • a method in which a polymer filter is attached after the extruder, the resin is filtered, and then extruded from a die to form a film is preferable. At that time, it is necessary to connect the extruder, polymer filter, and die with piping and transfer the molten resin, but in order to suppress thermal deterioration in the piping as much as possible, arrange each facility so that the residence time is minimized. This is very important. Further, the steps of conveying and winding the film after extrusion are performed in a clean room, and the best care is required so that no foreign matter adheres to the film.
  • the thickness of the unstretched film is determined according to the design of the film thickness of the retardation film after stretching and stretching conditions such as the stretching ratio. Is usually 30 ⁇ m or more, preferably 40 ⁇ m or more, more preferably 50 ⁇ m or more, and usually 200 ⁇ m or less, preferably 160 ⁇ m or less, more preferably 120 ⁇ m or less.
  • the thickness of the portion used as the retardation film is preferably set thickness ⁇ 3 ⁇ m or less, and set thickness ⁇ 2 ⁇ m or less. It is more preferable that the thickness is set to be ⁇ 1 ⁇ m or less.
  • the length in the longitudinal direction of the unstretched film is preferably 500 m or more, more preferably 1000 m or more, and particularly preferably 1500 m or more. From the viewpoint of productivity and quality, when producing the retardation film of the present invention, it is preferable to continuously stretch, but usually it is necessary to adjust the conditions to match the predetermined retardation at the start of stretching. If the length of the film is too short, the amount of product that can be obtained after adjusting the conditions is reduced.
  • the term “long” means that the dimension in the longitudinal direction is sufficiently larger than the width direction of the film, and is substantially the one that can be wound in the longitudinal direction into a coil shape. means. More specifically, it means that the dimension in the longitudinal direction of the film is 10 times or more larger than the dimension in the width direction.
  • the unstretched film obtained as described above preferably has an internal haze of 3% or less, more preferably 2% or less, and particularly preferably 1% or less. If the internal haze of the unstretched film is larger than the upper limit, light scattering occurs, which may cause depolarization when laminated with a polarizer, for example.
  • the lower limit value of the internal haze is not particularly defined, but is usually 0.1% or more.
  • the transparent film with adhesive that had been previously measured for haze was attached to both sides of the unstretched film, and the sample with the effect of external haze removed was used.
  • the value obtained by subtracting the haze value from the measured value of the sample is defined as the internal haze value.
  • the b * value of the unstretched film is preferably 3 or less. If the b * value of the film is too large, problems such as coloring occur.
  • the b * value is more preferably 2 or less, particularly preferably 1 or less.
  • the b * value is measured using a spectrocolorimeter CM-2600d manufactured by Konica Minolta.
  • the unstretched film preferably has a total light transmittance of 80% or more, more preferably 85% or more, and particularly preferably 90% or more, regardless of the thickness. If the transmittance is not less than the above lower limit, a film with little coloring is obtained, and when it is bonded to a polarizing plate, it becomes a circularly polarizing plate with a high degree of polarization and transmittance, and when used in an image display device, a high display quality. Can be realized.
  • the upper limit of the total light transmittance of the film of the present invention is not particularly limited but is usually 99% or less.
  • a retardation film can be obtained by stretching and orienting the unstretched film.
  • the stretching method a known method such as longitudinal uniaxial stretching, horizontal uniaxial stretching using a tenter or the like, or simultaneous biaxial stretching combining them, sequential biaxial stretching, or the like may be used so as to be stretched in at least one direction. it can. Stretching may be performed batchwise, but it is preferable in terms of productivity to be performed continuously. Further, a continuous retardation film with less variation in retardation within the film surface can be obtained compared to a batch system.
  • the stretching temperature is in the range of (Tg ⁇ 20 ° C.) to (Tg + 30 ° C.), preferably (Tg ⁇ 10 ° C.) to (Tg + 20 ° C.) with respect to the glass transition temperature (Tg) of the resin used as a raw material. Preferably, it is within the range of (Tg ⁇ 5 ° C.) to (Tg + 15 ° C.).
  • the draw ratio is determined by the target retardation value, it is 1.2 times to 4 times, more preferably 1.5 times to 3.5 times, and further preferably 2 times to 3 times in the vertical and horizontal directions. .
  • the draw ratio is too small, the effective range in which the desired degree of orientation and orientation angle can be obtained becomes narrow.
  • the stretch ratio is too large, the film may be broken or wrinkles may occur during stretching.
  • the stretching speed is also appropriately selected depending on the purpose, but is usually 50% to 2000%, preferably 100% to 1500%, more preferably 200% to 1000%, and particularly preferably 250% at the strain rate represented by the following mathematical formula. % To 500% can be selected.
  • heat setting treatment may be performed by a heating furnace, or the relaxation step may be performed by controlling the width of the tenter or adjusting the roll peripheral speed.
  • the temperature of the heat setting treatment is in the range of 60 ° C. to (Tg), preferably 70 ° C. to (Tg ⁇ 5 ° C.) with respect to the glass transition temperature (Tg) of the resin used for the unstretched film. If the heat treatment temperature is too high, the orientation of the molecules obtained by stretching is disturbed, and there is a possibility that the desired retardation will be greatly reduced.
  • the stress generated in the stretched film can be removed by shrinking to 95% to 99% with respect to the width of the film spread by stretching.
  • the treatment temperature applied to the film at this time is the same as the heat setting treatment temperature.
  • the retardation film of the present invention can be produced by appropriately selecting and adjusting the processing conditions in such a stretching process.
  • in-plane birefringence ( ⁇ n) at a wavelength of 550 nm is preferably 0.001 or more, more preferably 0.002 or more, and particularly preferably 0.0025 or more. Since the phase difference is proportional to the thickness (d) and birefringence ( ⁇ n) of the film, by setting the birefringence within the specific range, it becomes possible to express the phase difference as designed with a thin film. It is possible to easily produce a film suitable for the above equipment.
  • the thickness of the retardation film of the present invention is preferably 70 ⁇ m or less, although it depends on the design value of the retardation. Further, the thickness of the retardation film is more preferably 60 ⁇ m or less, further preferably 55 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the lower limit of the thickness of the retardation film of the present invention is preferably 10 ⁇ m or more, More preferably, it is 15 ⁇ m or more.
  • the retardation film of the first embodiment and the second embodiment of the present invention has a wavelength dispersion (R450 / R550) that is a ratio of a retardation (R450) measured at a wavelength of 450 nm to a retardation (R550) measured at a wavelength of 550 nm. ) Is preferably 0.5 or more and 1.03 or less.
  • the wavelength dispersion value is more preferably 0.7 or more and 1.01 or less, further preferably 0.75 or more and 1.00 or less, and 0.8 or more and 0.98 or less. Particularly preferred.
  • the value of the chromatic dispersion is within this range, an ideal phase difference characteristic can be obtained in a wide wavelength range in the visible region.
  • a retardation film having such wavelength dependency as a quarter wavelength plate is prepared and bonded to a polarizing plate, whereby a circular polarizing plate or the like can be prepared, and a polarizing plate with less hue wavelength dependency And a display device can be realized.
  • the ratio is out of this range, the wavelength dependence of the hue is increased, optical compensation is not performed at all wavelengths in the visible region, and coloring and contrast due to light passing through the polarizing plate and the display device are lost. Problems such as degradation occur.
  • the retardation film of the third aspect of the present invention has a value of chromatic dispersion (R450 / R550) which is a ratio of the retardation (R450) measured at a wavelength of 450 nm to the retardation (R550) measured at a wavelength of 550 nm. .5 or more and 1.03 or less.
  • the value of wavelength dispersion (R450 / R550) is more preferably 0.98 or more and 1.02 or less.
  • the value of chromatic dispersion (R450 / R550) is more preferably 0.70 or more and 0.96 or less, and more preferably 0.75 or more and 0.94 or less. Preferably, it is 0.78 or more and 0.92 or less.
  • a retardation film having such wavelength dependency is prepared as a quarter wavelength plate, and a circularly polarizing plate or the like can be manufactured by laminating with a polarizing plate, and polarization with less hue wavelength dependency.
  • a board and a display device can be realized.
  • the ratio is out of this range, the wavelength dependence of the hue is increased, optical compensation is not performed at all wavelengths in the visible region, and coloring and contrast due to light passing through the polarizing plate and the display device are lost. Problems such as degradation occur.
  • the retardation film of the first aspect and the second aspect of the present invention preferably has a water absorption rate of 3.0% by weight or less, more preferably 2.5% by weight or less, in the measurement method described later. . If it exceeds 3.0% by weight, the durability of optical properties in a humidity environment tends to deteriorate, such being undesirable. On the other hand, the lower limit of water absorption is preferably 0.5% by weight or more.
  • the retardation film of the third aspect of the present invention preferably has a water absorption of 3.5% by weight or less, more preferably 3.0% by weight or less, in the measurement method described later. If it exceeds 3.5% by weight, the durability of optical properties in a humidity environment tends to deteriorate, such being undesirable. On the other hand, the lower limit of water absorption is preferably 0.5% by weight or more.
  • the retardation film is laminated and pasted with a known polarizing film, and becomes a circularly polarizing plate by cutting into a desired dimension.
  • Such circularly polarizing plates are used, for example, for viewing angle compensation of various displays (liquid crystal display devices, organic EL display devices, plasma display devices, FED field emission display devices, SED surface field display devices), antireflection of external light, color It can be used for compensation, conversion of linearly polarized light into circularly polarized light, and the like.
  • Examples of the first and second aspects of the present invention >
  • Reduced viscosity of polycarbonate resin A polycarbonate resin was dissolved in methylene chloride to prepare a resin solution having a concentration of 0.6 g / dL. Using an Ubbelohde viscometer manufactured by Moriyu Rika Kogyo Co., Ltd., measurement was performed at a temperature of 20.0 ° C. ⁇ 0.1 ° C., and a solvent passage time t 0 and a solution passage time t were measured.
  • Tg Glass transition temperature of polycarbonate resin
  • the glass transition temperature of the polycarbonate resin was measured using a differential scanning calorimeter DSC 6220 manufactured by SII Nano Technology. About 10 mg of resin was sealed in an aluminum pan manufactured by the same company, and the temperature was raised from 30 ° C. to 250 ° C. at a temperature rising rate of 20 ° C./min under a nitrogen stream of 50 mL / min. After maintaining the temperature for 3 minutes, it was cooled to 30 ° C. at a rate of 20 ° C./min. The temperature was maintained at 30 ° C for 3 minutes, and the temperature was increased again to 200 ° C at a rate of 20 ° C / min.
  • Molding of plate Polycarbonate resin pellets were vacuum-dried at 90 ° C. for 5 hours or more.
  • the dried polycarbonate resin pellets are supplied to Nippon Steel Corporation's injection molding machine J75EII, and the final cylinder temperature is adjusted between 230 and 280 ° C according to the Tg and melt viscosity of the polycarbonate resin.
  • the operation of molding a plate-type injection-molded piece (width 60 mm ⁇ length 60 mm ⁇ thickness 3 mm) under the condition of a cycle of 38 seconds was repeated to obtain a plate molded product.
  • Pencil hardness Pencil hardness was measured by the method described in JIS K5600-5-4 using the above-mentioned plate molded product and a pencil scratch coating film hardness tester manufactured by Toyo Seiki Seisakusho Co., Ltd. .
  • Boiling water immersion test moisture and heat resistance test
  • the plate molded product was immersed in boiling water and treated for 3 hours, and the molded product was observed for changes in shape, whitening, and cracks.
  • a sample having a width of 5 mm and a length of 20 mm was cut out from the unstretched film, fixed to a viscoelasticity measuring apparatus, and the storage elastic modulus E ′ was measured at a room temperature of 25 ° C. at a frequency of 96 Hz.
  • the emitted laser light is passed through the polarizer, sample, compensator, and analyzer in this order, picked up by a photodetector (photodiode), and passed through a lock-in amplifier with respect to the amplitude and distortion of the waveform of angular frequency ⁇ or 2 ⁇ .
  • the phase difference was determined, and the strain optical coefficient O ′ was determined.
  • the photoelastic coefficient C was obtained from the following equation using the storage elastic modulus E ′ and the strain optical coefficient O ′.
  • C O '/ E'
  • the center part of the stretched film obtained by the above method was cut into a width of 4 cm and a length of 4 cm, and a measurement wavelength of 450, 500, 550, 590, using a phase difference measuring device KOBRA-WPR manufactured by Oji Scientific Instruments, The phase difference was measured at 630 nm, and the wavelength dispersion was measured.
  • birefringence (DELTA) n was calculated
  • Birefringence R550 [nm] / (film thickness [mm] ⁇ 10 6 ) In this measurement, if ⁇ n has a positive value, it can be used as a retardation film.
  • toluene 100 mL was added and cooled to 50 ° C. Thereto, methanol (250 mL) was added, and after cooling to 5 ° C., suction filtration was performed. The obtained white solid was dispersed in toluene (100 mL) and heated to reflux for 30 minutes. After cooling to 50 ° C., methanol (200 mL) was added.
  • Example 1-1 SBI 18.45 parts by weight (0.060 mol), ISB 42.45 parts by weight (0.290 mol), CHDM 25.42 parts by weight (0.176 mol), DPC 115.05 parts by weight (0.537 mol), and catalyst Calcium acetate monohydrate 1.86 ⁇ 10 ⁇ 3 parts by weight (1.05 ⁇ 10 ⁇ 5 mol) was charged into the reaction vessel, and the inside of the reactor was purged with nitrogen under reduced pressure. In a nitrogen atmosphere, the raw materials were dissolved while stirring at 150 ° C. for about 10 minutes. As the first step of the reaction, the temperature was raised to 220 ° C. over 30 minutes, and the reaction was performed at normal pressure for 60 minutes.
  • the pressure was reduced from normal pressure to 13.3 kPa over 90 minutes, held at 13.3 kPa for 30 minutes, and the generated phenol was extracted out of the reaction system.
  • the temperature of the heating medium was raised to 240 ° C. over 15 minutes, the pressure was reduced to 0.10 kPa or less over 15 minutes, and the generated phenol was extracted out of the reaction system.
  • the reaction was stopped by returning the pressure to normal pressure with nitrogen, the produced polycarbonate was extruded into water, and the strand was cut to obtain pellets.
  • Various evaluations described above were performed using the obtained polycarbonate pellets. The evaluation results are shown in Tables 1 and 2.
  • Example 1-1 (Evaluation results for injection molded products)
  • the polycarbonate obtained in Example 1-1 had excellent weather resistance and moist heat resistance in addition to the features of high pencil hardness, low photoelastic coefficient and low birefringence. Surprisingly, SBI was found to have good weather resistance despite the aromatic structure. The evaluation results are shown in Table 1.
  • Example 1-2 SBI 18.45 parts by weight (0.060 mol), ISB 42.45 parts by weight (0.290 mol), BHEPF 28.32 parts by weight (0.065 mol), DPC 90.65 parts by weight (0.423 mol), and catalyst was synthesized in the same manner as Example 1-1 except that 1.10 ⁇ 10 ⁇ 3 parts by weight (6.22 ⁇ 10 ⁇ 6 mol) of calcium acetate monohydrate was used and the final polymerization temperature was 250 ° C. Polycarbonate pellets were obtained. Various evaluations described above were performed using the obtained polycarbonate pellets. The evaluation results are shown in Table 2.
  • Example 1-3 SBI 15.10 parts by weight (0.049 mol), ISB 53.87 parts by weight (0.369 mol), Compound 3 30.31 parts by weight (0.047 mol), DPC 80.21 parts by weight (0.374 mol), and Synthesis was performed in the same manner as in Example 1-1 except that 1.10 ⁇ 10 ⁇ 3 parts by weight (6.26 ⁇ 10 ⁇ 6 mol) of calcium acetate monohydrate was used as a catalyst and the final polymerization temperature was 250 ° C. And polyester carbonate pellets were obtained. Various evaluations described above were performed using the obtained polyester carbonate pellets. The evaluation results are shown in Table 2.
  • Example 1-4 A polymerization reaction was carried out in the same manner as in Example 1-3, and the reaction was allowed to proceed to a higher stirring torque than in Example 1-3 to obtain a higher molecular weight polyester carbonate.
  • the evaluation results are shown in Table 2.
  • the stretching temperature was lowered from Tg + 15 ° C. by 1 ° C. until the film broke, and a film stretched under the condition just before the breaking was obtained.
  • ⁇ n at that time was compared, the film of Example 1-3 was 0.0023 and the film of Example 1-4 was 0.0035, and the orientation could be improved by improving the molecular weight.
  • the film of Example 1-3 had brittle fracture, but the film of Example 1-4 was not cracked, and it was also confirmed that the toughness was improved.
  • Example of the third aspect of the present invention (1) Reduced viscosity of polycarbonate resin A polycarbonate resin was dissolved in methylene chloride to prepare a resin solution having a concentration of 0.6 g / dL precisely. Measurement was performed at a temperature of 20.0 ° C. ⁇ 0.1 ° C. using an Ubbelohde viscometer manufactured by Moriyu Rika Kogyo Co., Ltd., and a solvent passage time t 0 and a solution passage time t were measured.
  • Tg Glass transition temperature of polycarbonate resin This was measured using a differential scanning calorimeter DSC 6220 manufactured by SII Nano Technology. About 10 mg of a resin sample was put in an aluminum pan manufactured by the same company, sealed, and heated from 30 ° C. to 250 ° C. at a temperature rising rate of 20 ° C./min in a nitrogen stream of 50 mL / min. After maintaining the temperature for 3 minutes, it was cooled to 30 ° C. at a rate of 20 ° C./min. The temperature was maintained at 30 ° C for 3 minutes, and the temperature was increased again to 200 ° C at a rate of 20 ° C / min.
  • the extrapolated glass transition start temperature which is the temperature of the intersection point, was determined and used as the glass transition temperature.
  • the glass transition temperature is usually higher, heat resistance is preferable, but in the present application, the glass transition temperature of the polycarbonate resin containing SBI is improved as compared with the similar polycarbonate resin not containing SBI. This is one of the effects of the present application.
  • Measurement of photoelastic coefficient Device combining a birefringence measuring device comprising a He-Ne laser, a polarizer, a compensation plate, an analyzer and a photodetector and a vibration type viscoelasticity measuring device (DVE-3 manufactured by Rheology) It measured using. (For details, see Journal of Japanese Society of Rheology, Vol. 19, p93-97 (1991).)
  • a sample having a width of 5 mm and a length of 20 mm was cut out from the unstretched film, fixed to a viscoelasticity measuring apparatus, and the storage elastic modulus E ′ was measured at a room temperature of 25 ° C. at a frequency of 96 Hz.
  • the emitted laser light is passed through the polarizer, sample, compensator, and analyzer in this order, picked up by a photodetector (photodiode), and passed through a lock-in amplifier with respect to the amplitude and distortion of the waveform of angular frequency ⁇ or 2 ⁇ .
  • the phase difference was determined, and the strain optical coefficient O ′ was determined.
  • the directions of the polarizer and the analyzer were orthogonal to each other, and each was adjusted so as to form an angle of ⁇ / 4 with respect to the extending direction of the sample.
  • the photoelastic coefficient C was obtained from the following equation using the storage elastic modulus E ′ and the strain optical coefficient O ′.
  • C O '/ E'
  • the photoelastic coefficient C is preferably smaller, but in the present application, the photoelastic coefficient of the polycarbonate resin containing SBI is equal to or lower than that of the same polycarbonate resin not containing SBI. This is one of the effects of the present application.
  • the center part of the stretched film obtained by the above method was cut into a width of 4 cm and a length of 4 cm, and a measurement wavelength of 450, 500, 550, 590, using a phase difference measuring device KOBRA-WPR manufactured by Oji Scientific Instruments, The phase difference was measured at 630 nm, and the wavelength dispersion was measured.
  • birefringence (DELTA) n was calculated
  • Birefringence R550 [nm] / (film thickness [mm] ⁇ 10 6 ) In this measurement, if ⁇ n has a positive value, it can be used as a retardation film.
  • toluene 100 mL was added and cooled to 50 ° C. Thereto, methanol (250 mL) was added, and after cooling to 5 ° C., suction filtration was performed. The obtained white solid was dispersed in toluene (100 mL) and heated to reflux for 30 minutes. After cooling to 50 ° C., methanol (200 mL) was added.
  • Example 2-1 SBI 23.06 parts by weight (0.075 mol), ISB 55.18 parts by weight (0.378 mol), CHDM 8.47 parts by weight (0.059 mol), DPC 112.78 parts by weight (0.526 mol), and catalyst Calcium acetate monohydrate 1.80 ⁇ 10 ⁇ 3 parts by weight (1.02 ⁇ 10 ⁇ 5 mol) was charged into the reaction vessel, and the inside of the reactor was purged with nitrogen under reduced pressure. In a nitrogen atmosphere, the raw materials were dissolved while stirring at 150 ° C. for about 10 minutes. As the first step of the reaction, the temperature was raised to 220 ° C. over 30 minutes, and the reaction was performed at normal pressure for 60 minutes.
  • the pressure was reduced from normal pressure to 13.3 kPa over 90 minutes, maintained at 13.3 kPa for 30 minutes, and the generated phenol was extracted out of the reaction system.
  • the temperature of the heating medium was raised to 250 ° C. over 15 minutes, the pressure was reduced to 0.10 kPa or less over 15 minutes, and the generated phenol was extracted out of the reaction system.
  • the reaction was stopped by returning the pressure to normal pressure with nitrogen, the produced polycarbonate was extruded into water, and the strand was cut to obtain pellets.
  • Various evaluations described above were performed using the obtained polycarbonate pellets. The evaluation results are shown in Table 3.
  • Example 2-2 SBI 51.00 parts by weight (0.165 mol), SPG 41.18 parts by weight (0.135 mol), DPC 68.59 parts by weight (0.320 mol), and calcium acetate monohydrate 5.30 ⁇ 10 6 as catalyst Synthesis was performed in the same manner as in Example 2-1 except that -3 parts by weight (3.01 ⁇ 10 ⁇ 5 mol) was used, and polycarbonate pellets were obtained. Various evaluations described above were performed using the obtained polycarbonate pellets. The evaluation results are shown in Table 3.
  • Example 2-1 The same characteristics as Example 2-1 were shown.
  • Example 2-3 SBI 18.45 parts by weight (0.060 mol), ISB 42.45 parts by weight (0.290 mol), BHEPF 28.32 parts by weight (0.065 mol), DPC 90.65 parts by weight (0.423 mol), and catalyst Synthesis was carried out in the same manner as in Example 2-1 except that 1.10 ⁇ 10 ⁇ 3 parts by weight (6.22 ⁇ 10 ⁇ 6 mol) of calcium acetate monohydrate was used to obtain polycarbonate pellets. Various evaluations described above were performed using the obtained polycarbonate pellets. The evaluation results are shown in Table 3.
  • the wavelength dispersion (R450 / R550) was 0.98, indicating reverse dispersion, and high heat resistance and a relatively low photoelastic coefficient. Compared to the case where SBI was not used (Comparative Example 2-8), the glass transition temperature could be improved while keeping the photoelastic coefficient low.
  • Example 2-4 SBI 15.10 parts by weight (0.049 mol), ISB 53.87 parts by weight (0.369 mol), Compound 3 30.31 parts by weight (0.047 mol), DPC 80.21 parts by weight (0.374 mol), and Synthesis was performed in the same manner as in Example 2-1, except that 1.10 ⁇ 10 ⁇ 3 parts by weight (6.26 ⁇ 10 ⁇ 6 mol) of calcium acetate monohydrate was used as a catalyst, and polyester carbonate pellets were obtained. It was. Various evaluations described above were performed using the obtained polyester carbonate pellets. The evaluation results are shown in Table 4.
  • the wavelength dispersibility (R450 / R550) was 0.85, which showed stronger reverse dispersibility than Example 2-3, as well as high heat resistance and a low photoelastic coefficient.
  • the glass transition temperature could be improved while keeping the photoelastic coefficient low.
  • Example 2-5 The polymerization reaction was carried out in the same manner as in Example 2-4, and the reaction was allowed to proceed to a higher stirring torque than in Example 2-4 to obtain a higher molecular weight polyester carbonate.
  • the evaluation results are shown in Table 4.
  • the stretching temperature was lowered from Tg + 15 ° C. by 1 ° C. until the film broke, and a film stretched under the condition just before the breaking was obtained.
  • the film of Example 2-4 was 0.0023 and the film of Example 2-5 was 0.0035, and the orientation could be improved by improving the molecular weight.
  • the film of Example 2-4 caused brittle fracture, but the film of Example 2-5 was not cracked, and it was also confirmed that the toughness was improved.
  • the wavelength dispersion (R450 / R550) is 1.07, exhibits positive wavelength dispersion, and has a large photoelastic coefficient.
  • the wavelength dispersion (R450 / R550) is 1.05, exhibits positive wavelength dispersion, and has a large photoelastic coefficient.
  • the chromatic dispersion (R450 / R550) is 1.05, shows a positive chromatic dispersion, and has a slightly large photoelastic coefficient.
  • the wavelength dispersion (R450 / R550) is 1.08, exhibits positive wavelength dispersion, and has a very large photoelastic coefficient.
  • the wavelength dispersion (R450 / R550) was 0.98, indicating reverse wavelength dispersion, but the glass transition temperature was lower than that of Example 2-3.
  • Wavelength dispersion (R450 / R550) was 0.79, indicating reverse wavelength dispersion, but a glass transition temperature lower than that of Example 2-4.
  • the glass transition temperature is slightly lower than that of Example 2-4, and the photoelastic coefficient is also large. Moreover, reverse wavelength dispersion decreased due to the influence of the aromatic ring oriented in the main chain direction.
  • the photoelastic coefficient is larger than that of Example 2-4. Moreover, reverse wavelength dispersion decreased due to the influence of the aromatic ring oriented in the main chain direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Eyeglasses (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

 本発明は、耐熱性、光学特性、溶融加工性等の種々の特性に優れたポリカーボネート樹脂、及びそれからなる光学フィルムを提供することを課題とする。本発明は、下記式(1)で表される構造単位と、下記式(2)で表される構造単位とを少なくとも含むポリカーボネート樹脂である。 (式(1)中、R~Rはそれぞれ独立に水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。) 

Description

ポリカーボネート樹脂、成形品及び光学フィルム
 本発明の第一の態様及び第二の態様は、耐熱性や耐湿熱性、光学特性、耐候性等の種々の特性に優れたポリカーボネート樹脂、並びにそれを用いて得られる成形品に関する。
 本発明の第三の態様は、光学特性や耐熱性、溶融加工性に優れたポリカーボネート樹脂、及び光学フィルムに関する。
 ポリカーボネート樹脂は一般的にビスフェノール類をモノマー成分とし、透明性、耐熱性、機械的強度等の優位性を生かし、電気・電子部品、自動車用部品、光学記録媒体、レンズ等の光学分野等で、いわゆるエンジニアリングプラスチックとして広く利用されている。
 従来のポリカーボネート樹脂は主にビスフェノールAをモノマーに用いられてきたが、近年、イソソルビド(以下、ISBと略記することがある。)をモノマー成分としたポリカーボネート樹脂が開発されている。ISBを用いたポリカーボネート樹脂は耐熱性や光学特性等の諸特性に優れており、位相差フィルム等の光学用途やガラス代替用途等への利用が検討されている(例えば、特許文献1、2参照)。また、ISBはバイオマス資源から得られるジヒドロキシ化合物であり、焼却処分しても二酸化炭素の排出量増加に寄与しないカーボンニュートラルな材料であることにも興味が持たれている。
 ところが、ISBは吸水性の高い成分であり、ISBをモノマー成分としたポリカーボネート樹脂は、高温高湿度の条件下では成形品が変形する等の問題を生じることがある。そこで、耐熱性や低吸水性を付与できるモノマーを共重合する等の方法により耐湿熱性の改良が検討されている(例えば、特許文献3参照)。
 また、6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン(以下、SBIと略記することがある。)に由来する構造単位を有するポリカーボネート樹脂は、高耐熱や低複屈折の特性を示すことが知られており、その特性を活かして位相差フィルムやレンズ等の光学用途での検討がなされている(例えば、特許文献4、5、6参照)。
 また、近年、スマートフォンや自動車用ナビゲーションシステムの前面板に代表される成形品、光学レンズ、光学フィルム、光学記録媒体といった光学用途に使用される透明樹脂の需要が増大している。その中でも特に、液晶ディスプレイや有機ELディスプレイに代表される薄型の平面パネルディスプレイ(FPD)の普及が顕著であり、コントラストや色つきの改善、視野角拡大、外光反射防止等の表示品質を向上させる目的で各種の光学フィルムが開発され、利用されている。
 例えば、有機ELディスプレイにおいては、外光の反射を防止するための1/4波長板が用いられている。1/4波長板に用いられる位相差フィルムは、色つきを抑え、きれいな黒表示を可能とするため、可視領域の各波長において理想的な位相差特性を得ることができる、広帯域の波長分散特性が求められている。これに相当するものとして、例えば、フルオレン環を側鎖に有するビスフェノール構造を含むポリカーボネート共重合体よりなり、短波長ほど位相差が小さくなる逆波長分散性を示す位相差フィルムが開示されている(例えば、特許文献7、8参照)。
日本国特開2008-274203号公報 日本国特開2012-214666号公報 国際公開第2013/100163号 日本国特開2006-131789号公報 日本国特開2006-71782号公報 日本国特開平11-71316号公報 国際公開第2000/026705号 国際公開第2008/156186号
 ISBを用いたポリカーボネート樹脂の耐湿熱性を改良する手段として、耐熱性の高いビスフェノール類のモノマーを共重合する方法があるが、芳香族構造を含有する樹脂は、日光やUV光の照射下で樹脂が着色しやすくなる問題が生じる。脂肪族構造からなるポリマーは紫外吸収性を持たないため、このような耐候性は良好であるが、ビスフェノール類のモノマーを共重合すると、ISBを用いることの大きな特長が損なわれてしまう。
 また、ビスフェノール類をはじめとした芳香族モノマーは一般的に、位相差が短波長ほど大きくなる正の波長分散性を示す。現在、液晶ディスプレイの位相差フィルムとして広く用いられているシクロオレフィンポリマー(以下、COPと略記することがある。)樹脂は、波長によって位相差がほぼ変化しないフラットな波長分散特性を有しており、COPと比較すると正の波長分散性を示す材料からなる位相差フィルムは、ディスプレイの色相や反射率などの表示特性が劣る。
 ポリカーボネート樹脂は、先述のとおり、成形品や光学フィルムとして使用される。また、その用途ごとに、要求される特性は異なっている。
 例えば、近年、スマートフォンや自動車用ナビゲーションシステムの前面板に代表される成形品に要求される特性としては、透明性や低位相差等の光学特性とともに、表面硬度、耐候性、耐湿熱性を同時に要求される。
 一方、SBI構造単位を含有するポリカーボネート樹脂は、これまで他のビスフェノール類との共重合が検討されているが、脂肪族モノマーとの共重合についての知見は少ない。また、位相差の波長分散の制御を指向した検討もなされていない。
 また近年、位相差フィルムをはじめとした光学フィルムの用途では、偏光板やディスプレイの製造工程中の加熱を伴うプロセスや、高温高湿度の使用環境下等において、光学物性や寸法が変化しないように材料の耐熱性向上の要求がある。透明性や位相差の波長分散性、光弾性係数等の光学物性と、靱性等の機械物性や溶融加工性等の諸特性と高耐熱性を両立した材料の開発が求められている。
 また、近年では、位相差フィルムをはじめとした光学フィルムの用途では、偏光板やディスプレイ組み立て工程中の加熱を伴うプロセスや、高温高湿度の使用環境下等において、フィルムの光学物性や寸法が変化しないように、材料への耐熱性向上の要求がある。またそれに加えて、さらなる光学特性や品質の向上や、コストダウン、製膜や延伸、積層等の各工程における生産性の向上といった要求もあるため、他の特性も損なわないように材料設計を工夫する必要がある。具体的には、ガラス転移温度を向上させ、吸水率を下げることで耐熱性を向上させることや位相差の波長分散性、光弾性係数等の光学物性、フィルムの靱性等の機械物性、溶融加工性等の物性バランスを最適化した材料の開発が求められている。
 一方、SBI構造単位を含有するポリカーボネート樹脂は、これまで他のビスフェノール類との共重合が検討されているが、ビスフェノール類をはじめとした芳香族モノマーは一般的に、位相差が短波長ほど大きくなる正の波長分散性を示し、光弾性係数も高くなる。現在、液晶ディスプレイの位相差フィルムとして広く用いられているシクロオレフィンポリマー(COP)は、波長によって位相差がほぼ変化しないフラットな波長分散特性を有しており、COPや逆波長分散性を有する材料と比較すると、正の波長分散性を有する材料からなる位相差フィルムは、ディスプレイの色相や反射率などの表示特性が劣る。SBI構造単位を含有する樹脂については、このような観点で位相差の波長分散性の制御を志向した検討はなされていない。
 本発明の目的は、前記の種々の課題を解決し、耐熱性や耐湿熱性、光学特性、耐候性等の種々の特性に優れたポリカーボネート樹脂、並びにそれを用いて得られる成形品を提供することにある。
 また、前記の種々の課題を解決し、光学特性や耐熱性、溶融加工性に優れたポリカーボネート樹脂、及び光学フィルムを提供することにある。
 本発明者らは、前記課題を解決するべく鋭意検討を重ねた結果、特定量のSBI構造単位と、特定の共重合成分を含有するポリカーボネート樹脂が、耐湿熱性や光学特性、耐候性等の物性に優れていることを見出し、本発明に至った。
 また、本発明者らは、前記課題を解決するべく鋭意検討を重ねた結果、SBI構造単位を含有し、種々の共重合成分との比率を制御することで、耐熱性、光学特性、溶融加工性等の物性に優れたポリカーボネート樹脂が得られることを見出し、本発明に至った。即ち、本発明は以下を要旨とする。
[1]下記式(1)で表される構造単位と、下記式(2)で表される構造単位とを少なくとも含むポリカーボネート樹脂であり、
 ポリカーボネート樹脂を構成する全ての構造単位及び連結基の重量の合計量を100重量%とした際に、
 下記式(1)で表される構造単位の含有量が1重量%以上、70重量%以下であり、
下記式(2)で表される構造単位の含有量が1重量%以上、70重量%以下であり、
 脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール、芳香族成分を含有するジヒドロキシ化合物、ジエステル化合物から選ばれる少なくとも1つの化合物に由来する構造単位を0.1重量%以上、50重量%以下含むポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000013
(式(1)中、R~Rはそれぞれ独立に水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
Figure JPOXMLDOC01-appb-C000014
[2]下記式(1)で表される構造単位と、下記式(2)で表される構造単位とを少なくとも含むポリカーボネート樹脂であり、
 ポリカーボネート樹脂を構成する全ての構造単位及び連結基の重量の合計量を100重量%とした際に、
 下記式(1)で表される構造単位の含有量が1重量%以上、70重量%以下であり、
 下記式(2)で表される構造単位の含有量が1重量%以上、70重量%以下であり、
 負の固有複屈折を有する化合物に由来する構造単位を1重量%以上、70重量%以下含有するポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000015
(式(1)中、R~Rはそれぞれ独立に水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
Figure JPOXMLDOC01-appb-C000016
[3]負の固有複屈折を有する化合物に由来する構造単位が、下記式(3)~(5)から選ばれる少なくとも1つの構造単位である前記[2]に記載のポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000017
(式(3)中、R~R10はそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数6~20のシクロアルキル基、又は、置換若しくは無置換の炭素数6~20のアリール基を表し、Xは置換若しくは無置換の炭素数2~10のアルキレン基、置換若しくは無置換の炭素数6~20のシクロアルキレン基、又は、置換若しくは無置換の炭素数6~20のアリーレン基を表し、それぞれのXは同一であっても異なっていてもよい。m及びnはそれぞれ独立に0~5の整数である。)
Figure JPOXMLDOC01-appb-C000018
(式(4)及び(5)中、R11~R13は、それぞれ独立に、直接結合、置換基を有していてもよい炭素数1~4のアルキレン基であり、R14~R19は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1~10のアルキル基、置換基を有していてもよい炭素数4~10のアリール基、置換基を有していてもよい炭素数1~10のアシル基、置換基を有していてもよい炭素数1~10のアルコキシ基、置換基を有していてもよい炭素数1~10のアリールオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭素数1~10のビニル基、置換基を有していてもよい炭素数1~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、又はシアノ基である。ただし、R14~R19は、互いに同一であっても、異なっていてもよく、R14~R19のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。)
[4]ガラス転移温度が120℃以上、200℃以下である前記[1]乃至[3]のいずれか1に記載のポリカーボネート樹脂。
[5]下記式(1)で表される構造単位を少なくとも含むポリカーボネート樹脂であり、該樹脂のガラス転移温度が120℃以上、180℃以下であり、波長450nmにおける位相差(R450)と波長550nmにおける位相差(R550)との比である波長分散(R450/R550)の値が0.50以上、1.03以下であるポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000019
(式(1)中、R~Rはそれぞれ独立に水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
[6]ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、前記式(1)で表される構造単位を1重量%以上、30重量%以下含有する前記[5]に記載のポリカーボネート樹脂。
[7]ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、下記式(2)で表される構造単位を1重量%以上、70重量%以下含有する前記[5]又は[6]に記載のポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000020
[8]ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、下記式(3)~(5)から選ばれる少なくとも1つの構造単位を1重量%以上70重量%以下含有する前記[5]乃至[7]のいずれか1に記載のポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000021
(式(3)中、R~R10はそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数6~20のシクロアルキル基、又は、置換若しくは無置換の炭素数6~20のアリール基を表し、Xは置換若しくは無置換の炭素数2~10のアルキレン基、置換若しくは無置換の炭素数6~20のシクロアルキレン基、又は、置換若しくは無置換の炭素数6~20のアリーレン基を表し、それぞれのXは同一であっても異なっていてもよい。m及びnはそれぞれ独立に0~5の整数である。)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
(式(4)及び(5)中、R11~R13は、それぞれ独立に、直接結合、置換基を有していてもよい炭素数1~4のアルキレン基であり、R14~R19は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1~10のアルキル基、置換基を有していてもよい炭素数4~10のアリール基、置換基を有していてもよい炭素数1~10のアシル基、置換基を有していてもよい炭素数1~10のアルコキシ基、置換基を有していてもよい炭素数1~10のアリールオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭素数1~10のビニル基、置換基を有していてもよい炭素数1~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、又はシアノ基である。ただし、R14~R19は、互いに同一であっても、異なっていてもよく、R14~R19のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。)
[9]ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール、芳香族成分を含有するジヒドロキシ化合物、ジエステル化合物から選ばれる少なくとも1つの化合物に由来する構造単位を0.1重量%以上、50重量%以下含む前記[5]乃至[8]のいずれか1に記載のポリカーボネート樹脂。
[10]ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、前記式(1)、(3)、(4)、(5)で表される構造単位以外の芳香族構造単位を5重量%以下含有する前記[1]乃至[9]のいずれか1に記載のポリカーボネート樹脂。
[11]測定温度240℃、剪断速度91.2sec-1における溶融粘度が800Pa・s以上、7000Pa・s以下である前記[1]乃至[10]のいずれか1に記載のポリカーボネート樹脂。
[12]ポリカーボネート樹脂中の、炭酸ジエステルの含有量が1重量ppm以上、300重量ppm以下、かつ、炭酸ジエステルに由来するモノヒドロキシ化合物の含有量が1重量ppm以上、1000重量ppm以下、かつ、下記式(6)で表されるジヒドロキシ化合物の含有量が1重量ppm以上、1000重量ppm以下である前記[1]乃至[11]のいずれか1に記載のポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000024
(式(6)中、R~Rはそれぞれ独立に、水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
[13]前記[1]乃至[12]のいずれか1に記載のポリカーボネート樹脂からなるポリカーボネート樹脂成形品。
[14]前記[1]乃至[12]のいずれか1に記載のポリカーボネート樹脂からなるフィルム又はシート。
[15]前記[1]乃至[12]のいずれか1に記載のポリカーボネート樹脂を成形温度280℃以下で溶融製膜法により成形してなる透明フィルムの製造方法。
[16]前記[14]に記載のフィルムからなる位相差フィルム。
 本発明の第一の態様及び第二の態様のポリカーボネート樹脂は、耐熱性や高温・高湿度下での耐久性(耐湿熱性)、光学特性、UV光の照射などに対する耐久性(耐候性)等に優れており、射出成形や押出成形等によって得られる成形品に用いられる材料として使用することができる。特に、耐湿熱性や耐候性が求められる透明成形品用途や、液晶ディスプレイや有機ELディスプレイ等の光学補償のために用いられる位相差フィルム等に好適に用いられる。
 本発明の第三の態様のポリカーボネート樹脂は光学特性や耐熱性、溶融加工性に優れており、光学フィルムに用いられる材料として使用することができる。特に、液晶ディスプレイや有機ELディスプレイ等の光学補償のために用いられる位相差フィルム等に好適に用いられる。
 以下に、本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。なお、本発明において、「構造単位」とは、重合体において隣り合う連結基に挟まれた部分構造、及び、重合体の末端部分に存在する重合反応性基と、該重合反応性基に隣り合う連結基とに挟まれた部分構造をいう。
 また、本発明においてポリカーボネート樹脂とは、ポリエステルカーボネート樹脂を含む。ポリエステルカーボネート樹脂とは、ポリマーを構成する構造単位がカーボネート結合だけでなく、エステル結合で連結された部分を含むポリマーのことを言う。
 本発明のポリカーボネート樹脂は、以下のとおりである。
<第一の態様>
 下記式(1)で表される構造単位と、下記式(2)で表される構造単位とを少なくとも含むポリカーボネート樹脂であり、
 ポリカーボネート樹脂を構成する全ての構造単位及び連結基の重量の合計量を100重量%とした際に、
 下記式(1)で表される構造単位の含有量が1重量%以上、70重量%以下であり、
 下記式(2)で表される構造単位の含有量が1重量%以上、70重量%以下であり、
 脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール、芳香族成分を含有するジヒドロキシ化合物、ジエステル化合物から選ばれる少なくとも1つの化合物に由来する構造単位を0.1重量%以上、50重量%以下含むポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000025
(式(1)中、R~Rはそれぞれ独立に水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
Figure JPOXMLDOC01-appb-C000026
<第二の態様>
 下記式(1)で表される構造単位と、下記式(2)で表される構造単位とを少なくとも含むポリカーボネート樹脂であり、
 ポリカーボネート樹脂を構成する全ての構造単位及び連結基の重量の合計量を100重量%とした際に、
 下記式(1)で表される構造単位の含有量が1重量%以上、70重量%以下であり、
 下記式(2)で表される構造単位の含有量が1重量%以上、70重量%以下であり、
 負の固有複屈折を有する化合物に由来する構造単位を1重量%以上、70重量%以下含有するポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000027
(式(1)中、R~Rはそれぞれ独立に水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
Figure JPOXMLDOC01-appb-C000028
<第三の態様>
 下記式(1)で表される構造単位を少なくとも含み、該樹脂のガラス転移温度が120℃以上、180℃以下であり、波長450nmにおける位相差(R450)と波長550nmにおける位相差(R550)との比である波長分散(R450/R550)の値が0.50以上、1.03以下であることを特徴とする。
Figure JPOXMLDOC01-appb-C000029
(式(1)中、R~Rはそれぞれ独立に水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
[本発明のポリカーボネート樹脂の構造と原料]
 本発明の第一の態様及び第二の態様のポリカーボネート樹脂は下記式(1)で表される構造単位を1重量%以上、70重量%以下で含有する。また、本発明の第三の態様のポリカーボネート樹脂は下記式(1)で表される構造単位を含有している。
 前記第一の態様及び第二の態様においては、前記式(1)で表される構造単位の含有量は、1重量%以上、70重量%以下である。前記式(1)で表される構造単位の含有量は、5重量%以上、50重量%以下が好ましく、8重量%以上、40重量%以下がより好ましく、10重量%以上、30重量%以下がさらに好ましい。
 また、前記式(2)で表される構造単位の含有量は、1重量%以上、70重量%以下である。前記式(2)で表される構造単位の含有量は、10重量%以上、65重量%以下が好ましく、20重量%以上、60重量%以下がより好ましい。
 芳香族ジヒドロキシ化合物と脂肪族ジヒドロキシ化合物では、重合反応の適正な温度領域が異なるため、前記式(1)で表される構造単位の含有量が上記範囲より大きい場合、ISBやその他の脂肪族ジヒドロキシ化合物と共重合する時に、重合反応終盤の反応性が不足し、所定の分子量まで上がらない可能性がある。また、重合反応が遅延化することでポリマーが熱劣化し、色調が著しく悪化するおそれがある。一方、前記式(1)で表される構造単位の含有量が上記範囲より小さい場合、本発明の特長である耐湿熱性向上の効果を十分に得ることができなくなる。
 前記式(2)で表される構造単位の含有量が上記範囲より大きい場合、耐熱性が過度に高くなり、機械特性や溶融加工性が悪化する。また、前記式(2)で表される構造単位は吸湿性の高い構造であるため、含有量が過度に多い場合には樹脂の吸水率が高くなり、高湿度の環境下において成形品の変形やひび割れ等が起こる懸念がある。一方、前記式(2)で表される構造単位の含有量が上記範囲より小さい場合、耐熱性が不十分となったり、本発明のポリカーボネート樹脂の特長である高透過率や低光弾性係数等の光学特性が得られなくなったりする懸念がある。
 なお、本発明者らの検討により、前記式(1)で表される構造単位は芳香族構造であるにも関わらず、UV光の照射下での樹脂の着色が小さいことが見出された。したがって、通常の芳香族構造を有する化合物よりも多く含有したとしても耐熱性や耐湿熱性と耐候性に優れたポリカーボネート樹脂を得ることができる。
 従って、本発明の第一の態様及び第二の態様は、本発明者らの検討により、前記式(1)で表される構造単位及び前記式(2)で表される構造単位を特定量とすることにより、耐熱性や耐湿熱性と耐候性に優れたポリカーボネート樹脂を得ることができることを見いだしたものである。
 本発明の第三の態様のポリカーボネート樹脂において、ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、前記式(1)で表される構造単位の含有量は1重量%以上、30重量%以下が好ましい。3重量%以上、25重量%以下がより好ましく、5重量%以上、20重量%以下が特に好ましい。
 前記式(1)で表される構造単位の含有量が上記範囲より大きい場合、耐熱性が過度に高くなったり、得られる樹脂が脆くなるおそれがある。また、それ故に十分な分子量まで重合反応を進行させるために反応温度を高くしたり、反応時間を長くしたりする必要があるため、ポリマーが熱劣化し、色調が著しく悪化するおそれがある。一方、前記式(1)で表される構造単位の含有量が上記範囲より小さい場合、特長である耐熱性向上の効果を十分に得ることができなくなる。
 なお、本発明者らの検討により、前記式(1)で表される構造単位は芳香族構造であるにも関わらず、UV光の照射下での樹脂の着色が小さいことが見出された。したがって、通常の芳香族構造を有する化合物よりも多く含有したとしてもポリマーが熱劣化しづらく、色調が悪化しづらいポリカーボネート樹脂を得ることができる。
 また、一般的に芳香族構造は脂肪族構造よりも光弾性係数が高くなる傾向があるが、前記式(1)で表される構造単位は、二つのベンゼン環が直交に近い角度で配向しているため、お互いの複屈折を相殺することにより、芳香族にも関わらず比較的低い光弾性係数と低い複屈折、また、フラットな波長分散特性を有する。前記式(1)で表される構造単位とその他の構造単位を適切に組み合わせることにより、高い耐熱性と優れた光学物性を有する樹脂を得ることが可能になる。
(ジヒドロキシ化合物A)
 前記式(1)で表される構造単位を導入するには、下記式(6)で表されるジヒドロキシ化合物(以下、「ジヒドロキシ化合物A」と称することがある。)をモノマーに用いて重合する。
Figure JPOXMLDOC01-appb-C000030
(式(6)中、R~Rはそれぞれ独立に、水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
 なかでも、下記式(6’)であることが、本発明の効果を得るために好ましい。
Figure JPOXMLDOC01-appb-C000031
(式(6’)中、R22、R23はそれぞれ独立に、水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
 前記式(6)において、R~Rの炭素数は、通常1~12であり、本発明の効果を得るために、1~6が好ましい。
 前記式(6)において、R~Rの炭素数1~12のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、sec-ペンチル基、n-ヘキシル基、シクロヘキシル基、o-メチルシクロヘキシル基、m-メチルシクロヘキシル基、p-メチルシクロヘキシル基、n-オクチル基、シクロオクチル基、n-ドデシル基などが挙げられる。
 これらの中でも、本発明の効果を得るために、R~Rは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、sec-ペンチル基、n-ヘキシル基などの炭素数1~6のアルキル基が好ましく、メチル基、エチル基、n-プロピル基がより好ましく、メチル基がさらに好ましい。
 前記式(6)で表される化合物としては、具体的には、例えば、6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、7,7’-ジメチル-6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、7,7’-tert-ブチル-6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、7,7’-ジフェニル-6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン等が挙げられる。
 その中でも入手のしやすさや得られるポリカーボネート樹脂の物性のバランス等から、6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、7,7'-ジメチル-6,6'-ジヒドロキシ-3,3,3',3'-テトラメチル-1,1'-スピロビインダンが好ましく、6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダンがより好ましい。
(ジヒドロキシ化合物B)
 本発明の第一の態様及び第二の態様のポリカーボネート樹脂は下記式(2)で表される構造単位を1重量%以上、70重量%以下で含有している。
 本発明の第三の態様のポリカーボネート樹脂は下記式(2)で表される構造単位を含有していることが好ましい。
Figure JPOXMLDOC01-appb-C000032
 なお、前記式(2)で表される構造単位の含有量は、ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、本発明の第三の態様においては、1重量%以上、70重量%以下が好ましい。本発明の全ての態様においては、10重量%以上、65重量%以下がより好ましく、20重量%以上、60重量%以下が特に好ましい。
 前記式(2)で表される構造単位の含有量が上記範囲より大きい場合、耐熱性が過度に高くなり、機械特性や溶融加工性が悪化する。また、前記式(2)で表される構造単位は吸湿性の高い構造であるため、含有量が過度に多い場合には樹脂の吸水率が高くなり、高湿度の環境下において成形品の光学物性が変化したり、変形やひび割れ等が起こる懸念がある。一方、前記式(2)で表される構造単位の含有量が上記範囲より小さい場合、耐熱性が不十分となったり、特長である高透過率や低光弾性係数等の光学特性が得られなくなる。
 前記式(2)で表される構造単位を導入可能なジヒドロキシ化合物としては、例えば、立体異性体の関係にある、イソソルビド(ISB)、イソマンニド、イソイデットが挙げられる(以下、「ジヒドロキシ化合物B」と称することがある。)。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、入手及び重合反応性の観点からISBを用いるのが最も好ましい。
 ジヒドロキシ化合物Bは、例えば、塩基性安定剤、還元剤、抗酸化剤、脱酸素剤、光安定剤、制酸剤、pH安定剤又は熱安定剤等の安定剤を含んでいてもよい。特に酸性下でジヒドロキシ化合物Bは変質しやすいことから、塩基性安定剤を含むことが好ましい。
 塩基性安定剤としては、例えば、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations2005)における1族又は2族の金属の水酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硼酸塩及び脂肪酸塩;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド及びブチルトリフェニルアンモニウムヒドロキシド等の塩基性アンモニウム化合物;ジエチルアミン、ジブチルアミン、トリエチルアミン、モルホリン、N-メチルモルホリン、ピロリジン、ピペリジン、3-アミノ-1-プロパノール、エチレンジアミン、N-メチルジエタノールアミン、ジエチルエタノールアミン、ジエタノールアミン、トリエタノールアミン、4-アミノピリジン、2-アミノピリジン、N,N-ジメチル-4-アミノピリジン、4-ジエチルアミノピリジン、2-ヒドロキシピリジン、2-メトキシピリジン、4-メトキシピリジン、2-ジメチルアミノイミダゾール、2-メトキシイミダゾール、イミダゾール、2-メルカプトイミダゾール、2-メチルイミダゾール及びアミノキノリン等;アミン系化合物、並びにジ-(tert-ブチル)アミン及び2,2,6,6-テトラメチルピペリジン等のヒンダードアミン系化合物が挙げられる。
 ジヒドロキシ化合物B中のこれら塩基性安定剤の含有量に特に制限はないが、ジヒドロキシ化合物Bは酸性状態では不安定であるので、上記の安定剤を含むジヒドロキシ化合物Bの水溶液のpHが7付近となるように塩基性安定剤を添加することが好ましい。
 塩基性安定剤の量が少なすぎるとジヒドロキシ化合物Bの変質を防止する効果が得られない可能性があり、多すぎるとジヒドロキシ化合物Bの変性を招く場合がある。そのため、塩基性安定剤の量は、ジヒドロキシ化合物Bに対して、0.0001重量%~0.1重量%であることが好ましく、より好ましくは0.001重量%~0.05重量%である。
 また、ジヒドロキシ化合物Bは吸湿しやすく、また、酸素によって徐々に酸化されやすいので、保管又は製造時の取り扱いの際には、水分が混入しないようにし、また、脱酸素剤を用いたり、窒素雰囲気下にしたりすることが好ましい。
<脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール、芳香族成分を含有するジヒドロキシ化合物、ジエステル化合物から選ばれる少なくとも1つの化合物に由来する構造単位>
 本発明の第一の態様のポリカーボネート樹脂においては、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール、芳香族成分を含有するジヒドロキシ化合物、ジエステル化合物から選ばれる少なくとも1つの化合物に由来する構造単位を0.1重量%以上、50重量%以下含むことを特徴としている。
 該構造単位を含有するモノマーとしては、例えば、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール類、芳香族成分を含有するジヒドロキシ化合物、ジエステル化合物等が挙げられる。
 これらのなかでも、反応効率を高める観点から、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール類、芳香族成分を含有するジヒドロキシ化合物が好ましく、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール類がより好ましく、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物がさらに好ましく、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物が特に好ましい。
 脂肪族ジヒドロキシ化合物としては、例えば、以下のジヒドロキシ化合物を用いることができる。
 エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、1,5-ヘプタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール等の直鎖脂肪族炭化水素のジヒドロキシ化合物;ネオペンチルグリコール、ヘキシレングリコール等の分岐脂肪族炭化水素のジヒドロキシ化合物。
 脂環式ジヒドロキシ化合物としては、例えば、以下のジヒドロキシ化合物を用いることができる。
 1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、2,6-デカリンジメタノール、1,5-デカリンジメタノール、2,3-デカリンジメタノール、2,3-ノルボルナンジメタノール、2,5-ノルボルナンジメタノール、1,3-アダマンタンジメタノール、リモネン等の、テルペン化合物から誘導されるジヒドロキシ化合物等に例示される、脂環式炭化水素の1級アルコールであるジヒドロキシ化合物;1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,3-アダマンタンジオール、水添ビスフェノールA、2,2,4,4-テトラメチル-1,3-シクロブタンジオール等に例示される、脂環式炭化水素の2級アルコール及び3級アルコールであるジヒドロキシ化合物。
 アセタール環を含有するジヒドロキシ化合物としては、例えば、下記構造式(10)で表されるスピログリコールや下記構造式(11)で表されるジオキサングリコール等を用いることができる。
Figure JPOXMLDOC01-appb-C000033
 オキシアルキレングリコール類としては、例えば、以下のジヒドロキシ化合物を用いることができる。
 ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール。
 芳香族成分を含有するジヒドロキシ化合物としては、例えば、以下のジヒドロキシ化合物を用いることができる。
 2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-(3-フェニル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-(3,5-ジフェニル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)-2-エチルヘキサン、1,1-ビス(4-ヒドロキシフェニル)デカン、ビス(4-ヒドロキシ-3-ニトロフェニル)メタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン、2,4’-ジヒドロキシジフェニルスルホン、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシ-3-メチルフェニル)スルフィド、ビス(4-ヒドロキシフェニル)ジスルフィド、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジクロロジフェニルエーテル等の芳香族ビスフェノール化合物;2,2-ビス(4-(2-ヒドロキシエトキシ)フェニル)プロパン、2,2-ビス(4-(2-ヒドロキシプロポキシ)フェニル)プロパン、1,3-ビス(2-ヒドロキシエトキシ)ベンゼン、4,4’-ビス(2-ヒドロキシエトキシ)ビフェニル、ビス(4-(2-ヒドロキシエトキシ)フェニル)スルホン等の芳香族基に結合したエーテル基を有するジヒドロキシ化合物。
 ジエステル化合物としては、例えば、以下に示すジカルボン酸等を用いることができる。
 テレフタル酸、フタル酸、イソフタル酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ベンゾフェノンジカルボン酸、4,4’-ジフェノキシエタンジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸;1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、デカリン-2,6ジカルボン酸等の脂環式ジカルボン酸;マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸。なお、これらのジカルボン酸成分はジカルボン酸そのものとしてポリエステルカーボネートの原料とすることができるが、製造法に応じて、メチルエステル体、フェニルエステル体等のジカルボン酸エステルや、ジカルボン酸ハライド等のジカルボン酸誘導体を原料とすることもできる。
 光学特性や耐候性の観点からは、前記したその他の構造単位として、芳香族成分を含有しないものを用いることが好ましい。
 一方、光学特性を確保しつつ、耐熱性や機械特性等とのバランスをとるために、ポリマーの主鎖や側鎖に芳香族成分を組み込むことが有効な場合もある。この場合には、例えば、芳香族構造を含有する前記その他の構造単位により、ポリマーに芳香族成分を導入することができるが、ポリカーボネート樹脂中のこれらの構造単位の含有量は、ポリカーボネート樹脂を構成する全ての構造単位、及び連結器の重量の合計量を100重量%とした際に、5重量%以下が好ましく、3重量%以下がより好ましい。芳香族構造を含有するその他の構造単位の量が多くなると、耐候性や光弾性係数が悪化する懸念がある。
 前記した脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール、芳香族成分を含有するジヒドロキシ化合物、ジエステル化合物から選ばれる少なくとも1つの化合物としては、1,6-ヘキサンジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、スピログリコール、1,4-シクロヘキサンジカルボン酸、デカリン-2,6ジカルボン酸(及びその誘導体)を用いることが特に好ましい。これらのモノマーに由来する構造単位を含むポリカーボネート樹脂は、光学特性や耐熱性、機械特性等のバランスに優れている。
 ジエステル化合物の重合反応性は比較的低いため、反応効率を高める観点からは、オリゴフルオレン構造単位を有するジエステル化合物以外のジエステル化合物は用いないことがより好ましい。
 脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール、芳香族成分を含有するジヒドロキシ化合物、ジエステル化合物から選ばれる少なくとも1つの化合物に由来する構造単位を導入するためのジヒドロキシ化合物やジエステル化合物は、得られる樹脂の要求性能に応じて、単独又は2種以上を組み合わせて用いてもよい。
 樹脂中の脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール、芳香族成分を含有するジヒドロキシ化合物、ジエステル化合物から選ばれる少なくとも1つの化合物に由来する構造単位の含有量は、ポリカーボネート樹脂を構成する全ての構造単位、及び連結器の重量の合計量を100重量%とした際に、0.1重量%以上、50重量%以下であり、1重量%以上、45重量%以下がさらに好ましく、3重量%以上、40重量%以下が特に好ましい。その他の構造単位は主に樹脂の耐熱性の調整や、柔軟性や靱性の付与の役割を担うため、含有量が少なすぎると、樹脂の機械特性や溶融加工性が悪くなり、含有量が多すぎると、耐熱性や光学特性が悪化するおそれがある。
<負の固有複屈折を有する化合物に由来する構造単位>
 本発明の第二の態様のポリカーボネート樹脂は、負の固有複屈折を有する化合物に由来する構造単位を1重量%以上、70重量%以下で含むことを特徴としている。
 本発明の第三の態様のポリカーボネート樹脂は、負の固有複屈折を有する化合物に由来する構造単位を含むことで波長分散(R450/R550)を好ましい値に調整することができる。なお、負の固有複屈折を有する化合物とは、その化合物の単独重合体からなるフィルムを延伸した際に、遅相軸が延伸方向と垂直の方向となるような物性を示す化合物である。
 負の固有複屈折を有する化合物に由来する構造単位としては、下記式(3)~(5)で表される構造単位から選ばれる構造単位を含有してもよい。なお、下記式(3)~(5)で表される構造単位を含有する二官能性モノマーを「フルオレン系モノマー」と称することがある。また、下記式(4)及び(5)で表される構造単位を「オリゴフルオレン構造単位」と称することがある。
Figure JPOXMLDOC01-appb-C000034
(式(3)中、R~R10はそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数6~20のシクロアルキル基、又は、置換若しくは無置換の炭素数6~20のアリール基を表し、Xは置換若しくは無置換の炭素数2~10のアルキレン基、置換若しくは無置換の炭素数6~20のシクロアルキレン基、又は、置換若しくは無置換の炭素数6~20のアリーレン基を表し、それぞれのXは同一であっても異なっていてもよい。m及びnはそれぞれ独立に0~5の整数である。)
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
(式(4)及び(5)中、R11~R13は、それぞれ独立に、直接結合、置換基を有していてもよい炭素数1~4のアルキレン基であり、R14~R19は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1~10のアルキル基、置換基を有していてもよい炭素数4~10のアリール基、置換基を有していてもよい炭素数1~10のアシル基、置換基を有していてもよい炭素数1~10のアルコキシ基、置換基を有していてもよい炭素数1~10のアリールオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭素数1~10のビニル基、置換基を有していてもよい炭素数1~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、又はシアノ基である。ただし、R14~R19は、互いに同一であっても、異なっていてもよく、R14~R19のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。)
 これらの負の固有複屈折を有する化合物に由来する構造単位を導入することで、位相差の波長分散性(波長依存性)を調整することが可能となる。多くのポリマーは位相差が短波長ほど大きくなる正の波長分散性を有しているが、前記負の固有複屈折を有する化合物に由来する構造単位は位相差が短波長ほど小さくなる逆波長分散性を有しているため、前記負の固有複屈折を有する化合物に由来する構造単位の含有量に応じてフラットな波長分散性から逆波長分散性へと調整することができる。
 前記負の固有複屈折を有する化合物に由来する構造単位の含有量は、構造によって逆波長分散の発現性は異なるが、位相差フィルムとして最適な波長分散特性を得るためには、ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、本発明の第三の態様においては、1重量%以上、70重量%以下含有することが好ましく、本発明の第二の態様及び第三の態様においては、3重量%以上、65重量%以下がより好ましく、5重量%以上、60重量%以下が特に好ましい。
 前記負の固有複屈折を有する化合物に由来する構造単位は、延伸方向の複屈折を弱めてしまうため、樹脂中の含有量が上記範囲よりも大きい場合、複屈折が小さくなりすぎて、所望の位相差が得られなくなるおそれがある。また、他の共重合成分の比率が少なくなるため、耐熱性や機械物性等の他の特性のバランスを調整することが難しくなる。
 前記式(3)で表される構造単位を導入するために用いられるジヒドロキシ化合物として、具体的には、例えば、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシプロポキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシプロポキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチル-6-メチルフェニル)フルオレン、9,9-ビス(4-(3-ヒドロキシ-2,2-ジメチルプロポキシ)フェニル)フルオレンなどが挙げられる。
 側鎖のフルオレン環の特性を効率的に発現させるため、また、機械物性や耐熱性などの種々の特性のバランスや、製造の容易さの観点から、前記式(3)中のRとRは、水素原子、又はメチル基が好ましく、RとR10は水素原子が好ましい。また、前記式(3)中のmとnは0、又は1が好ましく、2つのXは同一であることが好ましく、エチレン基が好ましい。
 上記のジヒドロキシ化合物の中でも、耐熱性や光学物性、機械物性などの種々の特性が優れることと、入手のしやすさの観点から、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンと9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンが特に好ましい。
 前記式(4)及び(5)中のR11及びR12において、「置換基を有していてもよい炭素数1~4のアルキレン基」としては、例えば以下のアルキレン基を採用することができる。
 メチレン基、エチレン基、n-プロピレン基、n-ブチレン基等の直鎖状のアルキレン基;メチルメチレン基、ジメチルメチレン基、エチルメチレン基、プロピルメチレン基、(1-メチルエチル)メチレン基、1-メチルエチレン基、2-メチルエチレン基、1-エチルエチレン基、2-エチルエチレン基、1-メチルプロピレン基、2-メチルプロピレン基、1,1-ジメチルエチレン基、2,2-ジメチルプロピレン基、3-メチルプロピレン基等の、分岐鎖を有するアルキレン基。ここで、R11及びR12における分岐鎖の位置は、フルオレン環側の炭素が1位となるように付与した番号により示した。
 R11及びR12の選択は、逆波長分散性の発現に特に重要な影響を及ぼす。フルオレン系モノマー構造中のフルオレン環が主鎖方向(延伸方向)に対して垂直に配向した状態において、最も強い逆波長分散性を示す。フルオレン環の配向状態を前記の状態に近づけ、強い逆波長分散性を発現させるためには、アルキレン基の主鎖上の炭素数が2~3であるR11及びR12を採用することが好ましい。炭素数が1の場合は意外にも逆波長分散性を示さない場合がある。
 炭素数が1の場合に、逆波長分散性を示さない要因としては、オリゴフルオレン構造単位の連結基であるカーボネート基やエステル基の立体障害によって、フルオレン環の配向が主鎖方向に対して垂直ではない方向に固定化されてしまうこと等が考えられる。一方、炭素数が多すぎる場合は、フルオレン環の配向の固定が弱くなることで、逆波長分散性が弱くなるおそれがある。また、樹脂の耐熱性も低下する傾向にある。
 前記式(4)及び(5)に示すように、R11及びR12は、アルキレン基の一端がフルオレン環に結合し、他端が連結基に含まれる酸素原子、又はカルボニル炭素のいずれかに結合している。熱安定性、耐熱性及び逆波長分散性の観点からは、アルキレン基の他端がカルボニル炭素に結合していることが好ましい。後述するとおり、オリゴフルオレン構造を有するモノマーとして、具体的にはジオール若しくはジエステル(以下、ジエステルにはジカルボン酸も含むものとする)の構造が考えられるが、ジエステルを原料に用いて重合することが好ましい。また、製造を容易にする観点からは、R11及びR12に同一のアルキレン基を採用することが好ましい。
 R13において、「置換基を有していてもよい炭素数1~4のアルキレン基」としては、例えば以下のアルキレン基を採用することができる。
 メチレン基、エチレン基、n-プロピレン基、n-ブチレン基等の直鎖状のアルキレン基;メチルメチレン基、ジメチルメチレン基、エチルメチレン基、プロピルメチレン基、(1-メチルエチル)メチレン基、1-メチルエチレン基、2-メチルエチレン基、1-エチルエチレン基、2-エチルエチレン基、1-メチルプロピレン基、2-メチルプロピレン基、1,1-ジメチルエチレン基、2,2-ジメチルプロピレン基、3-メチルプロピレン基等の分岐鎖を有するアルキレン基。
 R13は、アルキレン基の主鎖上の炭素数が1~2であることが好ましく、特に炭素数が1であることが好ましい。主鎖上の炭素数が多すぎるR13を採用する場合は、R11及びR12と同様にフルオレン環の固定化が弱まり、逆波長分散性の低下、光弾性係数の増加、耐熱性の低下等を招くおそれがある。一方、主鎖上の炭素数は少ない方が光学特性や耐熱性は良好であるが、二つのフルオレン環の9位が直接結合でつながる場合は熱安定性が悪化する。
 前記オリゴフルオレン構造単位に含まれるフルオレン環は、R14~R19の全てが水素原子である構成、或いは、R14及び/又はR19がハロゲン原子、アシル基、ニトロ基、シアノ基、及びスルホ基からなる群から選ばれるいずれかであり、かつ、R15~R18が水素原子である構成のいずれかであることが好ましい。
 前者の構成を有する場合には、前記オリゴフルオレン構造単位を含む化合物を、工業的にも安価なフルオレンから誘導できる。また、後者の構成を有する場合には、フルオレン9位の反応性が向上するため、前記オリゴフルオレン構造単位を含む化合物の合成過程において、様々な誘導反応が適応可能となる傾向がある。
 前記フルオレン環は、より好ましくは、R14~R19の全てが水素原子である構成、或いは、R14及び/又はR19がフッ素原子、塩素原子、臭素原子、及びニトロ基からなる群から選ばれるいずれかであり、かつ、R15~R18が水素原子である構成のいずれかであることがより好ましく、R14~R19の全てが水素原子である構成が特に好ましい。前記の構成を採用することにより、フルオレン比率を高めることができ、かつ、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向もある。
 前記式(4)及び(5)で表される2価のオリゴフルオレン構造単位のうち、好ましい構造としては具体的に例えば、下記[A]群に例示される骨格を有する構造が挙げられる。
[A]
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 前記オリゴフルオレン構造単位を有するモノマーとしては、例えば、下記式(7)で表される特定のジヒドロキシ化合物や下記式(8)で表される特定のジエステルが挙げられる。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
(式(7)及び(8)中、R11~R13は、それぞれ独立に、直接結合、置換基を有していてもよい炭素数1~4のアルキレン基であり、R14~R19は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1~10のアルキル基、置換基を有していてもよい炭素数4~10のアリール基、置換基を有していてもよい炭素数1~10のアシル基、置換基を有していてもよい炭素数1~10のアルコキシ基、置換基を有していてもよい炭素数1~10のアリールオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭素数1~10のビニル基、置換基を有していてもよい炭素数1~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、又はシアノ基である。ただし、R14~R19は、互いに同一であっても、異なっていてもよく、R14~R19のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。A及びAは水素原子、又はそれぞれ置換基を有していてもよい炭素数1~18の脂肪族炭化水素基、又は置換基を有していてもよい芳香族炭化水素基であり、AとAとは同一であっても異なっていてもよい。)
 前記2価のオリゴフルオレン構造単位を有するモノマーとしては、前記式(8)で表される特定のジエステルを用いることが好ましい。前記特定のジエステルは、前記式(7)で表される特定のジヒドロキシ化合物よりも熱安定性が比較的良好であり、また、ポリマー中のフルオレン環が好ましい方向に配向し、より強い逆波長分散性を示す傾向がある。なお、ポリカーボネート樹脂にジエステルの構造単位を含有する場合、その樹脂をポリエステルカーボネート樹脂と称する。
 前記式(8)のAとAが水素原子、又は、メチル基やエチル基等の脂肪族炭化水素基である場合、通常用いられるポリカーボネートの重合条件においては、重合反応が起こりにくいことがある。そのため、前記式(8)のAとAは芳香族炭化水素基であることが好ましい。
 本発明の第二の態様及び第三の態様のポリカーボネート樹脂においては、前述した構造単位以外の構造単位を含んでいてもよく(以下、「その他の構造単位」と称することがある。)、その他の構造単位を含有するモノマーとしては、例えば、本発明の第一の態様で上記した、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール類、芳香族成分を含有するジヒドロキシ化合物、ジエステル化合物等が挙げられる。
 これらのなかでも、反応効率を高める観点から、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール類、芳香族成分を含有するジヒドロキシ化合物が好ましく、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール類がより好ましく、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物がさらに好ましく、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物が特に好ましい。
 これら脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール類、芳香族成分を含有するジヒドロキシ化合物及びジエステル化合物は、それぞれ本発明の第一の態様で上記した化合物を用いることができる。
 光学特性の観点からは、前記に挙げたその他の構造単位として、芳香族成分を含有しないものを用いることが好ましいが、光学特性を確保しつつ、耐熱性や機械特性等とのバランスをとるために、ポリマーの主鎖や側鎖に芳香族成分を組み込むことが有効な場合もある。この場合には、例えば、芳香族構造を含有する前記その他の構造単位により、ポリマーに芳香族成分を導入することができるが、本発明の樹脂中のこれらの構造単位の含有量は、ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、5重量%以下が好ましい。芳香族構造を含有するその他の構造単位の量が多くなると光弾性係数が悪化する懸念がある。
 前記に挙げたその他の構造単位を有するモノマーとしては、1,6-ヘキサンジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、スピログリコール、1,4-シクロヘキサンジカルボン酸、デカリン-2,6-ジカルボン酸(及びその誘導体)を用いることが特に好ましい。これらのモノマーに由来する構造単位を含む樹脂は、光学特性や耐熱性、機械特性等のバランスに優れている。
 ジエステル化合物の重合反応性は比較的低いため、反応効率を高める観点からは、オリゴフルオレン構造単位を有するジエステル化合物以外のジエステル化合物は用いないことがより好ましい。
 その他の構造単位を導入するためのジヒドロキシ化合物やジエステル化合物は、得られる樹脂の要求性能に応じて、単独又は2種以上を組み合わせて用いてもよい。樹脂中のその他の構造単位の含有量は、ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、0.1重量%以上、50重量%以下が好ましく、1重量%以上、45重量%以下がさらに好ましく、3重量%以上、40重量%以下が特に好ましい。その他の構造単位は主に樹脂の耐熱性の調整や、柔軟性や靱性の付与の役割を担うため、含有量が少なすぎると、樹脂の機械特性や溶融加工性が悪くなり、含有量が多すぎると、耐熱性や光学特性が悪化するおそれがある。
(炭酸ジエステル)
 本発明のポリカーボネート樹脂に含有される上記の構造単位の連結基は、下記式(12)で表される炭酸ジエステルを重合することで導入される。
Figure JPOXMLDOC01-appb-C000045
(式(12)中、A及びAは、それぞれ置換基を有していてもよい炭素数1~18の脂肪族炭化水素基、又は置換基を有していてもよい芳香族炭化水素基であり、AとAとは同一であっても異なっていてもよい。)
 A及びAは、置換又は無置換の芳香族炭化水素基であることが好ましく、無置換の芳香族炭化水素基がより好ましい。なお、脂肪族炭化水素基の置換基としては、エステル基、エーテル基、カルボン酸、アミド基、ハロゲンが挙げられ、芳香族炭化水素基の置換基としては、メチル基、エチル基等のアルキル基が挙げられる。
 前記式(12)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート(以下、DPCと略記することがある。)、ジトリルカーボネート等の置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート及びジ-tert-ブチルカーボネート等のジアルキルカーボネートが例示されるが、好ましくはジフェニルカーボネート、置換ジフェニルカーボネートであり、特に好ましくはジフェニルカーボネートである。
 炭酸ジエステルは、塩化物イオン等の不純物を含む場合があり、重合反応を阻害したり、得られる樹脂の色相を悪化させたりする場合があるため、必要に応じて、蒸留等により精製したものを使用することが好ましい。
 また、前記式(8)で表されるジエステルモノマーと前記式(12)で表される炭酸ジエステルを両方用いて重合反応を行う場合には、前記式(8)のA、A及び前記式(12)のA、Aがすべて同じ構造であると、重合反応中に脱離する成分が同じであり、その成分を回収して再利用しやすい。また、重合反応性と再利用での有用性の観点から、A~Aはフェニル基であることが特に好ましい。なお、A~Aがフェニル基である場合、重合反応中に脱離する成分はフェノールである。
[本発明のポリカーボネート樹脂の製造条件]
 本発明のポリカーボネート樹脂は、一般に用いられる重合方法で製造することができる。例えば、ホスゲンやカルボン酸ハロゲン化物を用いた溶液重合法又は界面重合法や、溶媒を用いずに反応を行う溶融重合法を用いて製造することができる。これらの製造方法のうち、溶媒や毒性の高い化合物を使用しないことから環境負荷を低減することができ、また、生産性にも優れる溶融重合法によって製造することが好ましい。
 また、重合に溶媒を使用すると樹脂中に溶媒が残存する場合があり、その可塑化効果によって樹脂のガラス転移温度が低下することによって、後述する成形や延伸などの加工工程での品質変動要因となり得る。また、溶媒としては塩化メチレン等のハロゲン系の有機溶媒が用いられることが多いが、ハロゲン系溶媒が樹脂中に残存する場合、この樹脂を用いた成形体が電子機器等に組み込まれると金属部の腐食の原因ともなり得る。溶融重合法によって得られる樹脂は溶媒を含有しないため、加工工程や製品品質の安定化にとっても有利である。
 溶融重合法によりポリカーボネート樹脂を製造する際は、前述した構造単位を有するモノマーと、炭酸ジエステルと、重合触媒とを混合し、溶融下でエステル交換反応(又は重縮合反応とも称する。)を行い、脱離成分を系外に除去しながら反応率を上げていく。重合の終盤では高温、高真空の条件で目的の分子量まで反応を進める。反応が完了したら、反応器から溶融状態の樹脂を抜き出し、本発明のポリカーボネート樹脂が得られる。
 重縮合反応は、反応に用いる全ジヒドロキシ化合物と全ジエステル化合物のモル比率を厳密に調整することで、反応速度や得られる樹脂の分子量を制御できる。ポリカーボネート樹脂の場合、全ジヒドロキシ化合物に対する炭酸ジエステルのモル比率を、0.90~1.10に調整することが好ましく、0.96~1.05に調整することがより好ましく、0.98~1.03に調整することが特に好ましい。ポリエステルカーボネート樹脂の場合は、全ジヒドロキシ化合物に対する炭酸ジエステルと全ジエステル化合物との合計量のモル比率を、0.90~1.10に調整することが好ましく、0.96~1.05に調整することがより好ましく、0.98~1.03に調整することが特に好ましい。
 前記のモル比率が上下に大きく外れると、所望とする分子量の樹脂が製造できなくなる。また、前記のモル比率が小さくなりすぎると、製造された樹脂のヒドロキシ基末端が増加して、樹脂の熱安定性が悪化する場合がある。また、未反応のジヒドロキシ化合物が樹脂中に多く残存し、その後の成形加工工程で成形機の汚れや成形品の外観不良の原因となり得る。一方、前記のモル比率が大きくなりすぎると、同一条件下ではエステル交換反応の速度が低下したり、製造された樹脂中の炭酸ジエステルやジエステル化合物の残存量が増加し、この残存低分子成分が同様に成形加工工程での問題を招く可能性がある。
 溶融重合法は、通常、2段階以上の多段工程で実施される。重縮合反応は、1つの重合反応器を用い、順次条件を変えて2段階以上の工程で実施してもよいし、2つ以上の反応器を用いて、それぞれの条件を変えて2段階以上の工程で実施してもよいが、生産効率の観点からは、2つ以上、好ましくは3つ以上の反応器を用いて実施する。重縮合反応はバッチ式、連続式、或いはバッチ式と連続式の組み合わせのいずれでも構わないが、生産効率と品質の安定性の観点から、連続式が好ましい。
 重縮合反応においては、反応系内の温度と圧力のバランスを適切に制御することが重要である。温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが反応系外に留出してしまうおそれがある。その結果、ジヒドロキシ化合物とジエステル化合物のモル比率が変化し、所望の分子量の樹脂が得られない場合がある。
 また、重縮合反応の重合速度は、ヒドロキシ基末端とエステル基末端或いはカーボネート基末端とのバランスによって制御される。そのため、特に連続式で重合を行う場合は、未反応モノマーの留出によって末端基のバランスが変動すると、重合速度を一定に制御することが難しくなり、得られる樹脂の分子量の変動が大きくなるおそれがある。樹脂の分子量は溶融粘度と相関するため、得られた樹脂を成形加工する際に、溶融粘度が変動し、均一な寸法の成形品が得られない等の問題を招くおそれがある。
 さらに、未反応モノマーが留出すると、末端基のバランスだけでなく、樹脂の共重合組成が所望の組成から外れ、機械物性や光学特性にも影響するおそれがある。本発明の位相差フィルムにおいては、位相差の波長分散性は樹脂中のフルオレン系モノマーとその他の共重合成分との比率によって制御されるため、重合中に比率が崩れると、設計どおりの光学特性が得られなくなるおそれがある。
 以下、溶融重縮合反応の工程を、モノマーを消費させてオリゴマーを生成させる段階と、所望の分子量まで重合を進行させてポリマーを生成させる段階に分けて述べる。
 具体的に、第1段目の反応における反応条件としては、以下の条件を採用することができる。即ち、重合反応器の内温は、通常130℃以上、好ましくは150℃以上、より好ましくは170℃以上、かつ、通常250℃以下、好ましくは240℃以下、より好ましくは230℃以下の範囲で設定する。
 また、重合反応器の圧力は、通常70kPa以下(以下、圧力とは絶対圧力を表す。)、好ましくは50kPa以下、より好ましくは30kPa以下、かつ、通常1kPa以上、好ましくは3kPa以上、より好ましくは5kPa以上の範囲で設定する。
 また、反応時間は、通常0.1時間以上、好ましくは0.5時間以上、かつ、通常10時間以下、好ましくは5時間以下、より好ましくは3時間以下の範囲で設定する。
 第1段目の反応は、発生するジエステル化合物由来のモノヒドロキシ化合物を反応系外へ留去しながら実施される。例えば炭酸ジエステルとしてジフェニルカーボネートを用いる場合には、第1段目の反応において反応系外へ留去されるモノヒドロキシ化合物はフェノールである。
 第1段目の反応においては、反応圧力を低くするほど重合反応を促進することができるが、一方で未反応モノマーの留出が多くなってしまう。未反応モノマーの留出の抑制と、減圧による反応の促進を両立させるためには、還流冷却器を具備した反応器を用いることが有効である。特に未反応モノマーの多い反応初期に還流冷却器を用いるのがよい。
 第2段目の反応は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力を5kPa以下、好ましくは3kPa以下、より好ましくは1kPa以下にする。また、内温は、通常210℃以上、好ましくは220℃以上、かつ、通常270℃以下、好ましくは260℃以下の範囲で設定する。
 また、反応時間は、通常0.1時間以上、好ましくは0.5時間以上、より好ましくは1時間以上、かつ、通常10時間以下、好ましくは5時間以下、より好ましくは3時間以下の範囲で設定する。着色や熱劣化を抑制し、色相や熱安定性の良好な樹脂を得るには、全反応段階における内温の最高温度を270℃以下、好ましくは265℃以下、さらに好ましくは260℃以下にするとよい。
 重合時に使用し得るエステル交換反応触媒(以下、単に触媒、重合触媒と言うことがある。)は、反応速度や重縮合して得られる樹脂の色調や熱安定性に非常に大きな影響を与え得る。用いられる触媒としては、製造された樹脂の透明性、色相、耐熱性、熱安定性、及び機械的強度を満足させ得るものであれば限定されないが、長周期型周期表における1族又は2族(以下、単に「1族」、「2族」と表記する。)の金属化合物、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物が挙げられる。好ましくは長周期型周期表第2族の金属及びリチウムからなる群より選ばれる少なくとも1種の金属化合物が使用される。
 前記の1族金属化合物としては、例えば以下の化合物を採用することができるが、これら以外の1族金属化合物を採用することも可能である。
 水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、テトラフェニルホウ酸ナトリウム、テトラフェニルホウ酸カリウム、テトラフェニルホウ酸リチウム、テトラフェニルホウ酸セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩、2セシウム塩。これらのうち、重合活性と得られる樹脂の色相の観点から、リチウム化合物を用いることが好ましい。
 前記の2族金属化合物としては、例えば以下の化合物を採用することができるが、これら以外の2族金属化合物を採用することも可能である。
 水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウム。これらのうち、マグネシウム化合物、カルシウム化合物、バリウム化合物を用いることが好ましく、重合活性と得られる樹脂の色相の観点から、マグネシウム化合物及び/又はカルシウム化合物を用いることが更に好ましく、カルシウム化合物を用いることが最も好ましい。
 なお、前記の1族金属化合物及び/又は2族金属化合物と共に、補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、長周期型周期表第2族の金属及びリチウムからなる群より選ばれる少なくとも1種の金属化合物を使用することが特に好ましい。
 前記重合触媒の使用量は、通常、重合に使用した全ジヒドロキシ化合物1mol当たり0.1μmol~300μmol、好ましくは0.5μmol~100μmolである。前記重合触媒として、長周期型周期表第2族の金属及びリチウムからなる群より選ばれる少なくとも1種の金属化合物を用いる場合、特にマグネシウム化合物及び/又はカルシウム化合物を用いる場合には、金属量として、前記全ジヒドロキシ化合物1mol当たり、通常、0.1μmol以上、好ましくは0.3μmol以上、特に好ましくは0.5μmol以上の前記重合触媒を使用する。また、前記重合触媒の使用量は、30μmol以下がよく、好ましくは20μmol以下であり、特に好ましくは10μmol以下である。
 また、モノマーにジエステル化合物を用いて、ポリエステルカーボネート樹脂を製造する場合は、前記塩基性化合物と併用して、又は併用せずに、チタン化合物、スズ化合物、ゲルマニウム化合物、アンチモン化合物、ジルコニウム化合物、鉛化合物、オスミウム化合物、亜鉛化合物、マンガン化合物等のエステル交換触媒を用いることもできる。これらのエステル交換触媒の使用量は、反応に用いる全ジヒドロキシ化合物1molに対して、金属量として、通常、1μmol~1mmolの範囲内で用い、好ましくは5μmol~800μmolの範囲内であり、特に好ましくは10μmol~500μmolである。
 触媒量が少なすぎると、重合速度が遅くなるため、所望の分子量の樹脂を得ようとするにはその分だけ重合温度を高くせざるを得なくなる。そのために、得られる樹脂の色相が悪化する可能性が高くなり、また、未反応の原料が重合途中で揮発して、ジヒドロキシ化合物とジエステル化合物のモル比率が崩れ、所望の分子量に到達しない可能性がある。一方、重合触媒の使用量が多すぎると、好ましくない副反応を併発し、得られる樹脂の色相の悪化や成形加工時の樹脂の着色や分解を招く可能性がある。
 1族金属の中でもナトリウム、カリウム、セシウムは、樹脂中に多く含まれると色相に悪影響を及ぼす可能性がある。そして、これらの金属は使用する触媒からのみではなく、原料や反応装置から混入する場合がある。出所にかかわらず、樹脂中のこれらの金属の化合物の合計量は、金属量として、前記全ジヒドロキシ化合物1mol当たり、2μmol以下がよく、好ましくは1μmol以下、より好ましくは0.5μmol以下である。
 本発明のポリカーボネート樹脂は、前述のとおり重合させた後、通常、冷却固化させ、回転式カッター等でペレット化することができる。ペレット化の方法は限定されるものではないが、最終段の重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させてペレット化させる方法、最終段の重合反応器から溶融状態で一軸又は二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法、又は、最終段の重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させて一旦ペレット化させた後に、再度一軸又は二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法等が挙げられる。
[本発明のポリカーボネート樹脂の好ましい物性]
 このようにして得られた第一の態様及び第二の態様のポリカーボネート樹脂の分子量は、還元粘度で表すことができる。樹脂の還元粘度が低すぎると成形品の機械強度が小さくなる可能性がある。そのため、還元粘度は、通常0.20dL/g以上であり、0.25dL/g以上であることが好ましい。一方、樹脂の還元粘度が大きすぎると、成形する際の流動性が低下し、生産性や成形性が低下する傾向がある。そのため、還元粘度は、通常1.00dL/g以下であり、0.80dL/g以下であることが好ましく、0.70dL/g以下であることがより好ましい。
 また、第三の態様本発明のポリカーボネート樹脂の分子量においても、還元粘度で表すことができる。樹脂の還元粘度が低すぎると成形品の機械強度が小さくなる可能性がある。そのため、還元粘度は通常0.20dL/g以上であり、0.25dL/g以上であることが好ましい。一方、樹脂の還元粘度が大きすぎると、成形する際の流動性が低下し、生産性や成形性が低下する傾向がある。そのため、還元粘度は、通常0.80dL/g以下であり、0.70dL/g以下であることが好ましく、0.60dL/g以下であることがより好ましい。なお、還元粘度は、溶媒として塩化メチレンを用い、試料濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度計を用いて測定する。
 前記の還元粘度は樹脂の溶融粘度と相関があるため、通常は重合反応器の撹拌動力や、溶融樹脂を移送するギアポンプの吐出圧等を運転管理の指標に用いることができる。即ち、上記の運転機器の指示値が目標値に到達した段階で、反応器の圧力を常圧に戻したり、反応器から樹脂を抜き出すことで重合反応を停止させる。
 本発明のポリカーボネート樹脂の溶融粘度は、温度240℃、剪断速度91.2sec-1の測定条件において800Pa・s以上、7000Pa・s以下であることが好ましい。溶融粘度の下限は、900Pa.s以上、1000Pa.s以上、1100Pa.s以上、1200Pa.s以上の順により好ましくなり、1500Pa・s以上がさらに好ましく、2000Pa・s以上が特に好ましい。溶融粘度の上限は6500Pa・s以下がより好ましく、6000Pa・s以下がさらに好ましく、5500Pa・s以下が特に好ましく、5000Pa.s以下が最も好ましい。なお、溶融粘度はキャピラリーレオメーター((株)東洋精機製作所製)を用いて測定する。溶融粘度が上記範囲内であると十分な機械物性を持ち、樹脂の熱劣化を抑制できる温度範囲で溶融加工が可能になる。
 本発明の第一の態様及び第二の態様のポリカーボネート樹脂のガラス転移温度は120℃以上、200℃以下であることが好ましい。下限は125℃以上、130℃以上、135℃以上の順でより好ましく、140℃以上がさらに好ましく、150℃以上が特に好ましい。上限は190℃以下がより好ましく、190℃以下がさらに好ましく、180℃以下が特に好ましく、170℃以下が特に好ましい。
 本発明の第三の態様のポリカーボネート樹脂のガラス転移温度は120℃以上、180℃以下である。下限は125℃以上、130℃以上、140℃以上の順でより好ましく、150℃以上がさらに好ましく、155℃以上が特に好ましい。上限は175℃以下がより好ましく、170℃以下が特に好ましい。
 ガラス転移温度は、本発明で用いられる構造単位やその他の構造単位の共重合比率によって調整することができる。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、使用環境下における成形体の諸物性(光学特性や機械物性、寸法等)の信頼性が悪化する可能性がある。一方、ガラス転移温度が過度に高いと、溶融加工性が悪化し、成形品の寸法精度が悪化したり、透明性を損なう場合がある。
 重縮合反応にジエステル化合物を用いる場合、副生したモノヒドロキシ化合物が樹脂中に残存するため、溶融加工の際に揮発し、臭気となって作業環境を悪化させたり、成形機を汚染し、成形品の外観を損ねるおそれがある。特に有用な炭酸ジエステルであるジフェニルカーボネート(DPC)を用いる場合、副生するフェノールは比較的沸点が高く、減圧下での反応によっても十分に除去されず、樹脂中に残存しやすい。
 そのため、樹脂中に含まれる炭酸ジエステル由来のモノヒドロキシ化合物は1000重量ppm以下であることが好ましい。700重量ppm以下が好ましく、特に500重量ppm以下であることが好ましい。
 なお、モノヒドロキシ化合物は、前記問題を解決するためには、含有量が少ないほどよいが、溶融重合法では樹脂中に残存するモノヒドロキシ化合物をゼロにすることは困難であり、除去のためには過大な労力が必要である。通常は、モノヒドロキシ化合物の含有量を1重量ppmまで低減することにより、前記の問題を十分に抑制することができる。
 樹脂中に残存する、炭酸ジエステル由来のモノヒドロキシ化合物をはじめとする低分子成分を低減するためには、樹脂を押出機で脱揮処理することや、重合終盤の圧力を3kPa以下、好ましくは2kPa以下、さらに好ましくは1kPa以下にすることが効果的である。
 重合終盤の圧力を低下させる場合には、反応の圧力を下げすぎると分子量が急激に上昇して、反応の制御が困難になる場合があるため、樹脂の末端基濃度をヒドロキシ基末端過剰かエステル基末端過剰にして、末端基バランスを偏らせて製造することが好ましい。末端基バランスは全ジヒドロキシ化合物と全ジエステル化合物の仕込みのモル比により調節することができる。
 また、上記のモノヒドロキシ化合物だけでなく、樹脂中には未反応のモノマー成分が残存低分子成分となる可能性がある。特に炭酸ジエステルと、前記式(6)で表されるSBI構造単位を含有するジヒドロキシ化合物が残存しやすい。残存モノヒドロキシ化合物と同様に、末端基バランスや重合終盤の反応圧力を制御したり、樹脂を押出機で脱揮処理することにより、これらの成分も特定量以下まで低減することが可能になる。本発明の樹脂においては、炭酸ジエステルの含有量は300重量ppm以下が好ましく、200重量ppm以下がより好ましく、150重量ppm以下が特に好ましい。また、前記式(6)で表されるジヒドロキシ化合物の含有量は1000重量ppm以下が好ましく、700重量ppm以下がより好ましく、500重量ppm以下が特に好ましい。
 なお、炭酸ジエステル、及び式(6)で表されるジヒドロキシ化合物は、前記問題を解決するためには、含有量が少ないほどよいが、溶融重合法では樹脂中に残存する炭酸ジエステルをゼロにすることは困難であり、除去のためには過大な労力が必要である。通常は、炭酸ジエステルの含有量を1重量ppmまで低減することにより、前記の問題を十分に抑制することができる。
 本発明の第一の態様及び第二の態様のポリカーボネート樹脂の鉛筆硬度は、HB以上であることが好ましく、F以上であることがさらに好ましい。本発明で用いられる前記式(1)や(2)で表される構造単位が比較的、鉛筆硬度の高い成分であるため、これらの共重合比率を高くすることで、上記の鉛筆硬度を達成することが可能となる。
 本発明の第一の態様及び第二の態様のポリカーボネート樹脂は、後述する耐候性試験の条件において、厚み3mmのプレート成形体のYI(イエローネスインデックス)の紫外光照射前後の差(ΔYI)が1.0以下であることが好ましい。さらに0.8以下であることが好ましく、0.5以下であることが好ましい。
 紫外光照射下での着色が小さいと、屋外の日光にさらされる場所で用いられる用途に好適に用いることができる。また、後述する紫外線吸収剤をポリカーボネート樹脂に添加することで、上記のΔYIを小さくすることが可能であるが、基材となるポリカーボネート樹脂のΔYIが上記範囲よりも大きくなると、紫外線吸収剤の必要量が多くなるため、成形加工時に紫外線吸収剤がブリードアウトして、成形機の汚れや成形品の外観不良などの問題を招きやすくなる。
 本発明の第一の態様及び第二の態様のポリカーボネート樹脂は、後述する沸騰水浸漬試験において、プレート成形体の形状の変化や、白化やひび割れが生じないことが好ましい。このような特性を有することで、高温高湿度の条件下での信頼性が求められる用途に好適に用いることができる。上記のような耐湿熱性はポリカーボネート樹脂のガラス転移温度を高く、吸水率を低くすることで達成することができる。これらの物性は本発明で用いられる各種構造単位の共重合比率により調整することが可能である。
 本発明のポリカーボネート樹脂の光弾性係数は30×10-12Pa-1以下であることが好ましく、25×10-12Pa-1以下であることがより好ましく、20×10-12Pa-1以下であることがさらに好ましく、17×10-12Pa-1以下であることが特に好ましい。特に位相差フィルムに用いられる場合、光弾性係数が過度に大きいと、位相差フィルムを偏光板と貼り合わせた際に、画面の周囲が白くぼやけるような画像品質の低下が起きる可能性がある。特に大型の表示装置やフレキシブルディスプレイなどに用いられる場合にはこの問題が顕著に現れる。
 本発明のポリカーボネート樹脂は、前記式(1)で表される構造単位と脂肪族の構造単位で構成し、その他の芳香族構造を用いないことで、光弾性係数を低く抑えることが可能になる。
 本発明のポリカーボネート樹脂は、後述する延伸条件において発現する複屈折(Δn)が0.0005以上であることが好ましく、0.001以上であることがさらに好ましい。発現する複屈折が上記範囲よりも小さい場合、所望の位相差を得るためにフィルムの膜厚を大きくしなければならなくなり、ディスプレイの厚みが大きくなってしまったり、材料コストの観点からも不利である。
[添加剤]
 本発明のポリカーボネート樹脂には本発明の目的を損なわない範囲で、通常用いられる熱安定剤、酸化防止剤、触媒失活剤、紫外線吸収剤、光安定剤、離型剤、染顔料、衝撃改良剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤、核剤、難燃剤、無機充填剤、発泡剤等が含まれても差し支えない。
(熱安定剤)
 本発明のポリカーボネート樹脂には、必要に応じて、溶融加工時等における分子量の低下や色相の悪化を防止するために熱安定剤を配合することができる。かかる熱安定剤としては、通常知られるヒンダードフェノール系熱安定剤及び/又はリン系熱安定剤が挙げられる。
 ヒンダードフェノール系化合物としては、例えば、以下の化合物を採用することができる。2,6-ジ-tert-ブチルフェノール、2,4-ジ-tert-ブチルフェノール、2-tert-ブチル-4-メトキシフェノール、2-tert-ブチル-4,6-ジメチルフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,5-ジ-tert-ブチルヒドロキノン、n-オクタデシル-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート、2-tert-ブチル-6-(3’-tert-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,2’-メチレン-ビス-(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレン-ビス-(6-シクロヘキシル-4-メチルフェノール)、2,2’-エチリデン-ビス-(2,4-ジ-tert-ブチルフェノール)、テトラキス-[メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]-メタン、1,3,5-トリメチル-2,4,6-トリス-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン等。中でも、テトラキス-[メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]-メタン、n-オクタデシル-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼンを用いることが好ましい。
 リン系化合物としては、例えば、以下に示す亜リン酸、リン酸、亜ホスホン酸、ホスホン酸及びこれらのエステル等を採用することができるが、これらの化合物以外のリン系化合物を採用することも可能である。トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、4,4’-ビフェニレンジホスフィン酸テトラキス(2,4-ジ-tert-ブチルフェニル)、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピル。これらの熱安定剤は、1種を単独で用いても良く、2種以上を併用してもよい。
 かかる熱安定剤は、溶融重合時に反応液に添加してもよく、押出機を用いて樹脂に添加し、混練してもよい。溶融押出法によりフィルムを製膜する場合、押出機に前記熱安定剤等を添加して製膜してもよいし、予め押出機を用いて、樹脂中に前記熱安定剤等を添加して、ペレット等の形状にしたものを用いてもよい。
 これらの熱安定剤の配合量は、樹脂を100重量部とした場合、0.0001重量部以上が好ましく、0.0005重量部以上がより好ましく、0.001重量部以上がさらに好ましく、また、1重量部以下が好ましく、0.5重量部以下がより好ましく、0.2重量部以下がさらに好ましい。
(触媒失活剤)
 本発明のポリカーボネート樹脂に、重合反応で用いた触媒を中和し、失活させるために酸性化合物を添加することで、色調や熱安定性を向上することができる。触媒失活剤として用いられる酸性化合物としては、カルボン酸基やリン酸基、スルホン酸基を有する化合物、又はそれらのエステル体などを用いることができるが、特に下記式(13)又は(14)で表される部分構造を含有するリン系化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 前記式(13)又は(14)で表されるリン系化合物としては、例えば、リン酸、亜リン酸、ホスホン酸、次亜リン酸、ポリリン酸、ホスホン酸エステル、酸性リン酸エステル等が挙げられる。上記の中でも触媒失活と着色抑制の効果がさらに優れているのは、亜リン酸、ホスホン酸、ホスホン酸エステルであり、特に亜リン酸が好ましい。
 ホスホン酸としては、ホスホン酸(亜リン酸)、メチルホスホン酸、エチルホスホン酸、ビニルホスホン酸、デシルホスホン酸、フェニルホスホン酸、ベンジルホスホン酸、アミノメチルホスホン酸、メチレンジホスホン酸、1-ヒドロキシエタン-1,1-ジホスホン酸、4-メトキシフェニルホスホン酸、ニトリロトリス(メチレンホスホン酸)、プロピルホスホン酸無水物などが挙げられる。
 ホスホン酸エステルとしては、ホスホン酸ジメチル、ホスホン酸ジエチル、ホスホン酸ビス(2-エチルヘキシル)、ホスホン酸ジラウリル、ホスホン酸ジオレイル、ホスホン酸ジフェニル、ホスホン酸ジベンジル、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、エチルホスホン酸ジエチル、ベンジルホスホン酸ジエチル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジプロピル、(メトキシメチル)ホスホン酸ジエチル、ビニルホスホン酸ジエチル、ヒドロキシメチルホスホン酸ジエチル、(2-ヒドロキシエチル)ホスホン酸ジメチル、p-メチルベンジルホスホン酸ジエチル、ジエチルホスホノ酢酸、ジエチルホスホノ酢酸エチル、ジエチルホスホノ酢酸tert-ブチル、(4-クロロベンジル)ホスホン酸ジエチル、シアノホスホン酸ジエチル、シアノメチルホスホン酸ジエチル、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチル、ジエチルホスホノアセトアルデヒドジエチルアセタール、(メチルチオメチル)ホスホン酸ジエチルなどが挙げられる。
 酸性リン酸エステルとしては、リン酸ジメチル、リン酸ジエチル、リン酸ジビニル、リン酸ジプロピル、リン酸ジブチル、リン酸ビス(ブトキシエチル)、リン酸ビス(2-エチルヘキシル)、リン酸ジイソトリデシル、リン酸ジオレイル、リン酸ジステアリル、リン酸ジフェニル、リン酸ジベンジルなどのリン酸ジエステル、又はジエステルとモノエステルの混合物、クロロリン酸ジエチル、リン酸ステアリル亜鉛塩などが挙げられる。
 これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 樹脂への前記リン系化合物の添加量が少なすぎると、触媒失活や着色抑制の効果が不十分であり、多すぎるとかえって樹脂が着色してしまったり、特に高温高湿度下での耐久試験において、樹脂が着色しやすくなる。前記リン系化合物の添加量は、重合反応に用いた触媒量に対応した量を添加する。重合反応に用いた触媒の金属1molに対して、前記リン系化合物はリン原子の量として0.5倍mol以上、5倍mol以下が好ましく、さらに0.7倍mol以上、4倍mol以下が好ましく、特に0.8倍mol以上、3倍mol以下が好ましい。
(紫外線吸収剤、光安定剤)
 本発明の第一の態様及び第二の態様のポリカーボネート樹脂は、紫外線による変色やヘイズの発生を防ぐ目的で、紫外線吸収剤や光安定剤を配合することができる。
 紫外線吸収剤としては、例えば、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2-(3-tert-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)等が挙げられる。
 光安定剤としては、ラジカル捕捉作用のあるヒンダードアミン化合物が挙げられる。従来の芳香族ポリカーボネート樹脂は、アルカリなどの塩基成分に対して常温でも不安定であることが知られており、アミン化合物によっても加水分解を受けることが知られているが、本発明のポリカーボネート樹脂においては、加水分解などの劣化の作用を小さく抑えて、紫外線などの光に対する安定性が飛躍的に向上させることができる。
 中でも、窒素原子が環式構造の一部となっている構造を有するものが好ましく、ピペリジン構造を有するものであることがより好ましい。ここで規定するピペリジン構造には、飽和6員環状のアミン構造となっていれば如何なる構造であっても構わず、ピペリジン構造の一部が置換基により置換されているものも含む。
 該ピペリジン構造が有していてもよい置換基としては、炭素数4以下のアルキル基があげられ、特にはメチル基が好ましい。アミン化合物としては、更には、ピペリジン構造を複数有する化合物が好ましく、複数のピペリジン構造を有する場合、それらのピペリジン構造がエステル構造により連結されている化合物が好ましい。下記式(15)で表される化合物が好ましく、特には下記式(15)中のR20とR21が水素原子、若しくはメチル基であり、nが8の化合物が、入手のしやすさやポリカーボネート樹脂との相溶性の観点で好ましい。
Figure JPOXMLDOC01-appb-C000048
(式(15)中、R20とR21はそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数6~20のシクロアルキル基を表す。nは1~20の整数である。)
 これらの紫外線吸収剤や光安定剤は1種を単独で用いてもよく、2種以上を併用してもよいが、紫外線吸収剤と光安定剤を併用することで相乗効果が期待できる。
 紫外線吸収剤や光安定剤の配合量は、ポリカーボネート樹脂100重量部に対して、好ましくは0.001重量部以上、より好ましくは0.005重量部以上であり、また、好ましくは1重量部以下、より好ましくは0.5重量部以下である。配合量が多過ぎると、ポリカーボネート樹脂組成物が着色する傾向があり、また、成形時にブリードアウトして成形機の汚れや成形品の外観不良を招くおそれがある。一方、少な過ぎると耐候試験に対する十分な改良効果が得られないおそれがある。
(離型剤)
 本発明の第一の態様及び第二の態様のポリカーボネート樹脂は、溶融成形時の金型からの離型性をより向上させるために、離型剤を配合してもよい。離型剤としては、高級脂肪酸、一価又は多価アルコールの高級脂肪酸エステル、蜜蝋等の天然動物系ワックス、カルナバワックス等の天然植物系ワックス、パラフィンワックス等の天然石油系ワックス、モンタンワックス等の天然石炭系ワックス、オレフィン系ワックス、シリコーンオイル、オルガノポリシロキサン等が挙げられ、高級脂肪酸、一価又は多価アルコールの高級脂肪酸エステルが特に好ましい。
 高級脂肪酸エステルとしては、置換又は無置換の炭素数1~20の一価又は多価アルコールと、置換又は無置換の炭素数10~30の飽和脂肪酸との部分エステル又は全エステルが好ましい。具体的には、例えば、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ステアリン酸ステアリル、ベヘニン酸モノグリセリド、ベヘニン酸ベヘニル、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、ステアリルステアレート、パルミチルパルミテート、ブチルステアレート、メチルラウレート、イソプロピルパルミテート、ビフェニルビフェネ-ト、ソルビタンモノステアレート、2-エチルヘキシルステアレート、エチレングリコールジステアレート等が挙げられる。中でも、ステアリン酸モノグリセリド、ステアリン酸トリグリセリド、ペンタエリスリトールテトラステアレート、ベヘニン酸ベヘニル、エチレングリコールジステアレートが好ましく用いられる。
 高級脂肪酸としては、置換又は無置換の炭素数10~30の飽和脂肪酸が好ましい。このような飽和脂肪酸としては、ミリスチン酸、ラウリン酸、パルミチン酸、ステアリン酸、ベヘニン酸等が挙げられる。
 これらの離型剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。離型剤の配合量、ポリカーボネート樹脂100重量部に対し、好ましくは0.01重量部以上、さらに好ましくは0.05重量部以上、特に好ましくは0.1重量部以上、一方、好ましくは1重量部以下、更に好ましくは0.7重量部以下、特に好ましくは0.5重量部以下である。
(染顔料)
 本発明の第一の態様及び第二の態様のポリカーボネート樹脂には、重合体や紫外線吸収剤等に基づく黄色味を打ち消すためにブルーイング剤を配合することができる。ブルーイング剤としては、現行のポリカーボネート樹脂に使用されるものであれば、特に制限されないが、アンスラキノン系染料が好ましい。具体的には、例えば、Solvent Violet13[CA.No.(カラーインデックスNo)60725]、Solvent Violet31(CA.No.68210)、Solvent Violet33(CA.No.60725)、Solvent Blue94(CA.No 61500)、Solvent Violet36(CA.No.68210)、Solvent Blue97(バイエル社製「マクロレックスバイオレットRR」)、Solvent Blue45(CA.No.61110)等が挙げられる。
 これらのブルーイング剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 ブルーイング剤の配合量は、ポリカーボネート樹脂100重量部に対して、通常、1×10-5重量部以上、好ましくは5×10-5重量部以上であり、また、通常、1×10-3重量部以下、より好ましくは5×10-4重量部以下である。
(ポリマーアロイ)
 本発明のポリカーボネート樹脂は、機械特性や耐溶剤性等の特性を改質する目的で、芳香族ポリカーボネート、芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル、アモルファスポリオレフィン、ABS、AS、ポリ乳酸、ポリブチレンスクシネート等の合成樹脂やゴム等の1種又は2種以上と混練してなるポリマーアロイとしてもよい。
 前記の添加剤や改質剤は、本発明に用いられる樹脂に前記成分を同時に、又は任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができるが、中でも押出機、特には二軸押出機により混練することが、分散性向上の観点から好ましい。
[本発明のポリカーボネート樹脂の用途]
 前記のとおり得られた本発明の第一の態様及び第二の態様のポリカーボネート樹脂は、耐熱性や耐湿熱性、耐候性に優れ、複屈折や光弾性係数が小さく、高い透明性を兼ね備えているため、透明ガラス代替用途や、光学フィルムや光ディスク、光学プリズム、ピックアップレンズ等に用いることができる。
 また、本発明のポリカーボネート樹脂は溶融加工性にも優れているため、射出成形法、押出成形法、圧縮成形法等の通常知られている方法で成形品とすることができる。特に好適に用いることができる位相差フィルムの製造方法について、次に詳細を述べる。
 なお、本発明の第三の態様は、位相差フィルムでの使用を特に目的とするものである。
[位相差フィルムの製造方法]
(未延伸フィルムの製造方法)
 本発明のポリカーボネート樹脂を用いて、未延伸フィルムを製膜する方法としては、樹脂を溶媒に溶解させてキャストした後、溶媒を除去する流延法や、溶媒を用いずに樹脂を溶融させて製膜する溶融製膜法を採用することができる。溶融製膜法としては、具体的にはTダイを用いた溶融押出法、カレンダー成形法、熱プレス法、共押出法、共溶融法、多層押出、インフレーション成形法等がある。未延伸フィルムの製膜方法は特に限定されないが、流延法では残存溶媒による問題が生じるおそれがあるため、好ましくは溶融製膜法、中でも後の延伸処理のし易さから、Tダイを用いた溶融押出法が好ましい。
 溶融製膜法により未延伸フィルムを成形する場合、成形温度を280℃以下とすることが好ましく、270℃以下とすることがより好ましく、265℃以下とすることが特に好ましい。成形温度が高過ぎると、得られるフィルム中の異物や気泡の発生による欠陥が増加したり、フィルムが着色したりする可能性がある。
 ただし、成形温度が低過ぎると樹脂の溶融粘度が高くなりすぎ、原反フィルムの成形が困難となり、厚みの均一な未延伸フィルムを製造することが困難になる可能性があるので、成形温度の下限は通常200℃以上、好ましくは210℃以上、より好ましくは220℃以上である。ここで、未延伸フィルムの成形温度とは、溶融製膜法における成形時の温度であって、通常、溶融樹脂を押し出すダイス出口の樹脂温度を測定した値である。
 また、フィルム中に異物が存在すると、偏光板として用いられた場合に光抜け等の欠点として認識される。樹脂中の異物を除去するために、前記の押出機の後にポリマーフィルターを取り付け、樹脂を濾過した後に、ダイスから押し出してフィルムを成形する方法が好ましい。その際、押出機やポリマーフィルター、ダイスを配管でつなぎ、溶融樹脂を移送する必要があるが、配管内での熱劣化を極力抑制するため、滞留時間が最短になるように各設備を配置することが重要である。また、押出後のフィルムの搬送や巻き取りの工程はクリーンルーム内で行い、フィルムに異物が付着しないように最善の注意が求められる。
 未延伸フィルムの厚みは、延伸後の位相差フィルムの膜厚の設計や、延伸倍率等の延伸条件に合わせて決められるが、厚すぎると厚み斑が生じやすく、薄すぎると搬送時や延伸時の破断を招く可能性があるため、通常30μm以上、好ましくは40μm以上、さらに好ましくは50μm以上であり、また、通常200μm以下、好ましくは160μm以下、さらに好ましくは120μm以下である。
 また、未延伸フィルムに厚み斑があると、位相差フィルムの位相差斑を招くため、位相差フィルムとして使用する部分の厚みは設定厚み±3μm以下であることが好ましく、設定厚み±2μm以下であることがさらに好ましく、設定厚み±1μm以下であることが特に好ましい。
 未延伸フィルムの長手方向の長さは500m以上であることが好ましく、さらに1000m以上が好ましく、特に1500m以上が好ましい。生産性や品質の観点から、本発明の位相差フィルムを製造する際は、連続で延伸を行うことが好ましいが、通常、延伸開始時に所定の位相差に合わせ込むために条件調整が必要であり、フィルムの長さが短すぎると条件調整後に取得できる製品の量が減ってしまう。
 なお、本明細書において「長尺」とは、フィルムの幅方向よりも長手方向の寸法が十分に大きいことを意味し、実質的には長手方向に巻回してコイル状にできる程度のものを意味する。より具体的には、フィルムの長手方向の寸法が幅方向の寸法よりも10倍以上大きいものを意味する。
 前記のように得られた未延伸フィルムは、内部ヘイズが3%以下であることが好ましく、2%以下であることがより好ましく、1%以下であることが特に好ましい。未延伸フィルムの内部ヘイズが前記上限値よりも大きいと光の散乱が起こり、例えば偏光子と積層した際、偏光解消を生じる原因となる場合がある。内部ヘイズの下限値は特に定めないが、通常0.1%以上である。
 内部ヘイズの測定には、事前にヘイズ測定を行っておいた粘着剤付き透明フィルムを未延伸フィルムの両面に貼り合せ、外部ヘイズの影響を除去した状態のサンプルを用い、粘着剤付き透明フィルムのヘイズ値を前記サンプルの測定値から差し引いた値を内部ヘイズの値とする。
 未延伸フィルムのb*値は3以下であることが好ましい。フィルムのb*値が大き過ぎると着色等の問題が生じる。b*値はより好ましくは2以下、特に好ましくは1以下である。なお、b*値はコニカミノルタ(株)製分光測色計CM-2600dを用いて測定する。
 未延伸フィルムは、厚みによらず、当該フィルムそのものの全光線透過率が80%以上であることが好ましく、85%以上であることがさらに好ましく、90%以上であることが特に好ましい。透過率が前記下限以上であれば、着色の少ないフィルムが得られ、偏光板と貼り合わせた際、偏光度や透過率の高い円偏光板となり、画像表示装置に用いた際に、高い表示品位を実現することが可能となる。なお、本発明のフィルムの全光線透過率の上限は特に制限はないが通常99%以下である。
(位相差フィルムの製造方法)
 前記未延伸フィルムを延伸配向させることにより、位相差フィルムを得ることができる。延伸方法としては、少なくとも一方向に延伸されるように、縦一軸延伸、テンター等を用いる横一軸延伸、あるいはそれらを組み合わせた同時二軸延伸、逐次二軸延伸等、公知の方法を用いることができる。延伸はバッチ式で行ってもよいが、連続で行うことが生産性において好ましい。さらにバッチ式に比べて、連続の方がフィルム面内の位相差のばらつきの少ない位相差フィルムが得られる。
 延伸温度は、原料として用いる樹脂のガラス転移温度(Tg)に対して、(Tg-20℃)~(Tg+30℃)の範囲であり、好ましくは(Tg-10℃)~(Tg+20℃)、さらに好ましくは(Tg-5℃)~(Tg+15℃)の範囲内である。
 延伸倍率は目的とする位相差値により決められるが、縦、横それぞれ、1.2倍~4倍、より好ましくは1.5倍~3.5倍、さらに好ましくは2倍~3倍である。延伸倍率が小さすぎると、所望とする配向度と配向角が得られる有効範囲が狭くなる。一方、延伸倍率が大きすぎると、延伸中にフィルムが破断したり、しわが発生するおそれがある。
 延伸速度も目的に応じて適宜選択されるが、下記数式で表される歪み速度で通常50%~2000%、好ましくは100%~1500%、より好ましくは200%~1000%、特に好ましくは250%~500%となるように選択することができる。
 延伸速度が過度に大きいと延伸時の破断を招いたり、高温条件下での長期使用による光学的特性の変動が大きくなったりする可能性がある。また、延伸速度が過度に小さいと生産性が低下するだけでなく、所望の位相差を得るのに延伸倍率を過度に大きくしなければならない場合がある。
歪み速度(%/分)={延伸速度(mm/分)/原反フィルムの長さ(mm)}×100
 フィルムを延伸した後、必要に応じて加熱炉により熱固定処理を行ってもよいし、テンターの幅を制御したり、ロール周速を調整したりして、緩和工程を行ってもよい。熱固定処理の温度としては、未延伸フィルムに用いられる樹脂のガラス転移温度(Tg)に対し、60℃~(Tg)、好ましくは70℃~(Tg-5℃)の範囲で行う。熱処理温度が高すぎると、延伸により得られた分子の配向が乱れ、所望の位相差から大きく低下してしまう可能性がある。
 また、緩和工程を設ける場合は、延伸によって広がったフィルムの幅に対して、95%~99%に収縮させることで、延伸フィルムに生じた応力を取り除くことができる。この際にフィルムにかける処理温度は、熱固定処理温度と同様である。前記のような熱固定処理や緩和工程を行うことで、高温条件下での長期使用による光学特性の変動を抑制することができる。
 本発明の位相差フィルムは、このような延伸工程における処理条件を適宜選択・調整することによって作製することができる。
 本発明の位相差フィルムは、波長550nmにおける面内の複屈折(Δn)が0.001以上であると好ましく、0.002以上がより好ましく、0.0025以上が特に好ましい。位相差は、フィルムの厚み(d)と複屈折(Δn)に比例するため、複屈折を前記特定の範囲にすることにより、薄いフィルムで設計どおりの位相差を発現させることが可能となり、薄型の機器に適合するフィルムを容易に作製することができる。
 高い複屈折を発現させるためには、延伸温度を低くする、延伸倍率を高くする等して、ポリマー分子の配向度を上げなければならないが、そのような延伸条件ではフィルムが破断しやすくなるため、用いる樹脂が靱性に優れているほど有利である。
 本発明の位相差フィルムは、位相差の設計値にもよるが、厚みが70μm以下であることが好ましい。また、位相差フィルムの厚みは60μm以下であることがより好ましく、55μm以下であることがさらに好ましく、50μm以下であることが特に好ましい。
 一方、厚みが過度に薄いと、フィルムの取り扱いが困難になり、製造中にしわが発生したり、破断が起こったりするため、本発明の位相差フィルムの厚みの下限としては、好ましくは10μm以上、より好ましくは15μm以上である。
 本発明の第一の態様及び第二の態様の位相差フィルムは、波長450nmで測定した位相差(R450)の、波長550nmで測定した位相差(R550)に対する比である波長分散(R450/R550)の値は0.5以上、1.03以下であることが好ましい。また、前記波長分散の値が0.7以上1.01以下であることがより好ましく、0.75以上1.00以下であることがさらに好ましく、0.8以上0.98以下であることが特に好ましい。
 前記波長分散の値がこの範囲であれば、可視領域の広い波長範囲において理想的な位相差特性を得ることができる。例えば1/4波長板としてこのような波長依存性を有する位相差フィルムを作製し、偏光板と貼り合わせることにより、円偏光板等を作製することができ、色相の波長依存性が少ない偏光板及び表示装置の実現が可能である。一方、前記比率がこの範囲外の場合には、色相の波長依存性が大きくなり、可視領域のすべての波長において光学補償がなされなくなり、偏光板や表示装置に光が通り抜けることによる着色やコントラストの低下等の問題が生じる。
 本発明の第三の態様の位相差フィルムは、波長450nmで測定した位相差(R450)の、波長550nmで測定した位相差(R550)に対する比である波長分散(R450/R550)の値は0.5以上、1.03以下である。
 フラットな波長分散性が好適に用いられる用途においては、波長分散(R450/R550)の値は0.98以上、1.02以下であることがより好ましい。また、1/4波長板に用いられる場合は、波長分散(R450/R550)の値は0.70以上、0.96以下であることがより好ましく、0.75以上、0.94以下がさらに好ましく、0.78以上、0.92以下が特に好ましい。
 前記波長分散の値がこの範囲であれば、可視領域の広い波長範囲において理想的な位相差特性を得ることができる。例えば、1/4波長板としてこのような波長依存性を有する位相差フィルムを作製し、偏光板と貼り合わせることにより、円偏光板等を作製することができ、色相の波長依存性が少ない偏光板及び表示装置の実現が可能である。一方、前記比率がこの範囲外の場合には、色相の波長依存性が大きくなり、可視領域のすべての波長において光学補償がなされなくなり、偏光板や表示装置に光が通り抜けることによる着色やコントラストの低下等の問題が生じる。
 本発明の第一の態様及び第二の態様の位相差フィルムは、後述する測定方法における吸水率が3.0重量%以下であることが好ましく、2.5重量%以下であることがより好ましい。3.0重量%より大きくなると湿度環境下での光学特性の耐久性が悪くなる傾向があるため好ましくない。一方、吸水率の下限は0.5重量%以上が好ましい。
 ある程度の親水性や極性があることで、このフィルムを他のフィルム等と貼りあわせる際、容易に接着性を確保することができる傾向がある。例えば、偏光板と貼りあわせる際、フィルムが親水性であるため、水の接触角も低く、接着剤を自由に設計し易く、高い接着設計ができる。吸水率が0.5重量%未満の場合は、疎水性となり、水の接触角も高く、接着性の設計が困難になる。また、フィルムが帯電し易くなり、異物の巻き込み等、円偏光板、画像表示装置に組み込んだ際、外観欠点が多くなるという問題が生じる傾向がある。
 本発明の第三の態様の位相差フィルムは、後述する測定方法における吸水率が3.5重量%以下であることが好ましく、3.0重量%以下であることがより好ましい。3.5重量%より大きくなると湿度環境下での光学特性の耐久性が悪くなる傾向があるため好ましくない。一方、吸水率の下限は0.5重量%以上が好ましい。
 ある程度の親水性や極性があることで、このフィルムを他のフィルム等と貼りあわせる際、容易に接着性を確保することができる傾向がある。例えば、偏光板と貼りあわせる際、フィルムが親水性であるため、水の接触角も低く、接着剤を自由に設計し易く、高い接着設計ができる。吸水率が0.5重量%未満の場合は、疎水性となり、水の接触角も高く、接着性の設計が困難になる。また、フィルムが帯電し易くなり、異物の巻き込み等、円偏光板、画像表示装置に組み込んだ際、外観欠点が多くなるという問題が生じる傾向がある。
 前記位相差フィルムは、公知の偏光フィルムと積層貼合し、所望の寸法に切断することにより円偏光板となる。かかる円偏光板は、例えば、各種ディスプレイ(液晶表示装置、有機EL表示装置、プラズマ表示装置、FED電界放出表示装置、SED表面電界表示装置)の視野角補償用、外光の反射防止用、色補償用、直線偏光の円偏光への変換用等に用いることができる。
 以下、実施例、及び比較例により本発明をさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。
 本発明の樹脂、成形品及び位相差フィルムの特性評価は次の方法により行った。なお、特性評価手法は以下の方法に限定されるものではなく、当業者が適宜選択することができる。
<本発明の第一及び第二の態様の実施例>
(1)ポリカーボネート樹脂の還元粘度
 ポリカーボネート樹脂を塩化メチレンに溶解させ、0.6g/dLの濃度の樹脂溶液を調製した。森友理化工業社製ウベローデ型粘度管を用いて、温度20.0℃±0.1℃で測定を行い、溶媒の通過時間t及び溶液の通過時間tを測定した。得られたt及びtの値を用いて次式(i)により相対粘度ηrelを求め、さらに、得られた相対粘度ηrelを用いて次式(ii)により比粘度ηspを求めた。
  ηrel=t/t  (i)
  ηsp=(η-η)/η=ηrel-1  (ii)
 その後、得られた比粘度ηspを濃度c[g/dL]で割って、還元粘度ηsp/cを求めた。この値が高いほど分子量が大きい。
(2)ポリカーボネート樹脂の溶融粘度
 ペレット状のポリカーボネート樹脂を90℃で5時間以上、真空乾燥させた。乾燥したペレットを用いて、(株)東洋精機製作所製キャピラリーレオメーターで測定を行った。測定温度は240℃とし、剪断速度9.12~1824sec-1間で溶融粘度を測定し、91.2sec-1における溶融粘度の値を用いた。なお、オリフィスには、ダイス径がφ1mm×10mmLのものを用いた。
(3)ポリカーボネート樹脂のガラス転移温度(Tg)
 ポリカーボネート樹脂のガラス転移温度は、エスアイアイ・ナノテクノロジー社製示差走査熱量計DSC6220を用いて測定した。約10mgの樹脂を同社製アルミパンに入れて密封し、50mL/分の窒素気流下、昇温速度20℃/分で30℃から250℃まで昇温した。3分間温度を保持した後、30℃まで20℃/分の速度で冷却した。30℃で3分保持し、再び200℃まで20℃/分の速度で昇温した。2回目の昇温で得られたDSCデータより、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度である、補外ガラス転移開始温度を求め、それをガラス転移温度とした。
(4)ポリカーボネート樹脂中のモノヒドロキシ化合物、炭酸ジエステル、及び上記式(6)で表されるジヒドロキシ化合物の含有量の測定
 ポリカーボネート樹脂試料約1gを精秤し、塩化メチレン5mLに溶解して溶液とした後、総量が25mLになるようにアセトンを添加して再沈殿処理を行った。次いで、該処理液について液体クロマトグラフィーにより測定した。
 用いた装置や条件は、次のとおりである。
 ・装置:(株)島津製作所製
  システムコントローラ:CBM-20A
  ポンプ:LC-10AD
  カラムオーブン:CTO-10ASvp
  検出器:SPD-M20A
  分析カラム:Cadenza CD-18 4.6mmφ×250mm
  オーブン温度:60℃
 ・検出波長:220nm
 ・溶離液:A液:0.1%リン酸水溶液、B液:アセトニトリル
  A/B=50/50(vol%)からA/B=0/100(vol%)まで10分間でグラジエント、A/B=0/100(vol%)で5分間保持
 ・流量:1mL/min
 ・試料注入量:10μL
 樹脂中の各化合物の含有量は、各化合物について、それぞれ濃度を変更した溶液を調製し、上記の液体クロマトグラフィーと同じ条件で測定を行って検量線を作成し、絶対検量線法により算出した。
(5)プレートの成形
 ポリカーボネート樹脂のペレットを90℃で5時間以上、真空乾燥した。乾燥したポリカーボネート樹脂のペレットを(株)日本製鋼所製射出成形機J75EII型に供給し、ポリカーボネート樹脂のTgや溶融粘度に応じて、最終シリンダーの温度を230~280℃の間で調整し、成形サイクル38秒間の条件でプレート型の射出成形片(幅60mm×長さ60mm×厚さ3mm)を成形する操作を繰り返し、プレート成形品を得た。
(6)鉛筆硬度
 前記のプレート成形品を使用し、(株)東洋精機製作所製鉛筆引掻塗膜硬さ試験機を用いて、JIS K5600-5-4に記載の方法で鉛筆硬度を測定した。
(7)耐候性試験
 前記のプレート成形品を使用し、(株)東洋精機製作所製アトラス・ウエザオメータCi4000(キセノンウエザオメータ)を用いて、照射強度60W/m、ブラックパネル温度65℃、雨あり12分/雨なし48分の降雨サイクルの条件で100時間処理した。
 照射前後のプレートの色調をコニカミノルタ(株)製分光測色計CM-5を用い、ASTM D1925に準拠して測定した。プレートを測定室に置き、透過光のYI(イエローネスインデックス)値を測定した。照射処理後のYIと処理前のYIの差(ΔYI)が小さいほどUV照射による着色が少なく、耐候性が優れることを示す。
(8)沸騰水浸漬試験(耐湿熱性試験)
 前記のプレート成形品を沸騰水に浸漬させて3時間処理し、成形品の形状の変化や白化、ひび割れの有無を観察した。
(9)フィルムの成形
 90℃で5時間以上、真空乾燥をした樹脂のペレットを、いすず化工機(株)製単軸押出機(スクリュー径25mm、シリンダー設定温度:220℃~270℃)を用い、Tダイ(幅200mm、設定温度:200~270℃)から押し出した。押し出したフィルムを、チルロール(設定温度:120~170℃)により冷却しつつ巻取機でロール状にし、未延伸フィルムを作製した。
(10)吸水率の測定
 前述の方法で厚さ100~300μmのフィルムを成形し、縦100mm、横100mmの正方形に切り出して試料を作製した。この試料を用いてJIS K 7209に記載の「プラスティックの吸水率及び沸騰吸水率試験方法」に準拠して測定した。
(11)光弾性係数の測定
 He-Neレーザー、偏光子、補償板、検光子、光検出器からなる複屈折測定装置と振動型粘弾性測定装置(レオロジー社製DVE-3)を組み合わせた装置を用いて測定した。(詳細は、日本レオロジー学会誌Vol.19,p93-97(1991)を参照。)
 前記の未延伸フィルムから幅5mm、長さ20mmの試料を切り出し、粘弾性測定装置に固定し、25℃の室温で貯蔵弾性率E’を周波数96Hzにて測定した。同時に、出射されたレーザー光を偏光子、試料、補償板、検光子の順に通し、光検出器(フォトダイオード)で拾い、ロックインアンプを通して角周波数ω又は2ωの波形について、その振幅とひずみに対する位相差を求め、ひずみ光学係数O’を求めた。このとき、偏光子と検光子の方向は直交し、またそれぞれ、試料の伸長方向に対してπ/4の角度をなすように調整した。光弾性係数Cは、貯蔵弾性率E’とひずみ光学係数O’を用いて次式より求めた。
  C=O’/E’
(12)複屈折(Δn)及び波長分散(R450/R550)の測定
 前記の未延伸フィルムから幅50mm、長さ125mmのフィルム片を切り出した。バッチ式二軸延伸装置(アイランド工業社製二軸延伸装置BIX-277-AL)を用いて、樹脂のガラス転移温度+15℃の延伸温度、300%/分の延伸速度、及び1.5倍の延伸倍率で前記フィルム片の自由端一軸延伸を行い、位相差フィルムを得た。
 上記の方法で得られた延伸フィルムの中央部を幅4cm、長さ4cmに切り出し、王子計測機器(株)製位相差測定装置KOBRA-WPRを用いて、測定波長450、500、550、590、630nmで位相差を測定し、波長分散性を測定した。波長分散性は450nmと550nmで測定した位相差R450とR550の比(R450/R550)で示した。R450/R550が1より大きいと波長分散は正であり、1未満では逆波長分散となる。1/4波長板として用いる場合、R450/R550の理想値は0.818である(450/550=0.818)。
 また、550nmの位相差R550と延伸フィルムの膜厚から、次式より複屈折Δnを求めた。
  複屈折=R550[nm]/(フィルム厚み[mm]×10
 今回の測定では、Δnが正の値を有していれば、位相差フィルムとして使用可能である。
[判定基準]
 射出成型品向け物性評価においては、以下の全ての項目を満たすものを合格とした。
・ガラス転移温度 125℃以上
・耐候性試験ΔYI 1以下
・沸騰水浸漬試験 変化なし
・光弾性係数 30以下
・Δn 0.0050以下 
 位相差フィルム用途向け物性評価においては、以下の全ての項目を満たすものを合格とした。
・ガラス転移温度 160℃以上
・波長分散(R450/R550) 0.98~1.02、又は0.75~0.90
・吸水率 3%以下
・光弾性係数 30以下
・Δn 0.0010以上
(モノマーの合成例)
[合成例1]6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン(SBI)の合成
 日本国特開2014-114281号公報に記載の方法で合成した。
[合成例2]ビス(フルオレン-9-イル)メタン(化合物1)の合成
Figure JPOXMLDOC01-appb-C000049
 1L四口フラスコにフルオレン(120g、722mmol)、N,N-ジメチルホルムアミド(480mL)を入れ、窒素置換後、5℃以下に冷却した。ナトリウムエトキシド(24.6g、361mmol)を加え、パラホルムアルデヒド(8.7g、289mmol)を、10℃を超えないように少量ずつ添加し、撹拌した。2時間後、1N塩酸(440mL)を滴下し、反応を停止した。得られた懸濁溶液を吸引ろ過し、脱塩水(240mL)でふりかけ洗浄した。その後、得られた粗生成物を脱塩水(240mL)に分散させ、1時間撹拌した。この懸濁液を吸引ろ過後、脱塩水(120mL)でふりかけ洗浄した。得られた粗生成物をトルエン(480mL)に分散させた後、ディーン-スターク装置を用いて、加熱還流条件下で脱水を行なった。室温(20℃)に戻した後、吸引ろ過し、80℃で恒量になるまで減圧乾燥することで、白色固体としてビス(フルオレン-9-イル)メタン(化合物1)を84.0g(収率:84.5%、HPLC純度:94.0%)得た。化合物1のH-NMRスペクトルにおけるケミカルシフトは以下の通りであった。
H-NMR(400MHz,CDCl)δ7.83(d,J=7.6Hz,4H),7.56(dd,J1=7.6Hz,J2=0.8Hz,4H),7.41(t,J=7.3Hz,4H),7.29(dt,J1=7.3Hz,J2=1.3Hz,4H),4.42(t,J=7.6Hz,2H),2.24(d,J=7.6Hz,2H).
[合成例3]ビス[9-(2-エトキシカルボニルエチル)フルオレン-9-イル]メタン(化合物2)の合成
Figure JPOXMLDOC01-appb-C000050
 1L三口フラスコに上記で得られたビス(フルオレン-9-イル)メタン(化合物1、80g、232.3mmol)、N-ベンジル-N,N,N-トリエチルアンモニウムクロリド(10.6g、46.5mmol)、塩化メチレン(400mL)を入れ、窒素置換後、水浴で15℃~20℃に制御し、50%水酸化ナトリウム水溶液(64mL)を加えたところ、溶液の色は薄赤色に変化した。その後、アクリル酸エチル(50.5mL、465mmol)を5分かけて滴下した。1時間後さらにアクリル酸エチル(25.3mL、232mmol)を加え、反応の進行をHPLCで追跡しながら、9時間撹拌した。HPLCでモノ付加体が5%以下になったのを確認後、氷浴で冷却し、3N塩酸(293mL)を温度見合いで滴下し、クエンチした。有機層を液性が中性になるまで水で洗浄後、無水硫酸マグネシウムで乾燥、ろ過し、溶媒を減圧留去した。得られた粗生成物をメタノール(400mL)に分散させ、30分間加熱還流することで、熱懸洗した。その後、室温(20℃)に戻し、吸引ろ過後、80℃で恒量になるまで減圧乾燥することで、白色固体としてビス[9-(2-エトキシカルボニルエチル)フルオレン-9-イル]メタン(化合物2)を96.1g(収率:75.9%、HPLC純度:96.0%)得た。化合物2のH-NMRスペクトルにおけるケミカルシフトは以下の通りであった。
H-NMR(400MHz,CDCl)δ7.03(d,J=7.6Hz,4H),6.97(dt,J1=7.6Hz,J2=1.5Hz,4H),6.82(dt,J1=7.6Hz,J2=1.3Hz,4H),6.77(d,J=7.6Hz,4H),3.88(q,J=7.1Hz,4H),3.12(s,2H),2.23(m,4H),1.13(m,4H),1.02(t,J=7.1Hz,6H).
[合成例4]ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン(化合物3)の合成
Figure JPOXMLDOC01-appb-C000051
 1L四口フラスコに上記で得られたビス[9-(2-エトキシカルボニルエチル)フルオレン-9-イル]メタン(化合物2、50.0g、91.80mmol)、ジフェニルカーボネート(98.3g、459mmol)、オルトチタン酸テトライソプロピル(1.3mL、4.59mmol)を入れ、減圧度を3kPaに調整し、145℃~150℃の温度範囲で、副生物を留去しながら、6時間撹拌した。90℃に冷却し、HPLCで反応の終了を確認後、トルエン(100mL)を加え、50℃まで冷却した。そこへ、メタノール(250mL)を加え、5℃まで冷却後、吸引ろ過を行った。得られた白色固体をトルエン(100mL)に分散させ、30分加熱還流した。50℃へ冷却後、メタノール(200mL)を加えた。室温(20℃)へ冷却後、吸引ろ過を行い、100℃で恒量になるまで減圧乾燥することで、白色固体としてビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン(化合物3)を50g(収率:85%、HPLC純度:98.1%)得た。化合物3のH-NMRスペクトルにおけるケミカルシフトは以下の通りであった。
H-NMR(400MHz,CDCl)δ7.23-7.28(m,4H),7.07-7.16(m,6H),7.03(dt,J1=6.9Hz,J2=2.0,4H),6.78-6.90(m,12H),3.20(s,2H),2.37(t,J=8.3Hz,4H),1.40(t,J=8.3Hz,4H).
[樹脂の合成例及び特性評価]
 以下の実施例、及び比較例で用いた化合物の略号等は以下の通りである。
・SBI:6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン
・ISB:イソソルビド(ロケットフルーレ社製、商品名:POLYSORB)
・CHDM:1,4-シクロヘキサンジメタノール(シス、トランス混合物、SKケミカル社製)
・TCDDM:トリシクロデカンジメタノール(オクセア社製)
・SPG:スピログリコール(三菱ガス化学(株)製)
・BPA:2,2-ビス[4-ヒドロキシフェニル]プロパン(三菱化学(株)製)
・BHEPF:9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]-フルオレン(大阪ガスケミカル(株)製)
・化合物3:ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン
・DPC:ジフェニルカーボネート(三菱化学(株)製)
 なお、実施例表中でのmol%は、全ジヒドロキシ化合物中の当該ジヒドロキシ化合物のmol%または全ジエステル化合物中の当該ジエステル化合物中のmol%を示す。
 また、重量%は、ポリカーボネート樹脂を構成する全ての構造単位の重量の合計量を100重量%とした際に、当該化合物に由来する構造単位の重量%を示す。
[実施例1-1]
 SBI 18.45重量部(0.060mol)、ISB 42.45重量部(0.290mol)、CHDM 25.42重量部(0.176mol)、DPC 115.05重量部(0.537mol)、及び触媒として酢酸カルシウム1水和物1.86×10-3重量部(1.05×10-5mol)を反応容器に投入し、反応装置内を減圧窒素置換した。窒素雰囲気下、150℃で約10分間、攪拌しながら原料を溶解させた。反応1段目の工程として220℃まで30分かけて昇温し、60分間常圧にて反応した。次いで圧力を常圧から13.3kPaまで90分かけて減圧し、13.3kPaで30分間保持し発生するフェノールを反応系外へ抜き出した。次いで反応2段目の工程として熱媒温度を15分かけて240℃まで昇温しながら、圧力を0.10kPa以下まで15分かけて減圧し、発生するフェノールを反応系外へ抜き出した。所定の撹拌トルクに到達後、窒素で常圧まで復圧して反応を停止し、生成したポリカーボネートを水中に押し出し、ストランドをカッティングしてペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表1及び表2に示す。
(射出成形品用途向けの評価結果)
 実施例1-1で得られたポリカーボネートは、鉛筆硬度が高く、光弾性係数と複屈折が低いという特長に加えて、耐候性と耐湿熱性にも優れていた。SBIは芳香族構造にも関わらず、意外にも耐候性が良好であることが分かった。評価結果を表1に示す。
[実施例1-2]
 SBI 18.45重量部(0.060mol)、ISB 42.45重量部(0.290mol)、BHEPF 28.32重量部(0.065mol)、DPC 90.65重量部(0.423mol)、及び触媒として酢酸カルシウム1水和物1.10×10-3重量部(6.22×10-6mol)を用い、最終重合温度を250℃とした以外は実施例1-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表2に示す。
(位相差フィルム用途向けの評価結果)
 波長分散(R450/R550)が0.98と逆分散性を示すとともに、高い耐熱性(Tg)と低い光弾性係数を有していた。SBIを用いない場合(比較例1-8)と比較して、光弾性係数を低く保持したまま、ガラス転移温度を向上させることができた。評価結果を表2に示す。
[実施例1-3]
 SBI 15.10重量部(0.049mol)、ISB 53.87重量部(0.369mol)、化合物3 30.31重量部(0.047mol)、DPC 80.21重量部(0.374mol)、及び触媒として酢酸カルシウム1水和物1.10×10-3重量部(6.26×10-6mol)を用い、最終重合温度を250℃とした以外は実施例1-1と同様に合成を行い、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表2に示す。
(位相差フィルム用途向けの評価結果)
 波長分散性(R450/R550)が0.85であり、実施例1-2よりも強い逆分散性を示すとともに、高い耐熱性(Tg)と低い光弾性係数を有していた。また、SBIを用いない場合(比較例1-9)と比較して、光弾性係数を低く保持したまま、ガラス転移温度を向上させることができた。評価結果を表2に示す。
[実施例1-4]
 実施例1-3と同様に重合反応を行い、実施例1-3よりも高い撹拌トルクまで反応を進行させ、より高分子量のポリエステルカーボネートを取得した。評価結果を表2に示す。前述の(8)の評価に加えて、次のような評価を行った。延伸温度をTg+15℃からフィルムが破断するまで1℃ずつ温度を下げ、破断する一つ手前の条件で延伸したフィルムを取得した。その時のΔnを比較すると、実施例1-3のフィルムが0.0023、実施例1-4のフィルムが0.0035となり、分子量を向上させることで、配向性を向上させることができた。得られたフィルムを折り曲げると、実施例1-3のフィルムは脆性破壊が起こったが、実施例1-4のフィルムは割れず、靱性が向上していることも確認された。
[比較例1-1]
 ISB 84.90重量部(0.581mol)、DPC 125.69重量部(0.587mol)、及び触媒として酢酸カルシウム1水和物1.02×10-4重量部(5.81×10-7mol)を用いた以外は実施例1-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表1及び表2に示す。
(射出成形品用途向けの評価結果)
 高い耐熱性(Tg)を有しているが、樹脂の吸水率が高いため、沸騰水浸漬試験で成形品がひび割れを起こした。また、複屈折がやや高い結果となった。評価結果を表1に示す。
(位相差フィルム用途向けの評価結果)
 評価結果を表2に示す。
[比較例1-2]
 ISB 59.63重量部(0.408mol)、CHDM 25.22重量部(0.175mol)、DPC 126.12重量部(0.589mol)、及び触媒として酢酸カルシウム1水和物1.54×10-4重量部(8.74×10-7mol)を用い、最終重合温度を220℃とした以外は実施例1-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表1及び表2に示す。
(射出成形品用途向けの評価結果)
 沸騰水浸漬試験で成形品が変形するとともに白化したため、耐湿熱性に難があった。また、複屈折がやや高い結果となった。評価結果を表1に示す。
(位相差フィルム用途向けの評価結果)
 評価結果を表2に示す。
[比較例1-3]
 ISB 54.65重量部(0.374mol)、TCDDM 31.46重量部(0.160mol)、DPC 115.59重量部(0.540mol)、及び触媒として酢酸カルシウム1水和物1.41×10-4重量部(8.01×10-7mol)を用い、最終重合温度を220℃とした以外は実施例1-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表1及び表2に示す。
(射出成形品用途向けの評価結果)
 沸騰水浸漬試験で成形品が変形したため、耐湿熱性が不十分であった。評価結果を表1に示す。
(位相差フィルム用途向けの評価結果)
 評価結果を表2に示す。
[比較例1-4]
 SBI 33.24重量部(0.108mol)、BPA 57.42重量部(0.252mol)、DPC 81.59重量部(0.381mol)、及び触媒として酢酸カルシウム1水和物3.17×10-4重量部(1.80×10-6mol)を用い、最終重合温度を280℃とした以外は実施例1-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表1及び表2に示す。
(射出成形品用途向けの評価結果)
 耐熱性や耐湿熱性は優れているが、鉛筆硬度や耐候性は悪かった。複屈折も高い値を示した。評価結果を表1に示す。
(位相差フィルム用途向けの評価結果)
 波長分散(R450/R550)が1.07であり、正の波長分散性を示し、光弾性係数も高かった。評価結果を表2に示す。
[比較例1-5]
 ISB 26.40重量部(0.181mol)、BPA 61.86重量部(0.271mol)、DPC 98.68重量部(0.461mol)、及び触媒として酢酸カルシウム1水和物3.98×10-4重量部(2.26×10-6mol)を用いた以外は実施例1-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表1及び表2に示す。
(射出成形品用途向けの評価結果)
 耐熱性や耐湿熱性は良好だが、鉛筆硬度や耐候性は悪かった。複屈折と光弾性係数も非常に高い値を示した。評価結果を表1に示す。
(位相差フィルム用途向けの評価結果)
 波長分散(R450/R550)は1.05であり、正の波長分散性を示し、光弾性係数も高かった。評価結果を表2に示す。
[比較例1-6]
 ISB 42.45重量部(0.290mol)、BPA 17.96重量部(0.079mol)、CHDM 25.42重量部(0.176mol)、DPC 119.17重量部(0.556mol)、及び触媒として酢酸カルシウム1水和物9.61×10-4重量部(5.45×10-6mol)を用いた以外は実施例1-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表1及び表2に示す。
(射出成形品用途向けの評価結果)
 耐湿熱性や鉛筆硬度、耐候性に劣っていた。実施例1-1と比較した場合、BPAでは耐熱性向上の効果は不十分と言える。評価結果を表1に示す。
(位相差フィルム用途向けの評価結果)
 位相差フィルム用途に向けた評価においては、波長分散(R450/R550)は1.05であり、正の波長分散性を示し、光弾性係数もやや高くなった。評価結果を表2に示す。
[比較例1-7]
 BPAのポリカーボネート樹脂として、三菱エンジニアリングプラスチックス(株)製ノバレックス7022Rを用いて、前述の各種評価を行った。評価結果を表1及び表2に示す。
(射出成形品用途向けの評価結果)
 耐候性が悪く、非常に高い複屈折を示した。評価結果を表1に示す。
(位相差フィルム用途向けの評価結果)
 波長分散(R450/R550)は1.08であり、正の波長分散性を示し、光弾性係数も非常に高かった。評価結果を表2に示す。
[比較例1-8]
 ISB 42.45重量部(0.290mol)、BHEPF 47.20重量部(0.108mol)、DPC 86.13重量部(0.402mol)、及び触媒として酢酸カルシウム1水和物7.01×10-4重量部(3.98×10-6mol)を用いた以外は実施例1-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表2に示す。
(位相差フィルム用途向けの評価結果)
 波長分散(R450/R550)は0.98であり、逆波長分散性を示したが、実施例1-2よりも耐熱性が劣る。評価結果を表2に示す。
[比較例1-9]
 ISB 63.1重量部(0.438mol)、化合物3 36.94重量部(0.058mol)、DPC 82.43重量部(0.385mol)、及び触媒として酢酸カルシウム1水和物3.86×10-4重量部(2.19×10-6mol)を用いた以外は実施例1-1と同様に合成を行い、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表2に示す。
(位相差フィルム用途向けの評価結果)
 波長分散(R450/R550)は0.79であり、逆波長分散性を示したが、実施例1-3よりも耐熱性が劣った。評価結果を表2に示す。
[比較例1-10]
 SBI 73.78重量部(0.239mol)、ISB 16.99重量部(0.116mol)、DPC 80.71重量部(0.377mol)、及び触媒として酢酸カルシウム1水和物3.13×10-5重量部(1.78×10-5mol)を用い、最終重合温度を250℃とした以外は実施例1-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表1に示す。Tgが195℃と非常に高い値を示したが、樹脂が非常に脆く、各種評価のための成形片を取得することができなかった。
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
<本発明の第三の態様の実施例>
(1)ポリカーボネート樹脂の還元粘度
 ポリカーボネート樹脂を塩化メチレンに溶解させ、精密に0.6g/dLの濃度の樹脂溶液を調製した。森友理化工業社製ウベローデ型粘度管を用いて、温度20.0℃±0.1℃で測定を行い、溶媒の通過時間t、及び溶液の通過時間tを測定した。得られたt及びtの値を用いて次式(i)により相対粘度ηrelを求め、さらに、得られた相対粘度ηrelを用いて次式(ii)により比粘度ηspを求めた。
  ηrel=t/t  (i)
  ηsp=(η-η)/η=ηrel-1  (ii)
 その後、得られた比粘度ηspを濃度c[g/dL]で割って、還元粘度ηsp/cを求めた。
(2)ポリカーボネート樹脂の溶融粘度
 ペレット状のポリカーボネート樹脂を90℃で5時間以上、真空乾燥させた。乾燥したペレットを用いて、(株)東洋精機製作所製キャピラリーレオメーターで測定を行った。測定温度は240℃とし、剪断速度9.12~1824sec-1間で溶融粘度を測定し、91.2sec-1における溶融粘度の値を用いた。なお、オリフィスには、ダイス径がφ1mm×10mmLのものを用いた。
(3)ポリカーボネート樹脂のガラス転移温度(Tg)
 エスアイアイ・ナノテクノロジー社製示差走査熱量計DSC6220を用いて測定した。約10mgの樹脂試料を同社製アルミパンに入れて密封し、50mL/分の窒素気流下、昇温速度20℃/分で30℃から250℃まで昇温した。3分間温度を保持した後、30℃まで20℃/分の速度で冷却した。30℃で3分保持し、再び200℃まで20℃/分の速度で昇温した。2回目の昇温で得られたDSCデータより、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度である、補外ガラス転移開始温度を求め、それをガラス転移温度とした。
 なお、ガラス転移温度は、通常、より高い方が耐熱性が好ましいものとなるが、本願においては、SBIを含まない同様のポリカーボネート樹脂と比較して、SBIを含むポリカーボネート樹脂のガラス転移温度が向上していることが本願の効果の一つである。
(4)ポリカーボネート樹脂中のモノヒドロキシ化合物、炭酸ジエステル、及び式(6)で表されるジヒドロキシ化合物の含有量の測定
 ポリカーボネート樹脂試料約1gを精秤し、塩化メチレン5mLに溶解して溶液とした後、総量が25mLになるようにアセトンを添加して再沈殿処理を行った。次いで、該処理液について液体クロマトグラフィーにより測定した。
 用いた装置や条件は、次のとおりである。
 ・装置:(株)島津製作所製
  システムコントローラ:CBM-20A
  ポンプ:LC-10AD
  カラムオーブン:CTO-10ASvp
  検出器:SPD-M20A
  分析カラム:Cadenza CD-18 4.6mmφ×250mm
  オーブン温度:60℃
 ・検出波長:220nm
 ・溶離液:A液:0.1%リン酸水溶液、B液:アセトニトリル
  A/B=50/50(vol%)からA/B=0/100(vol%)まで10分間でグラジエント、A/B=0/100(vol%)で5分間保持
 ・流量:1mL/min
 ・試料注入量:10μL
 樹脂中の各化合物の含有量は、各化合物について、それぞれ濃度を変更した溶液を調製し、上記の液体クロマトグラフィーと同じ条件で測定を行って検量線を作成し、絶対検量線法により算出した。
(5)フィルムの成形
 90℃で5時間以上、真空乾燥をした樹脂ペレットを、いすず化工機(株)製単軸押出機(スクリュー径25mm、シリンダー設定温度:220℃~270℃)を用い、Tダイ(幅200mm、設定温度:200~270℃)から押し出した。押し出したフィルムを、チルロール(設定温度:120~170℃)により冷却しつつ巻取機でロール状にし、未延伸フィルムを作製した。
(6)吸水率の測定
 前述の方法で厚さ100~300μmのフィルムを成形し、縦100mm、横100mmの正方形に切り出して試料を作製した。この試料を用いてJIS K 7209に記載の「プラスティックの吸水率及び沸騰吸水率試験方法」に準拠して測定した。
 なお、本願においては、吸水率が3%以下のものを合格とした。
(7)光弾性係数の測定
 He-Neレーザー、偏光子、補償板、検光子、光検出器からなる複屈折測定装置と振動型粘弾性測定装置(レオロジー社製DVE-3)を組み合わせた装置を用いて測定した。(詳細は、日本レオロジー学会誌Vol.19,p93-97(1991)を参照。)
 前記の未延伸フィルムから幅5mm、長さ20mmの試料を切り出し、粘弾性測定装置に固定し、25℃の室温で貯蔵弾性率E’を周波数96Hzにて測定した。同時に、出射されたレーザー光を偏光子、試料、補償板、検光子の順に通し、光検出器(フォトダイオード)で拾い、ロックインアンプを通して角周波数ω又は2ωの波形について、その振幅とひずみに対する位相差を求め、ひずみ光学係数O’を求めた。このとき、偏光子と検光子の方向は直交し、またそれぞれ、試料の伸長方向に対してπ/4の角度をなすように調整した。光弾性係数Cは、貯蔵弾性率E’とひずみ光学係数O’を用いて次式より求めた。
C=O’/E’
 なお、光弾性係数Cは、通常、より小さい方が好ましいが、本願においては、SBIを含まない同様のポリカーボネート樹脂と比較して、SBIを含むポリカーボネート樹脂の光弾性係数が同等又はそれ以下であることが本願の効果の一つである。
(8)複屈折(Δn)及び波長分散(R450/R550)の測定
 前記の未延伸フィルムから幅50mm、長さ125mmのフィルム片を切り出した。バッチ式二軸延伸装置(アイランド工業社製二軸延伸装置BIX-277-AL)を用いて、樹脂のガラス転移温度+15℃の延伸温度、300%/分の延伸速度、及び1.5倍の延伸倍率で前記フィルム片の自由端一軸延伸を行い、位相差フィルムを得た。上記の方法で得られた延伸フィルムの中央部を幅4cm、長さ4cmに切り出し、王子計測機器(株)製位相差測定装置KOBRA-WPRを用いて、測定波長450、500、550、590、630nmで位相差を測定し、波長分散性を測定した。波長分散性は450nmと550nmで測定した位相差R450とR550の比(R450/R550)で示した。R450/R550が1より大きいと波長分散は正であり、1未満では逆波長分散となる。1/4波長板として用いる場合、R450/R550の理想値は0.818である(450/550=0.818)。
 また、550nmの位相差R550と延伸フィルムの膜厚から、次式より複屈折Δnを求めた。
複屈折=R550[nm]/(フィルム厚み[mm]×10
 今回の測定では、Δnが正の値を有していれば、位相差フィルムとして使用可能である。
[判定基準]
 フラットな波長分散を示す位相差フィルム向けの物性評価においては、以下の全ての項目を満たすものを合格とした。
・ガラス転移温度 155℃以上
・波長分散(R450/R550) 0.98~1.02
・吸水率 3%以下
・光弾性係数 25以下
・Δn 0.0010以上
 逆波長分散を示す位相差フィルム向けの物性評価においては、以下の全ての項目を満たすものを合格とした。
・ガラス転移温度 160℃以上
・波長分散(R450/R550) 0.75~0.90
・吸水率 3%以下
・光弾性係数 17以下
・Δn 0.0010以上
(モノマーの合成例)
[合成例1]6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン(SBI)の合成
 日本国特開2014-114281号公報に記載の方法で合成した。
[合成例2]ビス(フルオレン-9-イル)メタン(化合物1)の合成
Figure JPOXMLDOC01-appb-C000054
 1L四口フラスコにフルオレン(120g、722mmol)、N,N-ジメチルホルムアミド(480mL)を入れ、窒素置換後、5℃以下に冷却した。ナトリウムエトキシド(24.6g、361mmol)を加え、パラホルムアルデヒド(8.7g、289mmol)を、10℃を超えないように少量ずつ添加し、撹拌した。2時間後、1N塩酸(440mL)を滴下し、反応を停止した。得られた懸濁溶液を吸引ろ過し、脱塩水(240mL)でふりかけ洗浄した。その後、得られた粗生成物を脱塩水(240mL)に分散させ、1時間撹拌した。この懸濁液を吸引ろ過後、脱塩水(120mL)でふりかけ洗浄した。得られた粗生成物をトルエン(480mL)に分散させた後、ディーン-スターク装置を用いて、加熱還流条件下で脱水を行なった。室温(20℃)に戻した後、吸引ろ過し、80℃で恒量になるまで減圧乾燥することで、白色固体としてビス(フルオレン-9-イル)メタン(化合物1)を84.0g(収率:84.5%、HPLC純度:94.0%)得た。化合物1のH-NMRスペクトルにおけるケミカルシフトは以下の通りであった。
H-NMR(400MHz,CDCl)δ7.83(d,J=7.6Hz,4H),7.56(dd,J1=7.6Hz,J2=0.8Hz,4H),7.41(t,J=7.3Hz,4H),7.29(dt,J1=7.3Hz,J2=1.3Hz,4H),4.42(t,J=7.6Hz,2H),2.24(d,J=7.6Hz,2H).
[合成例3]ビス[9-(2-エトキシカルボニルエチル)フルオレン-9-イル]メタン(化合物2)の合成
Figure JPOXMLDOC01-appb-C000055
 1L三口フラスコに上記で得られたビス(フルオレン-9-イル)メタン(化合物1、80g、232.3mmol)、N-ベンジル-N,N,N-トリエチルアンモニウムクロリド(10.6g、46.5mmol)、塩化メチレン(400mL)を入れ、窒素置換後、水浴で15℃~20℃に制御し、50%水酸化ナトリウム水溶液(64mL)を加えたところ、溶液の色は薄赤色に変化した。その後、アクリル酸エチル(50.5mL、465mmol)を5分かけて滴下した。1時間後さらにアクリル酸エチル(25.3mL、232mmol)を加え、反応の進行をHPLCで追跡しながら、9時間撹拌した。HPLCでモノ付加体が5%以下になったのを確認後、氷浴で冷却し、3N塩酸(293mL)を温度見合いで滴下し、クエンチした。有機層を液性が中性になるまで水で洗浄後、無水硫酸マグネシウムで乾燥、ろ過し、溶媒を減圧留去した。得られた粗生成物をメタノール(400mL)に分散させ、30分間加熱還流することで、熱懸洗した。その後、室温(20℃)に戻し、吸引ろ過後、80℃で恒量になるまで減圧乾燥することで、白色固体としてビス[9-(2-エトキシカルボニルエチル)フルオレン-9-イル]メタン(化合物2)を96.1g(収率:75.9%、HPLC純度:96.0%)得た。化合物2のH-NMRスペクトルにおけるケミカルシフトは以下の通りであった。
H-NMR(400MHz,CDCl)δ7.03(d,J=7.6Hz,4H),6.97(dt,J1=7.6Hz,J2=1.5Hz,4H),6.82(dt,J1=7.6Hz,J2=1.3Hz,4H),6.77(d,J=7.6Hz,4H),3.88(q,J=7.1Hz,4H),3.12(s,2H),2.23(m,4H),1.13(m,4H),1.02(t,J=7.1Hz,6H).
[合成例4]ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン(化合物3)の合成
Figure JPOXMLDOC01-appb-C000056
 1L四口フラスコに上記で得られたビス[9-(2-エトキシカルボニルエチル)フルオレン-9-イル]メタン(化合物2、50.0g、91.80mmol)、ジフェニルカーボネート(98.3g、459mmol)、オルトチタン酸テトライソプロピル(1.3mL、4.59mmol)を入れ、減圧度を3kPaに調整し、145℃~150℃の温度範囲で、副生物を留去しながら、6時間撹拌した。90℃に冷却し、HPLCで反応の終了を確認後、トルエン(100mL)を加え、50℃まで冷却した。そこへ、メタノール(250mL)を加え、5℃まで冷却後、吸引ろ過を行った。得られた白色固体をトルエン(100mL)に分散させ、30分加熱還流した。50℃へ冷却後、メタノール(200mL)を加えた。室温(20℃)へ冷却後、吸引ろ過を行い、100℃で恒量になるまで減圧乾燥することで、白色固体としてビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン(化合物3)を50g(収率:85%、HPLC純度:98.1%)得た。化合物3のH-NMRスペクトルにおけるケミカルシフトは以下の通りであった。
H-NMR(400MHz,CDCl)δ7.23-7.28(m,4H),7.07-7.16(m,6H),7.03(dt,J1=6.9Hz,J2=2.0,4H),6.78-6.90(m,12H),3.20(s,2H),2.37(t,J=8.3Hz,4H),1.40(t,J=8.3Hz,4H).
[ポリカーボネート樹脂の合成例、及び特性評価]
 以下の実施例、及び比較例で用いた化合物の略号等は以下の通りである。
・SBI:6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン
・ISB:イソソルビド(ロケットフルーレ社製、商品名:POLYSORB)
・CHDM:1,4-シクロヘキサンジメタノール(シス、トランス混合物、SKケミカル社製)
・TCDDM:トリシクロデカンジメタノール(オクセア社製)
・SPG:スピログリコール(三菱ガス化学(株)製)
・BPA:2,2-ビス[4-ヒドロキシフェニル]プロパン(三菱化学(株)製)
・BHEPF:9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]-フルオレン(大阪ガスケミカル(株)製)
・BisZ: 1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(本州化学工業(株)製)
・TER-BP:テルペンビスフェノール…1,3-ビス(4-ヒドロキシフェニル)-p-メンタンと2,8-ビス(4-ヒドロキシフェニル)-p-メンタンの混合物(ヤスハラケミカル(株)製)
・化合物3:ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン
・DPC:ジフェニルカーボネート(三菱化学(株)製)
 なお、実施例表中でのmol%は、全ジヒドロキシ化合物中の当該ジヒドロキシ化合物のmol%または全ジエステル化合物中の当該ジエステル化合物中のmol%を示す。
 また、重量%は、ポリカーボネート樹脂を構成する全ての構造単位の重量の合計量を100重量%とした際に、当該化合物に由来する構造単位の重量%を示す。
[実施例2-1]
 SBI 23.06重量部(0.075mol)、ISB 55.18重量部(0.378mol)、CHDM 8.47重量部(0.059mol)、DPC 112.78重量部(0.526mol)、及び触媒として酢酸カルシウム1水和物1.80×10-3重量部(1.02×10-5mol)を反応容器に投入し、反応装置内を減圧窒素置換した。窒素雰囲気下、150℃で約10分間、攪拌しながら原料を溶解させた。反応1段目の工程として220℃まで30分かけて昇温し、60分間常圧にて反応した。次いで圧力を常圧から13.3kPaまで90分かけて減圧し、13.3kPaで30分間保持し、発生するフェノールを反応系外へ抜き出した。次いで反応2段目の工程として熱媒温度を15分かけて250℃まで昇温しながら、圧力を0.10kPa以下まで15分かけて減圧し、発生するフェノールを反応系外へ抜き出した。所定の撹拌トルクに到達後、窒素で常圧まで復圧して反応を停止し、生成したポリカーボネートを水中に押し出し、ストランドをカッティングしてペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表3に示す。
 高い耐熱性(Tg)と比較的低い光弾性係数を有することに加えて、比較例2-1~2-3の全脂肪族ポリカーボネート樹脂と同等のフラットな波長分散特性を有していた。
[実施例2-2]
 SBI 51.00重量部(0.165mol)、SPG 41.18重量部(0.135mol)、DPC 68.59重量部(0.320mol)、及び触媒として酢酸カルシウム1水和物5.30×10-3重量部(3.01×10-5mol)を用いた以外は実施例2-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表3に示す。
 実施例2-1と同様の特性を示した。
[実施例2-3]
 SBI 18.45重量部(0.060mol)、ISB 42.45重量部(0.290mol)、BHEPF 28.32重量部(0.065mol)、DPC 90.65重量部(0.423mol)、及び触媒として酢酸カルシウム1水和物1.10×10-3重量部(6.22×10-6mol)を用いた以外は実施例2-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表3に示す。
 波長分散(R450/R550)が0.98と逆分散性を示すとともに、高い耐熱性と比較的低い光弾性係数を有していた。SBIを用いない場合(比較例2-8)と比較して、光弾性係数を低く保持したまま、ガラス転移温度を向上させることができた。
[実施例2-4]
 SBI 15.10重量部(0.049mol)、ISB 53.87重量部(0.369mol)、化合物3 30.31重量部(0.047mol)、DPC 80.21重量部(0.374mol)、及び触媒として酢酸カルシウム1水和物1.10×10-3重量部(6.26×10-6mol)を用いた以外は実施例2-1と同様に合成を行い、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表4に示す。
 波長分散性(R450/R550)が0.85であり、実施例2-3よりも強い逆分散性を示すとともに、高い耐熱性と低い光弾性係数を有していた。また、SBIを用いない場合(比較例2-9)と比較して、光弾性係数を低く保持したまま、ガラス転移温度を向上させることができた。
[実施例2-5]
 実施例2-4と同様に重合反応を行い、実施例2-4よりも高い撹拌トルクまで反応を進行させ、より高分子量のポリエステルカーボネートを取得した。評価結果を表4に示す。前述の(8)の評価に加えて、次のような評価を行った。延伸温度をTg+15℃からフィルムが破断するまで1℃ずつ温度を下げ、破断する一つ手前の条件で延伸したフィルムを取得した。その時のΔnを比較すると、実施例2-4のフィルムが0.0023、実施例2-5のフィルムが0.0035となり、分子量を向上させることで、配向性を向上させることができた。得られたフィルムを折り曲げると、実施例2-4のフィルムは脆性破壊が起こったが、実施例2-5のフィルムは割れず、靱性が向上していることも確認された。
[比較例2-1]
 ISB 84.90重量部(0.581mol)、DPC 125.69重量部(0.587mol)、及び触媒として酢酸カルシウム1水和物1.02×10-4重量部(5.81×10-7mol)を用い、最終重合温度を240℃とした以外は実施例2-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表3に示す。
 高いガラス転移温度と低い光弾性係数を有しているが、吸水率が高いために高湿度下での使用に難点がある。
[比較例2-2]
 ISB 59.63重量部(0.408mol)、CHDM 25.22重量部(0.175mol)、DPC 126.12重量部(0.589mol)、及び触媒として酢酸カルシウム1水和物1.54×10-4重量部(8.74×10-7mol)を用い、最終重合温度を220℃とした以外は実施例2-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表3に示す。
[比較例2-3]
 ISB 54.65重量部(0.374mol)、TCDDM 31.46重量部(0.160mol)、DPC 115.59重量部(0.540mol)、及び触媒として酢酸カルシウム1水和物1.41×10-4重量部(8.01×10-7mol)を用い、最終重合温度を220℃とした以外は実施例2-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表3に示す。
[比較例2-4]
 SBI 33.24重量部(0.108mol)、BPA 57.42重量部(0.252mol)、DPC 81.59重量部(0.381mol)、及び触媒として酢酸カルシウム1水和物3.17×10-4重量部(1.80×10-6mol)を用い、最終重合温度を280℃とした以外は実施例2-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表3に示す。
 波長分散(R450/R550)が1.07であり、正の波長分散性を示し、光弾性係数も大きい。
[比較例2-5]
 ISB 26.40重量部(0.181mol)、BPA 61.86重量部(0.271mol)、DPC 98.68重量部(0.461mol)、及び触媒として酢酸カルシウム1水和物3.98×10-4重量部(2.26×10-6mol)を用いた以外は実施例2-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表3に示す。
 波長分散(R450/R550)は1.05であり、正の波長分散性を示し、光弾性係数も大きい。
[比較例2-6]
 ISB 42.45重量部(0.290mol)、BPA 17.96重量部(0.079mol)、CHDM 25.42重量部(0.176mol)、DPC 119.17重量部(0.556mol)、及び触媒として酢酸カルシウム1水和物9.61×10-4重量部(5.45×10-6mol)を用いた以外は実施例2-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表3に示す。
 波長分散(R450/R550)は1.05であり、正の波長分散性を示し、光弾性係数もやや大きい。
[比較例2-7]
 BPAのポリカーボネート樹脂として、三菱エンジニアリングプラスチックス(株)製ノバレックス7022Rを用いて、前述の各種評価を行った。評価結果を表3に示す。
 波長分散(R450/R550)は1.08であり、正の波長分散性を示し、光弾性係数も非常に大きい。
[比較例2-8]
 ISB 42.45重量部(0.290mol)、BHEPF 47.20重量部(0.108mol)、DPC 86.13重量部(0.402mol)、及び触媒として酢酸カルシウム1水和物7.01×10-4重量部(3.98×10-6mol)を用いた以外は実施例2-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表3に示す。
 波長分散(R450/R550)は0.98であり、逆波長分散性を示したが、実施例2-3よりもガラス転移温度が低い。
[比較例2-9]
 ISB 64.02重量部(0.438mol)、化合物3 36.94重量部(0.058mol)、DPC 82.43重量部(0.385mol)、及び触媒として酢酸カルシウム1水和物3.86×10-4重量部(2.19×10-6mol)を用いた以外は実施例2-1と同様に合成を行い、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表4に示す。
 波長分散(R450/R550)は0.79であり、逆波長分散性を示したが、実施例2-4よりもガラス転移温度が低い。
[比較例2-10]
 ISB 45.42重量部(0.311mol)、化合物3 36.65重量部(0.057mol)、BisZ 20.15重量部(0.075mol)、DPC 70.41重量部(0.329mol)、及び触媒として酢酸カルシウム1水和物6.80×10-4重量部(3.86×10-6mol)を用いた以外は実施例2-1と同様に合成を行い、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表4に示す。
 実施例2-4よりもガラス転移温度はやや低く、光弾性係数も大きい。また、主鎖方向に配向した芳香環の影響により、逆波長分散性が低下した。
[比較例2-11]
 ISB 45.73重量部(0.313mol)、化合物3 36.65重量部(0.057mol)、TER-BP 20.13重量部(0.062mol)、DPC 68.07重量部(0.318mol)、及び触媒として酢酸カルシウム1水和物1.32×10-3重量部(7.50×10-6mol)を用いた以外は実施例2-1と同様に合成を行い、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表4に示す。
 実施例2-4よりも光弾性係数が大きい。また、主鎖方向に配向した芳香環の影響により、逆波長分散性が低下した。
[比較例2-12]
 SBI 73.78重量部(0.239mol)、ISB 16.99重量部(0.116mol)、DPC 80.71重量部(0.377mol)、及び触媒として酢酸カルシウム1水和物3.13×10-5重量部(1.78×10-5mol)を用い、最終重合温度を250℃とした以外は実施例2-1と同様に合成を行い、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表3に示す。Tgが195℃と非常に高い値を示したが、樹脂が非常に脆く、各種評価のための成形片を取得することができなかった。
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。なお本出願は、2014年10月28日付で出願された日本特許出願(特願2014-219462)及び2015年1月5日付で出願された日本特許出願(特願2015-000163)に基づいており、その全体が引用により援用される。

Claims (16)

  1.  下記式(1)で表される構造単位と、下記式(2)で表される構造単位とを少なくとも含むポリカーボネート樹脂であり、
     ポリカーボネート樹脂を構成する全ての構造単位及び連結基の重量の合計量を100重量%とした際に、
     下記式(1)で表される構造単位の含有量が1重量%以上、70重量%以下であり、
     下記式(2)で表される構造単位の含有量が1重量%以上、70重量%以下であり、
     脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール、芳香族成分を含有するジヒドロキシ化合物、ジエステル化合物から選ばれる少なくとも1つの化合物に由来する構造単位を0.1重量%以上、50重量%以下含むポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R~Rはそれぞれ独立に水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
    Figure JPOXMLDOC01-appb-C000002
  2.  下記式(1)で表される構造単位と、下記式(2)で表される構造単位とを少なくとも含むポリカーボネート樹脂であり、
     ポリカーボネート樹脂を構成する全ての構造単位及び連結基の重量の合計量を100重量%とした際に、
     下記式(1)で表される構造単位の含有量が1重量%以上、70重量%以下であり、
     下記式(2)で表される構造単位の含有量が1重量%以上、70重量%以下であり、
     負の固有複屈折を有する化合物に由来する構造単位を1重量%以上、70重量%以下含有するポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、R~Rはそれぞれ独立に水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
    Figure JPOXMLDOC01-appb-C000004
  3.  負の固有複屈折を有する化合物に由来する構造単位が、下記式(3)~(5)から選ばれる少なくとも1つの構造単位である請求項2に記載のポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000005
    (式(3)中、R~R10はそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数6~20のシクロアルキル基、又は、置換若しくは無置換の炭素数6~20のアリール基を表し、Xは置換若しくは無置換の炭素数2~10のアルキレン基、置換若しくは無置換の炭素数6~20のシクロアルキレン基、又は、置換若しくは無置換の炭素数6~20のアリーレン基を表し、それぞれのXは同一であっても異なっていてもよい。m及びnはそれぞれ独立に0~5の整数である。)
    Figure JPOXMLDOC01-appb-C000006
    (式(4)及び(5)中、R11~R13は、それぞれ独立に、直接結合、置換基を有していてもよい炭素数1~4のアルキレン基であり、R14~R19は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1~10のアルキル基、置換基を有していてもよい炭素数4~10のアリール基、置換基を有していてもよい炭素数1~10のアシル基、置換基を有していてもよい炭素数1~10のアルコキシ基、置換基を有していてもよい炭素数1~10のアリールオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭素数1~10のビニル基、置換基を有していてもよい炭素数1~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、又はシアノ基である。ただし、R14~R19は、互いに同一であっても、異なっていてもよく、R14~R19のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。)
  4.  ガラス転移温度が120℃以上、200℃以下である請求項1乃至3のいずれか1項に記載のポリカーボネート樹脂。
  5.  下記式(1)で表される構造単位を少なくとも含むポリカーボネート樹脂であり、該樹脂のガラス転移温度が120℃以上、180℃以下であり、波長450nmにおける位相差(R450)と波長550nmにおける位相差(R550)との比である波長分散(R450/R550)の値が0.50以上、1.03以下であるポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000007
    (式(1)中、R~Rはそれぞれ独立に水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
  6.  ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、前記式(1)で表される構造単位を1重量%以上、30重量%以下含有する請求項5に記載のポリカーボネート樹脂。
  7.  ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、下記式(2)で表される構造単位を1重量%以上、70重量%以下含有する請求項5又は6に記載のポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000008
  8.  ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、下記式(3)~(5)から選ばれる少なくとも1つの構造単位を1重量%以上70重量%以下含有する請求項5乃至7のいずれか1項に記載のポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000009
    (式(3)中、R~R10はそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数6~20のシクロアルキル基、又は、置換若しくは無置換の炭素数6~20のアリール基を表し、Xは置換若しくは無置換の炭素数2~10のアルキレン基、置換若しくは無置換の炭素数6~20のシクロアルキレン基、又は、置換若しくは無置換の炭素数6~20のアリーレン基を表し、それぞれのXは同一であっても異なっていてもよい。m及びnはそれぞれ独立に0~5の整数である。)
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    (式(4)及び(5)中、R11~R13は、それぞれ独立に、直接結合、置換基を有していてもよい炭素数1~4のアルキレン基であり、R14~R19は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1~10のアルキル基、置換基を有していてもよい炭素数4~10のアリール基、置換基を有していてもよい炭素数1~10のアシル基、置換基を有していてもよい炭素数1~10のアルコキシ基、置換基を有していてもよい炭素数1~10のアリールオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭素数1~10のビニル基、置換基を有していてもよい炭素数1~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、又はシアノ基である。ただし、R14~R19は、互いに同一であっても、異なっていてもよく、R14~R19のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。)
  9.  ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物、オキシアルキレングリコール、芳香族成分を含有するジヒドロキシ化合物、ジエステル化合物から選ばれる少なくとも1つの化合物に由来する構造単位を0.1重量%以上、50重量%以下含む請求項5乃至8のいずれか1項に記載のポリカーボネート樹脂。
  10.  ポリカーボネート樹脂を構成する全ての構造単位、及び連結基の重量の合計量を100重量%とした際に、前記式(1)、(3)、(4)、(5)で表される構造単位以外の芳香族構造単位を5重量%以下含有する請求項1乃至9のいずれか1項に記載のポリカーボネート樹脂。
  11.  測定温度240℃、剪断速度91.2sec-1における溶融粘度が800Pa・s以上、7000Pa・s以下である請求項1乃至10のいずれか1項に記載のポリカーボネート樹脂。
  12.  ポリカーボネート樹脂中の、炭酸ジエステルの含有量が1重量ppm以上、300重量ppm以下、かつ、炭酸ジエステルに由来するモノヒドロキシ化合物の含有量が1重量ppm以上、1000重量ppm以下、かつ、下記式(6)で表されるジヒドロキシ化合物の含有量が1重量ppm以上、1000重量ppm以下である請求項1乃至11のいずれか1項に記載のポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000012
    (式(6)中、R~Rはそれぞれ独立に、水素原子、炭素数1~12のアルキル基、アリール基、炭素数1~12のアルコキシ基、又はハロゲン原子を示す。)
  13.  請求項1乃至12のいずれか1項に記載のポリカーボネート樹脂からなるポリカーボネート樹脂成形品。
  14.  請求項1乃至12のいずれか1項に記載のポリカーボネート樹脂からなるフィルム又はシート。
  15.  請求項1乃至12のいずれか1項に記載のポリカーボネート樹脂を成形温度280℃以下で溶融製膜法により成形してなる透明フィルムの製造方法。
  16.  請求項14に記載のフィルムからなる位相差フィルム。
PCT/JP2015/080293 2014-10-28 2015-10-27 ポリカーボネート樹脂、成形品及び光学フィルム WO2016068152A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227007804A KR102441108B1 (ko) 2014-10-28 2015-10-27 폴리카보네이트 수지, 성형품 및 광학 필름
EP15854324.9A EP3214109A4 (en) 2014-10-28 2015-10-27 Polycarbonate resin, molded article and optical film
KR1020177008806A KR102403837B1 (ko) 2014-10-28 2015-10-27 폴리카보네이트 수지, 성형품 및 광학 필름
CN201580053464.1A CN107075099B (zh) 2014-10-28 2015-10-27 聚碳酸酯树脂、成型品及光学膜
US15/476,227 US10081707B2 (en) 2014-10-28 2017-03-31 Polycarbonate resin, molded article, and optical film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-219462 2014-10-28
JP2014219462 2014-10-28
JP2015-000163 2015-01-05
JP2015000163 2015-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/476,227 Continuation US10081707B2 (en) 2014-10-28 2017-03-31 Polycarbonate resin, molded article, and optical film

Publications (1)

Publication Number Publication Date
WO2016068152A1 true WO2016068152A1 (ja) 2016-05-06

Family

ID=55857487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080293 WO2016068152A1 (ja) 2014-10-28 2015-10-27 ポリカーボネート樹脂、成形品及び光学フィルム

Country Status (7)

Country Link
US (1) US10081707B2 (ja)
EP (1) EP3214109A4 (ja)
JP (2) JP6565597B2 (ja)
KR (2) KR102403837B1 (ja)
CN (1) CN107075099B (ja)
TW (1) TWI689528B (ja)
WO (1) WO2016068152A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199140A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
WO2018199141A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
WO2018199139A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
WO2020184220A1 (ja) * 2019-03-12 2020-09-17 日東電工株式会社 位相差フィルムおよび位相差層付偏光板
CN111683991A (zh) * 2018-02-23 2020-09-18 帝人株式会社 聚碳酸酯树脂和制造方法
WO2022004239A1 (ja) * 2020-06-30 2022-01-06 帝人株式会社 熱可塑性樹脂及びそれを含む光学部材
WO2022018940A1 (ja) * 2020-07-20 2022-01-27 日東電工株式会社 位相差フィルムおよびその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6640465B2 (ja) * 2015-04-16 2020-02-05 帝人株式会社 ポリカーボネート樹脂および光学フィルム
JP6799623B2 (ja) * 2019-01-25 2020-12-16 帝人株式会社 ポリカーボネート樹脂および光学フィルム
JPWO2020196146A1 (ja) * 2019-03-27 2021-12-09 日東電工株式会社 位相差層付偏光板
WO2020262337A1 (ja) * 2019-06-24 2020-12-30 三菱ケミカル株式会社 熱可塑性樹脂、それよりなる光学フィルム、ジオール化合物、ジエステル化合物
JP2020090677A (ja) * 2020-01-22 2020-06-11 帝人株式会社 ポリカーボネート樹脂および光学フィルム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171316A (ja) * 1996-07-31 1999-03-16 Mitsui Chem Inc 低複屈折性有機光学部品およびスピロビインダン系ポリマー
JP2006131789A (ja) * 2004-11-08 2006-05-25 Teijin Chem Ltd 位相差フィルム用ポリカーボネート共重合体
JP2012214666A (ja) * 2010-07-14 2012-11-08 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物、及びこれを用いた成形品、フィルム、プレート、射出成形品

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080833A (en) 1996-07-31 2000-06-27 Mitsui Chemicals, Inc. Low-birefringent organic optical component and a spirobiindan polymer
CA2316828C (en) 1998-10-30 2010-02-23 Teijin Limited Retardation film and optical device employing it
US6060577A (en) * 1999-03-18 2000-05-09 General Electric Company Polycarbonates derived from alicyclic bisphenols
JP2006071782A (ja) * 2004-08-31 2006-03-16 Fuji Photo Film Co Ltd プラスチック製レンズを用いた光学ユニット
JP5346449B2 (ja) 2007-03-30 2013-11-20 帝人株式会社 光学用フィルム
CN101680987B (zh) 2007-06-19 2012-02-08 帝人化成株式会社 光学膜
EP2223951A4 (en) * 2007-12-12 2013-08-21 Mitsubishi Chem Corp PROCESS FOR PRODUCTION OF POLYCARBONATE AND MOLDINGS IN POLYCARBONATE
JP5927780B2 (ja) * 2010-05-27 2016-06-01 三菱化学株式会社 ポリカーボネート樹脂及びフィルムの製造方法
KR101930108B1 (ko) 2011-05-09 2018-12-17 미쯔비시 케미컬 주식회사 폴리카보네이트 수지 및 그것으로 이루어지는 투명 필름
JP5768143B2 (ja) 2011-12-27 2015-08-26 帝人株式会社 ポリカーボネート樹脂
JP2014080602A (ja) * 2012-09-26 2014-05-08 Mitsubishi Chemicals Corp ポリカーボネート樹脂
JP6640465B2 (ja) * 2015-04-16 2020-02-05 帝人株式会社 ポリカーボネート樹脂および光学フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171316A (ja) * 1996-07-31 1999-03-16 Mitsui Chem Inc 低複屈折性有機光学部品およびスピロビインダン系ポリマー
JP2006131789A (ja) * 2004-11-08 2006-05-25 Teijin Chem Ltd 位相差フィルム用ポリカーボネート共重合体
JP2012214666A (ja) * 2010-07-14 2012-11-08 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物、及びこれを用いた成形品、フィルム、プレート、射出成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214109A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199141A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
WO2018199139A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
JPWO2018199139A1 (ja) * 2017-04-26 2020-03-12 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
JPWO2018199140A1 (ja) * 2017-04-26 2020-03-12 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
JPWO2018199141A1 (ja) * 2017-04-26 2020-03-12 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
JP7335697B2 (ja) 2017-04-26 2023-08-30 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
WO2018199140A1 (ja) * 2017-04-26 2018-11-01 日本合成化学工業株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
JP7335699B2 (ja) 2017-04-26 2023-08-30 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
JP7335696B2 (ja) 2017-04-26 2023-08-30 三菱ケミカル株式会社 ポリビニルアルコール系フィルム、偏光膜および偏光板、ならびにポリビニルアルコール系フィルムの製造方法
CN111683991B (zh) * 2018-02-23 2022-07-08 帝人株式会社 聚碳酸酯树脂和制造方法
CN111683991A (zh) * 2018-02-23 2020-09-18 帝人株式会社 聚碳酸酯树脂和制造方法
JPWO2020184220A1 (ja) * 2019-03-12 2021-11-18 日東電工株式会社 位相差フィルムおよび位相差層付偏光板
JP7322135B2 (ja) 2019-03-12 2023-08-07 日東電工株式会社 位相差フィルムおよび位相差層付偏光板
WO2020184220A1 (ja) * 2019-03-12 2020-09-17 日東電工株式会社 位相差フィルムおよび位相差層付偏光板
WO2022004239A1 (ja) * 2020-06-30 2022-01-06 帝人株式会社 熱可塑性樹脂及びそれを含む光学部材
JP7395748B2 (ja) 2020-06-30 2023-12-11 帝人株式会社 熱可塑性樹脂及びそれを含む光学部材
WO2022018940A1 (ja) * 2020-07-20 2022-01-27 日東電工株式会社 位相差フィルムおよびその製造方法

Also Published As

Publication number Publication date
EP3214109A4 (en) 2017-11-08
US20170204220A1 (en) 2017-07-20
EP3214109A1 (en) 2017-09-06
CN107075099A (zh) 2017-08-18
JP2019178340A (ja) 2019-10-17
TW201617381A (zh) 2016-05-16
CN107075099B (zh) 2020-06-12
JP6881512B2 (ja) 2021-06-02
US10081707B2 (en) 2018-09-25
KR102441108B1 (ko) 2022-09-06
TWI689528B (zh) 2020-04-01
JP6565597B2 (ja) 2019-08-28
KR102403837B1 (ko) 2022-05-30
KR20170074860A (ko) 2017-06-30
KR20220035980A (ko) 2022-03-22
JP2016128556A (ja) 2016-07-14

Similar Documents

Publication Publication Date Title
JP6881512B2 (ja) ポリカーボネート樹脂、成形品及び光学フィルム
US10754065B2 (en) Retardation film, circularly-polarizing plate, and image-displaying device
KR102306920B1 (ko) 위상차 필름, 원편광판 및 화상 표시 장치
CN106489085B (zh) 相位差膜、圆偏振片及图像显示装置
JP6597157B2 (ja) 熱可塑性樹脂、及びそれよりなる光学成形体
JP6565577B2 (ja) ポリカーボネート樹脂、及びそれよりなる光学フィルム
JP6597158B2 (ja) 熱可塑性樹脂、及びそれよりなる光学成形体
JP5716362B2 (ja) ポリカーボネート共重合体
JP2015212368A (ja) 重縮合系樹脂及びそれよりなる光学フィルム
JP6801194B2 (ja) ポリカーボネート樹脂、該ポリカーボネート樹脂の製造方法、該ポリカーボネート樹脂からなる透明フィルムの製造方法、及び位相差フィルム
JP5652153B2 (ja) ポリカーボネート樹脂、それを用いた光学フィルム、位相差フィルムおよび偏光板
WO2023074576A1 (ja) ポリカーボネート樹脂
KR20240093457A (ko) 폴리카보네이트 수지
JP2012207183A (ja) ポリカーボネート樹脂組成物及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854324

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015854324

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015854324

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE