JP6640465B2 - ポリカーボネート樹脂および光学フィルム - Google Patents

ポリカーボネート樹脂および光学フィルム Download PDF

Info

Publication number
JP6640465B2
JP6640465B2 JP2015084235A JP2015084235A JP6640465B2 JP 6640465 B2 JP6640465 B2 JP 6640465B2 JP 2015084235 A JP2015084235 A JP 2015084235A JP 2015084235 A JP2015084235 A JP 2015084235A JP 6640465 B2 JP6640465 B2 JP 6640465B2
Authority
JP
Japan
Prior art keywords
bis
optical film
film
unit
fluorene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015084235A
Other languages
English (en)
Other versions
JP2016204430A (ja
Inventor
哲也 本吉
哲也 本吉
山中 克浩
克浩 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2015084235A priority Critical patent/JP6640465B2/ja
Publication of JP2016204430A publication Critical patent/JP2016204430A/ja
Application granted granted Critical
Publication of JP6640465B2 publication Critical patent/JP6640465B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はポリカーボネート樹脂および光学フィルムに関するものであり、所望の波長分散特性を有し、光弾性定数が低く、耐熱性が高く、溶融加工性に優れたポリカーボネート樹脂およびそれから形成される光学フィルムに関する。
一般に光学フィルム、特に位相差フィルムは、液晶表示装置等の表示装置に用いられ、色補償、視野角拡大、反射防止等の機能を有している。
位相差フィルムとしては、λ/4板、λ/2板が知られており、その材料としてはビスフェノールAを重縮合したポリカーボネートやポリエーテルサルフォン、ポリサルフォンなどの熱可塑性ポリマーが用いられている。これら材料のフィルムを延伸して得られたλ/4板、λ/2板は、短波長ほど位相差が大きくなるという性質がある。そのため、λ/4板、λ/2板として機能しうる波長が特定の波長に限られるという問題点があった。
広帯域において波長を制御する方法として、位相差の波長依存性が異なる特定の2枚以上の複屈折性フィルムを特定の角度で積層して製造する方法が知られている。(例えば特許文献1参照)これらの場合、位相差フィルムを複数枚用いるので、それらを貼り合わせたり、貼り合わせる角度を調整する工程が必要であり、生産性に問題がある。また、位相差フィルム全体の厚さが大きくなるために、光線透過率が低下して、装置に組み込んだときに厚くなったり暗くなるという問題もある。
近年、このような積層をせずに、一枚のフィルムにより広帯域化する方法が提案されている(特許文献2参照)。該フィルムは正の屈折率異方性を有する高分子のモノマー単位と負の屈折率異方性を有する高分子のモノマー単位とからなる高分子フィルムを延伸する方法である。しかしながら、具体的に開示されているフィルムは光弾性定数が高いため、応力による複屈折が大きく、位相差フィルムとして使用する場合に光抜けが起こるという問題があった。また、フルオレン系ビスフェノール骨格からなる芳香族系ポリカーボネートを用いているため、溶融加工する場合、溶融温度が高く分解によるゲル物が発生しやすいという問題がある。また。高いTg(ガラス転移温度)を有しているためフィルムの延伸加工等のために高い温度を必要とし、従来と異なる特別な加工設備を必要とする等、加工性が必ずしも十分なものとはいえない。
光弾性定数を低くした溶融製膜可能なフィルムとして、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンとイソソルビドと脂肪族ジオールとのポリカーボネート共重合体や9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンとイソソルビドとのポリカーボネート共重合体を用いた位相差フィルム等が報告されている(特許文献3、4参照)。また、スピロビインダンを含むポリカーボネート共重合体を用いた位相差フィルムが報告されているが、光弾性定数が高く、波長分散性についても記載が無い(特許文献5参照)。
特開平2−120804号公報 国際公開第2000/026705号パンフレット 国際公開第2006/041190号パンフレット 特開2010−134232号公報 特開2006−131789号公報
本発明の目的は、理想的な広帯域に近い波長分散特性をもち、位相差発現性が高く、光弾性が低く、溶融加工性に優れたポリカーボネート樹脂およびそれから形成される光学フィルムを提供することにある。
本発明者らは、かかる目的を達成せんとして鋭意検討の結果、特定のモノマーを組み合わせて用いることにより、得られるポリカーボネート樹脂からなるフィルムが理想的な広帯域に近い逆波長分散性を持ち、光弾性係数の低い位相差フィルムとなることを見出し、本発明に到達した。
すなわち、本発明は、以下の通りである。
1.スピロビクロマンから誘導されるカーボネート単位(A)と、脂肪族ジオール化合物および/または脂環族ジオール化合物から誘導されるカーボネート単位(B)とを含み、さらに任意成分としてフルオレン骨格を有するジヒドロキシ化合物から誘導されるカーボネート単位(C)を含み、単位(A)と単位(B)とのモル比(A/B)が5/95〜95/5であり、単位(A)及び単位(B)の合計が全繰り返し単位を基準として60モル%以上であり、単位(C)の合計が全繰り返し単位を基準として40モル%以下であり、20℃の塩化メチレン溶液で測定された比粘度が0.20〜0.45であるポリカーボネート樹脂。
2.ポリカーボネート樹脂のガラス転移温度が70℃〜180℃である前項1記載のポリカーボネート樹脂。
3.ポリカーボネート樹脂の光弾性定数が30×10−12Pa−1以下である前項1記載のポリカーボネート樹脂。
4.前項1〜3のいずれかに記載のポリカーボネート樹脂から形成される光学フィルム。
5.光学フィルムが溶融押出法により成形したものである前項4記載の光学フィルム。
6.光学フィルムが、未延伸フィルムを延伸してなる位相差フィルムである前項4記載の光学フィルム。
7.波長450nm、550nm、及び650nmにおけるフィルム面内の位相差値R(450)、R(550)、及びR(650)が、下記式(1)及び(2)を満たす前項6記載の光学フィルム。
0.60 ≦ R(450)/R(550)≦ 1.00 (1)
1.01 ≦ R(650)/R(550)≦ 1.40 (2)
8.前項7記載の光学フィルムを具備した液晶表示装置または有機EL表示装置。
本発明の光学フィルムは、光弾性定数が低く、高度な透明性、加工性に優れたポリカーボネート共重合体樹脂より構成され、延伸処理により所望の波長分散性を有し、一枚で広帯域化可能であり、液晶表示装置用、有機ELディスプレイ用などの光学フィルムとして極めて有用である。
実施例の熱ムラ評価の説明図である。
以下、本発明を詳細に説明する。
<ポリカーボネート樹脂>
本発明は、単位(A)および単位(B)を含むポリカーボネート樹脂から形成される。
(単位(A))
単位(A)は下記式で表される。
Figure 0006640465
単位(A)中、RおよびRは夫々独立して、水素原子、炭素原子数1〜10の芳香族基を含んでもよい炭化水素基またはハロゲン原子を示す。炭化水素基として、炭素数1〜10のアルキル基、炭素数5〜10のシクロアルキル基、炭素数6〜10のアリール基、炭素数7〜10のアラルキル基、炭素数1〜10のアルケニル基が挙げられる。ハロゲン原子として、フッ素原子、塩素原子、臭素原子等が挙げられる。Wは単結合、炭素原子、酸素原子、硫黄原子を示す。
単位(A)を誘導する化合物としては、6,6´−ジヒドロキシ−3,3,3´,3´−テトラメチル−1,1´−スピロビインダン、スピロビクロマンが好ましく挙げられる。
(単位(B))
単位(B)は、脂肪族ジオール化合物および/または脂環族ジオール化合物であるジオール化合物から誘導されるカーボネート単位である。脂肪族ジオール化合物および脂環式ジオール化合物としては、国際公開第2004/111106号パンフレット、国際公開第2011/021720号パンフレットに記載のジオール化合物やジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコールなどのオキシアルキレングリコール類が挙げられる。
前記脂肪族ジオール化合物としては、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1.9−ノナンジオール、1,10−デカンジオール、1,12−ドデカンジオール、2−メチル−1,3−プロパンジオール、ネオペンチルグリコール、3−メチル−1,5−ペンタンジオール、2−n−ブチル−2−エチル−1,3−プロパンジオール、2,2−ジエチル−1,3−プロパンジオール、2,4−ジエチル−1,5−ペンタンジオール、1,2−ヘキサングリコール、1,2−オクチルグリコール、2−エチル−1,3−ヘキサンジオール、2,3−ジイソブチル−1,3−プロパンジオール、2,2−ジイソアミル−1,3−プロパンジオール、2−メチル−2−プロピル−1,3−プロパンジオールなどが挙げられる。
前記脂環式ジオール化合物としては、シクロヘキサンジメタノール、トリシクロデカンジメタノール、アダマンタンジオール、ペンタシクロペンタデカンジメタノール、3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、イソソルビド、2,2,4,4−テトラメチル−1,3−シクロブタンジオールなどが挙げられる。
前記ジオール化合物としては脂環式ジオールが好ましく、シクロヘキサンジメタノール、トリシクロデカンジメタノール、3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、イソソルビドがさらに好ましく、3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、イソソルビド、2,2,4,4−テトラメチル−1,3−シクロブタンジオールが特に好ましい。
また、酸成分を共重合することにより、一部ポリエステルカーボネートとすることもできる。
(単位(C))
単位(C)はフルオレン骨格を有するジヒドロキシ化合物から誘導されるカーボネート単位(一部エステル単位を含んでもよい)である。
単位(C)は、下記式(C1)で表されるカーボネート単位が好ましく用いられる。
Figure 0006640465
単位(C1)中、RおよびRは夫々独立して、水素原子、炭素原子数1〜10の芳香族基を含んでもよい炭化水素基またはハロゲン原子を示す。炭化水素基として、炭素数1〜10のアルキル基、炭素数5〜10のシクロアルキル基、炭素数6〜10のアリール基、炭素数7〜10のアラルキル基、炭素数1〜10のアルケニル基が挙げられる。ハロゲン原子として、フッ素原子、塩素原子、臭素原子等が挙げられる。
およびRは夫々独立して、炭素原子数1〜10の芳香族基を含んでもよい炭化水素基を示す。炭化水素基は、好ましくは炭素数1〜10のアルキレン基、さらに好ましくは炭素数1〜4のアルキレン基、より好ましくはエチレン基である。
pおよびqは、それぞれ−(R−O)−および−(O−R)−の繰り返しの数を表す。pおよびqは、夫々独立して、0以上の整数であり、好ましくは0〜20の整数、さらに好ましくは0〜12の整数、さらにより好ましくは0〜8の整数、特に好ましくは0〜4の整数、最も好ましくは0または1である。
mおよびnは、夫々独立して0〜4の整数を示す。
(pおよびqが0の場合)
pおよびqが0の場合、単位(C1)は下記式で表される(以下、単位(C1a)と呼ぶことがある)。
Figure 0006640465
(RおよびRは単位(C1)と同じである。)
単位(C1a)として、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−エチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−n−プロピルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−イソプロピルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−n−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−sec−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−tert−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−シクロヘキシルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン等から誘導される単位が挙げられる。これらの単位(C1a)を誘導する化合物は、単独でまたは二種類以上を組み合わせて用いることもできる。
特に、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンから誘導される下記式で表される単位(C1a−i)が好ましい。
Figure 0006640465
単位(C1a−i)を含むポリカーボネート共重合体は、その10gをエタノール50mlに溶解した溶液を光路長30mmで測定したb値が、好ましくは6.0以下、より好ましくは5.5以下、さらに好ましくは5.0以下である。このb値が上記範囲内であれば、ポリカーボネート共重合体から形成される光学フィルムは色相が良好で強度が高い。
単位(C1a−i)の原料である9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンは、o−クレゾールとフルオレノンの反応によって得られる。b値の小さい9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンは、不純物を除去することによって得ることができる。
具体的には、o−クレゾールとフルオレノンの反応後に、未反応のo−クレゾールを留去した後、残さをアルコール系、ケトン系またはベンゼン誘導体系の溶媒に溶解し、これに活性白土または活性炭を加えてろ過後、ろ液から結晶化した生成物をろ過して、精製された9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンを得ることができる。除去される不純物としては、2,4’−ジヒドロキシ体、2,2’−ジヒドロキシ体および構造不明の不純物等である。かかる精製に用いるアルコール系の溶媒としてはメタノール、エタノール、プロパノール、ブタノール等の低級アルコールが好ましい。ケトン系の溶媒としてはアセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン等の低級脂肪族ケトン類およびこれらの混合物が好ましい。ベンゼン誘導体系の溶媒としてはトルエン、キシレン、ベンゼンおよびこれらの混合物が好ましい。溶媒の使用量はフルオレン化合物が十分に溶解する量であれば足り、通常フルオレン化合物に対して2〜10倍量程度である。活性白土としては市販されている粉末状または粒状のシリカ−アルミナを主成分とするものが用いられる。また、活性炭としては市販されている粉末状または粒状のものが用いられる。
(pおよびqが1以上の整数の場合)
pおよびqが1以上の整数の場合、単位(C1)は下記式で表される(以下、単位(C1b)と呼ぶことがある)。
Figure 0006640465
(R、R、R、R、mおよびnは単位(C1)と同じである。pおよびqは、夫々独立して、1以上の整数である。)
単位(C1b)として、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン、9,9−ビス[4−(3−ヒドロキシプロポキシ)フェニル]フルオレン、9,9−ビス[4−(4−ヒドロキシブトキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−メチルフェニル]フルオレン、9,9−ビス[2−(2−ヒドロキシエトキシ)−5−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−エチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−プロピルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−イソプロピルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−n−ブチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−イソブチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−(1−メチルプロピル)フェニル]フルオレン、9,9−ビス[4−(3−ヒドロキシプロポキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(4−ヒドロキシブトキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ジメチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−2,5−ジメチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ジエチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ジプロピルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ジイソプロピルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ジ−n−ブチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ジイソブチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ビス(1−メチルプロピル)フェニル]フルオレン、9,9−ビス[4−(3−ヒドロキシプロポキシ)−3,5−ジメチルフェニル]フルオレン、9,9−ビス[4−(4−ヒドロキシブトキシ)−3,5−ジメチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−シクロヘキシルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ジフェニルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−ベンジルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ジベンジルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−プロペニルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フルオロフェニル]フルオレン、およびこれらの9,9−ビス(ヒドロキシアルコキシフェニル)フルオレンから誘導される単位が挙げられる。また、pおよびqが2以上である9,9−ビス[ヒドロキシポリ(アルキレンオキシ)フェニル]フルオレン等から誘導される単位が挙げられる。
これらのうち、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−メチルフェニル]フルオレン}等が好ましい。
特に、下記式で示される9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン(BPEF)から誘導される単位(C1b−i)が好ましい。
Figure 0006640465
これらの単位(C1b−i)を誘導する化合物は、単独でまたは二種類以上を組み合わせて用いることもできる。
単位(C1b−i)を誘導する化合物は、9,9−ビス(ヒドロキシフェニル)フルオレン類と、基RおよびRに対応する化合物(アルキレンオキサイド、ハロアルカノール等)とを反応させることにより得られる。例えば、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンは、9,9−ビス(4−ヒドロキシフェニル)フルオレンにエチレンオキサイドを付加することにより得られる。9,9−ビス[4−(3−ヒドロキシプロポキシ)フェニル]フルオレンは、例えば、9,9−ビス[4−ヒドロキシフェニル]フルオレンと3−クロロプロパノールとをアルカリ条件下にて反応させることにより得られる。なお、9,9−ビス(ヒドロキシフェニル)フルオレンは、フルオレノン(9−フルオレノン等)と対応するフェノールとの反応により得ることができる。9,9−ビス(4−ヒドロキシフェニル)フルオレンは、例えば、フェノールと9−フルオレノンとの反応によって得ることができる。
また、単位(C)は、下記式(C2)で表されるカーボネート単位も好ましく用いられる。
Figure 0006640465
上記式(C2)中、R及びRは、それぞれ独立に、直接結合、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、若しくは置換されていてもよい炭素数6〜10のアラルキレン基、又は置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基及び置換されていてもよい炭素数6〜10のアラルキレン基からなる群から選ばれる2つ以上の基が、酸素原子、置換されていてもよい硫黄原子、置換されていてもよい窒素原子若しくはカルボニル基で連結された基であり、Rは、直接結合、置換されていてもよい炭素数1〜10のアルキレン基、置換されていてもよい炭素数4〜10のアリーレン基、又は置換されていてもよい炭素数6〜10のアラルキレン基であり、R10〜R11は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜10のアルキル基、置換されていてもよい炭素数4〜10のアリール基、置換されていてもよい炭素数1〜10のアシル基、置換されていてもよい炭素数1〜10のアルコキシ基、置換されていてもよい炭素数1〜10のアリールオキシ基、置換されていてもよいアミノ基、置換基を有する硫黄原子、ハロゲン原子、ニトロ基、又はシアノ基である。uおよびvは夫々独立して1〜4の整数を示し、wは1〜5の整数値を示す。
上記式(C2)を誘導する化合物の具体的例として、9,9’−ジ(ヒドロキシメチル)−9,9’−ビフルオレニル、ビス(9−ヒドロキシメチルフルオレン−9−イル)メタン、1,2−ビス(9−ヒドロキシメチルフルオレン−9−イル)エタン、ビス[9−(3−ヒドロキシプロピル)−フルオレン−9−イル]メタン、ビス{9−[2−(2−ヒドロキシエトキシ)カルボニルエチル]フルオレン−9−イル}メタン、9,9−ビス[(9−ヒドロキシメチルフルオレン−9−イル)−メチル]フルオレン、1,2−ビス[9−(3−ヒドロキシプロピル)−フルオレン−9−イル]エタン、α,α’−ビス−(9−ヒドロキシメチルフルオレン−9−イル)−1,4−キシレン、1,2−ビス(9−ヒドロキシメチルフルオレン−9−イル)ブタン、1−ビス(9−ヒドロキシメチルフルオレン−9−イル)エタン、1,2−ビス(9−ヒドロキシフルオレン−9−イル)エタン、ビス−{[4−(2−ヒドロキシエトキシ)フェニル]フルオレン−9−イル}エタンが好ましい。
また、単位(C)は、下記式(C3)で表されるエステル単位も好ましく用いられる。この場合、ポリエステルカーボネートとなる。
Figure 0006640465
上記式(C3)中、R〜R11、uおよびvは上記式(C2)と同義で、Xは脂肪族基または脂環式基を示す。
上記一般式(C3)を誘導する化合物の具体的例として、ビス[9−(2−エトキシカルボニルエチル)フルオレン−9−イル]メタン、1,2−ビス[9−(2−エトキシカルボニルエチル)フルオレン−9−イル]エタン、1,2−ビス[9−(2−メトキシカルボニルプロピル)フルオレン−9−イル]エタン、ビス[9−(2−メトキシカルボニルエチル)フルオレン−9−イル]メタン、ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン、1,2−ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]エタンが好ましい。
(組成)
本発明で使用されるポリカーボネート樹脂は、主たる繰り返し単位が単位(A)と単位(B)とを含み、それらのモル比(A/B)は5/95〜95/5である。モル比(A/B)が5/95〜95/5では、耐熱性が高くなり好ましい。単位(A)と単位(B)とのモル比(A/B)は、5/95〜85/15が好ましく、8/92〜80/20がより好ましい。この組成の範囲では、逆波長分散性となり好ましい。また、単位(C)を含むこともできる。モル比(A+B/C)は、30/70〜80/20が好ましい。モル比は、日本電子社製JNM−AL400のプロトンNMRにて測定し算出することができる。
主たる繰り返し単位とは、単位(A)及び単位(B)の合計が全繰り返し単位を基準として好ましくは30モル%以上であり、より好ましくは50モル%以上、さらに好ましくは60モル%以上である。
(他の単位)
その他の共重合構成単位を誘導するジオール化合物としては、芳香族ジヒドロキシ化合物が挙げられ、α,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼン(ビスフェノールM)、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、ビスフェノールA、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン(ビスフェノールC)、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン(ビスフェノールAF)、および1,1−ビス(4−ヒドロキシフェニル)デカンなどが挙げられる。
また、テレフタル酸などの酸成分を共重合することにより、一部ポリエステルカーボネートとすることもできる。
(比粘度:ηSP
本発明で使用されるポリカーボネート樹脂の比粘度(ηSP)は、0.20〜0.45である。比粘度が0.20〜0.45のとき強度及び成形加工性が良好となる。比粘度(ηSP)は、好ましくは0.25〜0.40であり、より好ましくは0.30〜0.35である。
本発明のポリカーボネート樹脂の比粘度が、0.2より小さいと射出成形した成形片の強度が低下し、他方0.45より大きいと射出成形の際の成形加工性が低下する。
本発明でいう比粘度は、20℃で塩化メチレン100mlにポリカーボネート樹脂0.7gを溶解した溶液からオストワルド粘度計を用いて求める。
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
なお、具体的な比粘度の測定としては、例えば次の要領で行うことができる。まず、ポリカーボネート樹脂をその20〜30倍重量の塩化メチレンに溶解し、可溶分をセライト濾過により採取した後、溶液を除去して十分に乾燥し、塩化メチレン可溶分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から20℃における比粘度を、オストワルド粘度計を用いて求める。
<ガラス転移温度:Tg>
本発明の光学フィルムに使用されるポリカーボネート樹脂のガラス転移温度(Tg)は、好ましくは70〜180℃、より好ましくは130〜175℃、さらに好ましくは135〜175℃、特に好ましくは140〜170℃の範囲である。ガラス転移温度(Tg)が70℃より低いと、耐熱安定性に劣り、位相差値が経時変化して表示品位に影響を与える場合がある。またガラス転移温度(Tg)が180℃より高いと溶融製膜しようとする場合、粘度が高すぎて困難となることがある。ガラス転移温度(Tg)はティー・エイ・インスツルメント・ジャパン(株)製2910型DSCを使用し、昇温速度20℃/minにて測定する。
<光弾性定数>
本発明の光学フィルムに使用されるポリカーボネート樹脂の光弾性定数は、好ましくは40×10−12Pa−1以下、より好ましくは30×10−12Pa−1以下、さらに好ましくは25×10−12Pa−1以下、特に好ましくは20×10−12Pa−1以下である。絶対値が40×10−12Pa−1より大きいと、応力による複屈折が大きく、位相差フィルムとして使用する場合に光抜けが起こり易くなる。光弾性定数はフィルムから長さ50mm、幅10mmの試験片を切り出し、日本分光(株)製 Spectroellipsometer M−220を使用し測定する。
(ポリカーボネート樹脂の製造方法)
ポリカーボネート樹脂は、単位(A)および単位(B)を誘導するモノマーを含む成分と炭酸ジエステルとを溶融重合して製造することができる。
炭酸ジエステルとしては、置換されてもよい炭素数6〜12のアリール基、アラルキル基等のエステルが挙げられる。具体的には、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネートおよびビス(m−クレジル)カーボネート等が挙げられる。これらの中でも特にジフェニルカーボネートが好ましい。
ジフェニルカーボネートの使用量は、モノマー成分の合計1モルに対して、好ましくは0.97〜1.10モル、より好ましは1.00〜1.06モルである。
また溶融重合法においては重合速度を速めるために、重合触媒を用いることができ、かかる重合触媒としては、アルカリ金属化合物、アルカリ土類金属化合物、含窒素化合物、金属化合物等が挙げられる。
このような化合物としては、アルカリ金属やアルカリ土類金属の、有機酸塩、無機塩、酸化物、水酸化物、水素化物、アルコキシド、4級アンモニウムヒドロキシド等が好ましく用いられ、これらの化合物は単独もしくは組み合わせて用いることができる。
アルカリ金属化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸セシウム、ステアリン酸リチウム、水素化ホウ素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸セシウム、安息香酸リチウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、フェニルリン酸2ナトリウム、ビスフェノールAの2ナトリウム塩、2カリウム塩、2セシウム塩、2リチウム塩、フェノールのナトリウム塩、カリウム塩、セシウム塩、リチウム塩等が挙げられる。
アルカリ土類金属化合物としては、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、二酢酸マグネシウム、二酢酸カルシウム、二酢酸ストロンチウム、二酢酸バリウム等が挙げられる。
含窒素化合物としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド等のアルキル、アリール基等を有する4級アンモニウムヒドロキシド類が挙げられる。また、トリエチルアミン、ジメチルベンジルアミン、トリフェニルアミン等の3級アミン類、2−メチルイミダゾール、2−フェニルイミダゾール、ベンゾイミダゾール等のイミダゾール類が挙げられる。また、アンモニア、テトラメチルアンモニウムボロハイドライド、テトラブチルアンモニウムボロハイドライド、テトラブチルアンモニウムテトラフェニルボレート、テトラフェニルアンモニウムテトラフェニルボレート等の塩基あるいは塩基性塩等が挙げられる。金属化合物としては亜鉛アルミニウム化合物、ゲルマニウム化合物、有機スズ化合物、アンチモン化合物、マンガン化合物、チタン化合物、ジルコニウム化合物等が挙げられる。これらの化合物は1種または2種以上併用してもよい。
これらの重合触媒の使用量は、モノマー成分1モルに対し好ましくは1×10−9〜1×10−2当量、好ましくは1×10−8〜1×10−5当量、より好ましくは1×10−7〜1×10−3当量の範囲で選ばれる。
溶融重縮合反応は、従来知られているように不活性ガス雰囲気下および減圧下で加熱しながら攪拌して生成するモノヒドロキシ化合物を留出させることで行なわれる。
反応温度は通常120〜350℃の範囲であり、反応後期には系の減圧度を10〜0.1Torrに高めて生成するモノヒドロキシ化合物の留出を容易にさせて反応を完結させる。必要に応じて末端停止剤、酸化防止剤等を加えてもよい。
また、反応後期に触媒失活剤を添加することもできる。使用する触媒失活剤としては、公知の触媒失活剤が有効に使用されるが、この中でもスルホン酸のアンモニウム塩、ホスホニウム塩が好ましい。更にドデシルベンゼンスルホン酸テトラブチルホスホニウム塩等のドデシルベンゼンスルホン酸の塩類、パラトルエンスルホン酸テトラブチルアンモニウム塩等のパラトルエンスルホン酸の塩類が好ましい。
またスルホン酸のエステルとして、ベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、ベンゼンスルホン酸ブチル、ベンゼンスルホン酸オクチル、ベンゼンスルホン酸フェニル、パラトルエンスルホン酸メチル、パラトルエンスルホン酸エチル、パラトルエンスルホン酸ブチル、パラトルエンスルホン酸オクチル、パラトルエンスルホン酸フェニル等が好ましく用いられる。その中でも、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩が最も好ましく使用される。これらの触媒失活剤の使用量はアルカリ金属化合物および/またはアルカリ土類金属化合物より選ばれた少なくとも1種の重合触媒を用いた場合、その触媒1モル当たり好ましくは0.5〜50モルの割合で、より好ましくは0.5〜10モルの割合で、更に好ましくは0.8〜5モルの割合で使用することができる。
また、用途や必要に応じて熱安定剤、可塑剤、光安定剤、重合金属不活性化剤、難燃剤、滑剤、帯電防止剤、界面活性剤、抗菌剤、紫外線吸収剤、離型剤等の添加剤を配合することができる。
<光学フィルム>
本発明の光学フィルムについて説明する。この光学フィルムとは、光学用途に使用されるフィルムである。具体的には、位相差フィルム、プラセル基板フィルム、偏光板保護フィルム、反射防止フィルム、輝度上昇フィルム、光ディスクの保護フィルム、拡散フィルム等が挙げられる。特に、位相差フィルム、偏光板保護フィルム、反射防止フィルムが好ましい。
光学フィルムの製造方法としては、例えば、溶液キャスト法、溶融押し出し法、熱プレス法、カレンダー法等公知の方法を挙げることが出来る。本発明の光学フィルムの製造法としては、溶液キャスト法、溶融押出法が好ましく、特に生産性の点から溶融押出法が好ましい。
溶融押出法においては、Tダイを用いて樹脂を押し出し冷却ロールに送る方法が好ましく用いられる。このときの温度はポリカーボネート共重合体の分子量、Tg、溶融流動特性等から決められるが、180〜350℃の範囲であり、200℃〜320℃の範囲がより好ましい。180℃より低いと粘度が高くなりポリマーの配向、応力歪みが残りやすく好ましくない。また、350℃より高いと熱劣化、着色、Tダイからのダイライン(筋)等の問題が起きやすい。
また本発明で用いるポリカーボネート樹脂は、有機溶媒に対する溶解性が良好なので、溶液キャスト法も適用することが出来る。溶液キャスト法の場合は、溶媒としては塩化メチレン、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン、ジオキソラン、ジオキサン等が好適に用いられる。溶液キャスト法で用いられるフィルム中の残留溶媒量は2重量%以下であることが好ましく、より好ましくは1重量%以下である。2重量%を超えると残留溶媒が多いとフィルムのガラス転移温度の低下が著しくなり耐熱性の点で好ましくない。
本発明の未延伸の光学フィルムの厚みとしては、20〜400μmの範囲が好ましく、より好ましくは20〜300μmの範囲である。かかるフィルムをさらに延伸して位相差フィルムとする場合には、光学フィルムの所望の位相差値、厚みを勘案して上記範囲内で適宜決めればよい。
かくして得られた未延伸の光学フィルムは延伸配向され位相差フィルムとなる。延伸方法は、縦一軸延伸、テンター等を用いる横一軸延伸、あるいはそれらを組み合わせた同時二軸延伸、逐次二軸延伸等公知の方法を用いることが出来る。また連続で行うことが生産性の点で好ましいが、バッチ式で行っても良い。延伸温度は、ポリカーボネート共重合体のガラス転移温度(Tg)に対して、好ましくは(Tg−20℃)〜(Tg+50℃)の範囲、より好ましくは(Tg−10℃)〜(Tg+30℃)の範囲である。この温度範囲であれば、ポリマーの分子運動が適度であり、延伸による緩和が起こり難く、配向抑制容易になり所望するRe値が得られ易いため好ましい。
延伸倍率は目的とする位相差値により決められるが、縦、横、それぞれ、1.05〜5倍、より好ましくは1.1〜4倍である。この延伸は一段で行ってもよく、多段で行ってもよい。なお、溶液キャスト法により得たフィルムを延伸する場合の上記Tgとは、該フィルム中の微量の溶媒を含むガラス転移温度を言う。
(厚み等)
本発明の光学フィルムの厚みは、好ましくは20〜200μm、より好ましくは20〜150μmの範囲である。この範囲であれば、延伸による所望する位相差値が得やすく、製膜も容易で好ましい。
本発明の光学フィルムは、これを構成するポリカーボネート樹脂の光弾性定数が低い。従って、応力に対する位相差の変化が少なく、かかる位相差フィルムを具備した液晶表示装置は表示安定性に優れたものとなる。
また、本発明の光学フィルムは透明性が高い。厚さ100μmの本発明の光学フィルムの全光線透過率が、好ましくは85%以上、より好ましくは88%以上である。また本発明の光学フィルムのヘイズ値は、好ましくは5%以下、より好ましくは3%以下である。
(波長分散性)
本発明で使用されるポリカーボネート樹脂を用いてなる未延伸フィルムを延伸することで、波長400〜800nmの可視光領域において、フィルム面内の位相差が短波長になるほど小さくなる逆波長分散性を示す光学フィルムを得ることができる。かかる延伸された位相差フィルムは、下記式(1)及び(2)の条件を満たすことが望ましい。
0.60 < R(450)/R(550)<1.00 (1)
1.01 < R(650)/R(550)<1.40 (2)
好ましくは、下記式(1−1)及び(2−1)の条件を満たす。
0.65<R(450)/R(550)<0.92 (1−1)
1.02<R(650)/R(550)<1.35 (2−1)
より好ましくは、下記式(1−2)及び(2−2)の条件を満たす。
0.70<R(450)/R(550)<0.90 (1−2)
1.03<R(650)/R(550)<1.30 (2−2)
さらに好ましくは、下記式(1−3)及び(2−3)の条件を満たす。
0.70<R(450)/R(550)<0.89 (1−3)
1.03<R(650)/R(550)<1.20 (2−3)
特に好ましくは、下記式(1−4)及び(2−4)の条件を満たす。
0.70<R(450)/R(550)<0.88 (1−4)
1.03<R(650)/R(550)<1.10 (2−4)
最も好ましくは、下記式(1−5)及び(2−5)の条件を満たす。
0.70<R(450)/R(550)<0.87 (1−5)
1.03<R(650)/R(550)<1.10 (2−5)
ここで面内の位相差値Rとは下記式で定義されるものであり、フィルムに垂直方向に透過する光のX方向とそれと垂直のY方向との位相の遅れを現す特性である。
R=(n−n)×d
但し、nはフィルム面内の主延伸方向の屈折率であり、nはフィルム面内の主延伸方向と垂直方向の屈折率であり、dはフィルムの厚みである。ここで、主延伸方向とは一軸延伸の場合には延伸方向、二軸延伸の場合にはより配向度があがるように延伸した方向を意味しており、化学構造的には高分子主鎖の配向方向を指す。
また、光学フィルムの波長550nmにおけるフィルム面内の位相差値R(550)は、R(550)≧50nmであることが好ましい。光学フィルムは積層することなく1枚で広帯域のλ/4板またはλ/2板として使用できる。かかる用途ではさらに、λ/4板の場合は100nm≦R(550)≦180nm、λ/2板の場合は220nm≦R(550)≦330nmであることが望ましい。
光学フィルムの波長分散性は、日本分光(株)製 Spectroellipsometer M−220を使用し測定される。
本発明の光学フィルムは、特に位相差フィルムとして好適に用いることができる。本発明は、上記位相差フィルムを具備した画像表示装置(液晶表示装置や有機EL表示装置)を包含する。本発明においては、上記位相差フィルムと偏光層とからなる円偏光フィルムとし、これを反射防止フィルムとして好適に使用できる。また、上記位相差フィルムは画像表示装置の偏光板保護フィルムや光学補償フィルムとして好適に使用できる。
以下、実施例により本発明を詳細に説明するが、本発明はこれに限定されるものではない。なお、実施例中「部」とは「重量部」を意味する。実施例において使用した使用樹脂および評価方法は以下のとおりである。
1.ポリマー組成比(NMR)
日本電子社製JNM−AL400のプロトンNMRにて測定し、ポリマー組成比を算出した。
2.比粘度
20℃で塩化メチレン100mlにポリカーボネート樹脂0.7gを溶解した溶液からオストワルド粘度計を用いて求めた。
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
3.Tg(ガラス転移温度)
ティー・エイ・インスツルメント・ジャパン(株)製2910型DSCを使用し、窒素雰囲気下、昇温速度20℃/minにて測定した。
4.光弾性定数
フィルムから長さ50mm、幅10mmの試験片を切り出し、日本分光(株)製 Spectroellipsometer M−220を使用し光弾性定数を測定した。
5.位相差、波長分散性
フィルムから長さ100mm、幅70mmの試験片を切り出し、Tg+10℃の延伸温度で2.0倍縦延伸し、得られたフィルムの中央部分を日本分光(株)製 Spectroellipsometer M−220を使用し位相差波長分散性を測定した。
6.熱ムラ評価
ポリビニルアルコールにヨウ素が吸着配向している偏光子フィルムを2枚のトリアセチルセルロースフィルムにより挟んだ構造で、その片面にアクリル系感圧接着剤層が設けられている直線偏光板を用意した。実施例で作成した延伸フィルムを積算照射量1500Jの条件でコロナ放電処理を施し、そのコロナ放電処理面を、前記直線偏光板へアクリル系感圧接着剤層側に45°の角度で張り合わせた。上記偏光板を2枚作成し、無アルカリガラス(コーニングジャパン社製、商品名:EAGLE2000)に粘着剤を介し図1に示したように貼り合わせた。構成した円偏光板を90℃240分保管した直後にバックライトを当てた時の透過光の光抜けを目視で評価し、光抜けのない場合は○、全体的に光抜けが見られる場合を×とした。
参考例1]
<ポリカーボネート共重合体の製造>
6,6´−ジヒドロキシ−3,3,3´,3´−テトラメチル−1,1´−スピロビインダン(以下“SBI”と省略することがある)72.5部、3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ(5.5)ウンデカン(以下SPGと略す)47.7部、ジフェニルカーボネート85.7部および触媒としてテトラメチルアンモニウムヒドロキシド1.8×10−2部と水酸化ナトリウム1.6×10−4部を窒素雰囲気下180℃に加熱し溶融させた。その後、30分かけて減圧度を13.4kPaに調整した。その後、20℃/hrの速度で260℃まで昇温を行い、10分間その温度で保持した後、1時間かけて減圧度を133Pa以下とした。合計6時間撹拌下で反応を行った。
反応終了後、触媒量の4倍モルのドデシルベンゼンスルホン酸テトラブチルホスホニウム塩を添加し、触媒を失活した後、反応槽の底より窒素加圧下吐出し、水槽で冷却しながら、ペレタイザーでカットしてペレットを得た。
<光学フィルムの製造>
次に、(株)テクノベル製15φ二軸押出混練機に幅150mm、リップ幅500μmのTダイとフィルム引取り装置を取り付け、得られたポリカーボネート共重合体を290℃で溶融押出しフィルム成形することにより透明な押出しフィルムを得た。評価結果を表1に記載した。
参考例2]
<ポリカーボネート共重合体樹脂の製造>
SBI60.4部、SPG59.6部を用いた他は、参考例1と全く同様の操作を行い、脂肪族芳香族ポリカーボネート共重合体を得た。
<光学フィルムの製造>
次に参考例1と同様にしてフィルムを作成した。評価結果を表1に記載した。
参考例3]
<ポリカーボネート共重合体樹脂の製造>
SBI48.3部、SPG71.5部を用いた他は、参考例1と全く同様の操作を行い、脂肪族芳香族ポリカーボネート共重合体を得た。
<光学フィルムの製造>
次に参考例1と同様にしてフィルムを作成した。評価結果を表1に記載した。
参考例4]
<ポリカーボネート共重合体樹脂の製造>
9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン(以下BPEFと略す)17.2部、SBI48.3部、SPG59.6部を用いた他は、参考例1と全く同様の操作を行い、脂肪族芳香族ポリカーボネート共重合体を得た。
<光学フィルムの製造>
次に参考例1と同様にしてフィルムを作成した。評価結果を表1に記載した。
参考例5]
<ポリカーボネート共重合体樹脂の製造>
9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下BCFと略す)44.5部、SBI12.1部、SPG71.5部を用いた他は、参考例1と全く同様の操作を行い、脂肪族芳香族ポリカーボネート共重合体を得た。
<光学フィルムの製造>
次に参考例1と同様にしてフィルムを作成した。評価結果を表1に記載した。
参考例6]
<ポリカーボネート共重合体樹脂の製造>
イソソルビド(以下ISSと略す)28.6部、SBI24.2部、BPEF44.5部を用いた他は、参考例1と全く同様の操作を行い、脂肪族芳香族ポリカーボネート共重合体を得た。
<光学フィルムの製造>
次に参考例1と同様にしてフィルムを作成した。評価結果を表1に記載した。
[実施例7]
<ポリカーボネート共重合体樹脂の製造>
スピロビクロマン(以下SBCと略す)80部、SPG22.9部を用いた他は、参考例1と全く同様の操作を行い、脂肪族芳香族ポリカーボネート共重合体を得た。
<光学フィルムの製造>
次に参考例1と同様にしてフィルムを作成した。評価結果を表1に記載した。
[比較例1]
<ポリカーボネート共重合体樹脂の製造>
BPEF86.0部、ISS28.6部を用いた他は、参考例1と全く同様の操作を行い、脂肪族芳香族ポリカーボネート共重合体を得た。
<光学フィルムの製造>
次に参考例1と同様にしてフィルムを作成した。評価結果を表1に記載した。熱ムラ評価を行った結果、光弾性係数起因の熱ムラによる色抜けが発生した。
[比較例2]
<ポリカーボネート共重合体樹脂の製造>
BCF50.4部、ISS37.8部を用いた他は、参考例1と全く同様の操作を行い、脂肪族芳香族ポリカーボネート共重合体を得た。
<光学フィルムの製造>
次に参考例1と同様にしてフィルムを作成したが、Tgが高すぎるため、樹脂が分解し、発泡が起こり、光学フィルムとしての品質を満たさなかった。
[比較例3]
<ポリカーボネート共重合体樹脂の製造>
BPEF86部、SPG59.6部を用いた他は、参考例1と全く同様の操作を行い、脂肪族芳香族ポリカーボネート共重合体を得た。
<光学フィルムの製造>
次に参考例1と同様にしてフィルムを作成した。評価結果を表1に記載した。熱ムラ評価を行った結果、耐熱性が低いため熱ムラによる色抜けが発生した。
Figure 0006640465
本発明の光学フィルムは、液晶表示装置用、有機ELディスプレイ用などの光学フィルムとして有用である。
1.偏光板
2.延伸フィルム
3.無機ガラス
4.延伸フィルム
5.偏光板

Claims (8)

  1. スピロビクロマンから誘導されるカーボネート単位(A)と、脂肪族ジオール化合物および/または脂環族ジオール化合物から誘導されるカーボネート単位(B)とを含み、さらに任意成分としてフルオレン骨格を有するジヒドロキシ化合物から誘導されるカーボネート単位(C)を含み、単位(A)と単位(B)とのモル比(A/B)が5/95〜95/5であり、単位(A)及び単位(B)の合計が全繰り返し単位を基準として60モル%以上であり、単位(C)の合計が全繰り返し単位を基準として40モル%以下であり、20℃の塩化メチレン溶液で測定された比粘度が0.20〜0.45であるポリカーボネート樹脂。
  2. ポリカーボネート樹脂のガラス転移温度が70℃〜180℃である請求項1記載のポリカーボネート樹脂。
  3. ポリカーボネート樹脂の光弾性定数が30×10−12Pa−1以下である請求項1記載のポリカーボネート樹脂。
  4. 請求項1〜3のいずれかに記載のポリカーボネート樹脂から形成される光学フィルム。
  5. 光学フィルムが溶融押出法により成形したものである請求項4記載の光学フィルム。
  6. 光学フィルムが、未延伸フィルムを延伸してなる位相差フィルムである請求項4記載の光学フィルム。
  7. 波長450nm、550nm、及び650nmにおけるフィルム面内の位相差値R(450)、R(550)、及びR(650)が、下記式(1)及び(2)を満たす請求項6記載の光学フィルム。
    0.60 ≦ R(450)/R(550)≦ 1.00 (1)
    1.01 ≦ R(650)/R(550)≦ 1.40 (2)
  8. 請求項7記載の光学フィルムを具備した液晶表示装置または有機EL表示装置。
JP2015084235A 2015-04-16 2015-04-16 ポリカーボネート樹脂および光学フィルム Active JP6640465B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015084235A JP6640465B2 (ja) 2015-04-16 2015-04-16 ポリカーボネート樹脂および光学フィルム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015084235A JP6640465B2 (ja) 2015-04-16 2015-04-16 ポリカーボネート樹脂および光学フィルム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019011321A Division JP6799623B2 (ja) 2019-01-25 2019-01-25 ポリカーボネート樹脂および光学フィルム

Publications (2)

Publication Number Publication Date
JP2016204430A JP2016204430A (ja) 2016-12-08
JP6640465B2 true JP6640465B2 (ja) 2020-02-05

Family

ID=57489193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015084235A Active JP6640465B2 (ja) 2015-04-16 2015-04-16 ポリカーボネート樹脂および光学フィルム

Country Status (1)

Country Link
JP (1) JP6640465B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107075099B (zh) 2014-10-28 2020-06-12 三菱化学株式会社 聚碳酸酯树脂、成型品及光学膜
JP6799623B2 (ja) * 2019-01-25 2020-12-16 帝人株式会社 ポリカーボネート樹脂および光学フィルム
CN115677999A (zh) * 2021-07-21 2023-02-03 华为技术有限公司 聚碳酸酯及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2828699B2 (ja) * 1989-11-21 1998-11-25 出光興産株式会社 高分子化合物及びそれよりなる光学成形品
JP3160209B2 (ja) * 1996-01-30 2001-04-25 帝人株式会社 オキサスピロウンデカン基を含有するポリカーボネート共重合体およびその製造法
JPH1171316A (ja) * 1996-07-31 1999-03-16 Mitsui Chem Inc 低複屈折性有機光学部品およびスピロビインダン系ポリマー
CN107075099B (zh) * 2014-10-28 2020-06-12 三菱化学株式会社 聚碳酸酯树脂、成型品及光学膜

Also Published As

Publication number Publication date
JP2016204430A (ja) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6231659B2 (ja) ポリカーボネート樹脂および光学フィルム
JP5119250B2 (ja) 光学フィルム
JP5241859B2 (ja) 光学フィルム
TWI466920B (zh) Optical film
JP5587617B2 (ja) 光弾性定数の低いポリカーボネート樹脂およびフィルム
JP6219734B2 (ja) ポリカーボネート樹脂および光学フィルム
JP2010134232A (ja) 光学フィルム
JP5079150B2 (ja) 位相差フィルム
JP6640465B2 (ja) ポリカーボネート樹脂および光学フィルム
JP5706071B2 (ja) 位相差フィルム
JP6475046B2 (ja) 熱可塑性樹脂フィルム
JP2020090677A (ja) ポリカーボネート樹脂および光学フィルム
JP2011079897A (ja) 光弾性定数が低いポリカーボネート樹脂および光学フィルム
JP5583987B2 (ja) 光弾性定数が低いポリカーボネート樹脂および光学フィルム
JP6799623B2 (ja) ポリカーボネート樹脂および光学フィルム
JP6890923B2 (ja) 多層体
JP2012256061A (ja) 位相差フィルムの製造方法
JP2011079898A (ja) 光弾性定数が低いポリカーボネート樹脂および光学フィルム
JP2011079899A (ja) 光弾性定数が低いポリカーボネート樹脂および光学フィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191226

R150 Certificate of patent or registration of utility model

Ref document number: 6640465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150