JPWO2016104318A1 - 回転電機制御装置 - Google Patents

回転電機制御装置 Download PDF

Info

Publication number
JPWO2016104318A1
JPWO2016104318A1 JP2016566169A JP2016566169A JPWO2016104318A1 JP WO2016104318 A1 JPWO2016104318 A1 JP WO2016104318A1 JP 2016566169 A JP2016566169 A JP 2016566169A JP 2016566169 A JP2016566169 A JP 2016566169A JP WO2016104318 A1 JPWO2016104318 A1 JP WO2016104318A1
Authority
JP
Japan
Prior art keywords
inverter
electrical machine
rotating electrical
control
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016566169A
Other languages
English (en)
Other versions
JP6418252B2 (ja
Inventor
スブラタ サハ
スブラタ サハ
豊 堀田
豊 堀田
恭士 中村
恭士 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Publication of JPWO2016104318A1 publication Critical patent/JPWO2016104318A1/ja
Application granted granted Critical
Publication of JP6418252B2 publication Critical patent/JP6418252B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

インバータ制御装置への電力供給が遮断されても、インバータを備えた回転電機駆動装置に適切にフェールセーフ制御を行う。第1直流電源2H及び交流の回転電機80に接続されて電力を変換するインバータ10を備えた回転電機駆動装置を制御対象とする回転電機制御装置1は、第2直流電源2Lから供給される電力によって動作し、インバータ10を構成するスイッチング素子3にスイッチング動作を行わせると共に、フェールセーフ制御を行うインバータ制御装置20を備える。回転電機制御装置1は、第2直流電源2Lからインバータ制御装置20へ供給される電力が低下した場合には、第1直流電源2Hを電力源とするバックアップ電源2Bからインバータ制御装置20へ電力を供給して、フェールセーフ制御を行う。

Description

本発明は、交流の回転電機を駆動制御する回転電機制御装置に関する。
例えば、電気自動車やハイブリッド自動車などにおいては、車輪を駆動する交流の回転電機と高圧直流電源との間に、直流と交流との間で電力を変換するインバータが備えられる。多くの場合、インバータは、高圧直流電源よりも低電圧の低圧直流電源から電力を供給されて動作するインバータ制御装置によってスイッチング制御される。尚、高圧直流電源とインバータとの間には、開閉装置(コンタクタ)が備えられている場合がある。コンタクタの接点が閉じていると導通状態となり、高圧直流電源とインバータ(及び回転電機)とが電気的に接続される。接点が開いていると非導通状態となり、高圧直流電源とインバータ(及び回転電機)との電気的接続が遮断される。
インバータに過電流や過電圧などが生じた場合、インバータ制御装置は、フェールセーフ制御を行って、インバータにスイッチング動作を行わせる。例えば、インバータ制御装置は、いくつかのスイッチング素子をオン状態にして回転電機とインバータとの間で電流が還流するように、アクティブショートサーキット制御(ゼロベクトルシーケンス制御(ZVS制御))を実行する。例えば、特開2011−55582号公報(特許文献2)には、インバータの上段側のスイッチング素子を全てオフ状態とし、下段側のスイッチング素子の何れか1つ以上をオン状態とする制御方法が開示されている(特許文献1:図2、第158、159、165段落等)。
但し、低圧直流電源も停止することがあり、低圧直流電源とインバータ制御装置との接続にも断線や、リレーなどの接続器の開放、或いは短絡などが生じる場合がある。このようなケースではインバータに対して上述したフェールセーフ動作を適切に行わせることができないおそれがある。
特開2011−55582号公報
上記背景に鑑みて、電源からインバータ制御装置への電力供給が遮断されても、インバータを備えた回転電機駆動装置にフェールセーフ制御を行って適切にインバータをスイッチング動作させることが望まれる。
上記に鑑みた、車両の車輪に駆動連結された交流の回転電機を駆動制御する回転電機制御装置の特徴的な構成は、
車両の車輪に駆動連結された交流の回転電機を駆動制御する回転電機制御装置であって、
第1直流電源に接続されると共に前記回転電機に接続されて前記第1直流電源の直流と前記回転電機の複数相の交流との間で電力を変換するインバータを備えた回転電機駆動装置を制御対象とし、前記第1直流電源とは異なる第2直流電源から供給される電力によって動作するインバータ制御装置と、
前記インバータの直流側の電圧である直流リンク電圧を平滑化する直流リンクコンデンサと、を備え、
前記インバータ及び前記直流リンクコンデンサは、開状態で電力の供給を遮断するコンタクタを介して前記第1直流電源に接続され、
前記インバータは、上段側スイッチング素子と下段側スイッチング素子との直列回路により交流1相分のアームが構成されていると共に、下段側から上段側へ向かう方向を順方向として各スイッチング素子に並列に接続されたフリーホイールダイオードを備え、
前記インバータ制御装置は、前記インバータを構成するスイッチング素子にスイッチング動作を行わせるものであり、
さらに、
前記第1直流電源を電力源として構成されたバックアップ電源と、
前記インバータ制御装置への電力の供給源を前記バックアップ電源へ切り換える切換制御回路と、を備え、
前記第2直流電源から前記インバータ制御装置へ供給される電力が予め規定された第1基準値以下となり、且つ、前記バックアップ電源から出力される電力が予め規定された第2基準値以上である場合に、
前記切換制御回路は、前記インバータ制御装置への電力の供給源を切り換え、
前記インバータ制御装置は、前記バックアップ電源から供給される電力によって、前記インバータにスイッチング動作を行わせてフェールセーフ制御する点にある。
バックアップ電源は、第2直流電源とは別の電源である第1直流電源を電力源として構成されているので、例えば第2直流電源や、第2直流電源の周囲の配線に断線等が生じた場合であっても、これらの状態に依存することなくインバータ制御装置へ電力を供給することができる。従って、第2直流電源からインバータ制御装置への電源供給が途切れても、インバータ制御装置は、フェールセーフ制御を行って、インバータにフェールセーフ動作(スイッチング動作)を行わせることができる。第2直流電源からの電源供給が途切れた場合に、インバータ制御装置がフェールセーフ制御を行えない構成であると、インバータ制御装置に代わってインバータにフェールセーフ動作(スイッチング動作)を行わせるために、例えばフェールセーフ回路を別途設ける必要が生じる可能性がある。しかし、本構成によれば、そのようなフェールセーフ回路を設けることなく、インバータ制御装置により、フェールセーフ動作(スイッチング動作)をインバータに行わせることができる。即ち、この構成によれば、電源からインバータ制御装置への電力供給が遮断されても、インバータを備えた回転電機駆動装置にフェールセーフ制御を行って適切にインバータをスイッチング動作させることができる。
回転電機制御装置のさらなる特徴と利点は、図面を参照して説明する実施形態についての以下の記載から明確となる。
回転電機制御装置のシステム構成を模式的に示す回路ブロック図 車両の駆動装置の構成を模式的に示すブロック図 シャットダウン及びコンタクタオープンの際のバッテリ電流及び直流リンク電圧の応答を模式的に示す波形図 回転速度とフェールセーフ制御との関係を示す図 フェールセーフ制御の状態遷移図 切換制御回路による切換判定の一例を示すフローチャート 回生電力及びバッテリ電流と回転速度との関係を示す図 モータ線間逆起電圧と回転速度との関係を示す図 コンタクタの開閉状態に応じた切替回転速度とフェールセーフ制御との関係を示す図 バックアップ電源及び下段側ゲート駆動電源の構成例を模式的に示す図 上段側ゲート駆動電源の構成例を模式的に示す図 異なる切替え条件でのフェールセーフ制御の状態遷移図
以下、本実施形態に係る回転電機制御装置について図面に基づいて説明する。図1に示すように、回転電機制御装置1は、インバータ10を備えた回転電機駆動装置を制御対象とするインバータ制御装置20を備えて構成されている。インバータ10は、第1直流電源としての高圧バッテリ2H(高圧直流電源)に接続されると共に、回転電機80に接続されて高圧バッテリ2Hの直流と回転電機80の複数相の交流(ここでは3相交流)との間で電力を変換する電力変換装置である。本実施形態では、インバータ10は、高圧バッテリ2Hにコンタクタ9を介して接続されている。インバータ制御装置20は、高圧バッテリ2Hとは異なる第2直流電源としての低圧バッテリ2L(低圧直流電源)に接続されており、低圧バッテリ2Lから供給される電力によって動作する。高圧バッテリ2H(第1直流電源)は、電源電圧が例えば200〜400[V]、低圧バッテリ2L(第2直流電源)は、電源電圧が例えば12〜24[V]程度である。本実施形態では、第2直流電源は、第1直流電源に比べて電源電圧が低い直流電源である。
インバータ制御装置20は、インバータ10を構成するスイッチング素子3にスイッチング動作を行わせると共に、回転電機駆動装置(インバータ10及びその周辺の電気系統)に過電流や過電圧などの好ましくない事象が生じた場合に、フェールセーフ制御を行って、インバータ10にフェールセーフ動作(スイッチング動作)を行わせる。本実施形態においては、インバータ制御装置20は、このフェールセーフ制御として、アクティブショートサーキット制御と、シャットダウン制御とを選択的に行い、インバータ10にフェールセーフ動作(スイッチング動作)を行わせる。
本実施形態において、回転電機80は、例えばハイブリッド自動車や電気自動車等の車両の駆動力源となる回転電機である。車両の車輪の駆動力源としての回転電機80は、複数相の交流(ここでは3相交流)により動作する回転電機であり、電動機としても発電機としても機能することができる。即ち、回転電機80は、インバータ10を介して高圧バッテリ2Hからの電力を動力に変換する(力行)。或いは、回転電機80は、図2を参照して後述する内燃機関70や車輪Wから伝達される回転駆動力を電力に変換し、インバータ10を介して高圧バッテリ2Hを充電する(回生)。
図2の模式図に示すように、本実施形態の回転電機80は、ハイブリッド自動車の駆動力源となる回転電機(MG:Motor/Generator)である。本実施形態では、いわゆるパラレル方式のハイブリッド駆動装置を備える車両を例示している。このハイブリッド駆動装置は、車両の駆動力源として内燃機関70及び回転電機80を備えている。内燃機関70は、燃料の燃焼により駆動される熱機関である。例えば、内燃機関70として、ガソリンエンジンやディーゼルエンジンなどの公知の各種内燃機関を用いることができる。内燃機関70と回転電機80とは、内燃機関分離クラッチ75を介して駆動連結されている。
また、ハイブリッド駆動装置は、変速装置90を備えている。ここで、変速装置90は、変速比の異なる複数の変速段を有する有段の自動変速装置である。例えば、変速装置90は、複数の変速段を形成するため、遊星歯車機構等の歯車機構及び複数の係合装置(クラッチやブレーキ等)を備えている。変速装置90の入力軸は回転電機80の出力軸(例えばロータ軸)に駆動連結されている。変速装置90の入力軸には、内燃機関70及び回転電機80の回転速度及びトルクが伝達される。変速装置90は、変速装置90に伝達された回転速度を、各変速段の変速比で変速すると共に、変速装置90に伝達されたトルクを変換して変速装置90の出力軸に伝達する。変速装置90の出力軸は、例えばディファレンシャルギヤ(出力用差動歯車装置)等を介して2つの車軸に分配され、各車軸に駆動連結された車輪Wに伝達される。ここで、変速比は、変速装置90において各変速段が形成された場合の、出力軸の回転速度に対する入力軸の回転速度の比である(=入力軸の回転速度/出力軸の回転速度)。また、入力軸から変速装置90に伝達されるトルクに、変速比を乗算したトルクが、出力軸に伝達されるトルクに相当する。
尚、ここで「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指す。具体的には、「駆動連結」とは、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。また、このような伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば摩擦係合装置や噛み合い式係合装置等が含まれていてもよい。従って、回転電機80は、車輪Wに駆動連結されているといえる。尚、図2では、内燃機関70を始動するためのスタータ装置や、各種オイルポンプ(電動式及び機械式)、変速装置90の制御装置等は、省略している。
再び図1を参照し、回転電機制御装置1のシステム構成について説明する。回転電機80を駆動するための電力源としての高圧バッテリ2Hは、例えば、ニッケル水素電池やリチウムイオン電池などの二次電池(バッテリ)や、電気二重層キャパシタなどにより構成されている。回転電機80に電力を供給する高圧バッテリ2Hは、大電圧大容量の直流電源である。高圧バッテリ2Hの定格の電源電圧は、例えば200〜400[V]である。
回転電機80は、交流の回転電機であるから、高圧バッテリ2Hと回転電機80との間には、上述したように、直流と交流(ここでは3相交流)との間で電力変換を行うインバータ10が備えられている。インバータ10の直流側の正極と負極との間の電圧は、以下“直流リンク電圧Vdc”と称する。高圧バッテリ2Hは、インバータ10を介して回転電機80に電力を供給可能であると共に、回転電機80が発電して得られた電力を蓄電可能である。インバータ10の直流側には、直流リンク電圧Vdcを平滑化する平滑コンデンサ(直流リンクコンデンサ4)が備えられている。直流リンクコンデンサ4は、回転電機80の消費電力の変動に応じて変動する直流電圧(直流リンク電圧Vdc)を安定化させる。
高圧バッテリ2Hのインバータ10の側には、コンタクタ9が備えられている。即ち、インバータ10及び直流リンクコンデンサ4は、後述するように開状態で電力の供給を遮断するコンタクタ9を介して高圧バッテリ2Hに接続されている。コンタクタ9は、回転電機駆動装置の電気回路系統(直流リンクコンデンサ4、インバータ10)と、高圧バッテリ2Hとの電気的な接続を切り離すことが可能である。
本実施形態において、このコンタクタ9は、車両の最も上位の制御装置の1つである車両制御ユニット(不図示)からの指令に基づいて開閉するメカニカルリレーであり、例えばシステムメインリレー(SMR:System Main Relay)と称される。コンタクタ9は、車両のイグニッションキー(IGキー)がオン状態(有効状態)の際にSMRの接点が閉じて導通状態(接続状態)となり、IGキーがオフ状態(非有効状態)の際にSMRの接点が開いて非導通状態(開放状態)となる。コンタクタ9が接続状態(閉状態)において高圧バッテリ2Hとインバータ10(及び回転電機80)とが電気的に接続され、コンタクタ9が開放状態(開状態)において高圧バッテリ2Hとインバータ10(及び回転電機80)との電気的接続が遮断される。
上述したように、インバータ10は、直流リンク電圧Vdcを有する直流電力を複数相(nを自然数としてn相、ここでは3相)の交流電力に変換して回転電機80に供給すると共に、回転電機80が発電した交流電力を直流電力に変換して直流電源に供給する。インバータ10は、複数のスイッチング素子3を有して構成される。スイッチング素子3には、IGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やSiC−MOSFET(Silicon Carbide - Metal Oxide Semiconductor FET)やSiC−SIT(SiC - Static Induction Transistor)、GaN−MOSFET(Gallium Nitride - MOSFET)などの高周波での動作が可能なパワー半導体素子を適用すると好適である。図1に示すように、本実施形態では、スイッチング素子3としてIGBTが用いられる。
インバータ10は、よく知られているように複数相のそれぞれに対応する数のアームを有するブリッジ回路により構成される。インバータ10は、交流1相分のアームが上段側スイッチング素子31と下段側スイッチング素子32との直列回路により構成されている。具体的には、図1に示すように、インバータ10の直流正極側と直流負極側との間に2つのスイッチング素子3が直列に接続されて1つのアームが構成される。3相交流の場合には、この直列回路(1つのアーム)が3回線(3相)並列接続される。つまり、回転電機80のU相、V相、W相に対応するステータコイル8のそれぞれに一組の直列回路(アーム)が対応したブリッジ回路が構成される。
対となる各相のスイッチング素子3による直列回路(アーム)の中間点、つまり、正極側のスイッチング素子3(上段側スイッチング素子31)と負極側のスイッチング素子3(下段側スイッチング素子32)との接続点は、回転電機80の3相のステータコイル8にそれぞれ接続される。尚、各スイッチング素子3には、負極から正極へ向かう方向(下段側から上段側へ向かう方向)を順方向として、並列にダイオード5(フリーホイールダイオード)が備えられている。
図1に示すように、インバータ10は、インバータ制御装置20により制御される。インバータ制御装置20は、マイクロコンピュータやDSP(Digital Signal Processor)等のプロセッサを中核部材として構築されている。マイクロコンピュータやDSPなどの動作電圧は、一般的に3.3[V]や5[V]である。従って、インバータ制御装置20へは、低圧バッテリ2L(正極B−グラウンド:12〜24[V])から、レギュレータ回路などにより構成された電源回路(制御装置駆動電源6)を介して電力が供給される。
インバータ制御装置20は、車両の運行を制御する車両制御ユニット等の他の制御装置等からCAN(Controller Area Network)などを介して要求信号として提供される回転電機80の目標トルクTMに基づいて、ベクトル制御法を用いた電流フィードバック制御を行って、インバータ10を介して回転電機80を制御する。具体的には、インバータ制御装置20は、インバータ10のスイッチング素子3を駆動する駆動信号(スイッチング制御信号)を生成する。スイッチング素子3がIGBTやFETである場合、これらの制御端子はゲート端子であるので、本実施形態では制御端子に入力される駆動信号をゲート駆動信号(スイッチング制御信号)と称する。
回転電機80の各相のステータコイル8を流れる実電流は電流センサ12により検出され、インバータ制御装置20はその検出結果を取得する。また、回転電機80のロータの各時点での磁極位置は、例えばレゾルバなどの回転センサ13により検出され、インバータ制御装置20はその検出結果を取得する。インバータ制御装置20は、電流センサ12及び回転センサ13の検出結果を用いて、電流フィードバック制御を実行する。インバータ制御装置20は、電流フィードバック制御のために種々の機能部を有して構成されており、各機能部は、マイクロコンピュータやDSP等のハードウェアとソフトウエア(プログラム)との協働により実現される。電流フィードバック制御については、公知であるのでここでは詳細な説明は省略する。
ところで、インバータ10を構成する各スイッチング素子3の制御端子(例えばIGBTのゲート端子)は、ゲート駆動回路30(ドライバ回路)を介してインバータ制御装置20に接続されており、それぞれ個別にスイッチング制御される。上述したように、インバータ制御装置20は、マイクロコンピュータなどを中核として構成され、低圧バッテリ2Lから電力を供給される低電圧系回路である。一方、インバータ10は、高圧バッテリ2Hに接続され、高電圧で動作する高電圧系回路である。本実施形態のような高電圧系回路に属するインバータ10を構成するパワースイッチング素子の制御端子(例えばゲート端子)には、一般的に12〜18[V]程度の振幅を有する駆動信号(ゲート駆動信号)を与える必要がある。一方、上述したように、ゲート駆動信号を生成するインバータ制御装置20の動作電圧は、12[V]未満(例えば3.3[V]や5[V])であるから、必要な振幅を有するゲート駆動信号をインバータ10に提供することができない。
このため、回転電機駆動装置には、各スイッチング素子3に対するスイッチング制御信号(例えばゲート駆動信号)を増強して、つまり電気的な駆動能力(例えば電圧振幅や出力電流など、後段の回路を動作させる能力)をそれぞれ高めて中継するゲート駆動回路30が備えられている。低電圧系回路のインバータ制御装置20により生成されたスイッチング制御信号は、ゲート駆動回路30を介して高電圧系回路のスイッチング制御信号としてインバータ10に供給される。本実施形態において、低圧バッテリ2Lと高圧バッテリ2Hとは、互いに絶縁されており、互いにフローティングの関係にある。つまり、低電圧系回路と高電圧系回路とは互いに絶縁されているため、ゲート駆動回路30とインバータ制御装置20とは、例えばフォトカプラや信号伝送用の小型トランスなどの絶縁部品ISを介して接続されている。つまり、低電圧系回路に属するインバータ制御装置20において生成されたゲート駆動信号は、絶縁部品ISによって、低電圧系回路と高電圧系回路との絶縁が保たれた状態で、インバータ制御装置20からゲート駆動回路30へ伝送される。そして、ゲート駆動回路30によりゲート駆動信号の電気的な駆動能力が増強されて、高電圧系回路に属するインバータ10のスイッチング素子3が駆動制御される。
回転電機制御装置1には、これらのゲート駆動回路30にそれぞれ電力を供給する駆動回路用電源(51,52)が備えられている。駆動回路用電源(51,52)は、例えば、一次側コイルと二次側コイルとの間を電磁結合して信号やエネルギーを伝送するトランスにより構成されている。従って、駆動回路用電源(51,52)の電力源が、高圧バッテリ2H及び低圧バッテリ2Lの何れであっても、低電圧系回路と高電圧系回路との絶縁を保って、ゲート駆動回路30などへ電力を供給することができる。本実施形態では、駆動回路用電源(51,52)として、上段側スイッチング素子31にゲート駆動信号を中継するゲート駆動回路30に電力を供給する上段側ゲート駆動電源51(上段側駆動回路用電源)、及び、下段側スイッチング素子32にゲート駆動信号を中継するゲート駆動回路30に電力を供給する下段側ゲート駆動電源52(下段側駆動回路用電源)が備えられている形態を例示している。
ところで、車両、回転電機80、変速装置90、インバータ10等に過電流や過電圧などの何らかの好ましくない事象が生じた場合、少なくともインバータ10を含む回転電機駆動装置にそのような事象が生じた場合、インバータ制御装置20は、回転電機80の動作を制限すべく、フェールセーフ制御を実施して、インバータ10にフェールセーフ動作を行わせる。インバータ制御装置20は、インバータ制御装置20が直接、検出情報を取得した場合の他、車両制御ユニットなど、他の制御装置からのフェールセーフ制御要求に応じてフェールセーフ制御を実行して、インバータ10にフェールセーフ動作を行わせる。
フェールセーフ制御としては、例えばシャットダウン制御(SD)が知られている。シャットダウン制御とは、インバータ10を構成する全てのスイッチング素子3へのスイッチング制御信号を非アクティブ状態に変化させてインバータ10をオフ状態にする制御である。インバータ10は、シャットダウン制御により、全てのスイッチング素子3がオフ状態となる。この時、回転電機80のロータは慣性によって回転を続けており、大きな逆起電力が生じる。ロータが高速回転している際には、モータ線間逆起電圧(Vbemf)が直流リンク電圧Vdcよりも非常に大きくなる。尚、ロータの回転によって生成された電力は、ダイオード5を介して整流され、閉状態のコンタクタ9を通って高圧バッテリ2Hを充電する。図3の上段の波形図に示すように、例えば、時刻tsdにおいてシャットダウン制御が開始されると、バッテリ電流Ib(高圧バッテリ2Hに流れる電流)の絶対値が大きく増加する。このバッテリ電流Ibが高圧バッテリ2Hの定格電流を超えると、高圧バッテリ2Hの消耗や破損の原因となる。大きなバッテリ電流Ibに耐えられるように高圧バッテリ2Hの定格値を高くすると、規模の増大やコストの増大を招く可能性がある。
ここで、コンタクタ9を開放すると、高圧バッテリ2Hへの電流の流入は遮断される。
図3の上段の波形図に示すように、バッテリ電流Ibはゼロとなる。高圧バッテリ2Hへの流入を遮断された電流は、直流リンクコンデンサ4を充電し、直流リンク電圧Vdcを上昇させる。図3の下段の波形図に示すように、例えば、時刻topenにおいてコンタクタ9が開状態となると、直流リンク電圧Vdcは急激に上昇する。直流リンク電圧Vdcがインバータ10(スイッチング素子3)や、直流リンクコンデンサ4の定格電圧(絶対最大定格)を超えると、これらを損傷させる可能性がある。高い電圧を許容するようにこれらの定格値を高くすると、規模の増大やコストの上昇を招く可能性がある。
従って、インバータ10を備えた回転電機駆動装置に過電流や過電圧などの事象が生じた場合に、高圧バッテリ2Hを充電する際のバッテリ電流Ibや直流リンク電圧Vdcの過大な増加を抑制しつつ、フェールセーフ制御を実行することが望まれる。本実施形態では、このような背景に鑑みて、インバータ制御装置20が、効果的なフェールセーフ制御を実行する。つまり、インバータ制御装置20は、インバータ10に効果的なフェールセーフ動作を行わせる。
インバータ制御装置20は、フェールセーフ制御として、シャットダウン制御(SD)と、アクティブショートサーキット制御(ASC)とを選択的に実行する。つまり、インバータ制御装置20は、インバータ10に、フェールセーフ動作として、シャットダウン動作とアクティブショートサーキット動作とを選択的に行わせる。上述したように、シャットダウン制御とは、インバータ10の全てのスイッチング素子3をオフ状態とする制御である。インバータ10は、シャットダウン動作により、全てのスイッチング素子3がオフ状態となる。アクティブショートサーキット制御とは、回転電機80とインバータ10との間で電流を還流させる制御である。具体的には、アクティブショートサーキット制御は、複数相全てのアームの上段側スイッチング素子31或いは複数相全てのアームの下段側スイッチング素子32の何れか一方側をオン状態とし、他方側をオフ状態とする制御である。インバータ10は、アクティブショートサーキット動作により、複数相全てのアームの上段側スイッチング素子31或いは複数相全てのアームの下段側スイッチング素子32の何れか一方側がオン状態となり、他方側がオフ状態となる。尚、複数相全てのアームの上段側スイッチング素子31をオン状態とし、複数相全てのアームの下段側スイッチング素子32をオフ状態とする場合を上段側アクティブショートサーキット制御(上段側アクティブショートサーキット動作)と称する。また、複数相全てのアームの下段側スイッチング素子32をオン状態とし、複数相全てのアームの上段側スイッチング素子31をオフ状態とする場合を下段側アクティブショートサーキット制御(下段側アクティブショートサーキット動作)と称する。
本実施形態では、インバータ制御装置20は、少なくとも回転電機80の回転速度に応じて、回転電機80の回転速度ωが予め規定された切替回転速度ωsw以上である高回転速度領域ではアクティブショートサーキット制御(ASC)を実行してインバータ10にアクティブショートサーキット動作(ASC)を行わせ、高回転速度領域よりも低回転速度側の低回転速度領域ではシャットダウン制御(SD)を実行してインバータ10にシャットダウン動作を行わせる。図4は、回転電機80の回転速度ωとトルクとの関係を示すトルクマップを例示し、トルクマップ上において回転速度ωとフェールセーフ制御との関係を示している。切替回転速度ωswは、例えば、シャットダウン制御の実行(シャットダウン動作)を許容する最大回転速度(SD最大回転速度ωsd)である。上述したように、回転速度がこの切替回転速度ωsw以上の領域(或いは切替回転速度ωswよりも高い領域)は、高回転速度領域である。高回転速度領域よりも低回転速度側の領域、つまり、回転速度が切替回転速度ωswより低い領域(或いは切替回転速度ωsw以下の領域)は、低回転速度領域である。尚、「以上/以下」、「より高い/より低い(未満)」等の境界条件は適宜設定可能であり、フェールセーフ制御(フェールセーフ動作)を限定するものではない。以下の説明において他の境界を示す場合も同様である。
また、インバータ制御装置20は、シャットダウン制御の実行中にも、回転電機80の回転速度に応じて、シャットダウン制御の制御方式を切り替える。具体的には、インバータ制御装置20は、シャットダウン制御中(インバータ10によるシャットダウン動作中)に、回転電機80の回転速度ωが高回転速度領域まで上昇した場合には、フェールセーフ制御をアクティブショートサーキット制御に切り替える。一方、インバータ制御装置20は、アクティブショートサーキット制御中(インバータ10によるアクティブショートサーキット動作中)に、回転電機80の回転速度ωが低回転速度領域まで低下した場合には、フェールセーフ制御をシャットダウン制御に切り替える。従って、切替回転速度ωswは、フェールセーフ制御(インバータ10によるフェールセーフ動作)の方式を切り替える速度ということができる。尚、切替回転速度ωswは、切り替え前のフェールセーフ制御の種別(方式)に応じて異なる値とすることができる。例えば、本実施形態では、最初にフェールセーフ制御の種別(方式)を決定する際、及びアクティブショートサーキット制御中にシャットダウン制御に切り替える際には、上述した切替回転速度ωswに基づいてフェールセーフ制御が切り替えられる。一方、シャットダウン制御中に、アクティブショート制御に遷移させる際には、切替回転速度ωswよりもΔωだけ低いシフト切替回転速度ωswr(=ωsw−Δω)に基づいてフェールセーフ制御が切り替えられる。つまり、この切替回転速度(ωswr)以上の領域が低回転速度領域に対応する。
ここで、図5の状態遷移図も参照して、フェールセーフ制御の状態遷移について説明する。図中の通常制御は、車両、回転電機80、変速装置90、インバータ10等に過電流や過電圧などの事象が生じておらず、通常制御によりインバータ10が動作している状態(通常動作の状態)を示している。この通常制御中に、上述した装置に何らかの好ましくない事象が生じた場合、そのような事象が発生したという情報“fail”がインバータ制御装置20に伝達される(#1)。インバータ制御装置20は、この情報“fail”に応答して、回転電機80の回転速度に基づき、フェールセーフ制御の種別を判定する(インバータ10に行わせるフェールセーフ動作の種別を判定する)。回転速度ωが、切替回転速度ωswであるSD最大回転速度ωsdよりも高い場合には、アクティブショートサーキット制御(ASC)が選択される(#2a)。一方、回転速度ωが、切替回転速度ωsw(SD最大回転速度ωsd)よりも低い場合には、シャットダウン制御(SD)が選択される(#2s)。つまり、フェールセーフ制御の開始に際しては、切替回転速度ωsw(SD最大回転速度ωsd)を基準として、高回転速度側が高回転速度領域、低回転速度側が低回転速度領域である。
アクティブショートサーキット制御(ASC)中に、回転速度ωが切替回転速度ωsw(SD最大回転速度ωsd)を下回ると、フェールセーフ制御がシャットダウン制御(SD)に切り替わる(#3)。また、シャットダウン制御(SD)中に、回転速度ωが切替回転速度ωswよりもΔωだけ低いシフト切替回転速度ωswrよりも高くなると、フェールセーフ制御がアクティブショートサーキット制御(ASC)に切り替わる(#4)。
この場合には、このシフト切替回転速度ωswrを基準として、高回転速度側が高回転速度領域、低回転速度側が低回転速度領域となる。尚、フェールセーフ制御中に、回転速度ωが高くなるケースとしては、坂道や段差を下ることによって車輪Wの回転速度が上昇し、その回転速度の上昇が回転電機80に伝達された場合などが想定される。
インバータ10がフェールセーフ動作を続けていると、基本的には次第に回転電機80の回転速度が低下してくる。従って、インバータ10の動作はシャットダウン動作(SD)に収束していく。インバータ10のシャットダウン動作(SD)中に回転速度ωがゼロとなると、インバータ制御装置20は、回転電機80が安全に停止したことを上位の制御装置である車両制御ユニットに伝達する。車両制御ユニットは、車両のイグニッションキー(IGキー)をオフ状態とする(#5:IG−OFF)。或いは、車両制御ユニットは、乗員に対してイグニッションキーの操作を促す報知を行い、乗員によってイグニッションキーがオフ状態に操作される。
上述したように、車両、回転電機80、変速装置90、インバータ10等に過電流や過電圧などの事象が生じた場合、インバータ制御装置20はインバータ10にフェールセーフ動作を行わせるように制御する(フェールセーフ制御)。このような事象が生じる原因には、車両の衝突なども含まれる。そして、車両が衝突した場合には、衝突の衝撃により、車両内の回路に断線が生じる可能性もある。この際、低圧バッテリ2Lが故障したり、低圧バッテリ2Lとインバータ制御装置20との間の配線に断線が生じたりすると、インバータ制御装置20はインバータ10を制御することができなくなる。即ち、インバータ制御装置20は、回転電機駆動装置などに過電流や過電圧などが生じていても、フェールセーフ制御ができない可能性がある。
図1に示すように、本実施形態では、そのような場合においても、インバータ制御装置20へ電力を供給できるように、高圧バッテリ2Hを電力源として構成されたバックアップ電源2Bが備えられている。低圧バッテリ2Lとインバータ制御装置20との間の配線に断線等がない場合には、上述したように、インバータ制御装置20へは、制御装置駆動電源6から電力が供給されている。低圧バッテリ2Lからインバータ制御装置20への電力の供給が遮断された場合には、電源切換スイッチ7によって、バックアップ電源2Bからインバータ制御装置20へ電力を供給するように電力供給経路が切り替えられる。具体的には、低圧バッテリ2Lからインバータ制御装置20へ供給される電力(電圧)が予め規定された基準値(第1基準値)以下となった場合には、電力供給経路を切り替えて、バックアップ電源2Bからインバータ制御装置20へ電力を供給するように電力供給経路が切り替えられる。ここでは、低圧バッテリ2Lからインバータ制御装置20へ供給される電力が予め規定された基準値以下となった状態を、低圧電源低下状態(第2電源低下状態)と称する。低圧電源低下状態であるか否かの判定は、切換制御回路71によって行われる。従って、切換制御回路71も含めて電源切換スイッチ7として機能するということができる。
尚、低圧電源低下状態であるか否かを判定するための基準値(後述する第1基準値にも相当する)は、インバータ制御装置20の推奨動作条件における定格電圧の下限値(min.値)とすることができる。この場合、切換制御回路71が低圧電源低下状態であるか否かの判定を行う対象部位は、制御装置駆動電源6の出力電圧とすると好適である。また、別の態様として、低圧電源低下状態であるか否かの判定を行う対象部位は、図1に破線で示すように、低圧バッテリ2Lの端子間電圧や、制御装置駆動電源6の入力側端子間電圧であっても好適である。即ち、インバータ制御装置20が動作するために必要な電力を、制御装置駆動電源6が出力できなくなる前に、低圧電源低下状態であることが判定されて、電源供給経路が切り替えられると、インバータ制御装置20が途切れることなく動作を継続することができる。この場合、基準値は、例えば、制御装置駆動電源6を構成するレギュレータ回路の電気的特性に応じて、例えば3〜8[V]程度に設定することができる。
インバータ制御装置20は、低圧バッテリ2L(第2直流電源)からインバータ制御装置20へ供給される電力が予め規定された基準値以下となった場合(低圧電源低下状態(第2電源低下状態)となった場合)、高圧バッテリ2H(第2直流電源)を電力源として構成されたバックアップ電源2Bからインバータ制御装置20へ電力を供給して、インバータ制御装置20にフェールセーフ制御を行わせる(インバータ10にフェールセーフ動作を行わせる)。尚、この際、コンタクタ9が開状態であると、バックアップ電源2Bと高圧バッテリ2Hとの接続も遮断される。しかし、バックアップ電源2Bは、直流リンクコンデンサ4に充電された電荷を電力源とすることができる。従って、バックアップ電源2Bは、高圧バッテリ2H及び直流リンクコンデンサ4を電力源として構成されているということができる。バックアップ電源2Bの具体的な構成例については、図11を参照して後述する。
但し、直流リンクコンデンサ4が充分に充電されていないような場合には、バックアップ電源2Bは、インバータ制御装置20にフェールセーフ制御を行わせるために充分な電力を提供できないおそれがある。従って、本実施形態では、切換制御回路71は、バックアップ電源2Bから出力される電力(電圧)が、インバータ制御装置20の動作に対して充分であるか否かを判定した後に、インバータ制御装置20への電力の供給源を切り換える。即ち、本実施形態では、図6を参照して後述するように、切換制御回路71は、低圧バッテリ2Lからインバータ制御装置20へ供給される電力(電圧)が予め規定された第1基準値以下となり、且つ、バックアップ電源2Bから出力される電力が予め規定された第2基準値以上である場合に、インバータ制御装置20への電力の供給源を切り換える。
切換制御回路71が、図1に実線で示すように、制御装置駆動電源6の出力と第1基準値との比較、及びバックアップ電源2Bの出力と第2基準値との比較に基づいて、判定する場合、「第1基準値<第2基準値」であると好適である。例えば、第1基準値は、インバータ制御装置20の推奨動作条件における定格電圧の下限値(min.値)とし、第2基準値は、当該定格電圧の標準値(typ.値)とすることができる。当然ながら、第1基準値及び第2基準値が、共に当該定格電圧の標準値(typ.値)であるなど、「第1基準値=第2基準値」であってもよい。即ち、第1基準値及び第2基準値は、「第1基準値≦第2基準値」であると好適である。
また、第2基準値は、固定値ではなく、変動値であってもよい。例えば、第2基準値は、制御装置駆動電源6の出力電圧であると好適である。切換えが必要となるのは、制御装置駆動電源6の出力電圧が、低下して低圧電源低下状態(第2電源低下状態)となった場合である。この場合において、制御装置駆動電源6に代わってインバータ制御装置20に電力を供給するためには、低圧電源低下状態での制御装置駆動電源6の出力電圧よりも高い電圧が必要である。第2基準値が制御装置駆動電源6の出力電圧であると、制御装置駆動電源6の出力電圧よりも高い電圧を有する状態で電力源を切換えることができる。
また、上述したように、切換制御回路71が判定を行う対象部位は、図1に破線で示すように、低圧バッテリ2Lの端子間電圧や、制御装置駆動電源6の入力側端子間電圧であってもよい。低圧バッテリ2Lの端子間電圧や、制御装置駆動電源6の入力側端子間電圧は、制御装置駆動電源6の出力電圧よりも高い電圧である。従って、この場合には、「第1基準値<第2基準値」となる。例えば、第1基準値は、制御装置駆動電源6の推奨動作条件における定格電圧の下限値(min.値)とすることができる。第2基準値は、インバータ制御装置20の推奨動作条件における定格電圧の標準値(typ.値)或いは下限値(min.値)とすることができる。
図6に示すように、まず、切換制御回路71により、低圧バッテリ2Lからインバータ制御装置20へ供給される電力(電圧)が予め規定された第1基準値以下であるか否かが判定される(#10)。低圧バッテリ2Lからインバータ制御装置20へ供給される電力(電圧)が第1基準値以下の場合には、切換制御回路71により、バックアップ電源2Bから出力される電力が予め規定された第2基準値以上であるか否かが判定される(#20)。バックアップ電源2Bから出力される電力が第2基準値以上の場合には、切換制御回路71により、インバータ制御装置20への電力の供給源が、低圧バッテリ2L(制御装置駆動電源6)からバックアップ電源2Bへ切換えられる(#30)。インバータ制御装置20は、安定した電力の供給を受けて、フェールセーフ制御を実行する(#40)。尚、ステップ#30を省略し、第1基準値に基づく判定のみによってインバータ制御装置20への電力の供給源を切り換えることを妨げるものではない。
ところで、図4及び図5を参照して上述したように、フェールセーフ制御に際しては、切替回転速度ωswが設定され、その切替回転速度ωswを基準として、制御の種別が切り替えられる。本実施形態において、インバータ制御装置20によるフェールセーフ制御の切り替えは、コンタクタ9が開状態の場合と閉状態の場合とで、異なる回転速度を切替回転速度ωswとして行われる。図3を参照して上述したように、シャットダウン制御においては、以下の2つの点に留意する必要がある。1点目は、コンタクタ9が閉状態におけるバッテリ電流Ibの大きさであり、2点目は、コンタクタ9が開状態における直流リンク電圧Vdcの上昇である。従って、切替回転速度ωswとしてのSD最大回転速度ωsdは、これら2点を考慮して設定されると好適である。
1点目に鑑みると、切替回転速度ωswとなるSD最大回転速度ωsdは、コンタクタ9が閉状態の場合には、回転電機80の回転速度に応じた回生電力、及び充電可能な電源装置である高圧バッテリ2Hを流れるバッテリ電流Ib(充電電流)が、高圧バッテリ2Hの電圧に応じて許容される最大定格値よりも小さくなる回転速度に設定されていると好ましい。尚、本実施形態において、コンタクタ9が閉状態の場合には、高圧バッテリ2Hの電圧と直流リンク電圧Vdcとは、ほぼ等価である。また、バッテリ電流Ib(充電電流)の最大定格値は、例えば高圧バッテリ2Hの端子間電圧(バッテリ電圧)が定格範囲内の下限値である場合に、高圧バッテリ2Hに流れる電流の値とすることができる。
図7は、回転速度ωとバッテリ電流Ib(I1,I2)との関係、及び回転速度ωと回生電力(P1,P2)との関係を示している。図中において実線I1,I2は、バッテリ電流Ibを示しており、一点鎖線P1,P2は回生電力を示している。I2及びP2は、バッテリ電圧が、高圧バッテリ2Hの定格範囲内の上限値である場合におけるバッテリ電流(I2)及び回生電力(P2)を示している。I1及びP1は、バッテリ電圧が、高圧バッテリ2Hの定格範囲内の下限値である場合におけるバッテリ電流(I1)及び回生電力(P1)を示している。バッテリ電圧が低い方が、よりバッテリ電流Ibが流入し易く、より低回転速度域において高いバッテリ電流Ibが流れていることがわかる。よって、バッテリ電圧が、高圧バッテリ2Hの定格範囲内の下限値である場合に、バッテリ電流Ibが許容される最大定格値(Ibth)よりも小さくなる回転速度(ωsd1)に、SD最大回転速度ωsdが設定されると好適である。
尚、ここでは、バッテリ電流Ibが許容される最大定格値(Ibth)を基準として、SD最大回転速度ωsd(ωsd1)が設定される形態を例示したが、回生電力が許容される最大定格値(不図示)を基準として、SD最大回転速度ωsdが設定されてもよい。
当然ながら、両基準に基づく回転速度の内、何れか低い方の回転速度がSD最大回転速度ωsdとして設定されると好適である。
2点目(コンタクタ9が開状態における直流リンク電圧Vdcの上昇)に鑑みると、切替回転速度ωswとなるSD最大回転速度ωsdは、コンタクタ9が開状態の場合に、複数相(ここでは3相)の線間における逆起電力のピーク値が、回転電機駆動装置において許容される最大定格電圧よりも小さくなる回転速度に設定されていると好ましい。図8は、図4のトルクマップの部分拡大図において、回転速度ωとモータ線間逆起電圧Vbemfとの関係を示している。尚、図8は、単純に回転速度ωとモータ線間逆起電圧Vbemfとの関係を示しており、コンタクタ9の開閉状態は無関係である。また、コンタクタ9の開閉状態の判定は、例えば、車両制御ユニットからの通信に基づいて実施されても良いし、直流リンク電圧Vdcを検出する電圧センサ14の検出結果に基づいて実施されても良い。また、開閉状態の判定は、バッテリ電流センサ15により検出された高圧バッテリ2Hの電流(バッテリ電流Ib)の急激な変化に基づいて行われてもよい。
図中において電圧“Vmax”は、回転電機駆動装置において許容される最大定格電圧、つまり、直流リンクコンデンサ4、インバータ10(スイッチング素子3)の最大定格電圧の内、最も小さい電圧の値を示している。コンタクタ9が開状態の場合には、モータ線間逆起電圧Vbemfがほぼそのままインバータ10の直流側に印加されることになる。従って、コンタクタ9が開状態の場合には、回転速度に比例して上昇するモータ線間逆起電圧Vbemfが最大定格電圧Vmaxに達する回転速度(ωsd2)よりも回転速度が高い領域(T30)は、シャットダウン制御が禁止されると好適である。従って、コンタクタ9が開状態の場合には、モータ線間逆起電圧Vbemfが最大定格電圧Vmaxに達する回転速度(ωsd2)をSD最大回転速度ωsdとして設定することができる。
一方、コンタクタ9が閉状態の場合には、インバータ10の直流側には高圧バッテリ2Hの電圧が印加されており、これが直流リンク電圧Vdcとなっている。例えば、シャットダウン制御中に、モータ線間逆起電圧Vbemfが直流リンク電圧Vdcを超えると、スイッチング素子3に対して逆並列接続されたダイオード5が導通する。即ち、高圧バッテリ2Hを充電する電流が供給される。このため、SD最大回転速度ωsdの設定には、1点目の考慮点として説明したように、バッテリ電流Ibや回生電力、回生トルクなどを考慮する必要がある。従って、モータ線間逆起電圧Vbemfが直流リンク電圧Vdcに達する回転速度(ωsd3)から、モータ線間逆起電圧Vbemfが最大定格電圧Vmaxに達する回転速度(ωsd2)までの領域(T20)は、条件付きでシャットダウン制御が可能な領域である。モータ線間逆起電圧Vbemfが直流リンク電圧Vdcに達する回転速度(ωsd3)よりも低回転速度側の領域(T10)は、特に条件を付けることなく、シャットダウン制御が可能な領域である。
好適な態様として、インバータ制御装置20によるフェールセーフ制御の切り替えは、コンタクタ9が開状態の場合と閉状態の場合とで、異なる回転速度を切替回転速度ωswとして行われる。本実施形態において、切替回転速度ωswは、コンタクタ9が閉状態の場合に比べて、コンタクタ9が開状態の場合の方が、高い回転速度である。図9に示すように、コンタクタ9が開状態の場合の切替回転速度ωswは、第1切替回転速度ωsw1であり、コンタクタ9が閉状態の場合の切替回転速度ωswは、第2切替回転速度ωsw2である。また、コンタクタ9が開状態の場合のシフト切替回転速度ωswrは、第1シフト切替回転速度ωswr1であり、コンタクタ9が閉状態の場合のシフト切替回転速度ωswrは、第2シフト切替回転速度ωswr2である。
上述したように、本実施形態においては、高圧バッテリ2Hを電力源として、バックアップ電源2Bと、下段側ゲート駆動電源52とが生成されている。図10は、高圧バッテリ2Hを電力源とし、トランスを用いて構成された電源回路50を例示している。電源回路50は、一次側コイルに印加される電圧を制御するスイッチング素子50aと、このスイッチング素子50aを制御する電源制御回路50cとを有して構成されている。ここでは、電源回路50として、フライバック型の構成を例示している。トランスへの一次電圧が、安定化されている場合、二次側の出力電圧を一次側にフィードバックすることなく、トランスの変圧比によって二次側の出力電圧が決定される。即ち、トランスの変圧比によって、例えば3.3〜5[V]程度の出力電圧を有するバックアップ電源2Bと、例えば15〜20[V]程度の出力電圧を有する下段側ゲート駆動電源52とが構成されている。
尚、図1に示すインバータ10の下段側スイッチング素子32のエミッタ側は全て負極に接続されている。従って、下段側スイッチング素子32は負極側(グラウンド側)が共通であり、下段側ゲート駆動電源52も負極側(グラウンド側)を共通とする電源とすることができる。このため、本実施形態では、下段側ゲート駆動電源52は、図1及び図10に示したように、1組のトランスによって3相全ての下段側のゲート駆動回路30に電力を供給する電源として形成されている。電源電圧が200〜400[V]と非常に高圧の高圧バッテリ2Hから、電源電圧が20[V]程度の駆動回路用電源(51,52)を生成すると損失が大きくなる。しかし、下段側ゲート駆動電源52は、各相(各アーム)に対して各別に対応させる必要がなく、共通化できるので、そのような損失を抑制することができる。
図11は、上段側ゲート駆動電源51の回路構成を例示している。例えば、上段側ゲート駆動電源51は、低圧バッテリ2Lを電力源とし、トランスを用いて構成された電源回路として構成することができる。上段側ゲート駆動電源51は、図1に示すように、上段側スイッチング素子31のエミッタ側がそれぞれ回転電機80のステータコイル8に接続されており、それぞれ異なる電位である。従って、上段側ゲート駆動電源51は、下段側ゲート駆動電源52とは異なり、共通化することができず、各相(各アーム)に対して各別に対応させて構成される。即ち、図11に示すように、U相上段側ゲート駆動電源51u、V相上段側ゲート駆動電源51v、W相上段側ゲート駆動電源51wが、トランスの二次側においてそれぞれ別に構成されている。
上段側ゲート駆動電源51は、一次側コイルに印加される電圧を制御する2つのスイッチング素子51a,51bと、これらのスイッチング素子51a,51bを制御する電源制御回路51cと、を有して構成されている。ここでは、上段側ゲート駆動電源51として、プッシュプル型の構成を例示している。トランスへの一次電圧が、安定化されている場合、二次側の出力電圧を一次側にフィードバックすることなく、トランスの変圧比によって二次側の出力電圧が決定される。即ち、トランスの変圧比によって、例えば15〜20[V]程度の出力電圧を有する上段側ゲート駆動電源51が構成されている。本実施形態においては、電源電圧が12〜24[V]の低圧バッテリ2Lを電力源として、電源電圧が20[V]程度の上段側ゲート駆動電源51が構成されるので、損失を抑制することができる。
〔その他の実施形態〕
以下、回転電機制御装置のその他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
(1)上記においては、フェールセーフ制御として、アクティブショートサーキット制御と、シャットダウン制御とが選択的に行われる例を示した。しかし、インバータ制御装置20が、フェールセーフ制御として、アクティブショートサーキット制御だけを行うことを妨げるものではない。即ち、インバータ制御装置20は、インバータ10を構成するスイッチング素子3にスイッチング動作を行わせると共に、回転電機駆動装置に過電流や過電圧等が生じた場合に、少なくともアクティブショートサーキット制御を含むフェールセーフ制御を行ってインバータ10にスイッチング動作を行わせるものであってよい。同様に、インバータ制御装置20が、フェールセーフ制御として、シャットダウン制御だけを行うことを妨げるものでもない。即ち、インバータ制御装置20は、インバータ10を構成するスイッチング素子3にスイッチング動作を行わせると共に、少なくともシャットダウン制御を含むフェールセーフ制御を行ってインバータ10にスイッチング動作を行わせるものであってもよい。
(2)シャットダウン制御とアクティブショートサーキット制御との間でフェールセーフ制御を切り替える際の状態遷移は、図5を参照して例示した形態に限られない。例えば、図12に例示するような条件で状態遷移しても構わない。ステップ#1、ステップ#2a、ステップ#2s、ステップ#5については、図5の状態遷移図を参照して上述した通りであるから、説明を省略する。尚、フェールセーフ制御の開始に際しては、切替回転速度ωswを基準として、高回転速度側が高回転速度領域、低回転速度側が低回転速度領域である(ステップ#2a、ステップ#2s)。
アクティブショートサーキット制御(ASC)中に、回転速度ωが切替回転速度ωswよりもΔωだけ低いシフト切替回転速度ωswr(=ωsw−Δω)を下回ると、シャットダウン制御(SD)に切り替わる(#3)。この場合には、このシフト切替回転速度ωswrを基準として、高回転速度側が高回転速度領域、低回転速度側が低回転速度領域となる。シャットダウン制御(SD)中に、回転速度ωが切替回転速度ωsw(SD最大回転速度ωsd)よりも高くなると、アクティブショートサーキット制御(ASC)に切り替わる(#4)。このケースでは、切替回転速度ωswと、シフト切替回転速度ωswrとの間の期間は、いわゆるヒステリシス区間となる。
(3)上記の説明においては、第1切替回転速度ωsw1と第2切替回転速度ωsw2とがコンタクタ9の開閉状態に応じて使い分けられる形態を例示した。しかし、例えば何れか一方、好ましくは、より低い方(本実施形態では第2切替回転速度ωsw2)のみが切替回転速度ωswであってもよい。また、上記の説明においては、切替回転速度ωswとして、シフト切替回転速度ωswrも有し、動作中のフェールセーフ動作の種別に応じて使い分けられる形態を例示した。しかし、このように使い分けることなく、切替回転速度ωswのみを基準としてフェールセーフ制御を切り替えてもよい。
(4)上記においては、第1直流電源(高圧バッテリ2H)と第2直流電源(低圧バッテリ2L)とが、互いに絶縁されて独立した電源装置である形態を例示した。しかし、例えば、第2直流電源(低圧バッテリ2L)は、第1直流電源(高圧バッテリ2H)からコンバータ等を介して降圧された電源装置として構成されていてもよい。つまり、例えば二次電池や電気二重層キャパシタなど、蓄電可能な電源装置が第1直流電源だけであり、第2直流電源は、トランスやレギュレーション回路など、蓄電を考慮していない電源装置によって構成されていることを妨げるものではない。また、上記においては、第1直流電源と第2直流電源とが、大きく異なる電源電圧を有する電源装置である形態を例示した。しかし、第1直流電源と第2直流電源とが、定格の電源電圧が同じ電源装置として構成されていることを妨げるものではない。当然ながら、構成上は、第2直流電源の電源電圧が、第1直流電源の電源電圧よりも高くてもよい。
〔実施形態の概要〕
以下、上記において説明した回転電機制御装置(1)の概要について簡単に説明する。
1つの態様として、車両の車輪(W)に駆動連結された交流の回転電機(80)を駆動制御する回転電機制御装置(1)の特徴的な構成は、
第1直流電源(2H)に接続されると共に前記回転電機(80)に接続されて前記第1直流電源(2H)の直流と前記回転電機(80)の複数相の交流との間で電力を変換するインバータ(10)を備えた回転電機駆動装置を制御対象とし、前記第1直流電源(2H)とは異なる第2直流電源(2L)から供給される電力によって動作するインバータ制御装置(20)と、
前記インバータ(10)の直流側の電圧である直流リンク電圧(Vdc)を平滑化する直流リンクコンデンサ(4)と、を備え、
前記インバータ(10)及び前記直流リンクコンデンサ(4)が、開状態で電力の供給を遮断するコンタクタ(9)を介して前記第1直流電源(2H)に接続され、
前記インバータ(10)は、上段側スイッチング素子(31)と下段側スイッチング素子(32)との直列回路により交流1相分のアームが構成されていると共に、下段側から上段側へ向かう方向を順方向として各スイッチング素子(3)に並列に接続されたフリーホイールダイオード(5)を備え、
前記インバータ制御装置(20)は、前記インバータ(10)を構成するスイッチング素子(3)にスイッチング動作を行わせるものであり、
さらに、
前記第1直流電源(2H)を電力源として構成されたバックアップ電源(2B)と、
前記インバータ制御装置(20)への電力の供給源を前記バックアップ電源(2B)へ切り換える切換制御回路(71)と、を備え、
前記第2直流電源(2L)から前記インバータ制御装置(20)へ供給される電力が予め規定された第1基準値以下となり、且つ、前記バックアップ電源(2B)から出力される電力が予め規定された第2基準値以上である場合に、
前記切換制御回路(71)は、前記インバータ制御装置(20)への電力の供給源を切り換え、
前記インバータ制御装置(20)は、前記バックアップ電源(2B)から供給される電力によって、前記インバータ(10)にスイッチング動作を行わせてフェールセーフ制御する点にある。
バックアップ電源(2B)は、第2直流電源(2L)とは別の電源である第1直流電源(2H)を電力源として構成されているので、例えば第2直流電源(2L)や、第2直流電源(2L)の周囲の配線に断線等が生じた場合であっても、これらの状態に依存することなくインバータ制御装置(20)へ電力を供給することができる。従って、第2直流電源(2L)からインバータ制御装置(20)への電源供給が途切れても、インバータ制御装置(20)は、フェールセーフ制御を行って、インバータ(10)にフェールセーフ動作(スイッチング動作)を行わせることができる。第2直流電源(2L)からの電源供給が途切れた場合に、インバータ制御装置(20)がフェールセーフ制御を行えない構成であると、インバータ制御装置(20)に代わってインバータ(10)にフェールセーフ動作(スイッチング動作)を行わせるために、例えばフェールセーフ回路を別途設ける必要が生じる可能性がある。しかし、本構成によれば、そのようなフェールセーフ回路を設けることなく、インバータ制御装置(20)により、フェールセーフ動作(スイッチング動作)をインバータ(10)に行わせることができる。即ち、この構成によれば、電源からインバータ制御装置(20)への電力供給が遮断されても、インバータ(10)を備えた回転電機駆動装置にフェールセーフ制御を行って適切にインバータ(10)をスイッチング動作させることができる。
ここで、前記フェールセーフ制御は、少なくとも、複数相全ての前記アームの前記上段側スイッチング素子(31)がオン状態となる、又は、複数相全ての前記アームの前記下段側スイッチング素子(32)がオン状態となるアクティブショートサーキット制御であると好適である。アクティブショートサーキット制御は、慣性により回転する回転電機(80)によって発電された電力を第1直流電源(2H)へ回生させず、インバータ(10)と回転電機(80)との間で還流させる。従って、第1直流電源(2H)を流れる電流が過大となることや、直流リンクコンデンサ(4)の端子間電圧(直流リンク電圧(Vdc))が過大となることが抑制され、適切なフェールセーフ制御が実現できる。
ここで、前記フェールセーフ制御には、更に、全ての前記スイッチング素子(3)がオフ状態となるシャットダウン制御を含み、少なくとも前記回転電機(80)の回転速度(ω)に応じて、高回転速度領域では前記アクティブショートサーキット制御を行い、前記高回転速度領域よりも低回転速度側の低回転速度領域では前記シャットダウン制御を行うと好適である。
回転電機(80)の逆起電力は、回転電機(80)の回転速度(ω)に応じて大きくなる。このため、シャットダウン制御が行われると、回転速度(ω)に応じて、充電のために第2直流電源(2H)に流れる電流(Ib)や、インバータ(10)の直流側の電圧である直流リンク電圧(Vdc)が増加する傾向がある。アクティブショートサーキット制御では、回転電機(80)のステータコイル(8)が持つエネルギーに基づく電流がステータコイル(8)とインバータ(10)との間で還流するので、第2直流電源(2H)に充電のための電流(Ib)は流れず、直流リンク電圧(Vdc)も上昇しない。但し、低い回転速度(ω)でアクティブショートサーキット制御が行われた場合には、回転電機(80)に大きな負トルクを発生させることがある。また、アクティブショートサーキット制御が長時間継続した場合には回転電機(80)の発熱量が大きくなる。
本構成によれば、相対的に回転電機(80)の回転速度(ω)が高い高回転速度領域では、アクティブショートサーキット制御が行われるから、第1直流電源(2H)に流れる電流(Ib)の増加や、直流リンク電圧(Vdc)の上昇が抑制される。一方、相対的に回転電機(80)の回転速度(ω)が低い低回転速度領域では、シャットダウン制御が行われるから、回転電機(80)が大きな負トルクを発生させることを抑制できると共にアクティブショートサーキット制御の継続時間も短縮できる。低回転速度領域では、シャットダウン制御による直流リンク電圧(Vdc)の増分や第1直流電源(2H)に流れる電流(Ib)の増分は、高回転速度領域に比べて抑制される。即ち、本構成によれば、回転電機駆動装置に過電流や過電圧等が生じた場合に、第1直流電源(2H)に流れる電流(Ib)や直流リンク電圧(Vdc)の増加を抑制しつつ、適切にフェールセーフ制御を行うことができる。そして、バックアップ電源(2B)を備えることによって、第1直流電源(2H)からインバータ制御装置(20)への電力供給が遮断されると共に、インバータ(10)を備えた回転電機駆動装置に過電流や過電圧等が生じても、このように適切なフェールセーフ制御を行うことができる。
また、回転電機制御装置(1)は、1つの態様として、前記バックアップ電源(2B)が、前記第1直流電源(2H)及び前記直流リンクコンデンサ(4)を電力源とする場合、前記インバータ制御装置(20)が、前記コンタクタ(9)が開状態の場合と閉状態の場合とで、異なる回転速度を前記切替回転速度(ωsw)として、前記フェールセーフ制御を行うと好適である。
回生電力は、コンタクタ(9)が閉状態の場合には、第1直流電源(2H)へ流れる。
このため、シャットダウン制御を許容するための1つの基準は、第1直流電源(2H)に流れる電流を考慮して定められると好適である。一方、コンタクタ(9)が開状態においては、第1直流電源(2H)との接続が遮断されているため、回生電力は、第1直流電源(2H)へは流れずに直流リンクコンデンサ(4)を充電し、直流リンク電圧(Vdc)を上昇させる。このため、シャットダウン制御を許容するための1つの基準は、直流リンク電圧(Vdc)を上昇させる逆起電力(複数相の交流の線間逆起電力)を考慮して定められると好適である。第1直流電源(2H)に流れる電流を考慮した場合の回転電機(80)の回転速度(ω)と、線間逆起電力(Vbemf)を考慮した場合の回転電機(80)の回転速度(ω)とは、多くの場合、異なる回転速度(ω)である。従って、適切なフェールセーフ制御を行う上では、コンタクタ(9)が開状態の場合と閉状態の場合とで、異なる回転速度を前記切替回転速度(ωsw)とすると好適である。
尚、コンタクタ(9)が開状態となっても、直流リンクコンデンサ(4)に蓄電された電荷をバックアップ電源(2B)の電力源とすることができる。回転電機(80)が回転している間は、直流リンクコンデンサ(4)が充電されるので、回転電機(80)の回転が止まり、直流リンクコンデンサ(4)が放電するまで、バックアップ電源(2B)からの電力供給によってフェールセーフ制御が継続可能である。
コンタクタ(9)が閉状態の場合、第1直流電源(2H)の端子間電圧は直流リンク電圧(Vdc)とほぼ同じであるから、線間逆起電力(Vbemf)が直流リンク電圧(Vdc)を超えると、第1直流電源(2H)へ向かって電流が流れる。一方、インバータ(10)の直流側の回路素子の耐圧は、瞬間的な線間逆起電力(Vbemf)の上昇への耐性も有するように、第1直流電源(2H)の端子間電圧の最大定格値よりも高い場合が多い。このため、第1直流電源(2H)に流れる電流の最大許容値を発生させる線間逆起電力(Vbemf)よりも、インバータ(10)の直流側の回路素子の耐圧に対応する線間逆起電力(Vbemf)の方が高い場合が多い。線間逆起電力(Vbemf)は、回転電機(80)の回転速度(ω)に応じて高くなるから、第1直流電源(2H)に電流が流れず、直流リンク電圧(Vdc)を上昇させる場合、つまり、コンタクタ(9)が開状態の場合の方が許容される回転電機(80)の回転速度(ω)は高くなる。従って、1つの態様として、前記切替回転速度(ωsw)は、前記コンタクタ(9)が閉状態の場合に比べて、前記コンタクタ(9)が開状態の場合の方が、高い回転速度であると好適である。
切替回転速度(ωsw)は、前記第1直流電源(2H)が充電可能な電源装置であり、前前記コンタクタ(9)が閉状態の場合には、前記回転電機(80)の回転速度に応じた回生電力及び前記第1直流電源(2H)を流れる充電電流(Ib)が、前記第1直流電源(2H)の電圧に応じて許容される最大定格値よりも小さくなる回転速度(ωsw2)であると好適である。また、前記切替回転速度(ωsw)は、前記コンタクタ(9)が開状態の場合には、複数相の交流の線間における逆起電力(Vbemf)のピーク値が、前記回転電機駆動装置において許容される最大定格電圧よりも小さくなる回転速度(ωsw1)であると好適である。コンタクタ(9)が閉状態の場合には、コンタクタ(9)を介して第1直流電源(2H)を充電する電流が流れるから、上述したように充電電流(Ib)の最大定格値に応じて切替回転速度(ωsw)が定まっていると好適である。また、コンタクタ(9)が開状態の場合には、線間逆起電力(Vbemf)がインバータ(10)の直流リンク電圧(Vdc)を上昇させるから、回転電機駆動装置において許容される最大定格電圧に応じて切替回転速度(ωsw)が定まっていると好適である。
ところで、フェールセーフ制御中に回転電機(80)の回転速度(ω)が変化した場合には、回転速度(ω)に応じてフェールセーフ制御の種別を切替えると好適である。重力等の外力を含め、車輪(W)に対して新たな駆動力が提供されない場合、フェールセーフ制御中に回転電機(80)の回転速度は低下していく。従って、フェールセーフ制御を開始した際には、回転電機(80)の回転速度(ω)が高回転速度領域であっても、その後、フェールセーフ制御の継続中に低回転速度領域となる。高回転速度領域ではアクティブショートサーキット制御が行われるが、この際、ステータコイル(8)とインバータ(20)との間で電流を還流させるため、そのエネルギーの多くは、両者において熱となって消費される。詳細な現象については省略するが、回転電機(80)やインバータ(20)の過熱は、性能の維持や寿命の観点からも好ましくはない。従って、アクティブショートサーキット制御は、回転電機(80)の回転速度(ω)の低下に応じて適切な時期に終了することが好ましい。一方で、例えば、車両が坂道を下っているような場合には車輪(W)に駆動連結された回転電機(80)の回転速度(ω)が上昇し、低回転速度領域から高回転速度領域へと移行する可能性がある。この際、シャットダウン制御を行っていると、第1直流電源(2H)に流れる電流(Ib)や直流リンク電圧(Vdc)が適切な範囲内を超えて上昇する可能性がある。従って、このような場合には、シャットダウン制御からアクティブショートサーキット制御へとフェールセーフ制御の方式を変更することが好ましい。
即ち、1つの態様として、前記インバータ制御装置(20)は、前記シャットダウン制御中に、前記回転電機(80)の回転速度(ω)が前記高回転速度領域まで上昇した場合には、前記フェールセーフ制御を前記アクティブショートサーキット制御に切り替え、前記アクティブショートサーキット制御中に、前記回転電機(80)の回転速度(ω)が前記低回転速度領域まで低下した場合には、前記フェールセーフ制御を前記シャットダウン制御に切り替えると好適である。
上述したように、第2直流電源(2L)からインバータ制御装置(20)へ供給される電力が予め規定された基準値以下となった場合(第2電源低下状態となった場合)においても、バックアップ電源からインバータ制御装置(20)へ電力が供給される。従って、インバータ制御装置(20)は、適切なフェールセーフ制御を行うことができる。但し、多くの場合、インバータ制御装置(20)からインバータ(10)の各スイッチング素子(3)へは、電気的な駆動能力を増強する制御信号駆動回路を介してスイッチング制御信号が与えられる。従って、各スイッチング素子(3)に対する制御信号駆動回路への電力の供給が滞ると、インバータ制御装置(20)が機能していても、フェールセーフ制御によりインバータ(10)にフェールセーフ動作を行わせることができなくなる可能性がある。特に、アクティブショートサーキット制御では、上段側スイッチング素子(31)或いは下段側スイッチング素子(32)がオン状態とされるので、制御信号駆動回路への電力の供給も必要である。
アクティブサーキット制御においてオン状態となるのは、全ての上段側スイッチング素子(31)又は全ての下段側スイッチング素子(32)である。従って、少なくとも、全ての上段側スイッチング素子(31)に対する制御信号駆動回路への電源供給、又は、全ての下段側スイッチング素子(32)に対する制御信号駆動回路への電源供給、が第2電源低下状態においても確保されていればよい。つまり、従って、1つの態様として、前記インバータ制御装置(20)により生成され、各スイッチング素子(3)を制御するスイッチング制御信号を増強して中継する複数の制御信号駆動回路(30)を備える場合、前記上段側スイッチング素子(31)に前記スイッチング制御信号を中継する上段側の前記制御信号駆動回路(30)、及び、前記下段側スイッチング素子(32)に前記スイッチング制御信号を中継する下段側の前記制御信号駆動回路(30)、の少なくとも一方に、前記第1直流電源(2H)を電力源として構成された電源(52)からの電力が供給されていると好適である。
尚、一般的には、インバータ(10)の下段側スイッチング素子(32)のエミッタ側(ソース側)は全て負極に接続されている。従って、下段側スイッチング素子(32)は負極側(グラウンド側)が共通であり、下段側の制御信号駆動回路(30)も負極側(グラウンド側)が共通である。従って、下段側の制御信号駆動回路(30)に電力を供給する電源(52)は、共通の電源とすることができる。上段側のスイッチング素子(31)は、一般的に、エミッタ側(ソース側)がそれぞれ回転電機(80)のステータコイル(8)に接続されており、負極側(グラウンド側)はそれぞれ異なる電位である。従って、上段側の制御信号駆動回路(30)に電力を供給する電源(51)は共通化することができず、それぞれ個別の電源(51u,51v,51w)から電力を共有される。従って、より好適には、下段側スイッチング素子(32)にスイッチング制御信号を中継する下段側の制御信号駆動回路(30)に、第1直流電源(2H)を電力源として構成された電源(52)からの電力が供給されているとよい。
1 :回転電機制御装置
2B :バックアップ電源
2H :高圧バッテリ(第1直流電源)
2L :低圧バッテリ(第2直流電源)
3 :スイッチング素子
4 :直流リンクコンデンサ
6 :制御装置駆動電源
9 :コンタクタ
10 :インバータ
20 :インバータ制御装置
30 :ゲート駆動回路
31 :上段側スイッチング素子
32 :下段側スイッチング素子
50 :電源回路
50a :スイッチング素子
50c :電源制御回路
51 :上段側ゲート駆動電源(上段側駆動回路用電源)
51u :U相上段側ゲート駆動電源(上段側駆動回路用電源)
51v :V相上段側ゲート駆動電源(上段側駆動回路用電源)
51w :W相上段側ゲート駆動電源(上段側駆動回路用電源)
52 :下段側ゲート駆動電源(下段側駆動回路用電源)
80 :回転電機
Ib :バッテリ電流(第1直流電源を流れる電流)
Vbemf:モータ線間逆起電圧(複数相の交流の線間における逆起電力)
Vdc :直流リンク電圧
Vmax :最大定格電圧
W :車輪
ω :回転速度
ωsd :SD最大回転速度
ωsw :切替回転速度
ωsw1 :第1切替回転速度
ωsw2 :第2切替回転速度
ωswr :シフト切替回転速度
ωswr1:第1シフト切替回転速度
ωswr2:第2シフト切替回転速度

Claims (8)

  1. 車両の車輪に駆動連結された交流の回転電機を駆動制御する回転電機制御装置であって、
    第1直流電源に接続されると共に前記回転電機に接続されて前記第1直流電源の直流と前記回転電機の複数相の交流との間で電力を変換するインバータを備えた回転電機駆動装置を制御対象とし、前記第1直流電源とは異なる第2直流電源から供給される電力によって動作するインバータ制御装置と、
    前記インバータの直流側の電圧である直流リンク電圧を平滑化する直流リンクコンデンサと、を備え、
    前記インバータ及び前記直流リンクコンデンサは、開状態で電力の供給を遮断するコンタクタを介して前記第1直流電源に接続され、
    前記インバータは、上段側スイッチング素子と下段側スイッチング素子との直列回路により交流1相分のアームが構成されていると共に、下段側から上段側へ向かう方向を順方向として各スイッチング素子に並列に接続されたフリーホイールダイオードを備え、
    前記インバータ制御装置は、前記インバータを構成するスイッチング素子にスイッチング動作を行わせるものであり、
    さらに、
    前記第1直流電源を電力源として構成されたバックアップ電源と、
    前記インバータ制御装置への電力の供給源を前記バックアップ電源へ切り換える切換制御回路と、を備え、
    前記第2直流電源から前記インバータ制御装置へ供給される電力が予め規定された第1基準値以下となり、且つ、前記バックアップ電源から出力される電力が予め規定された第2基準値以上である場合に、
    前記切換制御回路は、前記インバータ制御装置への電力の供給源を切り換え、
    前記インバータ制御装置は、前記バックアップ電源から供給される電力によって、前記インバータにスイッチング動作を行わせてフェールセーフ制御する回転電機制御装置。
  2. 前記フェールセーフ制御は、少なくとも、複数相全ての前記アームの前記上段側スイッチング素子がオン状態となる、又は、複数相全ての前記アームの前記下段側スイッチング素子がオン状態となるアクティブショートサーキット制御である請求項1に記載の回転電機制御装置。
  3. 前記フェールセーフ制御には、更に、全ての前記スイッチング素子がオフ状態となるシャットダウン制御を含み、
    少なくとも前記回転電機の回転速度に応じて、前記回転電機の回転速度が予め規定された切替回転速度以上である高回転速度領域では前記アクティブショートサーキット制御を行い、前記高回転速度領域よりも低回転速度側の低回転速度領域では前記シャットダウン制御を行う請求項2に記載の回転電機制御装置。
  4. 前記バックアップ電源は、前記第1直流電源及び前記直流リンクコンデンサを電力源とし、
    前記コンタクタが開状態の場合と閉状態の場合とで、異なる回転速度を前記切替回転速度として、前記フェールセーフ制御を行う請求項3に記載の回転電機制御装置。
  5. 前記切替回転速度は、前記コンタクタが閉状態の場合に比べて、前記コンタクタが開状態の場合の方が、高い回転速度である請求項4に記載の回転電機制御装置。
  6. 前記第1直流電源は、充電可能な電源装置であり、
    前記切替回転速度は、
    前記コンタクタが閉状態の場合には、前記回転電機の回転速度に応じた回生電力及び前記第1直流電源を流れる充電電流が、前記第1直流電源の電圧に応じて許容される最大定格値よりも小さくなる回転速度であり、
    前記コンタクタが開状態の場合には、複数相の交流の線間における逆起電力のピーク値が、前記回転電機駆動装置において許容される最大定格電圧よりも小さくなる回転速度である請求項5に記載の回転電機制御装置。
  7. 前記シャットダウン制御中に、前記回転電機の回転速度が前記高回転速度領域まで上昇した場合には、前記フェールセーフ制御を前記アクティブショートサーキット制御に切り替え、前記アクティブショートサーキット制御中に、前記回転電機の回転速度が前記低回転速度領域まで低下した場合には、前記フェールセーフ制御を前記シャットダウン制御に切り替える請求項3から6の何れか一項に記載の回転電機制御装置。
  8. 前記インバータ制御装置により生成され、各スイッチング素子を制御するスイッチング制御信号を増強して中継する複数の制御信号駆動回路を備え、
    前記上段側スイッチング素子に前記スイッチング制御信号を中継する上段側の前記制御信号駆動回路、及び、前記下段側スイッチング素子に前記スイッチング制御信号を中継する下段側の前記制御信号駆動回路、の少なくとも一方に、前記第1直流電源を電力源として構成された電源からの電力が供給されている請求項1から7の何れか一項に記載の回転電機制御装置。
JP2016566169A 2014-12-25 2015-12-17 回転電機制御装置 Active JP6418252B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014262935 2014-12-25
JP2014262935 2014-12-25
PCT/JP2015/085346 WO2016104318A1 (ja) 2014-12-25 2015-12-17 回転電機制御装置

Publications (2)

Publication Number Publication Date
JPWO2016104318A1 true JPWO2016104318A1 (ja) 2017-07-27
JP6418252B2 JP6418252B2 (ja) 2018-11-07

Family

ID=56150339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016566169A Active JP6418252B2 (ja) 2014-12-25 2015-12-17 回転電機制御装置

Country Status (5)

Country Link
US (1) US9948219B2 (ja)
JP (1) JP6418252B2 (ja)
CN (1) CN107148745B (ja)
DE (1) DE112015004786T5 (ja)
WO (1) WO2016104318A1 (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098779A (zh) * 2014-11-14 2019-08-06 爱信艾达株式会社 逆变器控制装置
US11476044B2 (en) * 2015-03-09 2022-10-18 Ford Global Technologies, Llc Electrified vehicle cable having an inductor portion
EP3270483B1 (en) * 2016-07-12 2022-06-29 Nxp B.V. Apparatus and associated method for battery charging
CN106330057B (zh) * 2016-10-31 2019-04-26 上海螺趣科技有限公司 一种电机装置、机器人及控制电机装置运行的方法
JP6316397B1 (ja) * 2016-12-26 2018-04-25 三菱電機株式会社 電力変換システム
JP6812934B2 (ja) * 2017-09-19 2021-01-13 トヨタ自動車株式会社 自動車
DE112018003754T5 (de) * 2017-09-29 2020-04-16 Aisin Aw Co., Ltd. Invertersteuerungsvorrichtung
JP6935715B2 (ja) * 2017-09-29 2021-09-15 株式会社アイシン インバータ制御装置
CN109936267A (zh) * 2017-12-15 2019-06-25 Tvs电机股份有限公司 用于小型车辆的电机
FR3075509B1 (fr) * 2017-12-18 2020-09-04 Valeo Systemes De Controle Moteur Dispositif d'alimentation d'une machine electrique et systeme electrique associe
CN108189672B (zh) * 2018-01-12 2020-01-07 成都雅骏新能源汽车科技股份有限公司 一种基于功能安全的电动汽车集成控制器
WO2019142877A1 (ja) * 2018-01-18 2019-07-25 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
WO2019155776A1 (ja) * 2018-02-06 2019-08-15 日立オートモティブシステムズ株式会社 電力変換装置
JP6982770B2 (ja) * 2018-02-23 2021-12-17 パナソニックIpマネジメント株式会社 モータ制御装置
CN108429237B (zh) * 2018-02-27 2019-11-12 宁波央腾汽车电子有限公司 一种电机控制器的硬件保护电路
JP7091815B2 (ja) 2018-05-07 2022-06-28 株式会社デンソー 電力変換器の制御回路
CN108964572B (zh) * 2018-06-28 2021-07-23 同济大学 一种用于电机主动短路控制的方法及系统
CN109039221B (zh) * 2018-08-29 2021-12-10 阳光电源股份有限公司 一种主动短路电路以及电机控制器
JP6798641B2 (ja) * 2018-09-14 2020-12-09 富士電機株式会社 インバータ装置及びその制御回路、並びにモータ駆動システム
JP2020054167A (ja) * 2018-09-28 2020-04-02 アイシン・エィ・ダブリュ株式会社 電力変換装置
CN111137133B (zh) * 2018-11-06 2021-08-31 湖南中车时代电动汽车股份有限公司 电动汽车电驱动系统的保护电路及电动汽车电驱动系统
JP7102053B2 (ja) * 2018-12-05 2022-07-19 日立建機株式会社 回生制動システム、及び、それを用いた電気駆動作業車両
JP7222737B2 (ja) * 2019-02-05 2023-02-15 株式会社Subaru 車両
US11239776B2 (en) * 2019-02-11 2022-02-01 Regal Beloit America, Inc. Motor controller having low standby power consumption
JP2020162254A (ja) * 2019-03-26 2020-10-01 日本電産株式会社 インバータ装置
CN110011278B (zh) * 2019-04-10 2021-09-03 广州小鹏汽车科技有限公司 一种电机短路保护方法及装置
EP4219215A3 (en) * 2019-05-07 2023-08-09 Volvo Car Corporation System and method for fault handling in a propulsion system for an electric vehicle
CN110266245A (zh) * 2019-06-04 2019-09-20 苏州汇川联合动力系统有限公司 电机驱动系统、方法、电机驱动器及电动汽车
KR102320555B1 (ko) * 2019-07-02 2021-11-01 엘지전자 주식회사 모터 구동 장치 및 이를 구비하는 홈 어플라이언스
DE102019118927A1 (de) * 2019-07-12 2021-01-14 Vacon Oy Gleichstromzwischenkreisladeanordnung und Verfahren zum Laden eines Gleichstromzwischenkreiskondensators
JP7377650B2 (ja) * 2019-08-30 2023-11-10 日立Astemo株式会社 電力変換装置
JP7371433B2 (ja) 2019-10-11 2023-10-31 富士電機株式会社 モータ駆動装置およびモータ駆動方法
CN113131833B (zh) * 2019-12-31 2023-03-14 比亚迪股份有限公司 电机控制系统及电机控制装置
US20210399378A1 (en) * 2020-06-17 2021-12-23 Milwaukee Electric Tool Corporation Motor control for gas engine replacement device
CN112468057A (zh) * 2020-10-10 2021-03-09 蔚来汽车科技(安徽)有限公司 用于车辆的电机控制方法和电路、电机驱动系统以及车辆
US11837984B2 (en) * 2021-05-14 2023-12-05 Delphi Technologies Ip Limited Dual supply dual control architecture
CN113479065B (zh) * 2021-07-29 2023-01-10 中国第一汽车股份有限公司 一种电机主动短路控制电路及其驱动方法
FR3129261B1 (fr) * 2021-11-17 2024-04-26 Nidec Psa Emotors Procédé de protection contre une surtension dans un système comportant une batterie, un onduleur et une machine électrique
DE102021214224A1 (de) * 2021-12-13 2023-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Betrieb eines Wechselrichters

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020450A (ja) * 2004-07-02 2006-01-19 Nissan Motor Co Ltd 車両用制御装置
JP2008086100A (ja) * 2006-09-27 2008-04-10 Seiko Epson Corp 電源切換回路
JP2009196465A (ja) * 2008-02-20 2009-09-03 Keihin Corp 乗員保護制御装置及び乗員保護システム
WO2010131340A1 (ja) * 2009-05-13 2010-11-18 トヨタ自動車株式会社 車両の電力変換装置およびそれを搭載する車両
JP2010284029A (ja) * 2009-06-05 2010-12-16 Aisin Aw Co Ltd インバータ駆動用電源回路
JP2011259517A (ja) * 2010-06-04 2011-12-22 Toyota Motor Corp 車両の電力変換装置およびそれを備える車両
JP2014110666A (ja) * 2012-11-30 2014-06-12 Toyota Motor Corp 放電制御システム及び放電装置
JP2014113878A (ja) * 2012-12-07 2014-06-26 Toyota Motor Corp ハイブリッド車
JP2014158399A (ja) * 2013-02-18 2014-08-28 Aisin Aw Co Ltd 回転電機駆動装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360487A (ja) * 2003-06-02 2004-12-24 Honda Motor Co Ltd 遊星歯車機構を備えた過給機
JP2005033932A (ja) 2003-07-07 2005-02-03 Nissan Motor Co Ltd モータ制御装置
JP4582168B2 (ja) * 2008-03-21 2010-11-17 株式会社デンソー 回転機の制御装置、及び回転機の制御システム
EP2353922A4 (en) * 2008-10-31 2017-03-15 Toyota Jidosha Kabushiki Kaisha Electromotive vehicle power supply system, electromotive vehicle, and electromotive vehicle control method
CN102202929B (zh) * 2008-10-31 2014-01-01 丰田自动车株式会社 电动车辆的电源系统及其控制方法
US8314578B2 (en) * 2009-03-09 2012-11-20 GM Global Technology Operations LLC Control of an alternator-starter for a hybrid electric vehicle having a disconnected high-voltage battery
WO2010131352A1 (ja) * 2009-05-14 2010-11-18 トヨタ自動車株式会社 電気自動車およびその制御方法
WO2010143279A1 (ja) * 2009-06-10 2010-12-16 トヨタ自動車株式会社 電動車両の電源システム、電動車両および電動車両の電源システムの制御方法
JP5381361B2 (ja) * 2009-06-11 2014-01-08 株式会社豊田自動織機 インバータ装置
JP5434381B2 (ja) 2009-08-31 2014-03-05 株式会社デンソー 車載電動機の駆動装置
JP6291899B2 (ja) * 2014-02-25 2018-03-14 アイシン・エィ・ダブリュ株式会社 回転電機制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020450A (ja) * 2004-07-02 2006-01-19 Nissan Motor Co Ltd 車両用制御装置
JP2008086100A (ja) * 2006-09-27 2008-04-10 Seiko Epson Corp 電源切換回路
JP2009196465A (ja) * 2008-02-20 2009-09-03 Keihin Corp 乗員保護制御装置及び乗員保護システム
WO2010131340A1 (ja) * 2009-05-13 2010-11-18 トヨタ自動車株式会社 車両の電力変換装置およびそれを搭載する車両
JP2010284029A (ja) * 2009-06-05 2010-12-16 Aisin Aw Co Ltd インバータ駆動用電源回路
JP2011259517A (ja) * 2010-06-04 2011-12-22 Toyota Motor Corp 車両の電力変換装置およびそれを備える車両
JP2014110666A (ja) * 2012-11-30 2014-06-12 Toyota Motor Corp 放電制御システム及び放電装置
JP2014113878A (ja) * 2012-12-07 2014-06-26 Toyota Motor Corp ハイブリッド車
JP2014158399A (ja) * 2013-02-18 2014-08-28 Aisin Aw Co Ltd 回転電機駆動装置

Also Published As

Publication number Publication date
DE112015004786T5 (de) 2017-08-24
JP6418252B2 (ja) 2018-11-07
US20170331400A1 (en) 2017-11-16
WO2016104318A1 (ja) 2016-06-30
CN107148745B (zh) 2019-07-19
US9948219B2 (en) 2018-04-17
CN107148745A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
JP6418252B2 (ja) 回転電機制御装置
JP6296169B2 (ja) インバータ制御装置及び車両用制御装置
CN110418742B (zh) 车辆用驱动控制装置
US9315112B2 (en) Power source apparatus for electrically powered vehicle and control method therefor
KR101171908B1 (ko) 플러그인 하이브리드 자동차의 충전장치
CN111108681B (zh) 逆变器控制装置
US20170093324A1 (en) Inverter control device
WO2015152002A1 (ja) インバータ制御装置
CN109104886B (zh) 逆变器装置
JP6755388B2 (ja) 多群多相回転電機の駆動装置
JP7032249B2 (ja) 電源システム
JP2010162996A (ja) ハイブリッド車両の電源システム
JP2013051831A (ja) 電動車両の電源制御装置
CN111095778A (zh) 逆变器控制装置
JP6307983B2 (ja) インバータ制御装置
JP2018164380A (ja) インバータ制御装置
JP6638504B2 (ja) インバータ駆動装置
WO2018207829A1 (ja) 回転電機装置の制御装置
JP7259563B2 (ja) 回転電機制御システム
JP6935715B2 (ja) インバータ制御装置
JP2022119108A (ja) 電力変換装置
JP2020156272A (ja) 回転電機制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180924

R150 Certificate of patent or registration of utility model

Ref document number: 6418252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150