JP2004360487A - 遊星歯車機構を備えた過給機 - Google Patents

遊星歯車機構を備えた過給機 Download PDF

Info

Publication number
JP2004360487A
JP2004360487A JP2003156554A JP2003156554A JP2004360487A JP 2004360487 A JP2004360487 A JP 2004360487A JP 2003156554 A JP2003156554 A JP 2003156554A JP 2003156554 A JP2003156554 A JP 2003156554A JP 2004360487 A JP2004360487 A JP 2004360487A
Authority
JP
Japan
Prior art keywords
engine
generator
motor
rotational speed
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003156554A
Other languages
English (en)
Inventor
Yuji Yasui
裕司 安井
Yutaka Tamagawa
裕 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003156554A priority Critical patent/JP2004360487A/ja
Priority to US10/838,528 priority patent/US7000601B2/en
Priority to DE102004025929A priority patent/DE102004025929A1/de
Publication of JP2004360487A publication Critical patent/JP2004360487A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/04Mechanical drives; Variable-gear-ratio drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/024Units comprising pumps and their driving means the driving means being assisted by a power recovery turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/028Units comprising pumps and their driving means the driving means being a planetary gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

【課題】任意のエンジン回転数で所望の過給圧を得られるようにする。
【解決手段】エンジンの過給機は、モータ・ジェネレータと、エンジンの吸気系に配置されたコンプレッサと、エンジンの駆動軸に接続されたサンギヤ、モータ・ジェネレータに接続されたプラネタリギヤ、およびコンプレッサに接続されたリングギヤを有する遊星歯車機構と、モータ・ジェネレータを駆動して、プラネタリギヤのギヤの回転数を制御する制御ユニットとを備える。プラネタリギヤの回転数の制御により、コンプレッサの回転数を、エンジンの回転数から独立して制御可能なようにする。コンプレッサの回転数を、ゼロから、エンジン回転数よりも高い回転数に設定することができ、エンジン回転数にかかわりなく、所望の過給圧を得ることができる。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
この発明は、内燃機関の過給機に関する。
【0002】
【従来の技術】
内燃機関の過給機は、吸気された空気をコンプレッサによって加圧し、該加圧した空気をエンジンの各気筒に送る。エンジンの燃焼室に送り込む空気が増やされ、エンジン出力を増幅する。
【0003】
過給機として、ターボチャージャおよびスーパーチャージャが知られている。ターボチャージャでは、排気ガスのエネルギーによりタービンを回し、該タービンによってコンプレッサを回転させる(例えば、特許文献1)。スーパーチャージャでは、エンジンの駆動軸によってコンプレッサを回転させる。
【0004】
コンプレッサの回転を補助的に駆動する手段として、電動機(モータ)が用いられることがある。一例として、電動機付きターボチャージャは、タービンとコンプレッサの間に電動機を備える。排気ガスボリュームが低いときは、電動機によってコンプレッサを回転させる(例えば、特許文献2)。他の例では、電動機付きスーパーチャージャがある。これは、エンジンの駆動力を電力に変換し、該電力によって電動機を駆動する。コンプレッサは、該電動機によって回転駆動される。さらに他の例では、エンジンによって駆動される油圧ポンプを備え、該油圧ポンプによって生成される高い油圧により油圧タービンを駆動するものもある(例えば、特許文献3を参照)。
【0005】
【特許文献1】
特開2002−317640号公報
【0006】
【特許文献2】
特開平7−259576号公報
【0007】
【特許文献3】
特開平8−200083号公報
【0008】
【発明が解決しようとする課題】
ターボチャージャは、廃棄されるべき排気ガスのエネルギーを利用しているので、エネルギーの利用効率が高い。しかしながら、ターボチャージャは、排気系にタービンが設けられているので、排気ガスの圧力上昇を招く。エンジンの負荷が高いときに排気ガスの圧力が高いと、ノッキングが発生しやすくなり、また、ポンピングロスが増加するおそれがある。エンジンの負荷が低いときは、排気ガスのボリュームが低下し、よって過給圧が不足することがある。また、排気ガスの熱量によって触媒を早期に活性化することが行われているが、タービンの駆動に排気ガスを使用すると、触媒を活性化するのに要する時間を長引かせるおそれがある。
【0009】
電動機付きターボチャージャは、過給圧不足を解消することはできるが、排気ガスの圧力の上昇および触媒活性化時間についての上記問題は解消されない。
【0010】
スーパーチャージャは、エンジンの駆動軸の回転を利用するので、エンジンに要求される駆動力の増加に対する過給圧の応答性は速い。排気側にタービンを設ける必要がないので、触媒活性時間を適切に維持することができる。しかしながら、エンジンの駆動軸の回転を利用しているために、過給の量が増えるにつれエンジン出力にロスが生じる(駆動ロスと呼ばれる)。
【0011】
電動機でコンプレッサを回転する電動機付きスーパーチャージャでは、エンジン駆動力を電力に変換し、該電力をモータ駆動力に変換するので、駆動効率が良くない。
【0012】
本発明の目的は、上記のターボチャージャ、スーパーチャージャ、および電動機付きターボ/スーパーチャージャの短所を克服し、広範囲のエンジン回転数に対して、所望のエンジン出力を生成することのできる新規な過給機を提供することである。
【0013】
【課題を解決するための手段】
この発明の一つの側面によると、エンジンの過給機は、モータ・ジェネレータと、エンジンの吸気系に配置されたコンプレッサと、遊星歯車機構とを備える。遊星歯車機構は、第1のギヤ、第2のギヤ、および第3のギヤを有する。第1のギヤにはエンジンの駆動軸が接続される。第2のギヤにはモータ・ジェネレータが接続される。第3のギヤにはコンプレッサが接続される。一実施形態では、第2のギヤはプラネタリギヤであり、モータ・ジェネレータは、該第2のギヤのキャリアに接続される。該キャリアは、第2のギヤの第1のギヤに対する公転運動を規定する。一実施形態では、第1のギヤはサンギヤであり、第3のギヤはリングギヤである。制御ユニットは、モータ・ジェネレータを駆動して第2のギヤの回転数を制御する。第2のギヤの回転数の制御により、コンプレッサの回転数を、エンジン回転数とは独立して制御可能なようにする。
【0014】
この発明によれば、コンプレッサの回転数を、ゼロから、エンジン回転数よりも高い回転数まで、連続的に設定することができる。コンプレッサの回転数を、エンジン回転数とはかかわりなく設定することができるので、所望の過給圧を任意のエンジン回転数において得ることができる。
【0015】
この発明の一実施形態では、要求されるエンジン駆動力が所定値より大きいとき、エンジンの回転数よりも高い回転数でコンプレッサを回転させるようモータ・ジェネレータを駆動する。エンジンに要求される駆動力が所定値より小さいとき、エンジンの回転数よりも低い回転数でコンプレッサを回転させるよう、または該コンプレッサの回転を停止するようモータ・ジェネレータを駆動する。エンジンの回転数よりも高い回転数でコンプレッサを回転させるとき、モータ・ジェネレータは電動機として駆動される。エンジンの回転数よりも低い回転数でコンプレッサを回転させるとき、モータ・ジェネレータは発電機として駆動される。
【0016】
モータ・ジェネレータを電動機として駆動するとき、モータ・ジェネレータには電力が供給され、コンプレッサをエンジン回転数よりも高い回転数で回転させることができる(アシストモード)。電力供給量を増やすほど、コンプレッサの回転数を増やすことができる。
【0017】
モータ・ジェネレータを発電機として駆動するとき、モータ・ジェネレータからの電気エネルギーが回生され、コンプレッサをエンジン回転数よりも低い回転数で回転させることができる(回生モード)。発電量を増やすほど、コンプレッサの回転数を減らすことができる。モータ・ジェネレータからの電気エネルギーをたとえばバッテリに回収することができ、エネルギー効率を向上させることができる。
【0018】
こうして、エンジン回転数にかかわらず、コンプレッサを所望の回転数で回転させ、過給圧が不足する状態および無駄な過給圧が生成される状態を回避することができる。
【0019】
この発明の他の側面では、さらに、エンジンに接続された発電機が設けられる。モータ・ジェネレータを電動機として駆動するとき、該発電機からの電力をモータ・ジェネレータに供給する。発電機を利用することにより、バッテリの残量にかかわらずコンプレッサの回転数を増やすことができる。
【0020】
この発明の一実施形態では、アクセルペダルが全開またはほぼ全開のとき、発電機の動作を停止する。コンプレッサの回転数の増大は、バッテリからの電力によってのみ行われる。発電機の稼働にはエンジン出力が消費される。発電機の動作を停止することにより、該発電機の稼働に対するエンジン出力のロスを無くすことができる。
【0021】
この発明の一実施形態によると、応答指定型制御を実施して、過給圧を目標値に収束させるように、モータ・ジェネレータを駆動するためのモータ指令値を生成する。
【0022】
コンプレッサによる過給作用は、空気の圧縮効果のために大きな遅れを伴う。この遅れにより、過給圧にオーバーシュートが生じるおそれがある。応答指定型制御を用いれば、オーバーシュートを生じさせることなく過給圧を目標値に収束させることができる。これは、良好なドライバビリティを実現する。
【0023】
この発明の他の実施形態によると、エンジンへの吸入空気量は、スロットル弁の開度によって調整される。一実施形態では、応答指定型制御を実施して、エンジンへの吸入空気量が目標値に収束するように、スロットル弁の開度を決定する。
【0024】
過給作用は遅れを伴うため、過給圧を高精度に調整することは困難である。スロットル弁の制御は、エンジンへの吸入空気量を目標値に高精度に追従させることができる。スロットル弁の制御により、過給圧の制御では対処しきれなかった吸入空気量の微妙な調整が可能となる。
【0025】
エンジンへの吸入空気量は、吸気管内の空気充填効果の影響を受けるために、目標値に対して応答遅れを有する。この応答遅れは、吸入空気量にオーバーシュートを発生させるおそれがある。応答指定型制御を用いてスロットル弁の開度を制御すれば、このようなオーバーシュートを生じさせることなく、エンジンへの吸入空気量を目標値に収束させることができる。
【0026】
この発明の他の側面によると、エンジンの過給機は、さらに、モータ・ジェネレータとコンプレッサの間に一方向クラッチを備える。モータ・ジェネレータの発電量を過大にすると、コンプレッサが逆回転するおそれがある。一方向クラッチを設ければ、コンプレッサの逆回転を防止しつつ、モータ・ジェネレータの発電量を増やすことができる。
【0027】
【発明の実施の形態】
内燃機関、過給機および制御装置の構成
次に図面を参照してこの発明の実施の形態を説明する。図1は、この発明の実施形態に従う内燃機関(以下、「エンジン」という)の過給機および制御装置の全体的な構成図である。
【0028】
電子制御ユニット(以下、「ECU」)という)1は、車両の各部から送られてくるデータを受け入れる入力インターフェース1a、車両の各部の制御を行うための演算を実行するCPU1b、読み取り専用メモリ(ROM)およびランダムアクセスメモリ(RAM)を有するメモリ1c、および車両の各部に制御信号を送る出力インターフェース1dを備えている。メモリ1cのROMには、車両の各部の制御を行うためのプログラムおよび各種のデータが格納されている。ROMは、EPROMのような書き換え可能なROMでもよい。RAMには、CPU1bによる演算のための作業領域が設けられる。車両の各部から送られてくるデータおよび車両の各部に送り出す制御信号は、RAMに一時的に記憶される。
【0029】
エンジン10に連結された吸気通路2に、エアクリーナ3を介して空気が吸入される。吸入される空気の量は、エアフローメータ4によって検出される。
【0030】
吸気通路2と平行して設けられた過給通路5には、コンプレッサ6およびインタークーラー7が設けられている。コンプレッサ6によって圧縮された空気は、インタークーラー7によって冷却される。
【0031】
吸気通路2には過給バルブ8が設けられている。過給バルブ8は一方向弁であり、過給が実施されている時に閉じるよう構成されている。このバルブ8により、コンプレッサ6によって圧縮された空気が、吸気通路2に逆流することが防止される。
【0032】
過給通路5が吸気通路2に連結する箇所には、過給圧(Pc)センサ9が設けられる。過給圧センサ9は、インタークーラー7から吸気通路2へ流れる空気の圧力、すなわち過給圧Pcを検出し、これをECU1に送る。
【0033】
吸気通路2にはスロットル弁11が設けられ、スロットル弁11の開度は、ECU1からの制御信号によって制御される。スロットル弁11の開度を制御することにより、エンジン10に吸入される空気量を制御することができる。スロットル弁開度センサ12は、スロットル弁11の開度を検出して、それをECU1に送る。
【0034】
チェンバ13には、吸気管圧力(Pb)センサ14が設けられている。吸気管圧力センサ14は、チェンバ13に充填された空気の圧力Pbを検出し、それをECU1に送る。
【0035】
エンジン10に連結された排気通路15には、触媒装置16が設けられる。触媒装置16は、排気通路15を通る排気ガス中のHC、CO、NOxなどの有害成分を浄化する。
【0036】
回転数(Ne)センサ17は、エンジン10のカム軸またはクランク軸の周辺に取り付けられる。回転数センサ17によって検出されたエンジン回転数NEは、ECU1に送られる。
【0037】
遊星歯車機構20は、サンギヤ21、複数のプラネタリギヤ22、およびリングギヤ23を備える。サンギヤ21は、エンジン10のクランク軸(駆動軸ともいう)18に補機ベルト19を介して連結され、クランク軸18の回転に従って回転する。
【0038】
プラネタリギヤ22のキャリアにはモータ・ジェネレータ24が連結される。モータ・ジェネレータ24は、電動機として動作するだけでなく、発電機としても動作することができる。モータ・ジェネレータ24は、ECU1によって生成されたモータ指令値を受け取り、該モータ指令値に従って、プラネタリギヤ22を駆動する。
【0039】
リングギヤ23にはコンプレッサ6が連結される。リングギヤ23の回転に従って、コンプレッサ6は回転する。
【0040】
発電機(ACG)25は、補機ベルト19を介してエンジン10に接続される。発電機25は、エンジン駆動軸を介して伝達されるエンジン駆動力によって駆動される。
【0041】
バッテリ(または、キャパシタ)26は、発電機25およびモータ・ジェネレータ24に接続される。モータ・ジェネレータ24は、発電機25および/またはバッテリ26から電力の供給を受けることができる。
【0042】
アクセルペダル開度センサ27は、アクセルペダルの開度APを検出し、それをECU1に送る。
【0043】
ECU1に向けて送られた信号は入力インターフェース1aに渡され、アナログ−デジタル変換される。CPU1bは、変換されたデジタル信号を、メモリ1cに格納されているプログラムに従って処理し、制御信号を生成する。出力インターフェース1dは、これらの制御信号を、モータ・ジェネレータ24、発電機25、およびその他のアクチュエータに送る。
【0044】
以下、「回転数を増やす」とは、単位時間あたりの回転数すなわち回転速度を増やすことを示し、「回転数を減らす」とは、単位時間あたりの回転数すなわち回転速度を減らすことを示す。
【0045】
図2の(a)は遊星歯車機構20の正面図、図2の(b)は遊星歯車機構20の断面図を概略的に示す。
【0046】
サンギヤ21は、エンジンのクランク軸18に連結されている。プラネタリギヤ22のキャリア28は、モータ・ジェネレータ24に連結されている。リングギヤ23は、コンプレッサ6に連結されている。キャリア28の回転により、プラネタリギヤ22は、サンギヤ21の周りを公転運動する。
【0047】
示されるプラネタリギヤ22の数は3個であるが、本発明はこの形態に限定されない。また、サンギヤ21とプラネタリギヤ22の直径がほぼ同じ大きさを持つように示されているが、本発明はこの形態に限定されない。
【0048】
サンギヤ21は、エンジンのクランク軸18の回転に従って回転する。モータ・ジェネレータ24によってキャリア28が駆動されていないとき、キャリア28は、サンギヤ21と同じ回転数で回転する。
【0049】
モータ・ジェネレータ24によって、キャリア28の回転数を制御することができる。モータ・ジェネレータ24が電動機として動作するとき、キャリア28を、エンジン回転数NEよりも高い回転数で回転させることができる。モータ・ジェネレータ24への電力供給量を増やすほど、キャリア28の回転数は増える。キャリア28の回転数が増えるほど、リングギヤ23すなわちコンプレッサ6の回転数は増える。
【0050】
一方、モータ・ジェネレータ24が発電機として動作するとき、キャリア28を、エンジン回転数NEよりも低い回転数で回転させることができる。モータ・ジェネレータ24からの発電量を増やすほど、キャリア28の回転数は減る。キャリア28の回転数が減るほど、リングギヤ23すなわちコンプレッサの回転数は減る。
【0051】
キャリア28の回転数をモータ・ジェネレータ24で制御することにより、リングギヤ23の回転数を、サンギヤ21の回転数とは独立して設定することができる。すなわち、コンプレッサ6の回転数を、ゼロから、エンジン回転数NEよりも高い回転数まで連続的に変化させることができる。こうして、エンジン回転数NEにかかわりなく、コンプレッサ6を、所望の過給圧が得られる回転数で回転させることができる。
【0052】
代替的に、エンジンの駆動軸をリングギヤに接続し、コンプレッサをサンギヤに接続してもよい。
【0053】
図3は、モータ・ジェネレータ24を駆動するための回路の一例である。モータ・ジェネレータ24は、たとえば三相の同期電動機であり、電機子31が設けられている。電機子31は、キャリア28(図2)に連結されている。
【0054】
インバータ33は電機子31に接続されている。インバータ33は、モータ・ジェネレータ24を電動機として動作させるときは、電機子31に三相交流を供給し、モータ・ジェネレータ24を発電機として動作させるときは、モータ・ジェネレータ24からの発電電流を整流する。整流された発電電流により、バッテリ26が充電される。
【0055】
モータ・ジェネレータ24は、さらに、界磁コイル32を備える。界磁コイル32には電流制御回路34が接続されており、電流制御回路34は、界磁コイル32に流す界磁電流を制御する。界磁電流により、磁界が形成される。
【0056】
モータ・ジェネレータ24を電動機として動作させるとき、ECU1は、インバータ33に、正の値を持つモータ指令値を送る。電流制御回路34は、所定の界磁電流を界磁コイル32に流し、磁界を形成する。インバータ33は、モータ指令値の大きさに従う電流を電機子31に供給する。該電機子電流により電機子31が回転し、これは、キャリア28を回転させる。電機子電流が大きいほど、キャリア28の回転数は増える。
【0057】
ECU1が、インバータ33および電流制御回路34に、ゼロ値を持つモータ指令値を送ると、モータ・ジェネレータ24の動作は停止する。すなわち、インバータ33は、電機子31への電流供給を停止し、電流制御回路34は、界磁コイル32への界磁電流の供給を停止する。電機子31すなわちキャリア28は、エンジン駆動軸の回転数すなわちエンジン回転数NEと同じ回転数で回転する。
【0058】
モータ・ジェネレータ24を発電機として動作させるとき、ECU1は、電流制御回路34に、負の値を持つモータ指令値を送る。電流制御回路34は、モータ指令値の絶対値の大きさに従う電流を界磁コイル32に供給する。モータ・ジェネレータ24からの発電電流はインバータ33により整流され、バッテリ26に充電される。
【0059】
電流制御回路34によって界磁コイル32に供給する界磁電流の大きさを調整することにより、モータ・ジェネレータ24からの発電量を制御することができる。エンジン駆動軸によって生成される回転(運動)エネルギーよりも、モータ・ジェネレータ24からバッテリ26に回生される電気エネルギーの方が大きければ、電機子31の回転は減速する。モータ・ジェネレータ24からの電気エネルギー(すなわち、モータ・ジェネレータ24の発電量)を大きくするほど、電機子31の回転にブレーキをかける力が大きくなり、よってキャリア28の回転数が減る。
【0060】
この図に示される、モータ・ジェネレータ24を駆動するための回路は一例であり、他の既知の回路を用いてモータ・ジェネレータ24を駆動することができる。
【0061】
代替的に、モータ・ジェネレータ24を発電機として動作させる場合、他の適切な手法で発電量を制御してもよい。例えば、電機子に位相制御された電流を供給することにより、発電電圧を制御する手法が知られている。
【0062】
この図にはバッテリ26のみが示されているが、図1に示されるように、モータ・ジェネレータ24には、エンジンに接続された発電機25からの電力も供給されることができる。
【0063】
以下の説明では、簡略化のため、インバータ33および電流制御回路34をモータ・ジェネレータ24に含まれる構成要素とみなし、モータ指令値は、ECU1からモータ・ジェネレータ24に宛てて送られるように説明する。
【0064】
本発明の過給機の動作の概要
図4は、本発明の一実施形態に従うエンジン制御において、運転手によって要求されるエンジン出力(エンジン駆動力とも呼ばれる)に対する各種パラメータの挙動を示す。エンジン回転数NEは、所定値に維持されていると仮定する。運転手によって要求されるエンジン出力は、典型的には、アクセルペダル開度APによって表される。
【0065】
第1の回生モードは、運転手によって要求されるエンジン出力がゼロ(すなわち、エンジン負荷が無い)からAP1までの間を示す。第1の回生モードでは、過給は実施されない。コンプレッサ6の回転数Ncがゼロになるようにモータ指令値が生成される。このモータ指令値は負の値を持ち、よってモータ・ジェネレータ24は発電機として動作する。モータ・ジェネレータ24からの電気エネルギーはバッテリ26に回生される。
【0066】
コンプレッサの回転数Ncをゼロにするには、エンジン駆動力によって生じる回転エネルギーを電気エネルギーで打ち消す必要がある。アクセルペダル開度APが小さいほどエンジン駆動力は小さく、よって結果として生じる回転エネルギーも小さい。回転エネルギーが小さいほど、キャリア28の回転にブレーキをかける力を小さくすることができる。こうして、モータ指令値の絶対値は、アクセルペダル開度APが小さいほど小さくなるように設定される。過給を実施しないので、過給圧センサ9によって検出される過給圧Pcは、ほぼ大気圧Paである。
【0067】
この実施形態では、自在バルブタイミング機構が採用されている。第1の回生モードでは、吸気バルブを閉じるバルブタイミングθvlvの遅閉じ量を調整することにより、エンジンへの吸入空気量Gcylを制御する。遅閉じ量が小さくなるほど(すなわち、バルブタイミングθvlvがBTCに向かうほど)、吸入空気量Gcylは大きくなる。スロットル弁11の開度は、全開、またはほぼ全開に近い値に設定される。
【0068】
通常のバルブタイミング機構では、典型的に、吸気行程が終了した時に吸気バルブが閉じられる。自在バルブタイミング機構では、吸気行程の後に実施される圧縮行程中に、吸気バルブを閉じる。遅閉じ量は、圧縮行程の開始(BTC)に対して、吸気バルブが閉じるタイミングがどの程度ずれているかを表す。
【0069】
遅閉じ量を変化させることにより、エンジンシリンダ内の空気の体積を変更することができる。シリンダ内の空気の圧力が一定であれば、エンジンへの吸入空気量は、シリンダ内の空気の体積に従って変化する。こうして、遅閉じ量を制御することにより、エンジンへの吸入空気量が調整される。自在バルブタイミング機構では、吸気管を負圧にする必要がないので、ポンピングロスを回避することができる。
【0070】
第2の回生モードは、要求されるエンジン出力がAP1〜AP2の間を示し、このモードでは、コンプレッサの回転数Ncがエンジン回転数NEより低く設定される。第2の回生モードでは過給が実施される。所望の過給圧Pcに対応するコンプレッサ回転数Ncが得られるように、モータ指令値が算出される。このモータ指令値は負の値を持ち、モータ・ジェネレータ24を発電機として動作させる。モータ・ジェネレータ24からの電気エネルギーはバッテリ26に回生される。
【0071】
モータ指令値の絶対値が小さくなるほど、発電量は小さくなり、よってコンプレッサの回転数Ncが上昇する。コンプレッサの回転数Ncが上昇するほど過給圧Pcは上昇し、よって吸入空気量Gcylが増える。第2の回生モードでは、バルブタイミングθvlvは、通常のタイミング(典型的には、吸気行程の終了時点で吸気バルブを閉じるタイミング)に戻される。
【0072】
アクセルペダル開度がAP2のとき、モータ指令値はゼロに設定される。前述したように、モータ・ジェネレータ24の動作は停止し、エンジンの駆動力によりコンプレッサ6は回転される。コンプレッサの回転数Ncは、エンジン回転数NEと同じである。
【0073】
アシストモードは、要求されるエンジン出力がAP2よりも大きい場合を示し、このモードでは、コンプレッサの回転数Ncがエンジン回転数NEより高く設定される。アシストモードにおいては、所望の過給圧Pcに対応するコンプレッサ回転数Ncが得られるように、モータ指令値が算出される。このモータ指令値は正の値を持ち、モータ・ジェネレータ24を電動機として動作させる。モータ指令値の絶対値が大きくなるほど、コンプレッサの回転数Ncは上昇する。コンプレッサの回転数Ncが上昇するほど過給圧Pcが上昇し、よって吸入空気量Gcylが増える。
【0074】
代替的に、自在バルブタイミング機構に代えて他のバルブタイミング機構を用いてもよい。
【0075】
図5の(a)は、上記の第1および第2の回生モード(以下、単に回生モードと呼ぶ)におけるエネルギーの流れを示し、図5の(b)は、該回生モードにおける遊星歯車機構20の各ギヤの回転数を相対的に示す。矢印41は、エンジンの駆動力を示す。回生モードは、エンジンの負荷が低い時(たとえば、アクセルペダル開度APが小さい時)に実施される。
【0076】
モータ・ジェネレータ24は、エンジンの駆動力41によって発電機として動作する。モータ・ジェネレータ24からの電気エネルギーは、矢印42に示されるように、バッテリ26に回生される。
【0077】
モータ・ジェネレータ24により生成される電気エネルギーが、エンジン駆動力41により生成される回転エネルギーよりも大きいと、キャリア28の回転数はエンジン回転数NE(すなわち、サンギヤ21の回転数)に対して減っていく。モータ・ジェネレータ24の発電量を増やすにつれ、キャリア28の回転数は減る。キャリア28の回転数が減るほど、リングギヤ23の回転数は減る。リングギヤ23の回転数が減るほど、コンプレッサ6の回転数が減り、低圧な過給が実施される。モータ・ジェネレータ24の発電量を制御することにより、コンプレッサ6の回転を停止して、過給を停止することもできる。
【0078】
バッテリ26には、矢印43に示されるように、車両に予め設けられた発電機25からの電力が充電される。しかしながら、モータ・ジェネレータ24からの電気エネルギーをバッテリ26に回生することにより、発電機25からバッテリ26への充電を取り除くこともできる。
【0079】
こうして、エンジンの負荷が低い時には、モータ・ジェネレータ24を発電機として動作させて、回生エネルギーをバッテリ26に送る。無駄な過給が行われないので、エンジン出力のロスを低減することができる。バッテリ26に充電される回生エネルギーを他の電子機器に用いることができるので、エネルギー効率を向上させることができる。
【0080】
図6の(a)は、アシストモードにおけるエネルギーの流れを示し、図6の(b)は、アシストモードにおける遊星歯車機構20の各ギヤの回転数を相対的に示す。矢印41はエンジンの駆動力を示す。この図に示される形態は、たとえば、エンジン回転数NEは低いが、エンジンの負荷が高い時に実施される。
【0081】
モータ・ジェネレータ24は、矢印44に示されるように、発電機25から電力供給を受けて電動機として動作する。モータ・ジェネレータ24への電力供給量を制御することにより、キャリア28の回転数をエンジン回転数NE(すなわち、サンギヤ21の回転数)よりも高くすることができる。モータ・ジェネレータ24への電力供給量を増やすほど、キャリア28の回転数が増える。キャリア28の回転数が増えるほど、リングギヤ23の回転数が増える。リングギヤ23の回転数が増えるほど、コンプレッサ6の回転数が増え、高圧な過給が実施される。
【0082】
バッテリ26には、矢印45に示されるように、発電機25からの電力を充電することができる。
【0083】
こうして、エンジンの負荷が高い時には、モータ・ジェネレータ24を電動機として動作させて、高圧な過給を実施することができる。エンジン回転数が低い場合でも、過給圧不足を招くおそれがない。
【0084】
エンジン回転数が高いときは、より多量の空気をシリンダに吸入する必要がある。多量の過給を実施するために、コンプレッサの回転数Ncをさらに高める必要がある。このような場合には、モータ・ジェネレータ24に、発電機25およびバッテリ26の両方から電力を供給するようにしてもよい。モータ・ジェネレータ24への電力供給量をさらに増やして、高圧かつ多量の過給を実施することができる。
【0085】
図7の(a)は、アシストモードにおいてエンジンの負荷が非常に高い時のエネルギーの流れを示し、図7の(b)は、アシストモードにおいてエンジンの負荷が非常に高い時の遊星歯車機構20の各ギヤの回転数を相対的に示す。たとえば、アクセルペダル開度が全開またはほぼ全開に近いときに、この形態は採用される。
【0086】
高圧および多量の過給を実施するために、コンプレッサの回転数Ncをさらに高める必要がある。発電機25の動作を停止して、発電機25を稼働させるのに必要なエンジン出力のロスを取り除く。モータ・ジェネレータ24には、矢印46に示されるように、バッテリ26のみから電力が供給される。発電機25にエンジン出力が消費されないので、最大の過給能力を得ることができる。この形態は、コンプレッサの過給能力を一時的に最大にする場合などに有効である。
【0087】
他の実施形態では、大容量のエネルギーストレージ手段として、たとえばNi−MH(ニッケル水素)バッテリまたはリチウムイオンバッテリのようなバッテリが用いられる。このようなバッテリを用いれば、回生モードにおいてモータ・ジェネレータからの電気エネルギーを回生することができない事態を回避することができ、アシストモードにおいて所望の過給を実施するのに十分な電力を該バッテリから引き出すことができる。このようなバッテリを用いれば、発電機25を取り除くこともできる。
【0088】
制御フロー
図8は、本発明の一実施形態に従う、エンジン制御のメインルーチンを示す。該ルーチンは、典型的には、ECU1のメモリ1cに格納されたプログラムにより実施される。該ルーチンは、所定の時間間隔で繰り返し実行される。
【0089】
ステップS101において、過給圧制御ルーチン(図9)を実施し、モータ・ジェネレータ24を駆動するためのモータ指令値を算出する。ステップS102において、ACG制御ルーチン(図10)を実施し、発電機25に対する制御信号を生成する。該制御信号に応じて、発電機25はON/OFFされる。
【0090】
ステップS103において、シリンダに吸入される空気量Gcylを、式(1)に従って算出する。ここで、Gthは、エアフローメータ4(図1)によって検出された値を示す。Pbは、吸気管圧力センサ14(図1)によって検出された値を示す。Vbは、吸気管の体積(m)を示す。Tbは、吸気管の温度(K)を示す。Rは、気体定数である。
【0091】
【数1】
Figure 2004360487
【0092】
ステップS104において、吸気バルブを閉じるタイミングθvlvを算出する。この算出は、予めメモリに記憶されたマップを、アクセルペダル開度APに基づいて参照することにより実施することができる。図12に、該マップの一例を示す。アクセルペダル開度AP1は、図4に示されるものと同じであり、第1の回生モードから第2の回生モードへ切り換えられるアクセルペダル開度を表す。アクセルペダル開度がAP1以下ならば、吸入空気量は、バルブタイミングθvlvによって制御される。
【0093】
ステップS105において、スロットル制御ルーチン(図11)を実施し、スロットル弁の開度THを算出する。ステップS106において、燃料噴射制御を実施し、燃料噴射時間を算出する。ステップS107において、点火時期制御を実施し、算出された燃料噴射時間に基づいて点火時期を算出する。燃料噴射制御および点火時期制御は、従来から行われている任意の適切な制御を用いて実現されることができ、詳細な説明は省略する。
【0094】
図9は、過給圧制御ルーチンを示す。ステップS111において、アクセルペダル開度センサ27(図1)によって検出されたアクセルペダル開度APおよびエンジン回転数センサ17(図1)によって検出されたエンジン回転数NEに基づいてマップを参照し、目標過給圧Pc_cmdを算出する。
【0095】
該マップの一例を、図13に示す。アクセルペダル開度AP1は、図4に示されるAP1に対応する。アクセルペダル開度がAP1以下のときは、過給圧制御が実施されないので、目標過給圧Pc_cmdは一定値(たとえば、大気圧Pa)に維持される。アクセルペダル開度がAP1を超えると、過給圧制御が実施される。アクセルペダル開度APが大きくなるにつれ、目標過給圧Pc_cmdは増やされる。また、エンジン回転数NEが高くなるほど、目標過給圧Pc_cmdは増やされる。これは、エンジン回転数NEが高いほど、多量の空気を過給する必要があるからである。
【0096】
ステップS112において、モータ指令値の基準値Mcmd_baseを、アクセルペダル開度センサ27によって検出されたアクセルペダルの開度APおよびエンジン回転数センサ17によって検出されたエンジン回転数NEに基づいてマップを参照することにより算出する。
【0097】
該マップの一例を、図14に示す。アクセルペダル開度AP1およびAP2は、図4に示されるAP1およびAP2に対応し、第1の回生モードから第2の回生モードへ切り換えられるアクセルペダル開度および第2の回生モードからアシストモードに切り換えられるアクセルペダル開度をそれぞれ表す。アクセルペダル開度がゼロからAP2までは、基準モータ指令値Mcmd_baseは負の値に設定され、これは、モータ・ジェネレータ24を発電機として動作させる。基準モータ指令値の絶対値が大きいほど発電量が多くなり、よってコンプレッサ6の回転にブレーキをかける力が大きくなる。ブレーキ力が大きくなるほど、コンプレッサ6の回転は減速する。
【0098】
アクセルペダル開度がAP2を超えると、基準モータ指令値Mcmd_baseは正の値に設定され、これは、モータ・ジェネレータ24を電動機として動作させる。基準モータ指令値の絶対値が大きいほど、モータ・ジェネレータ24への電力供給量が増え、よってコンプレッサ6の回転が増速する。
【0099】
ステップS113において、応答指定型制御を実施し、今回のサイクルでモータ・ジェネレータ24に供給すべきモータ指令値Mcmd(k)を、式(2)に従って算出する。応答指定型制御を実施することにより、過給圧Pcを、オーバーシュートを生じさせることなく目標過給圧Pc_cmdに収束させることができる。kは、サイクルを識別する識別子である。
【0100】
【数2】
Figure 2004360487
【0101】
応答指定型制御は、制御量(ここでは、過給圧Pcと目標値Pc_cmdとの偏差e)の目標値(ここでは、ゼロ)への収束応答を指定することができる制御である。応答指定型制御は、制御量eをゼロに収束させることにより、過給圧Pcを目標値Pc_cmdに収束させる。
【0102】
応答指定型制御では切り換え関数σが設定される。POLEは切換関数σの設定パラメータであり、偏差eの収束速度を規定する。POLEは、好ましくは、−1<POLE<0を満たすよう設定される。
【0103】
切換関数σ(k)=0とした式は等価入力系と呼ばれ、偏差eの収束特性を規定する。σ(k)=0とすると、式(3)の切り換え関数σは式(5)のように表されることができる。
【0104】
【数3】
Figure 2004360487
【0105】
ここで、図15を参照して、切り換え関数について説明する。縦軸がe(k)および横軸がe(k−1)の位相平面上に、式(5)の切り換え関数σが、線51で表現されている。この線51を切換直線と呼ぶ。e(k−1)およびe(k)の組合せからなる状態量(e(k−1), e(k))の初期値が、点52で表されているとする。応答指定型制御は、点52で表される状態量を、切換直線51上に載せて該直線51上に拘束するよう動作する。
【0106】
応答指定型制御によると、状態量を切換直線51上に保持することにより、該状態量を、外乱等の影響されることなく、極めて安定的に位相平面上の原点0に収束させることができる。言い換えると、状態量(e(k−1),e(k))を、式(5)に示される入力の無い安定系に拘束することにより、外乱およびモデル化誤差に対してロバストに、過給圧Pcを目標過給圧Pc_cmdに収束させることができる。
【0107】
この実施例では、切換関数σに関する位相空間が2次元であるので、切換直線は直線51で表される。位相空間が3次元である場合には、切換直線は平面で表され、位相空間が4次元以上になると、切換直線は超平面となる。
【0108】
設定パラメータPOLEは、可変に設定することができる。設定パラメータPOLEを調整することにより、偏差eの収束(減衰)特性を指定することができる。
【0109】
図16は、応答指定型制御の応答指定特性の一例を示す。グラフ53は、POLEの値が“−1”である場合を示し、グラフ54はPOLEの値が“−0.8”である場合を示し、グラフ55はPOLEの値が“−0.5”である場合を示す。グラフ53〜55から明らかなように、POLEの絶対値を小さくするほど、収束速度が速くなる。
【0110】
式(2)の第2項(切換関数σの比例項)は、状態量を切換直線上に載せるための到達則入力を表す。第3項(切換関数σの積分項)は、モデル化誤差および外乱を抑制しつつ、状態量を切換直線に載せるための適応則入力を表す。KrchおよびKadpはフィードバック係数を表しており、例えばシミュレーションに従って決定することができる。
【0111】
こうして、過給圧Pcが、指定された速度で目標値Pc_cmdに収束するように、モータ指令値Mcmdが算出される。
【0112】
図9に戻り、ステップS114において、算出されたモータ指令値Mcmdとゼロを比較する。モータ指令値Mcmdがゼロより大きければ、モータ指令値Mcmdによって示される量の電力をモータ・ジェネレータ24に供給し、モータ・ジェネレータ24を電動機として動作させる(S115)。モータ指令値Mcmdがゼロより小さければ、バッテリ26の残量が100%かどうかを調べる(S116)。バッテリの残量が100%でなければ、モータ・ジェネレータ24からの電気エネルギーをバッテリ26に回生することができる。したがって、モータ指令値Mcmdによって示される量の発電が行われるように、モータ・ジェネレータ24を発電機として動作させる(S117)。
【0113】
ステップS114において、モータ指令値Mcmdがゼロならば、ゼロのモータ指令値Mcmdをモータ・ジェネレータ24に供給する(S118)。
【0114】
ステップS116において、バッテリの残量が100%ならば、モータ・ジェネレータ24からの電気エネルギーをバッテリ26に回生することができない。この場合には、モータ指令値Mcmdにゼロを設定する(S118)。
【0115】
図3を参照して前述したように、モータ指令値Mcmdがゼロのとき、エンジン駆動力によってコンプレッサ6が回転する。モータ・ジェネレータ24は動作を停止しているので、制御されない過給が実施される。このような状態において、エンジンへの吸入空気量はスロットル制御により実施され、これについては、後述する(図11)。
【0116】
代替的に、ステップS113における応答指定型制御を実施しなくてもよい。その場合、ステップS112でマップから求められた基準モータ指令値が、モータ・ジェネレータ24を駆動するためのモータ指令値として使用される。
【0117】
図10は、ACG制御ルーチンを示す。ステップS121において、バッテリ26の残量が、所定値(たとえば、30%)より低いかどうかを調べる。ステップS121の判断がYesならば、バッテリ26の残量が不十分であることを示す。ステップS122に進み、発電機25の稼働に必要なエンジン出力を得るため、吸入空気量の増し分Gcyl_acgに所定値(例えば、2g/sec)を設定する。ステップS123において、発電機25を動作させる。このように、バッテリ26の残量が不十分な時は発電機25を起動させて、発電機25からの電力がバッテリ26に充電されるようにする。発電機25は、エンジン出力によって駆動される。このエンジン出力のロスを補償するため、エンジンに吸入すべき空気量をGcyl_acgだけ増やす。
【0118】
ステップS121において、バッテリの残量が十分ならば、ステップS124に進む。ステップS124において、モータ指令値Mcmdと、所定値(例えば、1kw)とを比較し、モータ・ジェネレータ24への電力供給量(すなわち、アシスト量)の大きさを調べる。モータ・ジェネレータ24への電力供給量が所定値より小さければ、バッテリ26からの電力でモータ・ジェネレータ24を駆動することができる。ステップS126に進み、吸入空気量の増し分Gcyl_acgをゼロに設定し、発電機25を停止する(S127)。
【0119】
ステップS124において、モータ・ジェネレータ24への電力供給量が所定値以上ならば、アクセルペダル開度APの大きさを調べる(S125)。アクセルペダル開度APが所定値(全開または全開に近い値であり、たとえば80%)未満ならば、運転手によって要求されるエンジン出力がそれほど大きくない(エンジン負荷がそれほど大きくない)状態を示す。この状態は図6に対応し、モータ・ジェネレータ24を駆動するのに発電機25を用いる。吸入空気量の増し分Gcyl_acgに所定値(たとえば、2g/sec)を設定し、発電機25の稼働に必要なエンジン出力を補償する(S122)。ステップS123において、発電機25を動作させる。
【0120】
ステップS125においてアクセルペダル開度APが上記所定値以上ならば、運転手によって要求されるエンジン出力が非常に大きい(エンジン負荷が非常に大きい)状態を示す。この状態は図7に対応する。モータ・ジェネレータ24を最大限に駆動することができるようにするため、発電機25にエンジン出力を消費しないようにする。吸入空気量の増し分Gcyl_acgをゼロに設定し(S126)、発電機25を停止する(S127)。モータ・ジェネレータ24は、バッテリ26からの電力によってのみ駆動される。
【0121】
モータ・ジェネレータ24への電力供給によってバッテリ26の残量が所定値(たとえば、30%)より低くなった時には、次にこのルーチンを実行したときにステップS121の判断がYesとなる。ステップS122およびS123に示されるように、発電機25が起動されてバッテリ26の充電が開始される。
【0122】
モータ指令値が負の値を持つ場合、前述したように、モータ指令値に対応する量の発電が行われ、これが電気エネルギーとしてバッテリ26に送られる。モータ指令値に、発電機25の稼働に必要なエネルギーを加算して、モータ・ジェネレータ24の発電量を増やすことができる。たとえば、モータ指令値が“−α”であり、発電機25の稼働に必要なエネルギーが3kwであるとき、“−α−3”をモータ指令値に設定する。こうして、発電機25の稼働に必要なエネルギーを、モータ・ジェネレータ24の発電によって生成することができる。
【0123】
また、発電機25に何らかの故障が生じたときに、他の電子機器の稼働に必要な電力をモータ・ジェネレータ24が発電するように、モータ指令値を操作してもよい。
【0124】
図11は、スロットル制御ルーチンを示す。ステップS131において、過給システムが正常かどうかを判断する。過給システムは、図1に参照番号30によって示されている。該過給システムに、モータ・ジェネレータ24を制御する制御ユニット1を含めてもよい。適切な任意の故障検出手法を用いて、過給システムが正常かどうかを判断することができる。
【0125】
ステップS132において、自在バルブタイミング機構が正常かどうかを判断する。適切な任意の故障検出手法を用いて、自在バルブタイミング機構が正常かどうかを判断することができる。
【0126】
過給システムまたは自在バルブタイミング機構に何らかの故障が生じていれば、フェイルセーフ用のマップを参照して、基準目標吸気量Gcyl_cmd_baseを算出する。基準目標吸気量Gcyl_cmd_baseは、回転数センサ17によって検出されたエンジン回転数NEおよびアクセルペダル開度センサ27によって検出されたアクセルペダル開度APに基づいて取得される(S133)。図17は、該マップの一例を示す。
【0127】
一方、過給システムおよび自在バルブタイミング機構の両方が正常ならば、正常状態用のマップを用いて、基準目標吸気量Gcyl_cmd_baseを取得する(S134)。図18は、該マップの一例を示す。
【0128】
正常状態用のマップとフェイルセーフ用のマップとを比較して明らかなように、フェイルセーフ時には、エンジン出力が抑制されるように、基準目標吸気量が所定値を超えないように設定される。
【0129】
ステップS135において、式(6)に従い、目標吸気量を算出する。Gcyl_acg(図10のステップS122およびS126で算出されている)が、発電機に消費されるエンジン出力を補償するために加算される。
【0130】
【数4】
Figure 2004360487
【0131】
ステップS136において、スロットル弁11(図1)の開度THを、式(7)に従って算出する。スロットル弁の開度THは、応答指定型制御を用いて算出される。応答指定型制御は、図15および図16を参照して前述した。σ’は切り換え関数を示しており、POLE’は切り換え関数σ’の設定パラメータである。Krch’およびKadp’は、フィードバック係数を示しており、シミュレータ等で予め決められる。応答指定型制御により、シリンダに吸入される空気量Gcylが目標吸気量Gcyl_cmdに収束するように(すなわち、偏差e’がゼロに収束するように)、スロットル弁の開度THが決定される。応答指定型制御を用いれば、吸入空気量Gcylを、オーバーシュートを生じさせることなく目標吸気量に収束させることができる。
【0132】
【数5】
Figure 2004360487
【0133】
図4を参照して説明したように、スロットル弁の開度THは、過給圧制御および自在バルブタイミング機構の遅閉じ量により、通常は、全開またはほぼ全開の値に制御される。吸入空気量Gcylが基準目標吸気量Gcyl_cmd_baseに一致するように、遅閉じ量が設定され、また過給圧制御が実施される。
【0134】
しかしながら、図9のステップS118に示されるように、過給圧制御が実施されないような場合には、このスロットル制御により、シリンダへの吸入空気量が調整される。
【0135】
さらに、コンプレッサによる空気の圧縮作用に起因して、過給圧の目標過給圧に対する応答には遅れが存在する。この遅れにより、要求されるエンジン出力を高精度に実現することが困難なことがある。スロットル制御を実施することにより、エンジンへの吸入空気量Gcylを目標吸気量Gcyl_cmdに良好な精度で追従させることができる。こうして、過給圧制御では対処しきれなかったエンジン吸入空気量の微調整を、スロットル制御により補償することができる。
【0136】
第2の実施形態に従う過給機
これまで述べてきた実施形態における過給機を、本発明の第1の実施形態に従う過給機とすると、本発明の第2の実施形態に従う過給機では、モータ・ジェネレータ24とコンプレッサ6の間に一方向(ワンウェイ)クラッチ36が設けられる。図19の(a)は、第2の実施形態に従う過給機を用いた場合の、回生モードにおけるエネルギーの流れを示し、図19の(b)は、第2の実施形態に従う過給機を用いた場合の、遊星歯車機構20の各ギヤの回転数を相対的に示す。一方向クラッチ36は、コンプレッサ6の一方向への回転は許容し、他の方向への回転はロックする。一方向クラッチ36により、コンプレッサ6の逆回転を防止することができる。
【0137】
前述したように、回生モードでは、モータ・ジェネレータ24の発電量が大きくなるほど、コンプレッサ6の回転にブレーキをかける力が大きくなる。発電量が過大になると、コンプレッサ6が逆回転するおそれがある。一方向クラッチ36を設ければ、このような逆回転を防止することができる。
【0138】
図20は、第2の実施形態において用いることのできる、基準モータ指令値Mcmd_baseを算出するためのマップである。図14と比較して明らかなように、このマップでは、第1の回生モード(アクセルペダル開度APがゼロからAP1まで)において、アクセルペダル開度APが小さくなるほど、基準モータ指令値Mcmd_baseの絶対値が大きくなる。これは、一方向クラッチ36の作用により、発電量を大きくしてもコンプレッサ6の逆回転を防止することができるからである。
【0139】
こうして、一方向クラッチ36を設けることで、コンプレッサ6の逆回転を防止しつつ、モータ・ジェネレータ24の発電量を大きくすることができる。例えば、バッテリ26が十分に充電されるように、発電量を高めることができる。
【0140】
モータ指令値Mcmdを算出するのに、応答指定型制御を実施しなくてもよいことについては前述した。しかしながら、第1の実施形態に従う過給機について応答指定型制御を実施すれば、図20に示されるようなマップを用いてもよい。応答指定型制御によって算出されるモータ指令値Mcmdは、図14に追従するような値を取ることができるからである。すなわち、第1の回生モードにおいて、アクセルペダル開度APが小さくなるほど、算出されるモータ指令値Mcmdの絶対値が小さくなる。これは、応答指定型制御が、過給圧Pcを目標過給圧Pc_cmdに到達させるようモータ指令値Mcmdを算出するからである。
【0141】
図21は、本発明に従う過給機の効果を示す図である。この効果は、第1および第2の実施形態のいずれでも得ることができる。参照番号61は、従来のターボチャージャの、回転数NEに対するエンジントルクを示す。参照番号62は、従来のスーパーチャージャの、回転数NEに対するエンジントルクを示す。参照番号63は、本願発明に従う過給機の、回転数NEに対するエンジントルクを示す。
【0142】
従来技術の欄で述べたように、エンジン回転数NEが低いとき、従来のターボチャージャは過給圧不足を招く。本願発明の過給機では、コンプレッサの回転数を、エンジン回転数とは独立して制御することができるので、このような過給圧不足を防ぐことができる。エンジン回転数が低くても、高いエンジントルクを生成することができる。図に示されるのは一例であり、矢印71に示されるように、さらに高いエンジントルクを生成するようモータ・ジェネレータ24を駆動することができる。
【0143】
従来技術の欄で述べたように、従来のスーパーチャージャでは、駆動ロスのために、エンジン回転数が上昇しても十分なエンジン出力を得られないことがある。また、エンジン回転数が高い時における駆動ロスや無駄な過給仕事を減らすために小型のコンプレッサを用いると、コンプレッサの回転数低下により、エンジン回転数が低い時に十分な過給効果を得られないことがある。本願発明の過給機では、コンプレッサの回転数を、エンジン回転数とは独立して制御することができるので、低いエンジン回転数から高い回転数にわたって、適切な過給圧を生成することができる。
【0144】
本願発明によれば、矢印72に示されるように、モータ・ジェネレータ24を発電機として動作させることにより、電気エネルギーを回生しながら、過給圧を所望のレベルにまで連続的に低めることができ、または過給を停止することもできる。矢印73に示されるように、モータ・ジェネレータ24を電動機として動作させることにより、過給圧を所望のレベルにまで連続的に高めることができる。本願発明の過給機によれば、高いエネルギー効率を維持しながら、必要とされるエンジン出力を、任意のエンジン回転数で得ることができる。
【0145】
本発明は、クランク軸を鉛直方向とした船外機などのような船舶推進機用エンジンにも適用が可能である。
【図面の簡単な説明】
【図1】この発明の一実施例に従う、内燃機関、過給機および制御装置を概略的に示す図。
【図2】この発明の一実施例に従う、遊星歯車機構の構成を概略的に示す図。
【図3】この発明の一実施例に従う、モータ・ジェネレータを駆動するための機構を概略的に示す図。
【図4】この発明の一実施例に従う、エンジン負荷に対する各種パラメータの変化を示す図。
【図5】この発明の一実施例に従う、回生モードにおけるエネルギーの流れおよび遊星歯車機構の各ギヤの回転数を示す図。
【図6】この発明の一実施例に従う、アシストモードにおけるエネルギーの流れおよび遊星歯車機構の各ギヤの回転数を示す図。
【図7】この発明の一実施例に従う、アシストモードで最大の過給を得るときの、エネルギーの流れおよび遊星歯車機構の各ギヤの回転数を示す図。
【図8】この発明の一実施例に従う、エンジン制御のメインルーチンを示す図。
【図9】この発明の一実施例に従う、過給圧制御のフローチャート。
【図10】この発明の一実施例に従う、発電機(ACG)制御のフローチャート。
【図11】この発明の一実施例に従う、スロットル制御のフローチャート。
【図12】この発明の一実施例に従う、アクセルペダル開度に応じたバルブタイミングを示すテーブル。
【図13】この発明の一実施例に従う、アクセルペダル開度に応じた目標過給圧を示すテーブル。
【図14】この発明の一実施例に従う、アクセルペダル開度に応じた基準モータ指令値を示すテーブル。
【図15】この発明の一実施例に従う、応答指定型制御における切り換え関数を示す図。
【図16】この発明の一実施例に従う、切り換え関数の設定パラメータの値に応じた収束速度を示す図。
【図17】この発明の一実施例に従う、フェイルモード用の、アクセルペダル開度に応じた基準目標吸気量を示すテーブル。
【図18】この発明の一実施例に従う、正常モード用の、アクセルペダル開度に応じた基準目標吸気量を示すテーブル。
【図19】この発明の他の実施例に従う、過給機の構成を示す図。
【図20】この発明の他の実施例に従う、アクセルペダル開度に応じた基準モータ指令値を示すテーブル。
【図21】この発明の一実施例に従う過給機の効果を示す図。
【符号の説明】
1 ECU
2 吸気管
6 コンプレッサ
10 エンジン
18 クランク軸
20 遊星歯車機構
21 サンギヤ
22 プラネタリギヤ
23 リングギヤ
24 モータ・ジェネレータ
25 発電機
26 バッテリ
28 プラネタリキャリア

Claims (13)

  1. エンジンの過給機であって、
    モータ・ジェネレータと、
    前記エンジンの吸気系に配置されたコンプレッサと、
    前記エンジンの駆動軸に接続された第1のギヤ、前記モータ・ジェネレータに接続された第2のギヤ、および前記コンプレッサに接続された第3のギヤを有する遊星歯車機構と、
    前記モータ・ジェネレータを駆動して、前記第2のギヤの回転数を制御する制御ユニットと、を備え、
    前記第2のギヤの回転数の制御により、前記コンプレッサの回転数を、前記エンジンの回転数から独立して制御可能なようにする、エンジンの過給機。
  2. 前記第2のギヤはプラネタリギヤであり、前記モータ・ジェネレータは、該第2のギヤの前記第1のギヤに対する公転運動を規定するキャリアに接続される、請求項1に記載のエンジンの過給機。
  3. 前記第1のギヤはサンギヤであり、前記第3のギヤはリングギヤである、請求項1または2に記載のエンジンの過給機。
  4. 前記制御ユニットは、前記エンジンに要求される駆動力が所定値より大きいとき、前記エンジンの回転数よりも高い回転数で前記コンプレッサを回転させるよう前記モータ・ジェネレータを駆動する、請求項1から請求項3のいずれかに記載のエンジンの過給機。
  5. 前記制御ユニットは、前記エンジンに要求される駆動力が所定値より小さいとき、前記エンジンの回転数よりも低い回転数で前記コンプレッサを回転させるよう、または該コンプレッサの回転を停止するよう前記モータ・ジェネレータを駆動する、請求項1から請求項3のいずれかに記載のエンジンの過給機。
  6. 前記制御ユニットは、前記エンジンの回転数よりも高い回転数で前記コンプレッサを回転させるとき、前記モータ・ジェネレータを電動機として駆動し、前記エンジンの回転数よりも低い回転数で前記コンプレッサを回転させるとき、前記モータ・ジェネレータを発電機として駆動する、請求項1から請求項3のいずれかに記載のエンジンの過給機。
  7. さらに、前記エンジンに接続された発電機を備え、
    前記制御ユニットは、前記モータ・ジェネレータを電動機として駆動するとき、該発電機からの電力を前記モータ・ジェネレータに供給する、請求項6に記載のエンジンの過給機。
  8. 前記制御ユニットは、アクセルペダルが全開またはほぼ全開のとき、前記発電機の動作を停止する、請求項7に記載のエンジンの過給機。
  9. 前記制御ユニットは、さらに、前記モータ・ジェネレータを発電機として駆動するとき、該モータ・ジェネレータからの発電量を制御する手段をさらに備える、請求項6に記載のエンジンの過給機。
  10. 前記制御ユニットは、さらに、応答指定型制御を実施して、過給圧を目標値に収束させるように、前記モータ・ジェネレータを駆動するためのモータ指令値を生成する、請求項1に記載のエンジンの過給機。
  11. 前記制御ユニットは、さらに、前記エンジンへの吸入空気量を、前記吸気系に設けられたスロットル弁の開度を調整することによって制御する、請求項1に記載のエンジンの過給機。
  12. 前記制御ユニットは、さらに、応答指定型制御を実施して、前記エンジンへの吸入空気量を目標値に収束させるように、前記スロットル弁の開度を算出する、請求項11に記載のエンジンの過給機。
  13. さらに、前記モータ・ジェネレータと前記コンプレッサの間に一方向クラッチを備える、請求項1に記載のエンジンの過給機。
JP2003156554A 2003-06-02 2003-06-02 遊星歯車機構を備えた過給機 Pending JP2004360487A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003156554A JP2004360487A (ja) 2003-06-02 2003-06-02 遊星歯車機構を備えた過給機
US10/838,528 US7000601B2 (en) 2003-06-02 2004-05-05 Supercharger with a planetary gear mechanism
DE102004025929A DE102004025929A1 (de) 2003-06-02 2004-05-27 Lader mit Planetengetriebe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156554A JP2004360487A (ja) 2003-06-02 2003-06-02 遊星歯車機構を備えた過給機

Publications (1)

Publication Number Publication Date
JP2004360487A true JP2004360487A (ja) 2004-12-24

Family

ID=33447923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156554A Pending JP2004360487A (ja) 2003-06-02 2003-06-02 遊星歯車機構を備えた過給機

Country Status (3)

Country Link
US (1) US7000601B2 (ja)
JP (1) JP2004360487A (ja)
DE (1) DE102004025929A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231798A (ja) * 2006-02-28 2007-09-13 Toyota Motor Corp 内燃機関の制御装置
JP2010209850A (ja) * 2009-03-11 2010-09-24 Toyota Motor Corp 過給制御装置
US8087401B2 (en) 2007-07-18 2012-01-03 Mitsubishi Electric Corporation Automotive supercharging apparatus
JP2015514624A (ja) * 2012-03-29 2015-05-21 イートン コーポレーションEaton Corporation 可変速度式ハイブリッド電気スーパーチャージャーアセンブリを用いた電気エネルギの生成
JP2015132228A (ja) * 2014-01-15 2015-07-23 本田技研工業株式会社 内燃機関
JP2016522344A (ja) * 2013-04-17 2016-07-28 ヴァレオ システム ドゥ コントロール モトゥール 熱機関過給用の電動コンプレッサの制御方法
US20160237880A1 (en) * 2013-10-28 2016-08-18 Eaton Corporation Boost system including turbo and hybrid drive supercharger
JP2017015001A (ja) * 2015-07-01 2017-01-19 トヨタ自動車株式会社 内燃機関の制御装置
JP2017180158A (ja) * 2016-03-29 2017-10-05 いすゞ自動車株式会社 内燃機関システム
JP2017180159A (ja) * 2016-03-29 2017-10-05 いすゞ自動車株式会社 内燃機関システム
JP2019124158A (ja) * 2018-01-16 2019-07-25 いすゞ自動車株式会社 車両の回生発電システム

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6769411B2 (en) * 2002-09-23 2004-08-03 Sandor C. Fabiani Nozzle air injection system for a fuel-injected engine
WO2004072449A1 (en) * 2003-02-17 2004-08-26 Drivetec (Uk) Limited Automotive air blowers
US20070051348A1 (en) * 2003-04-21 2007-03-08 Presusse Indian (P) :Td Centrifugal engine charger driven by combined gearing system for multi speed operation and a method of power transmission
JP4562509B2 (ja) * 2004-12-10 2010-10-13 本田技研工業株式会社 トランスミッション
US7174714B2 (en) * 2004-12-13 2007-02-13 Caterpillar Inc Electric turbocompound control system
US20080121218A1 (en) * 2004-12-13 2008-05-29 Caterpillar Inc. Electric turbocompound control system
US20060137664A1 (en) * 2004-12-23 2006-06-29 Mccoy Todd A Supercharger
US20060180130A1 (en) * 2005-02-14 2006-08-17 St James David Motor assisted mechanical supercharging system
GB0511965D0 (en) * 2005-06-13 2005-07-20 Drivetec Uk Ltd Vehicle propulsion systems
US7748366B2 (en) * 2005-12-08 2010-07-06 Ford Global Technologies, Llc Electronic throttle control supercharging
US20070137626A1 (en) * 2005-12-21 2007-06-21 David Turner Engine supercharging system
US20070137197A1 (en) * 2005-12-21 2007-06-21 David Turner Engine supercharging system
US7621126B2 (en) * 2006-04-05 2009-11-24 Ford Global Technoloigies, LLC Method for controlling cylinder air charge for a turbo charged engine having variable event valve actuators
US7524263B2 (en) * 2006-07-13 2009-04-28 Caterpillar Inc. Powertrain with powersplit pump input and method of use thereof
GB0616127D0 (en) 2006-08-14 2006-09-20 Nexxtdrive Ltd A method of operating a supercharger
US20100083655A1 (en) * 2006-09-29 2010-04-08 Frederick Mark S Turbocharger system and method
JP5085202B2 (ja) * 2007-06-26 2012-11-28 住友重機械エンジニアリングサービス株式会社 ハイブリット電源装置
US20090048053A1 (en) * 2007-08-16 2009-02-19 Ruppert Rex Leroy Auxiliary transmission for a continously variable transmission with active speed control
US8276549B2 (en) * 2007-08-17 2012-10-02 GM Global Technology Operations LLC Flexible fuel variable boost supercharged engine
DE112008002096B4 (de) * 2007-08-17 2021-04-29 Borgwarner Inc. Aufladungsunterstützungssystem
GB0805400D0 (en) * 2008-03-25 2008-04-30 Nexxtdrive Ltd A method of operating a supercharger and a turbocharger together
US9689327B2 (en) 2008-07-11 2017-06-27 Tula Technology, Inc. Multi-level skip fire
US8151773B2 (en) * 2008-09-24 2012-04-10 GM Global Technology Operations LLC Engine with belt/alternator/supercharger system
US8196686B2 (en) * 2008-12-18 2012-06-12 Delphi Technologies, Inc. Supercharged hybrid input differential engine system
US20110030641A1 (en) * 2009-08-06 2011-02-10 International Engine Intellectual Property Company, Llc Throttle loss recovery and supercharging system for internal combustion engines
US8469000B2 (en) * 2010-02-24 2013-06-25 Eaton Corporation Supercharger with continuously variable drive system
US8701636B2 (en) * 2011-04-28 2014-04-22 Caterpillar Inc. Variable input driving system and method
US9840972B2 (en) 2011-05-25 2017-12-12 Eaton Corporation Supercharger-based twin charging system for an engine
WO2013049439A2 (en) 2011-09-30 2013-04-04 Eaton Corporation Supercharger assembly with two rotor sets
US9856781B2 (en) 2011-09-30 2018-01-02 Eaton Corporation Supercharger assembly with independent superchargers and motor/generator
WO2013049435A1 (en) * 2011-09-30 2013-04-04 Eaton Corporation Supercharger assembly for regeneration of throttling losses and method of control
DE112011105932T5 (de) * 2011-12-09 2014-09-11 Toyota Jidosha Kabushiki Kaisha Maschinensteuervorrichtung für ein Fahrzeug
JP5587859B2 (ja) * 2011-12-28 2014-09-10 三菱重工業株式会社 電動過給装置
DE102012104355B4 (de) 2012-05-21 2018-08-02 Christian Stöber Verfahren zur Aufladung einer Brennkraftmaschine und Aufladevorrichtung dafür
FR2994457B1 (fr) * 2012-08-13 2014-08-08 Valeo Systemes De Controle Moteur Systeme d'entrainement d'au moins un compresseur, notamment d'un compresseur de suralimentation d'un moteur thermique
EP2971640B1 (en) * 2013-03-12 2020-05-06 Eaton Corporation Adaptive state of charge regulation and control of variable speed hybrid electric supercharger assembly for efficient vehicle operation
US10400691B2 (en) 2013-10-09 2019-09-03 Tula Technology, Inc. Noise/vibration reduction control
US9399964B2 (en) 2014-11-10 2016-07-26 Tula Technology, Inc. Multi-level skip fire
EP3094843B1 (en) 2014-01-14 2020-01-08 Eaton Corporation Boost system including hybrid drive supercharger with compact configuration
US11236689B2 (en) 2014-03-13 2022-02-01 Tula Technology, Inc. Skip fire valve control
WO2015175286A1 (en) * 2014-05-12 2015-11-19 Tula Technology, Inc. Internal combustion engine using variable valve lift and skip fire control
US10662883B2 (en) 2014-05-12 2020-05-26 Tula Technology, Inc. Internal combustion engine air charge control
US9752496B2 (en) * 2014-07-21 2017-09-05 Avl Powertrain Engineering, Inc. Turbocharger with electrically coupled fully variable turbo-compound capability and method of controlling the same
CN104454145B (zh) * 2014-10-24 2016-08-10 黄石炫轺者动力科技有限公司 一种具备行星齿轮机构的高传动比悬浮轴离心增压器
DE112015004786T5 (de) * 2014-12-25 2017-08-24 Aisin Aw Co., Ltd. Steuerungsvorrichtung einer rotierenden elektrischen Maschine
US10598081B2 (en) 2015-03-13 2020-03-24 Eaton Intelligent Power Limited Packaged electrical assist assembly for supercharged power plant
US10161303B2 (en) * 2016-07-07 2018-12-25 Ford Global Technologies, Llc Systems and methods for generating auxiliary torque
US10384525B2 (en) * 2017-02-02 2019-08-20 FEV Europe GmbH Systems for power integration of turbines, compressors and hybrid energy devices with internal combustion engines
US10493836B2 (en) 2018-02-12 2019-12-03 Tula Technology, Inc. Noise/vibration control using variable spring absorber
US11242044B2 (en) * 2018-07-18 2022-02-08 Kohler Co. Motor generator control for fixed fuel source engine
US10794268B2 (en) * 2018-08-14 2020-10-06 Ford Global Technologies, Llc Powering a supercharger for a hybrid electric powertrain
US20200284227A1 (en) * 2019-03-04 2020-09-10 GM Global Technology Operations LLC Engine with electric compressor boost and dedicated exhaust gas recirculation system
CN113107666B (zh) * 2021-05-12 2022-09-23 潍柴动力股份有限公司 一种发电机恒速控制设备及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3007302A (en) * 1958-09-30 1961-11-07 Continental Aviat & Eng Corp Compound turbine-diesel power plant
JPS62131920A (ja) * 1985-12-04 1987-06-15 Mikuni Kogyo Co Ltd 内燃機関用過給装置
DE3832288A1 (de) * 1988-09-22 1990-04-05 Hurth Masch Zahnrad Carl Reibungskupplung
JP3750872B2 (ja) * 1993-07-14 2006-03-01 株式会社小松製作所 車両用エンジンの過給装置およびその制御方法
DE19581495B4 (de) * 1994-01-25 2007-01-04 Komatsu Ltd. Differentialantriebslader und Verfahren zum Regeln desselben
JP3337811B2 (ja) 1994-03-28 2002-10-28 マツダ株式会社 エンジンの過給装置
JPH08200083A (ja) 1995-01-20 1996-08-06 Toyota Motor Corp 内燃機関の過給装置
JP3286492B2 (ja) * 1995-04-28 2002-05-27 本田技研工業株式会社 車載発電装置の制御装置
JP2002317640A (ja) 2001-04-19 2002-10-31 Hino Motors Ltd 過給ガスエンジン
EP1300561B1 (en) * 2001-10-03 2005-04-13 Visteon Global Technologies, Inc. Control system for an internal combustion engine boosted with an electronically controlled pressure charging device
JP3547735B2 (ja) * 2001-11-22 2004-07-28 本田技研工業株式会社 エンジンシステムとその運転方法およびエンジン始動装置
JP4066236B2 (ja) * 2002-05-10 2008-03-26 株式会社デンソー 自動車用補機駆動装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231798A (ja) * 2006-02-28 2007-09-13 Toyota Motor Corp 内燃機関の制御装置
US8087401B2 (en) 2007-07-18 2012-01-03 Mitsubishi Electric Corporation Automotive supercharging apparatus
JP2010209850A (ja) * 2009-03-11 2010-09-24 Toyota Motor Corp 過給制御装置
JP2015514624A (ja) * 2012-03-29 2015-05-21 イートン コーポレーションEaton Corporation 可変速度式ハイブリッド電気スーパーチャージャーアセンブリを用いた電気エネルギの生成
JP2015518537A (ja) * 2012-03-29 2015-07-02 イートン コーポレーションEaton Corporation 可変速度式ハイブリッド電気スーパーチャージャーアセンブリ、及び、これを有する車両の制御方法
JP2016522344A (ja) * 2013-04-17 2016-07-28 ヴァレオ システム ドゥ コントロール モトゥール 熱機関過給用の電動コンプレッサの制御方法
US20160237880A1 (en) * 2013-10-28 2016-08-18 Eaton Corporation Boost system including turbo and hybrid drive supercharger
US10006343B2 (en) * 2013-10-28 2018-06-26 Eaton Intelligent Power Limited Boost system including turbo and hybrid drive supercharger
JP2015132228A (ja) * 2014-01-15 2015-07-23 本田技研工業株式会社 内燃機関
JP2017015001A (ja) * 2015-07-01 2017-01-19 トヨタ自動車株式会社 内燃機関の制御装置
JP2017180158A (ja) * 2016-03-29 2017-10-05 いすゞ自動車株式会社 内燃機関システム
JP2017180159A (ja) * 2016-03-29 2017-10-05 いすゞ自動車株式会社 内燃機関システム
JP2019124158A (ja) * 2018-01-16 2019-07-25 いすゞ自動車株式会社 車両の回生発電システム

Also Published As

Publication number Publication date
DE102004025929A1 (de) 2004-12-30
US7000601B2 (en) 2006-02-21
US20040237949A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP2004360487A (ja) 遊星歯車機構を備えた過給機
US10132231B2 (en) Control apparatus for internal combustion engine
US9341145B2 (en) Supercharged turbocompound hybrid engine apparatus
US20190063348A1 (en) Method and system for a boosted engine
US10895197B2 (en) System and method for boost control
US10605180B2 (en) Method and system for a boosted engine
US10823092B2 (en) System and method for waste-gate valve diagnostics
CN110366512A (zh) 混合动力车辆的动力控制方法及动力控制装置
CN110300689A (zh) 混合动力车辆的动力控制方法及动力控制装置
CN110325420A (zh) 混合动力车辆的动力控制方法及动力控制装置
CN106014655B (zh) 用于控制驱动装置的辅助压缩机的方法和控制装置
US20160215781A1 (en) Electric regenerative turbocharger
JP4023421B2 (ja) 内燃機関の制御装置
CN113123859B (zh) 控制内燃机的电气化废气涡轮增压器的方法及机动车
US11247664B2 (en) Hybrid vehicle and method of controlling hybrid vehicle
CN111720221B (zh) 混合动力车辆和控制混合动力车辆的方法
CN111942360A (zh) 混合动力车辆和控制混合动力车辆的方法
CN110290992A (zh) 混合动力车辆的动力控制方法及动力控制装置
CN111791871A (zh) 混合动力车辆
JP2020192827A (ja) 車両
JP2016079821A (ja) 内燃機関
US11371421B2 (en) Method for controlling a turbocharger system and a turbocharger system for a combustion engine
JP3900124B2 (ja) 電動過給機付エンジンを備えた車両の制御装置
CN113799780B (zh) 发动机启动工况模式切换的动态转矩协调控制系统和方法
EP3714151B1 (en) A method for controlling a turbocharger system with a pressurized gas tank connected to an exhaust manifold of a combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526