JPWO2015105186A1 - 軸受部品、軸受部品用鋼材及びそれらの製造方法 - Google Patents

軸受部品、軸受部品用鋼材及びそれらの製造方法 Download PDF

Info

Publication number
JPWO2015105186A1
JPWO2015105186A1 JP2015556849A JP2015556849A JPWO2015105186A1 JP WO2015105186 A1 JPWO2015105186 A1 JP WO2015105186A1 JP 2015556849 A JP2015556849 A JP 2015556849A JP 2015556849 A JP2015556849 A JP 2015556849A JP WO2015105186 A1 JPWO2015105186 A1 JP WO2015105186A1
Authority
JP
Japan
Prior art keywords
less
content
hot
steel
bearing parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015556849A
Other languages
English (en)
Other versions
JP6079903B2 (ja
Inventor
昌 坂本
昌 坂本
児玉 順一
順一 児玉
根石 豊
豊 根石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Application granted granted Critical
Publication of JP6079903B2 publication Critical patent/JP6079903B2/ja
Publication of JPWO2015105186A1 publication Critical patent/JPWO2015105186A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/36Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for balls; for rollers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/68Furnace coilers; Hot coilers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/66High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/70Ferrous alloys, e.g. steel alloys with chromium as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/70Ferrous alloys, e.g. steel alloys with chromium as the next major constituent
    • F16C2204/72Ferrous alloys, e.g. steel alloys with chromium as the next major constituent with nickel as further constituent, e.g. stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • F16C2220/44Shaping by deformation without removing material by rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/02Mechanical treatment, e.g. finishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/10Hardening, e.g. carburizing, carbo-nitriding

Abstract

この軸受部品は、異物混入環境下であっても優れた転動疲労寿命を有する軸受部品であって、化学成分が、質量%で、C:0.95%〜1.10%、Si:0.10%〜0.70%、Mn:0.20%〜1.20%、Cr:0.90%〜1.60%、Al:0.010%〜0.100%、N:0.003%〜0.030%を含有し、P:0.025%以下、S:0.025%以下、O:0.0010%以下に制限し、任意に所定量のMo、B、Cu、Ni、Caを含有し、残部がFe及び不純物からなり、金属組織が、残留オーステナイト、球状セメンタイト及びマルテンサイトであり、前記残留オーステナイトの量が体積%で18%〜25%であり、旧オーステナイトの平均粒径が6.0μm以下であり、前記球状セメンタイトの平均粒径が0.45μm以下であり、前記球状セメンタイトの個数密度が0.45×106個/mm2以上である。

Description

本発明は、針状軸受(ニードルベアリング)、ころ軸受、玉軸受などの軸受部品、その素材である軸受部品用鋼材及びそれらの製造方法に関する。
本願は、2014年1月10日に、日本に出願された特願2014−3338号及び2014年4月16日に、日本に出願された特願2014−84952に基づき優先権を主張し、これらの内容をここに援用する。
針状軸受、ころ軸受、玉軸受などの軸受部品は、潤滑油にバリや摩耗粉などの異物が混入した状態、すなわち異物混入環境下でも継続して使用される。そのため、異物混入環境における、軸受部品の転動疲労寿命の向上は重要である。異物混入環境において、軸受部品の転動疲労寿命を向上するためには、残留オーステナイトを増加させることが有効であることが知られている。そのため、軸受部品用鋼材に対して、浸炭処理や窒化処理などの表面処理が行われている。
しかしながら、軸受部品用鋼材の浸炭処理や窒化処理などの表面処理は、コストが高いだけでなく、処理雰囲気のばらつきの影響を受けて、軸受部品の品質のばらつきが生じるという問題がある。そのため、例えば、特許文献1には、浸炭処理及び窒化処理を省略し、焼入れ及び焼戻し処理によって、残留オーステナイトが多く含まれる軸受部品が開示されている。
特許文献1にて開示されている軸受部品は、鋼中に、C、Mn、Ni又はMoを含有させ、マルテンサイト変態開始温度(Ms点)を下げることで、残留オーステナイトの量を確保している。しかし、残留オーステナイトの量を確保するために、Mnの鋼への添加量を増加させると、鋼材の焼入れ性が高くなる。その結果、熱間圧延後の冷却時に、マルテンサイトなどの過冷組織が生成し、熱間圧延線材の加工性や延性、靭性が低下する。
また、特許文献2には、球状セメンタイトを用いて、結晶粒径の粗大化を抑制し、残留オーステナイトを生成させる方法が開示されている。しかしながら、特許文献2にて開示されている方法では、高温でかつ長時間の球状化熱処理を行っている。その結果、Cがオーステナイト相中に固溶し、球状セメンタイトの個数密度が不十分となっていた。さらに、オーステナイト粒径が粗大化して、十分な転動疲労寿命の改善効果が得られなかった。
球状化熱処理の処理時間は長いため、処理回数が増加すると、生産コストが嵩み、生産効率が悪化することが知られている。この問題に対し、例えば、特許文献3には、本発明者らの一部によって発明された、球状化熱処理を施すことなく、伸線加工が可能な、軸受部品用高炭素鋼圧延線材が開示されている。
また、従来、伸線加工の前後に、球状化熱処理は行われている。この球状化熱処理のうち、伸線加工前の球状化熱処理を省略するために、熱間圧延終了後の圧延線材に対して伸線加工を施した後に、球状化熱処理を行う方法が、特許文献4に開示されている。
しかしながら、特許文献4にて開示されている方法は、球状化熱処理の処理時間を短縮するものではない。
日本国特開2004−124215号公報 日本国特開2007−077432号公報 国際公開WO2013−108828号公報 日本国特開2004−100016号公報
しかしながら、特許文献1のように、鋼中のMnの含有量を増加させると、上述の理由から、球状化熱処理を省略して熱間圧延線材を加工することが困難であり、軸受部品を得るために複数回の球状化処理が必要であった。また、特許文献3の素材を利用して、異物混入環境下での転動疲労寿命に優れる軸受部品を製造するためには、伸線加工と、焼入れ温度を制御した焼入れ処理とによる組織制御が必要であることがわかった。
本発明は、このような実情に鑑みてなされたものであり、熱間圧延線材から軸受部品の製造工程において、球状化熱処理の回数が1回でかつ短時間の処理で製造することができ、異物混入環境下を含めた転動疲労寿命に優れた軸受部品、その素材となる軸受部品用鋼材及びそれらの製造方法を提供することを目的とする。
本発明者らは、Crを含有し、金属組織がパーライトからなる鋼材に対して伸線加工を施した後に、通常よりも低温で球状化熱処理を行うことによって、軸受部品の旧オーステナイトの平均粒径が微細化することを見出した。さらに旧オーステナイトの平均粒径を微細化することで、残留オーステナイト量が確保できることを見出した。そして、残留オーステナイトの量を確保することによって、通常の環境下だけでなく、異物混入環境下であっても、軸受部品の転動疲労寿命を向上させることができることを見出した。
本発明の要旨は以下の通りである。
(1)本発明の一実施態様に係る軸受部品は、化学成分が、質量%で、C:0.95%〜1.10%、Si:0.10%〜0.70%、Mn:0.20%〜1.20%、Cr:0.90%〜1.60%、Al:0.010%〜0.100%、N:0.003%〜0.030%を含有し、P:0.025%以下、S:0.025%以下、O:0.0010%以下に制限し、任意に、Mo:0.25%以下、B:0.0050%以下、Cu:1.0%以下、Ni:3.0%以下、Ca:0.0015%以下を含有し、残部がFe及び不純物からなり、金属組織が、残留オーステナイト、球状セメンタイト及びマルテンサイトであり、前記残留オーステナイトの量が、体積%で、18%〜25%であり、かつ、前記金属組織において、旧オーステナイトの平均粒径が6.0μm以下であり、前記球状セメンタイトの平均粒径が0.45μm以下であり、かつ、前記球状セメンタイトの個数密度が0.45×10個/mm以上である。
(2)上記(1)に記載の軸受部品では、前記化学成分が、質量%で、Mo:0.01%〜0.25%、B:0.0001%〜0.0050%、Cu:0.1%〜1.0%、Ni:1.0%〜3.0%、Ca:0.0001%〜0.0015%の1種以上を含有してもよい。
(3)本発明の一実施態様に係る軸受部品用鋼材は、化学成分が、質量%で、C:0.95%〜1.10%、Si:0.10%〜0.70%、Mn:0.20%〜1.20%、Cr:0.90%〜1.60%、Al:0.010%〜0.100%、N:0.003%〜0.030%を含有し、S:0.025%以下、P:0.025%以下、O:0.0010%以下に制限し、任意に、Mo:0.25%以下、B:0.0050%以下、Cu:1.0%以下、Ni:3.0%以下、Ca:0.0015%以下を含有し、残部がFe及び不純物からなり、金属組織が、球状セメンタイト及びフェライトを含み、前記金属組織において、粒径が0.5μm〜3.0μmの前記球状セメンタイトの個数密度が2.0×10個/mm以上である。
(4)上記(3)に記載の軸受部品用鋼材では、前記化学成分が、質量%で、Mo:0.01%〜0.25%、B:0.0001%〜0.0050%、Cu:0.1%〜1.0%、Ni:1.0%〜3.0%、Ca:0.0001%〜0.0015%の1種以上を含有してもよい。
(5)本発明の一実施態様に係る軸受部品用鋼材の製造方法は、上記(3)または(4)に記載の化学成分からなる鋼片を得る鋳造工程と;前記鋼片を900℃〜1300℃の温度に加熱する加熱工程と;前記加熱工程後の前記鋼片に、850℃以下の仕上圧延温度で、熱間圧延を施して、熱間圧延線材を得る熱間圧延工程と;前記熱間圧延工程後の前記熱間圧延線材を、800℃以下の巻取温度で巻き取る巻取工程と;前記巻取工程後に3.0℃/秒以下の冷却速度で、前記熱間圧延線材を600℃まで冷却し、前記熱間圧延線材の組織をパーライトとする冷却工程と;前記冷却工程後の前記熱間圧延線材に、総減面率50%以上で伸線加工を施す伸線加工工程と;前記伸線加工工程後の前記熱間圧延線材に、650℃以上、750℃もしくはA−5℃のどちらか低い方の温度以下で、0.5〜5時間保持する球状化熱処理を行い、軸受部品用鋼材を得る球状化熱処理工程と;を有する。ここで、AとはA変態が開始する温度を前記化学成分から予測した値であり、下記の式1より算出される。なお、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[Al]及び[B]は、質量%で、前記熱間圧延線材中のC含有量、Si含有量、Mn含有量、Cu含有量、Ni含有量、Cr含有量、Mo含有量、Al含有量及びB含有量である。
=750.8−26.6×[C]+17.6×[Si]−11.6×[Mn]−22.9×[Cu]−23.0×[Ni]+24.1×[Cr]+22.5×[Mo]−169.4×[Al]−894.7×[B] (式1)
(6)本発明の一実施態様に係る軸受部品の製造方法は、上記(1)または(2)に記載の化学成分からなる鋼片を得る鋳造工程と;前記鋼片を900℃〜1300℃の温度に加熱する加熱工程と;前記加熱工程後の前記鋼片に、850℃以下の仕上圧延温度で、熱間圧延を施して、熱間圧延線材を得る熱間圧延工程と;前記熱間圧延工程後の前記熱間圧延線材を、800℃以下の巻取温度で巻き取る巻取工程と;前記巻取工程後に3.0℃/秒以下の冷却速度で、前記熱間圧延線材を600℃まで冷却し、前記熱間圧延線材の組織をパーライトとする冷却工程と;前記冷却工程後の前記熱間圧延線材に、総減面率50%以上で伸線加工を施す伸線加工工程と;前記伸線加工工程後の前記熱間圧延線材に、650℃以上、750℃もしくはA−5℃のどちらか低い方の温度以下で、0.5〜5時間保持する球状化熱処理を行い、軸受部品用鋼材を得る球状化熱処理工程と;前記球状化熱処理工程後の前記軸受部品用鋼材を、粗成形する成形工程と;前記成形工程後の前記軸受部品用鋼材を、800℃〜890℃に加熱して、焼入れ処理を行う焼入れ処理工程と;前記焼入れ処理工程後の前記軸受部品用鋼材に、250℃以下で焼戻し処理を行う焼戻し工程と;前記焼戻し処理工程後の前記軸受部品用鋼材に仕上加工を施して軸受部品を得る仕上工程とをを有する。ここで、AとはA変態が開始する温度を前記化学成分から予測した値であり、下記の式2より算出される。なお、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[Al]及び[B]は、質量%で、前記熱間圧延線材中のC含有量、Si含有量、Mn含有量、Cu含有量、Ni含有量、Cr含有量、Mo含有量、Al含有量及びB含有量である。
=750.8−26.6×[C]+17.6×[Si]−11.6×[Mn]−22.9×[Cu]−23.0×[Ni]+24.1×[Cr]+22.5×[Mo]−169.4×[Al]−894.7×[B] (式2)
本発明の上記態様によれば、旧オーステナイトの平均粒径や、残留オーステナイトの量、球状化セメンタイトの個数密度を制御することで、浸炭処理、窒化処理及び長時間の球状化熱処理を施すことなく、球状化熱処理の回数が1回で、短時間の球状化熱処理によって、通常の環境下だけでなく、異物混入環境下であっても、優れた転動疲労寿命を有する軸受部品を得ることができる。さらに、金属組織を制御することによって、軸受部品の素材となる軸受部品用鋼材を得ることが出来る。また、本発明の上記態様によれば、それらを製造することが可能となる。そして、自動車や産業用機械などに、上記態様の軸受部品を適用することによって、機械の長寿命化や製造コストの低減を達成することができる。すなわち、本発明の産業上の貢献は、極めて顕著である。
軸受部品の金属組織を示す図である。 軸受部品用鋼材の金属組織を示す図である。 軸受部品用鋼材の球状セメンタイトの個数密度と軸受部品の旧オーステナイトの平均粒径との関係を示す図である。 軸受部品の旧オーステナイトの平均粒径と残留オーステナイトの量との関係を示す図である。 軸受部品の残留オーステナイトの量と異物混入環境下での転動疲労寿命との関係を示す図である。 軸受部品の球状セメンタイトの個数密度と転動疲労寿命との関係を示す図である。
異物混入環境下での転動疲労寿命の向上には、残留オーステナイトの量の増加及び球状セメンタイトの大きさ、個数密度の制御が有効である。本発明者らは、適正な残留オーステナイトの量、及び、残留オーステナイトの量を制御する製造条件について検討し、以下の知見を得た。なお、残留オーステナイトの量(体積%)は、例えば、X線回折によるマルテンサイトα(211)の回折強度に対する残留オーステナイトγ(220)との回折強度の比で測定することができる。残留オーステナイトの量(Vγ量)は、例えば、X線回折測定装置(理学電気製RAD−RU300)を用い、ターゲットをCo、ターゲット出力を40kV−200mAとして、鋼板組織のX線回折ピークを求め、リーベルト法により理論強度比を計算によって求めることによって、測定することができる。
残留オーステナイトの量の増加に伴い、異物混入環境下であっても、転動疲労寿命が向上する。安定的にこの効果を得るために、必要な残留オーステナイトの量は、体積%で、18%以上である。一方、残留オーステナイトの量が、体積%で、25%を超えると、硬さが低下して、軸受部品の通常の転動疲労強度が低下し、寸法の経年変化が大きくなるので、軸受部品としての機能低下を招く。従って、異物混入環境下での、軸受部品における転動疲労寿命の向上のためには、残留オーステナイトの量を、体積%で、18%〜25%に制御することが必要である。
焼入れ処理時に、残留オーステナイトの量を増加させるためには、オーステナイト相を安定化させることが必要である。また、マルテンサイト変態開始温度(Ms点)の低温化が有効である。Ms点は、オーステナイト相中のC、Si、Mnなど元素の固溶量に影響を受け、特にオーステナイト相中に固溶しているC量に大きく影響される。しかしながら、固溶しているC量を増加させるために、焼入れ処理の加熱温度を高くすると、旧オーステナイトの平均粒径が粗大化する。さらに、焼入れ処理後のマルテンサイトに固溶しているC量が増加する。このため、軸受部品の転動疲労寿命及び靱性が低下する。
そこで、本発明者らは、結晶粒の微細化によるオーステナイト相の安定化に着目し、検討を行った。その結果、下記の知見を得た。
まず、パーライト組織の熱間圧延線材(パーライト鋼)を伸線加工することによって、加工ひずみを導入する。次に、伸線加工後の熱間圧延線材に対して、従来よりも低温で球状化熱処理を施す。この球状化熱処理によって、球状セメンタイトを微細分散させることができることがわかった。そして、球状セメンタイトを微細分散させることで、球状化熱処理後の軸受部品用鋼材に対して、焼入れ処理後の旧オーステナイトの平均粒径を微細化できることがわかった。
また、本発明者らは、軸受部品の旧オーステナイト平均粒径を6.0μm以下にすることによって、残留オーステナイトの量が18%〜25%に制御されることを見出した。
旧オーステナイトの平均粒径を微細化するためには、伸線加工時の総減面率及び球状化熱処理の加熱温度を制御することが好ましい。また、これらの制御によって、球状セメンタイトを微細析出させた上で、焼入れ処理を行うことが好ましい。具体的には、熱間圧延線材(パーライト鋼)に総減面率50%以上の伸線加工を施した後、650℃以上、750℃もしくはA−5℃のどちらか低い方の温度以下の加熱温度で、球状化熱処理を行った後、0.1℃/s以上で、400℃以下まで冷却する。次いで、800℃〜890℃に加熱して、焼入れ処理を行うと、旧オーステナイトの平均粒径を6.0μm以下に抑制でき、かつ、残留オーステナイトの量を18%〜25%に制御することができる。
なお、旧オーステナイトの平均粒径は、次の方法により得られる。まず、軸受部品の長手方向の中心において、長手方向に垂直なC断面を研磨・腐食により、旧オーステナイト粒界を現出させる。次に、C断面の中心から半径3mmの範囲を中心部とし、その中心部を光学顕微鏡を用いて400倍の視野で撮影する。そして、撮影した画像からJIS G
0551に規定された計数方法により測定する。なお、サンプルごとに4視野ずつ測定し、得られた4視野の旧オーステナイト粒径の平均値を、旧オーステナイトの平均粒径とする。
伸線加工時の総減面率が50%未満では、球状化熱処理時に、セメンタイトが十分に球状化せず、軸受部品用鋼材の金属組織において、粒径が0.50μm〜3.0μmの球状セメンタイトの個数密度が低下する。その結果、焼入れ処理後の軸受部品の旧オーステナイト平均粒径が粗大化して、旧オーステナイトの平均粒径が6.0μmを超える場合がある。
図3に、球状化熱処理後の軸受部品用鋼材における、粒径が0.50μm〜3.00μmの球状セメンタイトの個数密度と、その後の焼入れ処理及び焼戻し処理を経て得られた軸受部品の旧オーステナイトの平均粒径の関係を示す。
図3に示すように、軸受部品用鋼材の球状セメンタイト(粒径が0.5μm〜3.0μm)の個数密度が2.0×10個/mm以上の場合、焼入れ処理及び焼戻し処理後の、軸受部品の旧オーステナイトの平均粒径は微細化して、6.0μm以下となる。このように、軸受部品用鋼材の所定の大きさを有する球状セメンタイトの個数と、軸受部品の旧オーステナイト平均粒径とには、相関がある。
また、図4に、軸受部品の旧オーステナイトの平均粒径と軸受部品の残留オーステナイト量との関係を示す。図4に示すように、軸受部品において、旧オーステナイトの平均粒径が6.0μm以下であると、残留オーステナイトの量は、体積%で、18%以上となる。一方、軸受部品において、旧オーステナイトの平均粒径が6.0μmを超えると、残留オーステナイトの量が、体積%で、18%未満に減少する。
図5に、軸受部品の残留オーステナイトの量と異物混入環境下での転動疲労寿命との関係を示す。図5に示すように、軸受部品において、残留オーステナイトの量が、体積%で、18%以上であると、異物混入環境下での、軸受部品の転動疲労寿命は良好である。一方で、残留オーステナイトの量が、体積%で、18%未満であると、異物混入環境下での、軸受部品の転動疲労寿命は低下する。
次に、焼入れ処理後の軸受部品における、平均粒径が0.45μm以下の球状セメンタイトの個数密度を増加させる方法について、検討を行った。
微細で硬質な球状セメンタイトは、鋼中に分散させると、軸受部品の強化に寄与する。そのため、所定の大きさの球状セメンタイトの個数密度が増加すると、軸受部品の転動疲労寿命や衝撃特性が向上する。本発明者らの検討の結果、球状セメンタイトの平均粒径を0.45μm以下とし、その個数密度を、0.45×10個/mm以上にすることが重要であることがわかった。球状セメンタイトの個数密度が、0.45×10個/mm 未満であると、軸受部品の転動疲労寿命は低下する。球状セメンタイトの個数密度は、より好ましくは、0.5×10個/mm以上である。
また、軸受部品における、球状セメンタイトの平均粒径が0.45μmを超えると、疲労亀裂の発生や進展を促進させる。そのため、軸受部品における、球状セメンタイトの平均粒径を、0.45μm以下とすることが必要である。一方で、通常の操業条件を考慮すると、0.10μm未満にすることは困難である。
球状セメンタイトは、通常、焼入れ処理時にA点以上に加熱した際に、母相であるオーステナイト相に固溶するため、軸受部品の球状セメンタイトの個数密度は、素材である軸受部品用鋼材よりも減少する。焼入れ処理の加熱温度を低温にすれば、軸受部品の球状セメンタイトの個数密度は増加するが、軸受部品の残留オーステナイトの量は低下する。したがって、異物混入環境下での軸受部品の転動疲労寿命は低下する。
しかし、本発明者らは、焼入れ処理前の軸受部品用鋼材において粒径が0.5μm〜3.0μmの球状セメンタイト)の個数密度を、2.0×10個/mm以上に増加させることによって、焼入れ処理後の軸受部品において、平均粒径が0.45μm以下の大きさを有する球状セメンタイトの個数密度を0.45×10個/mm以上確保できることを見出した。
図6に、軸受部品の所定の大きさを有する球状セメンタイトの個数密度と軸受部品の転動疲労寿命との関係を示す。図6に示すように、平均粒径が0.45μm以下の球状セメンタイトの個数密度が0.45×10個/mm以上であると、軸受部品の転動疲労寿命は良好である。
所定の大きさを有する球状セメンタイトの個数密度は、次のように求める。軸受部品用鋼材及び軸受部品を長手方向中心において、長手方向に垂直な断面で切断する。切断したC断面を鏡面研磨して、走査電子顕微鏡(SEM)で、C断面の中心部を5000倍で観察し、10視野の写真を撮影する。そして、各視野で所定の大きさの球状セメンタイトの個数を測定して、その個数を視野面積で除することで、所定の大きさを有する球状セメンタイトの個数密度は求められる。なお、C断面の中心部とは、C断面の中心点から半径3mmの円領域とし、観察視野は、0.02mmである。
本実施形態に係る軸受部品の金属組織について説明する。本実施形態に係る軸受部品の金属組織は、残留オーステナイト、球状セメンタイト及びマルテンサイトである。図1に、本実施形態に係る軸受部品の金属組織のSEM写真を示す。図1のSEM写真は、マルテンサイト1に、球状セメンタイト2が析出した組織である。残留オーステナイトは、SEMでは観察できないため、X回折法(XRD)を用いてマルテンサイトとの回折強度の比によって求められる。
本実施形態に係る軸受部品の金属組織において、残留オーステナイトは、体積%で、18%〜25%である。マルテンサイト及び球状セメンタイトの合計は、体積率で、全体の体積から、残留オーステナイトを差し引いて、75%〜82%が好ましい。
本実施形態に係る軸受部品用鋼材の金属組織について説明する。本実施形態に係る軸受部品用鋼材の金属組織は、球状セメンタイト及びフェライトを含む。しかしながら、軸受部品の転動疲労寿命と硬さを得るためには、軸受部品用鋼材において、球状セメンタイト及びフェライト以外の組織を含まない場合が好ましい。図2に、本実施形態に係る球状化熱処理後の軸受部品用鋼材の金属組織のSEM写真を示す。図2のSEM写真は、フェライト4に球状セメンタイト5が析出した組織である。
以下、本実施形態に係る軸受部品及び軸受部品用鋼材の基本元素の化学組成について、数値限定範囲とその限定理由とについて説明する。ここで、記載する%は、質量%である。
C:0.95%〜1.10%
C(炭素)は、強度を高める元素である。C含有量が0.95%未満では、軸受部品の強度及び異物混入環境下での転動疲労寿命を向上させることができない。一方、C含有量が1.10%を超えると、炭化物が粗大化し、また、残留オーステナイトの量が過多になり、軸受部品の硬さが低下するだけでなく、寸法の経年変化(経年劣化)が大きくなる。そのため、C含有量を0.95%〜1.10%とする。より確実に、転動疲労寿命の向上効果を得るために、C含有量は、0.96%〜1.05%であることが好ましい。さらに好ましくは、0.97%〜1.03%である。
Si:0.10%〜0.70%
Si(ケイ素)は、強度を高め、かつ、脱酸剤として機能する元素である。Si含有量が0.10%未満では、これらの効果を得ることが出来ない。一方、Si含有量が0.70%を超えると、鋼材中にSiO系介在物が生じて、軸受部品の転動疲労寿命が低下する。そのため、Si含有量を0.10%〜0.70%とする。より確実に、転動疲労寿命を低下させないために、Si含有量は、0.12%〜0.56%であることが好ましい。さらに好ましくは、0.15%〜0.50%である。
Mn:0.20%〜1.20%
Mn(マンガン)は、脱酸剤及び脱硫剤として機能する元素である。さらに、鋼の焼入れ性や残留オーステナイトの量を確保するために有用な元素である。Mn含有量が0.20%未満では、脱酸が不十分となってしまい、酸化物が生成して、軸受部品の転動疲労寿命が低下する。一方、Mn含有量が1.20%を超えると、熱間圧延後の冷却時にマルテンサイトなどの過冷組織が生じることによって、伸線加工時にボイドが生成する原因となる。さらに、Mn含有量が1.20%を超えると、残留オーステナイトの量が過多となり、軸受部品の硬さが低下する。そのため、Mn含有量を0.20%〜1.20%とする。より確実に脱酸し、転動疲労寿命を低下させないために、Mn含有量は0.21%〜1.15%であることが好ましい。さらに好ましくは、0.25%〜1.00%である。
Cr:0.90%〜1.60%
Cr(クロム)は、鋼材の焼入れ性を向上させる元素である。さらに、炭化物の球状化を促進させ、かつ、炭化物量も増加させる極めて有効な元素である。Cr含有量が0.90%未満であると、オーステナイト中に固溶するC量が増加して、軸受部品において、残留オーステナイトが過剰に生成する。一方、Cr含有量が1.60%を超えると、焼入れ時に炭化物の溶解が抑制され、残留オーステナイトの量の低下や軸受部品の硬さの低下を招く。そのため、Cr含有量を0.90%〜1.60%とする。より確実に軸受部品の転動疲労寿命を向上させるために、Cr含有量は、0.91%〜1.55%であることが好ましい。さらに好ましくは、1.10%〜1.50%である。最も好ましくは、1.30%〜1.50%である。
Al:0.010%〜0.100%
Al(アルミニウム)は脱酸元素である。Al含有量が0.010%未満であると、脱酸が不十分となり、酸化物が析出することによって、軸受部品の転動疲労寿命が低下する。一方、Al含有量が0.100%を超えると、AlO系介在物が発生し、軸受部品用鋼材の伸線加工性の低下や軸受部品の転動疲労寿命が低下する。そのため、Al含有量を0.010%〜0.100%とする。より確実に転動疲労寿命を低下させないために、Al含有量は、0.015%〜0.078%であることが好ましい。さらに好ましくは、0.018%〜0.050%である。
N:0.003%〜0.030%
Nは、AlやBと窒化物を形成する。これらの窒化物は、ピン止め粒子として機能して結晶粒を細粒化する。それゆえ、N(窒素)は結晶粒の粗大化を抑制する元素である。N含有量が0.003%未満であると、この効果を得ることができない。一方、N含有量が0.030%を超えると、粗大な介在物が生成して、転動疲労寿命が低下する。そのため、N含有量を0.003%〜0.030%とする。より確実に転動疲労寿命を低下させないために、N含有量は、0.005%〜0.029%が好ましい。さらに好ましくは、0.009%〜0.020%である。
P:0.025%以下
P(リン)は不可避的に含有される不純物である。P含有量が0.025%を超えると、オーステナイト粒界に偏析して、オーステナイト粒界を脆化させて、軸受部品の転動疲労寿命を低下させる。そのため、P含有量を0.025%以下に制限する。より確実に転動疲労寿命を低下させないために、P含有量を0.020%以下、さらに0.015%以下に制限してもよい。また、P含有量は少ないほど望ましいので、上記制限範囲に0%が含まれる。ただし、P含有量を0%にするのは、技術的に容易ではない。そのため、製鋼コストの観点から、P含有量の下限値は0.001%としてもよい。通常の操業条件を考慮すると、P含有量は、0.004%〜0.012%が好ましい。
S:0.025%以下
S(硫黄)は不可避的に含有される不純物である。S含有量が0.025%を超えると、粗大なMnSが形成され、軸受部品の転動疲労寿命を低下させる。そのため、S含有量を0.025%以下に制限する。より確実に転動疲労寿命を低下させないために、S含有量を0.020%以下、さらに0.015%以下に制限してもよい。S含有量は少ないほど望ましいので、上記制限範囲に0%が含まれる。ただし、S含有量を0%にするのは、技術的に容易ではない。そのため、製鋼コストの観点から、S含有量の下限値は0.001%としてもよい。通常の操業条件を考慮すると、S含有量は、0.003%〜0.011%が好ましい。
O:0.0010%以下
O(酸素)は不可避的に含有される不純物である。O含有量が0.0010%を超えると、酸化物系介在物が形成されて、軸受部品の転動疲労寿命が低下する。そのため、O含有量を0.0010%以下に制限する。O含有量は少ないほど望ましいので、上記制限範囲に0%が含まれる。ただし、O含有量を0%にするのは、技術的に容易ではない。そのため、製鋼コストの観点から、O含有量の下限値は0.0001%としてもよい。通常の操業条件を考慮すると、O含有量は、0.0005%〜0.0010%が好ましい。
上記した基本成分及び不純物元素の他に、本実施形態に係る軸受部品には、さらに、選択的にMo、B、Cu、Ni及びCaのうちの少なくとも1つ以上を添加してもよい。この場合、焼入れ性を向上させるためのMo、B、Cu及びNi及び介在物を微細化させるためのCaのうち1つ以上を選択できる。これらの化学元素は、必ずしも軸受部品用鋼材及び軸受部品に添加する必要がないため、これらの化学元素の下限は、いずれも0%であり制限されない。
以下に、これら成分の好ましい範囲とその理由とについて説明する。ここで、記載する%は、質量%である。
Mo:0.25%以下
Moは、焼入れ性を向上させる元素である。また、焼入れを施した鋼材の粒界強度を高めて、靭性を向上させる作用を有する。より確実に、焼入れ性と靭性とを確保したい場合には、Mo含有量を0.01%以上とすることが好ましい。しかしながら、Mo含有量が0.25%を超えると、これらの効果は飽和する。そのため、Mo含有量は、0.01%〜0.25%が好ましい。より好ましくは、Mo含有量は、0.01%〜0.23%である。さらに好ましくは、0.10%〜0.23%である。
B:0.0050%以下
Bは、微量で焼入れ性を向上させる元素である。また、焼入れ時のオーステナイト粒界におけるPやSの偏析を抑制する効果も有する。このような効果を得たい場合には、B含有量を0.0001%以上とすることが好ましい。しかしながら、B含有量が0.0050%を超えると、これらの効果は飽和する。そのため、B含有量は、0.0001%〜0.0050%が好ましい。より好ましくは、B含有量は、0.0003%〜0.0050%である。さらに好ましくは、0.0005%〜0.0025%であり、最も好ましくは、0.0010%〜0.0025%である。
Cu:1.0%以下
Cuは、焼入れ性を向上させる元素である。より確実に焼入れ性を確保したい場合には、Cu含有量を0.05%以上とすることが好ましい。しかしながら、Cu含有量が1.0%を超えると、この効果が飽和し、さらに熱間加工性が低下する。そのため、Cu含有量は、0.05%〜1.0%が好ましい。より好ましくは、Cu含有量は、0.10%〜0.50%である。さらに好ましくは、0.19%〜0.31%である。
Ni:3.0%以下
Niは、焼入れ性を向上させる元素である。また、焼入れを施した鋼材の靭性を向上させる作用を有する。より確実に焼入れ性と靭性とを確保したい場合には、Ni含有量を0.05%以上とすることが好ましい。しかしながら、Ni含有量が3.0%を超えると、この効果は飽和する。そのため、Ni含有量は、0.05%〜3.0%が好ましい。より好ましくは、Ni含有量は、0.10%〜1.5%である。さらに好ましくは、0.21%〜1.2%である。最も好ましくは、0.21%〜1.0%である。
Ca:0.0015%以下
Caは、硫化物中に固溶しCaSを形成し、硫化物を微細化させる元素である。硫化物の微細化により、転動疲労寿命をさらに向上させたい場合には、Ca含有量を0.0003%以上とすることが好ましい。しかしながら、Ca含有量が0.0015%を超えると、この効果が飽和する。さらに、酸化物系介在物が粗大化することによって、転動疲労寿命の低下を招く。そのため、Ca含有量は、0.0003%〜0.0015%が好ましい。より好ましくは、Ca含有量は、0.0003%〜0.0011%である。さらに好ましくは、0.0005%〜0.0011%である。
本実施形態に係る軸受部品及び軸受部品用鋼材は上記成分を含有し、化学組成の残部は、実質的にFe及び不可避的な不純物で構成される。
本実施形態に係る軸受部品の金属組織について説明する。
本実施形態に係る軸受部品の金属組織は、残留オーステナイト、球状セメンタイト及びマルテンサイトである。
そのうち、残留オーステナイトの量は、体積%で、18%〜25%である。異物混入環境下であっても、転動疲労寿命を向上させるためには、残留オーステナイト量を18%〜25%とし、球状セメンタイトの平均粒径を0.45μm以下とし、球状セメンタイトの個数密度を0.45×10個/mm以上とする必要がある。球状セメンタイトの個数密度は、好ましくは0.5×10個/mm以上とする。なお、球状セメンタイトの個数密度の上限は、特に限定されないが、製造上の制約及び転動疲労寿命を確保する観点から、1.0×10個/mmが好ましい。また、球状セメンタイトの平均粒径は過剰に微細化にしても、疲労寿命を向上させる効果は小さく、製造が困難となる。そのため、軸受部品における、球状セメンタイトの平均粒径は、好ましくは、0.25μm以上とする。つまり、本実施形態に係る軸受部品の、球状セメンタイトの好ましい平均粒径は、0.25μm〜0.45μmである。
なお、球状セメンタイトの平均粒径は、次の方法により得られる。まず、軸受部品の長手方向の中心において、長手方向に垂直な断面(C断面)で切断する。このC断面の中心から半径3mmの範囲を中心部とし、その中心部をSEMを用いて2000倍の視野で撮影する。そして、撮影した画像からトレーシングシートなどを使用して、球状セメンタイトを映して、そのシートを画像解析することで、セメンタイトの粒径を測定した。なお、サンプルごとに4視野ずつ測定し、得られた4視野の球状セメンタイト粒径の平均値を、球状セメンタイトの平均粒径とする。
また、残留オーステナイトの量を確保するため、本実施形態に係る軸受部品の、旧オーステナイトの平均粒径を6.0μm以下とする。旧オーステナイトの平均粒径が6.0μmを超えると、必要とする残留オーステナイトの量が得られない。一方で、軸受部品における、旧オーステナイトの平均粒径を3.0μm以下に微細化するためには、製造負荷を高くしなければならない。そのため、軸受部品における、旧オーステナイトの平均粒径は、好ましくは3.0μm以上とする。つまり、本実施形態に係る軸受部品の、旧オーステナイトの平均粒径は、3.0μm〜6.0μmが好ましい。
次に、本実施形態に係る軸受部品の素材となる軸受部品用鋼材の金属組織について説明する。
本実施形態に係る軸受部品用鋼材の金属組織は、球状セメンタイト及びフェライトを含む。このうち、粒径が0.5μm〜3.0μmの球状セメンタイトの個数密度は、2.0×10個/mm以上である。軸受部品用鋼材において、所定の大きさの球状セメンタイトの個数密度が2.0×10個/mm未満になると、焼入れ及び焼戻し処理後の軸受部品の球状セメンタイトが減少し、軸受部品の転動疲労寿命が低下する。なお、球状セメンタイトの個数密度の上限は、特に限定されないが、製造上の制約及び転動疲労寿命を確保する観点から、5.0×10個/mmが好ましい。
次に、軸受部品用鋼材の素材となる熱間圧延線材の組織について説明する。
熱間圧延線材は、軸受部品と同一の化学組成を有する。そして、パーライトと、面積率で、5%以下の初析セメンタイトとからなる組織を有することが好ましい。金属組織中に、マルテンサイトなどの過冷組織が存在すると、伸線加工時に均一に変形することができず、断線の要因となることがある。そのため、熱間圧延線材の組織は、マルテンサイトを有さず、主としてパーライトを有することが、好ましい。
また、パーライトブロックの大きさは延性と非常に強い相関関係がある。つまり、パーライトを微細化することによって、伸線加工性が向上する。そのため、パーライトブロックの平均粒径(円相当径)を15μm以下とすることが好ましい。パーライトブロックの平均粒径が、15μmを超えると、伸線加工性の向上効果が得られない場合がある。一方、パーライトブロック粒径を1μm以下とすることは、工業的に難しい場合がある。そのため、パーライトブロック粒径は、1μm〜15μmとすることが好ましい。より好ましくは、1μm〜10μmである。
パーライトブロックの平均粒径(円相当径)は、電子後方散乱回折装置(EBSD)を用いて測定することができる。
また、一般的に初析セメンタイトは、塑性変形能が小さい。そのため、伸線加工によって分断され、ボイドを形成する要因となる。初析セメンタイトの面積率が低く、厚さが小さければ、伸線加工性は阻害されない。したがって、初析セメンタイトの面積率は5%以下、厚さは1.0μm以下が好ましい。より好ましくは、初析セメンタイトの面積率は3%以下、厚さは0.8μm以下である。
初析セメンタイトの面積率及び厚さは、SEM観察によって測定することができる。
上述した化学成分と金属組織とを満足するとすることで、異物混入環境下であっても、優れた転動疲労寿命を有する軸受部品を得ることができる。上述した軸受部品を得るためには、後述する製造方法により軸受部品を製造すればよい。
次に、本実施形態に係る軸受部品及び軸受部品用鋼材の好ましい製造方法について説明する。
本実施形態に係る軸受部品は以下のようにして製造することができる。
なお、以下に説明する軸受部品の製造方法、その素材となる軸受部品用鋼材、その軸受部品用鋼材の素材となる熱間圧延線材の製造方法は、本発明の軸受部品を得るための一例であり、以下の手順及び方法で限定するものではなく、本発明の構成を実現できる方法であれば、如何なる方法をも採用することも可能である。
軸受部品用鋼材の素材となる熱間圧延線材の製造方法には、通常の製造条件を採用することができる。
例えば、常法で成分組成を調整した鋼を溶製、鋳造し、必要に応じてソーキング処理、分塊圧延を施し、鋼片とする。次に、得られた鋼片を加熱し、熱間圧延を施す。そして、リング状に巻き取った後、冷却する。
以上の工程を経て、本実施形態に係る軸受部品用鋼材の素材となる熱間圧延線材は、製造することができる。
鋳造工程において、鋳造方法は特に限定されるものではなく、真空鋳造法や連続鋳造法等を用いれば良い。
また、必要に応じて、鋳造工程後の鋳片に対して施す、ソーキング処理(均熱拡散処理)は、鋳造などで発生する偏析を軽減させるための熱処理である。これらの工程を経て得られた鋼片は、一般的にビレットと呼ばれる。
なお、ソーキング処理の加熱温度は1100℃〜1200℃が好ましい。また、保持時間は10時間〜20時間が好ましい。
次に、熱間圧延前の加熱工程として、鋼片を加熱する。鋼片の加熱温度は、900℃〜1300℃とすることが好ましい。
その後、熱間圧延工程として、上記鋼片に対して、熱間圧延を行う。熱間圧延工程において、仕上圧延温度を850℃以下とすることが好ましい。
仕上圧延温度を850℃以下とすることにより、初析セメンタイトを分散して析出させることにより、初析セメンタイト厚さを低下させることができ、かつ、変態時のパーライトの核生成サイトを増加させて、パーライトブロックを微細化することができる。より好ましい仕上圧延温度は、800℃以下である。一方、仕上圧延温度が650℃未満であると、パーライトブロックを微細化させることができない場合がある。したがって、仕上圧延温度は650℃以上が好ましい。
熱間圧延中の鋼片の温度は、放射温度計によって測定することができる。
軸受部品用鋼材の素材となる、熱間圧延工程を経た鋼材、すなわち仕上圧延後の鋼材は、一般的に熱間圧延線材と呼ばれる。
熱間圧延工程終了後、すなわち仕上圧延後、800℃以下で熱間圧延線材を、リング状へと巻取る。この工程は、一般的に巻取工程と呼ばれる。
巻取工程における、巻取温度が高いと、オーステナイトが粒成長し、パーライトブロックが粗大になることがある。そのため、巻取温度は、800℃以下が好ましい。より好ましい巻取温度は、770℃以下である。一方、巻取温度が650℃未満であると、断線が発生する場合がある。したがって、巻取温度は650℃以上が好ましい。
なお、熱間圧延工程終了後に、必要に応じて冷却を行う、巻取前冷却工程を有してもよい。
巻取工程後、圧延線材を600℃まで冷却する。この工程は、一般的に冷却工程と呼ばれる。
600℃までの冷却速度は、0.5℃/s〜3.0℃/sとすることが好ましい。
圧延線材を巻取り後、600℃まで冷却すると、パーライトへの変態が完了する。巻取り後の冷却速度は、オーステナイトからパーライトへの変態に影響する場合がある。そのため、マルテンサイトやベイナイトなどの過冷組織の析出を抑制するために、巻取り後の冷却速度は3.0℃/s以下が好ましい。より好ましくは、2.3℃/s以下である。一方、巻取り後の冷却速度は、初析セメンタイトの析出にも影響する場合がある。そのため、初析セメンタイトの過剰な析出や粗大化を抑制するために、巻取り後の冷却速度は0.5℃/s以上とすることが好ましい。より好ましくは、0.8℃/s以上である。
通常の軸受部品の製造方法は、伸線加工前に、球状化熱処理工程を有するが、本実施形態に係る軸受部品用鋼材は、伸線加工前の球状化熱処理工程を有しない。つまり、上述の工程を経て得られた熱間圧延線材に、球状化熱処理を施さずに、そのまま総減面率50%以上の伸線加工を施す。そして、伸線加工後に、650℃以上、750℃もしくはA点−5℃のどちらか低い方の温度以下で、球状化熱処理を行うことによって、軸受部品用鋼材を製造する。
その後、得られた軸受部品用鋼材を成形した後、焼入れ処理、焼戻し処理を行って軸受部品を得る。
軸受部品用鋼材の素材となる熱間圧延線材に対して、総減面率50%以上の伸線加工を行うと、導入された歪みによって、球状化熱処理時のセメンタイトの球状化が促進される。よって、低温、短時間でセメンタイトが球状化し、かつ軸受部品用鋼材の球状セメンタイトの平均粒径を微細にでき、かつ個数密度を大きくすることができる。そのようにして製造した軸受部品用鋼材は、球状セメンタイトの個数が十分にあるため、焼入れ時のオーステナイトの平均粒径を微細化することができる。そして、オーステナイトの平均粒径を微細化することで、軸受部品の残留オーステナイトの量が確保でき、軸受部品の旧オーステナイト粒径も微細化する。
総減面率が50%未満であると、軸受部品用鋼材において、所定量の残留オーステナイトを確保できず、また、セメンタイトの球状化が不十分となって、軸受部品の旧オーステナイトを微細化することが出来ない場合がある。一方、総減面率が97%を超えると、伸線加工時に断線が発生する虞がある。そのため、総減面率は、50%〜97%とすることが好ましい。
伸線加工後の球状化熱処理の加熱温度は、軸受部品用鋼材の球状セメンタイトの個数密度を増加させるため、750℃未満、かつ、A−5℃以下とする。また、球状化熱処理回数は1回とする。
750℃以上またはA−5℃超の高温で球状化熱処理を行うと、軸受部品用鋼材の球状セメンタイトの個数密度が低下する。さらに、軸受部品用鋼材において、オーステナイトへの変態が生じるため、線径の変化が大きくなることがある。そのため、好ましくは、750℃またはA−5℃のどちらか低い温度以下で加熱する。
一方、伸線加工後の球状化熱処理の加熱温度が650℃より低いと、軸受部品用鋼材において、セメンタイトの球状化が不十分となり、パーライトのままで残存する。そのため、焼入れ時に、オーステナイト粒径が粗大化し、硬さが上昇して、軸受部品の加工性が低下する恐れがある。したがって、伸線加工後の球状化熱処理の加熱温度は、650℃以上が好ましい。
すなわち、球状化熱処理の加熱温度は、650℃以上、750℃もしくはA−5℃のどちらか低い温度以下である。
なお、Aとは、A変態が開始する温度であり、単位は摂氏温度(℃)である。また、Aは、下記の式1より化学成分を基に、簡易的に算出することができる。
なお、式中の[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[Al]及び[B]は、質量%で、熱間圧延線材中のC含有量、Si含有量、Mn含有量、Cu含有量、Ni含有量、Cr含有量、Mo含有量、Al含有量及びB含有量である。
=750.8−26.6×[C]+17.6×[Si]−11.6×[Mn]−22.9×[Cu]−23.0×[Ni]+24.1×[Cr]+22.5×[Mo]−169.4×[Al]−894.7×[B] (式1)
また、球状化熱処理において、上記温度にて、0.5〜5時間保持する。保持時間が0.5時間未満の場合は、球状化が十分ではなく、5時間を超えると、所定の球状セメンタイトの個数密度が低下する場合がある。
球状化熱処理後の軸受部品用鋼材を成形(粗成形)した後、焼入れ処理を行う。球状化熱処理後の焼入れ処理における、焼入れの加熱温度は、ある一定量のセメンタイトをオーステナイトに固溶させるため、820℃以上とすることが好ましい。焼入れの加熱温度が820℃未満であると、セメンタイトがオーステナイトに十分固溶せず、軸受部品の硬さが低下する場合がある。一方、焼入れの加熱温度が890℃を超えると、軸受部品における旧オーステナイトの平均粒径が粗大化する虞がある。そのため、焼入れの加熱温度は、820℃〜890℃とすることが好ましい。
また、焼入れ処理における保持時間は、0.5〜2時間が好ましい。保持時間が0.5時間未満の場合は、セメンタイトのオーステナイト固溶が十分ではなく、2時間を超えると、セメンタイトが分解し、Cがオーステナイトへ過剰に固溶し、軸受部品における残留オーステナイトが増加したり、旧オーステナイトの平均粒径が粗大化したりする可能性がある。
焼戻し処理における、焼戻し温度は、靭性の確保、硬さ調整のために、150℃以上で行うことが好ましい。焼戻し温度が150℃未満であると、軸受部品の靱性が確保できない場合がある。一方、焼戻し温度が250℃を超えると、軸受部品の硬さが低下し、転動疲労寿命が低下する虞がある。そのため、焼戻し温度は150℃〜250℃とすることが好ましい。
また、焼戻し処理における保持時間は、0.5〜3時間が好ましい。保持時間が0.5時間未満の場合は、軸受部品の靱性が確保できない場合があり、3時間を超えて、焼き戻しを行っても、特性に変化はなく、生産性が低下するだけである。
この焼戻し処理後の、軸受部品用鋼材に仕上加工を施すことで、軸受部品が得られる。
上述した、本発明の好ましい製造方法を適用することにより、軸受部品の金属組織及び軸受部品用鋼材の金属組織を本発明範囲内とすることができる。
以下、本発明の軸受部品の実施例を挙げ、本実施形態に係る軸受部品の効果をより具体的に説明する。ただし、実施例における条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、下記実施例に限定されるものではない。本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、趣旨に適合し得る範囲で適当に変更を加えて実施することも可能である。よって、本発明は、種々の条件を採用し得、それらは何れも本発明の技術的特徴に含まれるものである。
表1−1及び表1−2に示す成分を有する線材及び棒材に対して、熱処理や熱間鍛造を施すことによって、表2−1及び表2−2に記載の組織を有する熱間圧延線材とした。この熱間圧延線材を用いて、冷間で、直径がφ10mmとなるまで、伸線加工を行った。次に、伸線加工した熱間圧延線材を、長手方向の長さが10mmとなるように(10mm長さに)切断した。そして、切断した熱間圧延線材に、表2−1及び表2−2に記載の球状化温度で0.5〜3時間の球状化熱処理を施すことによって、球状セメンタイトとフェライトを含む組織に調整し、軸受部品用鋼材とした。この軸受部品用鋼材を、φ9.5mmの球型に成形した。その後、焼入れ処理、焼戻し処理を行った後、仕上加工を施して、軸受部品を製造した。表2−1及び表2−2に記載の焼入れ温度で焼入れ処理を行い、焼入れ処理の保持時間は60分、冷却は油冷とした。次いで、表2−1及び表2−2に記載の焼戻し温度で焼戻し処理を行い、焼戻しの保持時間は90分とした。熱間圧延線材の組織、伸線加工時の減面率、焼入れ処理及び焼戻し処理の温度を表2に示す。
熱間圧延線材の組織、軸受部品用鋼材及び軸受部品の組織は、光学顕微鏡で用いて評価した。そして、SEMを用いて、軸受部品の旧オーステナイトの平均粒径(μm)を測定した。また、軸受部品用鋼材及び軸受部品の球状セメンタイトの平均粒径(μm)及び個数密度(個/mm)の測定は、SEMで行った。また、軸受部品の残留オーステナイトの量(体積%)の測定には、X線回折法を用いた。
軸受部品の転動疲労寿命の測定には、ラジアル型疲労試験機を用いた。
通常の転動疲労寿命は、潤滑油のみで試験した。さらに、750Hv〜800Hvの硬さを有する、粒径100μm〜180μmの鉄粉を、潤滑油1Lに対して1g混入させた、異物混入環境下で転動疲労寿命を測定した。そして、測定した転動疲労寿命を、ワイブル統計処理により、累積破損確率10%の寿命を求めた。通常及び異物混入環境下での転動疲労寿命は、SUJ2と同成分であり、現行の製造方法で作製したB1の寿命を基準とし、表2−1及び表2−2にはその寿命に対する比で表わした。
表2−1及び表2−2に、素材の組織、製造方法、軸受部品の組織及び転動疲労寿命の評価結果を示す。表1−1及び表2−1において、A1〜A19は本発明の適正範囲内であり、通常の転動疲労寿命比はB1の1.5倍以上であり、異物混入環境下における転動疲労寿命はB1の2倍以上であり、優れた疲労寿命を有していた。
本発明例において、軸受部品用鋼材の金属組織は、いずれも球状セメンタイト及びフェライトとからなっていた。また、軸受部品の金属組織は、いずれも球状セメンタイト及びマルテンサイトとからなっていた。
一方、A20〜A38、B1、B2は比較例である。A20〜A38、B1、B2は、本発明で規定する化学組成及び軸受部品の組織の何れかまたは両方を満足していないため、転動疲労寿命が、従来と同等、もしくは、従来よりも劣っていた。
A20〜A31は、化学組成が本発明例の範囲外であった。A20はC含有量が少ないため、軸受部品用鋼材での球状セメンタイトの個数密度が小さくなっていた。そのため、焼入れ時に、オーステナイトの平均粒径が粗大化して、残留オーステナイトの量が不足して、軸受部品の異物混入環境下での転動疲労寿命が低下していた。また、C含有量が少ないため、軸受部品においても、球状セメンタイトの個数密度が不足していた。またC量が少ないと、焼入れ時の強度も小さくなるため、通常の環境下でも転動疲労寿命が低下していた。一方、A21はC含有量が過剰だった。そのため、残留オーステナイトの量及び球状セメンタイトの平均粒径が過剰となって、通常の転動疲労寿命が向上しなかった。
A23は、Mn含有量が過剰だった。そのため、軸受部品用鋼材のマルテンサイトに起因して、伸線時にクラックが生成して、軸受部品において、通常及び異物混入環境下の両方で転動疲労寿命は低下していた。さらに、伸線加工性が低下するため、十分な伸線加工量が確保できなかった。そのため、球状化熱処理において、球状セメンタイトの個数密度が低下していた。したがって、十分なピン止め効果が確保できず、焼入れ処理時にオーステナイトの平均粒径が粗大化した。また、軸受部品用鋼材の球状セメンタイトが少ないため、焼入れ後の軸受部品における、球状セメンタイトの個数密度が不十分だった。また、Mn含有量が過剰だったため、Ms点が低下して、残留オーステナイトの量が過剰となった。そのため、組織中に、マルテンサイトがなく、クラックが生成していなくても、転動疲労寿命が低下した。A24は、Mn含有量が少なく、残留オーステナイトの量が不足していた。そのため、異物混入環境下での、軸受部品の転動疲労寿命が向上しなかった。A25は、Cr含有量が少ないため、焼入れ処理時にセメンタイトが容易に固溶することで、球状セメンタイトの個数密度が不足していた。さらに、残留オーステナイトの量が過剰となり、軸受部品の転動疲労寿命が低下した。A27は、Cr含有量が多いため、セメンタイトが安定化し、焼入れ処理時、セメンタイトが固溶せず、残留オーステナイトの不足していた。そのため、異物混入環境下での軸受部品の転動疲労寿命が向上しなかった。
A22はSi含有量が過剰であり、A26はAl含有量が過剰であり、A30はO含有量が過剰だった。何れも介在物に起因して、通常及び異物混入環境下ともに転動疲労寿命が従来よりも劣っていた。A28は、S含有量が過剰で、硫化物に起因して、通常及び異物混入環境下ともに転動疲労寿命が従来よりも劣っていた。A31はN含有量が過剰で、窒化物に起因して、通常及び異物混入環境下ともに転動疲労寿命が従来よりも劣っていた。A29は、P含有量が過剰で、粒界が脆化して、通常及び異物混入環境下ともに転動疲労寿命が低下していた。
A32〜A38は、化学組成は本発明の範囲内であるが、軸受部品の組織が本発明の範囲外であった。A32及びA33は、伸線加工の総減面率が低いため、球状化熱処理時に、一部のパーライト組織が球状化せず、軸受部品用鋼材の球状セメンタイトの個数密度が低下した。そのため、焼入れ処理時に、オーステナイトの平均粒径が粗大化したため、残留オーステナイト量が不足していた。そして、軸受部品の球状セメンタイトの個数密度も低下して、異物混入環境下での転動疲労寿命が不十分だった。
A34は、球状化熱処理時の加熱温度が低いため、球状化熱処理時に、一部のパーライト組織が球状化せず、軸受部品用鋼材における球状セメンタイトの個数密度が低下した。そのため、焼入れ処理時に、オーステナイトの平均粒径が粗大化していたため、軸受部品の残留オーステナイトの量が低下した。さらに、軸受部品の球状セメンタイトの個数密度も低下し、異物混入環境下での転動疲労寿命が不十分となっていた。A35は、球状化熱処理時の温度が高く、軸受部品用鋼材における球状セメンタイトの個数密度が低下したため、焼入れ処理時に、オーステナイトの平均粒径が粗大化して、残留オーステナイト量が低下していた。さらに、軸受部品の球状セメンタイトの個数密度が低下することで、異物混入環境下での転動疲労寿命が不十分である。
A36は、焼入れ時の加熱温度が低いため、固溶したC含有量が低下して、残留オーステナイトの量が不足していた。そのため、異物混入環境下での転動疲労寿命が不十分となっていた。A37は、焼入れの加熱温度が高く、セメンタイトが過剰に固溶したため、残留オーステナイトの量が過剰になり、球状セメンタイトの個数密度も低下した。そのため、通常の転動疲労寿命が低下していた。
B1、B2は、伸線加工前に球状化熱処理を施した現行材である。B1は軸受部品用鋼材の球状セメンタイトの個数密度が小さい。そのため、焼入れ処理時のオーステナイトの平均粒径が粗大化し、残留オーステナイトの量が低下して、軸受部品の球状セメンタイト個数密度が低下していた。そして、異物混入環境下での転動疲労寿命は低かった。また、B2はMn含有量の増加などによって、B1に比べて、残留オーステナイトの量が増加していたが、軸受部品の球状セメンタイトの個数密度が小さいため、通常の疲労寿命特性が不足していた。
本発明の上記態様によれば、優れた伸線加工性を確保するために、Mnの含有量を抑制して、球状化熱処理を短縮して、異物混入環境下を含めた転動疲労寿命に優れた軸受部品を得ることができるため、産業上の利用可能性が高い。
1 マルテンサイト
2 球状セメンタイト
4 フェライト
5 球状セメンタイト
(1)本発明の一実施態様に係る軸受部品は、化学成分が、質量%で、C:0.95%〜1.10%、Si:0.10%〜0.70%、Mn:0.20%〜1.20%、Cr:0.90%〜1.60%、Al:0.010%〜0.100%、N:0.003%〜0.030%を含有し、P:0.025%以下、S:0.025%以下、O:0.0010%以下に制限し、任意に、Mo:0.25%以下、B:0.0050%以下、Cu:1.0%以下、Ni:3.0%以下、Ca:0.0015%以下を含有し、残部がFe及び不純物からなり、金属組織が、残留オーステナイト、球状セメンタイト及びマルテンサイトであり、前記残留オーステナイトの量が、体積%で、18%〜25%であり、かつ、前記金属組織において、旧オーステナイトの平均粒径が6.0μm以下であり、前記球状セメンタイトの平均粒径が0.45μm以下であり、かつ、前記球状セメンタイトの個数密度が0.45×10個/mm以上である。
(2)上記(1)に記載の軸受部品では、前記化学成分が、質量%で、Mo:0.01%〜0.25%、B:0.0001%〜0.0050%、Cu:0.05%〜1.0%、Ni:0.05%〜3.0%、Ca:0.0003%〜0.0015%の1種以上を含有してもよい。
(3)本発明の一実施態様に係る軸受部品用鋼材は、化学成分が、質量%で、C:0.95%〜1.10%、Si:0.10%〜0.70%、Mn:0.20%〜1.20%、Cr:0.90%〜1.60%、Al:0.010%〜0.100%、N:0.003%〜0.030%を含有し、S:0.025%以下、P:0.025%以下、O:0.0010%以下に制限し、任意に、Mo:0.25%以下、B:0.0050%以下、Cu:1.0%以下、Ni:3.0%以下、Ca:0.0015%以下を含有し、残部がFe及び不純物からなり、金属組織が、球状セメンタイト及びフェライトを含み、前記金属組織において、粒径が0.5μm〜3.0μmの前記球状セメンタイトの個数密度が2.0×10個/mm以上である。
(4)上記(3)に記載の軸受部品用鋼材では、前記化学成分が、質量%で、Mo:0.01%〜0.25%、B:0.0001%〜0.0050%、Cu:0.05%〜1.0%、Ni:0.05%〜3.0%、Ca:0.0003%〜0.0015%の1種以上を含有してもよい。
(5)本発明の一実施態様に係る軸受部品用鋼材の製造方法は、上記(3)または(4)に記載の化学成分からなる鋼片を得る鋳造工程と;前記鋼片を900℃〜1300℃の温度に加熱する加熱工程と;前記加熱工程後の前記鋼片に、850℃以下の仕上圧延温度で、熱間圧延を施して、熱間圧延線材を得る熱間圧延工程と;前記熱間圧延工程後の前記熱間圧延線材を、800℃以下の巻取温度で巻き取る巻取工程と;前記巻取工程後に3.0℃/秒以下の冷却速度で、前記熱間圧延線材を600℃まで冷却し、前記熱間圧延線材の組織をパーライトとする冷却工程と;前記冷却工程後の前記熱間圧延線材に、総減面率50%以上で伸線加工を施す伸線加工工程と;前記伸線加工工程後の前記熱間圧延線材に、650℃以上、750℃もしくはA−5℃のどちらか低い方の温度以下で、0.5〜5時間保持する球状化熱処理を行い、軸受部品用鋼材を得る球状化熱処理工程と;を有する。ここで、AとはA変態が開始する温度を前記化学成分から予測した値であり、下記の式1より算出される。なお、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[Al]及び[B]は、質量%で、前記熱間圧延線材中のC含有量、Si含有量、Mn含有量、Cu含有量、Ni含有量、Cr含有量、Mo含有量、Al含有量及びB含有量である。
=750.8−26.6×[C]+17.6×[Si]−11.6×[Mn]−22.9×[Cu]−23.0×[Ni]+24.1×[Cr]+22.5×[Mo]−169.4×[Al]−894.7×[B] (式1)
(6)本発明の一実施態様に係る軸受部品の製造方法は、上記(1)または(2)に記載の化学成分からなる鋼片を得る鋳造工程と;前記鋼片を900℃〜1300℃の温度に加熱する加熱工程と;前記加熱工程後の前記鋼片に、850℃以下の仕上圧延温度で、熱間圧延を施して、熱間圧延線材を得る熱間圧延工程と;前記熱間圧延工程後の前記熱間圧延線材を、800℃以下の巻取温度で巻き取る巻取工程と;前記巻取工程後に3.0℃/秒以下の冷却速度で、前記熱間圧延線材を600℃まで冷却し、前記熱間圧延線材の組織をパーライトとする冷却工程と;前記冷却工程後の前記熱間圧延線材に、総減面率50%以上で伸線加工を施す伸線加工工程と;前記伸線加工工程後の前記熱間圧延線材に、650℃以上、750℃もしくはA−5℃のどちらか低い方の温度以下で、0.5〜5時間保持する球状化熱処理を行い、軸受部品用鋼材を得る球状化熱処理工程と;前記球状化熱処理工程後の前記軸受部品用鋼材を、粗成形する成形工程と;前記成形工程後の前記軸受部品用鋼材を、800℃〜890℃に加熱して、焼入れ処理を行う焼入れ処理工程と;前記焼入れ処理工程後の前記軸受部品用鋼材に、250℃以下で焼戻し処理を行う焼戻し工程と;前記焼戻し処理工程後の前記軸受部品用鋼材に仕上加工を施して軸受部品を得る仕上工程とを有する。ここで、AとはA変態が開始する温度を前記化学成分から予測した値であり、下記の式2より算出される。なお、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[Al]及び[B]は、質量%で、前記熱間圧延線材中のC含有量、Si含有量、Mn含有量、Cu含有量、Ni含有量、Cr含有量、Mo含有量、Al含有量及びB含有量である。
=750.8−26.6×[C]+17.6×[Si]−11.6×[Mn]−22.9×[Cu]−23.0×[Ni]+24.1×[Cr]+22.5×[Mo]−169.4×[Al]−894.7×[B] (式2)
球状セメンタイトは、通常、焼入れ処理時にA点以上に加熱した際に、母相であるオーステナイト相に固溶するため、軸受部品の球状セメンタイトの個数密度は、素材である軸受部品用鋼材よりも減少する。焼入れ処理の加熱温度を低温にすれば、軸受部品の球状セメンタイトの個数密度は増加するが、軸受部品の残留オーステナイトの量は低下する。したがって、異物混入環境下での軸受部品の転動疲労寿命は低下する。
しかし、本発明者らは、焼入れ処理前の軸受部品用鋼材において粒径が0.5μm〜3.0μmの球状セメンタイト個数密度を、2.0×10個/mm以上に増加させることによって、焼入れ処理後の軸受部品において、平均粒径が0.45μm以下の大きさを有する球状セメンタイトの個数密度を0.45×10個/mm以上確保できることを見出した。
本実施形態に係る軸受部品の金属組織について説明する。本実施形態に係る軸受部品の金属組織は、残留オーステナイト、球状セメンタイト及びマルテンサイトである。図1に、本実施形態に係る軸受部品の金属組織のSEM写真を示す。図1のSEM写真は、マルテンサイト1に、球状セメンタイト2が析出した組織である。残留オーステナイトは、SEMでは観察できないため、X回折法(XRD)を用いてマルテンサイトとの回折強度の比によって求められる。
本実施形態に係る軸受部品の金属組織において、残留オーステナイトは、体積%で、18%〜25%である。マルテンサイト及び球状セメンタイトの合計は、体積率で、全体の体積から、残留オーステナイトを差し引いて、75%〜82%が好ましい。
上記した基本成分及び不純物元素の他に、本実施形態に係る軸受部品には、さらに、選択的にMo、B、Cu、Ni及びCaのうちの少なくとも1つ以上を添加してもよい。この場合、焼入れ性を向上させるためのMo、B、CuNi及び介在物を微細化させるためのCaのうち1つ以上を選択できる。これらの化学元素は、必ずしも軸受部品用鋼材及び軸受部品に添加する必要がないため、これらの化学元素の下限は、いずれも0%であり制限されない。
以下に、これら成分の好ましい範囲とその理由とについて説明する。ここで、記載する%は、質量%である。
次に、軸受部品用鋼材の素材となる熱間圧延線材の組織について説明する。
熱間圧延線材は、軸受部品と同一の化学組成を有する。そして、パーライトと、面積率で、5%以下の初析セメンタイトとからなる組織を有することが好ましい。金属組織中に、マルテンサイトなどの過冷組織が存在すると、伸線加工時に均一に変形することができず、断線の要因となることがある。そのため、熱間圧延線材の組織は、マルテンサイトを有さず、主としてパーライトを有することが、好ましい。
また、パーライトブロックの大きさは延性と非常に強い相関関係がある。つまり、パーライトを微細化することによって、伸線加工性が向上する。そのため、パーライトブロックの平均粒径(円相当径)を15μm以下とすることが好ましい。パーライトブロックの平均粒径が、15μmを超えると、伸線加工性の向上効果が得られない場合がある。一方、パーライトブロックの平均粒径を1μm以下とすることは、工業的に難しい場合がある。そのため、パーライトブロックの平均粒径は、1μm〜15μmとすることが好ましい。より好ましくは、1μm〜10μmである。
パーライトブロックの平均粒径(円相当径)は、電子後方散乱回折装置(EBSD)を用いて測定することができる。
表2−1及び表2−2に、素材の組織、製造方法、軸受部品の組織及び転動疲労寿命の評価結果を示す。表1−1及び表2−1において、A1〜A19は本発明の適正範囲内であり、通常の転動疲労寿命はB1の1.5倍以上であり、異物混入環境下における転動疲労寿命はB1の2倍以上であり、優れた疲労寿命を有していた。
本発明例において、軸受部品用鋼材の金属組織は、いずれも球状セメンタイト及びフェライトとからなっていた。また、軸受部品の金属組織は、いずれも残留オーステナイト、球状セメンタイト及びマルテンサイトとからなっていた。
一方、A20〜A38、B1、B2は比較例である。A20〜A38、B1、B2は、本発明で規定する化学組成及び軸受部品の組織の何れかまたは両方を満足していないため、転動疲労寿命が、従来と同等、もしくは、従来よりも劣っていた。
A23は、Mn含有量が過剰だった。そのため、軸受部品用鋼材のマルテンサイトに起因して、伸線時にクラックが生成して、軸受部品において、通常及び異物混入環境下の両方で転動疲労寿命は低下していた。さらに、伸線加工性が低下するため、十分な伸線加工量が確保できなかった。そのため、球状化熱処理において、球状セメンタイトの個数密度が低下していた。したがって、十分なピン止め効果が確保できず、焼入れ処理時にオーステナイトの平均粒径が粗大化した。また、軸受部品用鋼材の球状セメンタイトが少ないため、焼入れ後の軸受部品における、球状セメンタイトの個数密度が不十分だった。また、Mn含有量が過剰だったため、Ms点が低下して、残留オーステナイトの量が過剰となった。そのため、組織中に、マルテンサイトがなく、クラックが生成していなくても、転動疲労寿命が低下した。A24は、Mn含有量が少なく、残留オーステナイトの量が不足していた。そのため、異物混入環境下での、軸受部品の転動疲労寿命が向上しなかった。A25は、Cr含有量が少ないため、焼入れ処理時にセメンタイトが容易に固溶することで、球状セメンタイトの個数密度が不足していた。さらに、残留オーステナイトの量が過剰となり、軸受部品の転動疲労寿命が低下した。A27は、Cr含有量が多いため、セメンタイトが安定化し、焼入れ処理時、セメンタイトが固溶せず、残留オーステナイト不足していた。そのため、異物混入環境下での軸受部品の転動疲労寿命が向上しなかった。
(1)本発明の一実施態様に係る軸受部品は、化学成分が、質量%で、C:0.95%〜1.10%、Si:0.10%〜0.70%、Mn:0.20%〜1.20%、Cr:0.90%〜1.60%、Al:0.010%〜0.100%、N:0.003%〜0.030%を含有し、P:0.025%以下、S:0.025%以下、O:0.0010%以下に制限し、任意に、Mo:0.25%以下、B:0.0050%以下、Cu:1.0%以下、Ni:3.0%以下、Ca:0.0015%以下を含有し、残部がFe及び不純物からなり、金属組織が、残留オーステナイト、球状セメンタイト及びマルテンサイトであり、前記残留オーステナイトの量が、体積%で、18%〜25%であり、かつ、前記金属組織において、旧オーステナイトの平均粒径が6.0μm以下であり、前記球状セメンタイトの平均粒径が0.45μm以下であり、かつ、前記球状セメンタイトの個数密度が0.45×10個/mm以上、0.56×10 個/mm 以下である。
(2)上記(1)に記載の軸受部品では、前記化学成分が、質量%で、Mo:0.01%〜0.25%、B:0.0001%〜0.0050%、Cu:0.05%〜1.0%、Ni:0.05%〜3.0%、Ca:0.0003%〜0.0015%の1種以上を含有してもよい。
(3)本発明の一実施態様に係る軸受部品用鋼材は、化学成分が、質量%で、C:0.95%〜1.10%、Si:0.10%〜0.70%、Mn:0.20%〜1.20%、Cr:0.90%〜1.60%、Al:0.010%〜0.100%、N:0.003%〜0.030%を含有し、S:0.025%以下、P:0.025%以下、O:0.0010%以下に制限し、任意に、Mo:0.25%以下、B:0.0050%以下、Cu:1.0%以下、Ni:3.0%以下、Ca:0.0015%以下を含有し、残部がFe及び不純物からなり、金属組織が、球状セメンタイト及びフェライトからなり、前記金属組織において、粒径が0.5μm〜3.0μmの前記球状セメンタイトの個数密度が2.0×10個/mm以上、3.24×10 個/mm 以下である。
(4)上記(3)に記載の軸受部品用鋼材では、前記化学成分が、質量%で、Mo:0.01%〜0.25%、B:0.0001%〜0.0050%、Cu:0.05%〜1.0%、Ni:0.05%〜3.0%、Ca:0.0003%〜0.0015%の1種以上を含有してもよい。
(5)上記(3)または(4)に記載の軸受部品用鋼材の製造方法は、上記(3)または(4)に記載の化学成分からなる鋼片を得る鋳造工程と;前記鋼片を900℃〜1300℃の温度に加熱する加熱工程と;前記加熱工程後の前記鋼片に、850℃以下の仕上圧延温度で、熱間圧延を施して、熱間圧延線材を得る熱間圧延工程と;前記熱間圧延工程後の前記熱間圧延線材を、800℃以下の巻取温度で巻き取る巻取工程と;前記巻取工程後に3.0℃/秒以下の冷却速度で、前記熱間圧延線材を600℃まで冷却し、前記熱間圧延線材の組織をパーライトとする冷却工程と;前記冷却工程後の前記熱間圧延線材に、総減面率50%以上で伸線加工を施す伸線加工工程と;前記伸線加工工程後の前記熱間圧延線材に、650℃以上、750℃もしくはA−5℃のどちらか低い方の温度以下で、0.5〜5時間保持する球状化熱処理を行い、軸受部品用鋼材を得る球状化熱処理工程と;を有する。ここで、AとはA変態が開始する温度を前記化学成分から予測した値であり、下記の式1より算出される。なお、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[Al]及び[B]は、質量%で、前記熱間圧延線材中のC含有量、Si含有量、Mn含有量、Cu含有量、Ni含有量、Cr含有量、Mo含有量、Al含有量及びB含有量である。
=750.8−26.6×[C]+17.6×[Si]−11.6×[Mn]−22.9×[Cu]−23.0×[Ni]+24.1×[Cr]+22.5×[Mo]−169.4×[Al]−894.7×[B] (式1)
(6)上記(1)または(2)に記載の軸受部品の製造方法は、上記(1)または(2)に記載の化学成分からなる鋼片を得る鋳造工程と;前記鋼片を900℃〜1300℃の温度に加熱する加熱工程と;前記加熱工程後の前記鋼片に、850℃以下の仕上圧延温度で、熱間圧延を施して、熱間圧延線材を得る熱間圧延工程と;前記熱間圧延工程後の前記熱間圧延線材を、800℃以下の巻取温度で巻き取る巻取工程と;前記巻取工程後に3.0℃/秒以下の冷却速度で、前記熱間圧延線材を600℃まで冷却し、前記熱間圧延線材の組織をパーライトとする冷却工程と;前記冷却工程後の前記熱間圧延線材に、総減面率50%以上で伸線加工を施す伸線加工工程と;前記伸線加工工程後の前記熱間圧延線材に、650℃以上、750℃もしくはA−5℃のどちらか低い方の温度以下で、0.5〜5時間保持する球状化熱処理を行い、軸受部品用鋼材を得る球状化熱処理工程と;前記球状化熱処理工程後の前記軸受部品用鋼材を、粗成形する成形工程と;前記成形工程後の前記軸受部品用鋼材を、800℃〜890℃に加熱して、焼入れ処理を行う焼入れ処理工程と;前記焼入れ処理工程後の前記軸受部品用鋼材に、250℃以下で焼戻し処理を行う焼戻し工程と;前記焼戻し処理工程後の前記軸受部品用鋼材に仕上加工を施して軸受部品を得る仕上工程とを有する。ここで、AとはA変態が開始する温度を前記化学成分から予測した値であり、下記の式2より算出される。なお、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[Al]及び[B]は、質量%で、前記熱間圧延線材中のC含有量、Si含有量、Mn含有量、Cu含有量、Ni含有量、Cr含有量、Mo含有量、Al含有量及びB含有量である。
=750.8−26.6×[C]+17.6×[Si]−11.6×[Mn]−22.9×[Cu]−23.0×[Ni]+24.1×[Cr]+22.5×[Mo]−169.4×[Al]−894.7×[B] (式2)

Claims (6)

  1. 化学成分が、質量%で
    C:0.95%〜1.10%、
    Si:0.10%〜0.70%、
    Mn:0.20%〜1.20%、
    Cr:0.90%〜1.60%、
    Al:0.010%〜0.100%、
    N:0.003%〜0.030%、
    を含有し、
    P:0.025%以下、
    S:0.025%以下、
    O:0.0010%以下
    に制限し、任意に、
    Mo:0.25%以下、
    B:0.0050%以下、
    Cu:1.0%以下、
    Ni:3.0%以下、
    Ca:0.0015%以下
    を含有し、残部がFe及び不純物からなり、
    金属組織が、残留オーステナイト、球状セメンタイト及びマルテンサイトであり、前記残留オーステナイトの量が、体積%で、18%〜25%であり、かつ、前記金属組織において、旧オーステナイトの平均粒径が6.0μm以下であり、前記球状セメンタイトの平均粒径が0.45μm以下であり、かつ、前記球状セメンタイトの個数密度が0.45×10個/mm以上である
    ことを特徴とする軸受部品。
  2. 前記化学成分が、質量%で、
    Mo:0.01%〜0.25%、
    B :0.0001%〜0.0050%、
    Cu:0.1%〜1.0%、
    Ni:1.0%〜3.0%、
    Ca:0.0001%〜0.0015%
    の1種以上を含有する
    ことを特徴とする請求項1に記載の軸受部品。
  3. 化学成分が、質量%で
    C:0.95%〜1.10%、
    Si:0.10%〜0.70%、
    Mn:0.20%〜1.20%、
    Cr:0.90%〜1.60%、
    Al:0.010%〜0.100%、
    N:0.003%〜0.030%、
    を含有し、
    S:0.025%以下、
    P:0.025%以下、
    O:0.0010%以下
    に制限し、任意に、
    Mo:0.25%以下、
    B:0.0050%以下、
    Cu:1.0%以下、
    Ni:3.0%以下、
    Ca:0.0015%以下
    を含有し、残部がFe及び不純物からなり、
    金属組織が、球状セメンタイト及びフェライトを含み、前記金属組織において、粒径が0.5μm〜3.0μmの前記球状セメンタイトの個数密度が2.0×10個/mm以上である
    ことを特徴とする軸受部品用鋼材。
  4. 前記化学成分が、質量%で、
    Mo:0.01%〜0.25%、
    B:0.0001%〜0.0050%、
    Cu:0.1%〜1.0%、
    Ni:1.0%〜3.0%、
    Ca:0.0001%〜0.0015%
    の1種以上を含有する
    ことを特徴とする請求項3に記載の軸受部品用鋼材。
  5. 請求項3または4に記載の化学成分からなる鋼片を得る鋳造工程と;
    前記鋼片を900℃〜1300℃の温度に加熱する加熱工程と;
    前記加熱工程後の前記鋼片に、850℃以下の仕上圧延温度で、熱間圧延を施して、熱間圧延線材を得る熱間圧延工程と;
    前記熱間圧延工程後の前記熱間圧延線材を、800℃以下の巻取温度で巻き取る巻取工程と;
    前記巻取工程後に3.0℃/秒以下の冷却速度で、前記熱間圧延線材を600℃まで冷却し、前記熱間圧延線材の組織をパーライトとする冷却工程と;
    前記冷却工程後の前記熱間圧延線材に、総減面率50%以上で伸線加工を施す伸線加工工程と;
    前記伸線加工工程後の前記熱間圧延線材に、650℃以上、750℃もしくはA−5℃のどちらか低い方の温度以下で、0.5〜5時間保持する球状化熱処理を行い、軸受部品用鋼材を得る球状化熱処理工程と;を有する
    ことを特徴とする軸受部品用鋼材の製造方法。
    ここで、AとはA変態が開始する温度を前記化学成分から予測した値であり、下記の式1より算出される。
    なお、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[Al]及び[B]は、質量%で、前記熱間圧延線材中のC含有量、Si含有量、Mn含有量、Cu含有量、Ni含有量、Cr含有量、Mo含有量、Al含有量及びB含有量である。
    =750.8−26.6×[C]+17.6×[Si]−11.6×[Mn]−22.9×[Cu]−23.0×[Ni]+24.1×[Cr]+22.5×[Mo]−169.4×[Al]−894.7×[B] (式1)
  6. 請求項1または2に記載の化学成分からなる鋼片を得る鋳造工程と;
    前記鋼片を900℃〜1300℃の温度に加熱する加熱工程と;
    前記加熱工程後の前記鋼片に、850℃以下の仕上圧延温度で、熱間圧延を施して、熱間圧延線材を得る熱間圧延工程と;
    前記熱間圧延工程後の前記熱間圧延線材を、800℃以下の巻取温度で巻き取る巻取工程と;
    前記巻取工程後に3.0℃/秒以下の冷却速度で、前記熱間圧延線材を600℃まで冷却し、前記熱間圧延線材の組織をパーライトとする冷却工程と;
    前記冷却工程後の前記熱間圧延線材に、総減面率50%以上で伸線加工を施す伸線加工工程と;
    前記伸線加工工程後の前記熱間圧延線材に、650℃以上、750℃もしくはA−5℃のどちらか低い方の温度以下で、0.5〜5時間保持する球状化熱処理を行い、軸受部品用鋼材を得る球状化熱処理工程と;
    前記球状化熱処理工程後の前記軸受部品用鋼材を、粗成形する成形工程と;
    前記成形工程後の前記軸受部品用鋼材を、800℃〜890℃に加熱して、焼入れ処理を行う焼入れ処理工程と;
    前記焼入れ処理工程後の前記軸受部品用鋼材に、250℃以下で焼戻し処理を行う焼戻し工程と;
    前記焼戻し処理工程後の前記軸受部品用鋼材に仕上加工を施して軸受部品を得る仕上工程と;を有する
    ことを特徴とする軸受部品の製造方法。
    ここで、AとはA変態が開始する温度を前記化学成分から予測した値であり、下記の式2より算出される。
    なお、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[Al]及び[B]は、質量%で、前記熱間圧延線材中のC含有量、Si含有量、Mn含有量、Cu含有量、Ni含有量、Cr含有量、Mo含有量、Al含有量及びB含有量である。
    =750.8−26.6×[C]+17.6×[Si]−11.6×[Mn]−22.9×[Cu]−23.0×[Ni]+24.1×[Cr]+22.5×[Mo]−169.4×[Al]−894.7×[B] (式2)
JP2015556849A 2014-01-10 2015-01-09 軸受部品、軸受部品用鋼材及びそれらの製造方法 Active JP6079903B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014003338 2014-01-10
JP2014003338 2014-01-10
JP2014084952 2014-04-16
JP2014084952 2014-04-16
PCT/JP2015/050528 WO2015105186A1 (ja) 2014-01-10 2015-01-09 軸受部品、軸受部品用鋼材及びそれらの製造方法

Publications (2)

Publication Number Publication Date
JP6079903B2 JP6079903B2 (ja) 2017-02-15
JPWO2015105186A1 true JPWO2015105186A1 (ja) 2017-03-23

Family

ID=53524009

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015556850A Active JP6079904B2 (ja) 2014-01-10 2015-01-09 軸受部品
JP2015556849A Active JP6079903B2 (ja) 2014-01-10 2015-01-09 軸受部品、軸受部品用鋼材及びそれらの製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015556850A Active JP6079904B2 (ja) 2014-01-10 2015-01-09 軸受部品

Country Status (8)

Country Link
US (2) US10246757B2 (ja)
EP (2) EP3093363B1 (ja)
JP (2) JP6079904B2 (ja)
KR (2) KR101826457B1 (ja)
CN (2) CN105899704B (ja)
PL (2) PL3093361T3 (ja)
SG (2) SG11201605568SA (ja)
WO (2) WO2015105186A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6703385B2 (ja) * 2015-09-18 2020-06-03 国立大学法人大阪大学 高硬度かつ靭性に優れた鋼
KR101664193B1 (ko) * 2015-12-11 2016-10-11 주식회사 세아베스틸 오스템퍼링 열처리를 이용한 고수명의 베어링용 강의 제조방법
CN105782245A (zh) * 2016-02-26 2016-07-20 惠州市金力电机有限公司 一种不锈钢基粉末冶金含油轴承
JP6472146B2 (ja) * 2017-01-31 2019-02-20 山陽特殊製鋼株式会社 高硬度かつ靭性に優れる鋼製部材および高負荷ボールねじのナット
JP6827914B2 (ja) * 2017-12-18 2021-02-10 Ntn株式会社 軸受部品及び転がり軸受
EP3591089A4 (en) 2017-03-03 2020-08-05 NTN Corporation BEARING ELEMENT, ROLLER BEARING AND BEARING ELEMENT MANUFACTURING METHOD
JP6843786B2 (ja) * 2017-03-03 2021-03-17 Ntn株式会社 軸受部品及び転がり軸受、ならびに軸受部品の製造方法
CN108559913A (zh) * 2018-05-16 2018-09-21 浙江健力股份有限公司 一种GCr15轴承钢管及其制备工艺
KR20200138848A (ko) * 2019-06-03 2020-12-11 현대자동차주식회사 고탄소 베어링강의 제조방법 및 이로부터 제조된 고탄소 베어링강
JP7422527B2 (ja) 2019-12-05 2024-01-26 日本製鉄株式会社 転動部品及びその製造方法
KR102421642B1 (ko) * 2019-12-20 2022-07-18 주식회사 포스코 베어링용 선재 및 이의 제조방법
JP7464821B2 (ja) 2020-02-14 2024-04-10 日本製鉄株式会社 軸受軌道用鋼材、および軸受軌道
WO2022065200A1 (ja) * 2020-09-24 2022-03-31 Ntn株式会社 軸受部品および転がり軸受
CN114134403B (zh) * 2021-05-19 2023-01-13 江阴兴澄特种钢铁有限公司 一种大规格风电轴承滚动体用钢及其生产方法
KR20220169272A (ko) * 2021-06-18 2022-12-27 주식회사 포스코 신선 가공성이 우수한 선재 및 그 제조방법
CN113755755A (zh) * 2021-08-30 2021-12-07 西安交通大学 用于高速精密轴承的超高碳轴承钢材料及其制备方法和应用
CN114790531A (zh) * 2022-05-09 2022-07-26 中科西王特钢有限公司 一种风电主轴轴承用钢

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127643A (ja) 1993-10-29 1995-05-16 Nippon Seiko Kk 転がり軸受
JP2001234286A (ja) * 2000-02-24 2001-08-28 Nippon Steel Corp 伸線加工性に優れた細径高炭素低合金鋼熱間圧延線材とその製造方法
JP3463651B2 (ja) * 2000-04-18 2003-11-05 住友金属工業株式会社 軸受用鋼材
JP3889931B2 (ja) 2001-01-26 2007-03-07 Jfeスチール株式会社 軸受材料
JP3949926B2 (ja) 2001-10-16 2007-07-25 株式会社神戸製鋼所 伸線前の熱処理が省略可能な伸線加工性に優れた線状または棒状鋼、および軸受部品
JP4008320B2 (ja) 2002-09-12 2007-11-14 株式会社神戸製鋼所 軸受用圧延線材および伸線材
JP2004124215A (ja) 2002-10-04 2004-04-22 Daido Steel Co Ltd 異物混入環境下での転動寿命に優れた軸受用鋼
JP4252837B2 (ja) * 2003-04-16 2009-04-08 Jfeスチール株式会社 転動疲労寿命の優れた鋼材及びその製造方法
JP4487748B2 (ja) 2004-11-30 2010-06-23 Jfeスチール株式会社 軸受部品の製造方法
JP4569961B2 (ja) 2005-09-13 2010-10-27 山陽特殊製鋼株式会社 ボールネジまたはワンウェイクラッチ用部品の製造方法
JP4646866B2 (ja) * 2006-01-24 2011-03-09 株式会社神戸製鋼所 伸線性に優れた軸受鋼線材およびその製造方法
JP2007327084A (ja) 2006-06-06 2007-12-20 Kobe Steel Ltd 伸線加工性に優れた線材およびその製造方法
JP5292897B2 (ja) * 2008-03-31 2013-09-18 Jfeスチール株式会社 異物環境下での疲労特性に優れた軸受部品およびその製造方法
JP5679440B2 (ja) * 2011-03-28 2015-03-04 株式会社神戸製鋼所 冷間鍛造性に優れ、高周波焼入れ後におけるねじり強度に優れた高周波焼入れ用鋼、およびその製造方法
US9169530B2 (en) 2012-01-20 2015-10-27 Nippon Steel & Sumitomo Metal Corporation Rolled wire rod and manufacturing method thereof
CN103320704B (zh) * 2013-07-12 2015-02-04 安徽工业大学 一种高性能的轴承钢的生产方法

Also Published As

Publication number Publication date
EP3093363B1 (en) 2019-07-10
KR101826458B1 (ko) 2018-02-06
US20160333438A1 (en) 2016-11-17
JP6079904B2 (ja) 2017-02-15
WO2015105186A1 (ja) 2015-07-16
CN105899703A (zh) 2016-08-24
US10246757B2 (en) 2019-04-02
KR20160099671A (ko) 2016-08-22
EP3093363A4 (en) 2017-11-22
SG11201605568SA (en) 2016-08-30
EP3093361A1 (en) 2016-11-16
US20160333437A1 (en) 2016-11-17
CN105899703B (zh) 2017-09-08
EP3093361A4 (en) 2017-11-22
KR20160101133A (ko) 2016-08-24
KR101826457B1 (ko) 2018-02-06
PL3093363T3 (pl) 2019-12-31
CN105899704B (zh) 2017-12-22
PL3093361T3 (pl) 2020-03-31
EP3093363A1 (en) 2016-11-16
JP6079903B2 (ja) 2017-02-15
SG11201605570XA (en) 2016-08-30
WO2015105187A1 (ja) 2015-07-16
JPWO2015105187A1 (ja) 2017-03-23
CN105899704A (zh) 2016-08-24
EP3093361B1 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
JP6079903B2 (ja) 軸受部品、軸受部品用鋼材及びそれらの製造方法
JP4842407B2 (ja) 低温焼鈍用鋼線及びその製造方法
JP5026626B2 (ja) 冷間鍛造性に優れた鋼線及びその製造方法
CN103124801B (zh) 表面硬化钢及其制造方法
JP5257082B2 (ja) 低温焼鈍後の冷間鍛造性に優れた鋼線材及びその製造方法並びに冷間鍛造性に優れた鋼線材の製造方法
JP5776623B2 (ja) 冷間加工性に優れた鋼線材・棒鋼とその製造方法
JP5736936B2 (ja) 熱間圧延棒鋼または線材、および冷間鍛造用鋼線の製造方法
JP5407178B2 (ja) 冷間加工性に優れた冷間鍛造用鋼線材およびその製造方法
JP2011157597A (ja) 熱間圧延棒鋼または線材
JP2017043835A (ja) 冷間加工用機械構造用鋼、およびその製造方法
JP2011225897A (ja) 冷間鍛造用熱間圧延棒鋼または線材
JP2009275252A (ja) 焼鈍後の冷間鍛造性に優れた鋼線材及びその製造方法
JP2015168882A (ja) 合金鋼の球状化熱処理方法
JPWO2013108828A1 (ja) 圧延線材、及びその製造方法
JP5204328B2 (ja) 高炭素鋼線材および高炭素鋼線材の製造方法
JP2012140674A (ja) 冷間鍛造性に優れた鋼材、及びその製造方法
JP2010180443A (ja) 高炭素パーライト系レールの熱処理方法
JP2017122270A (ja) 冷間加工部品用鋼
JP6226082B2 (ja) 伸線加工性および伸線加工後のコイル成形性に優れた軸受用鋼線材
JP2006037159A (ja) 冷間鍛造用熱間圧延線材及びその製造方法
JP2018168473A (ja) 合金鋼の球状化熱処理方法
WO2017033773A1 (ja) 冷間加工用機械構造用鋼、およびその製造方法
JP7401841B1 (ja) 鋼材
KR20230159707A (ko) 기계 구조 부품용 강선 및 그 제조 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R151 Written notification of patent or utility model registration

Ref document number: 6079903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350