WO2017033773A1 - 冷間加工用機械構造用鋼、およびその製造方法 - Google Patents

冷間加工用機械構造用鋼、およびその製造方法 Download PDF

Info

Publication number
WO2017033773A1
WO2017033773A1 PCT/JP2016/073769 JP2016073769W WO2017033773A1 WO 2017033773 A1 WO2017033773 A1 WO 2017033773A1 JP 2016073769 W JP2016073769 W JP 2016073769W WO 2017033773 A1 WO2017033773 A1 WO 2017033773A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
cooling
pearlite
pro
Prior art date
Application number
PCT/JP2016/073769
Other languages
English (en)
French (fr)
Inventor
雄基 佐々木
琢哉 高知
政道 千葉
昌之 坂田
昌吾 村上
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016124959A external-priority patent/JP2017043835A/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP16839120.9A priority Critical patent/EP3342892A4/en
Priority to MX2018001887A priority patent/MX2018001887A/es
Priority to CN201680046277.5A priority patent/CN107923011A/zh
Priority to KR1020197032067A priority patent/KR20190124826A/ko
Priority to US15/754,364 priority patent/US20180251876A1/en
Priority to KR1020187005299A priority patent/KR20180031757A/ko
Publication of WO2017033773A1 publication Critical patent/WO2017033773A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present disclosure relates to a machine structural steel for cold working and a manufacturing method thereof.
  • the present invention relates to a steel for machine structure having low deformation resistance after spheroidizing annealing and excellent cold workability, and a useful method for producing the steel for machine structure.
  • the machine structural steel for cold working of the present disclosure is suitably used for various parts such as automobile parts and construction machine parts manufactured by cold working such as cold forging, cold forging and cold rolling. It is done.
  • the form of the steel is not particularly limited, and for example, a rolled wire is targeted.
  • a wire is used in the meaning of a rolled wire and refers to a wire steel material cooled to room temperature after hot rolling.
  • a steel wire refers to the linear steel material which performed the wire drawing and / or annealing etc. to the said rolling wire rod, and adjusted the characteristic.
  • spheroidizing annealing treatment is usually applied to hot rolled wire rods such as carbon steel and alloy steel for the purpose of imparting cold workability. . Then, the steel wire after spheroidizing annealing is subjected to cold working, and then subjected to machining such as cutting to form a predetermined shape, and further subjected to quenching and tempering treatment, and final strength adjustment is performed.
  • Patent Document 1 discloses a steel for cold-working machine structure that can be softened even by performing spheroidizing annealing for a relatively short time by controlling the metal structure before spheroidizing annealing, and its manufacture.
  • a method is disclosed. Specifically, the total area ratio of pearlite and ferrite with respect to the entire structure is 95 area% or more, the ferrite area ratio is set to a predetermined value or more, and the bcc-Fe crystal grain size is controlled within an appropriate range.
  • Structural steel is disclosed.
  • the steel is cooled to a temperature range of 600 to 660 ° C. at an average cooling rate of 5 ° C./second or more, and then 1 ° C. It is disclosed that cooling is performed for 20 seconds or more at an average cooling rate of 10 seconds / second or less.
  • Patent Document 2 discloses a steel wire material in which a metal structure contains a pro-eutectoid ferrite structure, a pearlite structure, and a bainite structure, and a manufacturing method thereof. It is disclosed that this steel wire can shorten the softening annealing time and can realize excellent cold forgeability after the softening annealing.
  • a steel wire rod it is hot-rolled, wound, and then immersed in a molten salt bath at 500 ° C. or higher and 600 ° C. or lower for 10 seconds or longer, and then in a molten salt bath at 530 ° C. or higher and 600 ° C. or lower for 20 seconds or longer. It is disclosed that cooling is performed after holding at a constant temperature for 150 seconds or less.
  • the ferrite grain size number is 9 or more
  • the ferrite structure fraction is 30 area% or more
  • the balance is pearlite, bainite, martensite, or a mixed structure thereof
  • the bainite + martensite structure A hot-rolled wire for cold forging having a rate of 50% by area or more of the balance and a method for producing the same are disclosed.
  • the method of manufacturing a hot-rolled wire rod for cold forging after finish rolling in the temperature range of Ar 3 point to Ar 3 point + 150 ° C, cooling between Ar 1 point and 300 ° C at a cooling rate of 5 to 40 ° C / sec. Is disclosed.
  • JP 2013-7091 A Japanese Patent No. 5195209 Japanese Patent No. 4299744
  • the techniques proposed so far are useful for shortening the spheroidizing annealing time, but it is hoped that a better spheroidized structure than the conventional technique can be obtained and the softening technique should be developed. It is rare.
  • the embodiment of the present invention has been made under such circumstances, and its purpose is to make the spheroidization equivalent to or more than the conventional spheroidization even when the spheroidizing annealing time is made shorter than usual. It is intended to provide a steel for cold-working machine structure that can be made softer than before and a method for producing the same.
  • the machine structural steel for cold working according to the embodiment of the present invention that can solve the above-mentioned problems is, by mass%, C: 0.07% or more and less than 0.3%, Si: 0.05 to 0.00. 5%, Mn: 0.2 to 1.7%, P: more than 0%, 0.03% or less, S: 0.001 to 0.05%, Al: 0.01 to 0.1%, and N :
  • Each containing 0 to 0.015%, the balance consisting of iron and inevitable impurities, the metal structure of the steel contains pro-eutectoid ferrite and pearlite, and the total area ratio of pro-eutectoid ferrite and pearlite with respect to the whole structure is 90
  • the area ratio Af of the pro-eutectoid ferrite satisfies the relationship of Af ⁇ A in relation to the A value represented by the following formula (1), and is equivalent to the average circle of bcc-Fe crystal grains.
  • the diameter is 15 to 30 ⁇ m, and the average interval between pearlite lamellar is 0.20 ⁇ m or less.
  • A (103 ⁇ 128 ⁇ [C (%)]) ⁇ 0.80 (%) (1)
  • [C (%)] shows content of C in the mass%.
  • the machine steel for cold working is further in mass%, Cr: more than 0%, 0.5% or less, Cu: more than 0%, 0.25% or less, Ni: Contains one or more selected from the group consisting of more than 0%, 0.25% or less, Mo: more than 0%, 0.25% or less, and B: more than 0%, 0.01% or less, and Formula (X) is satisfied.
  • [Cr%], [Cu%], [Ni%], and [Mo%] respectively indicate the contents of Cr, Cu, Ni, and Mo expressed in mass%.
  • the steel wire further contains, by mass%, Ti: more than 0% and 0.1% or less.
  • finish rolling is performed at 950 ° C. or more and 1150 ° C. or less, and then the average cooling rate is 3 to the first cooling end temperature of 700 to 750 ° C.
  • the steel for machine structural use for cold working appropriately adjusts the chemical composition, and makes the total area ratio of pro-eutectoid ferrite and pearlite and the area ratio of pro-eutectoid ferrite with respect to the whole structure equal to or more than a predetermined value.
  • -Centered cubic, body-centered cubic lattice)-Average equivalent circle diameter of Fe crystal grains hereinafter sometimes referred to simply as "bcc-Fe average grain size”
  • pearlite lamellar spacing are in appropriate ranges. .
  • the machine structural steel for cold working according to the present disclosure has low deformation resistance when steel is processed into the above-mentioned various parts at room temperature or in a heat generating region after spheroidizing annealing, and the working mold and steel Since cracking of the (material) is suppressed, excellent cold workability can be exhibited.
  • FIG. 1 is an explanatory diagram for illustrating a method for measuring a pearlite lamellar interval.
  • the inventors can obtain a spheroidized structure equivalent to or higher than the conventional one even when the spheroidizing annealing time is shorter than usual (hereinafter referred to as “short-time spheroidizing annealing”).
  • short-time spheroidizing annealing In order to realize a machine structural steel for cold working that can be softened more than before, we examined it from various angles. As a result, it has been found that softening of steel can be achieved by increasing the ferrite grain size and expanding the average interparticle distance of carbides in the metal structure (spheroidized structure) of the steel wire after spheroidizing annealing. It was.
  • pre-structure control of the metal structure before spheroidizing annealing
  • the pre-structure is made a structure mainly composed of pro-eutectoid ferrite and pearlite, and then the area ratio of pro-eutectoid ferrite is increased as much as possible.
  • the bcc-Fe crystal grains are controlled to be coarser than before, and the interval between the pearlite lamellars may be set to a predetermined value or less, and the steel having such a pre-structure may be subjected to short-time spheroidizing annealing,
  • the inventors have found that a spheroidized structure equivalent to or higher than that of the conventional spheroidized structure can be obtained, and that the spheroidized structure can be softened more than before, and the embodiment of the present invention has been completed.
  • the steel microstructure of the embodiment of the present invention contains proeutectoid ferrite and pearlite.
  • These structures are metal structures that contribute to the improvement of cold workability by reducing the deformation resistance of steel after spheroidizing annealing.
  • the desired softening cannot be achieved simply by forming a metal structure containing proeutectoid ferrite and pearlite. Therefore, as described below, it is necessary to appropriately control the area ratio of these structures, the average particle diameter of bcc-Fe crystal grains, and the like.
  • Total area ratio of pro-eutectoid ferrite and pearlite 90% or more
  • bainite after spheroidizing annealing And / or the structure becomes locally fine due to the influence of martensite, and the softening of the steel becomes insufficient.
  • the total area ratio of pro-eutectoid ferrite and pearlite with respect to the entire structure needs to be 90% or more.
  • the total area ratio of pro-eutectoid ferrite and pearlite is preferably 95% or more, more preferably 97% or more, and most preferably 100%.
  • metal structures other than proeutectoid ferrite and pearlite include martensite, bainite, and austenite. As described above, when the area ratio of these structures such as martensite increases, the strength of the steel increases. Therefore, these structures may not be included at all.
  • the steel may contain carbides, nitrides, oxides, and / or sulfides other than cementite as other structure factors.
  • Average equivalent circle diameter of bcc-Fe crystal grains 15-30 ⁇ m
  • the average equivalent circular diameter of bcc-Fe crystal grains in the steel front structure that is, the bcc-Fe average particle diameter is set to 30 ⁇ m or less
  • a good spheroidizing structure that is, the degree of spheroidization
  • a small spheroidized structure is obtained.
  • the average bcc-Fe particle diameter exceeds 30 ⁇ m, the spheroidized structure deteriorates (that is, the degree of spheroidization increases) by short-time spheroidizing annealing, and the desired spheroidized structure cannot be obtained.
  • the bcc-Fe average particle diameter is preferably 29 ⁇ m or less, more preferably 28 ⁇ m or less.
  • the bcc-Fe average particle diameter was set to 15 ⁇ m or more.
  • the bcc-Fe average particle diameter is preferably 16 ⁇ m or more, and more preferably 17 ⁇ m or more.
  • the circle equivalent diameter of a crystal grain means the diameter of a circle having the same area as each crystal grain.
  • the structure to be controlled by the above-mentioned average bcc-Fe grain size is bcc-Fe crystal grains surrounded by a large-angle grain boundary in which the orientation difference between two adjacent crystal grains is larger than 15 °.
  • the structure also includes small-angle grain boundaries having an orientation difference of 15 ° or less. However, these small-angle grain boundaries have little influence on the spheroidized structure obtained after spheroidizing annealing. In order to obtain a desired spheroidized structure after spheroidizing annealing, it is necessary to control the large-angle grain boundary of the structure before spheroidizing annealing.
  • a good spheroidized structure that is, a spheroidized structure having a small degree of spheroidization
  • a good spheroidized structure can be achieved even with short-time spheroidizing annealing.
  • the above-mentioned “azimuth difference” is also referred to as “deviation angle” or “bevel angle”, and the EBSP method (Electron Back Scattering Pattern method) may be employed for measuring the orientation difference.
  • bcc-Fe is intended to include ferrite contained in the pearlite structure in addition to pro-eutectoid ferrite.
  • the metal structure of the steel of the embodiment of the present invention has proeutectoid ferrite and pearlite as described above.
  • the interval between pearlite lamellar is narrowed (that is, the pearlite lamellar is refined)
  • spheroidization of carbides mainly cementite in pearlite
  • the interval between the pearlite lamellars in the previous tissue must be 0.20 ⁇ m or less on average (hereinafter simply referred to as “average lamellar interval”).
  • the average lamellar spacing is preferably 0.18 ⁇ m or less, and more preferably 0.16 ⁇ m or less.
  • the lower limit of the average lamellar interval is not particularly limited, but is usually about 0.05 ⁇ m.
  • the “perlite lamellar spacing” refers to the distance between adjacent lamellar cementite layers. More precisely, it is the shortest distance from the center position of the thickness of the lamellar cementite layer to the center position of the thickness of the adjacent lamellar cementite layer.
  • Proeutectoid ferrite area ratio Af ⁇ A Furthermore, when the area ratio of pro-eutectoid ferrite increases in the previous structure, the number of carbide precipitation sites during spheroidizing annealing decreases, the number density of carbides decreases, and the coarsening of the carbides is promoted. Thereby, the distance between the particles of the carbide is increased, and the metal structure can be further softened.
  • the area ratio of pro-eutectoid ferrite varies depending on the carbon content. As the amount of carbon increases, the pro-eutectoid ferrite area ratio decreases.
  • the appropriate pro-eutectoid ferrite area ratio for obtaining a good spheroidizing material also varies depending on the carbon content. As the amount of carbon increases, the area ratio of suitable pro-eutectoid ferrite decreases.
  • the area ratio Af of pro-eutectoid ferrite with respect to the entire structure satisfies the relationship of A value represented by the following formula (1) and Af ⁇ A. Thus, it has been found that further softening can be achieved.
  • A (103 ⁇ 128 ⁇ [C (%)]) ⁇ 0.80 (%) (1)
  • [C (%)] shows content of C in the mass%.
  • Af is preferably (103 ⁇ 128 ⁇ [C (%)]) ⁇ 0.85 or more, more preferably (103 ⁇ 128 ⁇ [C (%)]) ⁇ 0.90 or more.
  • the upper limit of Af is not particularly limited. However, if Af is increased, the manufacturing cost increases. Therefore, considering productivity, Af is preferably (103 ⁇ 128 ⁇ [C (%)]) ⁇ 0.97 or less.
  • An embodiment of the present invention is a machine structural steel for cold working, and its steel type may be any steel having a normal chemical composition as a steel for cold working mechanical structure, but C, Si, Mn, About P, S, Al, and N, it adjusts to the following suitable ranges.
  • “%” for the chemical component composition means mass%.
  • C 0.07% or more and less than 0.3%
  • C is an element useful for securing the strength of steel, that is, the strength of the final product.
  • the C content needs to be 0.07% or more.
  • the C content is preferably 0.09% or more, more preferably 0.11% or more.
  • the C content is preferably 0.28% or less, and more preferably 0.26% or less.
  • Si 0.05 to 0.5% Si is useful as a deoxidizing element and as an element for improving the strength of the final product by solid solution hardening.
  • the Si content was set to 0.05% or more.
  • the Si content is preferably 0.07% or more, and more preferably 0.10% or more.
  • the Si content is set to 0.5% or less.
  • the Si content is preferably 0.45% or less, more preferably 0.40% or less.
  • Mn 0.2 to 1.7%
  • Mn is an effective element for increasing the strength of the final product through improvement of hardenability.
  • the Mn content is set to 0.2% or more.
  • the Mn content is preferably 0.3% or more, and more preferably 0.4% or more.
  • the Mn content is set to 1.7% or less.
  • the Mn content is preferably 1.5% or less, and more preferably 1.3% or less.
  • P more than 0% and 0.03% or less
  • P is an element inevitably contained in steel, causes segregation of grain boundaries in steel, and causes ductility deterioration. Therefore, the P content is set to 0.03% or less.
  • the P content is preferably 0.02% or less, more preferably 0.017% or less, and still more preferably 0.01% or less.
  • S 0.001 to 0.05%
  • S is an element inevitably contained in the steel, and is present as MnS in the steel and deteriorates the ductility. Therefore, S is an element harmful to cold workability. Therefore, the S content is set to 0.05% or less.
  • the S content is preferably 0.04% or less, and more preferably 0.03% or less. However, since S has an effect of improving machinability, it is useful to contain 0.001% or more.
  • the S content is preferably 0.002% or more, and more preferably 0.003% or more.
  • Al 0.01 to 0.1%
  • Al is useful as a deoxidizing element and is useful for fixing solute N present in steel as AlN.
  • the Al content is determined to be 0.01% or more.
  • the Al content is preferably 0.013% or more, and more preferably 0.015% or more.
  • the Al content is determined to be 0.1% or less. Al content becomes like this. Preferably it is 0.090% or less, More preferably, it is 0.080% or less.
  • N 0 to 0.015%
  • N is an element inevitably contained in the steel.
  • the N content is preferably 0.013% or less, and more preferably 0.010% or less. The smaller the N content is, the more preferable it is, and the most preferable is 0%. However, there may be a case where approximately 0.001% remains due to restrictions on the manufacturing process.
  • the balance is substantially iron.
  • substantially iron means that the presence of trace components such as Sb and Zn, which do not inhibit the characteristics of the present disclosure other than iron, can be allowed, and other than P, S, and N. For example, it means that inevitable impurities such as O and H may be included.
  • the following optional elements may be selectively contained as necessary. Depending on the type of optional element (selected component) selected, the properties of the steel can be further improved.
  • Cr more than 0%, 0.5% or less
  • Cu more than 0%, 0.25% or less
  • Ni more than 0%, 0.25% or less
  • Mo more than 0%, 0.25% or less
  • B One or more selected from the group consisting of more than 0% and less than 0.01% Cr, Cu, Ni, Mo and B all increase the strength of the final product by improving the hardenability of the steel. It is an effective element. If necessary, these elements may be contained alone or in combination of two or more. Such effects increase as the content of these elements increases.
  • a preferable content for effectively exhibiting the above-described effect is such that the Cr content is 0.015% or more, more preferably 0.020% or more.
  • the preferable contents of Cu, Ni and Mo are all 0.02% or more, more preferably 0.05% or more.
  • the preferable content of B is 0.0003% or more, more preferably 0.0005% or more.
  • the Cr content is preferably 0.5% or less, and the Cu, Ni and Mo contents are preferably 0.25% or less.
  • a more preferable content of Cr is 0.45% or less, and further preferably 0.40% or less.
  • the more preferable contents of the Cu content, the Ni content, and the Mo content are all 0.22% or less, and more preferably 0.20% or less.
  • the B content is preferably 0.01% or less.
  • a more preferable content of the B content is 0.007% or less, and further preferably 0.005% or less.
  • Ti more than 0% and 0.1% or less Ti forms a compound with N and reduces the solid solution N, thereby exhibiting the softening effect. Therefore, if necessary, Ti may be contained.
  • a preferable Ti content for effectively exhibiting such an effect is 0.01 or more, more preferably 0.02 or more. However, when the Ti content is excessive, the formed compound causes an increase in hardness. Therefore, the preferable Ti content is 0.08% or less, more preferably 0.05 or less.
  • the steel that satisfies the above-described component composition is adjusted to the finish rolling temperature when hot-rolling, and the subsequent cooling rate is adjusted. It is preferable to appropriately adjust the cooling rate and the temperature range as two stages.
  • Finish rolling at 950 ° C. or higher and 1150 ° C. or lower
  • a first cooling for cooling at an average cooling rate of 3 ° C./second or less from a temperature of 950 ° C. to 1150 ° C. to a first cooling end temperature of 700 to 750 ° C.
  • the second cooling is performed in this order from the first cooling end temperature to the temperature range of at least 600 ° C. at an average cooling rate of 5 to 30 ° C./second.
  • the finish rolling temperature, the first cooling, and the second cooling will be described in detail.
  • the finish rolling temperature is preferably 1150 ° C. or lower.
  • the finish rolling temperature is preferably 970 ° C. or higher, more preferably 990 ° C. or higher.
  • the finish rolling temperature is preferably 1130 ° C or lower, more preferably 1110 ° C or lower.
  • the first cooling starts from the finish rolling temperature of 950 ° C. or more and 1150 ° C. or less, and the first cooling end temperature of 700 to 750 ° C. End with.
  • the average cooling rate of the first cooling is set to 3 ° C./second or less.
  • the average cooling rate of the first cooling is preferably 2.5 ° C./second or less, more preferably 2 ° C./second or less.
  • the lower limit of the average cooling rate of the first cooling is not particularly limited. However, as a practical range, it is preferably 0.01 ° C./second or more. In the first cooling, the cooling rate may be changed as long as the average cooling rate is 3 ° C./second or less.
  • the second cooling starts from a temperature range of 700 to 750 ° C. and ends at least at 600 ° C. In the second cooling, if the average cooling rate is slower than 5 ° C./second, it becomes difficult to set the average lamellar spacing of pearlite to 0.20 ⁇ m or less.
  • the average cooling rate of the second cooling is preferably 7 ° C./second or more, more preferably 10 ° C./second or more.
  • the average cooling rate of the second cooling is preferably 28 ° C./second or less, more preferably 25 ° C./second or less. In the second cooling, the cooling rate may be changed as long as the average cooling rate is 5 to 30 ° C./second.
  • the end temperature of the second cooling for cooling at the above average cooling rate is 600 ° C. at the maximum.
  • the reason for setting “600 ° C.” is that the average lamella spacing of pearlite and the total area ratio of pro-eutectoid ferrite and pearlite defined in the present disclosure are substantially determined in the cooling process up to 600 ° C. This is because it is hardly influenced by the cooling rate after °C. Therefore, the end temperature of the second cooling is not limited to 600 ° C., and may be room temperature as in an example described later. Alternatively, for example, the end temperature of the second cooling may be set to 400 ° C., and then normal cooling such as cooling may be performed to cool to room temperature. In general, the average cooling rate during cooling is often slower than the average cooling rate of the second cooling described above.
  • spheroidizing annealing for a short time for example, spheroidizing annealing for about 1 to 3 hours in a temperature range of about Ac 1 to Ac 1 + 30 ° C.
  • the spheroidization degree can be made equal to or lower than the target spheroidization degree described later, and the hardness can be made lower than the target hardness described later.
  • Ac 1 is a value calculated from the following equation. In the following formula, (% element name) means the content of each element in mass%.
  • Ac 1 (° C.) 723-10.7 (% Mn) ⁇ 16.9 (% Ni) +29.1 (% Si) +16.9 (% Cr)
  • Embodiments of the present invention are not limited by the following examples, and can be implemented with modifications within a range that can be adapted to the spirit of the present disclosure described above and below, all of which are within the technical scope of the present disclosure. Is included.
  • Rolling was performed using steel having the chemical composition shown in Table 1 to obtain a wire having a diameter of ⁇ 17.0 mm, and further, a test piece for processing for master having a diameter of ⁇ 8.0 mm ⁇ 12.0 mm was obtained by machining.
  • a machining heat treatment test was carried out with a machining for master testing machine under the conditions shown in Table 2.
  • the processing conditions listed in Table 2 simulate the rolling conditions in an actual machine. In Table 2, the processing temperature corresponds to the finish rolling temperature.
  • test piece after performing the heat treatment test under the conditions shown in Table 2 was evaluated according to the following procedures (1) to (3).
  • the spheroidizing and hardness of the test piece that was further spheroidized and annealed were measured as described in (4) and (5) below.
  • the test piece after the heat treatment or spheroidizing annealing was cut along a plane (axial center cross section) passing through the central axis of the test piece and parallel to the central axis.
  • the cut specimen may be referred to as a “longitudinal section sample”.
  • the vertical cross section sample was resin-filled so that the axial center cross section of the test piece could be observed.
  • FIG. 1A is a schematic diagram of a pearlite lamellar structure 1
  • FIG. 1B is an enlarged view of the pearlite lamellar structure 1.
  • FIG. The pearlite lamellar structure 1 is a structure in which lamellar ferrite 3 and lamellar cementite 2 are arranged in layers (lamellar shape) as shown in FIG.
  • the lamellar spacing defined in the present disclosure is the lamellar cementite 2 spacing.
  • the structure was revealed by picral etching of a longitudinal section sample whose mirror surface was mirror polished. Thereafter, tissue observation at the D / 4 position was performed using FE-SEM, and a total of 5 fields were photographed in a region of 42 ⁇ m ⁇ 28 ⁇ m at a magnification of 3000 ⁇ or a region of 25 ⁇ m ⁇ 17 ⁇ m at a magnification of 5000 ⁇ . At this time, at least one perlite was included in each field of view. The perlite with the finest lamellar spacing (that is, the narrowest lamellar spacing) in each field of view of the photograph taken was selected and used as the measurement object.
  • the length L of the line segment 4 and the number n of lamellar cementite 2 included in the line segment 4 were measured.
  • the number n includes lamellar cementite where the start and end of the line segment are located.
  • the lamellar interval ⁇ was calculated from the length L and the number n using Equation (2).
  • the lamellar interval ⁇ was obtained for each visual field, and the average value of the five visual fields was calculated.
  • the line segment 4 is drawn so that the number n of lamellar cementite 2 intersecting the line segment 4 is 5 or more.
  • L / (n ⁇ 1) (2)
  • a sample having a martensite structure precipitated in the metal structure and a total area ratio of pro-eutectoid ferrite and pearlite of less than 90% was not measured because it was difficult to calculate lamellar spacing.
  • Example A processing formaster test was performed using the steel types A to U shown in Table 1 above and changing the processing temperature (corresponding to the finish rolling temperature) and the cooling rate as shown in Table 2 below. Thereby, the processing for master test piece which has a different front organization was produced, respectively.
  • Steel type O has an amount of Mn exceeding 1.7%, which is outside the scope of the present invention.
  • steel type P the amount of Ti exceeds 0.1%, which is outside the scope of the present invention.
  • [Cr%] + [Cu%] + [Ni%] + [Mo%] is 0.75 mass% or less and satisfies the above-described formula (X). Yes.
  • [Cr%] + [Cu%] + [Ni%] + [Mo%] exceeds 0.75 mass% and does not satisfy the formula (X).
  • first cooling starts from the processing temperature, ends in a temperature range of 700 to 750 ° C. that is the first cooling end temperature
  • second cooling The cooling starts from the first cooling end temperature and ends at room temperature.
  • No. 10, 20, and 44 are cooling at a constant average cooling rate from the processing temperature at the start of the first cooling to the end temperature of the second cooling, and therefore distinguish between “first cooling” and “second cooling”.
  • No. No. 44 was cooled in the range from 850 ° C. to 300 ° C. at an average cooling rate of 40.0 ° C./second, and then allowed to cool to room temperature.
  • the end temperature of “first cooling” was set to 650 ° C.
  • the end temperature of “second cooling” was set to 550 ° C., and then cooled to room temperature.
  • the processed formaster specimen was divided into four equal parts in a cross section orthogonal to the central axis. One of them was used as a sample for structure investigation, and the other was used as a sample for spheroidizing annealing.
  • Spheroidizing annealing was performed by vacuum-sealing each test piece and performing heat treatment in an atmospheric furnace. The spheroidizing annealing was carried out at 730 ° C. for 2 hours, then cooled to 710 ° C. at an average cooling rate of 30 ° C./hour, then cooled to 680 ° C. at an average cooling rate of 10 ° C./hour, and then allowed to cool.
  • Table 3 shows the structure before spheroidizing annealing, the degree of spheroidizing after spheroidizing annealing, and the hardness evaluated in the manner of (1) to (5) above.
  • the required degree of spheroidization depends on the C content. Therefore, the target spheroidization degree (described as “target spheroidization degree” in Table 3) was a value obtained by the following equation (3).
  • the required hardness varies depending on the C, Si and Mn contents. Therefore, the target hardness (described as “target hardness” in Table 3) was a value obtained by the following equation (4).
  • Target degree of spheroidization 5 ⁇ [C%] + 1.5 (3)
  • Target hardness 88.4 ⁇ Ceq + 86.0 (4)
  • Ceq [C%] + 0.2 ⁇ [Si%] + 0.2 ⁇ [Mn%], and [C%], [Si%] and [Mn%] are C and Si in mass%, respectively. And the Mn content.
  • No. 9 used the steel type A in Table 1 that satisfies the composition of the embodiment of the present invention, but the processing temperature corresponding to the finish rolling temperature was low. Therefore, the average particle diameter of bcc-Fe has been reduced, and the hardness after spheroidizing annealing has been hard.
  • No. No. 10 used the steel type A in Table 1 that satisfies the composition of the embodiment of the present invention, but the cooling rate of the second cooling was slow. For this reason, the pearlite average lamellar spacing was increased, and the degree of spheroidization after spheroidizing annealing was poor.
  • No. No. 11 used the steel type A in Table 1 that satisfies the composition of the embodiment of the present invention, but the cooling rate of the first cooling was fast. For this reason, the area ratio of pro-eutectoid ferrite has decreased, and the hardness after spheroidizing annealing has been hard.
  • No. No. 12 used the steel type A in Table 1 that satisfies the composition of the embodiment of the present invention, but the processing temperature was high. Therefore, the average particle diameter of bcc-Fe was increased, and the degree of spheroidization after spheroidizing annealing was increased (that is, the spheroidized structure was poor).
  • No. No. 14 used the steel type B in Table 1 that satisfies the composition of the embodiment of the present invention, but the cooling rate of the second cooling was slow. Therefore, the pearlite average lamellar interval was increased, and the degree of spheroidization after spheroidizing annealing was increased (that is, the spheroidized structure was poor).
  • No. No. 18 used the steel type D in Table 1 that satisfies the composition of the embodiment of the present invention, but the processing temperature was high. Therefore, the average particle diameter of bcc-Fe was increased, and the degree of spheroidization after spheroidizing annealing was increased (that is, the spheroidized structure was poor).
  • No. No. 20 used the steel type E in Table 1 that satisfies the composition of the embodiment of the present invention, but the cooling rate of the first cooling was fast. For this reason, the area ratio of pro-eutectoid ferrite has decreased, and the hardness after spheroidizing annealing has been hard.
  • No. No. 22 used the steel type F in Table 1 that satisfies the composition of the embodiment of the present invention, but the cooling rate of the second cooling was fast. Therefore, a martensite structure was precipitated, and the total area ratio of pro-eutectoid ferrite and pearlite and the area ratio of pro-eutectoid ferrite were reduced. As a result, the hardness after spheroidizing annealing has been hard.
  • No. No. 25 used the steel type H in Table 1 that satisfies the composition of the embodiment of the present invention, but the processing temperature was low. Therefore, the average particle diameter of bcc-Fe has been reduced, and the hardness after spheroidizing annealing has been hard.
  • No. No. 28 used the steel type I in Table 1 that satisfies the composition of the embodiment of the present invention, but the cooling rate of the first cooling was fast. For this reason, the area ratio of pro-eutectoid ferrite has decreased, and the hardness after spheroidizing annealing has been hard.
  • No. No. 33 used the steel type L in Table 1 that satisfies the composition of the embodiment of the present invention, but the cooling rate of the first cooling was fast. For this reason, the area ratio of pro-eutectoid ferrite has decreased, and the hardness after spheroidizing annealing has been hard.
  • No. No. 34 used the steel type L in Table 1 that satisfies the composition of the embodiment of the present invention, but the cooling rate of the second cooling was fast. Therefore, a martensitic structure was precipitated, and the total area ratio of pro-eutectoid ferrite and pearlite and the area of pro-eutectoid ferrite were reduced. As a result, the hardness after spheroidizing annealing has been hard.
  • No. No. 44 used the steel type R in Table 1 that satisfies the composition of the embodiment of the present invention, but the processing temperature was low, the cooling rate of the first cooling was fast, and the cooling rate of the second cooling was also fast.
  • the average particle size of bcc-Fe was reduced, the area ratio of pro-eutectoid ferrite was reduced, and the martensite structure was precipitated to reduce the total area ratio of pro-eutectoid ferrite and pearlite.
  • the hardness after spheroidizing annealing has been hard.
  • Japanese Patent Application No. 2015-166030 and a Japanese patent application filed on June 23, 2016, Japanese Patent Application No. 2016-124959. Accompanied by claiming priority as a basic application. Japanese Patent Application No. 2015-166030 and Japanese Patent Application No. 2016-124959 are incorporated herein by reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

通常よりも球状化焼鈍の時間を短時間化した場合であっても、従来と同等かそれ以上の球状化を達成でき、従来よりも軟質化できる冷間加工用機械構造用鋼、およびその製造方法を提供する。 本開示は、C、Si、Mn、P、S、Al、Nを含み、鋼の金属組織が、初析フェライトおよびパーライトを含有し、全組織に対する初析フェライトおよびパーライトの合計面積率が90%以上であると共に、前記初析フェライトの面積率Afが、下記式(1)で表されるA値との関係で、Af≧Aの関係を満足し、bcc-Fe結晶粒の平均円相当直径が15~30μmであり、且つ、パーライトラメラーの間隔が平均で0.20μm以下であることを特徴とする冷間加工用機械構造用鋼である。 A=(103-128×[C(%)])×0.80 (%) ・・・(1) 但し、上記式(1)中、[C(%)]は、質量%でCの含有量を示す。

Description

冷間加工用機械構造用鋼、およびその製造方法
 本開示は、冷間加工用機械構造用鋼、およびその製造方法に関する。特に、球状化焼鈍後の変形抵抗が低く、冷間加工性に優れた機械構造用鋼、および該機械構造用鋼を製造するための有用な方法に関する。本開示の冷間加工用機械構造用鋼は、冷間鍛造、冷間圧造および冷間転造等の冷間加工によって製造される自動車用部品および建設機械用部品等の各種部品に好適に用いられる。鋼の形態は特に限定されず、例えば圧延線材などを対象とする。前記した各種部品として具体的には、ボルト、ねじ、ナット、ソケット、ボールジョイント、インナーチューブ、トーションバー、クラッチケース、ケージ、ハウジング、ハブ、カバー、ケース、受座金、タペット、サドル、バルグ、インナーケース、クラッチ、スリーブ、アウターレース、スプロケット、コアー、ステータ、アンビル、スパイダー、ロッカーアーム、ボディー、フランジ、ドラム、継手、コネクター、プーリー、金具、ヨーク、口金、バルブリフター、スパークプラグ、ピニオンギヤ、ステアリングシャフトおよびコモンレール等の、機械部品および電装部品等が挙げられる。尚、本明細書において、線材とは、圧延線材の意味で用い、熱間圧延後に室温まで冷却した線状の鋼材を指す。また本明細書において、鋼線とは、上記圧延線材に伸線および/または焼鈍などを施して特性を調整した、線状の鋼材を指す。
 自動車用部品および建設機械用部品等の各種部品を製造するにあたっては、通常、炭素鋼および合金鋼などの熱間圧延線材に、冷間加工性を付与する目的で球状化焼鈍処理が施される。そして、球状化焼鈍後の鋼線に冷間加工を行い、その後切削加工などの機械加工を施すことによって所定の形状に成形し、さらに焼入れ焼戻し処理を行って最終的な強度調整が行われる。
 近年は、省エネルギーの観点より、球状化焼鈍の条件が見直され、特に球状化焼鈍時間の短時間化が要求されている。例えば、球状化焼鈍時間を2~3割削減できれば、エネルギー消費量の削減およびCO排出量の削減が期待できる。
 しかしながら、球状化焼鈍時間を短時間化した場合、炭化物の球状化の指標である球状化度が大きくなり(つまり、球状化組織が悪くなり)、冷間加工性が劣化することが知られている。そのため、球状化焼鈍時間の短時間化は容易ではない。
 これまでに球状化焼鈍時間の短時間化を実現する技術がいくつか提案されている。例えば、特許文献1には、球状化焼鈍前の金属組織を制御することで、比較的短時間の球状化焼鈍を行っても軟質化が可能な冷間加工用機械構造用鋼と、その製造方法が開示されている。具体的には、全組織に対するパーライトとフェライトの合計面積率が95面積%以上であると共に、フェライトの面積率を所定以上とし、bcc-Fe結晶粒径を適正範囲に制御した冷間加工用機械構造用鋼が開示されている。冷間加工用機械構造用鋼の製造方法では、750~950℃の温度で仕上げ加工した後、5℃/秒以上の平均冷却速度で600~660℃の温度範囲まで冷却し、その後、1℃/秒以下の平均冷却速度で20秒以上冷却することが開示されている。
 また、特許文献2には、金属組織に初析フェライト組織、パーライト組織、およびベイナイト組織を含有させた鋼線材とその製造方法が開示されている。この鋼線材は、軟質化焼鈍時間の短縮化が可能であり、軟質化焼鈍後には優れた冷間鍛造性を実現できることが開示されている。鋼線材の製造方法では、熱間圧延し、巻取り、その後、500℃以上600℃以下の溶融塩槽に10秒以上浸漬した後、次いで530℃以上600℃以下の溶融塩槽に20秒以上150秒以下恒温保持した後冷却することが開示されている。
 更に、特許文献3には、フェライト結晶粒度番号が9以上であり、フェライト組織分率が30面積%以上、残部がパーライト、ベイナイト、マルテンサイト又はこれらの混合組織から成り、ベイナイト+マルテンサイト組織分率が残部の50面積%以上である、冷間鍛造用熱間圧延線材とその製造方法が開示されている。冷間鍛造用熱間圧延線材の製造方法では、Ar点からAr点+150℃の温度範囲で仕上圧延後、Ar点から300℃の間を5~40℃/秒の冷却速度で冷却することが開示されている。
特開2013-7091号公報 特許第5195009号公報 特許第4299744号公報
 しかし、上記特許文献2の方法では、初析フェライトの面積率が低いため、球状化焼鈍後の鋼線の硬さが硬くなるおそれがある。また、上記特許文献3の方法では、フェライトの面積率が低く、更にベイナイト又はマルテンサイトを有するため、球状化焼鈍後の鋼線の硬さが硬くなると予想される。
 このように、これまで提案されている技術は、球状化焼鈍時間の短時間化に有用であるが、従来技術よりも更に良好な球状化組織が得られると共に、軟質化する技術の開発が望まれている。
 本発明の実施形態はこうした状況の下になされたものであって、その目的は、通常よりも球状化焼鈍の時間を短時間化した場合であっても、従来と同等かそれ以上の球状化を達成でき、従来よりも軟質化できる冷間加工用機械構造用鋼、およびその製造方法を提供することにある。
 上記課題を解決し得た本発明の実施形態に係る冷間加工用機械構造用鋼は、質量%で、C:0.07%以上、0.3%未満、Si:0.05~0.5%、Mn:0.2~1.7%、P:0%超、0.03%以下、S:0.001~0.05%、Al:0.01~0.1%、およびN:0~0.015%を夫々含有し、残部が鉄および不可避不純物からなり、鋼の金属組織が、初析フェライトおよびパーライトを含有し、全組織に対する初析フェライトおよびパーライトの合計面積率が90%以上であると共に、前記初析フェライトの面積率Afが、下記式(1)で表されるA値との関係で、Af≧Aの関係を満足し、bcc-Fe結晶粒の平均円相当直径が15~30μmであり、且つ、パーライトラメラーの間隔が平均で0.20μm以下であるところに要旨を有する
 A=(103-128×[C(%)])×0.80 (%) ・・・(1)
 但し、上記式(1)中、[C(%)]は、質量%でCの含有量を示す。
 本発明の好ましい実施形態において、上記冷間加工用機械構造用鋼は、更に質量%で、Cr:0%超、0.5%以下、Cu:0%超、0.25%以下、Ni:0%超、0.25%以下、Mo:0%超、0.25%以下、およびB:0%超、0.01%以下よりなる群から選択される1種以上を含有し、かつ下記式(X)を満足する。
[Cr%]+[Cu%]+[Ni%]+[Mo%]≦0.75 ・・・(X)
 但し、[Cr%]、[Cu%]、[Ni%]および[Mo%]は、それぞれ、質量%で示したCr、Cu、NiおよびMoの含有量を示す。
 本発明の好ましい実施形態において、上記鋼線は、更に、質量%で、Ti:0%超、0.1%以下を含有する。
 本発明の実施形態に係る上記冷間加工用機械構造用鋼の製造方法は、950℃以上、1150℃以下で仕上圧延し、次いで700~750℃の第1冷却終了温度まで平均冷却速度:3℃/秒以下で冷却する第1冷却と、前記第1冷却終了温度から少なくとも600℃の温度範囲まで平均冷却速度:5~30℃/秒で冷却する第2冷却とを順次行うことを含む。
 本開示の冷間加工用機械構造用鋼は、化学成分組成を適切に調整するとともに、全組織に対する初析フェライトおよびパーライトの合計面積率と初析フェライトの面積率を所定以上とし、bcc(body-centered cubic、体心立方格子)-Fe結晶粒の平均円相当直径(以下、単に「bcc-Fe平均粒径」と呼ぶ場合がある。)、およびパーライトラメラーの間隔をそれぞれ適切な範囲としている。これにより、通常よりも球状化焼鈍時間を短時間化した場合であっても、従来と同等かそれ以上の球状化組織を得ることができ、従来よりも軟質化することができる。従って、本開示の冷間加工用機械構造用鋼は、球状化焼鈍後、室温または加工発熱領域において上記の各種部品に加工される時に、鋼の変形抵抗が低く、且つ加工用金型および鋼(素材)の割れが抑制されるので、優れた冷間加工性を発揮できる。
図1は、パーライトラメラーの間隔の測定方法を示すための説明図である。
 発明者らは、通常よりも球状化焼鈍時間を短時間化した(以下、「短時間球状化焼鈍」と呼ぶ。)場合であっても、従来と同等以上の球状化組織を得られるとともに、従来よりも軟質化できるような冷間加工用機械構造用鋼を実現するため、様々な角度から検討した。その結果、球状化焼鈍後の鋼線の金属組織(球状化組織)において、フェライト結晶粒径を粗大化させ、炭化物の平均粒子間距離を拡大することで、鋼の軟質化を達成できることを見いだした。そして、そのような球状化組織を得るためには、球状化焼鈍前の金属組織(以下、「前組織」と呼ぶ。)の制御が重要である、との着想を得た。上記の鋼線の金属組織(球状化組織)を得るためには、前組織を、初析フェライトとパーライトを主相とする組織とした上で、初析フェライトの面積率を出来るだけ高くし、bcc-Fe結晶粒を従来よりも粗大になるように制御し、かつパーライトラメラーの間隔を所定以下とすればよいこと、そして、そのような前組織を有する鋼は、短時間球状化焼鈍後に、球状化組織において従来と同等以上の球状化組織を得られるとともに、従来よりも軟質化できること、を見出し、本発明の実施形態を完成した。
 以下、本開示で規定する各要件について説明する。
 本発明の実施形態の鋼の金属組織は、初析フェライトとパーライトを含有する。これらの組織は、球状化焼鈍後の鋼の変形抵抗を低減させて、冷間加工性の向上に寄与する金属組織である。しかしながら、単に初析フェライトとパーライトを含有する金属組織とするだけでは、所望の軟質化を図ることができない。そこで、以下に説明するように、これら組織の面積率およびbcc-Fe結晶粒の平均粒径なども適切に制御する必要がある。
 初析フェライトおよびパーライトの合計面積率:90%以上
 鋼の前組織にベイナイトおよびマルテンサイト等の微細な組織が多い場合には、一般的な球状化焼鈍を行っても、球状化焼鈍後はベイナイトおよび/またはマルテンサイトの影響によって組織が局部的に微細となり、鋼の軟質化が不十分となる。こうした観点から、鋼を十分に軟質化するためには、全組織に対する初析フェライトとパーライトの合計面積率は90%以上とする必要がある。初析フェライトとパーライトの合計面積率は、好ましくは95%以上であり、より好ましくは97%以上であり、最も好ましくは100%である。なお、初析フェライトとパーライト以外の金属組織としては、マルテンサイト、ベイナイトおよびオーステナイトが挙げられる。前述の通り、マルテンサイト等のこれら組織の面積率が高くなると鋼の強度が高くなるため、これらの組織は全く含まれていなくても良い。鋼は、他の組織因子としてセメンタイト以外の炭化物、窒化物、酸化物、および/または硫化物を含有してよい。
 bcc-Fe結晶粒の平均円相当直径:15~30μm
 鋼の前組織におけるbcc-Fe結晶粒の平均円相当直径、即ちbcc-Fe平均粒径を30μm以下にしておくと、短時間球状化焼鈍後にも良好な球状化組織(つまり、球状化度の小さい球状化組織)が得られる。bcc-Fe平均粒径が30μmを超えると、短時間球状化焼鈍では球状化組織が劣化し(つまり、球状化度が大きくなり)、所望の球状化組織が得られない。bcc-Fe平均粒径は、好ましくは29μm以下であり、より好ましくは28μm以下である。しかしながら、前組織におけるbcc-Fe平均粒径が小さくなり過ぎると、球状化焼鈍後のフェライト結晶粒径の微細化により強化され、鋼の軟質化が困難となる。そこで、bcc-Fe平均粒径を15μm以上とした。bcc-Fe平均粒径は、好ましくは16μm以上であり、より好ましくは17μm以上である。なお、結晶粒の円相当直径とは、各結晶粒と同一面積を有する円の直径を意味する。
 前記したbcc-Fe平均粒径の制御の対象となる組織は、隣り合う2つの結晶粒の方位差が15°よりも大きい大角粒界で囲まれたbcc-Fe結晶粒である。組織中には方位差が15°以下の小角粒界も含まれる。しかしながら、それら小角粒界は球状化焼鈍後に得られる球状化組織に及ぼす影響が小さい。球状化焼鈍後に所望の球状化組織を得るには、球状化焼鈍前組織の大角粒界を制御する必要がある。前記大角粒界で囲まれたbcc-Fe平均粒径を所定範囲とすることによって、短時間球状化焼鈍でも良好な球状化組織(つまり、球状化度の小さい球状化組織)を達成できる。なお、前記した「方位差」は、「ずれ角」もしくは「斜角」とも呼ばれているものであり、方位差の測定にはEBSP法(Electron Back Scattering Pattern法)を採用すればよい。また、bcc-Feとは、初析フェライトの他、パーライト組織中に含まれるフェライトも含む趣旨である。
 パーライトラメラーの間隔:0.20μm以下
 本発明の実施形態の鋼の金属組織は、前述した通り、初析フェライトとパーライトを有する。パーライトラメラーの間隔を狭くする(つまり、パーライトラメラーを微細化する)と、短時間球状化焼鈍でも炭化物(主に、パーライト中のセメンタイト)の球状化が促進され、良好な球状化組織が得られる。こうした観点から、前組織におけるパーライトラメラーの間隔は平均で(以下、単に「平均ラメラー間隔」と呼ぶ)0.20μm以下とする必要がある。平均ラメラー間隔は、好ましくは0.18μm以下であり、より好ましくは0.16μm以下である。平均ラメラー間隔の下限は特に限定されないが、通常0.05μm程度である。
 なお、本明細書において「パーライトラメラーの間隔」とは、隣接するラメラーセメンタイト層の間の距離をいう。より正確には、ラメラーセメンタイト層の厚さの中心位置から、隣接するラメラーセメンタイト層の厚さの中心位置までの最短距離である。
 初析フェライトの面積率Af≧A
 更に、前組織において、初析フェライトの面積率が増加すると、球状化焼鈍中の炭化物析出サイトが減少することにより炭化物の数密度が減少して、炭化物の粗大化が促進される。これにより、炭化物の粒子間距離が広くなり、金属組織を更に軟質化することができる。一方、初析フェライトの面積率は、含有炭素量に影響を受けて変化する。炭素量が増加すると、初析フェライト面積率は減少する。同様に、良好な球状化材を得るための適切な初析フェライト面積率も、含有炭素量に応じて変化する。炭素量が多いほど、適切な初析フェライトの面積率は減少する。こうした観点から数多くの実験結果を解析したところ、前組織において、全組織に対する初析フェライトの面積率Afが、下記式(1)で表されるA値と、Af≧Aの関係を満足することによって、更なる軟質化を図ることができることを見出した。
 A=(103-128×[C(%)])×0.80(%) ・・・(1)
 但し、上記式(1)中、[C(%)]は、質量%でCの含有量を示す。
 Afは、好ましくは(103-128×[C(%)])×0.85以上であり、より好ましくは(103-128×[C(%)])×0.90以上である。なお、上記観点からはAfの上限は特に限定されない。しかしながら、Afを高くすると製造コストが増加するため、生産性を考慮すると、Afは(103-128×[C(%)])×0.97以下であることが好ましい。
 本発明の実施形態は、冷間加工用機械構造用鋼であり、その鋼種は冷間加工用機械構造用鋼として通常の化学成分組成を有するものであれば良いが、C、Si、Mn、P、S、AlおよびNについては、以下の適切な範囲に調整する。なお、本明細書では、化学成分組成について「%」とは、質量%を意味する。
 C:0.07%以上、0.3%未満
 Cは、鋼の強度、即ち最終製品の強度を確保する上で有用な元素である。こうした効果を有効に発揮させるため、C含有量は0.07%以上とする必要がある。C含有量は、好ましくは0.09%以上であり、より好ましくは0.11%以上である。しかしながら、Cが過剰に含有されると強度が高くなって冷間加工性が低下するので、0.3%未満とする必要がある。C含有量は、好ましくは0.28%以下であり、より好ましくは0.26%以下である。
 Si:0.05~0.5%
 Siは、脱酸元素として、および固溶体硬化による最終製品の強度向上元素として有用である。このような効果を有効に発揮させるため、Si含有量を0.05%以上と定めた。Si含有量は、好ましくは0.07%以上であり、より好ましくは0.10%以上である。一方、Siが過剰に含有されると硬度が過度に上昇して冷間加工性を劣化させる。そこでSi含有量を0.5%以下と定めた。Si含有量は、好ましくは0.45%以下であり、より好ましくは0.40%以下である。
 Mn:0.2~1.7%
 Mnは、焼入れ性の向上を通じて、最終製品の強度を増加させるのに有効な元素である。このような効果を有効に発揮させるため、Mn含有量を0.2%以上と定めた。Mn含有量は、好ましくは0.3%以上であり、より好ましくは0.4%以上である。一方、Mnが過剰に含有されると硬度が上昇して冷間加工性を劣化させる。そこでMn含有量を1.7%以下と定めた。Mn含有量は、好ましくは1.5%以下であり、より好ましくは1.3%以下である。
 P:0%超、0.03%以下
 Pは、鋼中に不可避的に含まれる元素であり、鋼中で粒界偏析を起こし、延性の劣化の原因となる。そこで、P含有量は0.03%以下と定めた。P含有量は、好ましくは0.02%以下であり、より好ましくは0.017%以下、更に好ましくは0.01%以下である。P含有量は少なければ少ない程好ましく、0%であることが最も好ましいが、製造工程上の制約などにより0.001%程度残存してしまう場合もある。
 S:0.001~0.05%
 Sは、鋼中に不可避的に含まれる元素であり、鋼中でMnSとして存在して延性を劣化させるので、冷間加工性に有害な元素である。そこでS含有量を0.05%以下と定めた。S含有量は、好ましくは0.04%以下であり、より好ましくは0.03%以下である。但し、Sは被削性を向上させる作用を有するので、0.001%以上含有させることは有用である。S含有量は、好ましくは0.002%以上であり、より好ましくは0.003%以上である。
 Al:0.01~0.1%
 Alは、脱酸元素として有用であると共に、鋼中に存在する固溶NをAlNとして固定するのに有用である。こうした効果を有効に発揮させるため、Al含有量を0.01%以上と定めた。Al含有量は、好ましくは0.013%以上であり、より好ましくは0.015%以上である。しかしながら、Al含有量が過剰になると、Alが過剰に生成し、冷間加工性を劣化させる。そこでAl含有量を0.1%以下と定めた。Al含有量は、好ましくは0.090%以下であり、より好ましくは0.080%以下である。
 N:0~0.015%
 Nは、鋼中に不可避的に含まれる元素であり、鋼中に固溶Nが含まれると、歪み時効による硬度上昇、延性低下を招き、冷間加工性を劣化させる。そこでN含有量を0.015%以下と定めた。N含有量は、好ましくは0.013%以下であり、より好ましくは0.010%以下である。N含有量は少なければ少ない程好ましく0%であることが最も好ましいが、製造工程上の制約などにより0.001%程度残存してしまう場合もある。
 本発明の実施形態の機械構造用鋼の基本成分は上記の通りであり、1つの実施形態として、残部は実質的に鉄である。なお、「実質的に鉄」とは、鉄以外にも本開示の特性を阻害しない程度の、例えばSb、Zn等の微量成分の存在を許容し得ること、およびP、S、N以外の、例えばO、H等の不可避不純物も含み得ることを意味する。さらに本発明の実施形態では、必要に応じて以下の任意元素を選択的に含有していても良い。選択された任意元素(選択成分)の種類に応じて、鋼の特性を更に改善し得る。
 なお、上述のように、P、SおよびNは、不可避的に含まれる元素(不可避不純物)であるが、その組成範囲について上記のように別途規定している。このため、本明細書において、残部として含まれる「不可避不純物」は、別途その組成範囲が規定されている元素を除いた不可避的に含まれる元素を意味する。
 Cr:0%超、0.5%以下、Cu:0%超、0.25%以下、Ni:0%超、0.25%以下、Mo:0%超、0.25%以下およびB:0%超、0.01%以下よりなる群から選択される1種以上
 Cr、Cu、Ni、MoおよびBは、いずれも鋼材の焼入れ性を向上させることによって最終製品の強度を増加させるのに有効な元素である。必要によって、それらの元素を単独で又は2種以上で含有してもよい。このような効果は、これら元素の含有量が増加するに従って大きくなる。前記した効果を有効に発揮させるための好ましい含有量は、Cr量が0.015%以上、より好ましくは0.020%以上である。Cu量、Ni量およびMo量の好ましい含有量は、いずれも0.02%以上、より好ましくは0.05%以上である。B量の好ましい含有量は、0.0003%以上、より好ましくは0.0005%以上である。
 しかしながら、Cr、Cu、NiおよびMoの含有量が過剰になると、強度が高くなり過ぎて冷間加工性を劣化させるおそれがある。そこで、Cr含有量は0.5%以下が好ましく、Cu、NiおよびMo含有量はいずれも0.25%以下が好ましい。Cr量のより好ましい含有量は0.45%以下、更に好ましくは0.40%以下である。Cu量、Ni量およびMo量のより好ましい含有量は、いずれも0.22%以下、更に好ましくは0.20%以下である。
 また、Bの含有量が過剰になると、靭性を劣化させるおそれがある。そこで、B含有量は0.01%以下が好ましい。B量のより好ましい含有量は、0.007%以下、更に好ましくは0.005%以下である。
 [Cr%]+[Cu%]+[Ni%]+[Mo%]≦0.75
 本発明の実施形態に係る鋼線は、Cr、Cu、NiおよびMoの1種以上を上述した範囲で含有する場合、下記式(X)を満足することが好ましい。
 [Cr%]+[Cu%]+[Ni%]+[Mo%]≦0.75 ・・・(X)
 但し、[Cr%]、[Cu%]、[Ni%]および[Mo%]は、それぞれ、質量%で示したCr、Cu、NiおよびMoの含有量を示す。
 Cr、Cu、NiおよびMoの含有量が上記式(X)を満たすことにより、鋼の強度が高くなり過ぎることを抑制して、冷間加工性を向上できる。
 Ti:0%超、0.1%以下
 Tiは、Nと化合物を形成し、固溶Nを低減することで、軟質化の効果を発揮する。よって必要によって、Tiを含有してもよい。このような効果を有効に発揮させるための好ましいTi含有量は、0.01以上、より好ましくは0.02以上である。しかしながら、Tiの含有量が過剰になると、形成される化合物が硬さ増加を招く。そこで、好ましいTi含有量は0.08%以下、より好ましくは0.05以下である。
 本発明の実施形態の冷間加工用機械構造用鋼を製造するためには、上記した成分組成を満足する鋼を、熱間圧延する際の仕上圧延温度を調整するとともに、その後の冷却速度を2段階として冷却速度と温度範囲を適切に調整するのが好ましい。具体的には、
 950℃以上、1150℃以下で仕上圧延し、その後、
 950℃以上、1150℃以下から700~750℃の第1冷却終了温度まで平均冷却速度:3℃/秒以下で冷却する第1冷却と、
 前記第1冷却終了温度から少なくとも600℃の温度範囲まで平均冷却速度:5~30℃/秒で冷却する第2冷却とをこの順で行う。
 仕上圧延温度、第1冷却および第2冷却について、それぞれ詳しく説明する。
 (a)仕上圧延温度:950℃以上、1150℃以下
 bcc-Fe平均粒径を15~30μmにするためには、仕上圧延温度を適切に制御する必要がある。仕上圧延温度が1150℃を超えると、bcc-Fe平均粒径を30μm以下にすることが困難となる。よって、仕上圧延温度は1150℃以下とすることが好ましい。但し、仕上圧延温度が950℃未満となると、bcc-Fe平均粒径を15μm以上にすることが困難となる。よって、仕上圧延温度は950℃以上とすることが好ましい。仕上圧延温度は、好ましくは970℃以上であり、より好ましくは990℃以上である。仕上圧延温度は、好ましくは1130℃以下であり、より好ましくは1110℃以下である。
 (b)第1冷却
 第1冷却の平均冷却速度:3℃/秒以下
 第1冷却は、仕上圧延温度である950℃以上、1150℃以下から開始し、700~750℃の第1冷却終了温度で終了する。第1冷却において、冷却速度が速くなると初析フェライト面積率Afが小さくなり、Af≧Aの関係が満足出来なくなる可能性がある。そこで、第1冷却の平均冷却速度を3℃/秒以下とする。第1冷却の平均冷却速度は好ましくは2.5℃/秒以下であり、より好ましくは2℃/秒以下である。第1冷却の平均冷却速度の下限は特に限定されない。しかしながら、現実的な範囲として、0.01℃/秒以上とするのが好ましい。なお、第1冷却では、平均冷却速度が3℃/秒以下である限り、冷却速度を変化させても良い。
 (c)第2冷却
 第2冷却の平均冷却速度:5~30℃/秒
 第2冷却は、700~750℃の温度範囲から開始し、少なくとも600℃で終了する。第2冷却において、平均冷却速度が5℃/秒より遅いとパーライトの平均ラメラー間隔を0.20μm以下とすることが困難となる。第2冷却の平均冷却速度は、好ましくは7℃/秒以上であり、より好ましくは10℃/秒以上である。一方、30℃/秒より速いと、ベイナイトやおよび/またはマルテンサイトのような組織が生じて、初析フェライトおよびパーライトの合計面積率を90%以上とすることが困難となる。第2冷却の平均冷却速度は、好ましくは28℃/秒以下であり、より好ましくは25℃/秒以下である。なお、第2冷却では、平均冷却速度が5~30℃/秒である限り、冷却速度を変化させてもよい。
 ここで「少なくとも600℃」とは、上述した平均冷却速度で冷却する第2冷却の終了温度が最高で600℃であることを意味する。「600℃」とした理由は、本開示で規定するパーライトの平均ラメラー間隔、並びに初析フェライトおよびパーライトの合計面積率といった金属組織の形態は、600℃までの冷却工程で略決定されて、600℃以降の冷却速度には殆ど影響されないからである。よって、当該第2冷却の終了温度は600℃に限定されず、後記する実施例のように室温であっても良い。或は、例えば当該第2冷却の終了温度を400℃とし、その後、放冷などの通常の冷却を行って室温まで冷却しても良い。一般には、放冷時の平均冷却速度は、上述した第2冷却の平均冷却速度より遅くなることが多い。
 本発明の実施形態の冷間加工用機械構造用鋼を用いれば、短時間の球状化焼鈍、例えばAc~Ac+30℃程度の温度範囲で1~3時間程度の球状化焼鈍を行うことにより、球状化度を後述する目標球状化度以下とでき、更に硬さを後述する目標硬さ以下とすることができる。なお、Acは下記式から算出される値である。下記式中、(%元素名)は各元素の質量%での含有量を意味する。
 Ac(℃)=723-10.7(%Mn)-16.9(%Ni)+29.1(%Si)+16.9(%Cr)
 以下、実施例を挙げて本発明の実施形態をより具体的に説明する。本発明の実施形態は下記実施例によって制限されず、前記および後記の本開示の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本開示の技術的範囲に包含される。
 下記表1に示す化学成分組成の鋼を用いて圧延を行ってφ17.0mmの線材を得て、さらに機械加工によりφ8.0mm×12.0mmの加工フォーマスタ用の試験片を得た。得られた加工フォーマスタ用の試験片を用いて、表2に記載の条件にて、加工フォーマスタ試験機により、加工熱処理試験を実施した。表2に記載の加工条件は、実機における圧延条件を模擬している。なお、表2中、加工温度は仕上圧延温度に相当する。
Figure JPOXMLDOC01-appb-T000001
 表2に記載の条件にて加工熱処理試験を実施した後の試験片について、下記(1)~(3)の要領で組織を評価した。また、加工熱処理試験後、さらに球状化焼鈍した試験片について、下記(4)および(5)の要領で球状化度および硬さの測定を行った。いずれの測定においても、加工熱処理後または球状化焼鈍後の試験片を、試験片の中心軸を通り且つ当該中心軸と平行な面(軸中心断面)で切断した。切断した試料片を「縦断面サンプル」と称することがある。縦断面サンプルを、試験片の軸中心断面が観察できるように樹脂埋めした。加工熱処理後および球状化焼鈍後の試験片について、円筒状の試験片の直径をDとしたとき、試験片の側面から中心に向かってD/4の位置(「D/4位置」)で測定を行った。
 (1)組織面積率の測定
 軸中心断面を鏡面研磨した縦断面サンプルを、ナイタールエッチングによって組織を現出させた。その後、D/4位置の組織を、光学顕微鏡にて倍率400倍で、220μm×165μmの領域を5視野撮影した。得られた写真に対し、等間隔の10本の縦線、横線を格子状に引き、100個の交点上に存在する初析フェライトおよびパーライトの点数を測定した。各視野において各組織の面積率(%)を求めて、5視野の平均値を算出した。
 (2)bcc-Fe平均粒径の測定
 bcc-Fe平均粒径の測定には、EBSP解析装置およびFE-SEM(Field-Emission Scanning Electron Microscope、電界放出型走査電子顕微鏡)を用いた。結晶方位差(斜角)が15°を超える境界、すなわち、大角粒界を結晶粒界として「結晶粒」を定義し、bcc-Fe平均粒径を決定した。このとき、測定領域は200μm×400μm、測定ステップは1.0μm間隔として測定した。測定方位の信頼性を示すコンフィデンス・インデックス(Confidence Index)が0.1以下の測定点は解析対象から削除した。また、金属組織中にマルテンサイト組織が析出したサンプルは、適切なbcc-Fe平均粒径が得られないため、測定を行わなかった。
 (3)パーライトラメラーの間隔の測定
 図1(a)はパーライトラメラーの組織1の模式図を、図1(b)はパーライトラメラーの組織1の拡大図を示す。パーライトラメラーの組織1は、図1(b)に示すように、ラメラーフェライト3とラメラーセメンタイト2が層状(ラメラー状)に並んだ組織である。本開示で規定するラメラー間隔とはラメラーセメンタイト2の間隔である。
 軸中心断面を鏡面研磨した縦断面サンプルをピクラールエッチングによって組織を現出させた。その後、FE-SEMを用いてD/4位置の組織観察を行い、倍率3000倍にて42μm×28μmの領域、もしくは倍率5000倍にて25μm×17μmの領域を合計5視野撮影した。この時、各視野に少なくとも一つのパーライトが含まれるようにした。撮影した写真の各視野において最も微細なラメラー間隔の(つまり、ラメラー間隔が最も狭い)パーライトを選択して、測定対象とした。測定対象のパーライトについて、層状組織に直交し(つまり、各層の延在する方向に直交し)、かつ始端および終端がラメラーセメンタイトの厚さ中心に位置するように、1本の線分4を引いた。線分4の長さLと、線分4に含まれるラメラーセメンタイト2の本数n(言い換えると、線分4と交差するラメラーセメンタイト2の層の数n)を測定した。なお、本数nには、線分の始端および終端が位置しているラメラーセメンタイトも含まれる。式(2)を用いて、長さLと本数nから、ラメラー間隔λを算出した。各視野においてラメラー間隔λを求めて、5視野の平均値を算出した。なお、図1(b)では、n=5の例を示しているが、これに限定されない。本明細書では、ラメラー間隔λを算出する際は、線分4と交差するラメラーセメンタイト2の本数nが5以上となるように、線分4を引いた。
 λ=L/(n-1) ・・・(2)
 また、金属組織中にマルテンサイト組織が析出して、初析フェライトおよびパーライトの合計面積率が90%未満のサンプルは、ラメラー間隔の算出が困難であるため、測定を行わなかった。
 (4)球状化焼鈍後の球状化度の測定
 球状化焼鈍後した試料片の縦断面サンプルについて、軸中心断面を鏡面研磨した後に、ピクラールエッチングによって組織を現出させた。D/4位置の組織を、光学顕微鏡を用いて倍率400倍で5視野観察した。各視野の球状化度をJIS G3539:1991の付図によってNo.1~No.4で評価して、5視野の平均値を算出した。なお、球状化度が小さいほど、良好な球状化組織であることを意味する。
 (5)球状化焼鈍後の硬さの測定
 球状化焼鈍後した試料片の縦断面サンプルについて、軸中心断面を鏡面研磨した縦断面サンプルのD/4位置の硬度を測定した。硬度測定には、ビッカース硬度計を用いて、荷重1kgfで測定した。D/4位置にある5つの異なる点で測定を行い、その平均値(HV)を求めた。
 実施例
 上記表1に示した鋼種A~Uを用い、加工温度(仕上圧延温度に相当)および冷却速度を下記表2のように変化させて、加工フォーマスタ試験を実施した。これにより、異なる前組織を有する加工フォーマスタ試験片を夫々作製した。なお、鋼種Oは、Mnの量が1.7%を超えており、本願発明の範囲外である。鋼種Pは、Tiの量が0.1%を超えており、本願発明の範囲外である。また、鋼種A~OおよびQ~Uでは、[Cr%]+[Cu%]+[Ni%]+[Mo%]が0.75質量%以下であり、上述の式(X)を満たしている。鋼種Pでは、[Cr%]+[Cu%]+[Ni%]+[Mo%]が0.75質量%を超えており、式(X)を満たさない。
 表2の加工条件において、No.10、20、43、44を除いて、「第1冷却」は加工温度から開始し、第1冷却終了温度である700~750℃の温度範囲で終了し、「第2冷却」は「第1冷却」の第1冷却終了温度から開始し、室温で終了する。No.10、20、44は、第1冷却開始時の加工温度から第2冷却の終了温度まで、一定の平均冷却速度で冷却しているため、「第1冷却」および「第2冷却」を区別していない。なお、No.44は、850℃から300℃までの範囲を40.0℃/秒の平均冷却速度で冷却した後、室温まで放冷した。また、No.43は、「第1冷却」の終了温度を650℃、「第2冷却」の終了温度を550℃とし、その後、室温まで放冷した。
Figure JPOXMLDOC01-appb-T000002
 上記加工フォーマスタ試験片を、中心軸と直交する断面で4等分した。そのうちの1つを組織調査用のサンプルとし、他の1つを球状化焼鈍用サンプルとした。球状化焼鈍は、試験片をそれぞれ真空封入し、大気炉にて熱処理をすることにより行った。球状化焼鈍は、730℃で2時間均熱保持後、平均冷却速度30℃/時で710℃まで冷却した後、平均冷却速度10℃/時で680℃まで冷却し、その後放冷した。
 上記(1)~(5)の要領で評価した球状化焼鈍前の組織、球状化焼鈍後の球状化度および硬さを表3に示す。なお、C含有量によって、求められる球状化度が異なる。そこで、目標とする球状化度(表3内では「目標球状化度」と記載。)は、下記式(3)で求めた値とした。また、C、SiおよびMn含有量によって、求められる硬さが異なる。そこで、目標とする硬さ(表3内では「目標硬さ」と記載。)は、下記式(4)で求めた値とした。
 目標球状化度=5×[C%]+1.5 ・・・(3)
 目標硬さ=88.4×Ceq+86.0 ・・・(4)
 ただし、Ceq=[C%]+0.2×[Si%]+0.2×[Mn%]であり、[C%]、[Si%]および[Mn%]は、それぞれ質量%でC、SiおよびMnの含有量を示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果より、次のように考察できる。表3のNo.1~8、13、15~17、19、21、23、24、26、27、29~32、35~38および45~50は、いずれも本発明の実施形態で規定する要件の全てを満足する例であり、短時間球状化焼鈍でも、球状化焼鈍後の球状化度が目標を達成しており、更に目標硬さを達成できている。
 一方、表3のNo.9~12、14、18、20、22、25、28、33、34、39~44は、本発明の実施形態で規定する要件のいずれかを欠く例であり、球状化焼鈍後において、球状化度および硬さの少なくともいずれかが目標に達していない。
 No.9は、本発明の実施形態の組成を満足する表1の鋼種Aを用いたが、仕上圧延温度に相当する加工温度が低かった。そのため、bcc-Fe平均粒径が小さくなり、球状化焼鈍後の硬さが硬いままであった。
 No.10は、本発明の実施形態の組成を満足する表1の鋼種Aを用いたが、第2冷却の冷却速度が遅かった。そのため、パーライト平均ラメラー間隔が大きくなり、球状化焼鈍後の球状化度が悪かった。
 No.11は、本発明の実施形態の組成を満足する表1の鋼種Aを用いたが、第1冷却の冷却速度が速かった。そのため、初析フェライトの面積率が小さくなり、球状化焼鈍後の硬さが硬いままであった。
 No.12は、本発明の実施形態の組成を満足する表1の鋼種Aを用いたが、加工温度が高かった。そのため、bcc-Fe平均粒径が大きくなり、球状化焼鈍後の球状化度が大きくなった(つまり、球状化組織が悪かった)。
 No.14は、本発明の実施形態の組成を満足する表1の鋼種Bを用いたが、第2冷却の冷却速度が遅かった。そのため、パーライト平均ラメラー間隔が大きくなり、球状化焼鈍後の球状化度が大きくなった(つまり、球状化組織が悪かった)。
 No.18は、本発明の実施形態の組成を満足する表1の鋼種Dを用いたが、加工温度が高かった。そのため、bcc-Fe平均粒径が大きくなり、球状化焼鈍後の球状化度が大きくなった(つまり、球状化組織が悪かった)。
 No.20は、本発明の実施形態の組成を満足する表1の鋼種Eを用いたが、第1冷却の冷却速度が速かった。そのため、初析フェライトの面積率が小さくなり、球状化焼鈍後の硬さが硬いままであった。
 No.22は、本発明の実施形態の組成を満足する表1の鋼種Fを用いたが、第2冷却の冷却速度が速かった。そのため、マルテンサイト組織が析出して、初析フェライトとパーライトの合計面積率および初析フェライトの面積率が小さくなった。その結果、球状化焼鈍後の硬さが硬いままであった。
 No.25は、本発明の実施形態の組成を満足する表1の鋼種Hを用いたが、加工温度が低かった。そのため、bcc-Fe平均粒径が小さくなり、球状化焼鈍後の硬さが硬いままであった。
 No.28は、本発明の実施形態の組成を満足する表1の鋼種Iを用いたが、第1冷却の冷却速度が速かった。そのため、初析フェライトの面積率が小さくなり、球状化焼鈍後の硬さが硬いままであった。
 No.33は、本発明の実施形態の組成を満足する表1の鋼種Lを用いたが、第1冷却の冷却速度が速かった。そのため、初析フェライトの面積率が小さくなり、球状化焼鈍後の硬さが硬いままであった。
 No.34は、本発明の実施形態の組成を満足する表1の鋼種Lを用いたが、第2冷却の冷却速度が速かった。そのため、マルテンサイト組織が析出して、初析フェライトとパーライトの合計面積率および初析フェライトの面積が小さくなった。その結果、球状化焼鈍後の硬さが硬いままであった。
 No.39、40は、Mn含有量が多い表1の鋼種Oを用いたため、球状化焼鈍後の硬さが硬いままであった。
 No.41、42は、Cr含有量が多く、かつ式(X)を満たさない表1の鋼種Pを用いたため、球状化焼鈍後の硬さが硬いままであった。
 No.43は、本発明の実施形態の組成を満足する表1の鋼種Qを用いたが、加工温度が低く、かつ第1冷却の冷却速度が速かった。そのため、bcc-Fe平均粒径が小さくなり、またマルテンサイト組織が析出して初析フェライトの面積率が低下した。その結果、球状化焼鈍後の硬さが硬いままであった。
 No.44は、本発明の実施形態の組成を満足する表1の鋼種Rを用いたが、加工温度が低く、第1冷却の冷却速度が速く、さらに第2冷却の冷却速度が速かった。そのため、bcc-Fe平均粒径が小さくなり、初析フェライトの面積率が低下し、さらにマルテンサイト組織が析出して初析フェライトとパーライトの合計面積率が低下した。その結果、球状化焼鈍後の硬さが硬いままであった。
 なお、No.1~8、13、15~17、19、21、23、24、26、27、29~32、35~38および45~50(本発明の実施形態で規定する要件の全てを満足する)は、第2冷却において室温まで冷却した。しかしながら、600℃まで第2冷却してその後放冷しても良く、ほぼ同じ結果が得られることが期待される。
 本出願は、出願日が2015年8月25日である日本国特許出願、特願第2015-166030号および出願日が2016年6月23日である日本国特許出願、特願第2016-124959号を基礎出願とする優先権主張を伴う。特願第2015-166030号および特願第2016-124959号は参照することにより本明細書に取り込まれる。
 1 パーライトラメラーの組織
 2 ラメラーセメンタイト
 3 ラメラーフェライト
 4 線分(層状組織に直交し、かつ始端および終端がラメラーセメンタイトの厚さ中心に位置している)

Claims (4)

  1.  質量%で、
     C :0.07%以上、0.3%未満、
     Si:0.05~0.5%、
     Mn:0.2~1.7%、
     P :0%超、0.03%以下、
     S :0.001~0.05%、
     Al:0.01~0.1%、および
     N :0~0.015%を夫々含有し、残部が鉄および不可避不純物からなり、
     鋼の金属組織が、初析フェライトおよびパーライトを含有し、全組織に対する初析フェライトおよびパーライトの合計面積率が90%以上であると共に、前記初析フェライトの面積率Afが、下記式(1)で表されるA値との関係で、Af≧Aの関係を満足し、
     bcc-Fe結晶粒の平均円相当直径が15~30μmであり、且つ、
     パーライトラメラーの間隔が平均で0.20μm以下であることを特徴とする冷間加工用機械構造用鋼。
     A=(103-128×[C(%)])×0.80(%) ・・・(1)
     但し、上記式(1)中、[C(%)]は、質量%でCの含有量を示す。
  2.  更に、質量%で、
     Cr:0%超、0.5%以下、
     Cu:0%超、0.25%以下、
     Ni:0%超、0.25%以下、
     Mo:0%超、0.25%以下、および
     B :0%超、0.01%以下よりなる群から選択される1種以上を含有し、かつ
     下記式(X)を満足する請求項1に記載の冷間加工用機械構造用鋼。
    [Cr%]+[Cu%]+[Ni%]+[Mo%]≦0.75 ・・・(X)
     但し、[Cr%]、[Cu%]、[Ni%]および[Mo%]は、それぞれ、質量%で示したCr、Cu、NiおよびMoの含有量を示す。
  3.  更に、質量%で、
     Ti:0%超、0.1%以下を含有する請求項1または2に記載の冷間加工用機械構造用鋼。
  4.  請求項1~3のいずれか1項に記載の冷間加工用機械構造用鋼を製造するに当たり、
     950℃以上、1150℃以下で仕上圧延し、
     次いで700~750℃の第1冷却終了温度まで平均冷却速度:3℃/秒以下で冷却する第1冷却と、前記第1冷却終了温度から少なくとも600℃の温度範囲まで平均冷却速度:5~30℃/秒で冷却する第2冷却とを順次行うことを特徴とする冷間加工用機械構造用鋼の製造方法。
PCT/JP2016/073769 2015-08-25 2016-08-12 冷間加工用機械構造用鋼、およびその製造方法 WO2017033773A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16839120.9A EP3342892A4 (en) 2015-08-25 2016-08-12 STEEL FOR MECHANICAL STRUCTURES FOR COLD PROCESSING AND MANUFACTURING METHOD THEREFOR
MX2018001887A MX2018001887A (es) 2015-08-25 2016-08-12 Acero de estructura mecanica para trabajo en frio y su metodo de fabricacion.
CN201680046277.5A CN107923011A (zh) 2015-08-25 2016-08-12 冷加工用机械结构用钢及其制造方法
KR1020197032067A KR20190124826A (ko) 2015-08-25 2016-08-12 냉간 가공용 기계 구조용 강, 및 그 제조 방법
US15/754,364 US20180251876A1 (en) 2015-08-25 2016-08-12 Mechanical structure steel for cold-working and manufacturing method therefor
KR1020187005299A KR20180031757A (ko) 2015-08-25 2016-08-12 냉간 가공용 기계 구조용 강, 및 그 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015166030 2015-08-25
JP2015-166030 2015-08-25
JP2016-124959 2016-06-23
JP2016124959A JP2017043835A (ja) 2015-08-25 2016-06-23 冷間加工用機械構造用鋼、およびその製造方法

Publications (1)

Publication Number Publication Date
WO2017033773A1 true WO2017033773A1 (ja) 2017-03-02

Family

ID=58100113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073769 WO2017033773A1 (ja) 2015-08-25 2016-08-12 冷間加工用機械構造用鋼、およびその製造方法

Country Status (1)

Country Link
WO (1) WO2017033773A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060157B2 (en) * 2016-03-31 2021-07-13 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full hard cold-rolled steel sheet, method for producing steel sheet, and method for producing coated steel sheet
CN116200659A (zh) * 2022-12-29 2023-06-02 邢台钢铁有限责任公司 一种冷镦钢热轧盘条及其生产方法和制备精线的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789429A (en) * 1980-11-20 1982-06-03 Sumitomo Metal Ind Ltd Production of low-alloy steel with excellent workability in cold drawing and cold extrusion
JPH0953142A (ja) * 1995-08-15 1997-02-25 Sumitomo Metal Ind Ltd 耐疲労特性に優れた非調質鋼材及びその製造方法
JP2000212695A (ja) * 1999-01-21 2000-08-02 Nippon Steel Corp 耐震建築用鋼材
JP2009242916A (ja) * 2008-03-31 2009-10-22 Kobe Steel Ltd 球状化焼鈍が省略可能な線状鋼または棒状鋼
JP2009275252A (ja) * 2008-05-13 2009-11-26 Nippon Steel Corp 焼鈍後の冷間鍛造性に優れた鋼線材及びその製造方法
JP2013007089A (ja) * 2011-06-23 2013-01-10 Kobe Steel Ltd 冷間加工用機械構造用鋼およびその製造方法、並びに機械構造用部品
JP2013007091A (ja) * 2011-06-23 2013-01-10 Kobe Steel Ltd 冷間加工用機械構造用鋼およびその製造方法、並びに機械構造用部品
JP2013007090A (ja) * 2011-06-23 2013-01-10 Kobe Steel Ltd 冷間加工用機械構造用鋼およびその製造方法、並びに機械構造用部品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789429A (en) * 1980-11-20 1982-06-03 Sumitomo Metal Ind Ltd Production of low-alloy steel with excellent workability in cold drawing and cold extrusion
JPH0953142A (ja) * 1995-08-15 1997-02-25 Sumitomo Metal Ind Ltd 耐疲労特性に優れた非調質鋼材及びその製造方法
JP2000212695A (ja) * 1999-01-21 2000-08-02 Nippon Steel Corp 耐震建築用鋼材
JP2009242916A (ja) * 2008-03-31 2009-10-22 Kobe Steel Ltd 球状化焼鈍が省略可能な線状鋼または棒状鋼
JP2009275252A (ja) * 2008-05-13 2009-11-26 Nippon Steel Corp 焼鈍後の冷間鍛造性に優れた鋼線材及びその製造方法
JP2013007089A (ja) * 2011-06-23 2013-01-10 Kobe Steel Ltd 冷間加工用機械構造用鋼およびその製造方法、並びに機械構造用部品
JP2013007091A (ja) * 2011-06-23 2013-01-10 Kobe Steel Ltd 冷間加工用機械構造用鋼およびその製造方法、並びに機械構造用部品
JP2013007090A (ja) * 2011-06-23 2013-01-10 Kobe Steel Ltd 冷間加工用機械構造用鋼およびその製造方法、並びに機械構造用部品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060157B2 (en) * 2016-03-31 2021-07-13 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full hard cold-rolled steel sheet, method for producing steel sheet, and method for producing coated steel sheet
CN116200659A (zh) * 2022-12-29 2023-06-02 邢台钢铁有限责任公司 一种冷镦钢热轧盘条及其生产方法和制备精线的方法

Similar Documents

Publication Publication Date Title
JP5357994B2 (ja) 冷間加工用機械構造用鋼およびその製造方法
JP2017043835A (ja) 冷間加工用機械構造用鋼、およびその製造方法
JP5026626B2 (ja) 冷間鍛造性に優れた鋼線及びその製造方法
JP5776623B2 (ja) 冷間加工性に優れた鋼線材・棒鋼とその製造方法
JP5407178B2 (ja) 冷間加工性に優れた冷間鍛造用鋼線材およびその製造方法
JP2013227602A (ja) 冷間加工用機械構造用鋼及びその製造方法
JP6528860B2 (ja) 非調質機械部品用鋼線及び非調質機械部品
WO2015194411A1 (ja) 冷間加工用機械構造用鋼及びその製造方法
JP6479538B2 (ja) 機械構造部品用鋼線
JP6838873B2 (ja) 冷間加工用機械構造用鋼およびその製造方法
JP2017048459A (ja) 機械構造部品用鋼線
CN108368583B (zh) 非调质机械部件用钢丝及非调质机械部件
WO2017098964A1 (ja) 機械構造部品用鋼線
JP5704716B2 (ja) 冷間加工用機械構造用鋼およびその製造方法
JP6193842B2 (ja) 軸受用鋼線材
WO2017033773A1 (ja) 冷間加工用機械構造用鋼、およびその製造方法
JP2018024909A (ja) 冷間加工用機械構造用鋼およびその製造方法
JP2012237052A (ja) 冷間鍛造性および結晶粒粗大化抑制能に優れた肌焼鋼とその製造方法
JP2001089830A (ja) 球状化後の冷間鍛造性に優れた鋼線材・棒鋼およびその製造方法
WO2017038436A1 (ja) 機械構造部品用鋼線
JP4392324B2 (ja) 冷間鍛造用肌焼鋼の製造方法
WO2022210125A1 (ja) 機械構造部品用鋼線およびその製造方法
JP2018044235A (ja) 機械構造部品用鋼線
JP2022158883A (ja) 機械構造部品用鋼線およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/001887

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20187005299

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15754364

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016839120

Country of ref document: EP