JPWO2012111639A1 - モジュール間通信装置 - Google Patents

モジュール間通信装置 Download PDF

Info

Publication number
JPWO2012111639A1
JPWO2012111639A1 JP2012555216A JP2012555216A JPWO2012111639A1 JP WO2012111639 A1 JPWO2012111639 A1 JP WO2012111639A1 JP 2012555216 A JP2012555216 A JP 2012555216A JP 2012555216 A JP2012555216 A JP 2012555216A JP WO2012111639 A1 JPWO2012111639 A1 JP WO2012111639A1
Authority
JP
Japan
Prior art keywords
signal line
line
lead
inter
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012555216A
Other languages
English (en)
Other versions
JP5213087B2 (ja
Inventor
黒田 忠宏
忠宏 黒田
仁揮 石黒
仁揮 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2012555216A priority Critical patent/JP5213087B2/ja
Application granted granted Critical
Publication of JP5213087B2 publication Critical patent/JP5213087B2/ja
Publication of JPWO2012111639A1 publication Critical patent/JPWO2012111639A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/28Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium using the near field of leaky cables, e.g. of leaky coaxial cables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/22Capacitive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5483Systems for power line communications using coupling circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Near-Field Transmission Systems (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Transceivers (AREA)
  • Dc Digital Transmission (AREA)
  • Power Engineering (AREA)

Abstract

モジュール間通信装置に関し、反射をより少なくして、通信チャネルを誘導結合よりも高速・広帯域にする。終端部材で終端された信号線路と帰還信号線路とを備えたモジュールを積層して信号線路同士及び帰還信号線路同士の間で容量結合および誘導結合を用いて結合する際に、終端部材のインピーダンスを、モジュール同士の結合状態における近接効果を反映した結合系インピーダンスとする。

Description

本発明は、モジュール間通信装置に関するものであり、例えば、近接したモジュール間の無線データ通信を高速で行うための構成に関するものである。
近年、メモリカードとPCとの間で非接触でデータ通信行う等の複数のモジュールが近接した際に高速に無線データ通信できるモジュール間通信装置が開発されている。このようなモジュール間通信装置としては、その他に、半導体集積回路チップを封印したパッケージを複数積層したPoP(パッケージオンパッケージ)において、パッケージ越しに無線で半導体集積回路チップ間通信することも期待される。
本発明者は、プリント基板(Printed Circuit Board;PCB)や半導体集積回路チップの配線により形成されるコイルの誘導結合、即ち、磁界結合を用いて、実装基板間や半導体集積回路チップ間でデータ通信を行う電子回路を提案している(例えば、非特許文献1乃至非特許文献3参照)。
非特許文献1によれば、パッケージの中に封印された半導体集積回路チップの配線で形成されたコイルとパッケージ表面に装着されたフレキシブルプリント基板(Flexible Printed Circuits;FPC)のコイルによる誘導結合を用いて、パッケージに封印された半導体集積回路チップ内のデータをパッケージの外から検知して、半導体集積回路チップや半導体集積回路チップで構成されるシステムの評価やデバッグに用いることができる。
また、非特許文献2によれば、1つのパッケージの中に積層実装されたプロセッサ半導体集積回路チップとメモリ半導体集積回路チップがそれぞれの半導体集積回路チップの配線で形成されたコイル対による誘導結合を用いて両者の間で高速に通信できる。この技術を応用すれば、プロセッサを実装したパッケージとメモリを実装したパッケージが積層実装された状態で、パッケージに形成されたコイルの誘導結合を用いた無線データ通信により、プロセッサがメモリにデータを読み書きすることができる。
また、非特許文献3によれば、プリント基板上のコイル対による誘導結合を用いて、メモリカードとPCが非接触でデータ通信できる。
一方、マイクロストリップラインやバスラインを近接結合させて、容量結合及び誘導結合を利用してデータを無線通信することも提案されている(例えば、特許文献1乃至特許文献7参照)。特許文献1によれば、平行に配置した二本の伝送線路からなる差動伝送線路を互いに同一方向に平行に配置して、2つのモジュール間を無線通信することができる。
また、特許文献2によると、移動可能なドライバステージを結合要素を介して2つの対称的に配置された導体と電磁結合或いは容量結合することで、双方向伝送システムを構築することができる。
また、特許文献3によると、グランドプレーン上に誘電体膜を介して配置した二本のマイクロストリップラインを方向性結合器として用いて、二本のマイクロストリップラインに差動信号を入力して、2つのモジュール間で無線通信することができる。
また、特許文献4乃至特許文献7によると、2本のバス配線の一部を並行して配置することで、容量結合及び誘導結合により複数のプリント回路基板間で無線通信を行うことができる。
特開2008−278290号公報 特表2003−533130号公報 特開2007−049422号公報 特開平07−141079号公報 特開2001−027918号公報 特開2002−123345号公報 特開2004−318451号公報
H.Ishikuro,T.Sugahara,and T.Kuroda, "An Attachable Wireless Chip Access Interface for Arbitrary Data Rate by Using Pulse−Based Inductive−Coupling through LSI Package", IEEE International Solid−State Circuits Conference (ISSCC‘07),Dig.Tech.Papers,pp.360−361,608, Feb. 2007 K.Niitsu,Y.Shimazaki,Y.Sugimori,Y.Kohama,K.Kasuga,I.Nonomura,M.Saen,S.Komatsu,K.Osada,N.Irie,T.Hattori,A.Hasegawa,and T. Kuroda,"An Inductive−Coupling Link for 3D Integration of a 90nm CMOS Processor and a 65nm CMOS SRAM",IEEE International Solid−State Circuits Conference (ISSCC‘09), Dig.Tech.Papers,pp.480−481,Feb.2009 S.Kawai,H.Ishikuro,and T.Kuroda,"A 2.5Gb/s/ch Inductive−Coupling Transceiver for Non−Contact Memory Card",IEEE International Solid−State Circuits Conference (ISSCC‘10),Dig.Tech.Papers,pp.264−265, Feb. 2010
コイルを用いた磁界結合の場合、モジュール間或いは半導体集積回路チップ間無線データ通信に用いるコイルには、通常のコイルと同様に、インダクタンスLの他にキャパシタンスCが寄生するので、ある周波数、即ち、自己共振周波数でLC共振する。通信で使われる信号の周波数がこの自己共振周波数に近づくと、信号が変化した後もしばらくは揺れ続けるために高速で通信するとシンボル間干渉を生じて、信頼性の高い通信ができないという問題がある。
コイルの誘導結合で実現できる通信速度の上限は、コイルの自己共振周波数のおよそ1/3〜1/2程度である。コイルの自己共振周波数は、コイルのLC積の平方根に逆比例する。通信距離が遠くなるほど大きなコイルが必要になるので、Cが大きくなり、自己共振周波数が下がる。
積層された半導体集積回路チップ間の通信の場合は、例えば通信距離が50μm程度なので、コイルの直径はその2倍の100μm程度である。この場合はチャネルの帯域は10GHz以上になり、通信速度は送受信器の回路で決まる。
しかし、モジュール間の通信になると通信距離が長くなる。例えば、通信距離が1mmの場合は、直径が1mm程度のコイルが必要になり、PCB上のコイルの自己共振周波数は3GHz程度になるので、通信速度は通信チャネルで決まり、1Gb/s(毎秒1Gビット)程度が上限になる。
したがって、4Gb/sの通信速度を実現するためには、4組のコイルを図39のように配置して4つの通信路を並列に使い、パラレル通信しなければならない。この時、隣接通信路間でクロストークを生じないように、コイルは一定の距離を離して配置される。なお、図における、Tx及びRxはそれぞれ送信回路及び受信回路である。
ここで、送受信器を備えた集積回路とコイルとの間の配線長が揃わなかったり、或いは、送受信器の特性がばらつくと、図39に示す信号波形に示すように、各チャネルで受信された信号のタイミングが揃わずに信号スキューが発生して信号の同期が困難になる。
通信距離が遠くなりコイルが大きくなるほど、また、通信速度が速くなりコイルの数が多くなるほど、コイルと集積回路の配線は長くなるので信号遅延も大きくなる。たとえ配線長を等しく揃えても、集積回路やコイルの製造ばらつきによる信号遅延のばらつきは大きくなる。このように、従来のパラレル通信では通信チャネルの並列数に上限があり、通信チャネルの高速化が課題であった。
また、送受信器を備えた集積回路をコイルの近くに設置できない場合は、両者を伝送線路で接続しなければならない。このとき、伝送線路のインピーダンス(特性インピーダンスと呼ぶ)は信号帯域で大きく変化しないが、コイルのインピーダンスは周波数に比例して変化する。したがって、両者の接続点でインピーダンスを整合させることが困難であり、信号が反射して信号品質が劣化し、信頼性の高い通信ができない。
例えば、4Gb/sでデジタル信号を伝送するためには、典型的には信号の立上り時間や立下り時間を50ps程度に設計する。このデジタル信号には1/(2×50ps)=10GHzまでの周波成分が含まれているので、信号周期(1/10G=100ps)に比べて十分に短くない、例えば、1/40より大きい遅延、即ち、100ps/40=2.5psの遅延を生じる距離を信号伝送させるときは、伝送線路としての扱いが必要になる。
真空中を伝播する10GHzの信号の波長は30mmであるので、2.5psの遅延は(30mm/100ps)×2.5ps=0.75mmの距離に対応する。実際には、比誘電率が4程度の耐燃性ガラス基材エポキシ樹脂積層板FR4では波長短縮効果により伝播速度が半分になるので、2.5psの遅延は0.75mm/2=0.37mmに対応する。
つまり、約0.4mmより長い距離の場合には伝送線路としての扱いが必要になり、インピーダンスの整合が必要になる。即ち、コイルの誘導結合を通信路に用いた従来技術では、送受信器を備えた集積回路をコイルから0.4mm以内に設置する必要があった。しかし、直径が1mmのコイルをクロストークしないように離して配置した上に0.4mm以内に接続できるのは、せいぜい4つのコイルまでで、それ以上のコイルとの接続は困難になる。さらに、機器の設計制約上、集積回路装置を離れたところに配置したいことは多々ある。
一方、マイクロストリップラインを近接配置して容量結合及び誘導結合により無線通信を行う方式の場合に、インピーダンス整合について十分に考慮されていないため、信号に反射が生じるという問題がある。
即ち、本発明者は、鋭意研究の結果、2つのモジュールが近接すると、伝送線路のインピーダンスは近接効果により他方の伝送線路の影響を受け、単体の伝送線路の特性インピーダンスZ0と異なる値になり、このようなインピーダンスの変化が無視できないとの結論に至った。
2つのモジュールが近づくほど近接効果が大きくなり、伝送線路のインピーダンスはより小さくなる。このような結合状態にある伝送線路のインピーダンスを考慮してインピーダンス整合を取らないと、2つ或いはそれ以上のモジュールを近接配置して無線通信を行うと障害が発生することになる。本明細書ではこのような結合状態にある伝送線路のインピーダンスを結合系インピーダンスと呼びZ0-coupledで表す。
また、特許文献1の場合には、結合系インピーダンスZ0-coupledを全く考慮しておらず、単体の伝送線路の特性インピーダンスZ0しか考慮していないので、信号の反射が発生して高速通信が困難になるという問題がある。なお、シングル伝送の構成でも良い旨の言及もされているが、具体的構成は全く開示されていない。
また、特許文献3の場合にも、結合系インピーダンスZ0-coupledは勿論のこと、全くインピーダンス整合については特別の注意を払っていないので、信号の反射が発生して高速通信が困難になるという問題がある。また、2つのモジュールを互いに同じ向きに平行に配置しているが、グランドプレーンを用いているので、互いに向かい合わせる必要があり、向かい合わせる際の位置合わせ精度も問題になる。また、グランドプレーンを用いているので、3個以上のモジュールを積層することができないという問題もある。さらに、特許文献3の場合には、データをキャリア信号を用いて変調して通信しているので、送受信回路の構成が複雑化するという問題もある。
さらに、特許文献4乃至特許文献7の場合にも、結合系インピーダンスZ0-coupledを全く考慮しておらず、単体の伝送線路の特性インピーダンスZ0しか考慮していないので、信号の反射が発生して高速通信が困難になるという問題がある。また、具体的構成がバス配線とプリント回路基板に関するものであり、バス配線とプリント回路基板を用いて同一基板上に結合器が構成されているので、2つのモジュール間の通信に対応することができないという問題がある。
したがって、本発明は、結合系インピーダンスとして整合を取ることで、反射をより少なくして、通信チャネルを誘導結合よりも高速(広帯域)にすることを目的とする。
(1)上記の課題を解決するために、本発明は、モジュール間通信装置において、特性インピーダンスがZ01のインピーダンスを有する第1信号線路と、前記第1信号線路の帰還経路を提供する第1帰還信号線路と前記第1信号線路と前記第1帰還信号線路とを終端する第1終端部材と、送受信回路を備えた第1半導体集積回路装置とを少なくとも有する第1モジュールと、特性インピーダンスがZ02のインピーダンスを有する第2信号線路と、前記第2信号線路の帰還経路を提供する第2帰還信号線路と前記第2信号線路と前記第2帰還信号線路とを終端する第2終端部材と、送受信回路を備えた第2半導体集積回路装置とを少なくとも有する第2モジュールとを、互いに対向させて近接配置されるとともに、前記第1終端部材及び前記第2終端部材のインピーダンスが、前記Z01及びZ02とは異なる前記第1モジュールと前記第2モジュールとの結合状態における近接効果を反映した結合系インピーダンスであることを特徴とする。
このように、各モジュールに、第1モジュールと第2モジュールとの結合状態における近接効果を反映した結合系インピーダンスを有する終端部材を用いているので、信号の反射を効果的になくすことができる。また、キャリア信号を用いて変調することなく、ベースバンドで通信しているので、より簡単な構成により高速通信が可能になる。
(2)また、本発明は、上記(1)において、前記第1信号線路が、第1絶縁性基板上に設けられた信号波長の1/10以上の長さを有する信号線路であり、前記第1半導体集積回路装置が前記第1信号線路と前記第1帰還信号線路とに接続され、前記第2信号線路が、第2絶縁性基板上に設けられた信号波長の1/10以上の長さを有する信号線路であり、前記第2半導体集積回路装置が、前記第2信号線路と前記第2帰還信号線路とに接続され、前記第1信号線路と前記第2信号線路とがその少なくとも一部が積層方向から見て投影的に重なり、且つ、前記第1帰還信号線路と前記第2帰還信号線路とがその少なくとも一部が積層方向から見て投影的に重なり、前記第1信号線路と前記第2信号線路の間に容量結合および誘導結合を用いて信号結合が生じ、前記第1帰還信号線路と第2帰還信号線路の間に容量結合および誘導結合を用いて帰還信号結合が生じ、前記信号結合によって前記第2信号線路に前記第1信号線路の信号が伝送されるように積層することを特徴とする。
(3)また、本発明は、上記(2)において、前記帰還信号結合が前記信号結合と同じもしくはそれよりも強いことを特徴とする。このように、前記帰還信号結合が前記信号結合と同じもしくはそれよりも強くなるように設定することによって、結合伝送線路の偶モードインピーダンスおよび奇モードインピーダンスが明確に規定され、実際の使用条件下ではこれらのインピーダンスが大きく変動することがないので、終端処理が容易になる。
(4)また、本発明は、上記(2)において、前記第1帰還信号線路が前記第1信号線路に対してコプレーナ構造を形成し、前記第2帰還信号線路が前記第2信号線路に対してコプレーナ構造を形成することを特徴とする。このように、帰還信号線路を信号線路に対してコプレーナ構造にすることによりノイズ耐性を高めることができる。
(5)また、本発明は、上記(4)において、前記第1帰還信号線路が前記第1信号線路の両側に対して対称構造を有し、前記第2帰還信号線路が前記第2信号線路の両側に対して対称構造を有することを特徴とする。このように、帰還信号線路を信号線路に対して対称構造にすることによって、同相ノイズ除去比が高まり、ノイズ耐性をより高めることができる。
(6)また、本発明は、上記(2)において、前記第1絶縁性基板の前記第1信号線路を配置した面と反対側の面に第1電磁シールド層を有し、前記第2絶縁性基板の前記第2信号線路を配置した面と反対側の面に第2電磁シールド層を有することを特徴とする。このように電磁シールド層を設けることによって、外部から電磁界ノイズが侵入することを低減することができ、それによって、ノイズ耐性をより高めることができる。
(7)また、本発明は、上記(2)において、前記第1信号線路と前記第2信号線路との間隔或いは前記第1信号線路と前記第2信号線路との重なりの幅のいずれかが信号の伝搬方向で異なることにより前記第1信号線路と前記第2信号線路との結合状態が前記信号の伝搬方向で異なることを特徴とする。
このように、第1信号線路と第2信号線路との結合状態を信号の伝搬方向で異なるようにすることで、信号線路の結合係数の周波数特性を平坦にし、広帯域な結合器を実現することができる。
(8)また、本発明は、上記(2)において、前記第1モジュール或いは第2モジュールの一方が、前記第1信号線路或いは第2信号線路に対して、ダミー結合器を挟んで、第3信号線路及び前記第3信号線路の帰還経路を提供する第3帰還信号線路とを有し、前記第3信号線路と前記第3帰還信号線路とを終端する第3終端部材と、前記第3信号線路と前記第3帰還信号線路とに接続された送受信回路を備えた第3半導体集積回路装置とを有することを特徴とする。
このように、一方のモジュールに2組の信号線路と帰還信号線路との対を設けることで、1つの伝送線路で複数に分岐した結合通信を実現することができる。
(9)また、本発明は、上記(2)において、前記第1信号線路が、前記第1モジュールと前記第2モジュールとの結合状態における近接効果を反映した結合系インピーダンスを有する第1引き出し用伝送線路を介して前記第1半導体集積回路装置と接続し、前記第2信号線路が、前記結合系インピーダンスを有する第2引き出し用伝送線路を介して前記第2半導体集積回路装置と接続していることを特徴とする。
このように、引き出し用伝送線路を設けることによって、半導体集積回装置を信号線路から離した位置に配置することができ、設計自由度が増す。
(10)また、本発明は、上記(9)において、前記第1絶縁性基板の前記第1信号線路を配置した面と反対側の面に少なくとも第1信号線路に対向する部分が欠落部となっている第1のプレーンを有し、前記第2絶縁性基板の前記第2信号線路を配置した面と反対側の面に少なくとも第2信号線路に対向する部分が欠落部となっている第2のプレーンを有することを特徴とする。
このように、プレーン、典型的にはグランドプレーンを設けた場合には、少なくとも第1信号線路及び第2信号線路に対向する部分を欠落部とすることによって、結合器の配線間に電気力線を集中させることができ、結合器の結合度を上げることができる。
(11)また、本発明は、上記(9)において、前記第1信号線路の線幅が、前記第1引き出し用伝送線路の線幅より大きいか或いは等しく、前記第2信号線路の線幅が、前記第2引き出し用伝送線路の線幅より大きいか或いは等しいことを特徴とする。このような線幅の関係に設定することによって、結合器の結合度を大きくすることができる。
(12)また、本発明は、上記(9)において、前記第1信号線路と前記第2信号線路が積層方向からみて互いに整列した状態において、前記第1引き出し用伝送線路と前記第2引き出し用伝送線路とが互いに異なった方向に延在していることを特徴とする。このように、引き出し用伝送線路を異なった方向に引き出すことによって、引き出し用伝送線路間の結合を弱くすると、引き出し用伝送線路の結合系インピーダンスは特性インピーダンスと等しくなるので、モジュール間の距離の変動の影響を受けずにインピーダンスを設計することができる。
(13)また、本発明は、上記(9)において、前記第1引き出し用伝送線路と前記第2引き出し用伝送線路との対向間隔が、前記第1信号線路と前記第2信号線路との対向間隔より広いことを特徴とする。このような構成を採用することによって、引き出し用伝送線路間の結合を弱くすることができる。
(14)また、本発明は、上記(9)において、前記第1絶縁性基板の前記第1引き出し用伝送線路を配置した面と反対の面であって、前記第2モジュールに対向する面に、前記第1引き出し用伝送線路をシールドする第1補助電磁シールド層を有することを特徴とする。このような構成を採用することによって、引き出し用伝送線路間の結合を弱くすることができる。
(15)また、本発明は、上記(9)において、前記第1信号線路と前記第1引き出し用伝送線路との結合部の側面が曲面からなり、前記第2信号線路と前記第2引き出し用伝送線路との結合部の側面が曲面からなることを特徴とする。このような構成により、インピーダンスの急激な変化がなくなるので、インピーダンスをほぼ均一にすることができ、それによって、反射が低減できるので、より広帯域な結合器を実現することができる。
(16)また、本発明は、上記(9)において、前記第1信号線路の前記第1引き出し用伝送線路との結合部との反対側の端に第1インピーダンス調整用伝送線路を有し、前記第1インピーダンス調整用伝送線路に、第1インピーダンス整合回路が接続され、前記第2信号線路の前記第2引き出し用伝送線路との結合部との反対側の端に第2インピーダンス調整用伝送線路を有し、前記第2インピーダンス調整用伝送線路に、第2インピーダンス整合回路が接続されていることを特徴とする。
このように、インピーダンス調整用伝送線路とインピーダンス整合回路を設けることによって、結合線路のインピーダンスの製造ばらつきがあっても或いは線路間距離の変動があってもインピーダンス整合を精度良く取ることができ、それによって、信号の反射を防ぎ高速通信が可能になる。
(17)また、本発明は、上記(16)において、前記第1絶縁性基板の前記第1信号線路を配置した面と反対側の面に少なくとも第1信号線路に対向する部分が欠落部となっている第1のプレーンを有し、前記第2絶縁性基板の前記第2信号線路を配置した面と反対側の面に少なくとも第2信号線路に対向する部分が欠落部となっている第2のプレーンを有することを特徴とする。
このように、プレーン、典型的にはグランドプレーンを設けた場合には、少なくとも第1信号線路及び第2信号線路に対向する部分を欠落部とすることによって、結合器の配線間に電気力線を集中させることができ、結合器の結合度を上げることができる。
(18)また、本発明は、上記(16)において、前記第1信号線路の線幅が、前記第1引き出し用伝送線路の線幅及び前記第1インピーダンス調整用伝送線路の線幅より大きいか或いは等しく、前記第2信号線路の線幅が、前記第2引き出し用伝送線路の線幅及び前記第2インピーダンス調整用伝送線路の線幅より大きいか或いは等しいことを特徴とする。このような線幅の関係に設定することによって、結合器の結合度を大きくすることができる。
(19)また、本発明は、上記(9)において、前記第1信号線路の前記第1引き出し用伝送線路との結合部との反対側の端に第3引き出し用伝送線路を有し、前記第3引き出し用伝送線路に、送受信回路を備えた半導体集積回路装置が接続されており、前記第2信号線路の前記第2引き出し用伝送線路との結合部との反対側の端に第4引き出し用伝送線路を有し、前記第4引き出し用伝送線路に、送受信回路を備えた半導体集積回路装置が接続されていることを特徴とする。このような構成を採用することにより、一つの結合器で同時通信可能な2つのチャネルが設置できるので、データ通信速度を2倍にすることができる。
(20)また、本発明は、上記(2)において、前記第1帰還信号線路が、前記第1信号線路と差動線路を構成し、前記第2帰還信号線路が、前記第2信号線路と差動線路を構成することを特徴とする。
このように、差動信号線路とすることにより、シングルエンドに比べて同相ノイズに対する耐性が高く、また、インピーダンスの制御がしやすく、コプレーナ構造の帰還経路を必ずしも必要としないので、設計が容易になる。
(21)また、本発明は、上記(20)において、前記第1絶縁性基板の前記第1信号線路を配置した面と反対側の面に第1電磁シールド層を有し、前記第2絶縁性基板の前記第2信号線路を配置した面と反対側の面に第2電磁シールド層を有することを特徴とする。この場合も、差動による設計自由度に加えて、ノイズ耐性をより高めることができる。
(22)また、本発明は、上記(20)において、前記第1信号線路と前記第2信号線路との間隔或いは前記第1信号線路と前記第2信号線路との重なりの幅のいずれかが信号の伝搬方向で異なることにより前記第1信号線路と前記第2信号線路との結合状態が前記信号の伝搬方向で異なることを特徴とする。この場合も、差動による設計自由度に加えて、信号線路の結合係数の周波数特性を平坦にし、広帯域な結合器を実現することができる。
(23)また、本発明は、上記(20)において、前記第1モジュール或いは第2モジュールの一方が、前記第1信号線路或いは第2信号線路に対して、ダミー結合器を挟んで、第3信号線路及び前記第3信号線路と差動線路を構成する帰還経路を提供する第3帰還信号線路とを有し、前記第3信号線路と前記第3帰還信号線路とを終端する第3終端部材と、前記第3信号線路と前記第3帰還信号線路とに接続された送受信回路を備えた第3半導体集積回路装置とを有することを特徴とする。この場合も、差動による設計自由度に加えて、1つの伝送線路で複数に分岐した結合通信を実現することができる。
(24)また、本発明は、上記(20)において、前記第1信号線路と前記第1帰還信号線路がそれぞれ前記第1モジュールと前記第2モジュールとの結合状態における近接効果を反映した結合インピーダンスを有し且つ前記第1半導体集積回路装置と接続する引き出し用伝送線路を有し、前記第2信号線路と前記第2帰還信号線路がそれぞれ前記結合系インピーダンスを有し且つ前記第2半導体集積回路装置と接続する引き出し用伝送線路を有することを特徴とする。このように、引き出し用伝送線路を設けることによって、半導体集積回装置を信号線路から離した位置に配置することができ、差動による設計自由度に加えてさらに設計自由度が増す。
(25)また、本発明は、上記(24)において、前記第1絶縁性基板の前記第1信号線路を配置した面と反対側の面に少なくとも第1信号線路に対向する部分が欠落部となっている第1のプレーンを有し、前記第2絶縁性基板の前記第2信号線路を配置した面と反対側の面に少なくとも第2信号線路に対向する部分が欠落部となっている第2のプレーンを有することを特徴とする。
このように、プレーン、典型的にはグランドプレーンを設けた場合には、少なくとも第1信号線路及び第2信号線路に対向する部分を欠落部とすることによって、結合器の配線間に電気力線を集中させることができ、結合器の結合度を上げることができる。
(26)また、本発明は、上記(24)において、前記第1信号線路及び前記第1帰還信号線の線幅が、前記引き出し用伝送線路の線幅より大きいか或いは等しく、前記第2信号線路及び前記第1帰還信号線の線幅が、前記引き出し用伝送線路の線幅より大きいか或いは等しいことを特徴とする。このような線幅の関係に設定することによって、結合器の結合度を大きくすることができる。
(27)また、本発明は、上記(24)において、前記第1信号線路と前記第1帰還信号線との間隔が前記引き出し用伝送線路同士の間隔より大きいか或いは等しく、前記第2信号線路と前記第2帰還信号線との間隔が前記引き出し用伝送線路同士の間隔より大きいか或いは等しいことを特徴とする。このような間隔の関係に設定することにより、結合器の間隔が十分広くなり、結合器部分の特性インピーダンスは結合相手からの影響のみで決まるので、設計が容易になる。
(28)また、本発明は、上記(24)において、前記第1信号線路と前記第1帰還信号線との間隔が、前記第1信号線路及び前記第1帰還信号線の線幅より大きいか或いは等しく、前記第2信号線路と前記第2帰還信号線との間隔が、前記第2信号線路及び前記第2帰還信号線の線幅より大きいか或いは等しいことを特徴とする。
このような線幅と間隔の関係に設定することによって、差動結合が疎になるので、設計が容易になる。特に、間隔が線幅より2倍以上になれば、結合が十分疎になるので望ましい。但し、3倍以上離すとインピーダンスに影響がなくなる。
(29)また、本発明は、上記(24)において、前記第1信号線路と前記第2信号線路が積層方向からみて互いに整列した状態において、前記第1半導体集積回路装置と接続する引き出し用伝送線路と、前記第2半導体集積回路装置と接続する引き出し用伝送線路とが互いに異なった方向に延在していることを特徴とする。この場合も、差動による設計自由度に加えて、モジュール間の距離の変動の影響を受けずにインピーダンスを設計することができる。
(30)また、本発明は、上記(24)において、前記第1半導体集積回路装置と接続する引き出し用伝送線路と前記第2半導体集積回路装置と接続する引き出し用伝送線路との対向間隔が、前記第1信号線路と前記第2信号線路との対向間隔より広いことを特徴とする。この場合も、差動による設計自由度に加えて、引き出し用伝送線路間の結合を弱くすることができる。
(31)また、本発明は、上記(24)において、少なくとも前記第1絶縁性基板の前記第1引き出し用伝送線路を配置した面と反対の面であって、前記第2モジュールに対向する面に、前記第1半導体集積回路装置と接続する引き出し用伝送線路をシールドする第1補助電磁シールド層を有することを特徴とする。この場合も、差動による設計自由度に加えて、引き出し用伝送線路間の結合を弱くすることができる。
(32)また、本発明は、上記(24)において、前記第1信号線路と前記引き出し用伝送線路との結合部の側面が曲面からなり、前記第1帰還信号線路と前記引き出し用伝送線路との結合部の側面が曲面からなり、前記第2信号線路と前記引き出し用伝送線路との結合部の側面が曲面からなり、前記第2帰還信号線路と前記引き出し用伝送線路との結合部の側面が曲面からなることを特徴とする。この場合も、差動による設計自由度に加えて、インピーダンスをほぼ均一にすることができ、それによって、反射が低減できるので、より広帯域な結合器を実現することができる。
(33)また、本発明は、上記(24)において、前記第1信号線路の前記第1半導体集積回路装置と接続する引き出し用伝送線路との結合部との反対側の端に第1インピーダンス調整用伝送線路を有し、前記第1インピーダンス調整用伝送線路に、第1インピーダンス整合回路が接続され、前記第2信号線路の前記第2半導体集積回路装置と接続する引き出し用伝送線路との結合部との反対側の端に第2インピーダンス調整用伝送線路を有し、前記第2インピーダンス調整用伝送線路に、第2インピーダンス整合回路が接続されていることを特徴とする。この場合も、差動による設計自由度に加えて、信号の反射を防ぎ高速通信が可能になる。
(34)また、本発明は、上記(24)において、前記第1信号線路及び前記第1帰還信号線路の前記第1半導体集積回路装置と接続する引き出し用伝送線路との結合部との反対側のそれぞれの端に送受信回路を備えた半導体集積回路装置と接続する引き出し用伝送線路を有するとともに、前記第2信号線路及び前記第2帰還信号線路の前記第2半導体集積回路装置と接続する引き出し用伝送線路との結合部との反対側のそれぞれの端に送受信回路を備えた半導体集積回路装置と接続する引き出し用伝送線路を有し、前記各引出し用伝送線路のインピーダンスは前記Z01及びZ02とは異なる前記第1モジュールと前記第2モジュールとの結合状態における近接効果を反映した結合系インピーダンスであることを特徴とする。この場合も、差動による設計自由度に加えてさらに設計自由度が増す。
(35)また、本発明は、上記(34)において、前記第1絶縁性基板の前記第1信号線路を配置した面と反対側の面に少なくとも第1信号線路に対向する部分が欠落部となっている第1のプレーンを有し、前記第2絶縁性基板の前記第2信号線路を配置した面と反対側の面に少なくとも第2信号線路に対向する部分が欠落部となっている第2のプレーンを有することを特徴とする。
このように、プレーン、典型的にはグランドプレーンを設けた場合には、少なくとも第1信号線路及び第2信号線路に対向する部分を欠落部とすることによって、結合器の配線間に電気力線を集中させることができ、結合器の結合度を上げることができる。
(36)また、本発明は、上記(34)において、前記第1信号線路及び前記第1帰還信号線の線幅が、前記各引き出し用伝送線路の線幅より大きいか或いは等しく、前記第2信号線路及び前記第1帰還信号線の線幅が、前記各引き出し用伝送線路の線幅より大きいか或いは等しいことを特徴とする。このような線幅の関係に設定することによって、結合器の結合度を大きくすることができる。
(37)また、本発明は、上記(34)において、前記第1信号線路と前記第1帰還信号線との間隔が前記各引き出し用伝送線路同士の間隔より大きいか或いは等しく、前記第2信号線路と前記第2帰還信号線との間隔が前記各引き出し用伝送線路同士の間隔より大きいか或いは等しいことを特徴とする。このような間隔の関係に設定することにより、結合器の間隔が十分広くなり、結合器部分の特性インピーダンスは結合相手からの影響のみで決まるので、設計が容易になる。
(28)また、本発明は、上記(24)において、前記第1信号線路と前記第1帰還信号線との間隔が、前記第1信号線路及び前記第1帰還信号線の線幅より大きいか或いは等しく、前記第2信号線路と前記第2帰還信号線との間隔が、前記第2信号線路及び前記第2帰還信号線の線幅より大きいか或いは等しいことを特徴とする。
このような線幅と間隔の関係に設定することによって、差動結合が疎になるので、設計が容易になる。特に、間隔が線幅より2倍以上になれば、結合が十分疎になるので望ましい。但し、3倍以上離すとインピーダンスに影響がなくなる。
開示のモジュール間通信装置によれば、結合系インピーダンスとして整合を取ることで、反射をより少なくして、通信チャネルを誘導結合よりも高速(広帯域)にすることが可能になる。
本発明の実施の形態のモジュール間通信装置の概念的斜視図である。 本発明の実施例1のモジュール間通信装置の概念的斜視図である。 本発明の実施例1のモジュール間通信装置の断面図である。 本発明の実施例1の結合器の周波数特性の説明図である。 本発明の実施例1における結合器のサイズと結合器の特性の関係の説明図である。 本発明の実施例1についての電磁界解析シミュレーション結果の説明図である。 本発明の実施例2のモジュール間通信装置の概念的断面図である。 本発明の実施例3のモジュール間通信装置の構成説明図である。 本発明の実施例4のモジュール間通信装置の構成説明図である。 本発明の実施例5のモジュール間通信装置の構成説明図である。 実施例5の構成についての電磁界シミュレーションによる周波数特性の説明図である。 本発明の実施例6のモジュール間通信装置の構成説明図である。 本発明の実施例7のモジュール間通信装置の概念的投影平面図である。 本発明の実施例8のモジュール間通信装置の説明図である。 本発明の実施例9のモジュール間通信装置の概念的斜視図である。 本発明の実施例10のモジュール間通信装置の構成説明図である。 本発明の実施例11のモジュール間通信装置の概念的投影平面図である。 本発明の実施例12のモジュール間通信装置の概念的断面図である。 本発明の実施例13のモジュール間通信装置の概念的断面図である。 本発明の実施例14のモジュール間通信装置の構成説明図である。 本発明の実施例15のモジュール間通信装置の構成説明図である。 本発明の実施例16のモジュール単体の概念的平面図である。 本発明の実施例16の終端インピーダンス制御回路の一例の説明図である。 本発明の実施例17のモジュール間通信装置の概念的斜視図である。 本発明の実施例18のモジュール間通信装置の構成説明図である。 本発明の実施例19のモジュール間通信装置の概念的斜視図である。 本発明の実施例19のモジュール間通信装置の特性説明図である。 本発明の実施例19のモジュール間通信装置の他の特性説明図である。 本発明の実施例19のモジュール間通信装置を構成する送受信回路の構成説明図である。 本発明の実施例19のモジュール間通信装置を構成する送受信回路の動作波形の一例の説明図である。 本発明の実施例19における周波数特性の実測結果の説明図である。 擬似ランダムデータを用いてデータ通信を行ったときの、ビット誤り率(BER)とデータ転送速度の関係の実測データの説明図である。 本発明の実施例20のモジュール間通信装置の概念的斜視図である。 本発明の実施例21のモジュール間通信装置の構成説明図である。 本発明の実施例22のモジュール間通信装置の概念的斜視図である。 本発明の実施例23のモジュール間通信装置の構成説明図である。 インピーダンスの線幅依存性及び間隔依存性の説明図である。 結合器と引き出し用の伝送線路の接続部分のパターンの説明図である。 従来のコイルを用いたモジュール間データ通信の構成説明図である。
ここで、図1を参照して、本発明の実施の形態のモジュール間通信装置を説明する。図1は、本発明の実施の形態のモジュール間通信装置の概念的斜視図であり、2つのモジュール11,12が、互いに近接配置されて伝送線路間の容量結合及び誘導結合によって、無線でデータ通信を行う。
各モジュール11,12は、それぞれ、絶縁性基板21,22上に設けられた信号波長の1/10以上の長さを有し、特性インピーダンスがZ0のインピーダンスを有する結合器となる信号線路31,32と信号線路31,32の帰還経路を提供する帰還信号線路41,42とを有する。各信号線路31,32と帰還信号線路41,42とは終端部材51,52で接続されるとともに、各信号線路31,32と帰還信号線路41,42との間には送受信回路を備えた半導体集積回路装置61,62が接続されている。
この時、各信号線路31,32同士及び各帰還信号線路41,42同士は、積層方向から見て少なくともその一部が投影的に重なり、各信号線路31,32同士の間及び帰還信号線路41,42同士の間に容量結合および誘導結合による信号結合及び帰還信号結合が生じるように近接して積層する。
ここでは、帰還信号結合が信号結合と同じもしくはそれよりも強くなるように設定する。それによって、結合伝送線路の偶モードインピーダンスおよび奇モードインピーダンスが明確に規定されるので、実際の使用条件下ではこれらのインピーダンスが大きく変動することはなく、終端処理が容易になる。
また、終端部材51,52のインピーダンスは、単体における伝送線路の特性インピーダンスZ0ではなく、モジュール11とモジュール12との結合状態における近接効果を反映した結合系インピーダンスZ0-coupledとする。終端部材51,52としては、抵抗或いはトランジスタを用いる。
絶縁性基板21,22として、絶縁性であれば何でも良く、柔らかくて基板の厚さが75μm程度に薄く、メモリカードのような小さな装置に実装しやすいFPCが好適であるが、PCBでも半導体基板でもパッケージ内の基板でも良い。
FPCの場合は、基板の両面に形成された厚さが30μm程度の銅箔と基板を貫通して配線できるビアを印刷加工して伝送線路を形成することでき、伝送線路の特性インピーダンスは50Ωが一般的であるが、結合系インピーダンスの値にする。
メモリカードとPCの間のデータ通信などの応用を想定した場合の通信距離は1mm前後である。また、図1は2つのモジュール11,12が近接する場合を図示しているが、モジュールの数は3つ以上でも構わない。また、モジュール11,12を近接して積層する場合には、同じ向きのまま積層しても良いし、同じ面が対向するように反転させて積層しても良い。なお、3つ以上のモジュールを積層する場合には、同じ向きのまま積層する。
また、帰還信号線路41,42は信号線路31,32に対してコプレーナ構造になるようにしても良いし、或いは、信号線路31,32とともに差動線路を構成するようにしても良い。差動信号線路の場合には、シングルエンドに比べて同相ノイズに対する耐性が高く、また、インピーダンスの制御がしやすく、コプレーナ構造の帰還経路を必ずしも必要としないので、設計が容易になる。
また、信号線路31,32の結合状態は、信号線路31,32同士の間隔或いは信号線路31,32同士の重なりの幅のいずれかを信号の伝搬方向で異ならせて、多節結合器としても良く、信号線路31,32の結合係数の周波数特性を平坦にし、広帯域な結合器を実現することができる。
また、信号線路31,32と半導体集積回路装置61,62との接続は、直接接続しても良いし、或いは、信号線路31,32より幅の狭い引き出し用の伝送線路を用いて接続しても良い。引き出し用の伝送線路同士の結合は弱い方が望ましいので、互いの対向間隔を信号線路31,32の対向間隔より広くしたり、或いは、投影的な重なりを少なくすることが望ましく、それによって、伝送線路の結合系インピーダンスは単体の特性インピーダンスZ0にほぼ等しくなるので、設計が容易になる。
このように、本発明の実施の形態によれば、通信チャネルの帯域を従来の誘導結合よりも広帯域(10Gb/s以上)にできるので、通信の高速化ができる。また、本発明を用いれば、通信チャネルのインピーダンスを通信帯域の範囲でほとんど変化せず長さに対しても均一になるように構成できるので、送受信回路との接続点でインピーダンス整合を取ったり、整合が取れた抵抗で終端することができて、通信チャネルから離れたところに送受信器を備えた集積回路を配置でき、設計の自由度が増す。また、より多くのチャネルを配置して接続することができるので、通信の高速化ができる。
本発明の他の適用分野としては、回路基板が上下に並んで複数配置されたときに、従来のコネクタやバックプレーンによる配線接続を用いずに無線でデータ通信するのに利用できる。或いは、装置内で回転するモジュールとその周辺で固定されたモジュールの間の無線データ通信に利用できる。
以上を前提として、次に、図2乃至図6を参照して、本発明の実施例1のモジュール間通信装置を説明する。図2は本発明の実施例1のモジュール間通信装置の概念的斜視図であり、図3はその断面図である。伝送線路結合器は、長さがL(典型的には5mm)で幅がW(典型的には2mm)の長方形をした信号線路121,122で構成される。周辺にコプレーナ伝送路で信号の帰還経路(リターンパス)131,132が設置されている。これらの信号線路121,122及び帰還経路131,132は、FPCの基板111,112の表面に形成された厚さが30μm程度の銅箔を加工して形成する。
伝送線路のインピーダンス(電圧と電流の比)は線路の場所に依らず、対象とする信号帯域内で周波数にほとんど依存せず、一定値である。伝送線路の「特性」を表現する特性インピーダンスZ0の値は、信号線路121,122と帰還経路131,132のレイアウトで決まり、基板111,112の誘電率や透磁率で決まる。
しかし、2つのモジュール101,102が近接すると、信号線路121,122のインピーダンスは近接効果により他方の信号線路122,121の影響を受け、Z0と異なる値になる。2つのモジュール101,102が近づくほど近接効果が大きくなり、信号線路121,122のインピーダンスはより小さくなる。
結合状態にある信号線路121,122のインピーダンスを本明細書では結合系インピーダンスと呼びZ0-coupledで表す。従来は特性インピーダンスZ0を制御したが、本発明では結合系インピーダンスZ0-coupledを制御する点が本質的に異なる。
デジタル信号を信号処理して送受信する送受信器を備えた半導体集積回路装置151,152を信号線路121,122の近く、例えば、10Gb/sでデジタル信号を伝送する場合は0.4mm以下の距離に設置して配線接続する。送受信器の出力或いは入力インピーダンスは、結合系インピーダンスZ0-coupledに等しい抵抗(半導体集積回路装置151,152内に設置され、図には表示されていない)を用いて、信号線路121,122との間でインピーダンス整合されている。また、信号線路121,122の他端と帰還経路131,132の間は、結合系インピーダンスZ0-coupledに等しい抵抗141,142を用いて終端されてインピーダンス整合されている。
インピーダンスの制御は、抵抗の代わりにトランジスタのトランスコンダクタンスgmを調整することでも実現できる。トランスコンダクタンスgmは、トランジスタのゲート・ソース間の電圧やドレインに流れる電流やトランジスタのチャネル形状に応じて変えることができる。(以降、抵抗で説明や図示されている場合は、トランジスタのトランスコンダクタンスを用いる場合も含む。)
伝送線路結合の結果、一方の信号線路121,122に信号に応じた電流が流れると、他方の信号線路122,121にそれと同一方向および逆方向の電流が流れて信号を伝送する。
2つのモジュール101,102は、両方とも固定設置されていて常に通信できる場合と、モジュールが移動して距離が近づいたときに通信できる場合がある。前者の例としては、パッケージ間通信やボード間通信がある。後者の例としては、非接触メモリカードや、パッケージ越しのプローブ装置や、回転部とのデータ通信の場合などがある。モジュールはプラスチックなどで封印され、2つのモジュールの間に接着用樹脂や空間が入ることがある。
信号線路121,122が設置される面は、FPCの基板111,112の対向面でもその反対面でも良い。なお、図2は、反対面に設置する場合を示しており、図3は対向面に設置する場合を示している。いずれにせよ、結合する伝送線路結合器間には誘電体(典型的な比誘電率は3乃至5)と空間(比誘電率は1)がある。
図4は、本発明の実施例1の結合器の周波数特性の説明図であり、図4(a)に示すように、一方の信号線路121の両端子を端子1と端子2、他方の信号線路122の両端子を端子1と同じ側の端子を端子3、反対側を端子4と呼ぶ。端子2と端子4が終端され、端子1から信号が入力して、端子3から信号が出力する場合を考える。
伝送線路結合で信号が伝送される通信チャネルの周波数特性S31の典型例を図4(b)に示す。結合強度が最大から3dB下がった周波数をfLとfHで表すと、fLとfHとの中心周波数f0は、λを信号の波長、vを信号の速度とすると、下記の式(1)で表わされる。
Figure 2012111639
比誘電率が4の誘電体の中で10GHzの信号の波長は約14mmであるので、λ/4は約3.7mmである。周波数と波長は逆比例するので、λ/4が5mmになるのは周波数が約7GHzのときである。伝送線路結合においては伝送線路結合器の長さLを1/4波長(λ/4)に設計するので、L=5mmにするとf0=7GHzになり、L=7mmにするとf0=5GHzになる。
また、結合強度が最大から3dB下がった周波数fHからfLの間の周波数領域は結合強度が周波数にほとんど依存せず、信号波形を変形させることなく伝送できるので、この領域を信号帯域と考える。fLはおよそ0.5×f0であり、fHはおよそ14×f0なので、信号帯域のfH−fLはおよそf0になる。通信速度は信号帯域に比例するので、伝送線路長(L)を小さくするほど、広帯域になり、高速通信が可能になる。このように信号帯域の要求から、伝送線路結合器の長さLを決める。
また、結合強度が十分大きくないと、信号ノイズ比を大きく取れないので、信頼性の高い通信ができない。電圧信号減衰の絶対値C(デシベル値)は、下記の式(2)で与えられる。
Figure 2012111639
ここでZ0eは伝送線路対の偶モードでの特性インピーダンス、Z0oは伝送線路対の奇モードでの特性インピーダンスである。
2つの信号線路121,122が結合しているとき、両伝送線路を流れる信号は、同じ向きの信号(例えば両方ともローからハイに変化する)と逆向きの信号(一方がローからハイに変化するとき他方はハイからローに変化する)の合成で表現できる。つまり、偶モードで伝播する信号成分をVeven、奇モードで伝播する信号成分をVodd とすると、線路1と線路2の信号V1とV2は、Vodd=V1−V2、Veven=0.5(V1+V2)から、V1=Veven+0.5Vodd、V2=Veven−0.5Voddと表すことができる。
同相信号に対する伝送線路対の結合系インピーダンスを偶モードインピーダンス(Z0e)と呼び、逆相信号に対する伝送線路の結合系インピーダンスを奇モードインピーダンス(Z0o)と呼ぶ。偶モードでは信号が同相で変化するので、信号が逆相で変化する奇モードに比べて、線路間のキャパシタンスが実効的に減少する。
インピーダンスはキャパシタンスに逆比例するので、偶モードインピーダンス(Z0e)は奇モードインピーダンス(Z0o)よりも大きくなる。(Z0e−Z0o)/(Z0e+Z0o)は1以下の値であるので、この差が大きいほどCの値は小さくなり結合強度が強くなる。また、結合系インピーダンスZ0-coupledはZ0eとZ0oから、下記の式(3)のように決まる。
Figure 2012111639
信号線路121,122の終端を結合系インピーダンスZ0-coupledと等しい抵抗で終端するか、或いは、結合系インピーダンスZ0-coupledと等しい特性インピーダンスZ0を持つ伝送線路と接続することで整合を取り信号の反射を抑制しながら、かつ、結合強度が大きくなるように結合器の寸法を設計する。
図5にこれらの関係を電磁界解析シミュレータで調べた結果を示す。図5(a)は、信号線路の幅W、間隔d及び位置ずれsの説明図であり、図5(b)は、Z0oとZ0eの線幅W及び位置ずれS依存性の説明図であり、図5(c)は、電圧信号減衰Cと線幅Wの相関関係の位置ずれS依存性の説明図である。配線幅Wによって結合器の周波数特性は変化し、Wが大きいほど結合が強い。また、伝送線路の位置がずれるほど結合は弱くなるが、伝送線路の幅の半分程度ずれても(例えば、W=3mmでs=1.5mm)、結合強度は3dB低くなる(つまり半分になる)程度である。
ここで、偶モードおよび奇モードのインピーダンスZ0o,Z0eは、それぞれ信号線路121と帰還経路131の間の容量とインダクタンス、信号線路122と帰還経路132の間の容量とインダクタンス、および信号線路121と信号線路122の間の容量とインダクタンスできまる。このとき帰還経路131と帰還経路132の間の結合が弱いと、信号基準電位が定まらず結合伝送線路の偶モードインピーダンスおよび奇モードインピーダンスが明確に規定されない。その結果、実際の使用条件下ではこれらのインピーダンスが大きく変動することになり終端処理が困難となる。
この問題を回避するために、帰還経路131と帰還経路132の間も、信号線路121,122間と同等かもしくはそれ以上の結合が必要となる。
本発明の実施例1によれば、結合系インピーダンスZ0-coupledを基にしてインピーダンス整合しているので、信号の反射が少なくなり高速通信が可能になると共に、図6に示したように、コイルを用いた誘導結合のみの場合よりも広帯域な無線通信路を実現できる。
次に、図7を参照して、本発明の実施例2のモジュール間通信装置を説明する。図7は本発明の実施例2のモジュール間通信装置の概念的断面図であり、基板111,112上に凸状部材161,162を設けて、その上に跨るように信号線路121,122を設けたものであり、その他の構成は上記の実施例1と同様である。この場合の凸状部材161,162は、例えば、紫外線硬化型樹脂で形成する。
結合器を構成する信号線路121,122は湾曲しているので、信号線路121,122同士の間隔が徐々に変化し、結合器の中央で最も近くなり、線路間の結合容量が大きくなる。その結果、遇モードインピーダンスZ0oと奇モードインピーダンスZ0eの差が大きくなり、結合強度が大きくなる。
結合強度が強くなる結果、受信側の信号強度を大きくすることができる。また、結合強度が場所により異なり、下記式(4)のようにそれらの重ね合わせが結合伝送線路全体の結合係数Ctotal(f)となる。
Figure 2012111639
このように、位置の関数であるC(x)を、Ctotal(f)が平坦となるように調整することで、結合伝送線路の帯域を増やすことが出来る。なお、FPCのように基板111,112が柔らかな場合は、基板111,112そのものをお椀形に成型しても良い。
このように、本発明の実施例2においては、通信距離の短縮により伝送線路間の結合係数を大きくすることができ、受信機側のS/N比を高くすることができる。特に、連続的に変化する結合係数の強度を調整することで、伝送線路の結合係数の周波数特性を平坦にすることができ、周波数帯域を広げることができる。また、結合伝送線路のインピーダンスが不連続に変化することを防ぐことができ、終端処理が容易となる。これらの結果、信号伝送の信頼性を向上させることができる。なお、このような構成は、後述する帰還経路を信号線路と差動線路を構成するようにした場合にも、適用されるものである。
次に、図8を参照して、本発明の実施例3のモジュール間通信装置を説明する。図8(a)は、モジュール単体の概念的平面図であり、図8(b)は、本発明の実施例3のモジュール間通信装置の概念的断面図である。本発明の実施例3においては、結合器の信号伝送方向となる信号線路121,122に対して左右両側に結合器に対して線対称となるように帰還経路131,132を形成する。
本発明の実施例3においては、帰還経路が信号線路121,122の両側に対称にしているので、信号線路121,122の一端Aから他端Bに向かって流れた電流が、信号線路121,122の両横の帰還経路を通って他端Bから一端Aの方向に戻るので、同一形状の2つのコイルが横に並んでそこに電流が逆方向に流れている状態と同じになる。
そのとき、この2つのコイルに同じ大きさの磁界がノイズとして貫通すると、その影響で2つのコイルに出現するノイズ信号は逆向きになり、相殺される。したがって、同相ノイズ除去比が高まり、ノイズ耐性が高まる。
次に、図9を参照して、本発明の実施例4のモジュール間通信装置を説明する。図9(a)は、モジュール単体の概念的平面図であり、図9(b)は、本発明の実施例4のモジュール間通信装置の概念的断面図である。本発明の実施例4は、上述の実施例3のモジュールに対して、基板111,112の裏面に結合器を内包するように遮断層171,172を設けたものである。この遮断層171,172はFPCの基板111,112の他方の面に形成されている銅箔により形成する。なお、図では結合器と半導体集積回路装置151,152が同じ平面上に配置されているが、半導体集積回路装置151,152はビアを用いて反対側に配置しても構わない。
このように、本発明の実施例4においては、遮断層171,172を設けているので遮断層171,172によって外部からの電磁界ノイズが結合器に侵入するのを低減する。その結果、ノイズ耐性が高まる。また逆に、結合器を用いた無線通信の影響が外部に電磁気的雑音として放射される(つまり電磁妨害)を遮断層によって低減する。その結果、電磁環境適合性が高まる。なお、このような構成は、後述する帰還経路を信号線路と差動線路を構成するようにした場合にも、適用されるものである。
次に、図10及び図11参照して、本発明の実施例5のモジュール間通信装置を説明する。図10(a)は、本発明の実施例5のモジュール間通信装置の結合器の概念的斜視図であり、図10(b)は概念的平面図であり、図10(c)は、結合部の説明図である。
伝送線路結合器の配線幅を変えるとことで結合器の周波数特性が変わる。そこで、信号線路121,122の配線幅を一様にせずに変化させることで更に広帯域な結合器を実現できる。即ち、異なる幅の結合器を複数接続して多節にすれば良い。しかし、配線幅を変えると配線のインピーダンスを一定値に制御することが困難になり、信号の多重反射を生じる。そこで、本発明の実施例5においては、線幅を一定にしてインピーダンスを一定に制御しつつ、信号線路121,122が重なって結合する箇所が多節になってそれぞれの線幅が異なるように伝送線路結合器を屈曲した。
図11は、実施例5の構成についての電磁界シミュレーショによる周波数特性の説明図であり、信号帯域12.6GHz、結合強度S31−14.5dBが実現できる。このように、多節の構造にした場合、重複部分が大きな場所ほど線路間の結合容量が大きくなる。その結果遇モードと奇モードインピーダンスZ0o,Z0eの差が大きくなり、結合強度Cが大きくなる。
n番目の節の結合強度をCnとすると、その節で結合し受信端に伝わる信号の強度は、位相の変化も考慮して、下記の式(5)となる。
Figure 2012111639
但し、各節の長さをL, 信号の速度および周波数をそれぞれv,fとして、θ=2Lf/vとする。
全体の結合係数Ctotalは各節から受信端に伝わる信号の重ね合わせとなるため、下記の式(6)で表わされる。
Figure 2012111639
そこで、各節の結合強度をCnを、Ctotal(f)が平坦となるように調整することで、結合伝送線路の帯域を増やすことが出来る。信号反射を防ぐために、曲面で伝送線路を構成した場合も同様な考えで、結合係数の周波数特性を平坦にし、広帯域な結合器を実現することができる。
このように、本発明の実施例5においては、信号線路121,122を多節にしているので、単節の結合器よりも広帯域な結合通信路を実現できる。なお、このような構成は、後述する帰還経路を信号線路と差動線路を構成するようにした場合にも、適用されるものである。
次に、図12を参照して、本発明の実施例6のモジュール間通信装置を説明する。図12(a)は、本発明の実施例6のモジュール間通信装置の一方の信号線路の概念的平面図であり、図12(b)は他方の信号線路の概念的平面図であり、図12(c)は、結合部の説明図である。
図12(a)及び(b)に示すように、本発明の実施例6においては、別の多節結合器の実現方法として、信号線路121,122を曲線的に曲げて節の数を非常に多くしたものである。
このように、本発明の実施例6においては、結合箇所が連続的に少しずつ変化するので、インピーダンスの急激な変化が少なく、更に広帯域化ができる。なお、このような構成は、後述する帰還経路を信号線路と差動線路を構成するようにした場合にも、適用されるものである。
次に、図13を参照して、本発明の実施例7のモジュール間通信装置を説明する。図13は、本発明の実施例7のモジュール間通信装置の概念的投影平面図である。図13に示すように、信号線路121,122が互いに交差し、交差部分に結合器を構成する。
一定の幅でインピーダンスも均一な信号線路121,122を斜めに交差すると、交差部分の幅が交差部の中央で広くなり両側で狭くなるので、上述の実施例5と同様に広帯域になる。更に、信号線路121,122の相対位置が平面のいかなる方向にずれたとしても、交差部分の形状は一定となるため、モジュールの位置ずれによらず結合特性が一定になる効果もある。
このように、本発明の実施例7においては、信号線路121,122を斜めに交差させて配置しているので、広帯域な無線通信路を実現できる。また、モジュール101,102の相対位置がずれても通信路の特性が変化しない特長がある。なお、このような構成は、後述する帰還経路を信号線路と差動線路を構成するようにした場合にも、適用されるものである。
次に、図14を参照して、本発明の実施例8のモジュール間通信装置を説明する。図14は、本発明の実施例8のモジュール間通信装置の説明図であり、2つのモジュールを平面図として示している。図に示すように、一方のモジュール101に設けた1本の信号線121と他方のモジュール102に設けた複数の信号線路122,123を結合させたものである。
モジュール101の半導体集積回路装置151から送信された信号が、モジュール102の半導体集積回路装置152および半導体集積回路装置153に同時に伝送できる。この場合、結合に用いられないところに半導体集積回路装置に接続されない結合器、即ち、ダミー結合器20を設けることにより、信号線路121のインピーダンスを一定にして、結合系インピーダンスZ0-coupledの制御を容易にすることができる。なお、図においては、他方のモジュール102に2つの結合器を設けているが、3つ以上の結合器を設けても良い。
このように、本発明の実施例8においては、一方のモジュールに複数の結合器を設けているので、一つの伝送線路で複数に分岐した結合通信を実現でき、一つの半導体集積回路チップから複数の半導体集積回路チップにデータ通信できる。なお、このような構成は、後述する帰還経路を信号線路と差動線路を構成するようにした場合にも、適用されるものである。
次に、図15を参照して、本発明の実施例9のモジュール間通信装置を説明する。図15は、本発明の実施例9のモジュール間通信装置の概念的斜視図である。信号線路121,122の結合系インピーダンスZ0-coupledと等しい特性インピーダンスZ0の伝送線路181,182で信号線路121,122と半導体集積回路装置151,152を接続している。信号線路121,122の結合部では強い結合を実現し、半導体集積回路装置151,152と信号線路121,122を接続する引出し線用の伝送線路181,182の部分では結合しないのが望ましい。
そのために、伝送線路181,182は結合部より細い線幅を使う。典型的には、信号線路121,122の線幅が2mmであるのに対して、伝送線路181,182の線幅は0.3mmである。伝送線路181,182と信号線路121,122の接合部では、インピーダンスの大きな不整合を生じないように、テーパ状にして線幅の違いを徐々に揃えるのが望ましい。また、信号線路121,122の結合系インピーダンスと伝送線路181,182の特性インピーダンスを揃えた結果、帰還経路131,132の形状も実施例1とは異なる。
両モジュール101,102の引き出し用の伝送線路181,182間の結合が全くない場合は、引き出し用の伝送線路181,182の結合系インピーダンスZ0-coupledは特性インピーダンスZ0に等しくなる。その場合、信号線路121,122の結合系インピーダンスZ0-coupledが例えば50Ωとすると、信号線路121,122自体の特性インピーダンスZ0は50Ωより高く、引き出し用の伝送線路181,182の特性インピーダンスZ0は50Ωに設計する。
或いは、両モジュール101,102の引き出し用の伝送線路181,182間の結合が僅かあり、引き出し用の伝送線路181,182の結合系インピーダンスZ0-coupledを50Ωにするためには、その特性インピーダンスを50Ωよりも少し高く、例えば、55Ωに設計する。
上述の実施例1では、送受信器を備えた半導体集積回路装置151,152を信号線路121,122の直近(例えば0.4mm以内)に設置しなければならなかったが、本発明の実施例9においては、引き出し用の伝送線路181,182を設けているので、送受信器を備えた半導体集積回路装置151,152を信号線路121,122から離れたところにでも設置できるので、設計の自由度が増す。
また、半導体集積回路装置151,152と伝送線路181,182と信号線路121,122とが、その終端でインピーダンスが整合しているので信号の反射がおこらず、高い信頼性で高速通信できる。
次に、図16を参照して、本発明の実施例10のモジュール間通信装置を説明する。図16(a)は、本発明の実施例10のモジュール間通信装置の概念的断面図であり、図16(b)は概念的平面図であり、図16(c)は図16(b)におけるA−A′を結ぶ一点鎖線に沿った断面図であり、図16(d)は図16(b)におけるB−B′を結ぶ一点鎖線に沿った断面図である。
この実施例10においては、実施例9のコプレーナ構造の代わりにマイクロストリップ構造を採用したものであり、基板111,112の裏面にプレーン311,312を設け、ビア321,322及びランド331,332を介して抵抗141,142と接続している。
この場合、結合器を構成する信号線路121,122の部分において、プレーン311,312を排除することで、結合器の配線間に電気力線を集中させることができ、結合器の結合度を上げることができる。なお、このプレーン311,312は、一般的には接地されたグランドプレーンであるが、必ずしも接地している必要はない。
また、図16(c)及び図16(d)に示すように、信号線路121,122の幅W1を伝送線路181,182の幅w1より細くしているので、後述する実施例23で詳述するように、結合器の結合度を大きくすることができる。
次に、図17を参照して、本発明の実施例11のモジュール間通信装置を説明する。図17は、本発明の実施例11のモジュール間通信装置の概念的投影平面図である。図に示すように、引き出し用の伝送線路181,182がモジュール101,102間でほとんど結合しないように、モジュール101とモジュール102の引き出し用の伝送線路181,182の延在方向を互いに反対方向にした。
引き出し用の伝送線路181,182の結合がほとんどないので、引き出し用の伝送線路181,182の結合系インピーダンスZ0-coupledは特性インピーダンスZ0に等しくなり、したがって、信号線路121,122の結合部の結合系インピーダンスZ0-coupledと等しくなるように引き出し用の伝送線路181,182の特性インピーダンスを設計すれば、信号の反射が起こらない。
このように、引き出し用の伝送線路181,182の延在方向を互いに反対方向にして結合が起こらないようにしているので、モジュール101,102間の距離の変動の影響を受けずにインピーダンスを設計できるので確実に設計できる。なお、このような構成は、後述する帰還経路を信号線路と差動線路を構成するようにした場合にも、適用されるものである。
次に、図18を参照して、本発明の実施例12のモジュール間通信装置を説明する。図18は、本発明の実施例12のモジュール間通信装置の概念的断面図である。図に示すように、引き出し用の伝送線路181,182がモジュール101,102間でほとんど結合しないように、信号線路121,122をスルービア191,192を用いて基板111,112の引き出し用の伝送線路181,182を設けた面と反対側の面に形成し、信号線路121,122同士が向かい合うようにモジュール101とモジュール102を配置することで、引き出し用の伝送線路181,182の距離を大きく離した。なお、帰還経路131,132も引き出し用の伝送線路181,182と同じ面に設ける。
本発明の実施例12においては、結合器となる信号線路121,122を設けた基板面には半導体集積回路装置151,152や抵抗141,142などの素子が存在しないので、信号線路121,122同士をより近くに配置して結合を強くし、引き出し用の伝送線路181,182同士をより遠くに配置して結合を弱くすることができる。なお、このような構成は、後述する帰還経路を信号線路と差動線路を構成するようにした場合にも、適用されるものである。
次に、図19を参照して、本発明の実施例13のモジュール間通信装置を説明する。図19は、本発明の実施例13のモジュール間通信装置の概念的断面図である。図に示すように、実施例11とは異なり、両モジュール101,102の基板111,112が同じ向きに配置されている。この時、信号線路121,122の距離を短くして、引き出し用の伝送線路181,182間の距離を長くするために、下側のモジュール102に立体構造21を備えて、信号線路122を持ち上げている。
本発明の実施例13においては、基板111,112の向きを同じにした状態で、信号線路121,122同士をより近くに配置して結合を強くし、引き出し用の伝送線路181,182同士をより遠くに配置して結合を弱くすることができる。なお、このような構成は、後述する帰還経路を信号線路と差動線路を構成するようにした場合にも、適用されるものである。
次に、図20を参照して、本発明の実施例14のモジュール間通信装置を説明する。図20(a)は、モジュール単体の概念的平面図であり、図20(b)は、本発明の実施例14のモジュール間通信装置の概念的断面図である。本発明の実施例14は、基板111,112を同じ向きに積層し、上部側に配置されるモジュール101の基板111の裏面の引き出し用の伝送線路181を覆う位置に遮断層221を設けたものである。
このように、本発明の実施例14においては、遮断層221を設けているので、引き出し用の伝送線路181,182同士の結合をなくすことができる。
本発明の実施例14においては、遮断層221を設けているので、基板111,102にビアや立体構造を必要とせずに、半導体集積回路装置151,152と伝送線路181,182と信号線路121,122とを、その終端でインピーダンスが整合することができ、したがって、信号の反射がおこらず、高い信頼性で高速通信できる。なお、このような構成は、後述する帰還経路を信号線路と差動線路を構成するようにした場合にも、適用されるものである。
次に、図21を参照して、本発明の実施例15のモジュール間通信装置を説明する。図21は、モジュール単体の概念的平面図であり、図21(b)は、本発明の実施例15のモジュール間通信装置の概念的断面図である。図に示すように、引き出し用の伝送線路181,182と信号線路121,122との接合部の側面を曲線にしたものである。
本発明の実施例15においては、伝送線路181,182と信号線路121,122との接合部の側面を曲線にしているので、インピーダンスの急激な変化をなくし、インピーダンスを出来る限り均一にしている。その結果、インピーダンスがほぼ均一になるので信号の反射を低減でき広帯域な結合器を実現できる。なお、このような構成は、後述する帰還経路を信号線路と差動線路を構成するようにした場合にも、適用されるものである。
次に、図22及び図23を参照して、本発明の実施例16のモジュール間通信装置を説明する。図22は、モジュール単体の概念的平面図である。図に示すように、信号線路121(122)他端にも伝送線路183(184)を設け、この伝送線路183(184)に終端インピーダンス整合回路231(232)を内蔵した半導体集積回路装置151(152)に接続したものである。
なお、半導体集積回路チップを結合器の直近に設置できれば伝送線路を介さずに直接配線で両者を接続しても良い。
インピーダンスの整合機能の全てもしくは一部が半導体集積回路装置151(152)の内部に搭載され、インピーダンスを調整できるようになっている。結合伝送路の線幅等パラメータの製造ばらつき、或いは、線路間距離の変動により、結合系インピーダンスZ0-coupledが変化した場合に、整合用インピーダンスの値が固定であると、インピーダンス不整合が生じ、結合係数が低下する。信号反射等をモニターするなどしてZ0-coupledの値を検出し、その変化に応じて終端インピーダンスを適応調整する。
図23は、終端インピーダンス制御回路の一例の説明図であり、モジュール102の半導体集積回路装置151には、出力インピーダンスが可変の送信器が信号線路122に接続されている。同一のレプリカ送信回路が搭載され、信号線路122の他端に接続する可変終端抵抗と同一のレプリカ終端抵抗に接続される。例えば、伝送線路の結合係数が最大となる周波数に応じたパターン(00110011・・等)を送信機から出力し、その際の送信機とレプリカ送信機の出力信号をモニターする。
結合伝送線路のインピーダンスと送信機および終端抵抗の値が同じとき、送信機の出力とレプリカ送信機の出力信号レベルが同じ値となる。この値を例えばピーク検出回路で検出して比較器で比較し両者が一致するように、Rtの値を変化させる。この際、伝送線路の他端の終端も同じ値に設定する。この時、インピーダンス整合が取れる前なので、低速通信モード等を用いて他端の可変終端抵抗の値を設定する。
両者が一致したRtの値をレジスタ等に保持して、以降この設定値を使用する。通信時にもモニター回路を動作させて抵抗制御を行えば、通信距離が変動する等で、伝送線路のインピーダンスが変化した場合にも最適な終端抵抗値を保つことができる。
このように、本発明の実施例15においては、終端インピーダンス調整回路231,232を設けているので、結合線路のインピーダンスが製造ばらつき、線路間距離の変動により変化しても、インピーダンス整合が取れるので、信号の反射を防ぎ高速通信ができる。なお、半導体集積回路装置151,152を信号線路121,122の直近に設置できれば伝送線路181,182を介さずに直接配線で両者を接続しても良い。なお、このような構成は、後述する帰還経路を信号線路と差動線路を構成するようにした場合にも、適用されるものである。
次に、図24を参照して、本発明の実施例17のモジュール間通信装置を説明する。図24は、本発明の実施例17のモジュール間通信装置の概念的斜視図である。図に示すように、信号線路121,122の他端にも伝送線路185,186を設け、半導体集積回路装置155,156と接続し、各接続点で結合系インピーダンスとしてのインピーダンス整合を取る。
結合器の一方の端子1から端子2に電流を流すと、他方の結合器の端子4から端子3に流れる電流(逆方向電流)が端子3から端子4に流れる電流(順方向電流)に比べて十分に大きい場合に、例えば、100倍大きい場合に、端子1から入力した信号を端子3から出力するのと同時に、端子2から入力した信号を端子4から出力することができるので、1つの結合器で2つの独立した通信路を形成できる。端子1から入力した信号を端子3から出力するのと同時に、端子4から入力した信号を端子2から出力することもできる。
31/s41を分離係数と呼ぶと、分離係数S31/s41を十分に大きくできないとき、その原因は主に2つ考えられる。一つは、信号の反射である。インピーダンスの整合をより完璧に取れば、分離係数S31/s41を高くできる。二つ目は、偶モードと奇モードでの信号伝播遅延の違いである。
例えば、マイクロストリップラインのように、比誘電体率の異なる材質を用いると、偶モードと奇モードにおいて電気力線の通る場所が異なることで、信号伝播遅延の差を生じ、結合器の遠方端でノイズが発生することが原因である。そこで、材料の誘電体率をできるだけ揃えれば、分離係数を高くすることができる。
本発明の実施例17によれば、一つの結合器で同時通信可能な2つのチャネルが設置できるので、データ通信速度を2倍に高くできる。
次に、図25を参照して、本発明の実施例18のモジュール間通信装置を説明する。図25(a)は、本発明の実施例18のモジュール間通信装置の概念的断面図であり、図25(b)は概念的平面図であり、図25(c)は図25(b)におけるA−A′を結ぶ一点鎖線に沿った断面図であり、図25(d)は図25(b)におけるB−B′を結ぶ一点鎖線に沿った断面図である。
この実施例18においては、実施例17のコプレーナ構造の代わりにマイクロストリップ構造を採用したものであり、基板111,112の裏面にプレーン311,312を設けている。
この場合も、結合器を構成する信号線路121,122の部分において、プレーン311,312を排除することで、結合器の配線間に電気力線を集中させることができ、結合器の結合度を上げることができる。なお、このプレーン311,312は、一般的には接地されたグランドプレーンであるが、必ずしも接地している必要はない。
また、図25(c)及び図25(d)に示すように、信号線路121,122の幅W1を伝送線路181,182、185,186の幅w1より細くしているので、後述する実施例23で詳述するように、結合器の結合度を大きくすることができる。
次に、図26乃至図32を参照して、本発明の実施例19のモジュール間通信装置を説明する。図26は、本発明の実施例19のモジュール間通信装置の概念的斜視図である。図に示すように、帰還経路241,242を信号線路121,122と同じ構成にして差動結合器としたものである。この場合も、帰還経路241,242と信号線路121,122とを結合系インピーダンスZ0-coupledに等しい特性インピーダンスZ0を有する抵抗141,142で終端する。
一本の線路の特性インピーダンスが例えば50Ωならば、差動インピーダンスZdiffはおよそ100Ωになる。正確には、2本の線路、即ち、帰還経路241,242と信号線路121,122が遠く、典型的には線路幅の3倍以上離れて結合しない場合は100Ωになるが、2本の線路が近づいて近接効果が現れると100Ωよりも少し小さく、典型的には10%程度小さくなる。
長さ5mmの2本の線路の幅Wと間隔Sをいろいろと変えた結合器の結合系インピーダンスZ0-coupled、結合係数C、帯域(3−dB BW)を電磁解析シミュレーションで求めた結果を下表に示す。通信距離は1mmである。
Figure 2012111639
幅が0.5mmで間隔が1.5mmから2.5mmのときに結合係数Cが高くて、帯域(3−dB BW)も広い。但し、インピーダンスは100Ω程度で、差動インピーダンスは200Ω程度になる。このように、伝送線路結合器の寸法は、インピーダンスや結合係数や帯域などの設計目標値と、基板の材質などの物性値で決まる。
なお、終端抵抗は、例えば1.6mm×0.8mm程度の大きさの部品なので、伝送結合器の間隔が1.5mmから2.5mmのときは、伝送結合器の終端を緩やかに曲げて間隔を1.6mm程度にして終端抵抗と接続しやすくする。なお、急激に曲げるとインピーダンスが均一にならず望ましくない。
図27及び図28は、本発明の実施例19のモジュール間通信装置の特性説明図である。図27(a)は本発明の実施例19のモジュール間通信装置の等価回路図であり、ここでは、結合器、即ち、帰還経路241,242と信号線路121,122の幅Wを0.5mm、間隔Sを1.5mm、距離dを1mmとする。
図27(b)は、結合係数S31の周波数特性の結合器長依存性の説明図であり、ここでは、結合器の長さLをそれぞれ4mm、6mm、10mmにしたときの結合係数S31を実測した結果を示す。図に示すように、Lを短くすると中心周波数がLに逆比例して高くなり、中心周波数に比例して帯域が広くなる。
図28(a)は、結合係数S31の周波数特性の結合器の位置ずれ依存性の説明図であり、図に示すように、図27(a)に示す方向にずれた場合も結合係数はほとんど変化しない。これらのことから、モジュールの相対位置が変わってもモジュール間で通信が可能なことが分かる。
図28(b)は、結合係数S31の周波数特性の結合器の間隔d依存性の説明図であり、結合器の幅Wを0.5mm、間隔Sを1.5mm、長さLを6mmにして、距離dをそれぞれ0.5mm、1mm、1.5mmにしたときの結合係数S31を実測した結果を示す。図に示すように、モジュール間隔dが開いて通信距離が長くなると結合係数S31は低くなるが、帯域はほとんど変わらない。従って、通信距離に応じて、受信器の入力段の増幅器のゲインを調整すれば、距離が変化しても同じ速度で通信できる。
図29は、本発明の実施例19のモジュール間通信装置を構成する送受信回路の構成説明図であり、図30は動作波形の一例の説明図である。送信側のモジュールで送信デジタルデータに応じて出力バッファの出力電圧値を変化させると、差動結合器に流れる電流が変化し、受信モジュール側では送信モジュール側の電流の向きに対して逆向きに、送信側の信号波形を微分した信号が発生する。微分信号が発生する理由は、結合器の低域において、磁界結合と同様の周波数特性を有するからである。
受信器では、受信信号を広帯域低ノイズアンプで増幅した後にヒステリシス比較器を通して、元の信号を復元する。通信路で信号が微分されるときの送受信の方法としては、他にもいろいろ考えられる。例えば、受信器で積分回路を用いて積分しても良い。或いは、送信器と受信器で組み合わせて積分しても良い。積分演算は、アナログ回路で行ってもよいし、デジタル信号処理で行っても構わない。
図31は、本発明の実施例19における周波数特性の実測結果の説明図であり、シミュレーション結果にほぼ等しい周波数特性が得られた。
図32は、擬似ランダムデータを用いてデータ通信を行ったときの、ビット誤り率(BER)とデータ転送速度の関係の実測データの説明図であり、実施例19の構成により、高い信頼性で高速なデータ通信ができることが分かる。
このように、本発明の実施例19においては、差動構成なのでシングルエンドに比べて同相ノイズに対する耐性が高い。また、結合系インピーダンスZ0-coupledの制御をしやすく、帰還経路が無くても良いので、設計が簡単である。なお、この実施例17では差動線路の一方が信号経路で他方が帰還経路であるが、差動線路の他に帰還経路を設けても構わない。
次に、図33を参照して、本発明の実施例20のモジュール間通信装置を説明する。図33は、本発明の実施例20のモジュール間通信装置の概念的斜視図である。この実施例18においては、信号線路121,122及び帰還経路241,242のすべてに引き出し用の伝送線路251,252,261,262を設けたものである。
この場合も、半導体集積回路装置151,152と伝送線路251,252,261,262と信号線路121,122及び帰還経路241,242がそれぞれインピーダンス整合して接続され、信号線路121,122及び帰還経路241,242の終端もインピーダンス整合されている。
モジュール101とモジュール102の伝送線路251,252,261,262同士は結合しない方が望ましいので、例えば、伝送線路251,252,261,262は信号線路121,122及び帰還経路241,242より細い線幅を用いたり、或いは、積層方向から見て投影的に同じ位置に配置されないように、それぞれの伝送線路を離してレイアウトするのが望ましい。
この図では差動伝送路が密に結合、典型的には伝送線路251,252,261,262の間隔が幅の3倍以内に配置されて結合している。この場合、差動線路の他に別途、帰還経路を例えば伝送線路251,252,261,262の隣に平行に設けたり、或いは、FCBの反対面に設けても良い。
本発明の実施例20においては、引き出し用の伝送線路251,252,261,262を設けているので、差動特性による効果に加えて、送受信器を備えた半導体集積回路装置151,152を信号線路121,122及び帰還経路241,242から離れたところにでも設置できるので、設計の自由度が増す。
次に、図34を参照して、本発明の実施例21のモジュール間通信装置を説明する。図34(a)は、本発明の実施例21のモジュール間通信装置の概念的断面図であり、図34(b)は概念的平面図であり、図34(c)は図34(b)におけるA−A′を結ぶ一点鎖線に沿った断面図であり、図34(d)は図34(b)におけるB−B′を結ぶ一点鎖線に沿った断面図である。
この実施例21においては、実施例20にマイクロストリップ構造を採用したものであり、基板111,112の裏面にプレーン311,312を設け、ビア321,322及びランド331,332を介して抵抗141,142と接続している。
この場合、結合器を構成する信号線路121,122及び帰還経路241,242の部分において、プレーン311,312を排除することで、結合器の配線間に電気力線を集中させることができ、結合器の結合度を上げることができる。なお、この場合も、プレーン311,312は、一般的には接地されたグランドプレーンであるが、必ずしも接地している必要はない。
また、図34(c)及び図34(d)に示すように、信号線路121,122及び帰還経路241,242の幅W1を伝送線路251,252,261,262の幅w1より細くしているので、後述する実施例23で詳述するように、結合器の結合度を大きくすることができる。また、信号線路121,122と帰還経路241,242の間隔S1を伝送線路251,252と伝送線路261,262の間隔s1より広くしているので、この点でも結合器の結合度を大きくすることができる。
次に、図35を参照して、本発明の実施例22のモジュール間通信装置を説明する。図35は、本発明の実施例22のモジュール間通信装置の概念的斜視図である。この実施例22においては、信号線路121,122及び帰還経路241,242の他端にも引き出し用の伝送線路253,254,263,264を設け、この引き出し用の伝送線路253,254,263,264に半導体集積回路装置155,156を接続したものである。
本発明の実施例22においては、差動特性による効果に加えて、一つの結合器で同時通信可能な2つのチャネルが設置できるので、データ通信速度を2倍に高くできる。
次に、図36乃至図38を参照して、本発明の実施例23のモジュール間通信装置を説明する。図36(a)は、本発明の実施例23のモジュール間通信装置の概念的断面図であり、図36(b)は概念的平面図であり、図36(c)は図36(b)におけるA−A′を結ぶ一点鎖線に沿った断面図であり、図36(d)は図36(b)におけるB−B′を結ぶ一点鎖線に沿った断面図である。
この実施例23においては、実施例22にマイクロストリップ構造を採用したものであり、基板111,112の裏面にプレーン311,312を設けるとともに、信号線路121,122と帰還経路241,242の間隔S1を伝送線路251,252,253,254と伝送線路261,262,263,264の間隔s1より広くしている
この場合、結合器を構成する信号線路121,122及び帰還経路241,242の部分において、プレーン311,312を排除することで、結合器の配線間に電気力線を集中させることができ、結合器の結合度を上げることができる。なお、この場合も、プレーン311,312は、一般的には接地されたグランドプレーンであるが、必ずしも接地している必要はない。
ここで、プレーン311,312を設ける意義を詳述する。差動型結合器に繋がる引き出し用の伝送線路251,252,253,254,261,262,263,264には、信号線路121,122及び帰還経路241,242の間隔が幅の3倍以上に配置されて疎に結合している場合と、間隔が幅の3倍以内に配置されて密に結合している場合がある。疎に結合している場合は、線路の差動モードの特性インピーダンスを規定するために、図に示すようにプレーン311,312上に配置される必要がある。
一方、密に結合している場合も、ノイズに対する耐性を上げるため、また同相モードの特性インピーダンスも規定するために、図に示すようにプレーン311,312上に配置されるのが望ましい。但し、結合器の部分においてはプレーン311,312を排除することで、結合器の配線間に電気力線を集中させることができ、結合器の結合度を上げることができる。
次に、伝送線路251,252,253,254,261,262,263,264と、信号線路121,122及び帰還経路241,242の間隔及び幅の関係を説明する。プレーン311,312と伝送線路251,252,253,254,261,262,263,264の距離(t)は、典型的には0.02mm程度(フレキシブル基板の場合)〜0.1mm程度(FR4回路基板の場合)である。差動の特性インピーダンスを例えば100Ωとする場合(各線単相で50Ωに相当)、線幅w1と間隔s1は、典型的には0.1〜0.4mm程度になる。
引き出し用の伝送線路251,252,253,254,261,262,263,264と結合器を構成する信号線路121,122及び帰還経路241,242の接続部分での信号の反射を防ぐためには、伝送線路251,252,253,254,261,262,263,264と結合器のインピーダンスを整合させる必要がある。結合器部分の特性インピーダンスZverは遇モードインピーダンス(Zeven,ver)および奇モードインピーダンス(Zodd,ver)を用いて上述の式(3)と同様に下記の式(7)で表わされる。
Figure 2012111639
伝送線路251,252,253,254,261,262,263,264の特性インピーダンスを例えば100Ωとする場合、結合器部分の差動の特性インピーダンスZverも100Ω(単相で50Ω)となるようにZeven,ver, Zodd,verを設定する。
図37は、インピーダンスの線幅依存性及び間隔依存性の説明図であり、図37(a)は、遇モードインピーダンスZeven,verの線幅依存性及び間隔依存性の説明図であり、図37(b)は奇モードインピーダンスZodd,verの線幅依存性及び間隔依存性の説明図である。なお、ここでは、結合器間距離d1=1mmの場合の値を電磁界解析シミュレータで求めた結果を示している。
図37に示すように、信号線路121,122及び帰還経路241,242の間隔S1を一定にして線幅W1を広くすると線間容量が大きくなり、Zeven,ver, Zodd,verのいずれも減少する。また、線幅W1を一定にして間隔S1を広く取ると、斜めに対向する線間距離の増加により容量が減少し、また磁束が形成される面積が大きくなるため、Zeven,ver, Zodd,verは増大する。
一方、結合器間の結合度は、上述の式(2)と同様に、下記の式(8)で表される。
Figure 2012111639
したがって、Zeven,ver, Zodd,verの差を大きくとることで結合を強くすることができる。
図37から、例えば、W1=0.5mm,s1=0.2mmにすると、Zeven,ver≒60Ω,Zodd,ver≒45Ωとなり、Zver≒50Ωとなる。このとき結合度は−17dB程度となる。次に、W1=2mm,s1=0.8mm程度とすると、Zeven,ver≒80Ω,Zodd,ver≒30Ωとなり、Zver≒50Ωとなる。このとき結合度は−7dB程度となり、さき程よりも結合が強くなる。
1とs1をさらに広く取ると結合度を更に上げることができるが、結合器のサイズが大きくなり実装効率が劣化すること、また結合器の長さ方向との兼ね合いで周波数帯域が変化することなどの理由により、W1とs1には上限がある。
また、線幅や間隔が広いほど結合部の合わせ誤差の影響を受けにくく、典型的にはW1>0.3mmが必要である。これらの理由からW1≧w1となるように設計することで結合度を大きくすることができる。
また、結合器の線幅W1を大きくすることで、1対の結合器を対向させて結合させる場合に、位置合わせの誤差を生じても結合度があまり低下せず、位置合わせの誤差許容範囲を大きくして実装を容易にする効果も生じる。
また、結合器の間隔S1が狭くなると、結合器部分の特性インピーダンスは、他の3つの結合器からの影響を受けるので、設計が非常に難しくなる。一方、結合器の間隔S1を十分に広く設定すると、結合器部分の特性インピーダンスは、結合相手からの影響のみで決まるので、設計が容易になる。したがって設計の容易さの観点からもS1≧s1にすることが望ましい。
また、結合器の間隔S1が線幅W1よりも大きくなるほど、差動結合が疎になるので設計が容易になる。特に、間隔S1が線幅W1の2倍以上になると結合が十分疎になるので望ましい。一方、間隔S1が線幅W1の3倍以上になると、どれだけ間隔S1を離してもインピーダンスに影響がなくなる。
したがって、この実施例23では、結合器を構成する信号線路121,122及び帰還経路241,242の線幅W1或いは間隔S1を引き出し用の伝送線路251,252,261,262の線幅w1と間隔s1よりも大きくしているので、結合器の結合度を大きくすることができる。
図38は、結合器を構成する信号線路121,122及び帰還経路241,242と引き出し用の伝送線路251,252,253,254,261,262,263,264の接続部分のパターンの説明図であり、いずれの場合も同様な効果がえられる。
以上の本発明の各実施例を説明してきたが、本発明は、具体的に示した構成に限られるものではなく、互いに作用が矛盾しない限り、各特徴的構成を組み合わせても良いことは言うまでもない。例えば、上述のように、差動構成の実施例17乃至実施例19に記載された発明に対して、実施例2、実施例4、実施例5、実施例6、実施例7、実施例8、実施例10、実施例11、実施例12、実施例13、実施例14或いは実施例15の構成を適宜組み合わせても良いものである。

Claims (38)

  1. 特性インピーダンスがZ01のインピーダンスを有する第1信号線路と、
    前記第1信号線路の帰還経路を提供する第1帰還信号線路と
    前記第1信号線路と前記第1帰還信号線路とを終端する第1終端部材と、
    送受信回路を備えた第1半導体集積回路装置と
    を少なくとも有する第1モジュールと、
    特性インピーダンスがZ02のインピーダンスを有する第2信号線路と、
    前記第2信号線路の帰還経路を提供する第2帰還信号線路と
    前記第2信号線路と前記第2帰還信号線路とを終端する第2終端部材と、
    送受信回路を備えた第2半導体集積回路装置と
    を少なくとも有する第2モジュールとを、
    互いに対向させて近接配置されるとともに、
    前記第1終端部材及び前記第2終端部材のインピーダンスが、前記Z01及びZ02とは異なる前記第1モジュールと前記第2モジュールとの結合状態における近接効果を反映した結合系インピーダンスであることを特徴とするモジュール間通信装置。
  2. 前記第1信号線路が、第1絶縁性基板上に設けられた信号波長の1/10以上の長さを有する信号線路であり、
    前記第1半導体集積回路装置が前記第1信号線路と前記第1帰還信号線路とに接続され、
    前記第2信号線路が、第2絶縁性基板上に設けられた信号波長の1/10以上の長さを有する信号線路であり、
    前記第2半導体集積回路装置が、前記第2信号線路と前記第2帰還信号線路とに接続され、
    前記第1信号線路と前記第2信号線路とがその少なくとも一部が積層方向から見て投影的に重なり、且つ、
    前記第1帰還信号線路と前記第2帰還信号線路とがその少なくとも一部が積層方向から見て投影的に重なり、
    前記第1信号線路と前記第2信号線路の間に容量結合および誘導結合を用いて信号結合が生じ、前記第1帰還信号線路と第2帰還信号線路の間に容量結合および誘導結合を用いて帰還信号結合が生じ、
    前記信号結合によって前記第2信号線路に前記第1信号線路の信号が伝送されるように積層することを特徴とする請求項1に記載のモジュール間通信装置。
  3. 前記帰還信号結合が前記信号結合と同じもしくはそれよりも強いことを特徴とする請求項2に記載のモジュール間通信装置。
  4. 前記第1帰還信号線路が前記第1信号線路に対してコプレーナ構造を形成し、
    前記第2帰還信号線路が前記第2信号線路に対してコプレーナ構造を形成することを特徴とする請求項2に記載のモジュール間通信装置。
  5. 前記第1帰還信号線路が前記第1信号線路の両側に対して対称構造を有し、
    前記第2帰還信号線路が前記第2信号線路の両側に対して対称構造を有することを特徴とする請求項4に記載のモジュール間通信装置。
  6. 前記第1絶縁性基板の前記第1信号線路を配置した面と反対側の面に第1電磁シールド層を有し、
    前記第2絶縁性基板の前記第2信号線路を配置した面と反対側の面に第2電磁シールド層を有することを特徴とする請求項2に記載のモジュール間通信装置。
  7. 前記第1信号線路と前記第2信号線路との間隔或いは前記第1信号線路と前記第2信号線路との重なりの幅のいずれかが信号の伝搬方向で異なることにより前記第1信号線路と前記第2信号線路との結合状態が前記信号の伝搬方向で異なることを特徴とする請求項2に記載のモジュール間通信装置。
  8. 前記第1モジュール或いは第2モジュールの一方が、前記第1信号線路或いは第2信号線路に対して、ダミー結合器を挟んで、第3信号線路及び前記第3信号線路の帰還経路を提供する第3帰還信号線路とを有し、
    前記第3信号線路と前記第3帰還信号線路とを終端する第3終端部材と、
    前記第3信号線路と前記第3帰還信号線路とに接続された送受信回路を備えた第3半導体集積回路装置と
    を有することを特徴とする請求項2に記載のモジュール間通信装置。
  9. 前記第1信号線路が、前記第1モジュールと前記第2モジュールとの結合状態における近接効果を反映した結合系インピーダンスを有する第1引き出し用伝送線路を介して前記第1半導体集積回路装置と接続し、
    前記第2信号線路が、前記結合系インピーダンスを有する第2引き出し用伝送線路を介して前記第2半導体集積回路装置と接続していることを特徴とする請求項2に記載のモジュール間通信装置。
  10. 前記第1絶縁性基板の前記第1信号線路を配置した面と反対側の面に少なくとも第1信号線路に対向する部分が欠落部となっている第1のプレーンを有し、
    前記第2絶縁性基板の前記第2信号線路を配置した面と反対側の面に少なくとも第2信号線路に対向する部分が欠落部となっている第2のプレーンを有することを特徴とする請求項9に記載のモジュール間通信装置。
  11. 前記第1信号線路の線幅が、前記第1引き出し用伝送線路の線幅より大きいか或いは等しく、
    前記第2信号線路の線幅が、前記第2引き出し用伝送線路の線幅より大きいか或いは等しいことを特徴とする請求項9に記載のモジュール間通信装置。
  12. 前記第1信号線路と前記第2信号線路が積層方向からみて互いに整列した状態において、前記第1引き出し用伝送線路と前記第2引き出し用伝送線路とが互いに異なった方向に延在していることを特徴とする請求項9に記載のモジュール間通信装置。
  13. 前記第1引き出し用伝送線路と前記第2引き出し用伝送線路との対向間隔が、
    前記第1信号線路と前記第2信号線路との対向間隔より広いことを特徴とする請求項9に記載のモジュール間通信装置。
  14. 少なくとも前記第1絶縁性基板の前記第1引き出し用伝送線路を配置した面と反対の面であって、前記第2モジュールに対向する面に、前記第1引き出し用伝送線路をシールドする第1補助電磁シールド層を有することを特徴とする請求項9に記載のモジュール間通信装置。
  15. 前記第1信号線路と前記第1引き出し用伝送線路との結合部の側面が曲面からなり、
    前記第2信号線路と前記第2引き出し用伝送線路との結合部の側面が曲面からなることを特徴とする請求項9に記載のモジュール間通信装置。
  16. 前記第1信号線路の前記第1引き出し用伝送線路との結合部との反対側の端に第1インピーダンス調整用伝送線路を有し、
    前記第1インピーダンス調整用伝送線路に、第1インピーダンス整合回路が接続され、
    前記第2信号線路の前記第2引き出し用伝送線路との結合部との反対側の端に第2インピーダンス調整用伝送線路を有し、
    前記第2インピーダンス調整用伝送線路に、第2インピーダンス整合回路が接続されていることを特徴とする請求項9に記載のモジュール間通信装置。
  17. 前記第1絶縁性基板の前記第1信号線路を配置した面と反対側の面に少なくとも第1信号線路に対向する部分が欠落部となっている第1のプレーンを有し、
    前記第2絶縁性基板の前記第2信号線路を配置した面と反対側の面に少なくとも第2信号線路に対向する部分が欠落部となっている第2のプレーンを有することを特徴とする請求項16に記載のモジュール間通信装置。
  18. 前記第1信号線路の線幅が、前記第1引き出し用伝送線路の線幅及び前記第1インピーダンス調整用伝送線路の線幅より大きいか或いは等しく、
    前記第2信号線路の線幅が、前記第2引き出し用伝送線路の線幅及び前記第2インピーダンス調整用伝送線路の線幅より大きいか或いは等しいことを特徴とする請求項16に記載のモジュール間通信装置。
  19. 前記第1信号線路の前記第1引き出し用伝送線路との結合部との反対側の端に第3引き出し用伝送線路を有し、
    前記第3引き出し用伝送線路に、送受信回路を備えた半導体集積回路装置が接続されており、
    前記第2信号線路の前記第2引き出し用伝送線路との結合部との反対側の端に第4引き出し用伝送線路を有し、
    前記第4引き出し用伝送線路に、送受信回路を備えた半導体集積回路装置が接続されていることを特徴とする請求項9に記載のモジュール間通信装置。
  20. 前記第1帰還信号線路が、前記第1信号線路と差動線路を構成し、
    前記第2帰還信号線路が、前記第2信号線路と差動線路を構成することを特徴とする請求項2に記載のモジュール間通信装置。
  21. 前記第1絶縁性基板の前記第1信号線路を配置した面と反対側の面に第1電磁シールド層を有し、
    前記第2絶縁性基板の前記第2信号線路を配置した面と反対側の面に第2電磁シールド層を有することを特徴とする請求項20に記載のモジュール間通信装置。
  22. 前記第1信号線路と前記第2信号線路との間隔或いは前記第1信号線路と前記第2信号線路との重なりの幅のいずれかが信号の伝搬方向で異なることにより前記第1信号線路と前記第2信号線路との結合状態が前記信号の伝搬方向で異なることを特徴とする請求項20に記載のモジュール間通信装置。
  23. 前記第1モジュール或いは第2モジュールの一方が、前記第1信号線路或いは第2信号線路に対して、ダミー結合器を挟んで、第3信号線路及び前記第3信号線路と差動線路を構成する帰還経路を提供する第3帰還信号線路とを有し、
    前記第3信号線路と前記第3帰還信号線路とを終端する第3終端部材と、
    前記第3信号線路と前記第3帰還信号線路とに接続された送受信回路を備えた第3半導体集積回路装置と
    を有することを特徴とする請求項20に記載のモジュール間通信装置。
  24. 前記第1信号線路と前記第1帰還信号線路がそれぞれ前記第1モジュールと前記第2モジュールとの結合状態における近接効果を反映した結合インピーダンスを有し且つ前記第1半導体集積回路装置と接続する引き出し用伝送線路を有し、
    前記第2信号線路と前記第2帰還信号線路がそれぞれ前記結合系インピーダンスを有し且つ前記第2半導体集積回路装置と接続する引き出し用伝送線路を有することを特徴とする請求項20に記載のモジュール間通信装置。
  25. 前記第1絶縁性基板の前記第1信号線路を配置した面と反対側の面に少なくとも第1信号線路に対向する部分が欠落部となっている第1のプレーンを有し、
    前記第2絶縁性基板の前記第2信号線路を配置した面と反対側の面に少なくとも第2信号線路に対向する部分が欠落部となっている第2のプレーンを有することを特徴とする請求項24に記載のモジュール間通信装置。
  26. 前記第1信号線路及び前記第1帰還信号線の線幅が、前記引き出し用伝送線路の線幅より大きいか或いは等しく、
    前記第2信号線路及び前記第1帰還信号線の線幅が、前記引き出し用伝送線路の線幅より大きいか或いは等しいことを特徴とする請求項24に記載のモジュール間通信装置。
  27. 前記第1信号線路と前記第1帰還信号線との間隔が前記引き出し用伝送線路同士の間隔より大きいか或いは等しく、
    前記第2信号線路と前記第2帰還信号線との間隔が前記引き出し用伝送線路同士の間隔より大きいか或いは等しいことを特徴とする請求項24に記載のモジュール間通信装置。
  28. 前記第1信号線路と前記第1帰還信号線との間隔が、前記第1信号線路及び前記第1帰還信号線の線幅より大きいか或いは等しく、
    前記第2信号線路と前記第2帰還信号線との間隔が、前記第2信号線路及び前記第2帰還信号線の線幅より大きいか或いは等しいことを特徴とする請求項24に記載のモジュール間通信装置。
  29. 前記第1信号線路と前記第2信号線路が積層方向からみて互いに整列した状態において、前記第1半導体集積回路装置と接続する引き出し用伝送線路と、前記第2半導体集積回路装置と接続する引き出し用伝送線路とが互いに異なった方向に延在していることを特徴とする請求項24に記載のモジュール間通信装置。
  30. 前記第1半導体集積回路装置と接続する引き出し用伝送線路と前記第2半導体集積回路装置と接続する引き出し用伝送線路との対向間隔が、
    前記第1信号線路と前記第2信号線路との対向間隔より広いことを特徴とする請求項24に記載のモジュール間通信装置。
  31. 少なくとも前記第1絶縁性基板の前記第1引き出し用伝送線路を配置した面と反対の面であって、前記第2モジュールに対向する面に、前記第1半導体集積回路装置と接続する引き出し用伝送線路をシールドする第1補助電磁シールド層を有することを特徴とする請求項24に記載のモジュール間通信装置。
  32. 前記第1信号線路と前記引き出し用伝送線路との結合部の側面が曲面からなり、
    前記第1帰還信号線路と前記引き出し用伝送線路との結合部の側面が曲面からなり、
    前記第2信号線路と前記引き出し用伝送線路との結合部の側面が曲面からなり、
    前記第2帰還信号線路と前記引き出し用伝送線路との結合部の側面が曲面からなることを特徴とする請求項24に記載のモジュール間通信装置。
  33. 前記第1信号線路の前記第1半導体集積回路装置と接続する引き出し用伝送線路との結合部との反対側の端に第1インピーダンス調整用伝送線路を有し、
    前記第1インピーダンス調整用伝送線路に、第1インピーダンス整合回路が接続され、
    前記第2信号線路の前記第2半導体集積回路装置と接続する引き出し用伝送線路との結合部との反対側の端に第2インピーダンス調整用伝送線路を有し、
    前記第2インピーダンス調整用伝送線路に、第2インピーダンス整合回路が接続されていることを特徴とする請求項24に記載のモジュール間通信装置。
  34. 前記第1信号線路及び前記第1帰還信号線路の前記第1半導体集積回路装置と接続する引き出し用伝送線路との結合部との反対側のそれぞれの端に送受信回路を備えた半導体集積回路装置と接続する引き出し用伝送線路を有するとともに、
    前記第2信号線路及び前記第2帰還信号線路の前記第2半導体集積回路装置と接続する引き出し用伝送線路との結合部との反対側のそれぞれの端に送受信回路を備えた半導体集積回路装置と接続する引き出し用伝送線路を有し、
    前記各引出し用伝送線路のインピーダンスは前記Z01及びZ02とは異なる前記第1モジュールと前記第2モジュールとの結合状態における近接効果を反映した結合系インピーダンスであることを特徴とする請求項24に記載のモジュール間通信装置。
  35. 前記第1絶縁性基板の前記第1信号線路を配置した面と反対側の面に少なくとも第1信号線路に対向する部分が欠落部となっている第1のプレーンを有し、
    前記第2絶縁性基板の前記第2信号線路を配置した面と反対側の面に少なくとも第2信号線路に対向する部分が欠落部となっている第2のプレーンを有することを特徴とする請求項34に記載のモジュール間通信装置。
  36. 前記第1信号線路及び前記第1帰還信号線の線幅が、前記各引き出し用伝送線路の線幅より大きいか或いは等しく、
    前記第2信号線路及び前記第1帰還信号線の線幅が、前記各引き出し用伝送線路の線幅より大きいか或いは等しいことを特徴とする請求項34に記載のモジュール間通信装置。
  37. 前記第1信号線路と前記第1帰還信号線との間隔が前記各引き出し用伝送線路同士の間隔より大きいか或いは等しく、
    前記第2信号線路と前記第2帰還信号線との間隔が前記各引き出し用伝送線路同士の間隔より大きいか或いは等しいことを特徴とする請求項34に記載のモジュール間通信装置。
  38. 前記第1信号線路と前記第1帰還信号線との間隔が、前記第1信号線路及び前記第1帰還信号線の線幅より大きいか或いは等しく、
    前記第2信号線路と前記第2帰還信号線との間隔が、前記第2信号線路及び前記第2帰還信号線の線幅より大きいか或いは等しいことを特徴とする請求項34に記載のモジュール間通信装置。

JP2012555216A 2011-02-18 2012-02-14 モジュール間通信装置 Active JP5213087B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012555216A JP5213087B2 (ja) 2011-02-18 2012-02-14 モジュール間通信装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011032886 2011-02-18
JP2011032886 2011-02-18
JP2012555216A JP5213087B2 (ja) 2011-02-18 2012-02-14 モジュール間通信装置
PCT/JP2012/053318 WO2012111639A1 (ja) 2011-02-18 2012-02-14 モジュール間通信装置

Publications (2)

Publication Number Publication Date
JP5213087B2 JP5213087B2 (ja) 2013-06-19
JPWO2012111639A1 true JPWO2012111639A1 (ja) 2014-07-07

Family

ID=46672558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012555216A Active JP5213087B2 (ja) 2011-02-18 2012-02-14 モジュール間通信装置

Country Status (6)

Country Link
US (1) US9419684B2 (ja)
JP (1) JP5213087B2 (ja)
KR (1) KR101869581B1 (ja)
CN (1) CN103477567B (ja)
TW (1) TWI548227B (ja)
WO (1) WO2012111639A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6059874B2 (ja) * 2012-02-17 2017-01-11 学校法人慶應義塾 方向性結合式マルチドロップバス
EP2945183A1 (en) * 2012-11-22 2015-11-18 Shimadzu Corporation Tandem quadrupole mass spectrometer
JP6091284B2 (ja) * 2013-03-27 2017-03-08 三菱電機株式会社 方向性結合器
JP6181968B2 (ja) 2013-05-16 2017-08-16 学校法人慶應義塾 被覆電線結合式情報通信網、電磁界結合通信方法及び電磁界結合器
JP6163383B2 (ja) 2013-08-19 2017-07-12 学校法人慶應義塾 方向性結合器及びそれを備える通信装置
JP2016029785A (ja) 2014-07-18 2016-03-03 株式会社東芝 通信システム
US20170353056A1 (en) * 2016-06-02 2017-12-07 Panasonic Corporation Electromagnetic resonant coupler including input line, first resonance line, second resonance line, output line, and coupling line, and transmission apparatus including the electromagnetic resonant coupler
WO2018012622A1 (ja) 2016-07-15 2018-01-18 学校法人慶應義塾 回転情報伝達機器
US10638601B2 (en) * 2017-08-11 2020-04-28 Seagate Technology Llc Apparatus comprising conductive traces configured to transmit differential signals in printed circuit boards
WO2019049198A1 (ja) 2017-09-05 2019-03-14 株式会社ソシオネクスト 通信回路、通信システム及び通信方法
JP7341503B2 (ja) * 2018-08-17 2023-09-11 慶應義塾 電子回路基板、及び通信回路
JP7248249B2 (ja) * 2018-08-17 2023-03-29 慶應義塾 通信回路、及び通信方法
US11817250B2 (en) * 2019-05-07 2023-11-14 International Business Machines Corporation Broadside coupled coplanar inductors
JP7302869B2 (ja) * 2019-10-23 2023-07-04 慶應義塾 通信モジュール、及び通信回路
KR20210115867A (ko) * 2020-03-16 2021-09-27 삼성전자주식회사 카메라 모듈 및 이를 포함하는 전자 장치
WO2024096083A1 (ja) * 2022-11-02 2024-05-10 株式会社Premo 情報処理装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2972121A (en) * 1957-10-14 1961-02-14 Motorola Inc Coupling system
JPH0583011A (ja) * 1991-09-25 1993-04-02 Sumitomo Electric Ind Ltd 半導体装置用パツケージの入出力結合デバイス
JP3399630B2 (ja) 1993-09-27 2003-04-21 株式会社日立製作所 バスシステム
US5530422A (en) * 1994-09-16 1996-06-25 General Electric Company Differentially driven transmission line for high data rate communication in a computerized tomography system
JPH1168033A (ja) * 1997-08-15 1999-03-09 Matsushita Electric Ind Co Ltd マルチチップモジュール
JP3880286B2 (ja) 1999-05-12 2007-02-14 エルピーダメモリ株式会社 方向性結合式メモリシステム
MXPA02005249A (es) * 1999-11-25 2003-01-28 Infineon Technologies Ag Portador plano con al menos un chip semiconductor.
DE10021671A1 (de) 2000-05-05 2001-11-15 Schleifring Und Appbau Gmbh Vorrichtung zur breitbandigen elektrischen Signalübertragung mit bidirektionaler Übertragungsstrecke
JP4314759B2 (ja) 2000-08-09 2009-08-19 株式会社日立製作所 バスシステム
US6882239B2 (en) 2001-05-08 2005-04-19 Formfactor, Inc. Electromagnetically coupled interconnect system
JP4483198B2 (ja) 2003-04-16 2010-06-16 株式会社日立製作所 方向性結合素子を使用したメモリバスシステム
JP2006140933A (ja) * 2004-11-15 2006-06-01 Hitachi Chem Co Ltd 伝送線路層間接続器
JP2007049422A (ja) * 2005-08-10 2007-02-22 Sony Corp 通信システム、送信装置および方法、並びに、受信装置および方法
CN100456602C (zh) * 2006-09-08 2009-01-28 高大田 永磁同步电机
JP4867777B2 (ja) * 2007-05-01 2012-02-01 富士ゼロックス株式会社 ユニット間通信装置
JP5374994B2 (ja) * 2008-09-25 2013-12-25 ソニー株式会社 ミリ波誘電体内伝送装置

Also Published As

Publication number Publication date
KR101869581B1 (ko) 2018-06-20
JP5213087B2 (ja) 2013-06-19
CN103477567B (zh) 2015-04-29
TW201242282A (en) 2012-10-16
CN103477567A (zh) 2013-12-25
WO2012111639A1 (ja) 2012-08-23
US9419684B2 (en) 2016-08-16
TWI548227B (zh) 2016-09-01
US20130324044A1 (en) 2013-12-05
KR20140020911A (ko) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5213087B2 (ja) モジュール間通信装置
JP6216951B2 (ja) 方向性結合式通信装置
JP4371065B2 (ja) 伝送線路、通信装置及び配線形成方法
US8659365B2 (en) Common mode noise suppression circuit
US9864143B2 (en) Directional coupling-type multi-drop bus
WO2015025690A1 (ja) 方向性結合器及びそれを備える通信装置
JP2023529627A (ja) 3dB直交ハイブリッドカプラ、高周波フロントエンドモジュール及び通信端末
CN110875288B (zh) 半导体器件封装
JP2011077581A (ja) コモンモードチョークコイル実装構造及びコモンモードチョークコイル実装方法
TW200304299A (en) Digital network
US20040103383A1 (en) Design, layout and method of manufacture for a circuit that taps a differential signal
JP2009055284A (ja) 波形等化回路
JP6649195B2 (ja) 差動信号伝送装置
JP6441850B2 (ja) 多層プリント配線板
Oikawa A low-cost wire-bonding package design with package built-in three-dimensional distributed matching circuit for over 5Gbps SerDes applications
JP2019145660A (ja) 電気回路積層基板

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

R150 Certificate of patent or registration of utility model

Ref document number: 5213087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250