JPWO2011162336A1 - 1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンおよび2,3,3,3−テトラフルオロプロペンの製造方法 - Google Patents

1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンおよび2,3,3,3−テトラフルオロプロペンの製造方法 Download PDF

Info

Publication number
JPWO2011162336A1
JPWO2011162336A1 JP2012521525A JP2012521525A JPWO2011162336A1 JP WO2011162336 A1 JPWO2011162336 A1 JP WO2011162336A1 JP 2012521525 A JP2012521525 A JP 2012521525A JP 2012521525 A JP2012521525 A JP 2012521525A JP WO2011162336 A1 JPWO2011162336 A1 JP WO2011162336A1
Authority
JP
Japan
Prior art keywords
dichloro
tetrafluoropropene
hcfc
pentafluoropropane
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012521525A
Other languages
English (en)
Other versions
JP5713016B2 (ja
Inventor
関 隆司
隆司 関
岡本 秀一
秀一 岡本
高木 洋一
洋一 高木
聡史 河口
聡史 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012521525A priority Critical patent/JP5713016B2/ja
Publication of JPWO2011162336A1 publication Critical patent/JPWO2011162336A1/ja
Application granted granted Critical
Publication of JP5713016B2 publication Critical patent/JP5713016B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/358Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by isomerisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

異性体混合物として得られる原料成分、すなわち1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン(HCFC−225ca)を含むジクロロペンタフルオロプロパン(HCFC−225)からのHCFC−225caの精製を必要とせずに、簡便で経済的に1,1−ジクロロ−2,3,3,3−テトラフルオロプロペン(CFO−1214ya)を製造するとともに、1−クロロ−2,3,3,3−テトラフルオロプロパン(HCFC−244eb)から2,3,3,3−テトラフルオロプロペン(HFO−1234yf)を簡便で経済的に製造する方法を提供する。HCFC−225caを含むHCFC−225とHCFC−244ebとを含む原料組成物を、相間移動触媒の存在下にアルカリ水溶液と接触させることにより、HCFC−225caからCFO−1214yaを製造するとともに、HCFC−244ebからHFO−1234yfを製造する。

Description

本発明は、1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンおよび2,3,3,3−テトラフルオロプロペンの製造方法に関する。
1,1−ジクロロ−2,3,3,3−テトラフルオロプロペン(CFO−1214ya)は、温室効果ガスである1,1,1,2−テトラフルオロエタン(HFC−134a)に代わる新冷媒として、近年期待されている2,3,3,3−テトラフルオロプロペン(HFO−1234yf)の合成原料として有用な化合物である。なお、本明細書においてハロゲン化炭化水素については化合物名の後の括弧内にその化合物の略称を記すが、本明細書では必要に応じて化合物名に替えてその略称を用いることもある。
このようなCFO−1214yaを製造する方法としては、これまでに、1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン(HCFC−225ca)を製造原料として、これを相間移動触媒存在下にアルカリ水溶液で、または、クロム、鉄、銅、活性炭等の触媒存在下に気相反応で、脱フッ化水素させる方法が知られている(特許文献1参照)。
ここで、上記方法で製造原料として用いられるHCFC−225caは、通常1,3−ジクロロ−1,2,2,3,3−ペンタフルオロプロパン(HCFC−225cb)や、2,2−ジクロロ−1,1,3,3,3−ペンタフルオロプロパン(HCFC−225aa)、その他の異性体との混合物として製造される(特許文献2、非特許文献1参照)ため、この異性体混合物から分離精製されたものが上記製造方法に原料として用いられていた。
しかしながら、上記ジクロロペンタフルオロプロパンの異性体混合物においてはそれぞれの沸点が近いことから、通常の分離精製技術(蒸留等)では分離精製が困難であり、純度の高いHCFC−225caを工業的な規模で製造するには多段の蒸留等が必要とされている。
このように、製造原料の調製等を含めて製造を総合的に捉えると、上記従来のCFO−1214yaの製造方法は、簡便で経済的な製造方法とは言い難かった。
一方、これらの方法で得られたCFO−1214yaは、触媒存在下、水素を用いて還元することで、HFO−1234yfに変換することができる。
この還元反応において、還元反応器の出口ガスには、目的物のHFO−1234yf以外に、未反応原料のCFO−1214ya、中間生成物の1−クロロ−2,3,3,3−テトラフルオロプロペン(HCFO−1224yd)および副生物の1−クロロ−2,3,3,3−テトラフルオロプロパン(HCFC−244eb)等が含まれている。
ここで、未反応原料のCFO−1214yaと中間生成物のHCFO−1224ydは、目的物のHFO−1234yfと蒸留分離した後、還元反応器に戻すことでリサイクルによる有効利用ができる。
しかしながら、副生物のHCFC−244ebは、CFO−1214yaやHCFO−1224ydと沸点が近いため、これらの化合物と蒸留分離できない。HCFC−244ebは、CFO−1214yaやHCFO−1224ydとともに還元反応器に戻されるが、還元反応で不活性な化合物であるため、還元反応器に戻す操作が繰り返されることで還元反応器内で濃縮され、HFO−1234yfの生産効率を低下させるという問題があった。
特許第3778298号公報 米国特許第5157171号明細書
「Fluorine Chemistry Reviews, Vol. 8」、P39-71、Paul Tarrant編、MARCEL DEKKER, INC.出版、1967年発行
本発明は、上記観点からなされたものであり、異性体混合物として得られる原料成分、すなわちHCFC−225caの精製を必要とせずに、簡便で経済的にCFO−1214yaを製造するとともに、有用性が低いと考えられていたHCFC−244ebから新冷媒として有用なHFO−1234yfを簡便で経済的に製造する方法を提供することを目的とする。
本発明はまた、上記で得られるCFO−1214yaから新冷媒として有用なHFO−1234yfを製造する方法を提供することを目的とする。
本発明のテトラフルオロプロペン類の製造方法は、1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン(HCFC−225ca)とその異性体の少なくとも1種とを含むジクロロペンタフルオロプロパンおよび1−クロロ−2,3,3,3−テトラフルオロプロパン(HCFC−244eb)を含む原料組成物を、相間移動触媒の存在下にアルカリ水溶液と接触させて、前記1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン(HCFC−225ca)から1,1−ジクロロ−2,3,3,3−テトラフルオロプロペン(CFO−1214ya)を製造するとともに前記1−クロロ−2,3,3,3−テトラフルオロプロパン(HCFC−244eb)から2,3,3,3−テトラフルオロプロペン(HFO−1234yf)を製造することを特徴とする。
また、本発明の2,3,3,3−テトラフルオロプロペン(HFO−1234yf)の製造方法は、前記テトラフルオロプロペン類の製造方法により得られる反応生成物から1,1−ジクロロ−2,3,3,3−テトラフルオロプロペン(CFO−1214ya)と2,3,3,3−テトラフルオロプロペン(HFO−1234yf)とをそれぞれ分離するとともに、分離された1,1−ジクロロ−2,3,3,3−テトラフルオロプロペン(CFO−1214ya)を、触媒存在下、水素と反応させて2,3,3,3−テトラフルオロプロペン(HFO−1234yf)を製造することを特徴とする。
さらに、本発明は、下記工程の組み合わせを特徴とする2,3,3,3−テトラフルオロプロペン(HFO−1234yf)の製造方法である。
1,1−ジクロロ−2,3,3,3−テトラフルオロプロペン(CFO−1214ya)を、触媒存在下、水素と反応させて2,3,3,3−テトラフルオロプロペン(HFO−1234yf)を製造して反応生成物から分離するとともに、未反応の1,1−ジクロロ−2,3,3,3−テトラフルオロプロペン(CFO−1214ya)と、中間生成物である1−クロロ−2,3,3,3−テトラフルオロプロペン(HCFO−1224yd)と、副生物である1−クロロ−2,3,3,3−テトラフルオロプロパン(HCFC−244eb)とを含む混合物を得る水素化工程、
1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン(HCFC−225ca)とその異性体の少なくとも1種とを含むジクロロペンタフルオロプロパンおよび前記水素化工程で得られた前記混合物を混合して1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン(HCFC−225ca)と1−クロロ−2,3,3,3−テトラフルオロプロパン(HCFC−244eb)とを含む原料組成物とする混合工程、および、
前記原料組成物を、相間移動触媒の存在下にアルカリ水溶液と接触させて、前記1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン(HCFC−225ca)から1,1−ジクロロ−2,3,3,3−テトラフルオロプロペン(CFO−1214ya)を製造するとともに前記1−クロロ−2,3,3,3−テトラフルオロプロパン(HCFC−244eb)から2,3,3,3−テトラフルオロプロペン(HFO−1234yf)を製造し、反応生成物から1,1−ジクロロ−2,3,3,3−テトラフルオロプロペン(CFO−1214ya)と2,3,3,3−テトラフルオロプロペン(HFO−1234yf)とをそれぞれ分離する脱ハロゲン化水素工程、とを含み、
前記脱ハロゲン化水素工程で分離された1,1−ジクロロ−2,3,3,3−テトラフルオロプロペン(CFO−1214ya)を、前記水素化工程における1,1−ジクロロ−2,3,3,3−テトラフルオロプロペン(CFO−1214ya)の少なくとも一部として使用することを特徴とする2,3,3,3−テトラフルオロプロペン(HFO−1234yf)の製造方法。
本発明の製造方法によれば、異性体混合物として得られる原料成分を使用して、すなわちHCFC−225caの精製を必要とせずに、簡便で経済的にCFO−1214yaを製造できるとともに、HCFC−244ebから新冷媒として有用なHFO−1234yfを簡便で経済的に製造することができる。
また、この方法で得られたCFO−1214yaを用いることで、新冷媒として有用なHFO−1234yfを経済的に製造することが可能となる。
本発明の製造方法を利用したHFO−1234yfの製造フローの一例を示す図である。
以下に、本発明の実施の形態を説明する。
本発明において、「ジクロロペンタフルオロプロパン」(HCFC−225ともいう)とはCHClで表わされる化合物の1種であるか、またはその2種以上からなる混合物(互いに異性体である化合物の混合物)をいう。
また、CHClで表わされるある特定の化合物Xのみからなるか、または化合物Xとその異性体である化合物の少なくとも1種とからなる混合物を、「化合物Xを含む」ジクロロペンタフルオロプロパン(HCFC−225)という。ただし、本明細書においては、特に言及しない限り、「化合物Xを含むジクロロペンタフルオロプロパン(HCFC−225)」とは化合物Xとその異性体の少なくとも1種を含む混合物を意味する。
<テトラフルオロプロペン類の製造方法>
本発明は、原料成分として、HCFC−225caとその異性体の少なくとも1種とを含むHCFC−225(以下、「HCFC−225caを含むHCFC−225」という)およびHCFC−244ebを含む原料組成物を用い、相間移動触媒の存在下にアルカリ水溶液と接触させることにより、前記HCFC−225caを脱フッ化水素させてCFO−1214yaを得るとともに、前記HCFC−244ebを脱塩化水素させてHFO−1234yfを得ることを特徴とするテトラフルオロプロペン類の製造方法を提供する。この製造方法はCFO−1214yaとHFO−1234yfを並行して製造する方法であり、以下、必要に応じて「本発明の併産方法」ということもある。
(1)原料組成物
本発明の併産方法に用いる原料組成物は、HCFC−225caを含むHCFC−225と、HCFC−244ebとを含有する。
(1−1)HCFC−225caを含むHCFC−225
本発明に用いる前記HCFC−225caを含むHCFC−225は、HCFC−225caとその異性体の少なくとも1種とを含む、HCFC−225である。
上記HCFC−225caの異性体としては、特に制限されるものではないが、具体的には、1,3−ジクロロ−1,2,2,3,3−ペンタフルオロプロパン(CHClFCFCClF、HCFC−225cb)、2,2−ジクロロ−1,1,3,3,3−ペンタフルオロプロパン(CHFCClCF、HCFC−225aa)、1,2−ジクロロ−1,2,3,3,3−ペンタフルオロプロパン(CHClFCClFCF、HCFC−225ba)および2,3−ジクロロ−1,1,2,3,3−ペンタフルオロプロパン(CHFCClFCClF、HCFC−225bb)等を挙げることができる。本発明に用いられるHCFC−225caを含むHCFC−225は、これらの1種以上と、HCFC−225caとで構成されるものである。
本発明に用いるHCFC−225caを含むHCFC−225中の、HCFC−225caの含有割合は、特に制限されるものではないが、反応器効率の観点から10モル%以上であることが好ましい。より好ましくは、30モル%以上であり、50モル%以上が特に好ましい。一方、HCFC−225の工業製品から、HCFC−225caを分離精製する効率を鑑みると、前記HCFC−225中の、HCFC−225caの含有割合は99.5モル%以下であることが好ましい。より好ましくは、90モル%以下である。
さらに、本発明の併産方法に用いる原料組成物における、上記HCFC−225caを含むHCFC−225の含有量は、反応器効率の観点から、原料組成物全量に対して10〜99.5質量%であることが好ましく、40〜95質量%であることがより好ましい。
また、本発明に用いる原料組成物が含有する、上記HCFC−225caを含むHCFC−225として、以下のようにして得られるHCFC−225を用いることが可能である。
まず、ジクロロペンタフルオロプロパン(HCFC−225)は、通常、以下の反応式(1)に示す通り、テトラフルオロエチレンとジクロロフルオロメタンを触媒の存在下で反応させることにより製造されるが、この反応で得られるHCFC−225は、単一の構造を有する化合物として生成されることはなく、互いに異性体の関係にある2種以上の化合物の混合物として生成される。
[HCFC−225の生成反応]
CF=CF + CHClF → CHCl(HCFC−225) … (1)
上記反応式(1)で示される反応で得られるHCFC−225について、これを構成する互いに異性体の関係にある化合物の種類や割合は、反応条件、特に用いる触媒の種類によって異なるが、該HCFC−225は、殆どの場合、HCFC−225caを含むものであり、本発明の製造方法に用いることが可能なHCFC−225caを含むHCFC−225である。
より具体的には、例えば、上記反応式(1)で示される反応のうち、一般に広く行われている塩化アルミニウムを触媒として用いる反応では、得られるHCFC−225は、主にHCFC−225caとHCFC−225cbを反応生成物として含有するものである。このHCFC−225にはこの他に、HCFC−225aa、HCFC−225bb等が少量含まれることもある。
本発明の併産方法において、原料組成物に配合するHCFC−225としては、HCFC−225caを含むHCFC−225であれば、上記反応式(1)に示される以外の反応経路で得られるHCFC−225を用いることも可能である。
このようにして、上記原料組成物に配合するHCFC−225caを含むHCFC−225が生成されるが、本発明においては、上記各方法において得られる反応組成物から、HCFC−225caを含むHCFC−225を分離精製して用いることが好ましい。
HCFC−225として、市販されているものとしては、アサヒクリンAK−225(旭硝子社製、商品名、HCFC−225caを48モル%およびHCFC−225cbを52モル%含有)等が挙げられる。
(1−2)HCFC−244eb
本発明の併産方法の原料組成物は、上記HCFC−225caを含むHCFC−225とともにHCFC−244ebを含有する。
本発明の併産方法においては、原料組成物中のHCFC−225caからCFO−1214yaが製造され、これと並行してHCFC−244ebからHFO−1234yfが製造される。原料組成物における上記HCFC−225caを含むHCFC−225とHCFC−244ebの含有割合については、本製造方法によってCFO−1214yaおよびHFO−1234yfを製造する際に、各反応を阻害しない含有割合であれば特に制限されず、上記HCFC−225の100質量部に対するHCFC−244ebの量として、0.01〜20質量部であることが好ましく、0.1〜10質量部がより好ましい。
上記原料組成物に配合するHCFC−244ebは、例えば、HCFC−244eb単独の状態で配合されても、本発明の効果を損なわない他の成分との混合物の状態で配合されてもよい。本発明の併産方法の有用性からすると、HCFC−244ebは、HFO−1234yfに変換されて取り出されることが好ましい。
本発明においては、このようなHCFC−244ebを含有する混合物を、他の反応系から得られるものとして持ち込んでもよいが、上記背景技術で説明したCFO−1214yaからHFO−1234yfを製造する反応系で副生物として得られるHCFC−244ebを含有する混合物を用いることが好ましい。HCFC−244ebを含有する混合物は、具体的には、CFO−1214yaを、触媒存在下、水素と反応させて得られる反応混合物からHFO−1234yfを蒸留分離した、蒸留残渣であることが好ましい。
上記蒸留残渣には、一般的には、副生物であるHCFC−244ebの他に、未反応原料のCFO−1214ya、中間生成物のHCFO−1224yd等が含まれる。CFO−1214yaおよびHCFO−1224ydは、含まれる量にもよるが、本発明の併産方法の反応を阻害するものではないので、上記蒸留残渣をそのまま原料組成物に配合することができる。
さらに、上記蒸留残渣には、上記各化合物に加えて、HCFC−225ca、HCFC−225cb、HCFC−225aa等の1種以上を含むHCFC−225が含まれる場合もあるが、その場合にも該蒸留残渣をそのまま原料組成物に配合することができる。なお、その場合には、該蒸留残渣に含まれるHCFC−225を、上記原料組成物に含まれるHCFC−225caを含むHCFC−225と合わせて、原料組成物全体の組成を計算する。
なお、上記蒸留残渣として、本発明の併産方法で得られたCFO−1214yaを出発原料として、後述する方法により、触媒存在下、水素と反応させて得られる反応混合物からHFO−1234yfを蒸留分離した、蒸留残渣を用いれば、HFO−1234yfを製造する一連の反応系において、原材料化合物および副生物の有効なリサイクル利用が可能となり好ましい。
ここで、本発明の併産方法において、上記原料組成物は、必要に応じて、本発明の効果を損なわない範囲で、上記以外の有機化合物を含有してもよい。上記原料組成物が含有していてもよい有機化合物として具体的には、クロロホルム、クロロジフルオロメタン、トリフルオロメタン、1,1,3−トリクロロ−2,2,3,3−テトラフルオロプロパン等が挙げられ、その含有量は原料組成物全量に対して10質量%未満であることが好ましい。
(2)CFO−1214yaおよびHFO−1234yfの製造
本発明の併産方法は、上記原料組成物を、相間移動触媒の存在下にアルカリ水溶液と接触させることにより、下記反応式(2)に示されるように、原料組成物中のHCFC−225caを脱フッ化水素させてCFO−1214yaを得るとともに、下記反応式(3)に示されるように、HCFC−244ebを脱塩化水素させてHFO−1234yfを得ることを特徴とするものである。
[CFO−1214yaの生成反応]
CFCFCHCl(HCFC−225ca)+nHCFC−225X
→CFCF=CCl(CFO−1214ya)+HF+nHCFC−225X
…(2)
(ただし、反応式(2)中、HCFC−225Xは、HCFC−225ca以外のHCFC−225を表す。nは、原料HCFC−225中のHCFC−225ca1モルに対するHCFC−225Xのモル数を示し、0より大きい数字である。nは好ましくは0.005〜9である。
[HFO−1234yfの生成反応]
CFCFHCHCl(HCFC−244eb)
→CFCF=CH(HFO−1234yf)+ HCl … (3)
なお、HCFC−225caが選択的に脱フッ化水素される、上記反応式(2)に示される反応においては、HCFC−225caが脱フッ化水素される反応量と比較して微量であれば、HCFC−225Xが脱フッ化水素反応を起こしてCFO−1214yaの異性体(CClで表される化合物のうちCFO−1214ya以外の化合物)を生成する反応を含んでいてもよく、以下、本明細書においては、このような微量のHCFC−225Xが脱フッ化水素する反応を、反応式(2)の反応が含むものとして、説明するものである。なお、上記「微量」とは、例えば、原料HCFC−225異性体混合物中のHCFC−225Xの1モルについて、脱フッ化水素する反応量が概ね0.01モル未満の場合をいい、好ましくは、反応量は0モルであるが、実際はHCFC−225中に含まれるHCFC−225Xの存在割合によって決まる。
本発明の併産方法においては、原料組成物を、相間移動触媒の存在下にアルカリ水溶液と接触させるという操作により、上記反応式(2)に示される脱フッ化水素反応と、上記反応式(3)に示される脱塩化水素反応とが同じ反応器内で同時に進行するものである。以下、これらの反応をまとめて、反応式(2)・(3)に示される脱ハロゲン化水素反応という。
(2−1)アルカリ水溶液
上記反応式(2)・(3)に示される脱ハロゲン化水素反応に用いるアルカリ水溶液としては、上記脱ハロゲン化水素反応が実行可能な塩基性化合物(アルカリ)の水溶液であれば、特に限定されない。具体的には、水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物、水酸化カルシウム等のアルカリ土類金属水酸化物等の無機の塩基性化合物や、アミン等の有機の塩基性化合物、アルカリ金属アルコキサイド等の水溶液により実施可能である。経済性の点から無機の塩基性化合物の水溶液を用いることが好ましく、反応活性、選択性の点から水酸化ナトリウムまたは水酸化カリウムの水溶液を用いることがより好ましい。
上記脱ハロゲン化水素反応に用いるアルカリ水溶液のアルカリ濃度は、原料組成物中のHCFC−225異性体混合物からHCFC−225caをより選択的に脱フッ化水素反応させるとともにHCFC−244ebの脱塩化水素反応が促進される点から、0.5〜40質量%とすることが好ましく、さらには5〜40質量%とし、特には20〜40質量%とすることが好ましい。
また、上記反応式(2)・(3)に示される脱ハロゲン化水素反応に用いるアルカリ水溶液の量は、上記脱ハロゲン化水素反応が実行可能な量であれば特に制限されないが、原料組成物中の反応に係る成分、すなわちHCFC−225caおよびHCFC−244ebの合計量に対して、0.5〜1.5モル当量のアルカリ量となるように調整されることが好ましく、より好ましくは1.0〜1.3モル当量のアルカリ量である。
上記反応式(2)・(3)に示される脱ハロゲン化水素反応においては、反応に係る原料組成物とこれに作用する上記アルカリ水溶液は相溶性がないため、両者の接触を効率的に実施するために本発明の製造方法においては、水にも非水溶性の有機溶媒にも可溶な相間移動触媒を用いて反応を行うものである。
(2−2)相間移動触媒
本発明において上記反応式(2)・(3)で示す脱ハロゲン化水素反応に用いる、相間移動触媒としては、一般的に用いられる相間移動触媒を特に制限なく挙げることができる。具体的には、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩、クラウンエーテル等が挙げられるが、なかでも第4級アンモニウム塩または第4級ホスホニウム塩が好ましい。
上記第4級アンモニウム塩として、具体的には、下記一般式(i)で表される化合物(以下、必要に応じて、化合物(i)という。)が挙げられる。
Figure 2011162336
(ただし、一般式(i)中、R11〜R14は、それぞれ独立して炭化水素基を表し、Yは、陰イオンを表す。)
なお、上記一般式(i)において、炭化水素基を表すR11〜R14は、より具体的には、以下の特性を有する基である。
11〜R14としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基等が挙げられ、アルキル基、アリール基が好ましい。
11〜R14の炭素数は、R11121314の1分子あたりの合計炭素数として、4〜100が好ましい。
11〜R14は、それぞれ同じ基であってもよく、異なる基であってもよい。
11〜R14は、反応条件下に不活性な官能基で置換されていてもよい。該不活性な官能基としては、反応条件に応じて異なるが、ハロゲン原子、エステル基、ニトリル基、アシル基、カルボキシル基、アルコキシル基等が挙げられる。
11〜R14は、互いに連結して、含窒素複素環等の複素環を形成していてもよい。
11〜R14は、高分子化合物の一部であってもよい。
このようなR11〜R14を有する第4級アンモニウムイオンR11121314として具体的には、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラ−n−プロピルアンモニウムイオン、テトラ−n−ブチルアンモニウムイオン、トリ−n−オクチルメチルアンモニウムイオン、セチルトリメチルアンモニウムイオン、ベンジルトリメチルアンモニウムイオン、ベンジルトリエチルアンモニウムイオン、セチルベンジルジメチルアンモニウムイオン、セチルピリジニウムイオン、n−ドデシルピリジニウムイオン、フェニルトリメチルアンモニウムイオン、フェニルトリエチルアンモニウムイオン、N−ベンジルピコリニウムイオン、ペンタメトニウムイオン、ヘキサメトニウムイオン等が挙げられる。
また、上記一般式(i)において、陰イオンを表すYとして具体的には、塩素イオン、フッ素イオン、臭素イオン、ヨウ素イオン、硫酸イオン、硝酸イオン、リン酸イオン、過塩素酸イオン、硫酸水素イオン、水酸イオン、酢酸イオン、安息香酸イオン、ベンゼンスルホン酸イオン、p−トルエンスルホン酸イオン等が挙げられ、塩素イオン、臭素イオン、ヨウ素イオン、硫酸水素イオンまたは水酸イオンが好ましい。
ここで、化合物(i)としては、化合物(i)の汎用性および反応性の点から、下記R11121314と、下記Yとの組み合わせが好ましい。
11121314:テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラ−n−プロピルアンモニウムイオン、テトラ−n−ブチルアンモニウムイオンまたはトリ−n−オクチルメチルアンモニウムイオン。
:フッ素イオン、塩素イオンまたは臭素イオン。
上記第4級ホスホニウム塩として、具体的には、下記一般式(ii)で表される化合物(以下、必要に応じて、化合物(ii)という。)が挙げられる。
Figure 2011162336
(ただし、一般式(ii)中、R21〜R24は、それぞれ独立して炭化水素基を表し、Yは、陰イオンを表す。)
なお、上記一般式(ii)において、炭化水素基を表すR21〜R24は、より具体的には、以下の特性を有する基である。
21〜R24としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基等が挙げられ、アルキル基、アリール基が好ましい。
21〜R24の炭素数は、R21222324の1分子あたりの合計炭素数として、4〜100が好ましい。
21〜R24は、それぞれ同じ基であってもよく、異なる基であってもよい。
21〜R24は、反応条件下に不活性な官能基で置換されていてもよい。該不活性な官能基としては、反応条件に応じて異なるが、ハロゲン原子、エステル基、ニトリル基、アシル基、カルボキシル基、アルコキシル基等が挙げられる。
このようなR21〜R24を有する第4級ホスホニウムイオンR21222324として具体的には、テトラエチルホスホニウムイオン、テトラ−n−ブチルホスホニウムイオン、トリ−n−オクチルエチルホスホニウムイオン、セチルトリエチルホスホニウムイオン、セチルトリ−n−ブチルホスホニウムイオン、n−ブチルトリフェニルホスホニウムイオン、n−アミルトリフェニルホスホニウムイオン、メチルトリフェニルホスホニウムイオン、ベンジルトリフェニルホスホニウムイオン、テトラフェニルホスホニウムイオン等が挙げられる。
また、上記一般式(ii)において、陰イオンを表すYとして具体的には、塩素イオン、フッ素イオン、臭素イオン、ヨウ素イオン、硫酸イオン、硝酸イオン、リン酸イオン、過塩素酸イオン、硫酸水素イオン、水酸イオン、酢酸イオン、安息香酸イオン、ベンゼンスルホン酸イオン、p−トルエンスルホン酸イオン等が挙げられ、フッ素イオン、塩素イオンまたは臭素イオンが好ましい。
相間移動触媒の具体例としては、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムブロミド、テトラ−n−プロピルアンモニウムブロミド、テトラ−n−ブチルアンモニウムブロミド、トリ−n−オクチルメチルアンモニウムクロリド、セチルトリメチルアンモニウムブロミド、ベンジルトリメチルアンモニウムクロリド等が挙げられるが、なかでも経済性、安全性の観点からテトラ−n−ブチルアンモニウムブロミドが好ましい。
上記相間移動触媒の量は、用いる原料組成物中の反応に係る成分、すなわちHCFC−225caおよびHCFC−244ebの合計100質量部に対して、0.001〜1質量部となる量が好ましく、より好ましくは0.01〜1質量部である。
(2−3)脱ハロゲン化水素反応
上記反応式(2)・(3)に示す脱ハロゲン化水素反応は具体的には、前記原料組成物と、上記説明したアルカリ水溶液と、相間移動触媒を上記に説明した割合で反応器に導入し、これらが十分に接触するように一般的な手段によって撹拌等を行うことで実施される。
上記脱ハロゲン化水素反応における反応温度は特に限定されないが、反応活性および目的物の選択性の観点から、0〜80℃が好ましい。なお、反応温度は反応時の反応容器の圧力状態により適宜調節される。例えば、常圧で上記脱ハロゲン化水素反応を実施する場合には、0〜60℃の範囲で実施することが好ましく、HCFC−225caをより選択的に脱フッ化水素する観点からは、0〜20℃の範囲で実施されることがより好ましい。また、上記脱ハロゲン化水素反応を加圧反応容器中で実施することも可能であり、その場合は、反応速度の観点での好ましい条件として98,000〜20,0000Pa、50〜80℃が挙げられる。
一方、原料組成物に上述したHCFC−225中のHCFC−225Xの脱フッ化水素反応により副生する化合物の生成を抑制する観点からは、0〜20℃の温度領域で反応を実施することが好ましい。
上記反応式(2)・(3)に示される反応は、バッチ式、連続流通式のどちらでも可能であり、反応時間は各様式により一般的な方法で適宜調整することができる。また、この反応が実施される反応器の材質としては、通常のもの、例えば、ガラス、鉄、ニッケルあるいはこれらを主成分とする合金等を挙げることができる。
本発明の製造方法によれば、上記反応式(2)・(3)による脱ハロゲン化水素反応の終了後、反応液は、放置することで自然に有機相と水相に分離する。この有機相には、CFO−1214yaとHFO−1234yfの他に、脱フッ化水素反応に供しなかったHCFC−225ca以外のHCFC−225の1種以上が含まれ得る。また、HCFC−244ebとして、CFO−1214yaからHFO−1234yfを製造する際に得られた蒸留残渣を用いた場合には、この蒸留残渣に通常含まれる、未反応原料のCFO−1214ya、中間生成物のHCFO−1224yd等が含まれ得る。
また、前述したとおり反応条件等によっては、HCFC−225ca以外のHCFC−225が僅かに脱フッ化水素反応した、微量のCFO−1214yaの異性体、例えば、HCFC−225cb(1,3−ジクロロ−1,2,2,3,3−ペンタフルオロプロパン、CHClFCFCClF)が脱フッ化水素反応した1,3−ジクロロ−1,2,3,3−テトラフルオロプロペン(CClFCF=CClF)等が上記有機相に含まれる場合がある。
この有機相に僅かに存在するCFO−1214yaの異性体の量は、上記説明したとおりの微量であり、CFO−1214yaを使用したHFO−1234yfへの変換反応および返還後の冷媒としての使用等に影響を与えない程度の量といえる。なお、有機相が含有するこのCFO−1214yaの異性体の量は、CFO−1214yaを水素還元してHFO−1234yfを合成する工程における反応条件等により影響を受けるが、CFO−1214yaに対する量として1000ppm以下であることが好ましい。
ここで、前記有機相中のCFO−1214ya、HFO−1234yf、HCFC−225ca以外のHCFC−225は、それぞれ適当な沸点差を有しており、例えばCFO−1214yaとHCFC−225ca以外のHCFC−225との沸点差は約10℃であり、一般的な蒸留等による分離精製が可能な範囲である。したがって、上記有機相中のCFO−1214yaおよびHFO−1234yfは、通常の方法で容易に分離精製されて、各種用途に使用可能となる。
なお、有機相中に上記HCFO−1224ydが含まれる場合には、一般的な蒸留操作では、HCFO−1224ydは、CFO−1214yaの蒸留画分に含まれるかたちで分離されるが、CFO−1214yaの蒸留画分を以下のHFO−1234yfの製造の出発原料として用いる場合には、HCFO−1224ydがCFO−1214yaからHFO−1234yfを製造する際の中間生成物であることから、問題なく使用可能である。
また、上記有機相から得られる脱フッ化水素反応に供しなかったHCFC−225ca以外のHCFC−225(1種類の化合物のみであってもよい)を、HCFC−225の種類にもよるが、例えば、上記に触れた通り触媒反応により異性化する(米国特許第5157171号明細書参照)ことで、HCFC−225caを含むHCFC−225とすることができれば、これを上記本発明の併産方法における原料の一部として用いることが可能である。
一方、上記反応式(2)・(3)による脱ハロゲン化水素反応の終了後、上記有機相と分離した水相は、これだけ取り出して再度適当な濃度となるようにアルカリを加えれば、再利用が可能である。
<HFO−1234yfの製造方法>
本発明はまた、上記本発明の併産方法により得られる反応生成物からCFO−1214yaとHFO−1234yfとをそれぞれ分離するとともに、分離されたCFO−1214yaを、触媒存在下、水素と反応させてHFO−1234yfを製造することを特徴とするHFO−1234yfの製造方法である。すなわち、上記本発明の併産方法により得られた一方の化合物であるCFO−1214yaを出発物質としてHFO−1234yfを製造し、上記本発明の併産方法により得られたもう一方の化合物であるHFO−1234yfとともに、HFO−1234yfを製造する方法である。以下に、本発明のHFO−1234yfの製造方法について説明する。
なお、本製造方法においては、出発物質として上記本発明の併産方法により得られたCFO−1214yaを使用するが、反応原料組成物として、以下に説明するCFO−1214yaの還元反応を阻害しない範囲で、CFO−1214ya以外の有機化合物を含んでいてもよい。このような有機化合物として、例えば、上記HCFO−1224yd等が挙げられる。
上記で得られたCFO−1214yaを用いてHFO−1234yfを製造するには、下記反応式(4)に示すように、触媒の存在下でCFO−1214yaに水素を反応させればよい。
[HFO−1234yfの生成反応]
CFCF=CCl(CFO−1214ya) + 2H
→ CFCF=CH(HFO−1234yf) + 2HCl … (4)
上記反応式(4)で示されるHFO−1234yfの生成反応に用いられる水素の量として、具体的には、CFO−1214yaの1モルに対して、通常0.5〜10モル、好ましくは0.5〜5モル、さらに好ましくは0.5〜3モルが挙げられる。水素の量がCFO−1214yaの1モルに対して0.5モル以上である場合は特に収率が高く、触媒劣化も起こりにくい。また、3モル以下である場合は、目的物の還元や水素添加反応などの副反応が起こりにくいため、より収率が高い。
また、上記反応式(4)で示されるHFO−1234yfの生成反応に用いる触媒としては、パラジウム触媒または、パラジウムを主成分とし、これにパラジウム以外の第10族元素、第8族元素、第9族元素および金から選ばれる少なくとも1種を添加した金属混合物触媒が挙げられる。上記パラジウム以外の第10族元素、第8族元素および第9族元素としては、鉄、コバルト、ニッケル、ルテニウム、ロジウム、イリジウム、オスミウム、または白金が挙げられる。また、パラジウム以外の金属の量としては、パラジウム100重量部に対して、0.01〜50重量部が好ましい。なお、パラジウムに他の金属を添加した複合触媒は、パラジウム単独のものよりも触媒耐久性が高くなる効果がある。
上記パラジウムまたはこれを主成分とする金属混合物は担体に担持して使用される。触媒を担持させる担体としては、活性炭や、アルミナ、ジルコニア、シリカなどの金属酸化物等を用いることができる。これらのうちでも、活性、耐久性、反応選択性の観点から活性炭が好ましく用いられる。活性炭としては、木材、木炭、果実ガラ、ヤシガラ、泥炭、亜炭、石炭などの原料から調製したものを使用しうるが、鉱物質原料よりも植物原料から得られたものが好ましく、特にヤシガラ活性炭が最適である。担体形状としては、長さ2〜5mm程度の成形炭、約4〜50メッシュ程度の破砕炭、粒状炭等を用いることができるが、4〜20メッシュの破砕炭、または成形炭が好ましい。
上記反応式(4)で示されるHFO−1234yfの生成反応は、130〜250℃の温度、好ましくは150〜200℃の温度下で、触媒担持担体を充填した反応器中に、加熱しガス状にしたCFO−1214yaと水素とを通過させて、触媒と接触させることで実施する気相還元法が好ましい。また、副生物の生成を抑制するためにはさらに低温で反応させる気相還元法がより好ましい。例えば、CFO−1214yaと水素を含む原料混合ガスを使用し、触媒担持担体を充填した反応器中の触媒層の温度を該原料混合ガスの露点以上とし、反応で上昇する触媒層部分の温度を130℃未満に維持しながら、原料混合ガスを触媒層に通過させて、反応させることが好ましい。この場合の触媒層の温度は50℃未満であってもよいが、50℃以上が好ましい。より好ましくは60℃以上である。また、反応により温度が上昇する部分の触媒層の温度は100℃以下が好ましい。
反応圧力は通常、常圧または自圧で十分進行する。触媒に対する接触時間は通常4〜60秒、好ましくは8〜40秒の範囲で設定すればよい。また、過剰の温度上昇を制御するために、反応を窒素等の不活性ガスで希釈して実施してもよい。
不活性ガスの導入量は、具体的には、CFO−1214yaの1モルに対して、通常、0.1モル以上、好ましくは、0.5モル以上である。不活性ガスの量がCFO−1214yaの1モルに対して0.5モル以上の場合は、発熱を抑えるとともに副生物の発生が抑制され、特に高収率とすることができ、触媒の劣化もの抑制できる。また、上限は特に限定されないが、回収率の観点から、不活性ガスの導入量は10モル以下が好ましく、特には4モル以下が好ましい。
上記HFO−1234yfの生成反応に用いる反応器の材質としては、通常のもの、例えば、ガラス、鉄、ニッケルあるいはこれらを主成分とする合金等を挙げることができる。
反応生成物であるHFO−1234yfの回収および未反応物の分離は通常の方法、例えば、分留等の一般的な方法が採用できる。
ここで、上記CFO−1214yaを還元反応させて得られる反応混合物からHFO−1234yfを蒸留分離した後に残る蒸留残渣には、上述したように、未反応原料のCFO−1214ya、中間生成物のHCFO−1224ydおよび副生物であるHCFC−244eb等が含まれる。この蒸留残渣は、HCFC−244ebの存在によりCFO−1214yaの還元反応にリサイクル使用することは困難であるが、上記本発明の併産方法における原料組成物に用いることは可能であり、それにより有効なリサイクルが可能となる。
図1に上記本発明の製造方法を利用したHCFC−225caからCFO−1214yaを経てHFO−1234yfを製造する製造フローの一例を示す。この図から分かるように本発明の製造方法を利用することにより、新冷媒として有用なHFO−1234yfが、原料化合物や副生物が十分にリサイクルされた経済的な方法で製造可能である。
本発明はまた、図1に示した各工程を組み合わせてHFO−1234yfを製造する方法である。すなわち、本発明はまた以下のHFO−1234yfの製造方法である。
CFO−1214yaを、触媒存在下、水素と反応させてHFO−1234yfを製造して反応生成物から分離するとともに、未反応のCFO−1214yaと、中間生成物であるHCFO−1224ydと、副生物であるHCFC−244ebとを含む混合物を得る水素化工程、
HCFC−225caとその異性体の少なくとも1種とを含むジクロロペンタフルオロプロパンおよび前記水素化工程で得られた混合物を混合してHCFC−225caとHCFC−244ebとを含む原料組成物とする混合工程、および、
前記原料組成物を、相間移動触媒の存在下にアルカリ水溶液と接触させて、前記HCFC−225caからCFO−1214yaを製造するとともに前記HCFC−244ebからHFO−1234yfを製造し、反応生成物からCFO−1214yaとHFO−1234yfとをそれぞれ分離する脱ハロゲン化水素工程、とを含み、
前記脱ハロゲン化水素工程で分離されたCFO−1214yaを、前記水素化工程におけるCFO−1214yaの少なくとも一部として使用することを特徴とするHFO−1234yfの製造方法。
上記HFO−1234yfの製造方法においては、また、HCFC−225ca以外の少なくとも1種のHCFC−225をHCFC−225caに異性化する異性化工程を組み合わせることが好ましい。
すなわち、上記HFO−1234yfの製造方法において、さらに、HCFC−225ca以外のHCFC−225の少なくとも1種をHCFC−225caに異性化する異性化工程を含み、
前記脱ハロゲン化水素工程において、反応生成物からCFO−1214yaとHFO−1234yfとをそれぞれ分離するとともに、HCFC−225ca以外のジクロロペンタフルオロプロパンの少なくとも1種を含むジクロロペンタフルオロプロパンを分離し、
分離された前記ジクロロペンタフルオロプロパンを前記異性化工程によりHCFC−225caとその異性体の少なくとも1種とを含むジクロロペンタフルオロプロパンとし、
前記異性化工程で得られたジクロロペンタフルオロプロパンを前記混合工程におけるジクロロペンタフルオロプロパンの少なくとも一部として使用する、HFO−1234yfの製造方法である。
以下に、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
[実施例1]CFO−1214yaおよびHFO−1234yfの並行製造例1
0℃に冷却したジムロート、滴下ロートおよび撹拌機を設置した内容積10Lのガラス反応器に、相間移動触媒としてテトラ−n−ブチルアンモニウムブロマイド(TBAB)の3.88gと、HCFC−225ca:50.41質量%、HCFC−225cb:5.14質量%、HCFC−244eb:0.52質量%、CFO−1214ya:38.89質量%、HCFO−1224yd:4.9質量%からなる原料組成物の7750gを仕込み、約10℃の反応温度を保持できるように滴下速度を調節しながら滴下ロートより40質量%水酸化カリウム水溶液の2885gを約3時間かけて滴下した。
約3時間の滴下の後、さらに2時間反応を続けた。その後、有機相を一部サンプリングしガスクロマトグラフィ(GC)により分析を行ったところ、HCFC−225caおよびHCFC−244ebの反応率は100%および54%であり、CFO−1214yaおよびHFO−1234yfが生成していた。
さらに反応を15時間継続した結果、HCFC−244ebの反応率は80%まで向上した。この反応においてHCFC−225cbおよびHCFO−1224ydからの反応生成物は認められなかった。
[実施例2]HFO−1234yfの製造例
活性炭(商品名:白鷺C2X、武田薬品工業社製)に1.8質量%のパラジウムと0.2質量%の金を担持した触媒担持担体を内径2.54cm、長さ100cmのインコネル(登録商標)600製反応管に充填し、塩浴中に浸漬した。
上記実施例1で得られたCFO−1214yaを用いて、表1の上欄に示した反応条件で還元反応を実施し、HFO−1234yfを製造した。
反応生成物の確認は、反応器からの出口ガスをガスクロマトグラフィで分析し粗ガスモル組成を計算することで行った。結果を表1の下欄に示す。
Figure 2011162336
[実施例3]CFO−1214yaおよびHFO−1234yfの並行製造例2
0℃に冷却したジムロート、滴下ロートおよび撹拌機を設置した内容積1Lのガラス反応器に相間移動触媒としてテトラ−n−ブチルアンモニウムブロマイド(TBAB)の0.36gと、HCFC−225ca:80.43質量%、HCFC−225cb:8.45質量%、HCFC−244eb:0.26質量%、CFO−1214ya:10.76質量%、HCFO−1224yd:0.08質量%からなる原料組成物の700gを仕込み、約15℃から20℃の反応温度で滴下ロートより40質量%水酸化カリウム水溶液の413gを約3時間かけて滴下した。
なお、上記原料組成物は、実施例2で得られた粗生成物を蒸留精製し、HFO−1234yfを留出、除去した蒸留残渣に、HCFC−225cbおよびHCFC−225caを加えて調整したものである。
約3時間の滴下の後、さらに1時間反応を続け、有機相をガスクロ分析したところ、HCFC−225caおよびHCFC−244ebの反応率は100%および80%であり、CFO−1214yaおよびHFO−1234yfが生成していた。
さらに反応を19時間継続した結果、HCFC−244ebの反応率は96%まで進行していた。この反応においてHCFC−225cbおよびHCFO−1224ydからの反応生成物は認められなかった。
本発明の製造方法によれば、異性体混合物として得られる原料成分、すなわちHCFC−225caの精製を必要とせずに、簡便で経済的にCFO−1214yaが製造できるとともに、有用性の低いHCFC−244ebから新冷媒として有用なHFO−1234yfを簡便で経済的に製造することができる。
また、この方法で得られたCFO−1214yaを用いることで、新冷媒として有用なHFO−1234yfを経済的に製造することが可能となる。
なお、2010年6月23日に出願された日本特許出願2010−142279号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (12)

  1. 1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンとその異性体の少なくとも1種とを含むジクロロペンタフルオロプロパンおよび1−クロロ−2,3,3,3−テトラフルオロプロパンを含む原料組成物を、相間移動触媒の存在下にアルカリ水溶液と接触させて、前記1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンから1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンを製造するとともに前記1−クロロ−2,3,3,3−テトラフルオロプロパンから2,3,3,3−テトラフルオロプロペンを製造することを特徴とするテトラフルオロプロペン類の製造方法。
  2. 前記1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンの異性体が、1,3−ジクロロ−1,2,2,3,3−ペンタフルオロプロパン、2,2−ジクロロ−1,1,3,3,3−ペンタフルオロプロパン、1,2−ジクロロ−1,2,3,3,3−ペンタフルオロプロパンおよび2,3−ジクロロ−1,1,2,3,3−ペンタフルオロプロパンである、請求項1に記載の製造方法。
  3. 前記原料組成物において、ジクロロペンタフルオロプロパンにおける1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンの割合が99.5モル%以下である、請求項1または2に記載の製造方法。
  4. 前記原料組成物における1−クロロ−2,3,3,3−テトラフルオロプロパンが、1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンを水素化して2,3,3,3−テトラフルオロプロペンを製造する反応で副生した1−クロロ−2,3,3,3−テトラフルオロプロパンである、請求項1〜3のいずれか1項に記載の製造方法。
  5. 前記原料組成物において、ジクロロペンタフルオロプロパンの100質量部に対する前記1−クロロ−2,3,3,3−テトラフルオロプロパンの量が0.01〜20質量部である、請求項1〜4のいずれか1項に記載の製造方法。
  6. 前記原料組成物を相間移動触媒の存在下にアルカリ水溶液と接触させる温度が、0〜20℃である、請求項1〜5のいずれか1項に記載の製造方法。
  7. 前記アルカリ水溶液のアルカリ濃度が0.5〜40質量%である、請求項1〜6のいずれか1項に記載の製造方法。
  8. 請求項1〜7のいずれか1項に記載の製造方法により得られる反応生成物からジクロロペンタフルオロプロパンを分離し、分離されたジクロロペンタフルオロプロパン中の1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン以外の異性体の少なくとも1種を1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンに異性化し、次いで前記異性化反応により得られた1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンを含むジクロロペンタフルオロプロパンを前記原料組成物におけるジクロロペンタフルオロプロパンの少なくとも一部として使用する、請求項1〜7のいずれか1項に記載の製造方法。
  9. 請求項1〜8のいずれか1項に記載の製造方法により得られる反応生成物から1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンと2,3,3,3−テトラフルオロプロペンとをそれぞれ分離するとともに、分離された1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンを、触媒存在下、水素と反応させて2,3,3,3−テトラフルオロプロペンを製造することを特徴とする2,3,3,3−テトラフルオロプロペンの製造方法。
  10. 前記水素化反応生成物から、2,3,3,3−テトラフルオロプロペンを分離するとともに、未反応の1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンと、中間生成物である1−クロロ−2,3,3,3−テトラフルオロプロペンと、副生物である1−クロロ−2,3,3,3−テトラフルオロプロパンとを含む混合物を分離し、分離された該混合物を請求項1〜8のいずれか1項に記載の製造方法における原料組成物の一部として使用する、請求項9に記載の2,3,3,3−テトラフルオロプロペンの製造方法。
  11. 1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンを、触媒存在下、水素と反応させて2,3,3,3−テトラフルオロプロペンを製造して反応生成物から分離するとともに、未反応の1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンと、中間生成物である1−クロロ−2,3,3,3−テトラフルオロプロペンと、副生物である1−クロロ−2,3,3,3−テトラフルオロプロパンとを含む混合物を得る水素化工程、
    1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンとその異性体の少なくとも1種とを含むジクロロペンタフルオロプロパンおよび前記水素化工程で得られた前記混合物を混合して1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンと1−クロロ−2,3,3,3−テトラフルオロプロパンとを含む原料組成物とする混合工程、および、
    前記原料組成物を、相間移動触媒の存在下にアルカリ水溶液と接触させて、前記1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンから1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンを製造するとともに前記1−クロロ−2,3,3,3−テトラフルオロプロパンから2,3,3,3−テトラフルオロプロペンを製造し、反応生成物から1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンと2,3,3,3−テトラフルオロプロペンとをそれぞれ分離する脱ハロゲン化水素工程、とを含み、
    前記脱ハロゲン化水素工程で分離された1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンを、前記水素化工程における1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンの少なくとも一部として使用することを特徴とする2,3,3,3−テトラフルオロプロペンの製造方法。
  12. さらに、1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン以外のジクロロペンタフルオロプロパンの少なくとも1種を1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンに異性化する異性化工程を含み、
    前記脱ハロゲン化水素工程において、反応生成物から1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンと2,3,3,3−テトラフルオロプロペンとをそれぞれ分離するとともに、1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン以外のジクロロペンタフルオロプロパンの少なくとも1種を含むジクロロペンタフルオロプロパンを分離し、
    分離された前記ジクロロペンタフルオロプロパンを前記異性化工程により1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンとその異性体の少なくとも1種とを含むジクロロペンタフルオロプロパンとし、
    前記異性化工程で得られたジクロロペンタフルオロプロパンを前記混合工程におけるジクロロペンタフルオロプロパンの少なくとも一部として使用する、請求項11に記載の2,3,3,3−テトラフルオロプロペンの製造方法。
JP2012521525A 2010-06-23 2011-06-23 1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンおよび2,3,3,3−テトラフルオロプロペンの製造方法 Active JP5713016B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012521525A JP5713016B2 (ja) 2010-06-23 2011-06-23 1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンおよび2,3,3,3−テトラフルオロプロペンの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010142279 2010-06-23
JP2010142279 2010-06-23
PCT/JP2011/064422 WO2011162336A1 (ja) 2010-06-23 2011-06-23 1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンおよび2,3,3,3-テトラフルオロプロペンの製造方法
JP2012521525A JP5713016B2 (ja) 2010-06-23 2011-06-23 1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンおよび2,3,3,3−テトラフルオロプロペンの製造方法

Publications (2)

Publication Number Publication Date
JPWO2011162336A1 true JPWO2011162336A1 (ja) 2013-08-22
JP5713016B2 JP5713016B2 (ja) 2015-05-07

Family

ID=45353145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012521525A Active JP5713016B2 (ja) 2010-06-23 2011-06-23 1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンおよび2,3,3,3−テトラフルオロプロペンの製造方法

Country Status (6)

Country Link
US (1) US8642820B2 (ja)
EP (1) EP2586762B1 (ja)
JP (1) JP5713016B2 (ja)
CN (1) CN102947257B (ja)
TW (1) TW201209017A (ja)
WO (1) WO2011162336A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099856A1 (ja) 2011-12-28 2013-07-04 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンの精製方法、精製装置および製造方法
CN106573857B (zh) * 2014-04-16 2020-06-09 科慕埃弗西有限公司 将氯氟丙烷和氯氟丙烯转化成更需要的氟丙烷和氟丙烯
EP3187478B1 (en) * 2014-08-25 2020-03-04 AGC Inc. Method for producing hydrofluoroolefin
JP6827810B2 (ja) * 2014-08-25 2021-02-10 Agc株式会社 ハイドロフルオロオレフィンの製造方法
CN107001194A (zh) * 2014-12-05 2017-08-01 旭硝子株式会社 氢氟烯烃的制造方法
WO2017018412A1 (ja) 2015-07-27 2017-02-02 旭硝子株式会社 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
CN107922296A (zh) * 2015-09-09 2018-04-17 科慕埃弗西有限公司 氟化氯代烷烃的新方法
MX2018001966A (es) 2015-09-11 2018-06-19 Chemours Co Fc Llc Deshidrohalogenacion de hidroclorofluorocarburos.
EP3395789B1 (en) 2015-12-25 2020-11-18 AGC Inc. Manufacturing method of 1-chloro-2,3,3,3-tetrafluoropropene
JP6930524B2 (ja) 2016-02-26 2021-09-01 Agc株式会社 精製1−クロロ−2,3,3,3−テトラフルオロプロペンおよび精製1−クロロ−2,3,3,3−テトラフルオロプロペン(z)の製造方法
WO2018079726A1 (ja) * 2016-10-28 2018-05-03 旭硝子株式会社 テトラフルオロプロペンの製造方法
WO2018123911A1 (ja) * 2016-12-28 2018-07-05 旭硝子株式会社 含塩素プロペンの製造方法
WO2019003896A1 (ja) * 2017-06-27 2019-01-03 Agc株式会社 2-クロロ-1,1,1,2-テトラフルオロプロパンおよび/または3-クロロ-1,1,1,2-テトラフルオロプロパンの製造方法、ならびに2,3,3,3-テトラフルオロプロペンの製造方法
JPWO2019098337A1 (ja) * 2017-11-20 2020-11-19 Agc株式会社 (z)−1−クロロ−2,3,3,3−テトラフルオロプロペンの精製方法
EP4212501A1 (en) * 2017-12-21 2023-07-19 Agc Inc. Mixture comprising 2-chloro-1,3,3,3-tetrafluoropropene and 1-chloro-2,3,3,3-tetrafluoropropene
WO2019208546A1 (ja) * 2018-04-23 2019-10-31 Agc株式会社 含フッ素不飽和炭化水素の製造方法
CN113527040B (zh) * 2020-04-22 2023-09-01 浙江省化工研究院有限公司 一种卤代丙烯的制备方法
CN114436764B (zh) * 2020-11-04 2023-10-03 浙江省化工研究院有限公司 一种1-氯-2,3,3,3-四氟丙烯及其中间体的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526661B2 (ja) * 1989-04-27 1996-08-21 ダイキン工業株式会社 フルオロアルキルビニル化合物の製造法
US5157171A (en) * 1989-10-16 1992-10-20 E. I. Du Pont De Nemours And Company Process for chlorofluoropropanes
JPH08169850A (ja) * 1994-12-16 1996-07-02 Daikin Ind Ltd 1,1,1,2,3,3−ヘキサフルオロプロパンの製造方法
JP3778298B2 (ja) * 1995-01-13 2006-05-24 ダイキン工業株式会社 ヘキサフルオロプロペンの製造方法
US6548719B1 (en) * 2001-09-25 2003-04-15 Honeywell International Process for producing fluoroolefins
TW200837036A (en) 2006-11-15 2008-09-16 Du Pont Process for producing 2,3,3,3-tetrafluoropropene
GB0625214D0 (en) * 2006-12-19 2007-01-24 Ineos Fluor Holdings Ltd Process
US9079818B2 (en) * 2007-10-15 2015-07-14 Honeywell International Inc. Process for synthesis of fluorinated olefins
GB0806389D0 (en) * 2008-04-09 2008-05-14 Ineos Fluor Holdings Ltd Process
WO2010013576A1 (en) * 2008-07-30 2010-02-04 Daikin Industries, Ltd. Process for producing fluorine-containing propene compound
JP2010142279A (ja) 2008-12-16 2010-07-01 Olympus Medical Systems Corp 処置具
CN102282115B (zh) * 2009-01-19 2015-01-07 旭硝子株式会社 1,1-二氯-2,2,3,3,3-五氟丙烷的制造方法

Also Published As

Publication number Publication date
EP2586762B1 (en) 2019-08-07
CN102947257A (zh) 2013-02-27
TW201209017A (en) 2012-03-01
US20110319678A1 (en) 2011-12-29
WO2011162336A1 (ja) 2011-12-29
CN102947257B (zh) 2014-07-09
US8642820B2 (en) 2014-02-04
EP2586762A4 (en) 2015-04-29
EP2586762A1 (en) 2013-05-01
JP5713016B2 (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5713016B2 (ja) 1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンおよび2,3,3,3−テトラフルオロプロペンの製造方法
JP5582036B2 (ja) 1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンおよび2,3,3,3−テトラフルオロプロペンの製造方法
JP6860057B2 (ja) 1−クロロ−2,3,3−トリフルオロプロペンの製造方法
JP6132042B2 (ja) 1−クロロ−2,3,3−トリフルオロプロペンの製造方法
JP4864879B2 (ja) 1,3,3,3−テトラフルオロプロペンの合成方法
US20130131403A1 (en) Method for producing fluorinated organic compounds
US8754272B2 (en) Process for cis-1-chloro-3,3,3-trifluoropropene
JP6245259B2 (ja) (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
MX2013009580A (es) Deshidrocloracion catalitica de hidrofluorocarburos.
JPWO2018012511A1 (ja) 1−クロロ−1,2−ジフルオロエチレンの製造方法
JPWO2011162337A1 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP5817591B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
US8609908B2 (en) Process for producing 1, 1-dichloro-2, 2, 3, 3, 3-pentafluoropropane
JP2016124847A (ja) トリフルオロエチレンの製造方法
JP7151259B2 (ja) 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
JP2020023450A (ja) 2−クロロ−3,3−ジフルオロプロペンの製造方法、2−クロロ−1,1,2−トリフルオロプロパンの製造方法、2,3,3−トリフルオロプロペンの製造方法、1,2−ジクロロ−2,3,3−トリフルオロプロパンの製造方法、1−クロロ−2,3,3−トリフルオロプロペンの製造方法
JP2015224236A (ja) (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R150 Certificate of patent or registration of utility model

Ref document number: 5713016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250